Establishing a China malaria diagnosis reference laboratory network for malaria elimination.
Yin, Jian-hai; Yan, He; Huang, Fang; Li, Mei; Xiao, Hui-hui; Zhou, Shui-sen; Xia, Zhi-gui
2015-01-28
In China, the prevalence of malaria has reduced dramatically due to the elimination programme. The continued success of the programme will depend upon the accurate diagnosis of the disease in the laboratory. The basic requirements for this are a reliable malaria diagnosis laboratory network and quality management system to support case verification and source tracking. The baseline information of provincial malaria laboratories in the China malaria diagnosis reference laboratory network was collected and analysed, and a quality-assurance activity was carried out to assess their accuracies in malaria diagnosis by microscopy using WHO standards and PCR. By the end of 2013, nineteen of 24 provincial laboratories have been included in the network. In the study, a total of 168 staff were registered and there was no bias in their age, gender, education level, and position. Generally Plasmodium species were identified with great accuracy by microscopy and PCR. However, Plasmodium ovale was likely to be misdiagnosed as Plasmodium vivax by microscopy. China has established a laboratory network for primary malaria diagnosis which will cover a larger area. Currently, Plasmodium species can be identified fairly accurately by microscopy and PCR. However, laboratory staff need additional trainings on accurate identification of P. ovale microscopically and good performance of PCR operations.
Evaluation of the Illumigene Malaria LAMP: A Robust Molecular Diagnostic Tool for Malaria Parasites
Lucchi, Naomi W.; Gaye, Marie; Diallo, Mammadou Alpha; Goldman, Ira F.; Ljolje, Dragan; Deme, Awa Bineta; Badiane, Aida; Ndiaye, Yaye Die; Barnwell, John W.; Udhayakumar, Venkatachalam; Ndiaye, Daouda
2016-01-01
Isothermal nucleic acid amplification assays such as the loop mediated isothermal amplification (LAMP), are well suited for field use as they do not require thermal cyclers to amplify the DNA. To further facilitate the use of LAMP assays in remote settings, simpler sample preparation methods and lyophilized reagents are required. The performance of a commercial malaria LAMP assay (Illumigene Malaria LAMP) was evaluated using two sample preparation workflows (simple filtration prep (SFP)) and gravity-driven filtration prep (GFP)) and pre-dispensed lyophilized reagents. Laboratory and clinical samples were tested in a field laboratory in Senegal and the results independently confirmed in a reference laboratory in the U.S.A. The Illumigene Malaria LAMP assay was easily implemented in the clinical laboratory and gave similar results to a real-time PCR reference test with limits of detection of ≤2.0 parasites/μl depending on the sample preparation method used. This assay reliably detected Plasmodium sp. parasites in a simple low-tech format, providing a much needed alternative to the more complex molecular tests for malaria diagnosis. PMID:27827432
Wanja, Elizabeth; Achilla, Rachel; Obare, Peter; Adeny, Rose; Moseti, Caroline; Otieno, Victor; Morang'a, Collins; Murigi, Ephantus; Nyamuni, John; Monthei, Derek R; Ogutu, Bernhards; Buff, Ann M
2017-05-25
One objective of the Kenya National Malaria Strategy 2009-2017 is scaling access to prompt diagnosis and effective treatment. In 2013, a quality assurance (QA) pilot was implemented to improve accuracy of malaria diagnostics at selected health facilities in low-transmission counties of Kenya. Trends in malaria diagnostic and QA indicator performance during the pilot are described. From June to December 2013, 28 QA officers provided on-the-job training and mentoring for malaria microscopy, malaria rapid diagnostic tests and laboratory QA/quality control (QC) practices over four 1-day visits at 83 health facilities. QA officers observed and recorded laboratory conditions and practices and cross-checked blood slides for malaria parasite presence, and a portion of cross-checked slides were confirmed by reference laboratories. Eighty (96%) facilities completed the pilot. Among 315 personnel at pilot initiation, 13% (n = 40) reported malaria diagnostics training within the previous 12 months. Slide positivity ranged from 3 to 7%. Compared to the reference laboratory, microscopy sensitivity ranged from 53 to 96% and positive predictive value from 39 to 53% for facility staff and from 60 to 96% and 52 to 80%, respectively, for QA officers. Compared to reference, specificity ranged from 88 to 98% and negative predictive value from 98 to 99% for health-facility personnel and from 93 to 99% and 99%, respectively, for QA officers. The kappa value ranged from 0.48-0.66 for facility staff and 0.57-0.84 for QA officers compared to reference. The only significant test performance improvement observed for facility staff was for specificity from 88% (95% CI 85-90%) to 98% (95% CI 97-99%). QA/QC practices, including use of positive-control slides, internal and external slide cross-checking and recording of QA/QC activities, all increased significantly across the pilot (p < 0.001). Reference material availability also increased significantly; availability of six microscopy job aids and seven microscopy standard operating procedures increased by a mean of 32 percentage points (p < 0.001) and 38 percentage points (p < 0.001), respectively. Significant gains were observed in malaria QA/QC practices over the pilot. However, these advances did not translate into improved accuracy of malaria diagnostic performance perhaps because of the limited duration of the QA pilot implementation.
Fernando, Deepika; de Silva, Nipun Lakshitha; Ackers, Isabella; Abeyasinghe, Rabindra; Wijeyaratne, Pandu; Rajapakse, Senaka
2014-06-23
With the incidence of malaria in Sri Lanka declining, intensive parasitological surveillance has been identified as a key strategy to achieve elimination by end 2014. Tropical and Environmental Diseases and Health Associates Private Limited (TEDHA) in collaboration with the Anti-Malaria Campaign established 43 malaria diagnostic laboratories (MDL) in four post-conflict districts of the Northern and Eastern Provinces. This study assesses the patterns of referral of patients with fever for malaria diagnosis by health care providers (HCPs) in four government hospitals in one of the districts of the Northern Province, and patient satisfaction with the laboratory services offered. In this prospective descriptive study, data was collected on the proportion of fever patients being referred by the HCP in hospitals for malaria screening, and the proportion thereof who underwent screening. An interviewer-administered questionnaire was also used to assess patient satisfaction among those attending MDL, which was graded on a scale of 0-4. Of patients presenting to the hospitals with fever, only 44.3% were referred for malaria screening; 81.7% of them underwent screening. Referral depended largely on the presence of a permanent staff HCP. Satisfaction levels were high, with 86.55% giving an overall rating of 4. Comfort within the laboratory was rated satisfactory in three of the four hospitals. This study demonstrates the success of a public-private partnership in the malaria control programme in Sri Lanka. Malaria is considered low on the differential diagnosis in patients with fever even in previously malaria-endemic areas, due to the declining incidence of malaria and the increase in other febrile illnesses in these areas during the recent past. Private sector run malaria diagnostic services provided free of charge within government hospitals are viable and effective, and had good patient satisfaction ratings. In a country on the brink of eliminating malaria, there should be further emphasis on ensuring that HCPs refer patients for malaria diagnosis, in order to prevent a resurgence of the disease.
The establishment of a WHO Reference Reagent for anti-malaria (Plasmodium falciparum) human serum.
Bryan, Donna; Silva, Nilupa; Rigsby, Peter; Dougall, Thomas; Corran, Patrick; Bowyer, Paul W; Ho, Mei Mei
2017-08-05
At a World Health Organization (WHO) sponsored meeting it was concluded that there is an urgent need for a reference preparation that contains antibodies against malaria antigens in order to support serology studies and vaccine development. It was proposed that this reference would take the form of a lyophilized serum or plasma pool from a malaria-endemic area. In response, an immunoassay standard, comprising defibrinated human plasma has been prepared and evaluated in a collaborative study. A pool of human plasma from a malaria endemic region was collected from 140 single plasma donations selected for reactivity to Plasmodium falciparum apical membrane antigen-1 (AMA-1) and merozoite surface proteins (MSP-1 19 , MSP-1 42 , MSP-2 and MSP-3). This pool was defibrinated, filled and freeze dried into a single batch of ampoules to yield a stable source of naturally occurring antibodies to P. falciparum. The preparation was evaluated by an enzyme-linked immunosorbent assay (ELISA) in a collaborative study with sixteen participants from twelve different countries. This anti-malaria human serum preparation (NIBSC Code: 10/198) was adopted by the WHO Expert Committee on Biological Standardization (ECBS) in October 2014, as the first WHO reference reagent for anti-malaria (Plasmodium falciparum) human serum with an assigned arbitrary unitage of 100 units (U) per ampoule. Analysis of the reference reagent in a collaborative study has demonstrated the benefit of this preparation for the reduction in inter- and intra-laboratory variability in ELISA. Whilst locally sourced pools are regularly use for harmonization both within and between a few laboratories, the presence of a WHO-endorsed reference reagent should enable optimal harmonization of malaria serological assays either by direct use of the reference reagent or calibration of local standards against this WHO reference. The intended uses of this reference reagent, a multivalent preparation, are (1) to allow cross-comparisons of results of vaccine trials performed in different centres/with different products; (2) to facilitate standardization and harmonization of immunological assays used in epidemiology research; and (3) to allow optimization and validation of immunological assays used in malaria vaccine development.
Imported malaria to Northern Ireland: improving surveillance for better intervention
Ong, GM; Smyth, B
2006-01-01
Malaria is a preventable disease, which is under notified in the UK. This study sought to evaluate the current surveillance arrangements in Northern Ireland (NI), describe the epidemiology of malaria and make appropriate recommendations. A case was defined as a resident or visitor to NI with laboratory confirmed malaria, diagnosed by the NI haematology laboratories and/or the Malaria Reference Laboratory (MRL) from 1998–2003. Laboratory data were compared with notifications and hospital admission data. One hundred and fourteen laboratory cases were identified compared with 63 notifications received by the regional surveillance centre. Six cases were associated with two episodes of malaria reflecting recurrence and or reinfection. P. falciparum was the most common infection with two fatalities reported; this was particularly associated with travel to West Africa. Most cases were associated with short visits to malarious areas. Thirty-three percent of all cases did not take prophylaxis and, of those that did, approximately half were taking a prophylactic regime appropriate to the region visited. This study highlights the need for improved surveillance of malaria in order to capture risk factors and other relevant information to inform public and professional education. This would facilitate increasing local awareness, enhancing prescription of and compliance with appropriate chemoprophylaxis and enabling early diagnosis and treatment of malaria. PMID:16755943
Tamiru, Afework; Boulanger, Lucy; Chang, Michelle A; Malone, Joseph L; Aidoo, Michael
2015-01-21
Rapid diagnostic tests (RDTs) are now widely used for laboratory confirmation of suspected malaria cases to comply with the World Health Organization recommendation for universal testing before treatment. However, many malaria programmes lack quality control (QC) processes to assess RDT use under field conditions. Prior research showed the feasibility of using the dried tube specimen (DTS) method for preserving Plasmodium falciparum parasites for use as QC samples for RDTs. This study focused on the use of DTS for RDT QC and proficiency testing under field conditions. DTS were prepared using cultured P. falciparum at densities of 500 and 1,000 parasites/μL; 50 μL aliquots of these along with parasite negative human blood controls (0 parasites/μL) were air-dried in specimen tubes and reactivity verified after rehydration. The DTS were used in a field study in the Oromia Region of Ethiopia. Replicate DTS samples containing 0, 500 and 1,000 parasites/μL were stored at 4°C at a reference laboratory and at ambient temperatures at two nearby health facilities. At weeks 0, 4, 8, 12, 16, 20, and 24, the DTS were rehydrated and tested on RDTs stored under manufacturer-recommended temperatures at the RL and on RDTs stored under site-specific conditions at the two health facilities. Reactivity of DTS stored at 4°C at the reference laboratory on RDTs stored at the reference laboratory was considered the gold standard for assessing DTS stability. A proficiency-testing panel consisting of one negative and three positive samples, monitored with a checklist was administered at weeks 12 and 24. At all the seven time points, DTS stored at both the reference laboratory and health facility were reactive on RDTs stored under the recommended temperature and under field conditions, and the DTS without malaria parasites were negative. At the reference laboratory and one health facility, a 500 parasites/μL DTS from the proficiency panel was falsely reported as negative at week 24 due to errors in interpreting faint test lines. The DTS method can be used under field conditions to supplement other RDT QC methods and health worker proficiency in Ethiopia and possibly other malaria-endemic countries.
Khairnar, Krishna; Martin, Donald; Lau, Rachel; Ralevski, Filip; Pillai, Dylan R
2009-12-09
Accurate laboratory diagnosis of malaria species in returning travelers is paramount in the treatment of this potentially fatal infectious disease. A total of 466 blood specimens from returning travelers to Africa, Asia, and South/Central America with suspected malaria infection were collected between 2007 and 2009 at the reference public health laboratory. These specimens were assessed by reference microscopy, multipex real-time quantitative polymerase chain reaction (QPCR), and two rapid diagnostic immuno-chromatographic tests (ICT) in a blinded manner. Key clinical laboratory parameters such as limit of detection (LOD) analysis on clinical specimens by parasite stage, inter-reader variability of ICTs, staffing implications, quality assurance and cost analysis were evaluated. QPCR is the most analytically sensitive method (sensitivity 99.41%), followed by CARESTART (sensitivity 88.24%), and BINAXNOW (sensitivity 86.47%) for the diagnosis of malaria in returning travelers when compared to reference microscopy. However, microscopy was unable to specifically identify Plasmodia spp. in 18 out of 170 positive samples by QPCR. Moreover, the 17 samples that were negative by microscopy and positive by QPCR were also positive by ICTs. Quality assurance was achieved for QPCR by exchanging a blinded proficiency panel with another reference laboratory. The Kappa value of inter-reader variability among three readers for BINAXNOW and CARESTART was calculated to be 0.872 and 0.898 respectively. Serial dilution studies demonstrated that the QPCR cycle threshold correlates linearly with parasitemia (R(2) = 0.9746) in a clinically relevant dynamic range and retains a LOD of 11 rDNA copies/microl for P. falciparum, which was several log lower than reference microscopy and ICTs. LOD for QPCR is affected not only by parasitemia but the parasite stage distribution of each clinical specimen. QPCR was approximately 6-fold more costly than reference microscopy. These data suggest that multiplex QPCR although more costly confers a significant diagnostic advantage in terms of LOD compared to reference microscopy and ICTs for all four species. Quality assurance of QPCR is essential to the maintenance of proficiency in the clinical laboratory. ICTs showed good concordance between readers however lacked sensitivity for non-falciparum species due to antigenic differences and low parasitemia. Multiplex QPCR but not ICTs is an essential adjunct to microscopy in the reference laboratory detection of malaria species specifically due to the superior LOD. ICTs are better suited to the non-reference laboratory where lower specimen volumes challenge microscopy proficiency in the non-endemic setting.
2014-01-01
Background Rapid diagnostic tests (RDTs) are the current complement to microscopy for ensuring prompt malaria treatment. We determined the performance of three candidate RDTs (Paracheck™-Pf, SD Bioline malaria Ag-Pf and SD Bioline malaria Ag-Pf/pan) for rapid diagnosis of malaria in the Central African Republic. Methods Blood samples from consecutive febrile patients who attended for laboratory analysis of malaria at the three main health centres of Bangui were screened by microscopy and the RDTs. Two reference standards were used to assess the performance of the RDTs: microscopy and, a combination of microscopy plus nested PCR for slides reported as negative, on the assumption that negative results by microscopy were due to sub-patent parasitaemia. Results We analysed 436 samples. Using the combined reference standard of microscopy + PCR, the sensitivity of Paracheck™-Pf was 85.7% (95% CI, 80.8–89.8%), that of SD Bioline Ag-Pf was 85.4% (95% CI, 80.5–90.7%), and that of SD Bioline Ag-Pf/pan was 88.2% (95% CI, 83.2–92.0%). The tests performed less well in cases of low parasitaemia; however, the sensitivity was > 95% at > 500 parasites/μl. Conclusions Overall, SD Bioline malaria Ag-Pf and SD Bioline malaria Ag-Pf/pan performed slightly better than Paracheck™-Pf. Use of RDTs with reinforced microscopy practice and laboratory quality assurance should improve malaria treatment in the Central African Republic. PMID:24568311
Evaluation of the OnSite (Pf/Pan) rapid diagnostic test for diagnosis of clinical malaria.
Mohon, Abu Naser; Elahi, Rubayet; Podder, Milka Patracia; Mohiuddin, Khaja; Hossain, Mohammad Sharif; Khan, Wasif A; Haque, Rashidul; Alam, Mohammad Shafiul
2012-12-12
Accurate diagnosis of malaria is an essential prerequisite for proper treatment and drug resistance monitoring. Microscopy is considered the gold standard for malaria diagnosis but has limitations. ELISA, PCR, and Real Time PCR are also used to diagnose malaria in reference laboratories, although their application at the field level is currently not feasible. Rapid diagnostic tests (RDTs) however, have been brought into field operation and widely adopted in recent days. This study evaluates OnSite (Pf/Pan) antigen test, a new RDT introduced by CTK Biotech Inc, USA for malaria diagnosis in a reference setting. Blood samples were collected from febrile patients referred for malaria diagnosis by clinicians. Subjects were included in this study from two different Upazila Health Complexes (UHCs) situated in two malaria endemic districts of Bangladesh. Microscopy and nested PCR were considered the gold standard in this study. OnSite (Pf/Pan) RDT was performed on preserved whole blood samples. In total, 372 febrile subjects were included in this study. Of these subjects, 229 (61.6%) tested positive for Plasmodium infection detected by microscopy and nested PCR. OnSite (Pf/Pan) RDT was 94.2% sensitive (95% CI, 89.3-97.3) and 99.5% specific (95% CI, 97.4-00.0) for Plasmodium falciparum diagnosis and 97.3% sensitive (95% CI, 90.5-99.7) and 98.7% specific (95% CI, 96.6-99.6) for Plasmodium vivax diagnosis. Sensitivity varied with differential parasite count for both P. falciparum and P. vivax. The highest sensitivity was observed in febrile patients with parasitaemia that ranged from 501-1,000 parasites/μL regardless of the Plasmodium species. The new OnSite (Pf/Pan) RDT is both sensitive and specific for symptomatic malaria diagnosis in standard laboratory conditions.
A regional centralized microbiology service in Calgary for the rapid diagnosis of malaria.
Church, Deirdre L; Lichtenfeld, Angelika; Elsayed, Sameer; Kuhn, Susan; Gregson, Daniel B
2003-06-01
A regional centralized laboratory service for the rapid diagnosis of malaria was implemented 3 years ago in May 1999 within the Division of Microbiology, Calgary Laboratory Services. To describe the design and performance of this unique microbiology laboratory service. Blood specimens must arrive at the central laboratory within 2 hours of collection. Thin blood smears are read and reported from suspected acute cases within 1 hour of receipt, 24 hours per day, 7 days a week, by trained and experienced microbiology technologists. All positive malaria smears are reviewed by a medical microbiologist and confirmed by polymerase chain reaction at a reference laboratory. Calgary Laboratory Services provides integrated laboratory services to the Calgary Health Region, an urban area of more than 1 million people. Performance of the service has been continuously monitored by measuring preanalytic and analytic test turnaround times, test accuracy, clinical relevance, and the results of proficiency testing. More than 90% of blood specimens for malaria from community locations have consistently arrived within 2 hours of collection, and hospitals have reached this target within the past year. Although polymerase chain reaction was more sensitive at detecting the presence of malaria, the expert microscopists were as accurate at determining the type of Plasmodium infection. More than 95% of all positive smear results are consistently reported within 2 hours of receipt of a blood specimen. Implementation of a regional centralized microbiology service has improved our ability to make a rapid and accurate diagnosis of malaria in this region.
Sori, Getachew; Zewdie, Olifan; Tadele, Geletta; Samuel, Abdi
2018-06-18
Accurate early diagnosis and prompt treatment are one of the key strategies to control and prevent malaria disease. External quality assessment is the most effective method for evaluation of the quality of malaria microscopy diagnosis. The aim of this study was to assess the quality of malaria microscopy diagnosis and its associated factors in selected public health facility laboratories in East Wollega Zone, Western Ethiopia. Facility-based cross-sectional study design was conducted in 30 randomly selected public health facility laboratories from November 2014 to January 2015 in East Wollega Zone, Western Ethiopia. Ten validated stained malaria panel slides with known Plasmodium species, developmental stage and parasite density were distributed. Data were captured; cleaned and analyzed using SPSS version 20 statistical software-multivariate logistic regressions and the agreement in reading between the peripheral diagnostic centers and the reference laboratory were done using kappa statistics. A total of 30 health facility laboratories were involved in the study and the overall quality of malaria microscopy diagnosis was poor (62.3%). The associated predictors of quality in this diagnosis were in-service training [(AOR = 16, 95% CI (1.3, 1.96)], smearing quality [(AOR = 24, 95% CI (1.8, 3.13)], staining quality [(AOR = 15, 95% CI (2.35, 8.61), parasite detection [(AOR = 9, 95% CI (1.1, 8.52)] and identification skills [(AOR = 8.6, 95% CI (1.21, 1.63)]. Eighteen (60%) of health facility laboratories had in-service trained laboratory professionals on malaria microscopy diagnosis. Overall quality of malaria microscopy diagnosis was poor and a significant gap in this service was observed that could impact on its diagnostic services.
Ekawati, Lenny L; Herdiana, Herdiana; Sumiwi, Maria E; Barussanah, Cut; Ainun, Cut; Sabri, Sabri; Maulana, Teuku; Rahmadyani, Rahmadyani; Maneh, Cut; Yani, Muhammad; Valenti, Paola; Elyazar, Iqbal R F; Hawley, William A
2015-06-11
The Health Office of Aceh aims to eliminate malaria from Aceh Province, Indonesia by 2015. Malaria was formerly common in Aceh (population 4.5 million), but has declined dramatically in recent years consequent to post-tsunami control efforts. Successful elimination will depend upon rapid and accurate diagnosis and case follow-up at community level. A prerequisite to this is widespread coverage of high quality malaria diagnosis. This study describes the results of a comprehensive assessment of the malaria diagnostic capacity in Aceh as the province moves towards malaria elimination. The study was conducted in 23 districts in Aceh from October 2010 to July 2011. Six types of questionnaires were used to collect data on competency of microscopists and laboratory capacity. Standardized slides were used to evaluate the proficiency of all microscopists. In addition, site visits to 17 primary health centres (PHC) assessed diagnostic practice and logistics capacity. Five hundred and seventy four malaria microscopists have been officially registered and assigned to duty in the 23 districts in Aceh Province. They work in 345 laboratories, predominantly in PHCs (69 %) and hospitals (25 %). Three laboratories were evaluated as adequate for all 30 elements, while 29 laboratories were adequate for less than five of 30 elements. Standardized proficiency tests showed that 413 microscopists were at basic (in training) level, with 10 advanced and 9 reference level. No microscopist achieved expert level. Neither the province nor any of Aceh's districts has a standardized inventory and logistics database for malaria diagnostics, nor did any of the surveyed laboratories operate a quality assurance programme for either microscopy or rapid diagnostic tests. The study highlights the importance of careful assessment of diagnostic capacity when embarking upon a large-scale malaria elimination programme. Aceh's laboratories have minimal infrastructure with nearly all microscopists still in training. On the positive side, a large workforce of microscopists has been assigned to laboratories with the needed equipment. Aceh will need to embark on a large-scale comprehensive quality assurance scheme if it is to achieve malaria elimination.
Evaluation of the OnSite (Pf/Pan) rapid diagnostic test for diagnosis of clinical malaria
2012-01-01
Background Accurate diagnosis of malaria is an essential prerequisite for proper treatment and drug resistance monitoring. Microscopy is considered the gold standard for malaria diagnosis but has limitations. ELISA, PCR, and Real Time PCR are also used to diagnose malaria in reference laboratories, although their application at the field level is currently not feasible. Rapid diagnostic tests (RDTs) however, have been brought into field operation and widely adopted in recent days. This study evaluates OnSite (Pf/Pan) antigen test, a new RDT introduced by CTK Biotech Inc, USA for malaria diagnosis in a reference setting. Methods Blood samples were collected from febrile patients referred for malaria diagnosis by clinicians. Subjects were included in this study from two different Upazila Health Complexes (UHCs) situated in two malaria endemic districts of Bangladesh. Microscopy and nested PCR were considered the gold standard in this study. OnSite (Pf/Pan) RDT was performed on preserved whole blood samples. Results In total, 372 febrile subjects were included in this study. Of these subjects, 229 (61.6%) tested positive for Plasmodium infection detected by microscopy and nested PCR. OnSite (Pf/Pan) RDT was 94.2% sensitive (95% CI, 89.3-97.3) and 99.5% specific (95% CI, 97.4-00.0) for Plasmodium falciparum diagnosis and 97.3% sensitive (95% CI, 90.5-99.7) and 98.7% specific (95% CI, 96.6-99.6) for Plasmodium vivax diagnosis. Sensitivity varied with differential parasite count for both P. falciparum and P. vivax. The highest sensitivity was observed in febrile patients with parasitaemia that ranged from 501–1,000 parasites/μL regardless of the Plasmodium species. Conclusion The new OnSite (Pf/Pan) RDT is both sensitive and specific for symptomatic malaria diagnosis in standard laboratory conditions. PMID:23234579
Dotrário, Andréa Beltrami; Menon, Lucas José Bazzo; Bollela, Valdes Roberto; Martinez, Roberto; de Almeida E Araújo, Daniel Cardoso; da Fonseca, Benedito Antônio Lopes; Santana, Rodrigo de C
2016-05-26
Malaria is endemic in countries located in tropical and sub-tropical regions. The increasing flow of domestic and international travellers has made malaria a relevant health problem even in non-endemic regions. Malaria has been described as the main diagnosis among travellers presenting febrile diseases after returning from tropical countries. In Brazil, malaria transmission occurs mainly in the Amazon region. Outside this area, malaria transmission is of low magnitude. This cross-sectional study aimed to describe the experience in the diagnosis of malaria in a reference centre located outside the Brazilian Amazon Region, emphasizing the differences in clinical and laboratory markers between cases of malaria and those of other febrile diseases (OFD). Medical charts from adult patients (≥18 years) who underwent a thick smear test (TST) for malaria, between January 2001 and December 2014, were retrospectively reviewed. A total of 458 cases referred to perform the TST were included. Malaria was diagnosed in 193 (42 %) episodes. The remaining 265 episodes (58 %) were grouped as OFD. The majority of malaria episodes were acquired in the Brazilian Amazon Region. The median time between the onset of symptoms and the TST was 7 days. Only 53 (11.5 %) episodes were tested within the first 48 h after symptom onset. Comparing malaria with OFD, jaundice, nausea, vomiting, and reports of fever were more prevalent in the malaria group. Low platelet count and elevated bilirubin levels were also related to the diagnosis of malaria. The results indicate that outside the endemic area travellers presenting febrile disease suspected of being malaria underwent diagnostic test after considerable delay. The reporting of fever combined with a recent visit to an endemic area should promptly evoke the hypothesis of malaria. In these cases, specific diagnostic tests for malaria should be a priority. For cases that jump this step, the presence of elevated bilirubin or thrombocytopaenia should also indicate a diagnosis of malaria.
Britton, Sumudu; Cheng, Qin; McCarthy, James S
2016-02-16
As malaria transmission continues to decrease, an increasing number of countries will enter pre-elimination and elimination. To interrupt transmission, changes in control strategies are likely to require more accurate identification of all carriers of Plasmodium parasites, both symptomatic and asymptomatic, using diagnostic tools that are highly sensitive, high throughput and with fast turnaround times preferably performed in local health service settings. Currently available immunochromatographic lateral flow rapid diagnostic tests and field microscopy are unlikely to consistently detect infections at parasite densities less than 100 parasites/µL making them insufficiently sensitive for detecting all carriers. Molecular diagnostic platforms, such as PCR and LAMP, are currently available in reference laboratories, but at a cost both financially and in turnaround time. This review describes the recent progress in developing molecular diagnostic tools in terms of their capacity for high throughput and potential for performance in non-reference laboratories for malaria elimination.
2013-01-01
Background There have been few investigations evaluating the burden of malaria disease at district level in the Republic of Congo since the introduction of artemisinin-based combination therapies (ACTs). The main objective of this study was to document laboratory-confirmed cases of malaria using microscopy and/or rapid diagnostic tests (RDTs) in children and pregnant women attending selected health facilities in Brazzaville and Pointe Noire, the two main cities of the country. Secondly, P. falciparum genetic diversity and multiplicity of infection during the malaria transmission season of October 2011 to February 2012 in these areas were described. Methods Three and one health facilities were selected in Brazzaville and Pointe-Noire as sentinel sites for malaria surveillance. Children under 15 years of age and pregnant women were enrolled if study criteria were met and lab technicians used RDT and/or microscopy to diagnose malaria. In order to determine the multiplicity of infection, parasite DNA was extracted from RDT cassette and msp2 P.falciparum genotyped. Results Malaria prevalence among more than 3,000 children and 700 pregnant women ranged from 8 to 29%, and 8 to 24% respectively depending on health center locality. While health workers did not optimize use of RDTs, microscopy remained a reference diagnostic tool. Quality control of malaria diagnosis at the reference laboratory showed acceptable health centre performances. P. falciparum genetic diversity determination using msp2 gene marker ranged from 9 to 20 alleles and remains stable while multiplicity of infection (mean of 1.7clone/infected individual) and parasite densities in clinical isolates were lower than previously reported. Conclusions These findings are consistent with a reduction of malaria transmission in the two areas. This study raises the issue of targeted training for health workers and sustained availability of RDTs in order to improve quality of care through optimal use of RDTs. PMID:23409963
Nkrumah, Bernard; Acquah, Samuel Ek; Ibrahim, Lukeman; May, Juergen; Brattig, Norbert; Tannich, Egbert; Nguah, Samuel Blay; Adu-Sarkodie, Yaw; Huenger, Frank
2011-05-23
About 90% of all malaria deaths in sub-Saharan Africa occur in children under five years. Fast and reliable diagnosis of malaria requires confirmation of the presence of malaria parasites in the blood of patients with fever or history suggestive of malaria; hence a prompt and accurate diagnosis of malaria is the key to effective disease management. Confirmation of malaria infection requires the availability of a rapid, sensitive, and specific testing at an affordable cost. We compared two recent methods (the novel Partec Rapid Malaria Test® (PT) and the Binax Now® Malaria Rapid Diagnostic Test (BN RDT) with the conventional Giemsa stain microscopy (GM) for the diagnosis of malaria among children in a clinical laboratory of a hospital in a rural endemic area of Ghana. Blood samples were collected from 263 children admitted with fever or a history of fever to the pediatric clinic of the Agogo Presbyterian Hospital. The three different test methods PT, BN RDT and GM were performed independently by well trained and competent laboratory staff to assess the presence of malaria parasites. Results were analyzed and compared using GM as the reference standard. In 107 (40.7%) of 263 study participants, Plasmodium sp. was detected by GM. PT and BN RDT showed positive results in 111 (42.2%) and 114 (43.4%), respectively. Compared to GM reference standard, the sensitivities of the PT and BN RDT were 100% (95% CI: 96.6-100) and 97.2% (95% CI: 92.0-99.4), respectively, specificities were 97.4% (95% CI: 93.6-99.3) and 93.6% (95% CI: 88.5-96.9), respectively. There was a strong agreement (kappa) between the applied test methods (GM vs PT: 0.97; p < 0.001 and GM vs BN RDT: 0.90; p < 0.001). The average turnaround time per tests was 17 minutes. In this study two rapid malaria tests, PT and BN RDT, demonstrated a good quality of their performance compared to conventional GM. Both methods require little training, have short turnaround times, are applicable as well as affordable and can therefore be considered as alternative diagnostic tools in malaria endemic areas. The species of Plasmodium cannot be identified.
2011-01-01
Background About 90% of all malaria deaths in sub-Saharan Africa occur in children under five years. Fast and reliable diagnosis of malaria requires confirmation of the presence of malaria parasites in the blood of patients with fever or history suggestive of malaria; hence a prompt and accurate diagnosis of malaria is the key to effective disease management. Confirmation of malaria infection requires the availability of a rapid, sensitive, and specific testing at an affordable cost. We compared two recent methods (the novel Partec Rapid Malaria Test® (PT) and the Binax Now® Malaria Rapid Diagnostic Test (BN RDT) with the conventional Giemsa stain microscopy (GM) for the diagnosis of malaria among children in a clinical laboratory of a hospital in a rural endemic area of Ghana. Methods Blood samples were collected from 263 children admitted with fever or a history of fever to the pediatric clinic of the Agogo Presbyterian Hospital. The three different test methods PT, BN RDT and GM were performed independently by well trained and competent laboratory staff to assess the presence of malaria parasites. Results were analyzed and compared using GM as the reference standard. Results In 107 (40.7%) of 263 study participants, Plasmodium sp. was detected by GM. PT and BN RDT showed positive results in 111 (42.2%) and 114 (43.4%), respectively. Compared to GM reference standard, the sensitivities of the PT and BN RDT were 100% (95% CI: 96.6-100) and 97.2% (95% CI: 92.0-99.4), respectively, specificities were 97.4% (95% CI: 93.6-99.3) and 93.6% (95% CI: 88.5-96.9), respectively. There was a strong agreement (kappa) between the applied test methods (GM vs PT: 0.97; p < 0.001 and GM vs BN RDT: 0.90; p < 0.001). The average turnaround time per tests was 17 minutes. Conclusion In this study two rapid malaria tests, PT and BN RDT, demonstrated a good quality of their performance compared to conventional GM. Both methods require little training, have short turnaround times, are applicable as well as affordable and can therefore be considered as alternative diagnostic tools in malaria endemic areas. The species of Plasmodium cannot be identified. PMID:21605401
Ogouyèmi-Hounto, A; Kinde-Gazard, D; Keke, C; Gonçalves, E; Alapini, N; Adjovi, F; Adisso, L; Bossou, C; Denon, Y V; Massougbodji, A
2013-02-01
The aim of the study was to determine the accuracy of a rapid diagnostic test (SD Bioline Malaria Ag P.f/ Pan®) and fluorescent microscopy (CyScope®) in confirming presumptive malaria diagnosis in Cotonou. Thick blood smear was used as the reference technique for comparison. Testing was conducted on persons between the ages of 6 months and 70 years at two hospitals from June to October 2010. If malaria was suspected in the sample by the nurse based on clinical findings and sent to laboratory for confirmation, one thick smear, one rapid diagnostic test and one slide for the fluorescent microscopy were performed. All tests were read in hospital laboratories involved with the quality control of thick blood smear in the parasitology laboratory of National University Hospital of Cotonou. A total of 354 patients with clinical diagnosis of malaria were included. Malaria prevalence determined by thick smear, rapid diagnostic test and fluorescent microscopy was 22.8%, 25.4%, and 25.1% respectively. The sensitivity, specificity, positive and negative predictive values compared to the thick smears were 96.3, 95.6, 86.7, and 98.9% for rapid diagnostic test; and 97.5, 96.7, 89.8, and 99.27% for fluorescent microscopy. With these performances, these tests meet acceptability standards recommended by WHO for rapid tests (sensitivity > 95%). These two methods have advantages for the confirmation of malaria diagnosis in peripheral health structures that lack the resources to conduct diagnosis confirmation by the thick blood smear.
Real-time fluorescence loop mediated isothermal amplification for the diagnosis of malaria.
Lucchi, Naomi W; Demas, Allison; Narayanan, Jothikumar; Sumari, Deborah; Kabanywanyi, Abdunoor; Kachur, S Patrick; Barnwell, John W; Udhayakumar, Venkatachalam
2010-10-29
Molecular diagnostic methods can complement existing tools to improve the diagnosis of malaria. However, they require good laboratory infrastructure thereby restricting their use to reference laboratories and research studies. Therefore, adopting molecular tools for routine use in malaria endemic countries will require simpler molecular platforms. The recently developed loop-mediated isothermal amplification (LAMP) method is relatively simple and can be improved for better use in endemic countries. In this study, we attempted to improve this method for malaria diagnosis by using a simple and portable device capable of performing both the amplification and detection (by fluorescence) of LAMP in one platform. We refer to this as the RealAmp method. Published genus-specific primers were used to test the utility of this method. DNA derived from different species of malaria parasites was used for the initial characterization. Clinical samples of P. falciparum were used to determine the sensitivity and specificity of this system compared to microscopy and a nested PCR method. Additionally, directly boiled parasite preparations were compared with a conventional DNA isolation method. The RealAmp method was found to be simple and allowed real-time detection of DNA amplification. The time to amplification varied but was generally less than 60 minutes. All human-infecting Plasmodium species were detected. The sensitivity and specificity of RealAmp in detecting P. falciparum was 96.7% and 91.7% respectively, compared to microscopy and 98.9% and 100% respectively, compared to a standard nested PCR method. In addition, this method consistently detected P. falciparum from directly boiled blood samples. This RealAmp method has great potential as a field usable molecular tool for diagnosis of malaria. This tool can provide an alternative to conventional PCR based diagnostic methods for field use in clinical and operational programs.
Oriero, Eniyou C; Okebe, Joseph; Jacobs, Jan; Van Geertruyden, Jean-Pierre; Nwakanma, Davis; D'Alessandro, Umberto
2015-10-09
New diagnostic tools to detect reliably and rapidly asymptomatic and low-density malaria infections are needed as their treatment could interrupt transmission. Isothermal amplification techniques are being explored for field diagnosis of malaria. In this study, a novel molecular tool (loop-mediated isothermal amplification-LAMP) targeting the apicoplast genome of Plasmodium falciparum was evaluated for the detection of asymptomatic malaria-infected individuals in a rural setting in The Gambia. A blood was collected from 341 subjects (median age 9 years, range 1-68 years) screened for malaria. On site, a rapid diagnostic test (RDT, SD Bioline Malaria Antigen P.f) was performed, thick blood films (TBF) slides for microscopy were prepared and dry blood spots (DBS) were collected on Whatman(®) 903 Specimen collection paper. The TBF and DBS were transported to the field laboratory where microscopy and LAMP testing were performed. The latter was done on DNA extracted from the DBS using a crude (methanol/heating) extraction method. A laboratory-based PCR amplification was done on all the samples using DNA extracted with the Qiagen kit and its results were taken as reference for all the other tests. Plasmodium falciparum malaria prevalence was 37 % (127/341) as detected by LAMP, 30 % (104/341) by microscopy and 37 % (126/341) by RDT. Compared to the reference PCR method, sensitivity was 92 % for LAMP, 78 % for microscopy, and 76 % for RDT; specificity was 97 % for LAMP, 99 % for microscopy, and 88 % for RDT. Area under the receiver operating characteristic (ROC) curve in comparison with the reference standard was 0.94 for LAMP, 0.88 for microscopy and 0.81 for RDT. Turn-around time for the entire LAMP assay was approximately 3 h and 30 min for an average of 27 ± 9.5 samples collected per day, compared to a minimum of 10 samples an hour per operator by RDT and over 8 h by microscopy. The LAMP assay could produce reliable results the same day of the screening. It could detect a higher proportion of low density malaria infections than the other methods tested and may be used for large campaigns of systematic screening and treatment.
[Imported malaria in adults. Clinical, epidemiological and analytical features].
Ramírez-Olivencia, G; Herrero, M D; Subirats, M; de Juanes, J R; Peña, J M; Puente, S
2012-01-01
Up to now, the epidemiological and clinical features of imported malaria in Spain have been described in small series from general hospitals. Almost all diagnosis had been made based on symptomatic patients. The aim of this study has been to determine the epidemiological, clinical and laboratorial characteristics of imported malaria in a Reference Unit for Tropical Diseases. We performed a cross-sectional, observational and retrospective study. The series consisted of patients diagnosed of malaria who had been attended at the Hospital Carlos III from January 1, 2002 to December 31, 2007. We identified 484 episodes of malaria, of which 398 cases were included in the analysis. Almost 50% of the patients were natives of endemic areas, while the rest were native-travelers or travelers. Most cases (88-98% according to the group) had not taken malaria chemoprophylaxis correctly when indicated. At the time of diagnosis, 30.4% of patients were asymptomatic and 28.1% of asymptomatic patients had anemia, 19.8% thrombocytopenia, 14% leukopenia, 5% hypocholesterolemia, 5% renal failure and 4.1% hypoglycemia. Low parasitemia was present in 97.5% of asymptomatic individuals compared to 80.5% of the symptomatic patients (P<0.001). Absence of chemoprophylaxis (or poor compliance) is the main reason for malaria in individuals traveling to endemic areas. Malaria must be ruled out in individuals coming from tropical countries with compatible symptoms, and it also should be suspected in certain groups of asymptomatic individuals with abnormal laboratorial parameters. Copyright © 2011 Elsevier España, S.L. All rights reserved.
Quality Assurance of Rapid Diagnostic Tests for Malaria in Routine Patient Care in Rural Tanzania
McMorrow, Meredith L.; Masanja, M. Irene; Kahigwa, Elizeus; Abdulla, Salim M. K.; Kachur, S. Patrick
2010-01-01
Histidine-rich protein II (HRP2)-based malaria rapid diagnostic tests (RDTs) have shown high sensitivity and specificity for detecting Plasmodium falciparum malaria in a variety of study settings. However, RDTs are susceptible to heat and humidity and variation in individual performance, which may affect their use in field settings. We evaluated sensitivity and specificity of RDTs during routine use for malaria case management in peripheral health facilities. From December 2007 to October 2008, HRP2-based ParaHIT-f RDTs were introduced in 12 facilities without available microscopy in Rufiji District, Tanzania. Health workers received a single day of instruction on how to perform an RDT and thick blood smear. Job aids, Integrated Management of Childhood Illness guidelines, and national malaria treatment algorithms were reviewed. For quality assurance (QA), thick blood smears for reference microscopy were collected for 2 to 3 days per week from patients receiving RDTs; microscopy was not routinely performed at the health facilities. Slides were stained and read centrally within 72 hours of collection by a reference microscopist. When RDT and blood smear results were discordant, blood smears were read by additional reference microscopists blinded to earlier results. Facilities were supervised monthly by the district laboratory supervisor or a member of the study team. Ten thousand six hundred fifty (10,650) patients were tested with RDTs, and 51.5% (5,488/10,650) had a positive test result. Blood smear results were available for 3,914 patients, of whom 40.1% (1,577/3,914) were positive for P. falciparum malaria. Overall RDT sensitivity was 90.7% (range by facility 85.7–96.5%) and specificity was 73.5% (range 50.0–84.3%). Sensitivity increased with increasing parasite density. Successful implementation of RDTs was achieved in peripheral health facilities with adequate training and supervision. Quality assurance is essential to the adequate performance of any laboratory test. Centralized staining and reading of blood smears provided useful monitoring of RDT performance. However, this level of QA may not be sustainable nationwide. PMID:20065013
Choge, Joseph K; Magak, Ng'wena G; Akhwale, Willis; Koech, Julius; Ngeiywa, Moses M; Oyoo-Okoth, Elijah; Esamai, Fabian; Osano, Odipo; Khayeka-Wandabwa, Christopher; Kweka, Eliningaya J
2014-04-09
The commonly accepted gold standard diagnostic method for detecting malaria is a microscopic reading of Giemsa-stained blood films. However, symptomatic diagnosis remains the basis of therapeutic care for the majority of febrile patients in malaria endemic areas. This study aims to compare the discrepancy in malaria and anaemia burdens between symptomatic diagnosed patients with those diagnosed through the laboratory. Data were collected from Western Kenya during a follow-up study of 887 children with suspected cases of malaria visiting the health facilities. In the laboratory, blood samples were analysed for malaria parasite and haemoglobin levels. Differences in malaria prevalence between symptomatic diagnosis and laboratory diagnosis were analysed by Chi-square test. Bayesian probabilities were used for the approximation of the malaria and anaemia burdens. Regression analysis was applied to: (1) determine the relationships between haemoglobin levels, and malaria parasite density and (2) relate the prevalence of anaemia and the prevalence of malaria. The prevalence of malaria and anaemia ranged from 10% to 34%, being highest during the rainy seasons. The predominant malaria parasite was P. falciparum (92.3%), which occurred in higher density in children aged 2‒5 years. Fever, high temperature, sweating, shivering, vomiting and severe headache symptoms were associated with malaria during presumptive diagnosis. After conducting laboratory diagnosis, lower malaria prevalence was reported among the presumptively diagnosed patients. Surprisingly, there were no attempts to detect anaemia in the same cohort. There was a significant negative correlation between Hb levels and parasite density. We also found a positive correlation between the prevalence of anaemia and the prevalence of malaria after laboratory diagnosis indicating possible co-occurrence of malaria and anaemia. Symptomatic diagnosis of malaria overestimates malaria prevalence, but underestimates the anaemia burden in children. Good clinical practice dictates that a laboratory should confirm the presence of parasites for all suspected cases of malaria.
Delon, François; Mayet, Aurélie; Thellier, Marc; Kendjo, Eric; Michel, Rémy; Ollivier, Lénaïck; Chatellier, Gilles; Desjeux, Guillaume
2017-05-01
Epidemiological surveillance of malaria in France is based on a hospital laboratory sentinel surveillance network. There is no comprehensive population surveillance. The objective of this study was to assess the ability of the French National Health Insurance Information System to support nationwide malaria surveillance in continental France. A case identification algorithm was built in a 2-step process. First, inclusion rules giving priority to sensitivity were defined. Then, based on data description, exclusion rules to increase specificity were applied. To validate our results, we compared them to data from the French National Reference Center for Malaria on case counts, distribution within subgroups, and disease onset date trends. We built a reusable automatized tool. From July 1, 2013, to June 30, 2014, we identified 4077 incident malaria cases that occurred in continental France. Our algorithm provided data for hospitalized patients, patients treated by private physicians, and outpatients for the entire population. Our results were similar to those of the National Reference Center for Malaria for each of the outcome criteria. We provided a reliable algorithm for implementing epidemiological surveillance of malaria based on the French National Health Insurance Information System. Our method allowed us to work on the entire population living in continental France, including subpopulations poorly covered by existing surveillance methods. Traditional epidemiological surveillance and the approach presented in this paper are complementary, but a formal validation framework for case identification algorithms is necessary. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Lupi, Otília; Ridolfi, Felipe; da Silva, Sidnei; Zanini, Graziela Maria; Lavigne, Aline; Nogueira, Rita Maria Ribeiro; da Cruz, Maria de Fátima Ferreira; Daniel-Ribeiro, Cláudio Tadeu; Brasil, Patrícia
2016-03-01
To report that dengue fever (DF) could have triggered Plasmodium ovale wallikeri malaria. A retrospective case report of P. ovale malaria and DF in a single patient in Rio de Janeiro, Brazil, who had lived in Angola, is presented. On the second week of illness, the patient was referred to our research service. As symptoms had persisted up to day 14, malaria was also considered, based on the patient's long-standing epidemiological history. On day 16 of illness, a thick blood smear was positive for P. ovale (3480 parasites/mm(3)), PCR for malaria was positive for P. ovale wallikeri, and the kinetics of dengue virus (DENV) antibodies suggested a recent primary dengue infection. Concurrent infections of DENV and malaria have rarely been reported; the actual impact of these sequential or simultaneous infections remains unknown. Therefore, DF must be considered as a potential co-morbidity for malaria, because of its influence on fluid electrolyte management. The case presented showed consistent temporal, clinical, and laboratory evidence that the relapse or the long incubation period of P. ovale malaria may have been triggered by a recent DF episode. To the authors' knowledge, this is the first report of DENV and P. ovale co-infection. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mens, Petra F; Matelon, Raphael J; Nour, Bakri Y M; Newman, Dave M; Schallig, Henk D F H
2010-07-19
This study describes the laboratory evaluation of a novel diagnostic platform for malaria. The Magneto Optical Test (MOT) is based on the bio-physical detection of haemozoin in clinical samples. Having an assay time of around one minute, it offers the potential of high throughput screening. Blood samples of confirmed malaria patients from different regions of Africa, patients with other diseases and healthy non-endemic controls were used in the present study. The samples were analysed with two reference tests, i.e. an histidine rich protein-2 based rapid diagnostic test (RDT) and a conventional Pan-Plasmodium PCR, and the MOT as index test. Data were entered in 2 x 2 tables and analysed for sensitivity and specificity. The agreement between microscopy, RDT and PCR and the MOT assay was determined by calculating Kappa values with a 95% confidence interval. The observed sensitivity/specificity of the MOT test in comparison with clinical description, RDT or PCR ranged from 77.2 - 78.8% (sensitivity) and from 72.5 - 74.6% (specificity). In general, the agreement between MOT and the other assays is around 0.5 indicating a moderate agreement between the reference and the index test. However, when RDT and PCR are compared to each other, an almost perfect agreement can be observed (k = 0.97) with a sensitivity and specificity of >95%. Although MOT sensitivity and specificity are currently not yet at a competing level compared to other diagnostic test, such as PCR and RDTs, it has a potential to rapidly screen patients for malaria in endemic as well as non-endemic countries.
Elliott, Salenna R; Fowkes, Freya J I; Richards, Jack S; Reiling, Linda; Drew, Damien R; Beeson, James G
2014-01-01
Surveillance is a key component of control and elimination programs. Malaria surveillance has been typically reliant on case reporting by health services, entomological estimates and parasitemia (Plasmodium species) point prevalence. However, these techniques become less sensitive and relatively costly as transmission declines. There is great potential for the development and application of serological biomarkers of malaria exposure as sero-surveillance tools to strengthen malaria control and elimination. Antibodies to malaria antigens are sensitive biomarkers of population-level malaria exposure and can be used to identify hotspots of malaria transmission, estimate transmission levels, monitor changes over time or the impact of interventions on transmission, confirm malaria elimination, and monitor re-emergence of malaria. Sero-surveillance tools could be used in reference laboratories or developed as simple point-of-care tests for community-based surveillance, and different applications and target populations dictate the technical performance required from assays that are determined by properties of antigens and antibody responses. To advance the development of sero-surveillance tools for malaria elimination, major gaps in our knowledge need to be addressed through further research. These include greater knowledge of potential antigens, the sensitivity and specificity of antibody responses, and the longevity of these responses and defining antigens and antibodies that differentiate between exposure to Plasmodium falciparum and P. vivax. Additionally, a better understanding of the influence of host factors, such as age, genetics, and comorbidities on antibody responses in different populations is needed.
Elliott, Salenna R.; Fowkes, Freya J.I.; Richards, Jack S.; Reiling, Linda; Drew, Damien R.
2014-01-01
Surveillance is a key component of control and elimination programs. Malaria surveillance has been typically reliant on case reporting by health services, entomological estimates and parasitemia (Plasmodium species) point prevalence. However, these techniques become less sensitive and relatively costly as transmission declines. There is great potential for the development and application of serological biomarkers of malaria exposure as sero-surveillance tools to strengthen malaria control and elimination. Antibodies to malaria antigens are sensitive biomarkers of population-level malaria exposure and can be used to identify hotspots of malaria transmission, estimate transmission levels, monitor changes over time or the impact of interventions on transmission, confirm malaria elimination, and monitor re-emergence of malaria. Sero-surveillance tools could be used in reference laboratories or developed as simple point-of-care tests for community-based surveillance, and different applications and target populations dictate the technical performance required from assays that are determined by properties of antigens and antibody responses. To advance the development of sero-surveillance tools for malaria elimination, major gaps in our knowledge need to be addressed through further research. These include greater knowledge of potential antigens, the sensitivity and specificity of antibody responses, and the longevity of these responses and defining antigens and antibodies that differentiate between exposure to Plasmodium falciparum and P. vivax. Additionally, a better understanding of the influence of host factors, such as age, genetics, and comorbidities on antibody responses in different populations is needed. PMID:25580254
Imported malaria in Scotland--an overview of surveillance, reporting and trends.
Unger, Holger W; McCallum, Andrew D; Ukachukwu, Vincent; McGoldrick, Claire; Perrow, Kali; Latin, Gareth; Norrie, Gillian; Morris, Sheila; Smith, Catherine C; Jones, Michael E
2011-11-01
Imported malaria cases continue to occur and are often underreported. This study assessed reporting of malaria cases and their characteristics in Scotland. Cases were identified at the study sites of Aberdeen, Edinburgh, Glasgow and Inverness. The number of cases identified in the period 2003-2008 was compared to surveillance databases from Health Protection Scotland (HPS) and the Malaria Reference Laboratory (MRL). Case characteristics were recorded and analysed. Of 252 cases of malaria diagnosed and treated, an estimated 235 (93.3%) were reported to the MRL. Between 2006 and 2008, 114 of 126 cases (90.5%) were reported to HPS. Plasmodium falciparum caused 173 cases (68.7%). Business and professional travel accounted for 35.3% of cases (higher in Aberdeen), followed by visiting friends and relatives (33.1%) and holiday makers (25.5%). The majority of infections were imported from West Africa and 65.7% of patients for whom data on prophylaxis was available had taken no or inappropriate prophylaxis. Reporting of malaria in Scotland can be improved. There is a continued need to optimise preventive measures and adherence to chemoprophylaxis amongst business travellers, those visiting friends and relatives, and holiday makers in endemic countries in order to reduce imported malaria cases. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mpimbaza, Arthur; Miles, Melody; Sserwanga, Asadu; Kigozi, Ruth; Wanzira, Humphrey; Rubahika, Denis; Nasr, Sussann; Kapella, Bryan K.; Yoon, Steven S.; Chang, Michelle; Yeka, Adoke; Staedke, Sarah G.; Kamya, Moses R.; Dorsey, Grant
2015-01-01
The primary source of malaria surveillance data in Uganda is the Health Management Information System (HMIS), which does not require laboratory confirmation of reported malaria cases. To improve data quality, an enhanced inpatient malaria surveillance system (EIMSS) was implemented with emphasis on malaria testing of all children admitted in select hospitals. Data were compared between the HMIS and the EIMSS at four hospitals over a period of 12 months. After the implementation of the EIMSS, over 96% of admitted children under 5 years of age underwent laboratory testing for malaria. The HMIS significantly overreported the proportion of children under 5 years of age admitted with malaria (average absolute difference = 19%, range = 8–27% across the four hospitals) compared with the EIMSS. To improve the quality of the HMIS data for malaria surveillance, the National Malaria Control Program should, in addition to increasing malaria testing rates, focus on linking laboratory test results to reported malaria cases. PMID:25422396
External quality assessment of malaria microscopy in the Democratic Republic of the Congo
2011-01-01
Background External quality assessments (EQA) are an alternative to cross-checking of blood slides in the quality control of malaria microscopy. This study reports the findings of an EQA of malaria microscopy in the Democratic Republic of the Congo (DRC). Methods After validation, an EQA slide panel and a questionnaire were delivered to diagnostic laboratories in four provinces of DRC. The panel included three samples for diagnosis (sample 1: Plasmodium falciparum, 177,000/μl, sample 2: P. falciparum, 2,500/μl, sample 3: no parasites seen), one didactic sample (Howell-Jolly bodies) and one sample for assessing the quality of staining. Participating laboratories were addressed and selected through the network of the National Tuberculosis Control Programme. Participants were asked to return the responses together with a stained thin and thick blood film for evaluation of Giemsa stain quality. Results Among 174 participants (response rate 95.1%), 26.2% scored samples 1, 2 and 3 correctly and 34.3%, 21.5% and 5.8% of participants reported major errors in one, two or three samples respectively. Major errors included reporting "no malaria" or "non-falciparum malaria" for Plasmodium falciparum-positive samples 1 and 2 (16.1% and 34.9% of participants respectively) and "P. falciparum" for Plasmodium negative sample 3 (24.0%). Howell-Jolly bodies (didactic sample) were not recognized by any of the participants but reported as "P. falciparum" by 16.7% of participants. With parasite density expressed according to the "plus system", 16.1% and 21.5% of participants scored one "+" different from the reference score for samples 1 and 2 respectively and 9.7% and 2.9% participants scored more than two "+" different. When expressed as counts of asexual parasites/μl, more than two-thirds of results were outside the mean ± 2SD reference values. The quality of the Giemsa stain was poor, with less than 20% slides complying with all criteria assessed. Only one quarter of participants purchase Giemsa stain from suppliers of documented reliability and half of participants use a buffered staining solution. One third of participants had participated in a formal training about malaria diagnosis, half of them earlier than 2007. Conclusion The present EQA revealed a poor quality of malaria microscopy in DRC. PMID:22008378
Malaria Surveillance - United States, 2015.
Mace, Kimberly E; Arguin, Paul M; Tan, Kathrine R
2018-05-04
Malaria in humans is caused by intraerythrocytic protozoa of the genus Plasmodium. These parasites are transmitted by the bite of an infective female Anopheles species mosquito. The majority of malaria infections in the United States occur among persons who have traveled to regions with ongoing malaria transmission. However, malaria is occasionally acquired by persons who have not traveled out of the country through exposure to infected blood products, congenital transmission, laboratory exposure, or local mosquitoborne transmission. Malaria surveillance in the United States is conducted to provide information on its occurrence (e.g., temporal, geographic, and demographic), guide prevention and treatment recommendations for travelers and patients, and facilitate transmission control measures if locally acquired cases are identified. This report summarizes confirmed malaria cases in persons with onset of illness in 2015 and summarizes trends in previous years. Malaria cases diagnosed by blood film microscopy, polymerase chain reaction, or rapid diagnostic tests are reported to local and state health departments by health care providers or laboratory staff members. Case investigations are conducted by local and state health departments, and reports are transmitted to CDC through the National Malaria Surveillance System (NMSS), the National Notifiable Diseases Surveillance System (NNDSS), or direct CDC consultations. CDC reference laboratories provide diagnostic assistance and conduct antimalarial drug resistance marker testing on blood samples submitted by health care providers or local or state health departments. This report summarizes data from the integration of all NMSS and NNDSS cases, CDC reference laboratory reports, and CDC clinical consultations. CDC received reports of 1,517 confirmed malaria cases, including one congenital case, with an onset of symptoms in 2015 among persons who received their diagnoses in the United States. Although the number of malaria cases diagnosed in the United States has been increasing since the mid-1970s, the number of cases decreased by 208 from 2014 to 2015. Among the regions of acquisition (Africa, West Africa, Asia, Central America, the Caribbean, South America, Oceania, and the Middle East), the only region with significantly fewer imported cases in 2015 compared with 2014 was West Africa (781 versus 969). Plasmodium falciparum, P. vivax, P. ovale, and P. malariae were identified in 67.4%, 11.7%, 4.1%, and 3.1% of cases, respectively. Less than 1% of patients were infected by two species. The infecting species was unreported or undetermined in 12.9% of cases. CDC provided diagnostic assistance for 13.1% of patients with confirmed cases and tested 15.0% of P. falciparum specimens for antimalarial resistance markers. Of the U.S. resident patients who reported purpose of travel, 68.4% were visiting friends or relatives. A lower proportion of U.S. residents with malaria reported taking any chemoprophylaxis in 2015 (26.5%) compared with 2014 (32.5%), and adherence was poor in this group. Among the U.S residents for whom information on chemoprophylaxis use and travel region were known, 95.3% of patients with malaria did not adhere to or did not take a CDC-recommended chemoprophylaxis regimen. Among women with malaria, 32 were pregnant, and none had adhered to chemoprophylaxis. A total of 23 malaria cases occurred among U.S. military personnel in 2015. Three cases of malaria were imported from the approximately 3,000 military personnel deployed to an Ebola-affected country; two of these were not P. falciparum species, and one species was unspecified. Among all reported cases in 2015, 17.1% were classified as severe illnesses and 11 persons died, compared with an average of 6.1 deaths per year during 2000-2014. In 2015, CDC received 153 P. falciparum-positive samples for surveillance of antimalarial resistance markers (although certain loci were untestable for some samples); genetic polymorphisms associated with resistance to pyrimethamine were identified in 132 (86.3%), to sulfadoxine in 112 (73.7%), to chloroquine in 48 (31.4%), to mefloquine in six (4.3%), and to artemisinin in one (<1%), and no sample had resistance to atovaquone. Completion of data elements on the malaria case report form decreased from 2014 to 2015 and remains low, with 24.2% of case report forms missing at least one key element (species, travel history, and resident status). The decrease in malaria cases from 2014 to 2015 is associated with a decrease in imported cases from West Africa. This finding might be related to altered or curtailed travel to Ebola-affected countries in in this region. Despite progress in reducing malaria worldwide, the disease remains endemic in many regions, and the use of appropriate prevention measures by travelers is still inadequate. The best way to prevent malaria is to take chemoprophylaxis medication during travel to a country where malaria is endemic. As demonstrated by the U.S. military during the Ebola response, use of chemoprophylaxis and other protection measures is possible in stressful environments, and this can prevent malaria, especially P. falciparum, even in high transmission areas. Detailed recommendations for preventing malaria are available to the general public at the CDC website (https://www.cdc.gov/malaria/travelers/drugs.html). Malaria infections can be fatal if not diagnosed and treated promptly with antimalarial medications appropriate for the patient's age and medical history, the likely country of malaria acquisition, and previous use of antimalarial chemoprophylaxis. Health care providers should consult the CDC Guidelines for Treatment of Malaria in the United States and contact the CDC's Malaria Hotline for case management advice when needed. Malaria treatment recommendations are available online (https://www.cdc.gov/malaria/diagnosis_treatment) and from the Malaria Hotline (770-488-7788 or toll-free at 855-856-4713). Persons submitting malaria case reports (care providers, laboratories, and state and local public health officials) should provide complete information because incomplete reporting compromises case investigations and efforts to prevent infections and examine trends in malaria cases. Compliance with recommended malaria prevention strategies is low among U.S. travelers visiting friends and relatives. Evidence-based prevention strategies that effectively target travelers who are visiting friends and relatives need to be developed and implemented to reduce the numbers of imported malaria cases in the United States. Molecular surveillance of antimalarial drug resistance markers (https://www.cdc.gov/malaria/features/ars.html) has enabled CDC to track, guide treatment, and manage drug resistance in malaria parasites both domestically and internationally. More samples are needed to improve the completeness of antimalarial drug resistance marker analysis; therefore, CDC requests that blood specimens be submitted for all cases diagnosed in the United States.
Malaria Surveillance — United States, 2015
Arguin, Paul M.; Tan, Kathrine R.
2018-01-01
Problem/Condition Malaria in humans is caused by intraerythrocytic protozoa of the genus Plasmodium. These parasites are transmitted by the bite of an infective female Anopheles species mosquito. The majority of malaria infections in the United States occur among persons who have traveled to regions with ongoing malaria transmission. However, malaria is occasionally acquired by persons who have not traveled out of the country through exposure to infected blood products, congenital transmission, laboratory exposure, or local mosquitoborne transmission. Malaria surveillance in the United States is conducted to provide information on its occurrence (e.g., temporal, geographic, and demographic), guide prevention and treatment recommendations for travelers and patients, and facilitate transmission control measures if locally acquired cases are identified. Period Covered This report summarizes confirmed malaria cases in persons with onset of illness in 2015 and summarizes trends in previous years. Description of System Malaria cases diagnosed by blood film microscopy, polymerase chain reaction, or rapid diagnostic tests are reported to local and state health departments by health care providers or laboratory staff members. Case investigations are conducted by local and state health departments, and reports are transmitted to CDC through the National Malaria Surveillance System (NMSS), the National Notifiable Diseases Surveillance System (NNDSS), or direct CDC consultations. CDC reference laboratories provide diagnostic assistance and conduct antimalarial drug resistance marker testing on blood samples submitted by health care providers or local or state health departments. This report summarizes data from the integration of all NMSS and NNDSS cases, CDC reference laboratory reports, and CDC clinical consultations. Results CDC received reports of 1,517 confirmed malaria cases, including one congenital case, with an onset of symptoms in 2015 among persons who received their diagnoses in the United States. Although the number of malaria cases diagnosed in the United States has been increasing since the mid-1970s, the number of cases decreased by 208 from 2014 to 2015. Among the regions of acquisition (Africa, West Africa, Asia, Central America, the Caribbean, South America, Oceania, and the Middle East), the only region with significantly fewer imported cases in 2015 compared with 2014 was West Africa (781 versus 969). Plasmodium falciparum, P. vivax, P. ovale, and P. malariae were identified in 67.4%, 11.7%, 4.1%, and 3.1% of cases, respectively. Less than 1% of patients were infected by two species. The infecting species was unreported or undetermined in 12.9% of cases. CDC provided diagnostic assistance for 13.1% of patients with confirmed cases and tested 15.0% of P. falciparum specimens for antimalarial resistance markers. Of the U.S. resident patients who reported purpose of travel, 68.4% were visiting friends or relatives. A lower proportion of U.S. residents with malaria reported taking any chemoprophylaxis in 2015 (26.5%) compared with 2014 (32.5%), and adherence was poor in this group. Among the U.S residents for whom information on chemoprophylaxis use and travel region were known, 95.3% of patients with malaria did not adhere to or did not take a CDC-recommended chemoprophylaxis regimen. Among women with malaria, 32 were pregnant, and none had adhered to chemoprophylaxis. A total of 23 malaria cases occurred among U.S. military personnel in 2015. Three cases of malaria were imported from the approximately 3,000 military personnel deployed to an Ebola-affected country; two of these were not P. falciparum species, and one species was unspecified. Among all reported cases in 2015, 17.1% were classified as severe illnesses and 11 persons died, compared with an average of 6.1 deaths per year during 2000–2014. In 2015, CDC received 153 P. falciparum-positive samples for surveillance of antimalarial resistance markers (although certain loci were untestable for some samples); genetic polymorphisms associated with resistance to pyrimethamine were identified in 132 (86.3%), to sulfadoxine in 112 (73.7%), to chloroquine in 48 (31.4%), to mefloquine in six (4.3%), and to artemisinin in one (<1%), and no sample had resistance to atovaquone. Completion of data elements on the malaria case report form decreased from 2014 to 2015 and remains low, with 24.2% of case report forms missing at least one key element (species, travel history, and resident status). Interpretation The decrease in malaria cases from 2014 to 2015 is associated with a decrease in imported cases from West Africa. This finding might be related to altered or curtailed travel to Ebola-affected countries in in this region. Despite progress in reducing malaria worldwide, the disease remains endemic in many regions, and the use of appropriate prevention measures by travelers is still inadequate. Public Health Actions The best way to prevent malaria is to take chemoprophylaxis medication during travel to a country where malaria is endemic. As demonstrated by the U.S. military during the Ebola response, use of chemoprophylaxis and other protection measures is possible in stressful environments, and this can prevent malaria, especially P. falciparum, even in high transmission areas. Detailed recommendations for preventing malaria are available to the general public at the CDC website (https://www.cdc.gov/malaria/travelers/drugs.html). Malaria infections can be fatal if not diagnosed and treated promptly with antimalarial medications appropriate for the patient’s age and medical history, the likely country of malaria acquisition, and previous use of antimalarial chemoprophylaxis. Health care providers should consult the CDC Guidelines for Treatment of Malaria in the United States and contact the CDC’s Malaria Hotline for case management advice when needed. Malaria treatment recommendations are available online (https://www.cdc.gov/malaria/diagnosis_treatment) and from the Malaria Hotline (770-488-7788 or toll-free at 855-856-4713). Persons submitting malaria case reports (care providers, laboratories, and state and local public health officials) should provide complete information because incomplete reporting compromises case investigations and efforts to prevent infections and examine trends in malaria cases. Compliance with recommended malaria prevention strategies is low among U.S. travelers visiting friends and relatives. Evidence-based prevention strategies that effectively target travelers who are visiting friends and relatives need to be developed and implemented to reduce the numbers of imported malaria cases in the United States. Molecular surveillance of antimalarial drug resistance markers (https://www.cdc.gov/malaria/features/ars.html) has enabled CDC to track, guide treatment, and manage drug resistance in malaria parasites both domestically and internationally. More samples are needed to improve the completeness of antimalarial drug resistance marker analysis; therefore, CDC requests that blood specimens be submitted for all cases diagnosed in the United States. PMID:29723168
Ly, Alioune Badara; Tall, Adama; Perry, Robert; Baril, Laurence; Badiane, Abdoulaye; Faye, Joseph; Rogier, Christophe; Touré, Aissatou; Sokhna, Cheikh; Trape, Jean-François; Michel, Rémy
2010-06-04
In 2006, the Senegalese National Malaria Control Programme (NMCP) has recommended artemisinin-based combination therapy (ACT) as the first-line treatment for uncomplicated malaria and, in 2007, mandated testing for all suspected cases of malaria with a Plasmodium falciparum HRP-2-based rapid diagnostic test for malaria (RDT(Paracheck). Given the higher cost of ACT compared to earlier anti-malarials, the objectives of the present study were i) to study the accuracy of Paracheck compared to the thick blood smear (TBS) in two areas with different levels of malaria endemicity and ii) analyse the cost-effectiveness of the strategy of the parasitological confirmation of clinically suspected malaria cases management recommended by the NMCP. A cross-sectional study was undertaken in the villages of Dielmo and Ndiop (Senegal) nested in a cohort study of about 800 inhabitants. For all the individuals consulting between October 2008 and January 2009 with a clinical diagnosis of malaria, a questionnaire was filled and finger-prick blood samples were taken both for microscopic examination and RDT. The estimated costs and cost-effectiveness analysis were made considering five scenarios, the recommendations of the NMCP being the reference scenario. In addition, a sensitivity analysis was performed assuming that all the RDT-positive patients and 50% of RDT-negative patients were treated with ACT. A total of 189 consultations for clinically suspected malaria occurred during the study period. The sensitivity, specificity, positive and negative predictive values were respectively 100%, 98.3%, 80.0% and 100%. The estimated cost of the reference scenario was close to 700 euros per 1000 episodes of illness, approximately twice as expensive as most of the other scenarios. Nevertheless, it appeared to us cost-effective while ensuring the diagnosis and the treatment of 100% of malaria attacks and an adequate management of 98.4% of episodes of illness. The present study also demonstrated that full compliance of health care providers with RDT results was required in order to avoid severe incremental costs. A rational use of ACT requires laboratory testing of all patients presenting with presumed malaria. Use of RDTs inevitably has incremental costs, but the strategy associating RDT use for all clinically suspected malaria and prescribing ACT only to patients tested positive is cost-effective in areas where microscopy is unavailable.
Mukadi, Pierre; Gillet, Philippe; Lukuka, Albert; Atua, Benjamin; Sheshe, Nicole; Kanza, Albert; Mayunda, Jean Bosco; Mongita, Briston; Senga, Raphaël; Ngoyi, John; Muyembe, Jean-Jacques; Jacobs, Jan
2013-01-01
Abstract Objective To report the findings of a second external quality assessment of Giemsa-stained blood film microscopy in the Democratic Republic of the Congo, performed one year after the first. Methods A panel of four slides was delivered to diagnostic laboratories in all provinces of the country. The slides contained: (i) Plasmodium falciparum gametocytes; (ii) P. falciparum trophozoites (reference density: 113 530 per µl); (iii) Trypanosoma brucei subspecies; and (iv) no parasites. Findings Of 356 laboratories contacted, 277 (77.8%) responded. Overall, 35.0% of the laboratories reported all four slides correctly but 14.1% reported correct results for 1 or 0 slides. Major errors included not diagnosing trypanosomiasis (50.4%), not recognizing P. falciparum gametocytes (17.5%) and diagnosing malaria from the slide with no parasites (19.0%). The frequency of serious errors in assessing parasite density and in reporting false-positive results was lower than in the previous external quality assessment: 17.2% and 52.3%, respectively, (P < 0.001) for parasite density and 19.0% and 33.3%, respectively, (P < 0.001) for false-positive results. Laboratories that participated in the previous quality assessment performed better than first-time participants and laboratories in provinces with a high number of sleeping sickness cases recognized trypanosomes more frequently (57.0% versus 31.2%, P < 0.001). Malaria rapid diagnostic tests were used by 44.3% of laboratories, almost double the proportion observed in the previous quality assessment. Conclusion The overall quality of blood film microscopy was poor but was improved by participation in external quality assessments. The failure to recognize trypanosomes in a country where sleeping sickness is endemic is a concern. PMID:24052681
Trend analysis of imported malaria in London; observational study 2000 to 2014.
Rees, Eleanor; Saavedra-Campos, Maria; Usdin, Martine; Anderson, Charlotte; Freedman, Joanne; de Burgh, Jane; Kirkbride, Hilary; Chiodini, Peter; Smith, Valerie; Blaze, Marie; Whitty, Christopher J M; Balasegaram, Sooria
We describe trends of malaria in London (2000-2014) in order to identify preventive opportunities and we estimated the cost of malaria admissions (2009/2010-2014/2015). We identified all cases of malaria, resident in London, reported to the reference laboratory and obtained hospital admissions from Hospital Episode Statistics. The rate of malaria decreased (19.4[2001]-9.1[2014] per 100,000). Males were over-represented (62%). Cases in older age groups increased overtime. The rate was highest amongst people of Black African ethnicity followed by Indian, Pakistani, Bangladeshi ethnicities combined (103.3 and 5.5 per 100,000, respectively). The primary reason for travel was visiting friends and relatives (VFR) in their country of origin (69%), mostly sub-Saharan Africa (92%). The proportion of cases in VFRs increased (32%[2000]-50%[2014]) and those taking chemoprophylaxis decreased (36%[2000]-14%[2014]). The overall case fatality rate was 0.3%. We estimated the average healthcare cost of malaria admissions to be just over £1 million per year. Our study highlighted that people of Black African ethnicity, travelling to sub-Saharan Africa to visit friends and relatives in their country of origin remain the most affected with also a decline in chemoprophylaxis use. Malaria awareness should focus on this group in order to have the biggest impact but may require new approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quality assessment of malaria laboratory diagnosis in South Africa.
Dini, Leigh; Frean, John
2003-01-01
To assess the quality of malaria diagnosis in 115 South African laboratories participating in the National Health Laboratory Service Parasitology External Quality Assessment Programme we reviewed the results from 7 surveys from January 2000 to August 2002. The mean percentage incorrect result rate was 13.8% (95% CI 11.3-16.9%), which is alarmingly high, with about 1 in 7 blood films being incorrectly interpreted. Most participants with incorrect blood film interpretations had acceptable Giemsa staining quality, indicating that there is less of a problem with staining technique than with blood film interpretation. Laboratories in provinces in which malaria is endemic did not necessarily perform better than those in non-endemic areas. The results clearly suggest that malaria laboratory diagnosis throughout South Africa needs strengthening by improving laboratory standardization and auditing, training, quality assurance and referral resources.
Elahi, Rubayet; Mohon, Abu Naser; Khan, Wasif A; Haque, Rashidul; Alam, Mohammad Shafiul
2013-10-30
The rapid diagnostic test (RDT) has been adopted in contemporary malaria control and management programmes around the world as it represents a fast and apt alternative for malaria diagnosis in a resource-limited setting. This study assessed the performance of a HRP-2/pLDH based RDT (Parascreen® Pan/Pf) in a laboratory setting utilizing clinical samples obtained from the field. Whole blood samples were obtained from febrile patients referred for malaria diagnosis by clinicians from two different Upazila Health Complexes (UHCs) located near the Bangladesh-India and Bangladesh-Myanmar border where malaria is endemic. RDT was performed on archived samples and sensitivity and specificity evaluated with expert microscopy (EM) and quantitative PCR (qPCR). A total of 327 clinical samples were made available for the study, of which 153 were Plasmodium falciparum-positive and 54 were Plasmodium vivax-positive. In comparison with EM, for P. falciparum malaria, the RDT had sensitivity: 96.0% (95% CI, 91.2-98.3) and specificity: 98.2% (95% CI, 94.6-99.5) and for P. vivax, sensitivity: 90.7% (95% CI, 78.9-96.5) and specificity: 98.9% (95% CI, 96.5-99.7). Comparison with qPCR showed, for P. falciparum malaria, sensitivity: 95.4% (95% CI, 90.5-98.0) and specificity: 98.8% (95% CI, 95.4-99.7) and for P. vivax malaria, sensitivity: 89.0% (95% CI,77.0-95.4) and specificity: 98.8% (95% CI, 96.5-99.7). Sensitivity varied according to different parasitaemia for falciparum and vivax malaria diagnosis. Parascreen® Pan/Pf Rapid test for malaria showed acceptable sensitivity and specificity in border belt endemic areas of Bangladesh when compared with EM and qPCR.
Report: Unsupervised identification of malaria parasites using computer vision.
Khan, Najeed Ahmed; Pervaz, Hassan; Latif, Arsalan; Musharaff, Ayesha
2017-01-01
Malaria in human is a serious and fatal tropical disease. This disease results from Anopheles mosquitoes that are infected by Plasmodium species. The clinical diagnosis of malaria based on the history, symptoms and clinical findings must always be confirmed by laboratory diagnosis. Laboratory diagnosis of malaria involves identification of malaria parasite or its antigen / products in the blood of the patient. Manual diagnosis of malaria parasite by the pathologists has proven to become cumbersome. Therefore, there is a need of automatic, efficient and accurate identification of malaria parasite. In this paper, we proposed a computer vision based approach to identify the malaria parasite from light microscopy images. This research deals with the challenges involved in the automatic detection of malaria parasite tissues. Our proposed method is based on the pixel-based approach. We used K-means clustering (unsupervised approach) for the segmentation to identify malaria parasite tissues.
Biadglegne, Fantahun; Belyhun, Yeshambel; Ali, Jemal; Walle, Fisha; Gudeta, Nigussu; Kassu, Afework; Mulu, Andargachew
2014-11-01
The diagnosis of malaria in clinical laboratories mainly depends on blood smear microscopy and this technique remains the most widely used in Ethiopia. Despite the importance of blood smear microscopy for patient's diagnosis and treatment, little effort has been made to precisely determine and identify sources of error in malaria smear microscopic diagnosis and quantification of parasitaemia. The main objective of the present study was to assess the laboratory practices of health care laboratories carrying out blood films microscopy. A cross sectional study was conducted in northwestern Ethiopia involving 29 health care institutes. A structured and pretested questionnaire were used to collect relevant information on the physical conditions, laboratory logistics and laboratory practices carrying out blood smear microscopy. There was inadequacy of laboratory reagents, guidelines and materials. Most of the health institutes have been practicing re-utilization of microscope slides for malaria microscopy. The technical procedure (preparing of reagents, making of blood films and staining of the slides) were found to be below the standard in 50% of the health institutes. Refresher training and quality assessment has been done only in two and six of the health institutes in the past five years, respectively. In most of the health care laboratories studied, availability of laboratory logistics and technical practices for malaria microscopy were found to be below the standard set by World Health Organization. Improving logistics access for malaria microscopy at all level of health care is important to increase accuracy of diagnosis and quantification of malaria parasites. Moreover, continued training and regular supervision of the staff and implementation of quality control program in the area is also crucial.
Serra-Casas, Elisa; Manrique, Paulo; Ding, Xavier C.; Carrasco-Escobar, Gabriel; Alava, Freddy; Gave, Anthony; Rodriguez, Hugo; Contreras-Mancilla, Juan; Rosas-Aguirre, Angel; Speybroeck, Niko; González, Iveth J.
2017-01-01
Background Loop-mediated isothermal DNA amplification (LAMP) methodology offers an opportunity for point-of-care (POC) molecular detection of asymptomatic malaria infections. However, there is still little evidence on the feasibility of implementing this technique for population screenings in isolated field settings. Methods Overall, we recruited 1167 individuals from terrestrial (‘road’) and hydric (‘riverine’) communities of the Peruvian Amazon for a cross-sectional survey to detect asymptomatic malaria infections. The technical performance of LAMP was evaluated in a subgroup of 503 samples, using real-time Polymerase Chain Reaction (qPCR) as reference standard. The operational feasibility of introducing LAMP testing in the mobile screening campaigns was assessed based on field-suitability parameters, along with a pilot POC-LAMP assay in a riverine community without laboratory infrastructure. Results LAMP had a sensitivity of 91.8% (87.7–94.9) and specificity of 91.9% (87.8–95.0), and the overall accuracy was significantly better among samples collected during road screenings than riverine communities (p≤0.004). LAMP-based diagnostic strategy was successfully implemented within the field-team logistics and the POC-LAMP pilot in the riverine community allowed for a reduction in the turnaround time for case management, from 12–24 hours to less than 5 hours. Specimens with haemolytic appearance were regularly observed in riverine screenings and could help explaining the hindered performance/interpretation of the LAMP reaction in these communities. Conclusions LAMP-based molecular malaria diagnosis can be deployed outside of reference laboratories, providing similar performance as qPCR. However, scale-up in remote field settings such as riverine communities needs to consider a number of logistical challenges (e.g. environmental conditions, labour-intensiveness in large population screenings) that can influence its optimal implementation. PMID:28982155
Pigeault, Romain; Vézilier, Julien; Cornet, Stéphane; Zélé, Flore; Nicot, Antoine; Perret, Philippe; Gandon, Sylvain; Rivero, Ana
2015-08-19
Avian malaria has historically played an important role as a model in the study of human malaria, being a stimulus for the development of medical parasitology. Avian malaria has recently come back to the research scene as a unique animal model to understand the ecology and evolution of the disease, both in the field and in the laboratory. Avian malaria is highly prevalent in birds and mosquitoes around the world and is amenable to laboratory experimentation at each stage of the parasite's life cycle. Here, we take stock of 5 years of experimental laboratory research carried out using Plasmodium relictum SGS1, the most prevalent avian malaria lineage in Europe, and its natural vector, the mosquito Culex pipiens. For this purpose, we compile and analyse data obtained in our laboratory in 14 different experiments. We provide statistical relationships between different infection-related parameters, including parasitaemia, gametocytaemia, host morbidity (anaemia) and transmission rates to mosquitoes. This analysis provides a wide-ranging picture of the within-host and between-host parameters that may bear on malaria transmission and epidemiology. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Factoring quality laboratory diagnosis into the malaria control agenda for sub-Saharan Africa.
Aidoo, Michael
2013-09-01
Recent progress in malaria control in sub-Saharan Africa has been achieved primarily through provision of insecticide-treated nets, indoor residual spraying, and antimalarial drugs. Although these interventions are important, proper case identification and accurate measurement of their impact depend on quality diagnostic testing. Current availability of diagnostic testing for malaria in sub-Saharan Africa is inadequate to support disease management, prevention programs, and surveillance needs. Challenges faced include a dearth of skilled workforce, inadequate health systems infrastructure, and lack of political will. A coordinated approach to providing pre-service clinical and laboratory training together with systems that support a scale-up of laboratory services could provide means not only for effective malaria case management but also, management of non-malaria febrile illnesses, disease surveillance, and accurate control program evaluation. A synthesis of the challenges faced in ensuring quality malaria testing and how to include this information in the malaria control and elimination agenda are presented.
2010-01-01
Background In 2006, the Senegalese National Malaria Control Programme (NMCP) has recommended artemisinin-based combination therapy (ACT) as the first-line treatment for uncomplicated malaria and, in 2007, mandated testing for all suspected cases of malaria with a Plasmodium falciparum HRP-2-based rapid diagnostic test for malaria (RDT(Paracheck®). Given the higher cost of ACT compared to earlier anti-malarials, the objectives of the present study were i) to study the accuracy of Paracheck® compared to the thick blood smear (TBS) in two areas with different levels of malaria endemicity and ii) analyse the cost-effectiveness of the strategy of the parasitological confirmation of clinically suspected malaria cases management recommended by the NMCP. Methods A cross-sectional study was undertaken in the villages of Dielmo and Ndiop (Senegal) nested in a cohort study of about 800 inhabitants. For all the individuals consulting between October 2008 and January 2009 with a clinical diagnosis of malaria, a questionnaire was filled and finger-prick blood samples were taken both for microscopic examination and RDT. The estimated costs and cost-effectiveness analysis were made considering five scenarios, the recommendations of the NMCP being the reference scenario. In addition, a sensitivity analysis was performed assuming that all the RDT-positive patients and 50% of RDT-negative patients were treated with ACT. Results A total of 189 consultations for clinically suspected malaria occurred during the study period. The sensitivity, specificity, positive and negative predictive values were respectively 100%, 98.3%, 80.0% and 100%. The estimated cost of the reference scenario was close to 700€ per 1000 episodes of illness, approximately twice as expensive as most of the other scenarios. Nevertheless, it appeared to us cost-effective while ensuring the diagnosis and the treatment of 100% of malaria attacks and an adequate management of 98.4% of episodes of illness. The present study also demonstrated that full compliance of health care providers with RDT results was required in order to avoid severe incremental costs. Conclusions A rational use of ACT requires laboratory testing of all patients presenting with presumed malaria. Use of RDTs inevitably has incremental costs, but the strategy associating RDT use for all clinically suspected malaria and prescribing ACT only to patients tested positive is cost-effective in areas where microscopy is unavailable. PMID:20525322
Clinical Evaluation of a Loop-Mediated Amplification Kit for Diagnosis of Imported Malaria
Polley, Spencer D.; González, Iveth J.; Mohamed, Deqa; Daly, Rosemarie; Bowers, Kathy; Watson, Julie; Mewse, Emma; Armstrong, Margaret; Gray, Christen; Perkins, Mark D.; Bell, David; Kanda, Hidetoshi; Tomita, Norihiro; Kubota, Yutaka; Mori, Yasuyoshi; Chiodini, Peter L.; Sutherland, Colin J.
2013-01-01
Background. Diagnosis of malaria relies on parasite detection by microscopy or antigen detection; both fail to detect low-density infections. New tests providing rapid, sensitive diagnosis with minimal need for training would enhance both malaria diagnosis and malaria control activities. We determined the diagnostic accuracy of a new loop-mediated amplification (LAMP) kit in febrile returned travelers. Methods. The kit was evaluated in sequential blood samples from returned travelers sent for pathogen testing to a specialist parasitology laboratory. Microscopy was performed, and then malaria LAMP was performed using Plasmodium genus and Plasmodium falciparum–specific tests in parallel. Nested polymerase chain reaction (PCR) was performed on all samples as the reference standard. Primary outcome measures for diagnostic accuracy were sensitivity and specificity of LAMP results, compared with those of nested PCR. Results. A total of 705 samples were tested in the primary analysis. Sensitivity and specificity were 98.4% and 98.1%, respectively, for the LAMP P. falciparum primers and 97.0% and 99.2%, respectively, for the Plasmodium genus primers. Post hoc repeat PCR analysis of all 15 tests with discrepant results resolved 4 results in favor of LAMP, suggesting that the primary analysis had underestimated diagnostic accuracy. Conclusions. Malaria LAMP had a diagnostic accuracy similar to that of nested PCR, with a greatly reduced time to result, and was superior to expert microscopy. PMID:23633403
Malaria diagnostic capacity in health facilities in Ethiopia
2014-01-01
Background Accurate early diagnosis and prompt treatment is one of the key strategies to control and prevent malaria in Ethiopia where both Plasmodium falciparum and Plasmodium vivax are sympatric and require different treatment regimens. Microscopy is the standard for malaria diagnosis at the health centres and hospitals whereas rapid diagnostic tests are used at community-level health posts. The current study was designed to assess malaria microscopy capacity of health facilities in Oromia Regional State and Dire Dawa Administrative City, Ethiopia. Methods A descriptive cross-sectional study was conducted from February to April 2011 in 122 health facilities, where health professionals were interviewed using a pre-tested, standardized assessment tool and facilities’ laboratory practices were assessed by direct observation. Results Of the 122 assessed facilities, 104 (85%) were health centres and 18 (15%) were hospitals. Out of 94 health facilities reportedly performing blood films, only 34 (36%) used both thin and thick smears for malaria diagnosis. The quality of stained slides was graded in 66 health facilities as excellent, good and poor quality in 11(17%), 31 (47%) and 24 (36%) respectively. Quality assurance guidelines and malaria microscopy standard operating procedures were found in only 13 (11%) facilities and 12 (10%) had involved in external quality assessment activities, and 32 (26%) had supportive supervision within six months of the survey. Only seven (6%) facilities reported at least one staff’s participation in malaria microscopy refresher training during the previous 12 months. Although most facilities, 96 (79%), had binocular microscopes, only eight (7%) had the necessary reagents and supplies to perform malaria microscopy. Treatment guidelines for malaria were available in only 38 (31%) of the surveyed facilities. Febrile patients with negative malaria laboratory test results were managed with artemether-lumefantrine or chloroquine in 51% (53/104) of assessed health facilities. Conclusions The current study indicated that most of the health facilities had basic infrastructure and equipment to perform malaria laboratory diagnosis but with significant gaps in continuous laboratory supplies and reagents, and lack of training and supportive supervision. Overcoming these gaps will be critical to ensure that malaria laboratory diagnosis is of high-quality for better patient management. PMID:25073561
Clinical diagnosis of uncomplicated malaria in Sri Lanka.
van der Hoek, W; Premasiri, D A; Wickremasinghe, A R
1998-06-01
To assess the possibility of developing a protocol for the clinical diagnosis of malaria, a study was done at the regional laboratory of the Anti-Malaria Campaign in Puttalam, Sri Lanka. Of a group of 502 patients, who suspected they were suffering from malaria, 97 had a positive blood film for malaria parasites (71 Plasmodium vivax and 26 P. falciparum). There were no important differences in signs and symptoms between those with positive and those with negative blood films. It is argued that it is unlikely that health workers can improve on the diagnosis of malaria made by the patients themselves, if laboratory facilities are not available. For Sri Lanka the best option is to expand the number of facilities where microscopic examination for malaria parasites can take place.
Murphy, Sean C; Hermsen, Cornelus C; Douglas, Alexander D; Edwards, Nick J; Petersen, Ines; Fahle, Gary A; Adams, Matthew; Berry, Andrea A; Billman, Zachary P; Gilbert, Sarah C; Laurens, Matthew B; Leroy, Odile; Lyke, Kristen E; Plowe, Christopher V; Seilie, Annette M; Strauss, Kathleen A; Teelen, Karina; Hill, Adrian V S; Sauerwein, Robert W
2014-01-01
Nucleic acid testing (NAT) for malaria parasites is an increasingly recommended diagnostic endpoint in clinical trials of vaccine and drug candidates and is also important in surveillance of malaria control and elimination efforts. A variety of reported NAT assays have been described, yet no formal external quality assurance (EQA) program provides validation for the assays in use. Here, we report results of an EQA exercise for malaria NAT assays. Among five centers conducting controlled human malaria infection trials, all centers achieved 100% specificity and demonstrated limits of detection consistent with each laboratory's pre-stated expectations. Quantitative bias of reported results compared to expected results was generally <0.5 log10 parasites/mL except for one laboratory where the EQA effort identified likely reasons for a general quantitative shift. The within-laboratory variation for all assays was low at <10% coefficient of variation across a range of parasite densities. Based on this study, we propose to create a Molecular Malaria Quality Assessment program that fulfills the need for EQA of malaria NAT assays worldwide.
Ubillos, Itziar; Jiménez, Alfons; Vidal, Marta; Bowyer, Paul W; Gaur, Deepak; Dutta, Sheetij; Gamain, Benoit; Coppel, Ross; Chauhan, Virander; Lanar, David; Chitnis, Chetan; Angov, Evelina; Beeson, James; Cavanagh, David; Campo, Joseph J; Aguilar, Ruth; Dobaño, Carlota
2018-06-01
The quantitative suspension array technology (qSAT) is a useful platform for malaria immune marker discovery. However, a major challenge for large sero-epidemiological and malaria vaccine studies is the comparability across laboratories, which requires the access to standardized control reagents for assay optimization, to monitor performance and improve reproducibility. Here, the Plasmodium falciparum antibody reactivities of the newly available WHO reference reagent for anti-malaria human plasma (10/198) and of additional customized positive controls were examined with seven in-house qSAT multiplex assays measuring IgG, IgG 1-4 subclasses, IgM and IgE against a panel of 40 antigens. The different positive controls were tested at different incubation times and temperatures (4 °C overnight, 37 °C 2 h, room temperature 1 h) to select the optimal conditions. Overall, the WHO reference reagent had low IgG2, IgG4, IgM and IgE, and also low anti-CSP antibody levels, thus this reagent was enriched with plasmas from RTS,S-vaccinated volunteers to be used as standard for CSP-based vaccine studies. For the IgM assay, another customized plasma pool prepared with samples from malaria primo-infected adults with adequate IgM levels proved to be more adequate as a positive control. The range and magnitude of IgG and IgG 1-4 responses were highest when the WHO reference reagent was incubated with antigen-coupled beads at 4 °C overnight. IgG levels measured in the negative control did not vary between incubations at 37 °C 2 h and 4 °C overnight, indicating no difference in unspecific binding. With this study, the immunogenicity profile of the WHO reference reagent, including seven immunoglobulin isotypes and subclasses, and more P. falciparum antigens, also those included in the leading RTS,S malaria vaccine, was better characterized. Overall, incubation of samples at 4 °C overnight rendered the best performance for antibody measurements against the antigens tested. Although the WHO reference reagent performed well to measure IgG to the majority of the common P. falciparum blood stage antigens tested, customized pools may need to be used as positive controls depending on the antigens (e.g. pre-erythrocytic proteins of low natural immunogenicity) and isotypes/subclasses (e.g. IgM) under study.
Malaria in the Republic of Djibouti, 1998–2009
Ollivier, Lénaïck; Nevin, Remington L.; Darar, Houssein Y.; Bougère, Jacques; Saleh, Moustapha; Gidenne, Stéphane; Maslin, Jérôme; Anders, Dietmar; Decam, Christophe; Todesco, Alain; Khaireh, Bouh A.; Ahmed, Ammar A.
2011-01-01
Historically, native populations in the Republic of Djibouti have experienced only low and unstable malaria transmission and intermittent epidemics. In recent years, efforts at malaria control have been aggressively pursued. This study was performed to inform revised malaria prevention recommendations for military service members and international travelers to the country. Laboratory-confirmed cases of malaria documented at large medical facilities and within military and civilian health care systems in the Republic of Djibouti from 1998 to 2009 were reviewed. In recent years, fewer than 5% of febrile cases among the three largest passive surveillance systems were laboratory-confirmed as malaria, and incidence of confirmed malaria was well below 1/1,000 persons/year. As efforts in the Republic of Djibouti progress toward elimination, and in conjunction with continued efforts at surveillance, emphasizing mosquito-avoidance measures and standby emergency treatment will become reasonable recommendations for malaria prevention. PMID:21896822
Malaria in the Republic of Djibouti, 1998-2009.
Ollivier, Lénaïck; Nevin, Remington L; Darar, Houssein Y; Bougère, Jacques; Saleh, Moustapha; Gidenne, Stéphane; Maslin, Jérôme; Anders, Dietmar; Decam, Christophe; Todesco, Alain; Khaireh, Bouh A; Ahmed, Ammar A
2011-09-01
Historically, native populations in the Republic of Djibouti have experienced only low and unstable malaria transmission and intermittent epidemics. In recent years, efforts at malaria control have been aggressively pursued. This study was performed to inform revised malaria prevention recommendations for military service members and international travelers to the country. Laboratory-confirmed cases of malaria documented at large medical facilities and within military and civilian health care systems in the Republic of Djibouti from 1998 to 2009 were reviewed. In recent years, fewer than 5% of febrile cases among the three largest passive surveillance systems were laboratory-confirmed as malaria, and incidence of confirmed malaria was well below 1/1,000 persons/year. As efforts in the Republic of Djibouti progress toward elimination, and in conjunction with continued efforts at surveillance, emphasizing mosquito-avoidance measures and standby emergency treatment will become reasonable recommendations for malaria prevention.
Prevalence of Malaria in Pregnant Women in Lagos, South-West Nigeria
Agomo, Chimere O.; Anorlu, Rose I.; Agomo, Philip U.
2009-01-01
Prevalence rates reported for malaria in pregnancy in Nigeria vary considerably. The accuracy of results of malaria diagnosis is dependent on training, experience, and motivation of the microscopist as well as the laboratory facility available. Results of training programmes on malaria microscopy have shown low levels of sensitivity and specificity of those involved in malaria diagnosis routinely and for research. This study was done to ascertain the true prevalence of malaria in pregnancy in Lagos, South-West Nigeria. A total of 1,084 pregnant women were recruited into this study. Blood smears stained with Giemsa were used for malaria diagnosis by light microscopy. Malaria infection during pregnancy presents mostly as asymptomatic infection. The prevalence of malaria in this population was 7.7% (95% confidence interval; 6.2-9.4%). Factors identified to increase the risk of malaria infection include young maternal age (< 20 years), and gravidity (primigravida). In conclusion, this study exposes the over-diagnosis of malaria in pregnancy and the need for training and retraining of laboratory staffs as well as establishing the malaria diagnosis quality assurance programme to ensure the accuracy of malaria microscopy results at all levels. PMID:19488427
Malaria diagnosis under field conditions in the Venezuelan Amazon.
Metzger, W G; Vivas-Martínez, S; Rodriguez, I; Gonçalves, J; Bongard, E; Fanello, C I; Vivas, L; Magris, M
2008-01-01
To improve practical, accurate diagnosis of malaria in the Amazon rainforest of Venezuela, two rapid diagnostic tests (RDT) (OptiMAL-IT) and FalciVax) and a laboratory light microscope, used in the field with a battery-operated head lamp as an external light source, were evaluated against the standard laboratory microscope procedure for malaria detection. One hundred and thirty-six Yanomami patients were studied for the presence of malaria parasites. Thirty-three patients (24%) were positive for malaria (Plasmodium falciparum, P. vivax, P. malariae). Twenty-one (64%) of the positive patients had <100 parasites/microl. Both RDTs showed poor sensitivity (24.2% for OptiMAL-IT) and 36.4% for FalciVax) but good specificity (99% both for OptiMAL-IT) and FalciVax). Field and laboratory microscopy showed sensitivities of 94% and 91%, respectively. The kappa coefficient was 0.90, indicating a high agreement between field and laboratory microscopy. We conclude that (i) adequate slide reading cannot be substituted by either of the two RDTs in the Venezuelan Amazon and (ii) the use of a light source such as that described above makes slide reading more feasible than hitherto in remote areas without electricity.
Changing epidemiology of malaria in Sabah, Malaysia: increasing incidence of Plasmodium knowlesi.
William, Timothy; Jelip, Jenarun; Menon, Jayaram; Anderios, Fread; Mohammad, Rashidah; Awang Mohammad, Tajul A; Grigg, Matthew J; Yeo, Tsin W; Anstey, Nicholas M; Barber, Bridget E
2014-10-02
While Malaysia has had great success in controlling Plasmodium falciparum and Plasmodium vivax, notifications of Plasmodium malariae and the microscopically near-identical Plasmodium knowlesi increased substantially over the past decade. However, whether this represents microscopic misdiagnosis or increased recognition of P. knowlesi has remained uncertain. To describe the changing epidemiology of malaria in Sabah, in particular the increasing incidence of P. knowlesi, a retrospective descriptive study was undertaken involving a review of Department of Health malaria notification data from 2012-2013, extending a previous review of these data from 1992-2011. In addition, malaria PCR and microscopy data from the State Public Health Laboratory were reviewed to estimate the accuracy of the microscopy-based notification data. Notifications of P. malariae/P. knowlesi increased from 703 in 2011 to 815 in 2012 and 996 in 2013. Notifications of P. vivax and P. falciparum decreased from 605 and 628, respectively, in 2011, to 297 and 263 in 2013. In 2013, P. malariae/P. knowlesi accounted for 62% of all malaria notifications compared to 35% in 2011. Among 1,082 P. malariae/P. knowlesi blood slides referred for PCR testing during 2011-2013, there were 924 (85%) P. knowlesi mono-infections, 30 (2.8%) P. falciparum, 43 (4.0%) P. vivax, seven (0.6%) P. malariae, six (0.6%) mixed infections, 31 (2.9%) positive only for Plasmodium genus, and 41 (3.8%) Plasmodium-negative. Plasmodium knowlesi mono-infection accounted for 32/156 (21%) and 33/87 (38%) blood slides diagnosed by microscopy as P. falciparum and P. vivax, respectively. Twenty-six malaria deaths were reported during 2010-2013, including 12 with 'P. malariae/P. knowlesi' (all adults), 12 with P. falciparum (seven adults), and two adults with P. vivax. Notifications of P. malariae/P. knowlesi in Sabah are increasing, with this trend likely reflecting a true increase in incidence of P. knowlesi and presenting a major threat to malaria control and elimination in Malaysia. With the decline of P. falciparum and P. vivax, control programmes need to incorporate measures to protect against P. knowlesi, with further research required to determine effective interventions.
Kutsuna, Satoshi; Hayakawa, Kayoko; Kato, Yasuyuki; Fujiya, Yoshihiro; Mawatari, Momoko; Takeshita, Nozomi; Kanagawa, Shuzo; Ohmagari, Norio
2015-07-01
Without specific symptoms, diagnosis of febrile illness in returning travelers is challenging. Dengue, malaria, and enteric fever are common causes of fever in returning travelers and timely and appropriate treatment is important. However, differentiation is difficult without specific diagnostic tests. A retrospective study was conducted at the National Centre for Global Health and Medicine (NCGM) from April 2005 to March 2013. Febrile travelers returning from overseas who were diagnosed with dengue, malaria, or enteric fever were included in this study. Clinical characteristics and laboratory findings were compared for each diagnosis. During the study period, 86 malaria, 85 dengue, and 31 enteric fever cases were identified. The mean age of the study cohort was 33.1 ± 12 years and 134 (66.3%) study participants were male. Asia was the most common area visited by returning travelers with fevers (89% of dengue, 18.6% of malaria, and 100% of enteric fever cases), followed by Africa (1.2% of dengue and 70.9% of malaria cases). Clinical characteristics and laboratory findings were significantly different among each group with each diagnosis. Decision tree models revealed that returning from Africa and CRP levels < 10 mg/L were factors specific for diagnosis of malaria and dengue fever, respectively. Clinical manifestations, simple laboratory test results, and regions of travel are helpful to distinguish between dengue, malaria, and enteric fever in febrile returning travelers with non-specific symptoms.
Ishengoma, D R S; Rwegoshora, R T; Mdira, K Y; Kamugisha, M L; Anga, E O; Bygbjerg, I C; Rønn, A M; Magesa, S M
2009-07-01
Although critical for good case management and the monitoring of health interventions, the health-laboratory services in sub-Saharan Africa are grossly compromised by poor infrastructures and a lack of trained personnel, essential reagents and other supplies. The availability and quality of diagnostic services in 37 health laboratories in three districts of the Tanga region of Tanzania have recently been assessed. The results of the survey, which involved interviews with health workers, observations and a documentary review, revealed that malaria accounted for >50% of admissions and out-patient visits. Most (92%) of the laboratories were carrying out malaria diagnosis and 89% were measuring haemoglobin concentrations but only one (3%) was conducting culture and sensitivity tests, and those only on urine and pus samples. Only 14 (17%) of the 84 people found working in the visited laboratories were laboratory technologists with a diploma certificate or higher qualification. Sixteen (43%) of the study laboratories each had five or fewer types of equipment and only seven (19%) had more than 11 types each. Although 11 (30%) of the laboratories reported that they conducted internal quality control, none had standard operating procedures (SOP) on display or evidence of such quality assurance. Although malaria was the main health problem, diagnostic services for malaria and other diseases were inadequate and of poor quality because of the limited human resources, poor equipment and shortage of supplies. If the health services in Tanga are not to be overwhelmed by the progressively increasing burden of HIV/AIDS, malaria, tuberculosis and other emerging and re-emerging diseases, more funding and appropriate policies to improve the availability and quality of the area's diagnostic services will clearly be required.
2013-01-01
Background The rapid diagnostic test (RDT) has been adopted in contemporary malaria control and management programmes around the world as it represents a fast and apt alternative for malaria diagnosis in a resource-limited setting. This study assessed the performance of a HRP-2/pLDH based RDT (Parascreen® Pan/Pf) in a laboratory setting utilizing clinical samples obtained from the field. Methods Whole blood samples were obtained from febrile patients referred for malaria diagnosis by clinicians from two different Upazila Health Complexes (UHCs) located near the Bangladesh-India and Bangladesh-Myanmar border where malaria is endemic. RDT was performed on archived samples and sensitivity and specificity evaluated with expert microscopy (EM) and quantitative PCR (qPCR). Results A total of 327 clinical samples were made available for the study, of which 153 were Plasmodium falciparum-positive and 54 were Plasmodium vivax-positive. In comparison with EM, for P. falciparum malaria, the RDT had sensitivity: 96.0% (95% CI, 91.2-98.3) and specificity: 98.2% (95% CI, 94.6-99.5) and for P. vivax, sensitivity: 90.7% (95% CI, 78.9-96.5) and specificity: 98.9% (95% CI, 96.5-99.7). Comparison with qPCR showed, for P. falciparum malaria, sensitivity: 95.4% (95% CI, 90.5-98.0) and specificity: 98.8% (95% CI, 95.4-99.7) and for P. vivax malaria, sensitivity: 89.0% (95% CI,77.0-95.4) and specificity: 98.8% (95% CI, 96.5-99.7). Sensitivity varied according to different parasitaemia for falciparum and vivax malaria diagnosis. Conclusion Parascreen® Pan/Pf Rapid test for malaria showed acceptable sensitivity and specificity in border belt endemic areas of Bangladesh when compared with EM and qPCR. PMID:24172045
Laboratory diagnostics of malaria
NASA Astrophysics Data System (ADS)
Siahaan, L.
2018-03-01
Even now, malaria treatment should only be administered after laboratory confirmation. There are several principal methods for diagnosing malaria. All these methods have their disadvantages.Presumptive treatment of malaria is widely practiced where laboratory tests are not readily available. Microscopy of Giemsa-stained thick and thin blood films remains the gold standard for the diagnosis of malaria infection. The technique of slide preparation, staining and reading are well known and standardized, and so is the estimate of the parasite density and parasite stages. Microscopy is not always available or feasible at primary health services in limited resource settings due to cost, lack of skilled manpower, accessories and reagents required. Rapid diagnostic tests (RDTs) are potential tools for parasite-based diagnosis since the tests are accurate in detecting malaria infections and are easy to use. The test is based on the capture of parasite antigen that released from parasitized red blood cells using monoclonal antibodies prepared against malaria antigen target. Polymerase Chain Reaction (PCR), depend on DNA amplification approaches and have higher sensitivity than microscopy. PCR it is not widely used due to the lack of a standardized methodology, high costs, and the need for highly-trained staff.
Kutsuna, Satoshi; Hayakawa, Kayoko; Kato, Yasuyuki; Fujiya, Yoshihiro; Mawatari, Momoko; Takeshita, Nozomi; Kanagawa, Shuzo; Ohmagari, Norio
2015-04-01
Without specific symptoms, diagnosis of febrile illness in returning travelers is challenging. Dengue, malaria, and enteric fever are common causes of fever in returning travelers and timely and appropriate treatment is important. However, differentiation is difficult without specific diagnostic tests. A retrospective study was conducted at the National Centre for Global Health and Medicine (NCGM) from April 2005 to March 2013. Febrile travelers returning from overseas who were diagnosed with dengue, malaria, or enteric fever were included in this study. Clinical characteristics and laboratory findings were compared for each diagnosis. During the study period, 86 malaria, 85 dengue, and 31 enteric fever cases were identified. The mean age of the study cohort was 33.1 ± 12 years and 134 (66.3%) study participants were male. Asia was the most common area visited by returning travelers with fevers (89% of dengue, 18.6% of malaria, and 100% of enteric fever cases), followed by Africa (1.2% of dengue and 70.9% of malaria cases). Clinical characteristics and laboratory findings were significantly different among each group with each diagnosis. Decision tree models revealed that returning from Africa and CRP levels <10 mg/L were factors specific for diagnosis of malaria and dengue fever, respectively. Clinical manifestations, simple laboratory test results, and regions of travel are helpful to distinguish between dengue, malaria, and enteric fever in febrile returning travelers with non-specific symptoms. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Mendoza, Nohora Marcela; González, Nohora Elizabeth
2015-01-01
One of the most important activities for quality assurance of malaria diagnosis is performance assessment. In Colombia, performance assessment of malaria microscopists has been done through the external performance assessment and indirect external performance assessment programs. To assess the performance of malaria microscopists of public reference laboratories using slide sets, and to describe the methodology used for this purpose. This was a retrospective study to evaluate the concordance of senior microscopists regarding parasite detection, species identification and parasite count based on the results of the assessment of competences using two sets, one comprising 40 slides, and another one with 17 slides. The concordance for parasite detection was 96.9% (95% CI: 96.0-97.5) and 88.7% (95% CI: 86.6-90.5) for species identification. The average percentage of concordant slides in the group evaluated was 89.7% (95% CI: 87.5-91.6). Most of the senior microscopists in Colombia were classified in the two top categories in the performance assessment using slide sets. The most common difficulty encountered was the identification of parasite species. The use of this tool to assess individual performance of microscopists in the evaluation of samples with different degrees of difficulty allows for characterizing the members of the malaria diagnosis network and strengthening the abilities of those who require it.
Dougnon, T V; Bankole, H S; Hounmanou, Y M G; Echebiri, S; Atchade, P; Mohammed, J
2015-01-01
Malaria is a major disease in Africa and leads to various public health problems. A study was carried out at the Aviation Medical Clinic Laboratory, Murtala Mohammed Airport, Ikeja, Lagos State, Nigeria, in 2014. The work aimed to determine the prevalence of malaria among patients attending the laboratory. Blood samples were therefore collected from 51 patients and subjected to both blood smear microscopy and a rapid immunochromatographic diagnostic test (SD BIOLINE Malaria Ag) for detection of, respectively, malaria parasites and antigens. At the end of the study, 22% of the patients were detected positive by the microscopic examination while 9.8% were tested positive when using SD BIOLINE Malaria Ag. The outcomes of the study show a high prevalence of malaria at the airport. This represents a serious risk factor leading to a high likelihood of spread and occurrence of malaria in other countries including Western countries whereby the disease is nonendemic. It also pointed out that the blood smear microscopy seems to be better than Rapid Diagnosis Test (RDT) for malaria diagnosis.
Children and Parasitic Diseases
... Z Index Laboratory Diagnostic Assistance Parasitic Disease and Malaria Strategic Priorities: 2015—2020 About our Division Get ... developing countries. The most important of these is malaria . Children in malaria-endemic countries are at high ...
Implementation of quality management for clinical bacteriology in low-resource settings.
Barbé, B; Yansouni, C P; Affolabi, D; Jacobs, J
2017-07-01
The declining trend of malaria and the recent prioritization of containment of antimicrobial resistance have created a momentum to implement clinical bacteriology in low-resource settings. Successful implementation relies on guidance by a quality management system (QMS). Over the past decade international initiatives were launched towards implementation of QMS in HIV/AIDS, tuberculosis and malaria. To describe the progress towards accreditation of medical laboratories and to identify the challenges and best practices for implementation of QMS in clinical bacteriology in low-resource settings. Published literature, online reports and websites related to the implementation of laboratory QMS, accreditation of medical laboratories and initiatives for containment of antimicrobial resistance. Apart from the limitations of infrastructure, equipment, consumables and staff, QMS are challenged with the complexity of clinical bacteriology and the healthcare context in low-resource settings (small-scale laboratories, attitudes and perception of staff, absence of laboratory information systems). Likewise, most international initiatives addressing laboratory health strengthening have focused on public health and outbreak management rather than on hospital based patient care. Best practices to implement quality-assured clinical bacteriology in low-resource settings include alignment with national regulations and public health reference laboratories, participating in external quality assurance programmes, support from the hospital's management, starting with attainable projects, conducting error review and daily bench-side supervision, looking for locally adapted solutions, stimulating ownership and extending existing training programmes to clinical bacteriology. The implementation of QMS in clinical bacteriology in hospital settings will ultimately boost a culture of quality to all sectors of healthcare in low-resource settings. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
2014-01-01
Background Prompt and appropriate treatment of malaria with effective medicines remains necessary if malaria control goals are to be achieved. The theoretical concepts from self-care and the health belief model were used to examine the motivations for malaria self-care among the adult population. Methods A qualitative study was conducted through eight focus group discussions with adult community members to explore their general opinions, views and perceptions of malaria and of its treatments. These groups were followed by 15 in-depth interviews of participants with a recent malaria experience to allow for an in-depth exploration of their self-care practices. The analysis followed principles of grounded theory and was conducted using Nvivo 9 qualitative data management software. Results The self-treatment of malaria at home was found to be a common practice among the study participants. The majority of the participants practiced self-medication with a painkiller as an initial response. The persistence and the worsening of the disease symptoms prompted participants to consider other self-care options. Perceptions that many malaria symptoms are suggestive of other conditions motivated participants to self-refer for malaria test. The accessibility of private laboratory facilities and drug shops motivated their use for malaria tests and for obtaining anti-malarial medicines, respectively. Self-treatment with anti-malarial monotherapy was common, motivated by their perceived effectiveness and availability. The perceived barriers to using the recommended combination treatment, artemether-lumefantrine, were related to the possible side-effects and to uncertainty about their effectiveness, and these doubts motivated some participants to consider self-medication with local herbs. Several factors were mentioned as motivating people for self-care practices. These included poor patient provider relationship, unavailability of medicine and the costs associated with accessing treatments from the health facilities. Conclusions Malaria self-care and self-treatment with anti-malarial monotherapy are common among adults, and are motivated by both individual characteristics and the limitations of the existing health care facilities. There is a need for public health interventions to take into account community perceptions and cultural schemas on malaria self-care practices. PMID:24986165
Current strategies to avoid misdiagnosis of malaria.
Hänscheid, T
2003-06-01
Malaria remains the most important parasitic disease, and tens of thousands of cases are imported into non-endemic countries annually. However, any single institution may see only a very few cases-this is probably the reason why laboratory and clinical misdiagnosis may not be uncommon. In the laboratory, unfamiliarity with microscopic diagnosis may be the main reason, considering the large number of laboratory staff who provide on-call services, often without expert help at hand, as well as the difficulty in detecting cases with low-level parasitemia. Staff should therefore be provided with continuing microscopic training to maintain proficiency. The complementary use of immunochromatographic rapid detection tests (RDTs) may be useful, especially during on-call hours, although, in order to ensure correct interpretation, their inherent limitations have to be well known. Diagnosis based on the polymerase chain reaction is still unsuitable for routine use, due to its long turnaround time, its cost, and its unavailability outside regular hours, although it may be helpful in selected cases. Once the alert clinician has considered the possibility of malaria, and suspicion continues to be high, malaria can be excluded by repeat smears or RDTs. However, the absence of clinical suspicion may not be infrequent, and may have more serious consequences. Depending on the local number of malaria cases seen, laboratory staff should have a low threshold for the decision to perform unsolicited malaria diagnostic tests on suspicious samples, especially if other laboratory tests are abnormal (e.g. thrombocytopenia, presence of atypical lymphocytes, or raised lactate dehydrogenase). The detection of intraleukocytic hemozoin during automated full blood counts is a promising new way to avoid misdiagnosis of clinically unsuspected malaria.
Farcas, Gabriella A; Soeller, Rainer; Zhong, Kathleen; Zahirieh, Alireza; Kain, Kevin C
2006-03-01
Imported drug-resistant malaria is a growing problem in industrialized countries. Rapid and accurate diagnosis is essential to prevent malaria-associated mortality in returned travelers. However, outside of a limited number of specialized centers, the microscopic diagnosis of malaria is slow, unreliable, and provides little information about drug resistance. Molecular diagnostics have the potential to overcome these limitations. We developed and evaluated a rapid, real-time polymerase chain reaction (PCR) assay to detect Plasmodium falciparum malaria and chloroquine (CQ)-resistance determinants in returned travelers who are febrile. A real-time PCR assay based on detection of the K76T mutation in PfCRT (K76T) of P. falciparum was developed on a LightCycler platform (Roche). The performance characteristics of the real-time assay were compared with those of the nested PCR-restriction fragment-length polymorphism (RFLP) and the sequence analyses of samples obtained from 200 febrile returned travelers, who included 125 infected with P. falciparum (48 of whom were infected CQ-susceptible [K76] and 77 of whom were CQ-resistant [T76] P. falciparum), 22 infected with Plasmodium vivax, 10 infected with Plasmodium ovale, 3 infected with Plasmodium malariae malaria, and 40 infected with other febrile syndromes. All patient samples were coded, and all analyses were performed blindly. The real-time PCR assay detected multiple pfcrt haplotypes associated with CQ resistance in geographically diverse malaria isolates acquired by travelers. Compared with nested-PCR RFLP (the reference standard), the real-time assay was 100% sensitive and 96.2% specific for detection of the P. falciparum K76T mutation. This assay is rapid, sensitive, and specific for the detection and characterization of CQ-resistant P. falciparum malaria in returned travelers. This assay is automated, standardized, and suitable for routine use in clinical diagnostic laboratories.
Hendriksen, Ilse C. E.; Mtove, George; Pedro, Alínia José; Gomes, Ermelinda; Silamut, Kamolrat; Lee, Sue J.; Mwambuli, Abraham; Gesase, Samwel; Reyburn, Hugh; Day, Nicholas P. J.; White, Nicholas J.; von Seidlein, Lorenz
2011-01-01
Background. Rapid diagnostic tests (RDTs) now play an important role in the diagnosis of falciparum malaria in many countries where the disease is endemic. Although these tests have been extensively evaluated in uncomplicated falciparum malaria, reliable data on their performance for diagnosing potentially lethal severe malaria is lacking. Methods. We compared a Plasmodium falciparum histidine-rich-protein2 (PfHRP2)–based RDT and a Plasmodium lactate dehydrogenase (pLDH)–based RDT with routine microscopy of a peripheral blood slide and expert microscopy as a reference standard for the diagnosis of severe malaria in 1898 children who presented with severe febrile illness at 2 centers in Mozambique and Tanzania. Results. The overall sensitivity, specificity, positive predictive value, and negative predictive values of the PfHRP2-based test were 94.0%, 70.9%, 85.4%, and 86.8%, respectively, and for the pLDH-based test, the values were 88.0%, 88.3%, 93.2%, and 80.3%, respectively. At parasite counts <1000 parasites/μL (n = 173), sensitivity of the pLDH-based test was low (45.7%), compared with that of the PfHRP2-based test (69.9%). Both RDTs performed better than did the routine slide reading in a clinical laboratory as assessed in 1 of the centers. Conclusion. The evaluated PfHRP2-based RDT is an acceptable alternative to routine microscopy for diagnosing severe malaria in African children and performed better than did the evaluated pLDH-based RDT. PMID:21467015
Hongvivatana, T
1986-09-01
Human behavior in malaria is often narrowly referred to behavior of the target populations in transmission and control of malaria. In this presentation it was discussed that such view is too narrow. A broader framework incorporating illness behavior and human behavior in malaria control bureaucracies is needed for the success of national malaria control programme. Literature under the three broad categories of human behavior in malaria is reviewed to justify future directions in human behavior research and their significance for successful malaria control.
Imported malaria in Auckland, New Zealand.
Camburn, Anna E; Ingram, R Joan H; Holland, David; Read, Kerry; Taylor, Susan
2012-11-09
To describe the current malaria situation in Auckland, New Zealand. We collected data on all cases of malaria diagnosed in Auckland from 1st October 2008 to 30th September 2009. Enhanced surveillance was arranged with all hospital and community haematology laboratories in the region. Laboratories notified us when a diagnosis of malaria was made. After obtaining informed consent the patient was asked about their travel, prophylaxis taken and symptoms. Laboratory results were collected. There were 36 cases of malaria in 34 patients. Consent could not be obtained from two patients so data is from 34 cases in 32 patients. (One patient had P.falciparum then later P.vivax, the other had P.vivax and relapsed.) There were 24 males and 8 females with a median age of 21 years (range 6 months to 75 years). Eleven of the 32 were New Zealand residents. 8 of these 11 had travelled to visit friends or relatives (VFR) while 3 were missionaries. In this group 6 had P.falciparum, 4 P.vivax and one had both. Twenty-one of the 32 were new arrivals to New Zealand: 11 refugees and 10 migrants. Malaria in Auckland is seen in new arrivals and VFR travellers, not in tourist travellers.
Yegorov, Sergey; Galiwango, Ronald M; Ssemaganda, Aloysious; Muwanga, Moses; Wesonga, Irene; Miiro, George; Drajole, David A; Kain, Kevin C; Kiwanuka, Noah; Bagaya, Bernard S; Kaul, Rupert
2016-11-14
The malaria burden in sub-Saharan Africa (SSA) has fallen substantially. Nevertheless, malaria remains a serious health concern, and Uganda ranks third in SSA in total malaria burden. Epidemiological studies of adult malaria in Uganda are scarce and little is known about rates of malaria in non-pregnant adult women. This pilot study assessed malaria prevalence among adult women from Wakiso district, historically a highly malaria endemic region. Adult women using public health services were screened for malaria, HIV and pregnancy. A physician-selected subset of women presenting to the Outpatient Department of Entebbe General Hospital (EGH) with current fever (axillary temperature ≥37.5 °C) or self-reporting fever during the previous 24 h, and a positive thick smear for malaria in the EGH laboratory were enrolled (n = 86). Women who self-identified as pregnant or HIV-positive were excluded from screening. Malaria infection was then assessed using HRP2/pLDH rapid diagnostic tests (RDTs) in all participants. Repeat microscopy and PCR were performed at a research laboratory for a subset of participants. In addition, 104 women without a history of fever were assessed for asymptomatic parasitaemia using RDT, and a subset of these women screened for parasitaemia using microscopy (40 women) and PCR (40 women). Of 86 women diagnosed with malaria by EGH, only two (2.3%) had malaria confirmed using RDT, subsequently identified as a Plasmodium falciparum infection by research microscopy and PCR. Subset analysis of hospital diagnosed RDT-negative participants detected one sub-microscopic infection with Plasmodium ovale. Compared to RDT, sensitivity, specificity and PPV of hospital microscopy were 100% (CI 19.8-100), 0% (CI 0-5.32) and 2.33% (CI 0.403-8.94) respectively. Compared to PCR, sensitivity, specificity and PPV of hospital microscopy were 100% (CI 31.0-100), 0% (CI 0-34.5) and 23.1% (CI 6.16-54.0), respectively. No malaria was detected among asymptomatic women using RDT, research microscopy or PCR. Malaria prevalence among adult women appears to be low in Wakiso, but is masked by high rates of malaria overdiagnosis. More accurate malaria testing is urgently needed in public hospitals in this region to identify true causes of febrile illness and reduce unnecessary provision of anti-malarial therapy.
Comparison of molecular tests for the diagnosis of malaria in Honduras
2012-01-01
Background Honduras is a tropical country with more than 70% of its population living at risk of being infected with either Plasmodium vivax or Plasmodium falciparum. Laboratory diagnosis is a very important factor for adequate treatment and management of malaria. In Honduras, malaria is diagnosed by both, microscopy and rapid diagnostic tests and to date, no molecular methods have been implemented for routine diagnosis. However, since mixed infections, and asymptomatic and low-parasitaemic cases are difficult to detect by light microscopy alone, identifying appropriate molecular tools for diagnostic applications in Honduras deserves further study. The present study investigated the utility of different molecular tests for the diagnosis of malaria in Honduras. Methods A total of 138 blood samples collected as part of a clinical trial to assess the efficacy of chloroquine were used: 69 microscopically confirmed P. falciparum positive samples obtained on the day of enrolment and 69 follow-up samples obtained 28 days after chloroquine treatment and shown to be malaria negative by microscopy. Sensitivity and specificity of microscopy was compared to an 18 s ribosomal RNA gene-based nested PCR, two single-PCR reactions designed to detect Plasmodium falciparum infections, one single-PCR to detect Plasmodium vivax infections, and one multiplex one-step PCR reaction to detect both parasite species. Results Of the 69 microscopically positive P. falciparum samples, 68 were confirmed to be P. falciparum-positive by two of the molecular tests used. The one sample not detected as P. falciparum by any of the molecular tests was shown to be P. vivax-positive by a reference molecular test indicating a misdiagnosis by microscopy. The reference molecular test detected five cases of P. vivax/P. falciparum mixed infections, which were not recognized by microscopy as mixed infections. Only two of these mixed infections were recognized by a multiplex test while a P. vivax-specific polymerase chain reaction (PCR) detected three of them. In addition, one of the day 28 samples, previously determined to be malaria negative by microscopy, was shown to be P. vivax-positive by three of the molecular tests specific for this parasite. Conclusions Molecular tests are valuable tools for the confirmation of Plasmodium species and in detecting mixed infections in malaria endemic regions. PMID:22513192
Comparison of molecular tests for the diagnosis of malaria in Honduras.
Fontecha, Gustavo A; Mendoza, Meisy; Banegas, Engels; Poorak, Mitra; De Oliveira, Alexandre M; Mancero, Tamara; Udhayakumar, Venkatachalam; Lucchi, Naomi W; Mejia, Rosa E
2012-04-18
Honduras is a tropical country with more than 70% of its population living at risk of being infected with either Plasmodium vivax or Plasmodium falciparum. Laboratory diagnosis is a very important factor for adequate treatment and management of malaria. In Honduras, malaria is diagnosed by both, microscopy and rapid diagnostic tests and to date, no molecular methods have been implemented for routine diagnosis. However, since mixed infections, and asymptomatic and low-parasitaemic cases are difficult to detect by light microscopy alone, identifying appropriate molecular tools for diagnostic applications in Honduras deserves further study. The present study investigated the utility of different molecular tests for the diagnosis of malaria in Honduras. A total of 138 blood samples collected as part of a clinical trial to assess the efficacy of chloroquine were used: 69 microscopically confirmed P. falciparum positive samples obtained on the day of enrollment and 69 follow-up samples obtained 28 days after chloroquine treatment and shown to be malaria negative by microscopy. Sensitivity and specificity of microscopy was compared to an 18 s ribosomal RNA gene-based nested PCR, two single-PCR reactions designed to detect Plasmodium falciparum infections, one single-PCR to detect Plasmodium vivax infections, and one multiplex one-step PCR reaction to detect both parasite species. Of the 69 microscopically positive P. falciparum samples, 68 were confirmed to be P. falciparum-positive by two of the molecular tests used. The one sample not detected as P. falciparum by any of the molecular tests was shown to be P. vivax-positive by a reference molecular test indicating a misdiagnosis by microscopy. The reference molecular test detected five cases of P. vivax/P. falciparum mixed infections, which were not recognized by microscopy as mixed infections. Only two of these mixed infections were recognized by a multiplex test while a P. vivax-specific polymerase chain reaction (PCR) detected three of them. In addition, one of the day 28 samples, previously determined to be malaria negative by microscopy, was shown to be P. vivax-positive by three of the molecular tests specific for this parasite. Molecular tests are valuable tools for the confirmation of Plasmodium species and in detecting mixed infections in malaria endemic regions.
Aiyenigba, Bolatito; Ojo, Abiodun; Aisiri, Adolor; Uzim, Justus; Adeusi, Oluwole; Mwenesi, Halima
2017-01-01
Rapid and precise diagnosis of malaria is an essential element in effective case management and control of malaria. Malaria microscopy is used as the gold standard for malaria diagnosis, however results remain poor as positivity rate in Nigeria is consistently over 90%. The United States President's Malaria Initiative (PMI) through the Malaria Action Program for States (MAPS) supported selected states in Nigeria to build capacity for malaria microscopy. This study demonstrates the effectiveness of in-service training on malaria microscopy amongst medical laboratory scientists. The training was based on the World Health Organization (WHO) basic microscopy training manual. The 10-day training utilized a series of didactic lectures and examination of teaching slides using a CX 21 Olympus binocular microscope. All 108 medical laboratory scientists trained from 2012 to 2015 across five states in Nigeria supported by PMI were included in the study. Evaluation of the training using a pre-and post-test method was based on written test questions; reading photographic slide images of malaria parasites; and prepared slides. There was a significant improvement in the mean written pre-and post-tests scores from 37.9% (95% CI 36.2-39.6%) to 70.7% (95% CI 68.4-73.1%) ( p < 0.001). The mean counting post-test score improved significantly from 4.2% (95% CI 2.6-5.7%) to 27.9% (95% CI 25.3-30.5%) ( p < 0.001). Mean post-test score for computer-based picture speciation test (63.0%) and picture detection test (89.2%) were significantly higher than the mean post-test score for slide reading speciation test (38.3%) and slide reading detection test (70.7%), p < 0.001 in both cases. Parasite detection and speciation using enhanced visual imaging was significantly improved compared with using direct microscopy. Regular in-service training and provision of functional and high resolution microscopes are needed to ensure quality routine malaria microscopy.
Malaria elimination in Haiti by the year 2020: an achievable goal?
Boncy, Paul Jacques; Adrien, Paul; Lemoine, Jean Frantz; Existe, Alexandre; Henry, Patricia Jean; Raccurt, Christian; Brasseur, Philippe; Fenelon, Natael; Dame, John B; Okech, Bernard A; Kaljee, Linda; Baxa, Dwayne; Prieur, Eric; El Badry, Maha A; Tagliamonte, Massimiliano S; Mulligan, Connie J; Carter, Tamar E; Beau de Rochars, V Madsen; Lutz, Chelsea; Parke, Dana M; Zervos, Marcus J
2015-06-05
Haiti and the Dominican Republic, which share the island of Hispaniola, are the last locations in the Caribbean where malaria still persists. Malaria is an important public health concern in Haiti with 17,094 reported cases in 2014. Further, on January 12, 2010, a record earthquake devastated densely populated areas in Haiti including many healthcare and laboratory facilities. Weakened infrastructure provided fertile reservoirs for uncontrolled transmission of infectious pathogens. This situation results in unique challenges for malaria epidemiology and elimination efforts. To help Haiti achieve its malaria elimination goals by year 2020, the Laboratoire National de Santé Publique and Henry Ford Health System, in close collaboration with the Direction d'Épidémiologie, de Laboratoire et de Recherches and the Programme National de Contrôle de la Malaria, hosted a scientific meeting on "Elimination Strategies for Malaria in Haiti" on January 29-30, 2015 at the National Laboratory in Port-au-Prince, Haiti. The meeting brought together laboratory personnel, researchers, clinicians, academics, public health professionals, and other stakeholders to discuss main stakes and perspectives on malaria elimination. Several themes and recommendations emerged during discussions at this meeting. First, more information and research on malaria transmission in Haiti are needed including information from active surveillance of cases and vectors. Second, many healthcare personnel need additional training and critical resources on how to properly identify malaria cases so as to improve accurate and timely case reporting. Third, it is necessary to continue studies genotyping strains of Plasmodium falciparum in different sites with active transmission to evaluate for drug resistance and impacts on health. Fourth, elimination strategies outlined in this report will continue to incorporate use of primaquine in addition to chloroquine and active surveillance of cases. Elimination of malaria in Haiti will require collaborative multidisciplinary approaches, sound strategic planning, and strong ownership of strategies by the Haiti Ministère de la Santé Publique et de la Population.
Shokoples, Sandra; Mukhi, Shamir N; Scott, Allison N; Yanow, Stephanie K
2013-06-01
In clinical laboratories, diagnosis of imported malaria is commonly performed by microscopy. However, the volume of specimens is generally low and maintaining proficiency in reading blood smears, particularly at the species level, is challenging in this setting. To address this problem, the Provincial Laboratory for Public Health (ProvLab) in Alberta, Canada, implemented real-time PCR for routine confirmation of all smear-positive samples in the province. Here we report our experience over a 4-year period (2008 to 2012) with this new diagnostic algorithm. While detection of Plasmodium falciparum by microscopy alone was accurate, real-time PCR served as an important adjunct to microscopy for the identification of non-falciparum species. In 18% of cases, the result was reported as non-falciparum or the species could not be identified by microscopy alone, and in all cases, the species was resolved by real-time PCR. In another 4% of cases, the species was misidentified by microscopy. To enhance surveillance for malaria, we integrated our demographic, clinical, and laboratory data into a new system developed by the Canadian Network for Public Health Intelligence, called the Malaria System for Online Surveillance (SOS). Using this application, we characterized our patient populations and travel history to identify risk factors associated with malaria infection abroad.
Mergani, Adil; Khamis, Ammar H; Fatih Hashim, E L; Gumma, Mohamed; Awadelseed, Bella; Elwali, Nasr Eldin M A; Haboor, Ali Babikir
2015-09-01
Cerebral malaria is considered a leading cause of neuro-disability in sub-Saharan Africa among children and about 25% of survivors have long-term neurological and cognitive deficits or epilepsy. Their development was reported to be associated with protracted seizures, deep and prolonged coma. The study was aimed to determine the discharge pattern and to identify potential and informative predictors of neurological sequelae at discharge, complicating childhood cerebral malaria in central Sudan. A cross-sectional prospective study was carried out during malaria transmission seasons from 2000 to 2004 in Wad Medani, Sinnar and Singa hospitals, central Sudan. Children suspected of having cerebral malaria were examined and diagnosed by a Pediatrician for clinical, laboratory findings and any neurological complications. Univariate and multiple regression model analysis were performed to evaluate the association of clinical and laboratory findings with occurrence of neurological complications using the SPSS. Out of 940 examined children, only 409 were diagnosed with cerebral malaria with a mean age of 6.1 ± 3.3 yr. The mortality rate associated with the study was 14.2% (58) and 18.2% (64) of survivors (351) had neurological sequelae. Abnormal posture, either decerebration or decortication, focal convulsion and coma duration of >48 h were significant predictors for surviving from cerebral malaria with a neurological sequelae in children from central Sudan by Univariate analysis. Multiple logistic regression model fitting these variables, revealed 39.6% sensitivity for prediction of childhood cerebral malaria survivors with neurological sequelae (R² = 0.396; p=0.001). Neurological sequelae are common due to childhood cerebral malaria in central Sudan. Their prediction at admission, clinical presentation and laboratory findings may guide clinical intervention and proper management that may decrease morbidity and improve CM consequences.
Plasmodium berghei ANKA (PbA) infection of C57BL/6J mice: a model of severe malaria.
de Oca, Marcela Montes; Engwerda, Christian; Haque, Ashraful
2013-01-01
The term "severe malaria" refers to a wide spectrum of syndromes in Plasmodium-infected humans including cerebral malaria (CM), respiratory distress, severe anemia, liver dysfunction, and hypoglycemia. Mouse models have been employed to further our understanding of the pathology and immune responses that occur during Plasmodium infection. Evidence of brain, liver, lung, and spleen pathology, as well as anemia and tissue-sequestration of parasites, has been reported in various strains of inbred mice. While no single mouse model mimics all the various clinical manifestations of severe malaria in humans, here we describe a detailed protocol for Plasmodium berghei ANKA infection of C57BL/6J mice. For many years, this model has been referred to as "experimental cerebral malaria," but in fact recapitulates many of the symptoms and pathologies observed in most severe malaria syndromes.
Oddoux, O; Debourgogne, A; Kantele, A; Kocken, C H; Jokiranta, T S; Vedy, S; Puyhardy, J M; Machouart, M
2011-04-01
Recently, Plasmodium knowlesi has been recognised as the fifth Plasmodium species causing malaria in humans. Hundreds of human cases infected with this originally simian Plasmodium species have been described in Asian countries and increasing numbers are reported in Europe from travellers. The growing impact of tourism and economic development in South and Southeast Asia are expected to subsequently lead to a further increase in cases both among locals and among travellers. P. knowlesi is easily misidentified in microscopy as P. malariae or P. falciparum. We developed new primers for the rapid and specific detection of this species by low-cost real-time polymerase chain reaction (PCR) and added this method to an already existing panel of primers used for the molecular identification of the other four species in one reaction. Reference laboratories should now be able to identify undisputably and rapidly P. knowlesi, as it is a potentially fatal pathogen.
Fernando, Sumadhya Deepika; Dharmawardana, Priyani; Epasinghe, Geethanee; Senanayake, Niroshana; Rodrigo, Chaturaka; Premaratne, Risintha; Wickremasinghe, Rajitha
2016-10-18
Sri Lanka is currently in the prevention of re-introduction phase of malaria. The engagement of the private sector health care institutions in malaria surveillance is important. The purpose of the study was to determine the number of diagnostic tests carried out, the number of positive cases identified and the referral system for diagnosis in the private sector and to estimate the costs involved. This prospective study of private sector laboratories within the Colombo District of Sri Lanka was carried out over a 6-month period in 2015. The management of registered private sector laboratories was contacted individually and the purpose of the study was explained. A reporting format was developed and introduced for monthly reporting. Forty-one laboratories were eligible to be included in the study and 28 participated by reporting data on a monthly basis. Excluding blood bank samples and routine testing for foreign employment, malaria diagnostic tests were carried out on 973 individuals during the 6-month period and nine malaria cases were identified. In 2015, a total of 36 malaria cases were reported from Sri Lanka. Of these, 24 (67 %) were diagnosed in the Colombo District and 50 % of them were diagnosed in private hospitals. An equal number of cases were diagnosed from the private sector and government sector in the Colombo District in 2015. The private sector being a major contributor in the detection of imported malaria cases in the country should be actively engaged in the national malaria surveillance system.
Tan, Kathrine R; Cullen, Karen A; Koumans, Emilia H; Arguin, Paul M
2016-01-22
Among 1,683 persons in the United States who developed malaria following international travel during 2012, more than half acquired disease in one of 16 countries in West Africa. Since March 2014, West Africa has experienced the world's largest epidemic of Ebola virus disease (Ebola), primarily affecting Guinea, Sierra Leone, and Liberia; in 2014, approximately 20,000 Ebola cases were reported. Both Ebola and malaria are often characterized by fever and malaise and can be clinically indistinguishable, especially early in the course of disease. Immediate laboratory testing is critical for diagnosis of both Ebola and malaria, so that appropriate lifesaving treatment can be initiated. CDC recommends prompt malaria testing of patients with fever and history of travel to an area that is endemic for malaria, using blood smear microscopy, with results available within a few hours. Empiric treatment of malaria is not recommended by CDC. Reverse transcription-polymerase chain reaction (RT-PCR) testing is recommended to diagnose Ebola. During the Ebola outbreak in West Africa, CDC received reports of delayed laboratory testing for malaria in travelers returning to the United States because of infection control concerns related to Ebola. CDC reviewed documented calls to its malaria consultation service and selected three patient cases to present as examples of deficiencies in the evaluation and treatment of malaria among travelers returning from Africa during the Ebola epidemic.
The Gates Malaria Partnership: a consortium approach to malaria research and capacity development.
Greenwood, Brian; Bhasin, Amit; Targett, Geoffrey
2012-05-01
Recently, there has been a major increase in financial support for malaria control. Most of these funds have, appropriately, been spent on the tools needed for effective prevention and treatment of malaria such as insecticide-treated bed nets, indoor residual spraying and artemisinin combination therapy. There has been less investment in the training of the scientists from malaria-endemic countries needed to support these large and increasingly complex malaria control programmes, especially in Africa. In 2000, with support from the Bill & Melinda Gates Foundation, the Gates Malaria Partnership was established to support postgraduate training of African scientists wishing to pursue a career in malaria research. The programme had three research capacity development components: a PhD fellowship programme, a postdoctoral fellowship programme and a laboratory infrastructure programme. During an 8-year period, 36 African PhD students and six postdoctoral fellows were supported, and two research laboratories were built in Tanzania. Some of the lessons learnt during this project--such as the need to improve PhD supervision in African universities and to provide better support for postdoctoral fellows--are now being applied to a successor malaria research capacity development programme, the Malaria Capacity Development Consortium, and may be of interest to other groups involved in improving postgraduate training in health sciences in African universities. © 2012 Blackwell Publishing Ltd.
Montoya, Pablo J.; Lukehart, Sheila A.; Brentlinger, Paula E.; Blanco, Ana J.; Floriano, Florencia; Sairosse, Josefa; Gloyd, Stephen
2006-01-01
OBJECTIVE: Programmes to control syphilis in developing countries are hampered by a lack of laboratory services, delayed diagnosis, and doubts about current screening methods. We aimed to compare the diagnostic accuracy of an immunochromatographic strip (ICS) test and the rapid plasma reagin (RPR) test with the combined gold standard (RPR, Treponema pallidum haemagglutination assay and direct immunofluorescence stain done at a reference laboratory) for the detection of syphilis in pregnancy. METHODS: We included test results from 4789 women attending their first antenatal visit at one of six health facilities in Sofala Province, central Mozambique. We compared diagnostic accuracy (sensitivity, specificity, and positive and negative predictive values) of ICS and RPR done at the health facilities and ICS performed at the reference laboratory. We also made subgroup comparisons by human immunodeficiency virus (HIV) and malaria status. FINDINGS: For active syphilis, the sensitivity of the ICS was 95.3% at the reference laboratory, and 84.1% at the health facility. The sensitivity of the RPR at the health facility was 70.7%. Specificity and positive and negative predictive values showed a similar pattern. The ICS outperformed RPR in all comparisons (P<0.001). CONCLUSION: The diagnostic accuracy of the ICS compared favourably with that of the gold standard. The use of the ICS in Mozambique and similar settings may improve the diagnosis of syphilis in health facilities, both with and without laboratories. PMID:16501726
Oloifana-Polosovai, Hellen; Gwala, John; Harrington, Humpress; Massey, Peter D; Ribeyro, Elmer; Flores, Angelica; Speare, Christopher; McBride, Edwin; MacLaren, David; Speare, Rick
2014-01-01
Atoifi Adventist Hospital (AAH), Solomon Islands, the only hospital in the East Kwaio region. To use routine surveillance data to assess the trends in malaria from 2008 to 2013. Descriptive study of records from (1) AAH laboratory malaria records; (2) admissions to AAH for malaria; and (3) malaria treatments from outpatient records. AAH examined 35 608 blood films and diagnosed malaria in 4443 samples comprised of 2667 Plasmodium falciparum (Pf) and 1776 Plasmodium vivax (Pv). Between 2008 and 2013 the total number of malaria cases detected annually decreased by 86.5%, Pf by 96.7% and Pv by 65.3%. The ratio of Pf to Pv reversed in 2010 from 2.06 in 2008 to 0.19 in 2013. For 2013, Pf showed a seasonal pattern with no cases diagnosed in four months. From 2008 to 2013 admissions in AAH for malaria declined by 90.8%, and malaria mortality fell from 54 per 100 000 to zero. The annual parasite index (API) for 2008 and 2013 was 195 and 24, respectively. Village API has identified a group of villages with higher malaria incidence rates. The decline in malaria cases in the AAH catchment area has been spectacular, particularly for Pf. This was supported by three sources of hospital surveillance data (laboratory, admissions and treatment records). The decline was associated with the use of artemisinin-based combined therapy and improved vertical social capital between the AAH and the local communities. Calculating village-specific API has highlighted which villages need to be targeted by the AAH malaria control team.
Sajid, Mohammed; Chevalley-Maurel, Séverine; Ramesar, Jai; Klop, Onny; Franke-Fayard, Blandine M. D.; Janse, Chris J.; Khan, Shahid M.
2011-01-01
Research on the biology of malaria parasites has greatly benefited from the application of reverse genetic technologies, in particular through the analysis of gene deletion mutants and studies on transgenic parasites that express heterologous or mutated proteins. However, transfection in Plasmodium is limited by the paucity of drug-selectable markers that hampers subsequent genetic modification of the same mutant. We report the development of a novel ‘gene insertion/marker out’ (GIMO) method for two rodent malaria parasites, which uses negative selection to rapidly generate transgenic mutants ready for subsequent modifications. We have created reference mother lines for both P. berghei ANKA and P. yoelii 17XNL that serve as recipient parasites for GIMO-transfection. Compared to existing protocols GIMO-transfection greatly simplifies and speeds up the generation of mutants expressing heterologous proteins, free of drug-resistance genes, and requires far fewer laboratory animals. In addition we demonstrate that GIMO-transfection is also a simple and fast method for genetic complementation of mutants with a gene deletion or mutation. The implementation of GIMO-transfection procedures should greatly enhance Plasmodium reverse-genetic research. PMID:22216235
She, Guo-lin; Ma, Yu-Cai; Wang, Fu-biao
2013-08-01
To analyze the current situation of the comprehensive prevention and control system for imported falciparum malaria in Hanjiang District and evaluate its effect. According to the Management Scheme on Control of Imported Falciparum Malaria in Yangzhou City, the comprehensive prevention and control system for imported falciparum malaria was implemented, and the relevant malaria data were collected and analyzed statistically. The data included plasmodium blood test ratio of fever patients among exported labors and those returned, the ratio of laboratory-confirmed cases among all reported cases of falciparum malaria, the ratio of falciparum malaria patients who received the standard treatment within 24 hours after onset, etc from 2010 to 2012. After the implementation of the comprehensive prevention and control system, the confirmation ratio of falciparum malaria cases within 24 hours following first visit has reached 60.47%, the average time from first visit to confirmation has shortened to 1.8 d, and the average time from onset to confirmation has shortened to 3.7 d. The health education coverage ratio was 100%, the health knowledge awareness ratio was 95.56%, the ratio of patients seeking treatment on own initiative was 100%, the laboratory-confirmed ratio was 100%, and the ratio of standard treatment after malaria diagnosis was 100%. The comprehensive prevention and control system carried out by Hanjiang District has made remarkable achievements.
2010-01-01
Background The Worldwide Antimalarial Resistance Network (WWARN) is a global collaboration to support the objective that anyone affected by malaria receives effective and safe drug treatment. The Pharmacology module aims to inform optimal anti-malarial drug selection. There is an urgent need to define the drug exposure - effect relationship for most anti-malarial drugs. Few anti-malarials have had their therapeutic blood concentration levels defined. One of the main challenges in assessing safety and efficacy data in relation to drug concentrations is the comparability of data generated from different laboratories. To explain differences in anti-malarial pharmacokinetics in studies with different measurement laboratories it is necessary to confirm the accuracy of the assay methods. This requires the establishment of an external quality assurance process to assure results that can be compared. This paper describes this process. Methods The pharmacology module of WWARN has established a quality assurance/quality control (QA/QC) programme consisting of two separate components: 1. A proficiency testing programme where blank human plasma spiked with certified reference material (CRM) in different concentrations is sent out to participating bioanalytical laboratories. 2. A certified reference standard programme where accurately weighed amounts of certified anti-malarial reference standards, metabolites, and internal standards are sent to participating bioanalytical and in vitro laboratories. Conclusion The proficiency testing programme is designed as a cooperative effort to help participating laboratories assess their ability to carry out drug analysis, resolve any potential problem areas and to improve their results - and, in so doing, to improve the quality of anti-malarial pharmacokinetic data published and shared with WWARN. By utilizing the same source of standards for all laboratories, it is possible to minimize bias arising from poor quality reference standards. By providing anti-malarial drug standards from a central point, it is possible to lower the cost of these standards. PMID:21184684
The contribution of Plasmodium chabaudi to our understanding of malaria
Stephens, Robin; Culleton, Richard L.; Lamb, Tracey J.
2014-01-01
Malaria kills close to a million people every year, mostly children under the age of five. In the drive towards the development of an effective vaccine and new chemotherapeutic targets for malaria, field-based studies on human malaria infection and laboratory-based studies using animal models of malaria offer complementary opportunities to further our understanding of the mechanisms behind malaria infection and pathology. We outline here the parallels between the Plasmodium chabaudi mouse model of malaria and human malaria. We will highlight the contribution of P. chabaudi to our understanding of malaria in particular, how the immune response in malaria infection is initiated and regulated, its role in pathology, and how immunological memory is maintained. We will also discuss areas where new tools have opened up potential areas of exploration using this invaluable model system. PMID:22100995
Beyene, Belay Bezabih; Yalew, Woyneshet Gelaye; Demilew, Ermias; Abie, Getent; Tewabe, Tsehaye; Abera, Bayeh
2016-03-01
Malaria is one of the leading public health challenges in Ethiopia. To address this, the Federal Ministry of Ethiopia launched a laboratory diagnosis programme for promoting use of either rapid diagnostic tests (RDTs) or Giemsa microscopy to all suspected malaria cases. This study was conducted to assess the performance of RDT and influencing factors for Giemsa microscopic diagnosis in Amhara region. A cross-sectional study was conducted in 10 high burden malaria districts of Amhara region from 15 May to 15 June 2014. Data were collected using structured questionnaire. Blood samples were collected from 1000 malaria suspected cases in 10 health centers. RDT (SD BIOLINE) and Giemsa microscopy were performed as per standard procedures. Kappa value, logistic regression and chi-square test were used for statistical analysis. The overall positivity rate (PR) of malaria parasites by RDT and Giemsa microscopy was 17.1 and 16.5% respectively. Compared to Giemsa microscopy as "gold standard", RDT showed 83.9% sensitivity and 96% specificity. The level of agreement between first reader and second reader for blood film microscopy was moderate (Kappa value = 0.74). Logistic regression showed that male, under five year of age and having fever more than 24 h prior to malaria diagnosis had statistically significant association with malaria positivity rate for malaria parasites. The overall specificity and negative predictive values of RDT for malaria diagnosis were excellent. However, the sensitivity and positive predictive values of RDT were low. Therefore, in-service training, quality monitoring of RDTs, and adequate laboratory supplies for diagnostic services of malaria would be crucial for effective intervention measures.
Recent Progress in the Development of Diagnostic Tests for Malaria.
Krampa, Francis D; Aniweh, Yaw; Awandare, Gordon A; Kanyong, Prosper
2017-09-19
The impact of malaria on global health has continually prompted the need to develop effective diagnostic strategies. In malaria endemic regions, routine diagnosis is hampered by technical and infrastructural challenges to laboratories. These laboratories lack standard facilities, expertise or diagnostic supplies; thus, therapy is administered based on clinical or self-diagnosis. There is the need for accurate diagnosis of malaria due to the continuous increase in the cost of medication, and the emergence and spread of drug resistant strains. However, the widely utilized Giemsa-stained microscopy and immunochromatographic tests for malaria are liable to several drawbacks, including inadequate sensitivity and false-positive outcomes. Alternative methods that offer improvements in performance are either expensive, have longer turnaround time or require a level of expertise that makes them unsuitable for point-of-care (POC) applications. These gaps necessitate exploration of more efficient detection techniques with the potential of POC applications, especially in resource-limited settings. This minireview discusses some of the recent trends and new approaches that are seeking to improve the clinical diagnosis of malaria.
Oloifana-Polosovai, Hellen; Gwala, John; Harrington, Humpress; Massey, Peter D; Ribeyro, Elmer; Flores, Angelica; Speare, Christopher; McBride, Edwin; MacLaren, David
2014-01-01
Setting Atoifi Adventist Hospital (AAH), Solomon Islands, the only hospital in the East Kwaio region. Objective To use routine surveillance data to assess the trends in malaria from 2008 to 2013. Design Descriptive study of records from (1) AAH laboratory malaria records; (2) admissions to AAH for malaria; and (3) malaria treatments from outpatient records. Results AAH examined 35 608 blood films and diagnosed malaria in 4443 samples comprised of 2667 Plasmodium falciparum (Pf) and 1776 Plasmodium vivax (Pv). Between 2008 and 2013 the total number of malaria cases detected annually decreased by 86.5%, Pf by 96.7% and Pv by 65.3%. The ratio of Pf to Pv reversed in 2010 from 2.06 in 2008 to 0.19 in 2013. For 2013, Pf showed a seasonal pattern with no cases diagnosed in four months. From 2008 to 2013 admissions in AAH for malaria declined by 90.8%, and malaria mortality fell from 54 per 100 000 to zero. The annual parasite index (API) for 2008 and 2013 was 195 and 24, respectively. Village API has identified a group of villages with higher malaria incidence rates. Conclusion The decline in malaria cases in the AAH catchment area has been spectacular, particularly for Pf. This was supported by three sources of hospital surveillance data (laboratory, admissions and treatment records). The decline was associated with the use of artemisinin-based combined therapy and improved vertical social capital between the AAH and the local communities. Calculating village-specific API has highlighted which villages need to be targeted by the AAH malaria control team. PMID:25320674
Freitas, Daniel Roberto Coradi; Duarte, Elisabeth Carmen
2014-01-01
Objective To evaluate blood banks in the Brazilian Amazon region with regard to structure and procedures directed toward the prevention of transfusion-transmitted malaria (TTM). Methods This was a normative evaluation based on the Brazilian National Health Surveillance Agency (ANVISA) Resolution RDC No. 153/2004. Ten blood banks were included in the study and classified as ‘adequate’ (≥80 points), ‘partially adequate’ (from 50 to 80 points), or ‘inadequate’ (<50 points). The following components were evaluated: ‘donor education’ (5 points), ‘clinical screening’ (40 points), ‘laboratory screening’ (40 points) and ‘hemovigilance’ (15 points). Results The overall median score was 49.8 (minimum = 16; maximum = 78). Five blood banks were classified as ‘inadequate’ and five as ‘partially adequate’. The median clinical screening score was 26 (minimum = 16; maximum = 32). The median laboratory screening score was 20 (minimum = 0; maximum = 32). Eight blood banks performed laboratory tests for malaria; six tested all donations. Seven used thick smears, but only one performed this procedure in accordance with Ministry of Health requirements. One service had a Program of External Quality Evaluation for malaria testing. With regard to hemovigilance, two institutions reported having procedures to detect cases of transfusion-transmitted malaria. Conclusion Malaria is neglected as a blood–borne disease in the blood banks of the Brazilian Amazon region. None of the institutions were classified as ‘adequate’ in the overall classification or with regard to clinical screening and laboratory screening. Blood bank professionals, the Ministry of Health and Health Surveillance service managers need to pay more attention to this matter so that the safety procedures required by law are complied with. PMID:25453648
2010-01-01
Background Malaria Rapid Diagnostic Tests (RDTs) are widely used for diagnosing malaria. The present retrospective study evaluated the CareStart™ Malaria HRP-2/pLDH (Pf/pan) Combo Test targeting the Plasmodium falciparum specific antigen histidine-rich protein (HRP-2) and the pan-Plasmodium antigen lactate dehydrogenase (pLDH) in a reference setting. Methods The CareStart™ Malaria HRP-2/pLDH (Pf/pan) Combo Test was evaluated on a collection of samples obtained in returned international travellers using microscopy corrected by PCR as the reference method. Included were P. falciparum (n = 320), Plasmodium vivax (n = 76), Plasmodium ovale (n = 76), Plasmodium malariae (n = 23) and Plasmodium negative samples (n = 95). Results Overall sensitivity for the detection of P. falciparum was 88.8%, increasing to 94.3% and 99.3% at parasite densities above 100 and 1,000/μl respectively. For P. vivax, P. ovale and P. malariae, overall sensitivities were 77.6%, 18.4% and 30.4% respectively. For P. vivax sensitivity reached 90.2% for parasite densities above 500/μl. Incorrect species identification occurred in 11/495 samples (2.2%), including 8/320 (2.5%) P. falciparum samples which generated only the pan-pLDH line. For P. falciparum samples, 205/284 (72.2%) HRP-2 test lines had strong or medium line intensities, while for all species the pan-pLDH lines were less intense, especially in the case of P. ovale. Agreement between observers was excellent (kappa values > 0.81 for positive and negative readings) and test results were reproducible. The test was easy to perform with good clearing of the background. Conclusion The CareStart™ Malaria HRP-2/pLDH (Pf/pan) Combo Test performed well for the detection of P. falciparum and P. vivax, but sensitivities for P. ovale and P. malariae were poor. PMID:20565816
Maltha, Jessica; Gillet, Philippe; Bottieau, Emmanuel; Cnops, Lieselotte; van Esbroeck, Marjan; Jacobs, Jan
2010-06-18
Malaria Rapid Diagnostic Tests (RDTs) are widely used for diagnosing malaria. The present retrospective study evaluated the CareStart Malaria HRP-2/pLDH (Pf/pan) Combo Test targeting the Plasmodium falciparum specific antigen histidine-rich protein (HRP-2) and the pan-Plasmodium antigen lactate dehydrogenase (pLDH) in a reference setting. The CareStart Malaria HRP-2/pLDH (Pf/pan) Combo Test was evaluated on a collection of samples obtained in returned international travellers using microscopy corrected by PCR as the reference method. Included were P. falciparum (n = 320), Plasmodium vivax (n = 76), Plasmodium ovale (n = 76), Plasmodium malariae (n = 23) and Plasmodium negative samples (n = 95). Overall sensitivity for the detection of P. falciparum was 88.8%, increasing to 94.3% and 99.3% at parasite densities above 100 and 1,000/microl respectively. For P. vivax, P. ovale and P. malariae, overall sensitivities were 77.6%, 18.4% and 30.4% respectively. For P. vivax sensitivity reached 90.2% for parasite densities above 500/microl. Incorrect species identification occurred in 11/495 samples (2.2%), including 8/320 (2.5%) P. falciparum samples which generated only the pan-pLDH line. For P. falciparum samples, 205/284 (72.2%) HRP-2 test lines had strong or medium line intensities, while for all species the pan-pLDH lines were less intense, especially in the case of P. ovale. Agreement between observers was excellent (kappa values > 0.81 for positive and negative readings) and test results were reproducible. The test was easy to perform with good clearing of the background. The CareStart Malaria HRP-2/pLDH (Pf/pan) Combo Test performed well for the detection of P. falciparum and P. vivax, but sensitivities for P. ovale and P. malariae were poor.
2011-01-01
Background Malaria is hyper-endemic and a major public health problem in Sierra Leone. To provide malaria treatment closer to the community, Médecins Sans Frontières (MSF) launched a community-based project where Community Malaria Volunteers (CMVs) tested and treated febrile children and pregnant women for malaria using rapid diagnostic tests (RDTs). RDT-negative patients and severely ill patients were referred to health facilities. This study sought to determine the referral rate and compliance of patients referred by the CMVs. Methods In MSF's operational area in Bo and Pujehun districts, Sierra Leone, a retrospective analysis of referral records was carried out for a period of three months. All referral records from CMVs and referral health structures were reviewed, compared and matched for personal data. The eligible study population included febrile children between three and 59 months and pregnant women in their second or third trimester with fever who were noted as having received a referral advice in the CMV recording form. Results The study results showed a total referral rate of almost 15%. During the study period 36 out of 2,459 (1.5%) referred patients completed their referral. There was a significant difference in referral compliance between patients with fever but a negative RDT and patients with signs of severe malaria. Less than 1% (21/2,442) of the RDT-negative patients with fever completed their referral compared to 88.2% (15/17) of the patients with severe malaria (RR = 0.010 95% CI 0.006 - 0.015). Conclusions In this community-based malaria programme, RDT-negative patients with fever were referred to a health structure for further diagnosis and care with a disappointingly low rate of referral completion. This raises concerns whether use of CMVs, with referral as backup in RDT-negative cases, provides adequate care for febrile children and pregnant women. To improve the referral completion in MSF's community-based malaria programme in Sierra Leone, and in similar community-based programmes, a suitable strategy needs to be defined. PMID:21496333
Thomson, Anna; Khogali, Mohammed; de Smet, Martin; Reid, Tony; Mukhtar, Ahmed; Peterson, Stefan; von Schreeb, Johan
2011-04-17
Malaria is hyper-endemic and a major public health problem in Sierra Leone. To provide malaria treatment closer to the community, Médecins Sans Frontières (MSF) launched a community-based project where Community Malaria Volunteers (CMVs) tested and treated febrile children and pregnant women for malaria using rapid diagnostic tests (RDTs). RDT-negative patients and severely ill patients were referred to health facilities. This study sought to determine the referral rate and compliance of patients referred by the CMVs. In MSF's operational area in Bo and Pujehun districts, Sierra Leone, a retrospective analysis of referral records was carried out for a period of three months. All referral records from CMVs and referral health structures were reviewed, compared and matched for personal data. The eligible study population included febrile children between three and 59 months and pregnant women in their second or third trimester with fever who were noted as having received a referral advice in the CMV recording form. The study results showed a total referral rate of almost 15%. During the study period 36 out of 2,459 (1.5%) referred patients completed their referral. There was a significant difference in referral compliance between patients with fever but a negative RDT and patients with signs of severe malaria. Less than 1% (21/2,442) of the RDT-negative patients with fever completed their referral compared to 88.2% (15/17) of the patients with severe malaria (RR = 0.010 95% CI 0.006 - 0.015). In this community-based malaria programme, RDT-negative patients with fever were referred to a health structure for further diagnosis and care with a disappointingly low rate of referral completion. This raises concerns whether use of CMVs, with referral as backup in RDT-negative cases, provides adequate care for febrile children and pregnant women. To improve the referral completion in MSF's community-based malaria programme in Sierra Leone, and in similar community-based programmes, a suitable strategy needs to be defined.
Steinhardt, Laura C.; Chinkhumba, Jobiba; Wolkon, Adam; Luka, Madalitso; Luhanga, Misheck; Sande, John; Oyugi, Jessica; Ali, Doreen; Mathanga, Don; Skarbinski, Jacek
2014-01-01
Background Malaria is endemic throughout Malawi, but little is known about quality of malaria case management at publicly-funded health facilities, which are the major source of care for febrile patients. Methods In April–May 2011, we conducted a nationwide, geographically-stratified health facility survey to assess the quality of outpatient malaria diagnosis and treatment. We enrolled patients presenting for care and conducted exit interviews and re-examinations, including reference blood smears. Moreover, we assessed health worker readiness (e.g., training, supervision) and health facility capacity (e.g. availability of diagnostics and antimalarials) to provide malaria case management. All analyses accounted for clustering and unequal selection probabilities. We also used survey weights to produce estimates of national caseloads. Results At the 107 facilities surveyed, most of the 136 health workers interviewed (83%) had received training on malaria case management. However, only 24% of facilities had functional microscopy, 15% lacked a thermometer, and 19% did not have the first-line artemisinin-based combination therapy (ACT), artemether-lumefantrine, in stock. Of 2,019 participating patients, 34% had clinical malaria (measured fever or self-reported history of fever plus a positive reference blood smear). Only 67% (95% confidence interval (CI): 59%, 76%) of patients with malaria were correctly prescribed an ACT, primarily due to missed malaria diagnosis. Among patients without clinical malaria, 31% (95% CI: 24%, 39%) were prescribed an ACT. By our estimates, 1.5 million of the 4.4 million malaria patients seen in public facilities annually did not receive correct treatment, and 2.7 million patients without clinical malaria were inappropriately given an ACT. Conclusions Malawi has a high burden of uncomplicated malaria but nearly one-third of all patients receive incorrect malaria treatment, including under- and over-treatment. To improve malaria case management, facilities must at minimum have basic case management tools, and health worker performance in diagnosing malaria must be improved. PMID:24586497
Steinhardt, Laura C; Chinkhumba, Jobiba; Wolkon, Adam; Luka, Madalitso; Luhanga, Misheck; Sande, John; Oyugi, Jessica; Ali, Doreen; Mathanga, Don; Skarbinski, Jacek
2014-01-01
Malaria is endemic throughout Malawi, but little is known about quality of malaria case management at publicly-funded health facilities, which are the major source of care for febrile patients. In April-May 2011, we conducted a nationwide, geographically-stratified health facility survey to assess the quality of outpatient malaria diagnosis and treatment. We enrolled patients presenting for care and conducted exit interviews and re-examinations, including reference blood smears. Moreover, we assessed health worker readiness (e.g., training, supervision) and health facility capacity (e.g. availability of diagnostics and antimalarials) to provide malaria case management. All analyses accounted for clustering and unequal selection probabilities. We also used survey weights to produce estimates of national caseloads. At the 107 facilities surveyed, most of the 136 health workers interviewed (83%) had received training on malaria case management. However, only 24% of facilities had functional microscopy, 15% lacked a thermometer, and 19% did not have the first-line artemisinin-based combination therapy (ACT), artemether-lumefantrine, in stock. Of 2,019 participating patients, 34% had clinical malaria (measured fever or self-reported history of fever plus a positive reference blood smear). Only 67% (95% confidence interval (CI): 59%, 76%) of patients with malaria were correctly prescribed an ACT, primarily due to missed malaria diagnosis. Among patients without clinical malaria, 31% (95% CI: 24%, 39%) were prescribed an ACT. By our estimates, 1.5 million of the 4.4 million malaria patients seen in public facilities annually did not receive correct treatment, and 2.7 million patients without clinical malaria were inappropriately given an ACT. Malawi has a high burden of uncomplicated malaria but nearly one-third of all patients receive incorrect malaria treatment, including under- and over-treatment. To improve malaria case management, facilities must at minimum have basic case management tools, and health worker performance in diagnosing malaria must be improved.
... Z Index Laboratory Diagnostic Assistance Parasitic Disease and Malaria Strategic Priorities: 2015—2020 About our Division Get ... human immunodeficiency virus (HIV) infection. Pregnant women in malaria-endemic countries are at increased risk for adverse ...
Stauffer, William M.; Cartwright, Charles P.; Olson, Douglas; Juni, Billie Anne; Taylor, Charlotte M; Bowers, Susan H.; Hanson, Kevan L.; Rosenblatt, Jon E.; Boulware, David R.
2010-01-01
Background Approximately 4 million U.S. travelers to developing countries are ill enough to seek healthcare with 1,500 malaria cases reported in the U.S. annually. The diagnosis of malaria is frequently delayed due to the time to prepare malaria blood films and lack of technical expertise. An easy, reliable rapid diagnostic test (RDT) with high sensitivity and negative predictive value (NPV), particularly for Plasmodium falciparum, would be clinically useful. The study objective was to determine the diagnostic performance of the FDA-approved NOW® Malaria Test in comparison to traditional thick and thin blood smears for malaria diagnosis. Methods This prospective study tested 852 consecutive blood samples sent for thick and thin smears with blinded, malaria rapid tests at three hospital laboratories during 2003–2006. Polymerase chain reaction (PCR) verified positive tests and discordant results. Results Malaria occurred in 11% (95/852). The rapid test had superior performance than the standard Giemsa thick blood smear (P=.003). The rapid test’s sensitivity for all malaria was 97% (92/95) vs. 85% (81/95) by blood smear, and the RDT had superior NPV of 99.6% vs. 98.2% (P=.001). The P. falciparum performance was excellent with 100% rapid test sensitivity versus only 88% (65/74) by blood smear (P=.003). Conclusions This operational study demonstrates the FDA-approved rapid malaria test is superior to a single set of blood smears performed under routine U.S. clinical laboratory conditions. The most valuable clinical role of the RDT is in the rapid diagnosis or the exclusion of P. falciparum malaria, which is particularly useful in outpatient settings when evaluating febrile travelers. PMID:19686072
D'Acremont, Valérie; Lengeler, Christian; Mshinda, Hassan; Mtasiwa, Deo; Tanner, Marcel; Genton, Blaise
2009-01-01
Background to the debate: Current guidelines recommend that all fever episodes in African children be treated presumptively with antimalarial drugs. But declining malarial transmission in parts of sub-Saharan Africa, declining proportions of fevers due to malaria, and the availability of rapid diagnostic tests mean it may be time for this policy to change. This debate examines whether enough evidence exists to support abandoning presumptive treatment and whether African health systems have the capacity to support a shift toward laboratory-confirmed rather than presumptive diagnosis and treatment of malaria in children under five. PMID:19127974
Alphabetical Index of Parasitic Diseases
... Z Index Laboratory Diagnostic Assistance Parasitic Disease and Malaria Strategic Priorities: 2015—2020 About our Division Get ... Lymphatic filariasis (Filariasis, Elephantiasis) Back To Top M Malaria ( Plasmodium Infection) Microsporidiosis ( Microsporidia Infection ) Mite Infestation (Scabies) ...
Talundzic, Eldin; Maganga, Mussa; Masanja, Irene M; Peterson, David S; Udhayakumar, Venkatachalam; Lucchi, Naomi W
2014-01-27
Accurate diagnosis of malaria infections remains challenging, especially in the identification of submicroscopic infections. New molecular diagnostic tools that are inexpensive, sensitive enough to detect low-level infections and suitable in laboratory settings of resource-limited countries are required for malaria control and elimination programmes. Here the diagnostic potential of a recently developed photo-induced electron transfer fluorogenic primer (PET) real-time polymerase chain reaction (PCR) called PET-PCR was investigated. This study aimed to (i) evaluate the use of this assay as a method for the detection of both Plasmodium falciparum and other Plasmodium species infections in a developing country's diagnostic laboratory; and, (ii) determine the assay's sensitivity and specificity compared to a nested 18S rRNA PCR. Samples used in this study were obtained from a previous study conducted in the region of Iringa, Tanzania. A total of 303 samples from eight health facilities in Tanzania were utilized for this evaluation. All samples were screened using the multiplex PET-PCR assay designed to detect Plasmodium genus and P. falciparum initially in laboratory in Tanzania and then repeated at a reference laboratory at the CDC in the USA. Microscopy data was available for all the 303 samples. A subset of the samples were tested in a blinded fashion to find the sensitivity and specificity of the PET-PCR compared to the nested 18S rRNA PCR. Compared to microscopy, the PET-PCR assay was 59% more sensitive in detecting P. falciparum infections. The observed sensitivity and specificity were 100% (95% confidence interval (CI0.95) = 94-100%) and (CI0.95 = 96-100%), respectively, for the PET-PCR assay when compared to nested 18S rRNA PCR. When compared to 18S rRNA PCR, microscopy had a low sensitivity of 40% (CI0.95 = 23-61%) and specificity of 100% (CI0.95 = 96-100%). The PET-PCR results performed in the field laboratory in Tanzania were in 100% concordance with the results obtained at the reference laboratory in the USA. The PET-PCR is a new molecular diagnostic tool with similar performance characteristics as commonly used PCR methods that is less expensive, easy to use, and amiable to large scale-surveillance studies in developing country settings.
Monkey Malaria in a European Traveler Returning from Malaysia
Marti, Hanspeter; Felger, Ingrid; Müller, Dania; Jokiranta, T. Sakari
2008-01-01
In 2007, a Finnish traveler was infected in Peninsular Malaysia with Plasmodium knowlesi, a parasite that usually causes malaria in monkeys. P. knowlesi has established itself as the fifth Plasmodium species that can cause human malaria. The disease is potentially life-threatening in humans; clinicians and laboratory personnel should become more aware of this pathogen in travelers. PMID:18760013
Climate change and malaria in Canada: a systems approach.
Berrang-Ford, L; Maclean, J D; Gyorkos, Theresa W; Ford, J D; Ogden, N H
2009-01-01
This article examines the potential for changes in imported and autochthonous malaria incidence in Canada as a consequence of climate change. Drawing on a systems framework, we qualitatively characterize and assess the potential direct and indirect impact of climate change on malaria in Canada within the context of other concurrent ecological and social trends. Competent malaria vectors currently exist in southern Canada, including within this range several major urban centres, and conditions here have historically supported endemic malaria transmission. Climate change will increase the occurrence of temperature conditions suitable for malaria transmission in Canada, which, combined with trends in international travel, immigration, drug resistance, and inexperience in both clinical and laboratory diagnosis, may increase malaria incidence in Canada and permit sporadic autochthonous cases. This conclusion challenges the general assumption of negligible malaria risk in Canada with climate change.
Climate Change and Malaria in Canada: A Systems Approach
Berrang-Ford, L.; MacLean, J. D.; Gyorkos, Theresa W.; Ford, J. D.; Ogden, N. H.
2009-01-01
This article examines the potential for changes in imported and autochthonous malaria incidence in Canada as a consequence of climate change. Drawing on a systems framework, we qualitatively characterize and assess the potential direct and indirect impact of climate change on malaria in Canada within the context of other concurrent ecological and social trends. Competent malaria vectors currently exist in southern Canada, including within this range several major urban centres, and conditions here have historically supported endemic malaria transmission. Climate change will increase the occurrence of temperature conditions suitable for malaria transmission in Canada, which, combined with trends in international travel, immigration, drug resistance, and inexperience in both clinical and laboratory diagnosis, may increase malaria incidence in Canada and permit sporadic autochthonous cases. This conclusion challenges the general assumption of negligible malaria risk in Canada with climate change. PMID:19277107
Ugah, Uchenna Iyioku; Alo, Moses Nnaemeka; Owolabi, Jacob Oluwabusuyi; Okata-Nwali, Oluchi DivineGift; Ekejindu, Ifeoma Mercy; Ibeh, Nancy; Elom, Michael Okpara
2017-05-06
Malaria is a debilitating disease with high morbidity and mortality in Africa, commonly caused by different species of the genus Plasmodium in humans. Misdiagnosis is a major challenge in endemic areas because of other disease complications and technical expertise of the medical laboratory staff. Microscopic method using Giemsa-stained blood film has been the mainstay of diagnosis of malaria. However, since 1993 when rapid diagnostic test (RDT) kits were introduced, they have proved to be effective in the diagnosis of malaria. This study was aimed at comparing the accuracy of microscopy and RDTs in the diagnosis of malaria using nested PCR as the reference standard. Four hundred and twenty (420) venous blood specimens were collected from patients attending different General Hospitals in Ebonyi State with clinical symptoms of malaria. The samples were tested with Giemsa-stained microscopy and three RDTs. Fifty specimens were randomly selected for molecular analysis. Using different diagnostic methods, the prevalence of malaria among the subjects studied was 25.95% as detected by microscopy, prevalence found among the RDTs was 22.90, 15.20 and 54.80% for Carestart, SD Bioline PF and SD Bioline PF/PV, respectively. Molecular assay yielded a prevalence of 32%. The major specie identified was Plasmodium falciparum; there was co-infection of P. falciparum with Plasmodium malariae and Plasmodium ovale. The sensitivity and specificity of microscopy was 50.00 and 70.59% while that of the RDTs were (25.00 and 85.29%), (25.00 and 94.12%) and (68.75 and 52.94%) for Carestart, SD Bioline PF and SD Bioline PF/PV, respectively. Cohen's kappa coefficient was used to measure the level of agreement of the methods with nested PCR. Microscopy showed a moderate measure of agreement (k = 0.491), Carestart showed a good measure of agreement (k = 0.611), SD Bioline PF showed a fair measure of agreement (k = 0.226) while SD Bioline PF/PV showed a poor measure of agreement (k = 0.172). This study recommends that the policy of malaria diagnosis be changed such that the routine diagnosis of malaria is done by a combination of both microscopy and a RDT kit of high sensitivity and specificity so as to complement the errors associated with either of the methods. The finding of P. ovale in the study area necessitates an expanded molecular epidemiology of malaria within the study area.
Mitra, Shubhanker; Abhilash, Kpp; Arora, Shalabh; Miraclin, Angel
2015-12-01
Traditionally, Plasmodium falciparum has been attributed to cause severe malaria, whereas P. vivax is considered to cause "benign" tertian malaria. Recently, there has been an increasing body of evidence challenging this conviction. However, the spectrum and degree of severity of the disease caused by P. vivax, as per World Health Organization (2012) remains unclear. Thus, in this prospective study, we aimed at comparing the severity of malaria caused by P. vivax, P. falciparum and dual infection. Adult patients presenting to Christian Medical College, Vellore from October 2012 to September 2013 with microscopically confirmed malaria were included in the study. Their clinical and laboratory parameters were recorded and analyzed. Paired t-test and chi-square with 95% CI and post-hoc analyses using the Scheffι post-hoc criterion were used to assess the statistical significance at the level of α <0.05. In total, 131 cases of malaria were identified during the study period, comprising 83 cases of P. vivax, 35 cases of P. falciparum and 13 cases of mixed vivax and falciparum infections. The spectrum and degree of hematological, hepatic, renal, metabolic, central nervous system complications of vivax malaria was not different from that of falciparum group. Thrombocytopenia and hyperbilirubinemia were the most common laboratory abnormalities identified in all the groups. This cross-sectional comparative study clearly demonstrates that clinical features, complications and case-fatality rates in vivax malaria can be as severe as in falciparum malaria. Hence, vivax malaria could not be considered benign; and appropriate preventive strategies along with antimalarial therapies should be adopted for control and elimination of this disease.
Okeke, T A; Okafor, H U; Uzochukwu, B S C
2006-07-01
Malaria remains one of the main causes of mortality among young children in sub-Saharan Africa. In Nigeria traditional healers play an important role in health care delivery and the majority of the population depend on them for most of their ailments. The aim of this study was to investigate the perceptions of traditional healers regarding causes, symptoms, treatment of uncomplicated malaria and referral practices for severe malaria with a view to developing appropriate intervention strategies aimed at improving referral practices for severe malaria. A qualitative study was carried out in Ugwogo-Nike, a rural community in south-east Nigeria, which included in-depth interviews with 23 traditional healers. The traditional healers believed that the treatment of severe malaria, especially convulsions, with herbal remedies was very effective. Some traditional healers were familiar with the signs and symptoms of malaria, but malaria was perceived as an environmentally related disease caused by heat from the scorching sun. The majority of traditional healers believed that convulsions are inherited from parents, while a minority attributed them to evil spirits. Most (16/23) will not refer cases to a health facility because they believe in the efficacy of their herbal remedies. The few that did refer did so after several stages of traditional treatment, which resulted in long delays of about two weeks before appropriate treatment was received. The fact that traditional healers are important providers of treatment for severe malaria, especially convulsions, underlines the need to enlist their support in efforts to improve referral practices for severe malaria.
Opoka, Robert O; Ndugwa, Christopher M; Latham, Teresa S; Lane, Adam; Hume, Heather A; Kasirye, Phillip; Hodges, James S; Ware, Russell E; John, Chandy C
2017-12-14
Hydroxyurea treatment is recommended for children with sickle cell anemia (SCA) living in high-resource malaria-free regions, but its safety and efficacy in malaria-endemic sub-Saharan Africa, where the greatest sickle-cell burden exists, remain unknown. In vitro studies suggest hydroxyurea could increase malaria severity, and hydroxyurea-associated neutropenia could worsen infections. NOHARM (Novel use Of Hydroxyurea in an African Region with Malaria) was a randomized, double-blinded, placebo-controlled trial conducted in malaria-endemic Uganda, comparing hydroxyurea to placebo at 20 ± 2.5 mg/kg per day for 12 months. The primary outcome was incidence of clinical malaria. Secondary outcomes included SCA-related adverse events (AEs), clinical and laboratory effects, and hematological toxicities. Children received either hydroxyurea (N = 104) or placebo (N = 103). Malaria incidence did not differ between children on hydroxyurea (0.05 episodes per child per year; 95% confidence interval [0.02, 0.13]) vs placebo (0.07 episodes per child per year [0.03, 0.16]); the hydroxyurea/placebo malaria incidence rate ratio was 0.7 ([0.2, 2.7]; P = .61). Time to infection also did not differ significantly between treatment arms. A composite SCA-related clinical outcome (vaso-occlusive painful crisis, dactylitis, acute chest syndrome, splenic sequestration, or blood transfusion) was less frequent with hydroxyurea (45%) than placebo (69%; P = .001). Children receiving hydroxyurea had significantly increased hemoglobin concentration and fetal hemoglobin, with decreased leukocytes and reticulocytes. Serious AEs, sepsis episodes, and dose-limiting toxicities were similar between treatment arms. Three deaths occurred (2 hydroxyurea, 1 placebo, and none from malaria). Hydroxyurea treatment appears safe for children with SCA living in malaria-endemic sub-Saharan Africa, without increased severe malaria, infections, or AEs. Hydroxyurea provides SCA-related laboratory and clinical efficacy, but optimal dosing and monitoring regimens for Africa remain undefined. This trial was registered at www.clinicaltrials.gov as #NCT01976416. © 2017 by The American Society of Hematology.
Mohon, Abu Naser; Elahi, Rubayet; Khan, Wasif A; Haque, Rashidul; Sullivan, David J; Alam, Mohammad Shafiul
2014-06-01
Molecular diagnosis of malaria by nucleotide amplification requires sophisticated and expensive instruments, typically found only in well-established laboratories. Loop-mediated isothermal amplification (LAMP) has provided a new platform for an easily adaptable molecular technique for molecular diagnosis of malaria without the use of expensive instruments. A new primer set has been designed targeting the 18S rRNA gene for the detection of Plasmodium falciparum in whole blood samples. The efficacy of LAMP using the new primer set was assessed in this study in comparison to that of a previously described set of LAMP primers as well as with microscopy and real-time PCR as reference methods for detecting P. falciparum. Pre-addition of hydroxy napthol blue (HNB) in the LAMP reaction caused a distinct color change, thereby improving the visual detection system. The new LAMP assay was found to be 99.1% sensitive compared to microscopy and 98.1% when compared to real-time PCR. Meanwhile, its specificity was 99% and 100% in contrast to microscopy and real-time PCR, respectively. Moreover, the LAMP method was in very good agreement with microscopy and real-time PCR (0.94 and 0.98, respectively). This new LAMP method can detect at least 5parasites/μL of infected blood within 35min, while the other LAMP method tested in this study, could detect a minimum of 100parasites/μL of human blood after 60min of amplification. Thus, the new method is sensitive and specific, can be carried out in a very short time, and can substitute PCR in healthcare clinics and standard laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.
Arévalo-Herrera, Myriam; Rengifo, Lina; Lopez-Perez, Mary; Arce-Plata, Maria I; García, Jhon; Herrera, Sócrates
2017-01-01
Complicated malaria remains an important public health problem, particularly in endemic settings where access to health services is limited and consequently malaria fatal outcomes occur. Few publications describing the clinical course and outcomes of complicated malaria in Latin America are found in the literature. This prospective study approached the clinical and laboratory characteristics of hospitalized patients with complicated malaria in different endemic areas of the Colombian Pacific Coast with the aim to provide epidemiological knowledge and guide to further reducing malaria severity and mortality. A prospective, descriptive hospital-based study was conducted in 323 complicated malaria patients (median age 20 years) enrolled in Quibdó, Tumaco and Cali between 2014 and 2016. Clinical evaluation was performed and laboratory parameters were assessed during hospitalization. Plasmodium falciparum was the most common parasite species (70%), followed by P. vivax (28%), and mixed malaria (Pf/Pv; 1.9%). Overall, predominant laboratory complications were severe thrombocytopenia (43%), hepatic dysfunction (40%), and severe anaemia (34%). Severe thrombocytopenia was more common in adults (52%) regardless of parasite species. Severe anaemia was the most frequent complication in children ≤10 years (72%) and was most commonly related to P. vivax infection (p < 0.001); whereas liver dysfunction was more frequent in older patients (54%) with P. falciparum (p < 0.001). Two deaths due to P. vivax and P. falciparum each were registered. Treatment provision before recruitment hindered qPCR confirmation of parasite species in some cases. The study identified a high prevalence of complicated malaria in the Pacific Coast, together with more frequent severe anaemia in children infected by P. vivax and hepatic dysfunction in adults with P. falciparum. Results indicated the need for earlier diagnosis and treatment to prevent complications development as well as more effective attention at hospital level, in order to rapidly identify and appropriately treat these severe clinical conditions. The study describes epidemiological profiles of the study region and identified the most common complications on which clinicians must focus on to prevent mortality.
Decludt, B; Pecoul, B; Biberson, P; Lang, R; Imivithaya, S
1991-12-01
Right from the arrival of the displaced Karen people in Thailand, Médecins sans Frontières (MSF) identified malaria as the top priority problem. A program of patient care based on the coupled laboratory/dispensary was set up in April 1984. Immediately a system of surveillance of morbidity and mortality from malaria was set up. This study consisted of analysing data gathered over a period of five years. During this time, the displaced population increased from 9,000 to 20,000. Analysis of the trends shows a hyperendemic situation with an annual incidence rate of 1,067 per thousand in 1984. This figure was 600 per thousand in 1988. 1,500 blood smears were checked each month and the positive predictive value of clinical suspicion was 45% on average. Plasmodium falciparum represented 80% of infections. The malaria case fatality ratio over the course of the last two years of surveillance was 0.3%. Five years observation show that the fight against malaria in this region can be based on the development of curative services and laboratories.
Kuna, Anna; Szostakowska, Beata; Nahorski, Wacław L; Stępień, Małgorzata; Kowalczyk, Danuta; Stańczak, Joanna; Myjak, Przemysław
2015-01-01
Malaria is one of the three most dangerous infectious diseases in the world. According to official statistics, there are a few dozen cases in Poland annually while the number of Poles treated abroad or self-treating remains unknown. Poland has been declared to be malaria-free since 1963 and nowadays all cases are imported. The aim of the study is to determine the minimal number of malaria cases in Poles at home and abroad in the last decade. The medical records of 4,710 patients tested for malaria in the Department of Tropical Parasitology in the years 2003-2012 were analysed. Two spreadsheets were created, which only included people with a history of malaria diagnosed in the reference centre where indirect immunofluorescent-antibody assay (IFA) for Plasmodium falciparum antigen proved positive. The minimum number of Poles who have had malaria at home and abroad was calculated on the basis of positive IFA results; the rate of all treated malaria patients in Poland in relation to those treated in the reference centre and the actual number of Poles with malaria diagnosed at home was calculated. A group of 376 people with positive serologic tests results in indirect immunofluorescent antibody assay with titre ≥ 1:20 were received, including 227 patients with positive serologic results with titre ≥ 1:80. The rate of the overall number of malaria cases in Poland compared to the number of malaria cases in the University Centre for Maritime and Tropical Medicine Hospital was determined as 3.47:1. It was demonstrated that every year at least 174 to 211 Poles staying abroad may suffer from malaria. This is the first attempt to estimate the minimal number of Poles infected and treated for malaria in Poland and abroad. The estimated number is 8-10 times greater than the number of registered cases in Poland.
Review of research on malaria*
Lepes, T.
1974-01-01
This review of progress in malaria research over the periods 1951-1970 and 1970-1973 indicates the results so far achieved in research on the parasite, on the immune response of the host, and on the vector; refers to the means of controlling or eradicating malaria that have been developed in recent years; and outlines the present status of the malaria control and eradication programme. Although impressive results have already been achieved in malaria research, more systematization and concentration of efforts are required if real breakthroughs are to be made. The experience gained in this respect is discussed. PMID:4613499
Xu, Jiannong; Hillyer, Julián F; Coulibaly, Boubacar; Sacko, Madjou; Dao, Adama; Niaré, Oumou; Riehle, Michelle M; Traoré, Sekou F; Vernick, Kenneth D
2013-01-01
Malaria parasites undergo complex developmental transitions within the mosquito vector. A commonly used laboratory model for studies of mosquito-malaria interaction is the rodent parasite, P. berghei. Anopheles funestus is a major malaria vector in sub-Saharan Africa but has received less attention than the sympatric species, Anopheles gambiae. The imminent completion of the A. funestus genome sequence will provide currently lacking molecular tools to describe malaria parasite interactions in this mosquito, but previous reports suggested that A. funestus is not permissive for P. berghei development. An A. funestus population was generated in the laboratory by capturing female wild mosquitoes in Mali, allowing them to oviposit, and rearing the eggs to adults. These F1 progeny of wild mosquitoes were allowed to feed on mice infected with a fluorescent P. berghei strain. Fluorescence microscopy was used to track parasite development inside the mosquito, salivary gland sporozoites were tested for infectivity to mice, and parasite development in A. funestus was compared to A. gambiae. P. berghei oocysts were detectable on A. funestus midguts by 7 days post-infection. By 18-20 days post-infection, sporozoites had invaded the median and distal lateral lobes of the salivary glands, and hemocoel sporozoites were observed in the hemolymph. Mosquitoes were capable of infecting mice via bite, demonstrating that A. funestus supports the complete life cycle of P. berghei. In a random sample of wild mosquito genotypes, A. funestus prevalence of infection and the characteristics of parasite development were similar to that observed in A. gambiae-P. berghei infections. The data presented in this study establish an experimental laboratory model for Plasmodium infection of A. funestus, an important vector of human malaria. Studying A. funestus-Plasmodium interactions is now feasible in a laboratory setting. This information lays the groundwork for exploitation of the awaited genome sequence of A. funestus.
[Diagnosis of tropical malaria by express-methods].
Popov, A F; Nikiforov, N D; Ivanis, V A; Barkun, S P; Sanin, B I; Fed'kina, L I
2004-01-01
An examination of a thick blood drop and of blood smear for the presence of plasmodia is a classic and indisputable diagnostic test for tropic malaria. However, express-methods, based on the immune-enzyme analysis, have been introduced into the health-care practice primarily in developing and underdeveloped countries. The diagnosis of tropic malaria by using the discussed methods enables, in the non-laboratory settings, a rapid and reliable detection of PI. falciparum in blood. This is important because an untimely diagnosis of tropic malaria increases the risk of the lethal outcome.
NASA Astrophysics Data System (ADS)
Miller, Louis H.; Good, Michael F.; Milon, Genevieve
1994-06-01
Malaria is a disease caused by repeated cycles of growth of the parasite Plasmodium in the erythrocyte. Various cellular and molecular strategies allow the parasite to evade the human immune response for many cycles of parasite multiplication. Under certain circumstances Plasmodium infection causes severe anemia or cerebral malaria; the expression of disease is influenced by both parasite and host factors, as exemplified by the exacerbation of disease during pregnancy. This article provides an overview of malaria pathogenesis, synthesizing the recent field, laboratory, and epidemiological data that will lead to the development of strategies to reduce mortality and morbidity.
Das, Smita; Jang, Ihn Kyung; Barney, Becky; Peck, Roger; Rek, John C; Arinaitwe, Emmanuel; Adrama, Harriet; Murphy, Maxwell; Imwong, Mallika; Ling, Clare L; Proux, Stephane; Haohankhunnatham, Warat; Rist, Melissa; Seilie, Annette M; Hanron, Amelia; Daza, Glenda; Chang, Ming; Nakamura, Tomoka; Kalnoky, Michael; Labarre, Paul; Murphy, Sean C; McCarthy, James S; Nosten, Francois; Greenhouse, Bryan; Allauzen, Sophie; Domingo, Gonzalo J
2017-11-01
Sensitive field-deployable diagnostic tests can assist malaria programs in achieving elimination. The performance of a new Alere™ Malaria Ag P.f Ultra Sensitive rapid diagnostic test (uRDT) was compared with the currently available SD Bioline Malaria Ag P.f RDT in blood specimens from asymptomatic individuals in Nagongera, Uganda, and in a Karen Village, Myanmar, representative of high- and low-transmission areas, respectively, as well as in pretreatment specimens from study participants from four Plasmodium falciparum -induced blood-stage malaria (IBSM) studies. A quantitative reverse transcription PCR (qRT-PCR) and a highly sensitive enzyme-linked immunosorbent assay (ELISA) test for histidine-rich protein II (HRP2) were used as reference assays. The uRDT showed a greater than 10-fold lower limit of detection for HRP2 compared with the RDT. The sensitivity of the uRDT was 84% and 44% against qRT-PCR in Uganda and Myanmar, respectively, and that of the RDT was 62% and 0% for the same two sites. The specificities of the uRDT were 92% and 99.8% against qRT-PCR for Uganda and Myanmar, respectively, and 99% and 99.8% against the HRP2 reference ELISA. The RDT had specificities of 95% and 100% against qRT-PCR for Uganda and Myanmar, respectively, and 96% and 100% against the HRP2 reference ELISA. The uRDT detected new infections in IBSM study participants 1.5 days sooner than the RDT. The uRDT has the same workflow as currently available RDTs, but improved performance characteristics to identify asymptomatic malaria infections. The uRDT may be a useful tool for malaria elimination strategies.
Das, Smita; Jang, Ihn Kyung; Barney, Becky; Peck, Roger; Rek, John C.; Arinaitwe, Emmanuel; Adrama, Harriet; Murphy, Maxwell; Imwong, Mallika; Ling, Clare L.; Proux, Stephane; Haohankhunnatham, Warat; Rist, Melissa; Seilie, Annette M.; Hanron, Amelia; Daza, Glenda; Chang, Ming; Nakamura, Tomoka; Kalnoky, Michael; Labarre, Paul; Murphy, Sean C.; McCarthy, James S.; Nosten, Francois; Greenhouse, Bryan; Allauzen, Sophie; Domingo, Gonzalo J.
2017-01-01
Abstract. Sensitive field-deployable diagnostic tests can assist malaria programs in achieving elimination. The performance of a new Alere™ Malaria Ag P.f Ultra Sensitive rapid diagnostic test (uRDT) was compared with the currently available SD Bioline Malaria Ag P.f RDT in blood specimens from asymptomatic individuals in Nagongera, Uganda, and in a Karen Village, Myanmar, representative of high- and low-transmission areas, respectively, as well as in pretreatment specimens from study participants from four Plasmodium falciparum-induced blood-stage malaria (IBSM) studies. A quantitative reverse transcription PCR (qRT-PCR) and a highly sensitive enzyme-linked immunosorbent assay (ELISA) test for histidine-rich protein II (HRP2) were used as reference assays. The uRDT showed a greater than 10-fold lower limit of detection for HRP2 compared with the RDT. The sensitivity of the uRDT was 84% and 44% against qRT-PCR in Uganda and Myanmar, respectively, and that of the RDT was 62% and 0% for the same two sites. The specificities of the uRDT were 92% and 99.8% against qRT-PCR for Uganda and Myanmar, respectively, and 99% and 99.8% against the HRP2 reference ELISA. The RDT had specificities of 95% and 100% against qRT-PCR for Uganda and Myanmar, respectively, and 96% and 100% against the HRP2 reference ELISA. The uRDT detected new infections in IBSM study participants 1.5 days sooner than the RDT. The uRDT has the same workflow as currently available RDTs, but improved performance characteristics to identify asymptomatic malaria infections. The uRDT may be a useful tool for malaria elimination strategies. PMID:28820709
Kalinga, Akili K; Mwanziva, Charles; Chiduo, Sarah; Mswanya, Christopher; Ishengoma, Deus I; Francis, Filbert; Temu, Lucky; Mahikwano, Lucas; Mgata, Saidi; Amoo, George; Anova, Lalaine; Wurrapa, Eyako; Zwingerman, Nora; Ferro, Santiago; Bhat, Geeta; Fine, Ian; Vesely, Brian; Waters, Norman; Kreishman-Deitrick, Mara; Hickman, Mark; Paris, Robert; Kamau, Edwin; Ohrt, Colin; Kavishe, Reginald A
2018-05-29
Although microscopy is a standard diagnostic tool for malaria and the gold standard, it is infrequently used because of unavailability of laboratory facilities and the absence of skilled readers in poor resource settings. Malaria rapid diagnostic tests (RDT) are currently used instead of or as an adjunct to microscopy. However, at very low parasitaemia (usually < 100 asexual parasites/µl), the test line on malaria rapid diagnostic tests can be faint and consequently hard to visualize and this may potentially affect the interpretation of the test results. Fio Corporation (Canada), developed an automated RDT reader named Deki Reader™ for automatic analysis and interpretation of rapid diagnostic tests. This study aimed to compare visual assessment and automated Deki Reader evaluations to interpret malaria rapid diagnostic tests against microscopy. Unlike in the previous studies where expert laboratory technicians interpreted the test results visually and operated the device, in this study low cadre health care workers who have not attended any formal professional training in laboratory sciences were employed. Finger prick blood from 1293 outpatients with fever was tested for malaria using RDT and Giemsa-stained microscopy for thick and thin blood smears. Blood samples for RDTs were processed according to manufacturers' instructions automated in the Deki Reader. Results of malaria diagnoses were compared between visual and the automated devise reading of RDT and microscopy. The sensitivity of malaria rapid diagnostic test results interpreted by the Deki Reader was 94.1% and that of visual interpretation was 93.9%. The specificity of malaria rapid diagnostic test results was 71.8% and that of human interpretation was 72.0%. The positive predictive value of malaria RDT results by the Deki Reader and visual interpretation was 75.8 and 75.4%, respectively, while the negative predictive values were 92.8 and 92.4%, respectively. The accuracy of RDT as interpreted by DR and visually was 82.6 and 82.1%, respectively. There was no significant difference in performance of RDTs interpreted by either automated DR or visually by unskilled health workers. However, despite the similarities in performance parameters, the device has proven useful because it provides stepwise guidance on processing RDT, data transfer and reporting.
The role of ENSO in understanding changes in Colombia's annual malaria burden by region, 1960–2006
Mantilla, Gilma; Oliveros, Hugo; Barnston, Anthony G
2009-01-01
Background Malaria remains a serious problem in Colombia. The number of malaria cases is governed by multiple climatic and non-climatic factors. Malaria control policies, and climate controls such as rainfall and temperature variations associated with the El Niño/Southern Oscillation (ENSO), have been associated with malaria case numbers. Using historical climate data and annual malaria case number data from 1960 to 2006, statistical models are developed to isolate the effects of climate in each of Colombia's five contrasting geographical regions. Methods Because year to year climate variability associated with ENSO causes interannual variability in malaria case numbers, while changes in population and institutional control policy result in more gradual trends, the chosen predictors in the models are annual indices of the ENSO state (sea surface temperature [SST] in the tropical Pacific Ocean) and time reference indices keyed to two major malaria trends during the study period. Two models were used: a Poisson and a Negative Binomial regression model. Two ENSO indices, two time reference indices, and one dummy variable are chosen as candidate predictors. The analysis was conducted using the five geographical regions to match the similar aggregation used by the National Institute of Health for its official reports. Results The Negative Binomial regression model is found better suited to the malaria cases in Colombia. Both the trend variables and the ENSO measures are significant predictors of malaria case numbers in Colombia as a whole, and in two of the five regions. A one degree Celsius change in SST (indicating a weak to moderate ENSO event) is seen to translate to an approximate 20% increase in malaria cases, holding other variables constant. Conclusion Regional differentiation in the role of ENSO in understanding changes in Colombia's annual malaria burden during 1960–2006 was found, constituting a new approach to use ENSO as a significant predictor of the malaria cases in Colombia. These results naturally point to additional needed work: (1) refining the regional and seasonal dependence of climate on the ENSO state, and of malaria on the climate variables; (2) incorporating ENSO-related climate variability into dynamic malaria models. PMID:19133152
Malaria Diagnostics in Clinical Trials
Murphy, Sean C.; Shott, Joseph P.; Parikh, Sunil; Etter, Paige; Prescott, William R.; Stewart, V. Ann
2013-01-01
Malaria diagnostics are widely used in epidemiologic studies to investigate natural history of disease and in drug and vaccine clinical trials to exclude participants or evaluate efficacy. The Malaria Laboratory Network (MLN), managed by the Office of HIV/AIDS Network Coordination, is an international working group with mutual interests in malaria disease and diagnosis and in human immunodeficiency virus/acquired immunodeficiency syndrome clinical trials. The MLN considered and studied the wide array of available malaria diagnostic tests for their suitability for screening trial participants and/or obtaining study endpoints for malaria clinical trials, including studies of HIV/malaria co-infection and other malaria natural history studies. The MLN provides recommendations on microscopy, rapid diagnostic tests, serologic tests, and molecular assays to guide selection of the most appropriate test(s) for specific research objectives. In addition, this report provides recommendations regarding quality management to ensure reproducibility across sites in clinical trials. Performance evaluation, quality control, and external quality assessment are critical processes that must be implemented in all clinical trials using malaria tests. PMID:24062484
Sağmak Tartar, Ayşe; Akbulut, Ayhan
2018-03-01
Malaria is an infectious disease caused by Plasmodium parasite. Sporadic cases have not been observed in Turkey since 2010, but imported malaria cases are still prevalent owing to migration. The present study aimed to evaluate Plasmodium falciparum malaria in patients hospitalized in our hospital. A total of 15 adult patients (14 males and 1 female) who were diagnosed with malaria and who were managed at our clinic between January 2011 and 2017 were evaluated retrospectively for their epidemiological, clinical, and laboratory findings; treatment; and prognosis. Of the 15 cases, 14 (93.3%) were male and (6.7%), female. All patients had a history of travelling to endemic areas, and none of them undertook regular chemoprophylaxis. Fever (100%), splenomegaly (86.7%), hepatomegaly (26.7%), leukopenia (13.3%), thrombocytopenia (80%), elevated liver function tests (40%), and increased serum creatinine levels (13.3%) were found in the patients. The number of import cases is increasing owing to tourism, migration, and deficiency in eradication programs. Malaria caused by P. falciparum is an import case in Turkey. The current study emphasizes on the necessity of providing proper education to Turkish individuals traveling to endemic areas for the purpose of work or travel and on the necessity of initiating chemoprophylaxis.
Thiévent, Kevin; Hofer, Lorenz; Rapp, Elise; Tambwe, Mgeni Mohamed; Moore, Sarah; Koella, Jacob C
2018-05-04
Insecticides targeting adult mosquitoes are the main way of controlling malaria. They work not only by killing mosquitoes, but also by repelling and irritating them. Indeed their repellent action gives valuable personal protection against biting mosquitoes. In the context of malaria control this personal protection is especially relevant when mosquitoes are infectious, whereas to protect the community we would prefer that the mosquitoes that are not yet infectious are killed (so, not repelled) by the insecticide. As the infectious stage of malaria parasites increases the motivation of mosquitoes to bite, we predicted that it would also change their behavioural response to insecticides. With two systems, a laboratory isolate of the rodent malaria Plasmodium berghei infecting Anopheles gambiae and several isolates of P. falciparum obtained from schoolchildren in Tanzania that infected Anopheles arabiensis, we found that mosquitoes harbouring the infectious stage (the sporozoites) of the parasite were less repelled by permethrin-treated nets than uninfected ones. Our results suggest that, at least in the laboratory, malaria infection decreases the personal protection offered by insecticide-treated nets at the stage where the personal protection is most valuable. Further studies must investigate whether these results hold true in the field and whether the less effective personal protection can be balanced by increased community protection.
Durrheim, D N; Govere, J; la Grange, J J; Mabuza, A
2001-01-01
Malaria is a re-emerging disease in much of Africa. In response, the World Health Organization launched the Roll Back Malaria (RBM) initiative. One of six key principles adopted is the early detection of malaria cases. However, the importance of definitive diagnosis and potential value of field deployment of rapid malaria tests in RBM has been largely ignored. The Lowveld Region of Mpumalanga Province, South Africa, is home to a predominantly non-immune population, of approximately 850000 inhabitants, who are at risk of seasonal Plasmodium falciparum malaria. Malaria treatment in this area is usually only initiated on detection of malaria parasites in the peripheral bloodstream, as many other rickettsial and viral febrile illness mimic malaria. The malaria control programme traditionally relied on light microscopy of Giemsa-stained thick blood films for malaria diagnosis. This review summarizes operational research findings that led to the introduction of rapid malaria card tests for primary diagnosis of malaria throughout the Mpumalanga malaria area. Subsequent operational research and extensive experience over a four-year period since introducing the ICT Malaria Pf test appears to confirm the local appropriateness of this diagnostic modality. A laboratory is not required and clinic staff are empowered to make a prompt definitive diagnosis, limiting delays in initiating correct therapy. The simple, accurate and rapid non-microscopic means now available for diagnosing malaria could play an important role in Rolling Back Malaria in selected areas.
[Investigation on knowledge of malaria prevention and control in residents of Suining County].
Tang, Yue-e
2014-08-01
To understand the status of knowledge of malaria prevention and control in residents of Suining County, so as to provide the reference for improving the implementation of malaria elimination. Nine villages in 3 townships (3 villages per township) were randomly selected as the study areas, and 200 residents aged above 15 years of each village were investigated with questionnaire for the knowledge of malaria prevention and control. The awareness rates of "malaria transmission way", main symptoms of malaria", "life-threatening of falciparum malaria", "how to treat malaria", and "how to prevent malaria" were 96.27%, 95.01%, 81.46%, 98.19% and 96.27%, respectively. There were no significant differences between the different genders and among the different areas (all P >0.05), but there were significant differences among different age groups (all P <0.05). The awareness of malaria prevention and control in residents of Suining County is relatively high, which means the health education is effective.
Evaluation of efficacy and safety of a herbal medicine used for the treatment of malaria.
Ankrah, Nii-Ayi; Nyarko, Alexander K; Addo, Phyllis G A; Ofosuhene, Mark; Dzokoto, Comfort; Marley, Ethel; Addae, Michael M; Ekuban, Frederick A
2003-06-01
Resistance of Plasmodium falciparum to chloroquine has been reported in several countries. Other anti-malarial drugs in use are expensive and not readily accessible to most people in malaria endemic countries. This has led to renewed interest in the development of herbal medicines that have the potential to treat malaria with little or no side effects. This study obtained a preliminary information on the safety and effectiveness of a plant decoction (AM-1), used in treating malaria. The AM-1 is formulated from Jatropha curcas, Gossypium hirsutum, Physalis angulata and Delonix regia. Patients with suspected malaria attending a herbal clinic were enrolled in the study on voluntary basis. They were hospitalized for treatment, clinical observation, biochemical and haematological monitoring, and parasite clearance while on AM-1. In addition male and female Sprague Dawley rats were used to evaluate the acute and subchronic toxicity effects of AM-1. The AM-1 eliminated malaria parasites (Plasmodium falciparum and Plasmodium malarie) from the peripheral blood of patients with malaria. In addition the AM-1 did not show any undesired effects in the patients as well as in laboratory rats. The AM-1, however, showed differential effect on the activities of selected cytochrome P450 isozymes (7-pentoxyresorufin-O-depentylation, 7-ethoxyresorufin-O-deethylation and p-nitrophenol hydroxylase) in relation to sex of the laboratory rats. These results indicate that AM-1 could be used to treat malaria. However, it could precipitate interactions with other drugs via their biotransformation and elimination. The obtained data warrant further studies in a large number of malaria subjects with monitoring for possible drug interactions. Copyright 2003 John Wiley & Sons, Ltd.
Briggs, Melissa A.; Kalolella, Admirabilis; Bruxvoort, Katia; Wiegand, Ryan; Lopez, Gerard; Festo, Charles; Lyaruu, Pierre; Kenani, Mitya; Abdulla, Salim; Goodman, Catherine; Kachur, S. Patrick
2014-01-01
Background Throughout Africa, many people seek care for malaria in private-sector drug shops where diagnostic testing is often unavailable. Recently, subsidized artemisinin-based combination therapies (ACTs), a first-line medication for uncomplicated malaria, were made available in these drug shops in Tanzania. This study assessed the prevalence of malaria among and purchase of ACTs by drug shop clients in the setting of a national ACT subsidy program and sub-national drug shop accreditation program. Method and Findings A cross-sectional survey of drug shop clients was performed in two regions in Tanzania, one with a government drug shop accreditation program and one without, from March-May, 2012. Drug shops were randomly sampled from non-urban districts. Shop attendants were interviewed about their education, training, and accreditation status. Clients were interviewed about their symptoms and medication purchases, then underwent a limited physical examination and laboratory testing for malaria. Malaria prevalence and predictors of ACT purchase were assessed using univariate analysis and multiple logistic regression. Amongst 777 clients from 73 drug shops, the prevalence of laboratory-confirmed malaria was 12% (95% CI: 6–18%). Less than a third of clients with malaria had purchased ACTs, and less than a quarter of clients who purchased ACTs tested positive for malaria. Clients were more likely to have purchased ACTs if the participant was <5 years old (aOR: 6.6; 95% CI: 3.9–11.0) or the shop attendant had >5 years, experience (aOR: 2.8; 95% CI: 1.2–6.3). Having malaria was only a predictor of ACT purchase in the region with a drug shop accreditation program (aOR: 3.4; 95% CI: 1.5–7.4). Conclusion Malaria is common amongst persons presenting to drug shops with a complaint of fever. The low proportion of persons with malaria purchasing ACTs, and the high proportion of ACTs going to persons without malaria demonstrates a need to better target who receives ACTs in these drug shops. PMID:24732258
Briggs, Melissa A; Kalolella, Admirabilis; Bruxvoort, Katia; Wiegand, Ryan; Lopez, Gerard; Festo, Charles; Lyaruu, Pierre; Kenani, Mitya; Abdulla, Salim; Goodman, Catherine; Kachur, S Patrick
2014-01-01
Throughout Africa, many people seek care for malaria in private-sector drug shops where diagnostic testing is often unavailable. Recently, subsidized artemisinin-based combination therapies (ACTs), a first-line medication for uncomplicated malaria, were made available in these drug shops in Tanzania. This study assessed the prevalence of malaria among and purchase of ACTs by drug shop clients in the setting of a national ACT subsidy program and sub-national drug shop accreditation program. A cross-sectional survey of drug shop clients was performed in two regions in Tanzania, one with a government drug shop accreditation program and one without, from March-May, 2012. Drug shops were randomly sampled from non-urban districts. Shop attendants were interviewed about their education, training, and accreditation status. Clients were interviewed about their symptoms and medication purchases, then underwent a limited physical examination and laboratory testing for malaria. Malaria prevalence and predictors of ACT purchase were assessed using univariate analysis and multiple logistic regression. Amongst 777 clients from 73 drug shops, the prevalence of laboratory-confirmed malaria was 12% (95% CI: 6-18%). Less than a third of clients with malaria had purchased ACTs, and less than a quarter of clients who purchased ACTs tested positive for malaria. Clients were more likely to have purchased ACTs if the participant was <5 years old (aOR: 6.6; 95% CI: 3.9-11.0) or the shop attendant had >5 years, experience (aOR: 2.8; 95% CI: 1.2-6.3). Having malaria was only a predictor of ACT purchase in the region with a drug shop accreditation program (aOR: 3.4; 95% CI: 1.5-7.4). Malaria is common amongst persons presenting to drug shops with a complaint of fever. The low proportion of persons with malaria purchasing ACTs, and the high proportion of ACTs going to persons without malaria demonstrates a need to better target who receives ACTs in these drug shops.
Avoidance behavior to essential oils by Anopheles minimus, a malaria vector in Thailand
USDA-ARS?s Scientific Manuscript database
Excito-repellency tests were used to characterize behavioral responses of laboratory colonized Anopheles minimus, a malaria vector in Thailand, using four essential oils, citronella (Cymbopogom nadus), hairy basil (Ocimum americanum), sweet basil (Ocimum basilicum), vetiver (Vetiveria zizanioides), ...
Imported malaria in pregnancy in Madrid.
Jiménez, Beatriz C; Cuadros-Tito, Pedro; Ruiz-Giardin, Jose M; Rojo-Marcos, Gerardo; Cuadros-González, Juan; Canalejo, Eduardo; Cabello, Noemi; San Martín, Juan V; Barrios, Ana M; Hinojosa, Juan; Molina, Laura
2012-04-11
Malaria in pregnancy is associated with maternal and foetal morbidity and mortality in endemic areas, but information on imported cases to non-endemic areas is scarce.The aim of this study was to describe the clinical and epidemiological characteristics of malaria in pregnancy in two general hospitals in Madrid, Spain. Retrospective descriptive study of laboratory-confirmed malaria in pregnant women at the Fuenlabrada University Hospital and the Príncipe de Asturias University Hospital, in Madrid, over a six- and 11-year period, respectively. Relevant epidemiological, clinical and laboratory data was obtained from medical records. There were 19 pregnant women among 346 malaria cases (5.4%). The average age was 27 years. The gestational age (trimester) was: 53% 3rd, 31% 1st, 16% 2nd. All but one were multigravidae. Three were HIV positive. All were sub-Saharan immigrants: two were recently arrived immigrants and seventeen (89%) had visited friends and relatives. None had taken prophylaxis nor seeked pre-travel advice. 16 symptomatic patients (fever in fourteen, asthenia in two), three asymptomatic. Median delay in diagnosis: 7.5 days. Laboratory tests: anaemia (cut off Hb level 11 g/dl) 78.9% (mild 31.6%, moderate 31.6%, severe 15.8%) thrombocytopaenia 73.7%, hypoglycaemia 10.5%. All cases were due to Plasmodium falciparum, one case of hyperparasitaemia. Quinine + clindamycin prescribed in 84%. no severe maternal complications or deaths, two abortions, fifteen term pregnancies, no low-birth-weight newborns, two patients were lost to follow-up. Though cases of malaria in pregnancy are uncommon, a most at risk group is clearly defined: young sub-Saharan mothers visiting friends and relatives without pre-travel counselling and recently-arrived immigrants. The most common adverse maternal and foetal effects were anaemia and stillbirth. Given that presentation can be asymptomatic, malaria should always be considered in patients with unexplained anaemia arriving from endemic areas. These findings could help Maternal Health programme planners and implementers to target preventive interventions in the immigrant population and should create awareness among clinicians.
An innovative tool for moving malaria PCR detection of parasite reservoir into the field
2013-01-01
Background To achieve the goal of malaria elimination in low transmission areas such as in Cambodia, new, inexpensive, high-throughput diagnostic tools for identifying very low parasite densities in asymptomatic carriers are required. This will enable a switch from passive to active malaria case detection in the field. Methods DNA extraction and real-time PCR assays were implemented in an “in-house” designed mobile laboratory allowing implementation of a robust, sensitive and rapid malaria diagnostic strategy in the field. This tool was employed in a survey organized in the context of the MalaResT project (NCT01663831). Results The real-time PCR screening and species identification assays were performed in the mobile laboratory between October and November 2012, in Rattanakiri Province, to screen approximately 5,000 individuals in less than four weeks and treat parasite carriers within 24–48 hours after sample collection. An average of 240 clinical samples (and 40 quality control samples) was tested every day, six/seven days per week. Some 97.7% of the results were available <24 hours after the collection. A total of 4.9% were positive for malaria. Plasmodium vivax was present in 61.1% of the positive samples, Plasmodium falciparum in 45.9%, Plasmodium malariae in 7.0% and Plasmodium ovale in 2.0%. Conclusions The operational success of this diagnostic set-up proved that molecular testing and subsequent treatment is logistically achievable in field settings. This will allow the detection of clusters of asymptomatic carriers and to provide useful epidemiological information. Fast results will be of great help for staff in the field to track and treat asymptomatic parasitaemic cases. The concept of the mobile laboratory could be extended to other countries for the molecular detection of malaria or other pathogens, or to culture vivax parasites, which does not support long-time delay between sample collection and culture. PMID:24206649
False positive malaria rapid diagnostic test in returning traveler with typhoid fever.
Meatherall, Bonnie; Preston, Keith; Pillai, Dylan R
2014-07-09
Rapid diagnostic tests play a pivotal role in the early diagnosis of malaria where microscopy or polymerase chain reaction are not immediately available. We report the case of a 39 year old traveler to Canada who presented with fever, headache, and abdominal pain after visiting friends and relatives in India. While in India, the individual was not ill and had no signs or symptoms of malaria. Laboratory testing upon his return to Canada identified a false positive malaria rapid diagnostic (BinaxNOW® malaria) result for P. falciparum with coincident Salmonella Typhi bacteraemia without rheumatoid or autoimmune factors. Rapid diagnostic test false positivity for malaria coincided with the presence or absence of Salmonella Typhi in the blood. Clinicians should be aware that Salmonella Typhi infection may result in a false positive malaria rapid diagnostic test. The mechanism of this cross-reactivity is not clear.
Malaria remains a military medical problem.
World, M J
2001-10-01
To bring military medical problems concerning malaria to the attention of the Defence Medical Services. Seven military medical problems related to malaria are illustrated by cases referred for secondary assessment over the past five years. Each is discussed in relation to published data. The cases of failure of various kinds of chemoprophylaxis, diagnosis and treatment of malaria may represent just a fraction of the magnitude of the overall problem but in the absence of reliable published military medical statistics concerning malaria cases, the situation is unclear. Present experience suggests there are a number of persisting problems affecting the military population in relation to malaria. Only publication of reliable statistics will define their magnitude. Interim remedies are proposed whose cost-effectiveness remains to be established.
Keiser, J; Utzinger, J; Premji, Z; Yamagata, Y; Singer, B H
2002-10-01
One hundred years ago, Giemsa's stain was employed for the first time for malaria diagnosis. Giemsa staining continues to be the method of choice in most malarious countries, although, in the recent past, several alternatives have been developed that exhibit some advantages. Considerable progress has been made with fluorescent dyes, particularly with Acridine Orange (AO). The literature on the discovery, development and validation of the AO method for malaria diagnosis is reviewed here. Compared with conventional Giemsa staining, AO shows a good diagnostic performance, with sensitivities of 81.3%-100% and specificities of 86.4%-100%. However, sensitivities decrease with lower parasite densities, and species differentiation may occasionally be difficult. The most notable advantage of the AO method over Giemsa staining is its promptness; results are readily available within 3-10 min, whereas Giemsa staining may take 45 min or even longer. This is an important advantage for the organization of health services and the provision of effective treatment of malaria cases. The national malaria control programme of Tanzania, together with the Japan International Co-operation Agency, began to introduce the AO method in Tanzania in 1994. So far, AO staining has been introduced in 70 regional and district hospitals, and 400 laboratory technicians have been trained to use the method. The results of this introduction, which are reviewed here and have several important implications, indicate that AO is a viable alternative technique for the laboratory diagnosis of malaria in highly endemic countries.
Boggild, A; Brophy, J; Charlebois, P; Crockett, M; Geduld, J; Ghesquiere, W; McDonald, P; Plourde, P; Teitelbaum, P; Tepper, M; Schofield, S; McCarthy, A
2014-01-01
Background On behalf of the Public Health Agency of Canada, the Committee to Advise on Tropical Medicine and Travel (CATMAT) developed the Canadian Recommendations for the Prevention and Treatment of Malaria Among International Travellers for Canadian health care providers who are preparing patients for travel to malaria-endemic areas and treating travellers who have returned ill. These recommendations aim to achieve appropriate diagnosis and management of malaria, a disease that is still uncommon in Canada. Objective To provide recommendations on the appropriate diagnosis and treatment of malaria. Methods CATMAT reviewed all major sources of information on malaria diagnosis and treatment, as well as recent research and national and international epidemiological data, to tailor guidelines to the Canadian context. The evidence-based medicine recommendations were developed with associated rating scales for the strength and quality of the evidence. Recommendations Malarial management depends on rapid identification of the disease, as well as identification of the malaria species and level of parasitemia. Microscopic identification of blood samples is both rapid and accurate but can be done only by trained laboratory technicians. Rapid diagnostic tests are widely available, are simple to use and do not require specialized laboratory equipment or training; however, they do not provide the level of parasitemia and do require verification. Polymerase chain reaction (PCR), although still limited in availability, is emerging as the gold standard for high sensitivity and specificity in identifying the species. PMID:29769894
Epidemiology and clinical features of imported malaria in East London.
Francis, Benjamin C; Gonzalo, Ximena; Duggineni, Sirisha; Thomas, Janice M; NicFhogartaigh, Caoimhe; Babiker, Zahir Osman Eltahir
2016-06-01
Malaria is the most common imported tropical disease in the United Kingdom (UK). The overall mortality is low but inter-regional differences have been observed. We conducted a 2-year retrospective review of clinical and laboratory records of patients with malaria attending three acute hospitals in East London from 1 April 2013 through 31 March 2015. Epidemiological and clinical characteristics of imported malaria were described and risk factors associated with severe falciparum malaria were explored. In total, 133 patients with laboratory-confirmed malaria were identified including three requiring critical care admission but no deaths. The median age at presentation was 41 years (IQR 30-50). The majority of patients were males (64.7%, 86/133) and had Black or Black British ethnicity (67.5%, 79/117). West Africa was the most frequent region of travel (70.4%, 76/108). Chemoprophylaxis use was poor (25.3%, 20/79). The interval between arriving in the UK and presenting to hospital was short (median 10 days; IQR 5-15.5, n = 84). July-September was the peak season of presentation (34.6%, 46/133). Plasmodium falciparum was the commonest species (76.7%, 102/133) and 31.4% (32/102) of these patients had parasitaemia >2%. Severe falciparum malaria was documented in 36.3% (37/102) of patients and the October-March season presentation was associated with an increased risk of severity (OR 3.00; 95% CI 1.30-6.93). Black patients appeared to have reduced risk of severe falciparum malaria (OR 0.46; 95% CI 0.16-1.35) but this was not statistically significant. HIV sero-status was determined in only 27.1% (36/133) of cases. Only 8.5% (10/117) of all malaria patients were treated as outpatients. Clinicians need to raise awareness on malaria prevention strategies, improve rates of HIV testing in tropical travellers, and familiarise themselves with ambulatory management of malaria. The relationship between season of presentation, ethnicity and severity of falciparum malaria should be explored further. © International Society of Travel Medicine, 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Hamainza, Busiku; Killeen, Gerry F; Kamuliwo, Mulakwa; Bennett, Adam; Yukich, Joshua O
2014-12-12
Timeliness, completeness, and accuracy are key requirements for any surveillance system to reliably monitor disease burden and guide efficient resource prioritization. Evidence that electronic reporting of malaria cases by community health workers (CHWs) meet these requirements remains limited. Residents of two adjacent rural districts in Zambia were provided with both passive and active malaria testing and treatment services with malaria rapid diagnostic tests (RDTs) and artemisinin-based combination therapy by 42 CHWs serving 14 population clusters centred around public sector health facilities. Reference data describing total numbers of RDT-detected infections and diagnostic positivity (DP) were extracted from detailed participant register books kept by CHWs. These were compared with equivalent weekly summaries relayed directly by the CHWs themselves through a mobile phone short messaging system (SMS) reporting platform. Slightly more RDT-detected malaria infections were recorded in extracted participant registers than were reported in weekly mobile phone summaries but the difference was equivalent to only 19.2% (31,665 versus 25,583, respectively). The majority (81%) of weekly SMS reports were received within one week and the remainder within one month. Overall mean [95% confidence limits] difference between the numbers of register-recorded and SMS-reported RDT-detected malaria infections per CHW per week, as estimated by the Bland Altman method, was only -2.3 [-21.9, 17.2]. The mean [range] for both the number of RDT-detected malaria infections (86 [0, 463] versus 73.6 [0, 519], respectively)) and DP (22.8% [0.0 to 96.3%] versus 23.2% [0.4 to 75.8%], respectively) reported by SMS were generally very consistent with those recorded in the reference paper-based register data and exhibited similar seasonality patterns across all study clusters. Overall, mean relative differences in the SMS reports and reference register data were more consistent with each other for DP than for absolute numbers of RDT-detected infections, presumably because this indicator is robust to variations in patient reporting rates by location, weather, season and calendar event because these are included in both the nominator and denominator. The SMS reports captured malaria transmission trends with adequate accuracy and could be used for population-wide, continuous, longitudinal monitoring of malaria transmission.
Iglesias, Nuria; Subirats, Mercedes; Trevisi, Patricia; Ramírez-Olivencia, Germán; Castán, Pablo; Puente, Sabino; Toro, Carlos
2014-07-01
Microscopy and rapid diagnostic tests (RDTs) are the techniques commonly used for malaria diagnosis but they are usually insensitive at very low levels of parasitemia. Nested PCR is commonly used as a reference technique in the diagnosis of malaria due to its high sensitivity and specificity. However, it is a cumbersome assay only available in reference centers. We evaluated a new nested PCR-based assay, BIOMALAR kit (Biotools B&M Labs, Madrid, Spain) which employs ready-to-use gelled reagents and allows the identification of the main four species of Plasmodium. Blood samples were obtained from patients with clinical suspicion of malaria. A total of 94 subjects were studied. Fifty-two (55.3%) of them were malaria-infected subjects corresponding to 48 cases of Plasmodium falciparum, 1 Plasmodium malariae, 2 Plasmodium vivax, and 1 Plasmodium ovale. The performance of the BIOMALAR test was compared with microscopy, rapid diagnostic test (RDT) (BinaxNOW® Malaria) and real-time quantitative PCR (qPCR). The BIOMALAR test showed a sensitivity of 98.1% (95% confidence interval [CI], 89.7-100), superior to microscopy (82.7% [95% CI, 69.7-91.8]) and RDT (94.2% [95% CI, 84.1-98.8]) and similar to qPCR (100% [95% CI, 93.2-100]). In terms of specificity, the BIOMALAR assay showed the same value as microscopy and qPCR (100% [95% CI, 93.2-100]). Nine subjects were submicroscopic carriers of malaria. The BIOMALAR test identified almost all of them (8/9) in comparison with RDT (6/9) and microscopy (0/9). In conclusion, the BIOMALAR is a PCR-based assay easy to use with an excellent performance and especially useful for diagnosis submicroscopic malaria.
Kosack, Cara S; Naing, Wint Thu; Piriou, Erwan; Shanks, Leslie
2013-05-21
Malaria rapid diagnostic tests (RDTs) are commonly used in Médecins Sans Frontières (MSF) programmes to detect acute malaria infection. Programmes in regions with both Plasmodium falciparum and non-falciparum malaria (i.e. Plasmodium ovale, Plasmodium malariae and Plasmodium vivax) use a three-band P. falciparum/Pan test such as the SD Bioline Malaria Ag P.f/Pan 05FK60 (Standard Diagnostics, Kyonggi, Republic of Korea), hereafter referred to as SD 05FK60, as used by the MSF-Holland clinics in Rakhine state, Myanmar. In spite of published reports of generally good test performance, medical and paramedical staff on the ground often doubt the diagnostic accuracy of these RDTs. Parallel testing with malaria microscopy and RDT was conducted at two clinics in Rakhine state, Myanmar, for a period of 14 months as a programmatic response due to doubts and concerns of medical and paramedical staff into malaria RDTs. A total of 2,585 blood samples from non-pregnant suspected malaria patients were examined by the SD 05FK60 RDT and microscopy at two clinics in Myanmar from October 2010 to December 2011. The reference standard microscopy diagnosed 531 P. falciparum and 587 P. vivax or P. malariae mono-infections. The overall sensitivity for P. falciparum detection by the SD 05FK60 was 90.2% (95% CI: 87.4-92.6) and for P. vivax/P. malariae 79.4% (95% CI: 75.9-82.6). The overall specificity for P. falciparum detection by the SD 05FK60 was 98.5% (95% CI: 97.7-99.1) and for P. vivax/P. malariae 98.7% (95% CI: 97.9-99.2). The sensitivity for P. falciparum was >91% for parasitaemia levels of >100-1,000 parasites/μl and increased for P. vivax/P. malariae with the parasitaemia level but was overall lower than for P. falciparum 25/408 and 13/420 cases, respectively, of P. falciparum and non-falciparum malaria were missed by the RDT. In field conditions in Myanmar, the SD 05FK60 malaria RDT performed consistent with other reports. The test detected malaria caused by P. vivax/P. malariae to a lesser extent than P. falciparum infection. Sensitivity improved with increasing parasitaemia level, however even at higher levels some infections were missed. The SD 05FK60 is adequate for use in settings where high quality microscopy is not available.
Forney, J. Russ; Magill, Alan J.; Wongsrichanalai, Chansuda; Sirichaisinthop, Jeeraphat; Bautista, Christian T.; Heppner, D. Gray; Miller, R. Scott; Ockenhouse, Christian F.; Gubanov, Alex; Shafer, Robyn; DeWitt, Caroline Cady; Quino-Ascurra, Higinio A.; Kester, Kent E.; Kain, Kevin C.; Walsh, Douglas S.; Ballou, W. Ripley; Gasser, Robert A.
2001-01-01
Microscopic detection of parasites has been the reference standard for malaria diagnosis for decades. However, difficulty in maintaining required technical skills and infrastructure has spurred the development of several nonmicroscopic malaria rapid diagnostic devices based on the detection of malaria parasite antigen in whole blood. The ParaSight F test is one such device. It detects the presence of Plasmodium falciparum-specific histidine-rich protein 2 by using an antigen-capture immunochromatographic strip format. The present study was conducted at outpatient malaria clinics in Iquitos, Peru, and Maesod, Thailand. Duplicate, blinded, expert microscopy was employed as the reference standard for evaluating device performance. Of 2,988 eligible patients, microscopy showed that 547 (18%) had P. falciparum, 658 (22%) had P. vivax, 2 (0.07%) had P. malariae, and 1,750 (59%) were negative for Plasmodium. Mixed infections (P. falciparum and P. vivax) were identified in 31 patients (1%). The overall sensitivity of ParaSight F for P. falciparum was 95%. When stratified by magnitude of parasitemia (no. of asexual parasites per microliter of whole blood), sensitivities were 83% (>0 to 500 parasites/μl), 87% (501 to 1,000/μl), 98% (1,001 to 5,000/μl), and 98% (>5,000/μl). Device specificity was 86%. PMID:11474008
Evaluation of the Immunoquick+4 malaria rapid diagnostic test in a non-endemic setting.
van Dijk, D P J; Gillet, P; Vlieghe, E; Cnops, L; Van Esbroeck, M; Jacobs, J
2010-05-01
The aim of this retrospective study was to evaluate the Immunoquick+4 (BioSynex, Strasbourg, France), a three-band malaria rapid diagnostic test (MRDT) targeting histidine-rich protein-2 (HRP-2) and pan Plasmodium-specific parasite lactate dehydrogenase, in a non-endemic reference setting. Stored whole-blood samples (n = 613) from international travellers suspected of malaria were used, with microscopy corrected by polymerase chain reaction (PCR) as the reference method. Samples infected by P. falciparum (n = 323), P. vivax (n = 97), P. ovale (n = 73) and P. malariae (n = 25) were selected, as well as 95 malaria-negative samples. The overall sensitivities of the Immunoquick+4 for the diagnosis of P. falciparum, P. vivax, P. malariae and P. ovale were 88.9, 75.3, 56.0 and 19.2%, respectively. Sensitivity was significantly related to parasite density for P. falciparum (93.6% versus 71.4% at parasite densities >100/microl and
Military Need for Research and Development of a Malaria Vaccine
1983-06-03
Army in Vietnam, 1965-1970, p. 39. * 211bid., p. 35. * . 22Hume, Victories in Military Medicine, p. 160. 231 bid . 16,:24Experimental Malaria...duration of the ill- ness may last from 21 - 30 days. Once malaria is considered a possibility, the diagnosis is con- firmed by laboratory results...place of the anopheline is water containing green algae 24 growth.25 Draining and covering small breeding areas with earth and draining and dispersing
Halsey, Eric S; Venkatesan, Meera; Plucinski, Mateusz M; Talundzic, Eldin; Lucchi, Naomi W; Zhou, Zhiyong; Mandara, Celine I; Moonga, Hawela; Hamainza, Busiku; Beavogui, Abdoul Habib; Kariuki, Simon; Samuels, Aaron M; Steinhardt, Laura C; Mathanga, Don P; Gutman, Julie; Denon, Yves Eric; Uwimana, Aline; Assefa, Ashenafi; Hwang, Jimee; Shi, Ya Ping; Dimbu, Pedro Rafael; Koita, Ousmane; Ishengoma, Deus S; Ndiaye, Daouda; Udhayakumar, Venkatachalam
2017-12-01
Antimalarial drug resistance is an evolving global health security threat to malaria control. Early detection of Plasmodium falciparum resistance through therapeutic efficacy studies and associated genetic analyses may facilitate timely implementation of intervention strategies. The US President's Malaria Initiative-supported Antimalarial Resistance Monitoring in Africa Network has assisted numerous laboratories in partner countries in acquiring the knowledge and capability to independently monitor for molecular markers of antimalarial drug resistance.
2014-01-01
Background Accurate diagnosis of malaria infections remains challenging, especially in the identification of submicroscopic infections. New molecular diagnostic tools that are inexpensive, sensitive enough to detect low-level infections and suitable in laboratory settings of resource-limited countries are required for malaria control and elimination programmes. Here the diagnostic potential of a recently developed photo-induced electron transfer fluorogenic primer (PET) real-time polymerase chain reaction (PCR) called PET-PCR was investigated. This study aimed to (i) evaluate the use of this assay as a method for the detection of both Plasmodium falciparum and other Plasmodium species infections in a developing country’s diagnostic laboratory; and, (ii) determine the assay’s sensitivity and specificity compared to a nested 18S rRNA PCR. Methods Samples used in this study were obtained from a previous study conducted in the region of Iringa, Tanzania. A total of 303 samples from eight health facilities in Tanzania were utilized for this evaluation. All samples were screened using the multiplex PET-PCR assay designed to detect Plasmodium genus and P. falciparum initially in laboratory in Tanzania and then repeated at a reference laboratory at the CDC in the USA. Microscopy data was available for all the 303 samples. A subset of the samples were tested in a blinded fashion to find the sensitivity and specificity of the PET-PCR compared to the nested 18S rRNA PCR. Results Compared to microscopy, the PET-PCR assay was 59% more sensitive in detecting P. falciparum infections. The observed sensitivity and specificity were 100% (95% confidence interval (CI0.95) = 94-100%) and (CI0.95 = 96-100%), respectively, for the PET-PCR assay when compared to nested 18S rRNA PCR. When compared to 18S rRNA PCR, microscopy had a low sensitivity of 40% (CI0.95 = 23-61%) and specificity of 100% (CI0.95 = 96-100%). The PET-PCR results performed in the field laboratory in Tanzania were in 100% concordance with the results obtained at the reference laboratory in the USA. Conclusion The PET-PCR is a new molecular diagnostic tool with similar performance characteristics as commonly used PCR methods that is less expensive, easy to use, and amiable to large scale-surveillance studies in developing country settings. PMID:24467985
Zhen-Yu, Wang; Li, Jiang; Yao-Guang, Zhang; Min, Zhu; Xiao-Ping, Zhang; Xiao-Jiang, Ma; Qian, Zhu; Yan-Yan, He; Shou-Fu, Jiang; Li, Cai
2017-02-27
To compare the application effects of three methods, namely microscopic examination, antigen detection (RDT) and nucleic acid test (PCR) in malaria detection between municipal and districts/counties centers for disease control and prevention in Shanghai, and analyze the malaria detection ability of the laboratories in Shanghai. The blood smears, whole blood samples, case review confirmation records and case data of malaria cases and suspected cases in Shanghai from 2012 to 2015 were collected by Shanghai Municipal Center for Disease Control and Prevention, and the detection results were analyzed and compared. A total of 212 samples with complete data were submitted by all districts (counties) in Shanghai from 2012 to 2015, the samples submitted by Jinshan Districts were the most (41.98%), and among the first diagnosis hospitals, those submitted by the tertiary hospitals were the most (82.07%). The submitted samples in the whole year were increased gradually from January to October. All the 212 samples were detected by three methods (the microscopic examination, RDT and PCR) in the laboratory of Shanghai Municipal Center for Disease Control and Prevention, and 167 were tested and confirmed comprehensively as positives, accounting for 78.77%, and 45 were confirmed as negatives, accounting for 21.23%. The samples were detected by the method of microscopy and domestic RDT in the laboratories of the centers for disease control and prevention at district/county level, totally 153 were tested as positives, accounting for 72.17%, 41 were unclassified, accounting for 19.34%, 53 were negative, accounting for 25.00%, and 6 were undetected, accounting for 2.83%. The coincidence of microscopic examination between the report hospitals and the centers for disease control and prevention at district/county level was 78.16%, and the coincidence between centers for disease control and prevention at district/county level and municipal level was 93.20%. The utilization rate of RDT in the laboratory of district/county level was 73.58%. The coincidence of RDT tests between those domestic and imported was 93.59%. Compared with the detection results by municipal center for disease control and prevention, 37 samples were misjudged by the laboratories of district/county level. Almost all (99.37%) of the confirmed malaria cases were imported overseas, including Africa (85.44%), Asia (13.92%) and America (0.63%). The surveillance after malaria elimination in Shanghai should be carried out by combining with different detection methods and resource integration.
Hemingway, Janet; Shretta, Rima; Wells, Timothy N. C.; Bell, David; Djimdé, Abdoulaye A.; Achee, Nicole; Qi, Gao
2016-01-01
Progress made in malaria control during the past decade has prompted increasing global dialogue on malaria elimination and eradication. The product development pipeline for malaria has never been stronger, with promising new tools to detect, treat, and prevent malaria, including innovative diagnostics, medicines, vaccines, vector control products, and improved mechanisms for surveillance and response. There are at least 25 projects in the global malaria vaccine pipeline, as well as 47 medicines and 13 vector control products. In addition, there are several next-generation diagnostic tools and reference methods currently in development, with many expected to be introduced in the next decade. The development and adoption of these tools, bolstered by strategies that ensure rapid uptake in target populations, intensified mechanisms for information management, surveillance, and response, and continued financial and political commitment are all essential to achieving global eradication. PMID:26934361
Hemingway, Janet; Shretta, Rima; Wells, Timothy N C; Bell, David; Djimdé, Abdoulaye A; Achee, Nicole; Qi, Gao
2016-03-01
Progress made in malaria control during the past decade has prompted increasing global dialogue on malaria elimination and eradication. The product development pipeline for malaria has never been stronger, with promising new tools to detect, treat, and prevent malaria, including innovative diagnostics, medicines, vaccines, vector control products, and improved mechanisms for surveillance and response. There are at least 25 projects in the global malaria vaccine pipeline, as well as 47 medicines and 13 vector control products. In addition, there are several next-generation diagnostic tools and reference methods currently in development, with many expected to be introduced in the next decade. The development and adoption of these tools, bolstered by strategies that ensure rapid uptake in target populations, intensified mechanisms for information management, surveillance, and response, and continued financial and political commitment are all essential to achieving global eradication.
Rapid diagnostic tests for malaria
Daily, Jennifer; Hotte, Nora; Dolkart, Caitlin; Cunningham, Jane; Yadav, Prashant
2015-01-01
Abstract Maintaining quality, competitiveness and innovation in global health technology is a constant challenge for manufacturers, while affordability, access and equity are challenges for governments and international agencies. In this paper we discuss these issues with reference to rapid diagnostic tests for malaria. Strategies to control and eliminate malaria depend on early and accurate diagnosis. Rapid diagnostic tests for malaria require little training and equipment and can be performed by non-specialists in remote settings. Use of these tests has expanded significantly over the last few years, following recommendations to test all suspected malaria cases before treatment and the implementation of an evaluation programme to assess the performance of the malaria rapid diagnostic tests. Despite these gains, challenges exist that, if not addressed, could jeopardize the progress made to date. We discuss recent developments in rapid diagnostic tests for malaria, highlight some of the challenges and provide suggestions to address them. PMID:26668438
Strengthening the policy setting process for global malaria control and elimination.
D'Souza, Bianca J; Newman, Robert D
2012-01-27
The scale-up of malaria control efforts in recent years, coupled with major investments in malaria research, has produced impressive public health impact in a number of countries and has led to the development of new tools and strategies aimed at further consolidating malaria control goals. As a result, there is a growing need for the malaria policy setting process to rapidly review increasing amounts of evidence. The World Health Organization Global Malaria Programme, in keeping with its mandate to set evidence-informed policies for malaria control, has convened the Malaria Policy Advisory Committee as a mechanism to increase the timeliness, transparency, independence and relevance of its recommendations to World Health Organization member states in relation to malaria control and elimination. The Malaria Policy Advisory Committee, composed of 15 world-renowned malaria experts, will meet in full twice a year, with the inaugural meeting scheduled for 31 January to 2 February 2012 in Geneva. Policy recommendations, and the evidence to support them, will be published within two months of every meeting as part of an open access Malaria Journal thematic series. This article is a prelude to that series and provides the global malaria community with the background and overview of the Committee and its terms of reference.
Quality of uncomplicated malaria case management in Ghana among insured and uninsured patients.
Fenny, Ama P; Hansen, Kristian S; Enemark, Ulrika; Asante, Felix A
2014-07-24
The National Health Insurance Act, 2003 (Act 650) established the National Health Insurance Scheme (NHIS) in Ghana with the aim of increasing access to health care and improving the quality of basic health care services for all citizens. The main objective is to assess the effect of health insurance on the quality of case management for patients with uncomplicated malaria, ascertaining any significant differences in treatment between insured and non-insured patients. A structured questionnaire was used to collect data from 523 respondents diagnosed with malaria and prescribed malaria drugs from public and private health facilities in 3 districts across Ghana's three ecological zones. Collected information included initial examinations performed on patients (temperature, weight, age, blood pressure and pulse); observations of malaria symptoms by trained staff, laboratory tests conducted and type of drugs prescribed. Insurance status of patients, age, gender, education level and occupation were asked in the interviews. Of the 523 patients interviewed, only 40 (8%) were uninsured. Routine recording of the patients' age, weight, and temperature was high in all the facilities. In general, assessments needed to identify suspected malaria were low in all the facilities with hot body/fever and headache ranking the highest and convulsion ranking the lowest. Parasitological assessments in all the facilities were also very low. All patients interviewed were prescribed ACTs which is in adherence to the drug of choice for malaria treatment in Ghana. However, there were no significant differences in the quality of malaria treatment given to the uninsured and insured patients. Adherence to the standard protocol of malaria treatment is low. This is especially the case for parasitological confirmation of all suspected malaria patients before treatment with an antimalarial as currently recommended for the effective management of malaria in the country. The results show that about 16 percent of total sample were parasitologically tested. Effective management of the disease demands proper diagnosis and treatment and therefore facilities need to be adequately supplied with RDTs or be equipped with well functioning laboratories to provide adequate testing.
Quality of uncomplicated malaria case management in Ghana among insured and uninsured patients
2014-01-01
Introduction The National Health Insurance Act, 2003 (Act 650) established the National Health Insurance Scheme (NHIS) in Ghana with the aim of increasing access to health care and improving the quality of basic health care services for all citizens. The main objective is to assess the effect of health insurance on the quality of case management for patients with uncomplicated malaria, ascertaining any significant differences in treatment between insured and non-insured patients. Method A structured questionnaire was used to collect data from 523 respondents diagnosed with malaria and prescribed malaria drugs from public and private health facilities in 3 districts across Ghana’s three ecological zones. Collected information included initial examinations performed on patients (temperature, weight, age, blood pressure and pulse); observations of malaria symptoms by trained staff, laboratory tests conducted and type of drugs prescribed. Insurance status of patients, age, gender, education level and occupation were asked in the interviews. Results Of the 523 patients interviewed, only 40 (8%) were uninsured. Routine recording of the patients’ age, weight, and temperature was high in all the facilities. In general, assessments needed to identify suspected malaria were low in all the facilities with hot body/fever and headache ranking the highest and convulsion ranking the lowest. Parasitological assessments in all the facilities were also very low. All patients interviewed were prescribed ACTs which is in adherence to the drug of choice for malaria treatment in Ghana. However, there were no significant differences in the quality of malaria treatment given to the uninsured and insured patients. Conclusion Adherence to the standard protocol of malaria treatment is low. This is especially the case for parasitological confirmation of all suspected malaria patients before treatment with an antimalarial as currently recommended for the effective management of malaria in the country. The results show that about 16 percent of total sample were parasitologically tested. Effective management of the disease demands proper diagnosis and treatment and therefore facilities need to be adequately supplied with RDTs or be equipped with well functioning laboratories to provide adequate testing. PMID:25056139
Evaluation of the Clearview® Malaria pLDH Malaria Rapid Diagnostic Test in a non-endemic setting.
Houzé, Sandrine; Hubert, Véronique; Cohen, Dorit Pessler; Rivetz, Baruch; Le Bras, Jacques
2011-09-27
Malaria Rapid Diagnostic Tests (RDTs) are widely used to diagnose malaria. The present study evaluated a new RDT, the Clearview® Malaria pLDH test targeting the pan-Plasmodium antigen lactate dehydrogenase (pLDH). The Clearview® Malaria pLDH test was evaluated on fresh samples obtained in returned international travellers using microscopy corrected by PCR as the reference method. Included samples were Plasmodium falciparum (139), Plasmodium vivax (22), Plasmodium ovale (20), Plasmodium malariae (7), and 102 negative. Overall sensitivity for the detection of Plasmodium spp was 93.2%. For P. falciparum, the sensitivity was 98.6%; for P. vivax, P. ovale and P. malariae, overall sensitivities were 90.9%, 60.0% and 85.7% respectively. For P. falciparum and for P. vivax, the sensitivities increased to 100% at parasite densities above 100/μl. The specificity was 100%. The test was easily to perform and the result was stable for at least 1 hour. The Clearview® Malaria pLDH was efficient for the diagnosis of malaria. The test was very sensitive for P. falciparum and P. vivax detection. The sensitivities for P. ovale and P. malariae were better than other RDTs.
Arthropod Borne Disease: The Leading Cause of Fever in Pregnancy on the Thai-Burmese Border
McGready, Rose; Ashley, Elizabeth A.; Wuthiekanun, Vanaporn; Tan, Saw Oo; Pimanpanarak, Mupawjay; Viladpai-nguen, Samuel Jacher; Jesadapanpong, Wilarat; Blacksell, Stuart D.; Peacock, Sharon J.; Paris, Daniel H.; Day, Nicholas P.; Singhasivanon, Pratap; White, Nicholas J.; Nosten, François
2010-01-01
Background Fever in pregnancy is dangerous for both mother and foetus. In the 1980's malaria was the leading cause of death in pregnant women in refugee camps on the Thai-Burmese border. Artemisinin combination therapy has significantly reduced the incidence of malaria in the population. The remaining causes of fever in pregnancy are not well documented. Methodology Pregnant women attending antenatal care, where weekly screening for malaria is routine, were invited to have a comprehensive clinical and laboratory screen if they had fever. Women were admitted to hospital, treated and followed up weekly until delivery. A convalescent serum was collected on day 21. Delivery outcomes were recorded. Principal Findings Febrile episodes (n = 438) occurred in 5.0% (409/8,117) of pregnant women attending antenatal clinics from 7-Jan-2004 to 17-May-2006. The main cause was malaria in 55.5% (227/409). A cohort of 203 (49.6% of 409) women had detailed fever investigations and follow up. Arthropod-borne (malaria, rickettsial infections, and dengue) and zoonotic disease (leptospirosis) accounted for nearly half of all febrile illnesses, 47.3% (96/203). Coinfection was observed in 3.9% (8/203) of women, mostly malaria and rickettsia. Pyelonephritis, 19.7% (40/203), was also a common cause of fever. Once malaria, pyelonephritis and acute respiratory illness are excluded by microscopy and/or clinical findings, one-third of the remaining febrile infections will be caused by rickettsia or leptospirosis. Scrub and murine typhus were associated with poor pregnancy outcomes including stillbirth and low birth weight. One woman died (no positive laboratory tests). Conclusion/Significance Malaria remains the leading cause of fever in pregnancy on the Thai-Burmese border. Scrub and murine typhus were also important causes of fever associated with poor pregnancy outcomes. Febrile pregnant women on the Thai-Burmese border who do not have malaria, pyelonephritis or respiratory tract infection should be treated with azithromycin, effective for typhus and leptospirosis. PMID:21103369
Arthropod borne disease: the leading cause of fever in pregnancy on the Thai-Burmese border.
McGready, Rose; Ashley, Elizabeth A; Wuthiekanun, Vanaporn; Tan, Saw Oo; Pimanpanarak, Mupawjay; Viladpai-Nguen, Samuel Jacher; Jesadapanpong, Wilarat; Blacksell, Stuart D; Peacock, Sharon J; Paris, Daniel H; Day, Nicholas P; Singhasivanon, Pratap; White, Nicholas J; Nosten, François
2010-11-16
Fever in pregnancy is dangerous for both mother and foetus. In the 1980's malaria was the leading cause of death in pregnant women in refugee camps on the Thai-Burmese border. Artemisinin combination therapy has significantly reduced the incidence of malaria in the population. The remaining causes of fever in pregnancy are not well documented. Pregnant women attending antenatal care, where weekly screening for malaria is routine, were invited to have a comprehensive clinical and laboratory screen if they had fever. Women were admitted to hospital, treated and followed up weekly until delivery. A convalescent serum was collected on day 21. Delivery outcomes were recorded. Febrile episodes (n = 438) occurred in 5.0% (409/8,117) of pregnant women attending antenatal clinics from 7-Jan-2004 to 17-May-2006. The main cause was malaria in 55.5% (227/409). A cohort of 203 (49.6% of 409) women had detailed fever investigations and follow up. Arthropod-borne (malaria, rickettsial infections, and dengue) and zoonotic disease (leptospirosis) accounted for nearly half of all febrile illnesses, 47.3% (96/203). Coinfection was observed in 3.9% (8/203) of women, mostly malaria and rickettsia. Pyelonephritis, 19.7% (40/203), was also a common cause of fever. Once malaria, pyelonephritis and acute respiratory illness are excluded by microscopy and/or clinical findings, one-third of the remaining febrile infections will be caused by rickettsia or leptospirosis. Scrub and murine typhus were associated with poor pregnancy outcomes including stillbirth and low birth weight. One woman died (no positive laboratory tests). Malaria remains the leading cause of fever in pregnancy on the Thai-Burmese border. Scrub and murine typhus were also important causes of fever associated with poor pregnancy outcomes. Febrile pregnant women on the Thai-Burmese border who do not have malaria, pyelonephritis or respiratory tract infection should be treated with azithromycin, effective for typhus and leptospirosis.
Use of dipstick tests for the rapid diagnosis of malaria in nonimmune travelers.
Jelinek, T; Grobusch, M P; Nothdurft, H D
2000-01-01
Swift diagnosis of falciparum malaria in nonendemic areas is frequently complicated by lack of experience on the side of involved laboratory personnel. Diagnostic tools based on the dipstick principle for the detection of plasmodial histidine-rich protein 2 (HRP-2) (ICT Malaria P.f. (R)) and parasite-specific lactate-dehydrogenase (pLDH) (OptiMal(R)), respectively, have become available for the qualitative detection of falciparum malaria. In order to evaluate currently available assays, a series of studies was conducted: sensitivity and specificity were evaluated by investigation of specimens from 231 febrile returnees from endemic areas, cross reactivity in patients with rheumatoid factor (RF) was assessed among 92 patients from a rheumatology unit, and the quality of dipstick self-use by febrile travelers was tested in Kenya. Whereas the test kit based on the detection of HRP-2 performed with a sensitivity of 92.5% and a specificity of 98.3%, the kit for the detection of pLDH showed a sensitivity of 88.5% and a specificity of 99.4%. Cross-reactions with sera positive for rheumatoid factor occurred in 6.6% with the ICT Malaria P.f.(R), and in 3.3% with the OptiMal(R) test. Only ICT Malaria P.f.(R) was tested for quality of self-use among travelers. This dipstick assay was performed successfully by 67 patients (68.4%), but 31 (31.6%) were unable to obtain a result. Dipstick tests have the potential of enhancing speed and accuracy of the diagnosis of falciparum malaria, especially if nonspecialized laboratories are involved. However, microscopical testing remains mandatory in every single patient with the possible diagnosis of malaria. Self-use of dipstick tests for malaria diagnosis by travelers should only be recommended after appropriate instruction and training, including a successful performance of the test procedure.
Maternal Clinical Findings in Malaria in Pregnancy in a Region of Northwestern Colombia
Gabriel Piñeros, Juan; Tobon-Castaño, Alberto; Álvarez, Gonzalo; Portilla, Carmencita; Blair, Silvia
2013-01-01
In malaria-endemic regions of Latin America, little is known about malaria in pregnancy. To characterize the clinical and laboratory findings of maternal infection, we evaluated 166 cases of pregnant women infected with Plasmodium spp. in a prospective study conducted in northwestern Colombia during 2005–2006. A total of 89.8% (149 of 166) had fever or a history of fever in the past 48 hours, 9.0% (15 of 166) had severe malaria, of which 66.7% was caused by Plasmodium vivax and 33.3% by P. falciparum. Hepatic dysfunction was the main complication (9 of 15) observed. The proportion of severe cases was similar for both species (P = 0.41). In malaria-endemic areas of Colombia, malaria in pregnancy has a broad clinical spectrum. In pregnant women, P. vivax infection frequently leads to organ-specific complications. PMID:23897991
Koepfli, Cristian; Barry, Alyssa; Javati, Sarah; Timinao, Lincoln; Nate, Elma; Mueller, Ivo; Barnadas, Celine
2014-01-01
Papua New Guinea (PNG) is undertaking intensified efforts to control malaria. The National Malaria Control Program aims to reduce the burden of disease by large-scale distribution of insecticide-treated bednets, improved diagnosis and implementation of new treatments. A scientific program monitoring the effect of these interventions, including molecular epidemiology studies, closely accompanies the program. Laboratory assays have been developed in (or transferred to) PNG to measure prevalence of infection and intensity of transmission as well as potential resistance to currently used drugs. These assays help to assess the impact of the National Malaria Control Program, and they reveal a much clearer picture of malaria epidemiology in PNG. In addition, analysis of the geographical clustering of parasites aids in selecting areas where intensified control will be most successful. This paper gives an overview of current research and recently completed studies in the molecular epidemiology of malaria conducted in Papua New Guinea.
Vaccines to Accelerate Malaria Elimination and Eventual Eradication.
Healer, Julie; Cowman, Alan F; Kaslow, David C; Birkett, Ashley J
2017-09-01
Remarkable progress has been made in coordinated malaria control efforts with substantial reductions in malaria-associated deaths and morbidity achieved through mass administration of drugs and vector control measures including distribution of long-lasting insecticide-impregnated bednets and indoor residual spraying. However, emerging resistance poses a significant threat to the sustainability of these interventions. In this light, the malaria research community has been charged with the development of a highly efficacious vaccine to complement existing malaria elimination measures. As the past 40 years of investment in this goal attests, this is no small feat. The malaria parasite is a highly complex organism, exquisitely adapted for survival under hostile conditions within human and mosquito hosts. Here we review current vaccine strategies to accelerate elimination and the potential for novel and innovative approaches to vaccine design through a better understanding of the host-parasite interaction. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
Banchongaksorn, T; Prajakwong, S; Rooney, W; Vickers, P
1997-06-01
The rapid manual ParaSight-F test of Plasmodium falciparum malaria, an antigen capture test for detecting trophozoite-derived histidine rich protein-2 (PF HRP-2), is simple to perform and provides a definite diagnosis within 10 minutes. During an operational trial at health centers and mobile malaria units where microscopical diagnosis is not available and using defined symptom screening criteria, 3,361 subjects were tested yielding 618 positives (18.4%) for PF-HRP-2 by ParaSight-F. Microscopic examination of the same subjects by thick blood film examined 7 days later at a malaria clinic showed 578 falciparum, and 349 vivax and mixed infection (F+V) 41. The technology proved highly effective in detecting falciparum malaria at the peripheral levels where access to malaria laboratory services are difficult, thus allowing immediate administration of a complete course of treatment in the absence of a microscopic examination.
Mills, Lisa A; Kagaayi, Joseph; Nakigozi, Gertrude; Galiwango, Ronald M; Ouma, Joseph; Shott, Joseph P; Ssempijja, Victor; Gray, Ronald H; Wawer, Maria J; Serwadda, David; Quinn, Thomas C; Reynolds, Steven J
2010-01-01
We compared results of a malaria rapid diagnostic test (Binax Now Malaria, Binax-M, Inverness Medical Innovations, Inc., Waltham, MA) performed at rural mobile clinics in Uganda by clinicians evaluating febrile adult HIV patients to thick smear evaluated at a central laboratory by trained microscopists. Two hundred forty-six samples were analyzed, including 14 (5.7%) which were thick-smear positive for falciparum malaria. Sensitivity of Binax-M compared with thick smear was 85.7% (95% CI: 57.2-98.2), specificity 97.8% (95% CI: 94.9-99.3), positive and negative predictive values were 70.6% (95% CI: 44.0-89.7) and 99.1% (95% CI: 96.8-99.9), respectively. The rapid diagnostic test accurately ruled malaria "in or out" at the point-of-care, facilitating appropriate clinical management and averting unnecessary anti-malarial therapy.
Siciliano, Giulia; Alano, Pietro
2015-01-01
The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.
Sutherland, Colin J.; Fifer, Helen; Pearce, Richard J.; bin Reza, Faisal; Nicholas, Meredydd; Haustein, Thomas; Njimgye-Tekumafor, Njah E.; Doherty, Justin F.; Gothard, Philip; Polley, Spencer D.; Chiodini, Peter L.
2009-01-01
Treatment of acute malaria caused by Plasmodium falciparum may include long-half-life drugs, such as the antifolate combination sulfadoxine-pyrimethamine (SP), to provide posttreatment chemoprophylaxis against parasite recrudescence or delayed emergence from the liver. An unusual case of P. falciparum recrudescence in a returned British traveler who received such a regimen, as well as a series of 44 parasite isolates from the same hospital, was analyzed by PCR and direct DNA sequencing for the presence of markers of parasite resistance to chloroquine and antifolates. The index patient harbored a mixture of wild-type and resistant pfdhfr and pfdhps alleles upon initial presentation. During his second malaria episode, he harbored only resistant parasites, with the haplotypes IRNI (codons 51, 59, 108, and 164) and SGEAA (codons 436, 437, 540, 581, and 613) at these two loci, respectively. Analysis of isolates from 44 other patients showed that the pfdhfr haplotype IRNI was common (found in 81% of cases). The SGEAA haplotype of pfdhps was uncommon (found only in eight cases of East African origin [17%]). A previously undescribed mutation, I431V, was observed for seven cases of Nigerian origin, occurring as one of two haplotypes, VAGKGS or VAGKAA. The presence of this mutation was also confirmed in isolates of Nigerian origin from the United Kingdom Malaria Reference Laboratory. The presence of the pfdhps haplotype SGEAA in P. falciparum parasites of East African origin appears to compromise the efficacy of treatment regimens that include SP as a means to prevent recrudescence. Parasites with novel pfdhps haplotypes are circulating in West Africa. The response of these parasites to chemotherapy needs to be evaluated. PMID:19433569
Plasmodium falciparum-induced severe malaria with acute kidney injury and jaundice: a case report
NASA Astrophysics Data System (ADS)
Baswin, A.; Siregar, M. L.; Jamil, K. F.
2018-03-01
P. falciparum-induced severe malaria with life-threatening complications like acute kidney injury (AKI), jaundice, cerebral malaria, severe anemia, acidosis, and acute respiratory distress syndrome (ARDS). A 31-year-old soldier man who works in Aceh Singkil, Indonesia which is an endemic malaria area presented with a paroxysm of fever, shaking chills and sweats over four days, headache, arthralgia, abdominal pain, pale, jaundice, and oliguria. Urinalysis showed hemoglobinuria. Blood examination showed hemolytic anemia, thrombocytopenia, and hyperbilirubinemia. Falciparum malaria was then confirmed by peripheral blood smear, antimalarial medications were initiated, and hemodialysis was performed for eight times. The patient’s condition and laboratory results were quickly normalized. We report a case of P. falciparum-induced severe malaria with AKI and jaundice. The present case suggests that P. falciparum may induce severe malaria with life-threatening complications, early diagnosis and treatment is important to improve the quality of life of patients. Physicians must be alert for correct diagnosis and proper management of imported tropical malaria when patients have travel history in endemic areas.
Majori, Giancarlo
2012-01-01
In Italy at the end of 19th Century, malaria cases amounted to 2 million with 15,000–20,000 deaths per year. Malignant tertian malaria was present in Central-Southern areas and in the islands. Early in the 20th Century, the most important act of the Italian Parliament was the approval of laws regulating the production and free distribution of quinine and the promotion of measures aiming at the reduction of the larval breeding places of Anopheline vectors. The contribution from the Italian School of Malariology (Camillo Golgi, Ettore Marchiafava, Angelo Celli, Giovanni Battista Grassi, Amico Bignami, Giuseppe Bastianelli) to the discovery of the transmission’s mechanism of malaria was fundamental in fostering the initiatives of the Parliament of the Italian Kingdom. A program of cooperation for malaria control in Italy, supported by the Rockefeller Foundation started in 1924, with the establishment of the Experimental Station in Rome, transformed in 1934 into the National Institute of Public Health. Alberto Missiroli, Director of the Laboratory of Malariology, conducted laboratory and field research, that with the advent of DDT brought to Italy by the Allies at the end of the World War II, allowed him to plan a national campaign victorious against the secular scourge. PMID:22550561
Ponce, Camille; Kaczorowski, Flora; Perpoint, Thomas; Miailhes, Patrick; Sigal, Alain; Javouhey, Etienne; Gillet, Yves; Jacquin, Laurent; Douplat, Marion; Tazarourte, Karim; Potinet, Véronique; Simon, Bruno; Lavoignat, Adeline; Bonnot, Guillaume; Sow, Fatimata; Bienvenu, Anne-Lise; Picot, Stéphane
2017-01-01
Background: Sensitive and easy-to-perform methods for the diagnosis of malaria are not yet available. Improving the limit of detection and following the requirements for certification are issues to be addressed in both endemic and non-endemic settings. The aim of this study was to test whether loop-mediated isothermal amplification of DNA (LAMP) may be an alternative to microscopy or real-time PCR for the screening of imported malaria cases in non-endemic area. Results: 310 blood samples associated with 829 suspected cases of imported malaria were tested during a one year period. Microscopy (thin and thick stained blood slides, reference standard) was used for the diagnosis. Real-time PCR was used as a standard of truth, and LAMP (Meridian Malaria Plus) was used as an index test in a prospective study conducted following the Standards for Reporting Diagnosis Accuracy Studies. In the 83 positive samples, species identification was P. falciparum (n = 66), P. ovale (n = 9), P. vivax (n = 3) P. malariae (n = 3) and 2 co-infections with P. falciparum + P.malariae. Using LAMP methods, 93 samples gave positive results, including 4 false-positives. Sensitivity, specificity, positive predictive value and negative predictive value for LAMP tests were 100%, 98.13%, 95.51%, and 100% compared to PCR. Conclusion: High negative predictive value, and limit of detection suggest that LAMP can be used for screening of imported malaria cases in non-endemic countries when expert microscopists are not immediately available. However, the rare occurrence of non-valid results and the need for species identification and quantification of positive samples preclude the use of LAMP as a single reference method. PMID:29251261
Ferede, Getachew; Worku, Abiyu; Getaneh, Alemtegna; Ahmed, Ali; Haile, Tarekegn; Abdu, Yenus; Tessema, Belay; Wondimeneh, Yitayih; Alemu, Abebe
2013-01-01
Background. Malaria is a major public health problem in Ethiopia where an estimated 68% of the population lives in malarious areas. Studying its prevalence is necessary to implement effective control measures. Therefore, the aim of this study was to determine seven-year slide positive rate of malaria. Methods. A retrospective study was conducted at Metema Hospital from September 2006 to August 2012. Seven-year malaria cases data had been collected from laboratory registration book. Results. A total of 55,833 patients were examined for malaria; of these, 9486 (17%) study subjects were positive for malaria. The predominant Plasmodium species detected was P. falciparum (8602) (90.7%) followed by P. vivax (852) (9%). A slide positive rate of malaria within the last seven years (2006-2012) was almost constant with slight fluctuation. The age groups of 5-14 years old were highly affected by malariainfection (1375) (20.1%), followed by 15-29 years old (3986) (18.5%). High slide positive rate of malaria occurred during spring (September-November), followed by summer (June-August). Conclusion. Slide positive rate of malaria was high in study area. Therefore, health planners and administrators should give intensive health education for the community.
Wogu, M N; Nduka, F O
2018-01-01
The World Health Organization's policy on laboratory test of all suspected malaria cases before treatment has not yielded significant effects in several rural areas of Sub-Saharan Africa due to inadequate diagnostic infrastructure, leading to high morbidity and mortality rates. A cross-sectional randomized study was conducted to evaluate the validity of clinical malaria diagnosis through comparison with microscopy and rapid diagnostic test kits (RDTs) using 1000 consenting outpatients of a tertiary hospital in Nigeria. Physicians conducted clinical diagnosis, and blood samples were collected through venous procedure and analyzed for malaria parasites using Giemsa microscopy and RDT kits. Microscopy was considered the diagnostic "gold standard" and all data obtained were statistically analyzed using Chi-square test with a P value <0.05 considered significant. Malaria prevalence values of 20.1%, 43.1%, and 29.7% were obtained for clinical diagnosis, microscopy, and RDTs, respectively ( P < 0.05). Values of 47.2%, 95.9%, and 77.8% were obtained for sensitivity, specificity, and diagnostic accuracy, respectively, in clinical diagnosis, while RDTs had sensitivity, specificity, and diagnostic accuracy values of 73.7%, 97.3%, and 88.3%, respectively, when compared to microscopy ( P < 0.05). Clinical diagnosed malaria cases should be confirmed with a parasite-based laboratory diagnosis and more qualitative research is needed to explore why clinicians still use clinical diagnosis despite reported cases of its ineffectiveness.
Olofin, Ibironke O; Spiegelman, Donna; Aboud, Said; Duggan, Christopher; Danaei, Goodarz; Fawzi, Wafaie W
2014-12-01
HIV and malaria infections occur in the same individuals, particularly in sub-Saharan Africa. We examined whether daily multivitamin supplementation (vitamins B complex, C, and E) or vitamin A supplementation altered malaria incidence in HIV-infected women of reproductive age. HIV-infected pregnant Tanzanian women recruited into the study were randomly assigned to daily multivitamins (B complex, C, and E), vitamin A alone, both multivitamins and vitamin A, or placebo. Women received malaria prophylaxis during pregnancy and were followed monthly during the prenatal and postpartum periods. Malaria was defined in 2 ways: presumptive diagnosis based on a physician's or nurse's clinical judgment, which in many cases led to laboratory investigations, and periodic examination of blood smears for malaria parasites. Multivitamin supplementation compared with no multivitamins significantly lowered women's risk of presumptively diagnosed clinical malaria (relative risk: 0.78, 95% confidence interval: 0.67 to 0.92), although multivitamins increased their risk of any malaria parasitemia (relative risk: 1.24, 95% confidence interval: 1.02 to 1.50). Vitamin A supplementation did not change malaria incidence during the study. Multivitamin supplements have been previously shown to reduce HIV disease progression among HIV-infected women, and consistent with that, these supplements protected against development of symptomatic malaria. The clinical significance of increased risk of malaria parasitemia among supplemented women deserves further research, however. Preventive measures for malaria are warranted as part of an integrated approach to the care of HIV-infected individuals exposed to malaria.
Odhiambo, Fredrick; Buff, Ann M; Moranga, Collins; Moseti, Caroline M; Wesongah, Jesca Okwara; Lowther, Sara A; Arvelo, Wences; Galgalo, Tura; Achia, Thomas O; Roka, Zeinab G; Boru, Waqo; Chepkurui, Lily; Ogutu, Bernhards; Wanja, Elizabeth
2017-09-13
Malaria accounts for ~21% of outpatient visits annually in Kenya; prompt and accurate malaria diagnosis is critical to ensure proper treatment. In 2013, formal malaria microscopy refresher training for microscopists and a pilot quality-assurance (QA) programme for malaria diagnostics were independently implemented to improve malaria microscopy diagnosis in malaria low-transmission areas of Kenya. A study was conducted to identify factors associated with malaria microscopy performance in the same areas. From March to April 2014, a cross-sectional survey was conducted in 42 public health facilities; 21 were QA-pilot facilities. In each facility, 18 malaria thick blood slides archived during January-February 2014 were selected by simple random sampling. Each malaria slide was re-examined by two expert microscopists masked to health-facility results. Expert results were used as the reference for microscopy performance measures. Logistic regression with specific random effects modelling was performed to identify factors associated with accurate malaria microscopy diagnosis. Of 756 malaria slides collected, 204 (27%) were read as positive by health-facility microscopists and 103 (14%) as positive by experts. Overall, 93% of slide results from QA-pilot facilities were concordant with expert reference compared to 77% in non-QA pilot facilities (p < 0.001). Recently trained microscopists in QA-pilot facilities performed better on microscopy performance measures with 97% sensitivity and 100% specificity compared to those in non-QA pilot facilities (69% sensitivity; 93% specificity; p < 0.01). The overall inter-reader agreement between QA-pilot facilities and experts was κ = 0.80 (95% CI 0.74-0.88) compared to κ = 0.35 (95% CI 0.24-0.46) between non-QA pilot facilities and experts (p < 0.001). In adjusted multivariable logistic regression analysis, recent microscopy refresher training (prevalence ratio [PR] = 13.8; 95% CI 4.6-41.4), ≥5 years of work experience (PR = 3.8; 95% CI 1.5-9.9), and pilot QA programme participation (PR = 4.3; 95% CI 1.0-11.0) were significantly associated with accurate malaria diagnosis. Microscopists who had recently completed refresher training and worked in a QA-pilot facility performed the best overall. The QA programme and formal microscopy refresher training should be systematically implemented together to improve parasitological diagnosis of malaria by microscopy in Kenya.
Bawate, Charles; Callender-Carter, Sylvia T; Nsajju, Ben; Bwayo, Denis
2016-02-24
Malaria remains a major public health threat accounting for 30.4 % of disease morbidity in outpatient clinic visits across all age groups in Uganda. Consequently, malaria control remains a major public health priority in endemic countries such as Uganda. Experiences from other countries in Africa that revised their malaria case management suggest that health workers adherence may be problematic. A descriptive, cross-sectional design was used and collected information on health system, health workers and patients. Using log-binomial regression model, adjusted prevalence risk ratios (PRRs) and their associated 95 % confidence intervals were determined in line with adherence to new treatment guidelines of parasitological diagnosis and prompt treatment with artemisinin combination therapy (ACT). Nine health centres, 24 health workers and 240 patient consultations were evaluated. Overall adherence to national malaria treatment guidelines (NMTG) was 50.6 % (122/241). It was significantly high at HC III [115 (53 %)] than at HC IV (29 %) [PRR = 0.28 (95 % CI 0.148 0.52), p = 0.000]. Compared to the nursing aide, the adherence level was 1.57 times higher among enrolled nurses (p = 0.004) and 1.68 times higher among nursing officers, p = 0.238, with statistical significance among the former. No attendance of facility malaria-specific continuing medical education (CME) sessions [PRR = 1.9 (95 % CI 1.29 2.78), p = 0.001] and no display of malaria treatment job aides in consultation rooms [PRR = 0.64 (95 % CI 0.4 1.03), p = 0.07] was associated with increased adherence to guidelines with the former showing a statistical significance and the association of the latter borderline statistical significance. The adherence was higher when the laboratory was functional [PRR = 0.47 (95 % CI 0.35 0.63)] when the laboratory was functional in previous 6 months. Age of health worker, duration of employment, supervision, educational level, and age of patient were found not associated with adherence to new treatment guidelines. Adherence to malaria treatment guidelines in Uganda is sub-optimal. There is an urgent need for deliberate interventions to improve adherence to these guidelines. Possible interventions to be explored should include: provision of job aides and improved access to laboratory services. There is also a need for continuous medical educational sessions for health workers, especially those at higher-level facilities and higher cadres, on adherence to guidelines in management of fever, including management of other causes of fever.
Evaluation of the Clearview® malaria pLDH malaria rapid diagnostic test in a non-endemic setting
2011-01-01
Background Malaria Rapid Diagnostic Tests (RDTs) are widely used to diagnose malaria. The present study evaluated a new RDT, the Clearview® Malaria pLDH test targeting the pan-Plasmodium antigen lactate dehydrogenase (pLDH). Methods The Clearview® Malaria pLDH test was evaluated on fresh samples obtained in returned international travellers using microscopy corrected by PCR as the reference method. Included samples were Plasmodium falciparum (139), Plasmodium vivax (22), Plasmodium ovale (20), Plasmodium malariae (7), and 102 negative. Results Overall sensitivity for the detection of Plasmodium spp was 93.2%. For P. falciparum, the sensitivity was 98.6%; for P. vivax, P. ovale and P. malariae, overall sensitivities were 90.9%, 60.0% and 85.7% respectively. For P. falciparum and for P. vivax, the sensitivities increased to 100% at parasite densities above 100/μl. The specificity was 100%. The test was easily to perform and the result was stable for at least 1 hour. Conclusion The Clearview® Malaria pLDH was efficient for the diagnosis of malaria. The test was very sensitive for P. falciparum and P. vivax detection. The sensitivities for P. ovale and P. malariae were better than other RDTs PMID:21951996
Maokola, W; Willey, B A; Shirima, K; Chemba, M; Armstrong Schellenberg, J R M; Mshinda, H; Alonso, P; Tanner, M; Schellenberg, D
2011-06-01
To describe and evaluate the use of handheld computers for the management of Health Management Information System data. Electronic data capture took place in 11 sentinel health centres in rural southern Tanzania. Information from children attending the outpatient department (OPD) and the Expanded Program on Immunization vaccination clinic was captured by trained local school-leavers, supported by monthly supervision visits. Clinical data included malaria blood slides and haemoglobin colour scale results. Quality of captured data was assessed using double data entry. Malaria blood slide results from health centre laboratories were compared to those from the study's quality control laboratory. The system took 5 months to implement, and few staffings or logistical problems were encountered. Over the following 12 months (April 2006-March 2007), 7056 attendances were recorded in 9880 infants aged 2-11 months, 50% with clinical malaria. Monthly supervision visits highlighted incomplete recording of information between OPD and laboratory records, where on average 40% of laboratory visits were missing the record of their corresponding OPD visit. Quality of microscopy from health facility laboratories was lower overall than that from the quality assurance laboratory. Electronic capture of HMIS data was rapidly and successfully implemented in this resource-poor setting. Electronic capture alone did not resolve issues of data completeness, accuracy and reliability, which are essential for management, monitoring and evaluation; suggestions to monitor and improve data quality are made. © 2011 Blackwell Publishing Ltd.
Changing pattern of malaria in Bissau, Guinea Bissau.
Rodrigues, Amabelia; Schellenberg, Joanna Armstrong; Kofoed, Poul-Erik; Aaby, Peter; Greenwood, Brian
2008-03-01
To describe the epidemiology of malaria in Guinea-Bissau, in view of the fact that more funds are available now for malaria control in the country. From May 2003 to May 2004, surveillance for malaria was conducted among children less than 5 years of age at three health centres covering the study area of the Bandim Health Project (BHP) and at the outpatient clinic of the national hospital in Bissau. Cross-sectional surveys were conducted in the community in different malaria seasons. Malaria was overdiagnosed in both health centres and hospital. Sixty-four per cent of the children who presented at a health centre were clinically diagnosed with malaria, but only 13% of outpatient children who tested for malaria had malaria parasitaemia. Only 44% (963/2193) of children admitted to hospital with a diagnosis of malaria had parasitaemia. The proportion of positive cases increased with age. Among hospitalized children with malaria parasitaemia, those less than 2 years old were more likely to have moderate anaemia (RR = 1.27; 95% CI: 1.02-1.56) (P = 0.03) or severe anaemia (RR = 1.67; 95% CI: 1.25-2.24) (P = 0.0005) than older children. The prevalence of malaria parasitaemia in the community was low (3%, 53/1926). In Bissau, the prevalence of malaria parasitaemia in the community is now low and malaria is over-diagnosed in health facilities. Laboratory support will be essential to avoid unnecessary use of the artemisinin combination therapy which is now being introduced as first-line treatment in Bissau with support from the Global Fund.
Stevenson, Mary M.; Ing, Rebecca; Berretta, Floriana; Miu, Jenny
2011-01-01
Although a clearer understanding of the underlying mechanisms involved in protection and immunopathology during blood-stage malaria has emerged, the mechanisms involved in regulating the adaptive immune response especially those required to maintain a balance between beneficial and deleterious responses remain unclear. Recent evidence suggests the importance of CD11c+ dendritic cells (DC) and CD4+Foxp3+ regulatory T cells in regulating immune responses during infection and autoimmune disease, but information concerning the contribution of these cells to regulating immunity to malaria is limited. Here, we review recent findings from our laboratory and others in experimental models of malaria in mice and in Plasmodium-infected humans on the roles of DC and natural regulatory T cells in regulating adaptive immunity to blood-stage malaria. PMID:22110383
Characterizing the genetic diversity of the monkey malaria parasite Plasmodium cynomolgi
Sutton, Patrick L.; Luo, Zunping; Divis, Paul C. S.; Friedrich, Volney K.; Conway, David J.; Singh, Balbir; Barnwell, John W.; Carlton, Jane M.; Sullivan, Steven A.
2016-01-01
Plasmodium cynomolgi is a malaria parasite that typically infects Asian macaque monkeys, and humans on rare occasions. P. cynomolgi serves as a model system for the human malaria parasite Plasmodium vivax, with which it shares such important biological characteristics as formation of a dormant liver stage and a preference to invade reticulocytes. While genomes of three P. cynomolgi strains have been sequenced, genetic diversity of P. cynomolgi has not been widely investigated. To address this we developed the first panel of P. cynomolgi microsatellite markers to genotype eleven P. cynomolgi laboratory strains and 18 field isolates from Sarawak, Malaysian Borneo. We found diverse genotypes among most of the laboratory strains, though two nominally different strains were found to be genetically identical, We also investigated sequence polymorphism in two erythrocyte invasion gene families, the reticulocyte binding protein and Duffy binding protein genes, in these strains. We also observed copy number variation in rbp genes. PMID:26980604
2011-01-01
Background Access to prompt and effective treatment is a cornerstone of the current malaria control strategy. Delays in starting appropriate treatment is a major contributor to malaria mortality. WHO recommends home management of malaria using artemisininbased combination therapy (ACT) and Rapid Diagnostic tests (RDTs) as one of the strategies for improving access to prompt and efective malaria case management. Methods A prospective evaluation of the effectiveness of using community health workers (CHWs) as delivery points for ACT and RDTs in the home management of malaria in two districts in Zambia. Results CHWs were able to manage malaria fevers by correctly interpreting RDT results and appropriately prescribing antimalarials. All severe malaria cases and febrile non-malaria fevers were referred to a health facility for further management. There were variations in malaria prevalence between the two districts and among the villages in each district. 100% and 99.4% of the patients with a negative RDT result were not prescribed an antimalarial in the two districts respectively. No cases progressed to severe malaria and no deaths were recorded during the study period. Community perceptions were positive. Conclusion CHWs are effective delivery points for prompt and effective malaria case management at community level. Adherence to test results is the best ever reported in Zambia. Further areas of implementation research are discussed. PMID:21651827
Ferreira, Efrem d'Avila; Alexandre, Márcia A; Salinas, Jorge L; de Siqueira, André M; Benzecry, Silvana G; de Lacerda, Marcus V G; Monteiro, Wuelton M
2015-09-17
Multiple studies in various parts of the world have analysed the association of nutritional status on malaria using anthropometric measures, but results differ due to the heterogeneity of the study population, species of the parasite, and other factors involved in the host and parasite relationship. The aim of this study was to perform a systematic review on the inter-relationship of nutritional status based on anthropometry and malarial infection. Two independent reviewers accessed the MEDLINE and LILACS databases using the same search terms related to malaria and anthropometry. Prospective studies associating anthropometry and malaria (incidence or severity) were selected. References from the included studies and reviews were used to increase the review sensitivity. Data were extracted using a standardized form and the quality of the prospective studies was assessed. Selected articles were grouped based on exposures and outcomes. The search identified a total of 1688 studies: 1629 from MEDLINE and 59 from LILACS. A total of 23 met the inclusion criteria. Five additional studies were detected by reading the references of the 23 included studies and reviews, totaling 28 studies included. The mean sample size was 662.1 people, ranging from 57 to 5620. The mean follow-up was 365.8 days, ranging from 14 days to 1 year and 9 months, and nine studies did not report the follow-up period. Prospective studies assessing the relationship between malaria and malnutrition were mostly carried out in Africa. Of the 20 studies with malarial outcomes, fifteen had high and five had average quality, with an average score of 80.5 %. Most anthropometric parameters had no association with malaria incidence (47/52; 90.4 %) or parasite density (20/25; 80 %). However, the impact of malnutrition was noted in malaria mortality and severity (7/17; 41.2 %). Regarding the effects of malaria on malnutrition, malaria was associated with very few anthropometric parameters (8/39; 20.6 %). This systematic review found that most of the evidence associating malaria and malnutrition comes from P. falciparum endemic areas, with a significant heterogeneity in studies' design. Apparently malnutrition has not a great impact on malaria morbidity, but could have a negative impact on malaria mortality and severity. Most studies show no association between malaria and subsequent malnutrition in P. falciparum areas. In Plasmodium vivax endemic areas, malaria was associated with malnutrition in children. A discussion among experts in the field is needed to standardize future studies to increase external validity and accuracy.
Evaluation of the OnSite malaria rapid test performance in Miandrivazo, Madagascar.
Ravaoarisoa, E; Andriamiandranoro, T; Raherinjafy, R; Jahevitra, M; Razanatsiorimalala, S; Andrianaranjaka, V; Randrianarivelojosia, M
2017-10-01
The performance of the malaria rapid diagnostic test OnSite-for detecting pan specific pLDH and Plasmodium falciparum specific HRP2 - was assessed during the malaria transmission peak period in Miandrivazo, in the southwestern part of Madagascar from April 20 to May 6, 2010. At the laboratory, the quality control OnSite Malaria Rapid Test according to the WHO/TDR/FIND method demonstrated that the test had good sensitivity. Of the 218 OnSite tests performed at the Miandrivazo Primary Health Center on patients with fever or a recent history of fever, four (1.8%, 95% CI: 0.6-4.9%) were invalid. Ninety four (43,1%) cases of malaria were confirmed by microscopy, of which 90 were P. falciparum malaria and 4 Plasmodium vivax malaria. With a Cohen's kappa coefficient of 0.94, the agreement between microscopy and OnSite is excellent. Compared with the rapid test CareStart™ commonly used within the public health structures in Madagascar, the sensitivity and specificity of the OnSite test were 97.9% and 96.8%.
Imai, Kazuo; Tarumoto, Norihito; Misawa, Kazuhisa; Runtuwene, Lucky Ronald; Sakai, Jun; Hayashida, Kyoko; Eshita, Yuki; Maeda, Ryuichiro; Tuda, Josef; Murakami, Takashi; Maesaki, Shigefumi; Suzuki, Yutaka; Yamagishi, Junya; Maeda, Takuya
2017-09-13
A simple and accurate molecular diagnostic method for malaria is urgently needed due to the limitations of conventional microscopic examination. In this study, we demonstrate a new diagnostic procedure for human malaria using loop mediated isothermal amplification (LAMP) and the MinION™ nanopore sequencer. We generated specific LAMP primers targeting the 18S-rRNA gene of all five human Plasmodium species including two P. ovale subspecies (P. falciparum, P. vivax, P. ovale wallikeri, P. ovale curtisi, P. knowlesi and P. malariae) and examined human blood samples collected from 63 malaria patients in Indonesia. Additionally, we performed amplicon sequencing of our LAMP products using MinION™ nanopore sequencer to identify each Plasmodium species. Our LAMP method allowed amplification of all targeted 18S-rRNA genes of the reference plasmids with detection limits of 10-100 copies per reaction. Among the 63 clinical samples, 54 and 55 samples were positive by nested PCR and our LAMP method, respectively. Identification of the Plasmodium species by LAMP amplicon sequencing analysis using the MinION™ was consistent with the reference plasmid sequences and the results of nested PCR. Our diagnostic method combined with LAMP and MinION™ could become a simple and accurate tool for the identification of human Plasmodium species, even in resource-limited situations.
Malaria in Tunisian Military Personnel after Returning from External Operation
Ajili, Faïda; Battikh, Riadh; Laabidi, Janet; Abid, Rim; Bousetta, Najeh; Jemli, Bouthaina; Ben abdelhafidh, Nadia; Bassem, Louzir; Gargouri, Saadia; Othmani, Salah
2013-01-01
Introduction. Malaria had been eliminated in Tunisia since 1979, but there are currently 40 to 50 imported cases annually. Soldiers are no exception as the incidence of imported malaria is increasing in Tunisian military personnel after returning from malaria-endemic area, often in Sub-Saharan Africa. Methods. We retrospectively analyzed the clinical and biological presentations, treatment, and outcomes of 37 Tunisian military personnel hospitalized at the Department of Internal Medicine, the Military Hospital of Tunis, between January 1993 and January 2011, for imported malaria. The clinical and laboratory features were obtained from the medical records and a questionnaire was filled by the patients about the compliance of malaria prophylaxis. Results. Thirty-seven male patients, with a mean age of 41 years, were treated for malaria infection. Twenty-two were due to Plasmodium falciparum. The outcome was favourable for all patients, despite two severe access. The long-term use of chemoprophylaxis has been adopted by only 21 (51%) of expatriate military for daily stresses. Moreover, poor adherence was found in 32 patients. Conclusion. The risk of acquiring malaria infection in Tunisian military personnel can largely be prevented by the regular use of chemoprophylactic drugs combined with protective measures against mosquito bites. PMID:23766922
Ch’ng, Jun-Hong; Moll, Kirsten; Quintana, Maria del Pilar; Chan, Sherwin Chun Leung; Masters, Ellen; Moles, Ernest; Liu, Jianping; Eriksson, Anders B.; Wahlgren, Mats
2016-01-01
The spread of artemisinin-resistant parasites could lead to higher incidence of patients with malaria complications. However, there are no current treatments that directly dislodge sequestered parasites from the microvasculature. We show that four common antiplasmodial drugs do not disperse rosettes (erythrocyte clusters formed by malaria parasites) and therefore develop a cell-based high-throughput assay to identify potential rosette-disrupting compounds. A pilot screen of 2693 compounds identified Malaria Box compound MMV006764 as a potential candidate. Although it reduced rosetting by a modest 20%, MMV006764 was validated to be similarly effective against both blood group O and A rosettes of three laboratory parasite lines. Coupled with its antiplasmodial activity and drug-likeness, MMV006764 represents the first small-molecule compound that disrupts rosetting and could potentially be used in a resource-limited setting to treat patients deteriorating rapidly from malaria complications. Such dual-action drugs that simultaneously restore microcirculation and reduce parasite load could significantly reduce malaria morbidity and mortality. PMID:27403804
MALARIAL RETINOPATHY: A NEWLY ESTABLISHED DIAGNOSTIC SIGN IN SEVERE MALARIA
BEARE, NICHOLAS A. V.; TAYLOR, TERRIE E.; HARDING, SIMON P.; LEWALLEN, SUSAN; MOLYNEUX, MALCOLM E.
2008-01-01
Severe malaria is commonly misdiagnosed in Africa, leading to a failure to treat other life-threatening illnesses. In malaria-endemic areas, parasitemia does not ensure a diagnosis of severe malaria because parasitemia can be incidental to other concurrent disease. The detection of malarial retinopathy is a candidate diagnostic test for cerebral malaria. Malarial retinopathy consists of a set of retinal abnormalities that is unique to severe malaria and common in children with cerebral malaria. Its presence and severity are related to risk of death and length of coma in survivors. A large, prospective autopsy study of children dying with cerebral malaria in Malawi found that malarial retinopathy was better than any other clinical or laboratory feature in distinguishing malarial from non-malarial coma. However, visualization has to date relied on specialist examination techniques. Further studies are planned to evaluate the usefulness of funduscopy by general clinicians in a variety of settings across Africa. Studies of the retina and retinal blood vessels provide an unparalleled opportunity to visualize an infected microvasculature and its effect on neural tissue in vivo. This report reviews current knowledge of malarial retinopathy, including its use as a diagnostic test in the comatose child, and its value as a tool for research into the pathophysiology of cerebral malaria. PMID:17123967
Use of a public-private partnership in malaria elimination efforts in Sri Lanka; a case study.
Fernando, Deepika; Wijeyaratne, Pandu; Wickremasinghe, Rajitha; Abeyasinghe, Rabindra R; Galappaththy, Gawrie N L; Wickremasinghe, Renu; Hapugoda, M; Abeywickrema, W A; Rodrigo, Chaturaka
2018-03-23
In special circumstances, establishing public private partnerships for malaria elimination may achieve targets faster than the state sector acting by itself. Following the end of the separatist war in Sri Lanka in 2009, the Anti Malaria Campaign (AMC) of Sri Lanka intensified malaria surveillance jointly with a private sector partner, Tropical and Environmental Diseases and Health Associates Private Limited (TEDHA) with a view to achieving malaria elimination targets by 2014. This is a case study on how public private partnerships can be effectively utilized to achieve malaria elimination goals. TEDHA established 50 Malaria Diagnostic Laboratories and 17 entomology surveillance sentinel sites in consultation with the AMC in areas difficult to access by government officials (five districts in two provinces affected by war). TEDHA screened 994,448 individuals for malaria, of which 243,867 were screened at mobile malaria clinics as compared to 1,102,054 screened by the AMC. Nine malaria positives were diagnosed by TEDHA, while the AMC diagnosed 103 malaria cases in the same districts in parallel. Over 13,000 entomological activity days were completed. Relevant information was shared with AMC and the data recorded in the health information system. A successful public-private partnership model for malaria elimination was initiated at a time when the health system was in disarray in war ravaged areas of Sri Lanka. This ensured a high annual blood examination rate and screening of vulnerable people in receptive areas. These were important for certification of malaria-free status which Sri Lanka eventually received in 2016.
Malaria in India: The Center for the Study of Complex Malaria in India
Das, Aparup; Anvikar, Anupkumar R.; Cator, Lauren J.; Dhiman, Ramesh C.; Eapen, Alex; Mishra, Neelima; Nagpal, Bhupinder N.; Nanda, Nutan; Raghavendra, Kamaraju; Read, Andrew F.; Sharma, Surya K.; Singh, Om P.; Singh, Vineeta; Sinnis, Photini; Srivastava, Harish C.; Sullivan, Steven A.; Sutton, Patrick L.; Thomas, Matthew B.; Carlton, Jane M.; Valecha, Neena
2012-01-01
Malaria is a major public health problem in India and one which contributes significantly to the overall malaria burden in Southeast Asia. The National Vector Borne Disease Control Program of India reported ~1.6 million cases and ~1100 malaria deaths in 2009. Some experts argue that this is a serious underestimation and that the actual number of malaria cases per year is likely between 9 and 50 times greater, with an approximate 13-fold underestimation of malaria-related mortality. The difficulty in making these estimations is further exacerbated by (i) highly variable malaria eco-epidemiological profiles, (ii) the transmission and overlap of multiple Plasmodium species and Anopheles vectors, (iii) increasing antimalarial drug resistance and insecticide resistance, and (iv) the impact of climate change on each of these variables. Simply stated, the burden of malaria in India is complex. Here we describe plans for a Center for the Study of Complex Malaria in India (CSCMi), one of ten International Centers of Excellence in Malaria Research (ICEMRs) located in malarious regions of the world recently funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health. The CSCMi is a close partnership between Indian and United States scientists, and aims to address major gaps in our understanding of the complexity of malaria in India, including changing patterns of epidemiology, vector biology and control, drug resistance, and parasite genomics. We hope that such a multidisciplinary approach that integrates clinical and field studies with laboratory, molecular, and genomic methods will provide a powerful combination for malaria control and prevention in India. PMID:22142788
Xia, Shang; Ma, Jin-Xiang; Wang, Duo-Quan; Li, Shi-Zhu; Rollinson, David; Zhou, Shui-Sen; Zhou, Xiao-Nong
2016-06-03
In China, malaria has been posing a significant economic burden on households. To evaluate malaria economic burden in terms of both direct and indirect costs has its meaning in improving the effectiveness of malaria elimination program in China. A number of study sites (eight counties in five provinces) were selected from the malaria endemic area in China, representing the different levels of malaria incidence, risk classification, economic development. A number of households with malaria cases (n = 923) were surveyed during the May to December in 2012 to collect information on malaria economic burden. Descriptive statistics were used to characterize the basic profiles of selected malaria cases in terms of their gender, age group, occupation and malaria type. The malaria economic costs were evaluated by direct and indirect costs. Comparisons were carried out by using the chi-square test (or Z-test) and the Mann-Whitney U test among malaria cases with reference to local/imported malaria patients, hospitalized/out patients, and treatment hospitals. The average cost of malaria per case was 1 691.23 CNY (direct cost was 735.41 CNY and indirect cost was 955.82 CNY), which accounted for 11.1 % of a household's total income. The average costs per case for local and imported malaria were 1 087.58 CNY and 4271.93 CNY, respectively. The average cost of a malaria patient being diagnosed and treated in a hospital at the county level or above (3 975.43 CNY) was 4.23 times higher than that of malaria patient being diagnosed and treated at a village or township hospital (938.80 CNY). This study found that malaria has been posing a significant economic burden on households in terms of direct and indirect costs. There is a need to improve the effectiveness of interventions in order to reduce the impact costs of malaria, especially of imported infections, in order to eliminate the disease in China.
Current management and prevention of malaria in pregnancy: a review.
Agboghoroma, C O
2014-01-01
Pregnant women suffer more frequent and severe malaria than non-pregnant women. Malaria in pregnancy contributes to the high maternal and perinatal morbidity and mortality in Africa. To review the burden and highlight the current management and prevention strategies for control of malaria in pregnancy in Africa. Papers for this review were identified by searches of PubMed and Google, and references from relevant articles. Search terms were "malaria", "malaria in pregnancy", "Malaria during pregnancy" and "antimalarial drug". Only papers published in English between 1983 and 2013 were included. In malarial endemic areas, acquired partial malarial immunity is not effective during pregnancy. Pregnant women are prone to frequent malaria infections which may be severe or asymptomatic but associated with placental parasitization. Malaria contributes 2-15% to maternal anaemia, 13-70% to intrauterine growth restriction, 8-14% to low birth weight, 8-36% to prematurity, 3-8% to infant deaths and 2.9-17.6% to maternal mortality. The control of malaria in pregnancy is currently predicated on three main strategies: 1) Prompt and effective case management of malaria; 2).Use of Insecticide-treated nets; and 3).Intermittent preventive treatment in pregnancy with sulfadoxine-pyrimethamine. Artemisinin-based combined therapy is the recommended treatment for uncomplicated malaria in the second and third trimesters of pregnancy, while quinine is used in the first trimester and for severe cases of malaria at any gestational age. The control of malaria during pregnancy should be an integral part of efforts to reduce maternal and perinatal morbidity and mortality in Africa.
Goheen, M M; Wegmüller, R; Bah, A; Darboe, B; Danso, E; Affara, M; Gardner, D; Patel, J C; Prentice, A M; Cerami, C
2016-12-01
Iron deficiency causes long-term adverse consequences for children and is the most common nutritional deficiency worldwide. Observational studies suggest that iron deficiency anemia protects against Plasmodium falciparum malaria and several intervention trials have indicated that iron supplementation increases malaria risk through unknown mechanism(s). This poses a major challenge for health policy. We investigated how anemia inhibits blood stage malaria infection and how iron supplementation abrogates this protection. This observational cohort study occurred in a malaria-endemic region where sickle-cell trait is also common. We studied fresh RBCs from anemic children (135 children; age 6-24months; hemoglobin <11g/dl) participating in an iron supplementation trial (ISRCTN registry, number ISRCTN07210906) in which they received iron (12mg/day) as part of a micronutrient powder for 84days. Children donated RBCs at baseline, Day 49, and Day 84 for use in flow cytometry-based in vitro growth and invasion assays with P. falciparum laboratory and field strains. In vitro parasite growth in subject RBCs was the primary endpoint. Anemia substantially reduced the invasion and growth of both laboratory and field strains of P. falciparum in vitro (~10% growth reduction per standard deviation shift in hemoglobin). The population level impact against erythrocytic stage malaria was 15.9% from anemia compared to 3.5% for sickle-cell trait. Parasite growth was 2.4 fold higher after 49days of iron supplementation relative to baseline (p<0.001), paralleling increases in erythropoiesis. These results confirm and quantify a plausible mechanism by which anemia protects African children against falciparum malaria, an effect that is substantially greater than the protection offered by sickle-cell trait. Iron supplementation completely reversed the observed protection and hence should be accompanied by malaria prophylaxis. Lower hemoglobin levels typically seen in populations of African descent may reflect past genetic selection by malaria. National Institute of Child Health and Development, Bill and Melinda Gates Foundation, UK Medical Research Council (MRC) and Department for International Development (DFID) under the MRC/DFID Concordat. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
2013-01-01
A case of autochthonous Plasmodium vivax malaria with sub-microscopic parasitaemia and polyclonal B-cell activation (PBA) (as reflected by positive IgM and IgG serology for toxoplasmosis, cytomegalovirus, and antinuclear and rheumatoid factors) was diagnosed by polymerase chain reaction (PCR) after consecutive negative rapid diagnostic test results and blood films. The patient, a 44-year-old man from Rio de Janeiro state, Brazil, had visited the Atlantic Forest, a tourist, non-malaria-endemic area where no autochthonous cases of ’bromeliad malaria‘ has ever been described. The characteristic pattern of fever, associated with PBA, was the clue to malaria diagnosis, despite consecutive negative thick blood smears. The study highlights a need for changes in clinical and laboratory diagnostic approaches, namely the incorporation of PCR as part of the current routine malaria diagnostic methods in non-endemic areas. PMID:24200365
Culture adaptation of malaria parasites selects for convergent loss-of-function mutants.
Claessens, Antoine; Affara, Muna; Assefa, Samuel A; Kwiatkowski, Dominic P; Conway, David J
2017-01-24
Cultured human pathogens may differ significantly from source populations. To investigate the genetic basis of laboratory adaptation in malaria parasites, clinical Plasmodium falciparum isolates were sampled from patients and cultured in vitro for up to three months. Genome sequence analysis was performed on multiple culture time point samples from six monoclonal isolates, and single nucleotide polymorphism (SNP) variants emerging over time were detected. Out of a total of five positively selected SNPs, four represented nonsense mutations resulting in stop codons, three of these in a single ApiAP2 transcription factor gene, and one in SRPK1. To survey further for nonsense mutants associated with culture, genome sequences of eleven long-term laboratory-adapted parasite strains were examined, revealing four independently acquired nonsense mutations in two other ApiAP2 genes, and five in Epac. No mutants of these genes exist in a large database of parasite sequences from uncultured clinical samples. This implicates putative master regulator genes in which multiple independent stop codon mutations have convergently led to culture adaptation, affecting most laboratory lines of P. falciparum. Understanding the adaptive processes should guide development of experimental models, which could include targeted gene disruption to adapt fastidious malaria parasite species to culture.
Woodrow, Charles J; Eziefula, Alice C; Agranoff, Dan; Scott, Geoffrey M; Watson, Julie; Chiodini, Peter L; Lockwood, Diana N J; Grant, Alison D
2007-01-01
To implement a policy of systematic screening for viral haemorrhagic fever (VHF) among travellers returning from African countries with fever, commencing at initial clinical contact. A protocol based on UK Advisory Committee on Dangerous Pathogens guidance was developed collaboratively by medical, nursing and laboratory staff. Audit was carried out to quantify resource demands and effects on time to diagnose malaria, the main differential diagnosis. A protocol is now implemented for all patients presenting to HTD with fever, with clear guidelines for interaction with clinical and laboratory staff at each stage. The protocol required moderate amounts of clinical and laboratory staff time and resulted in some additional hospital admissions. The time to a diagnosis of malaria increased from a median of 90 (range 50-125) min in patients without VHF risk to a median of 140 (range 101-225) min (p=0.0025) in those assessed as at risk. Although all acute medical services need to have robust procedures for early detection of patients with serious transmissible conditions, few implement such a policy. Our protocol requires increased human and other resources but has no important impact on the rapidity of diagnosis of malaria, and is now embedded in local practice.
Fernando, Sumadhya D; Ihalamulla, Ratnasiri L; Wickremasinghe, Renu; de Silva, Nipun L; Thilakarathne, Janani H; Wijeyaratne, Pandu; Premaratne, Risintha G
2014-03-15
Individuals with fever are screened for malaria in specially-established malaria diagnostic laboratories set up in rural hospitals in the Northern and Eastern Provinces of Sri Lanka. Large numbers of blood smears negative for malaria parasites are being screened daily. Good quality smears are essential to maintain a high diagnostic competency among the technical staff. The modifications made to the World Health Organization (WHO) standard operating procedures to improve the quality of smears have been studied. A blinded, controlled, interventional study was conducted in 22 intervention and 21 control malaria diagnostic laboratories. Changes were made to the WHO standard operating procedure protocols to prepare, stain and examine blood smears for malaria parasite detection which were implemented in intervention laboratories. These included wipe-cleaning slides, preparing both thick and thin smears on the same slide, reversing the order of collecting blood for thick and thin smears, dry fixing thick smear for 20-25 minutes under table lamp, polishing the edge of spreader slide with sand paper and fixing the thin smear with methanol if not stained within four hours. Parameters with respect to quality of the smear as per WHO criteria were studied using randomly selected slides, and time taken for the report to be issued was recorded in both groups before and after the intervention. There were no significant differences observed in the parameters studied at baseline between the two groups or pre and post intervention in the control group. In the intervention group streak formation in thin smears was reduced from 29.4% to 5.0%. The average fixing time of thick smears was reduced from 2.4 hours to 20 minutes. Inappropriate thickness of thick smears reduced from 18.3% to 1.5%. Overall quality of thick smears and thin smears increased from 76.1% to 98.0% and 81.7% to 87.0%, respectively. The quality of slides bearing both thick and thin smears increased from 60.0% to 87.0%. New protocols with amendments to the WHO standard technical procedures ensure that good quality blood smears are prepared rapidly to diagnose malaria and the time required to issue the reports was reduced.
2012-01-01
Background Ensuring the quality of malaria medicines is crucial in working toward malaria control and eventual elimination. Unlike other validated tests that can assess all critical quality attributes, which is the standard for determining the quality of medicines, basic tests are significantly less expensive, faster, and require less skilled labour; yet, these tests provide reproducible data and information on several critical quality attributes, such as identity, purity, content, and disintegration. Visual and physical inspection also provides valuable information about the manufacturing and the labelling of medicines, and in many cases this inspection is sufficient to detect counterfeit medicines. The Promoting the Quality of Medicines (PQM) programme has provided technical assistance to Amazon Malaria Initiative (AMI) countries to implement the use of basic tests as a key screening mechanism to assess the quality of malaria medicines available to patients in decentralized regions. Methods Trained personnel from the National Malaria Control Programmes (NMCPs), often in collaboration with country’s Official Medicine Control Laboratory (OMCL), developed country- specific protocols that encompassed sampling methods, sample analysis, and data reporting. Sampling sites were selected based on malaria burden, accessibility, and geographical location. Convenience sampling was performed and countries were recommended to store the sampled medicines under conditions that did not compromise their quality. Basic analytical tests, such as disintegration and thin layer chromatography (TLC), were performed utilizing a portable mini-laboratory. Results Results were originally presented at regional meetings in a non-standardized format that lacked relevant medicines information. However, since 2008 information has been submitted utilizing a template specifically developed by PQM for that purpose. From 2005 to 2010, the quality of 1,663 malaria medicines from seven AMI countries was evaluated, mostly collected from the public sector, 1,445/1,663 (86.9%). Results indicate that 193/1,663 (11.6%) were found not to meet quality specifications. Most failures were reported during visual and physical inspection, 142/1663 (8.5%), and most of these were due to expired medicines, 118/142 (83.1%). Samples failing TLC accounted for 27/1,663 (1.6%) and those failing disintegration accounted for 24/1,663 (1.4%). Medicines quality failures decreased significantly during the last two years. Conclusions Basic tests revealed that the quality of medicines in the public sector improved over the years, since the implementation of this type of quality monitoring programme in 2005. However, the lack of consistent confirmatory tests in the quality control (QC) laboratory, utilizing methods that can also evaluate additional quality attributes, could still mask quality issues. In the future, AMI countries should improve coordination with their health authorities and their QC lab consistently, to provide a more complete picture of malaria medicines quality and support the implementation of corrective actions. Facilities in the private and informal sectors also should be included when these sectors constitute an important source of medicines used by malaria patients. PMID:22704680
Pribluda, Victor S; Barojas, Adrian; Añez, Arletta; López, Cecilia G; Figueroa, Ruth; Herrera, Roxana; Nakao, Gladys; Nogueira, Fernando Ha; Pianetti, Gerson A; Povoa, Marinete M; Viana, Giselle Mr; Gomes, Margarete S Mendonça; Escobar, Jose P; Sierra, Olga L Muñoz; Norena, Susana P Rendon; Veloz, Raúl; Bravo, Marcy Silva; Aldás, Martha R; Hindssemple, Alison; Collins, Marilyn; Ceron, Nicolas; Krishnalall, Karanchand; Adhin, Malti; Bretas, Gustavo; Hernandez, Nelly; Mendoza, Marjorie; Smine, Abdelkrim; Chibwe, Kennedy; Lukulay, Patrick; Evans, Lawrence
2012-06-15
Ensuring the quality of malaria medicines is crucial in working toward malaria control and eventual elimination. Unlike other validated tests that can assess all critical quality attributes, which is the standard for determining the quality of medicines, basic tests are significantly less expensive, faster, and require less skilled labour; yet, these tests provide reproducible data and information on several critical quality attributes, such as identity, purity, content, and disintegration. Visual and physical inspection also provides valuable information about the manufacturing and the labelling of medicines, and in many cases this inspection is sufficient to detect counterfeit medicines. The Promoting the Quality of Medicines (PQM) programme has provided technical assistance to Amazon Malaria Initiative (AMI) countries to implement the use of basic tests as a key screening mechanism to assess the quality of malaria medicines available to patients in decentralized regions. Trained personnel from the National Malaria Control Programmes (NMCPs), often in collaboration with country's Official Medicine Control Laboratory (OMCL), developed country- specific protocols that encompassed sampling methods, sample analysis, and data reporting. Sampling sites were selected based on malaria burden, accessibility, and geographical location. Convenience sampling was performed and countries were recommended to store the sampled medicines under conditions that did not compromise their quality. Basic analytical tests, such as disintegration and thin layer chromatography (TLC), were performed utilizing a portable mini-laboratory. Results were originally presented at regional meetings in a non-standardized format that lacked relevant medicines information. However, since 2008 information has been submitted utilizing a template specifically developed by PQM for that purpose. From 2005 to 2010, the quality of 1,663 malaria medicines from seven AMI countries was evaluated, mostly collected from the public sector, 1,445/1,663 (86.9%). Results indicate that 193/1,663 (11.6%) were found not to meet quality specifications. Most failures were reported during visual and physical inspection, 142/1663 (8.5%), and most of these were due to expired medicines, 118/142 (83.1%). Samples failing TLC accounted for 27/1,663 (1.6%) and those failing disintegration accounted for 24/1,663 (1.4%). Medicines quality failures decreased significantly during the last two years. Basic tests revealed that the quality of medicines in the public sector improved over the years, since the implementation of this type of quality monitoring programme in 2005. However, the lack of consistent confirmatory tests in the quality control (QC) laboratory, utilizing methods that can also evaluate additional quality attributes, could still mask quality issues. In the future, AMI countries should improve coordination with their health authorities and their QC lab consistently, to provide a more complete picture of malaria medicines quality and support the implementation of corrective actions. Facilities in the private and informal sectors also should be included when these sectors constitute an important source of medicines used by malaria patients.
Yé, Yazoume; Eisele, Thomas P; Eckert, Erin; Korenromp, Eline; Shah, Jui A; Hershey, Christine L; Ivanovich, Elizabeth; Newby, Holly; Carvajal-Velez, Liliana; Lynch, Michael; Komatsu, Ryuichi; Cibulskis, Richard E; Moore, Zhuzhi; Bhattarai, Achuyt
2017-09-01
Concerted efforts from national and international partners have scaled up malaria control interventions, including insecticide-treated nets, indoor residual spraying, diagnostics, prompt and effective treatment of malaria cases, and intermittent preventive treatment during pregnancy in sub-Saharan Africa (SSA). This scale-up warrants an assessment of its health impact to guide future efforts and investments; however, measuring malaria-specific mortality and the overall impact of malaria control interventions remains challenging. In 2007, Roll Back Malaria's Monitoring and Evaluation Reference Group proposed a theoretical framework for evaluating the impact of full-coverage malaria control interventions on morbidity and mortality in high-burden SSA countries. Recently, several evaluations have contributed new ideas and lessons to strengthen this plausibility design. This paper harnesses that new evaluation experience to expand the framework, with additional features, such as stratification, to examine subgroups most likely to experience improvement if control programs are working; the use of a national platform framework; and analysis of complete birth histories from national household surveys. The refined framework has shown that, despite persisting data challenges, combining multiple sources of data, considering potential contributions from both fundamental and proximate contextual factors, and conducting subnational analyses allows identification of the plausible contributions of malaria control interventions on malaria morbidity and mortality.
Malaria in India: the center for the study of complex malaria in India.
Das, Aparup; Anvikar, Anupkumar R; Cator, Lauren J; Dhiman, Ramesh C; Eapen, Alex; Mishra, Neelima; Nagpal, Bhupinder N; Nanda, Nutan; Raghavendra, Kamaraju; Read, Andrew F; Sharma, Surya K; Singh, Om P; Singh, Vineeta; Sinnis, Photini; Srivastava, Harish C; Sullivan, Steven A; Sutton, Patrick L; Thomas, Matthew B; Carlton, Jane M; Valecha, Neena
2012-03-01
Malaria is a major public health problem in India and one which contributes significantly to the overall malaria burden in Southeast Asia. The National Vector Borne Disease Control Program of India reported ∼1.6 million cases and ∼1100 malaria deaths in 2009. Some experts argue that this is a serious underestimation and that the actual number of malaria cases per year is likely between 9 and 50 times greater, with an approximate 13-fold underestimation of malaria-related mortality. The difficulty in making these estimations is further exacerbated by (i) highly variable malaria eco-epidemiological profiles, (ii) the transmission and overlap of multiple Plasmodium species and Anopheles vectors, (iii) increasing antimalarial drug resistance and insecticide resistance, and (iv) the impact of climate change on each of these variables. Simply stated, the burden of malaria in India is complex. Here we describe plans for a Center for the Study of Complex Malaria in India (CSCMi), one of ten International Centers of Excellence in Malaria Research (ICEMRs) located in malarious regions of the world recently funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health. The CSCMi is a close partnership between Indian and United States scientists, and aims to address major gaps in our understanding of the complexity of malaria in India, including changing patterns of epidemiology, vector biology and control, drug resistance, and parasite genomics. We hope that such a multidisciplinary approach that integrates clinical and field studies with laboratory, molecular, and genomic methods will provide a powerful combination for malaria control and prevention in India. Copyright © 2011 Elsevier B.V. All rights reserved.
Clinical, laboratorial and immunological aspects of severe malaria in children from Guinea-Bissau.
Domingos, Janine; Casimiro, Anaxore; Portugal-Calisto, Daniela; Varandas, Luís; Nogueira, Fátima; Silva, Marcelo Sousa
2018-04-21
Malaria is a parasitic disease of which Plasmodium falciparum causes the most severe form of the disease. The immune response against Plasmodium spp. is complex and remains unclear. The present report aimed to better understand the humoral immune response in severe malaria and analyse new immunodominant antigen candidates as possible serological marker in severe malaria in children. This study included children aged 0-16 years from Guinea-Bissau with clinical signs of severe malaria. Serological and immunochemical characterisation of different anti-P. falciparum antibodies were made by ELISA and immunoblotting using a crude protein extract of P. falciparum. Sera from 12 children with severe malaria were analysed. Nine samples were positive for total anti-P. falciparum antibodies, seven for IgM and eight for total IgG anti-P. falciparum. There was a predominance of IgG1 response, suggesting a cytophilic action in severe malaria and a major role of IgG1 over other immunoglobulins. The antigenic profile of P. falciparum showed a consistent immunoblotting pattern of approximately 180 kDa, 100 kDa and around 50-40 kDa. The serological reactivity found in protein bands makes them as immunodominant antigens and promising candidates for serological markers in the context of severe malaria. Copyright © 2018 Elsevier B.V. All rights reserved.
Malaria Surveillance - United States, 2014.
Mace, Kimberly E; Arguin, Paul M
2017-05-26
Malaria in humans is caused by intraerythrocytic protozoa of the genus Plasmodium. These parasites are transmitted by the bite of an infective female Anopheles mosquito. The majority of malaria infections in the United States occur among persons who have traveled to regions with ongoing malaria transmission. However, malaria is occasionally acquired by persons who have not traveled out of the country through exposure to infected blood products, congenital transmission, laboratory exposure, or local mosquitoborne transmission. Malaria surveillance in the United States is conducted to identify episodes of local transmission and to guide prevention recommendations for travelers. This report summarizes cases in persons with onset of illness in 2014 and trends during previous years. Malaria cases diagnosed by blood film, polymerase chain reaction, or rapid diagnostic tests are reported to local and state health departments by health care providers or laboratory staff. Case investigations are conducted by local and state health departments, and reports are transmitted to CDC through the National Malaria Surveillance System, National Notifiable Diseases Surveillance System, or direct CDC consultations. CDC conducts antimalarial drug resistance marker testing on blood samples submitted by health care providers or local or state health departments. Data from these reporting systems serve as the basis for this report. CDC received reports of 1,724 confirmed malaria cases, including one congenital case and two cryptic cases, with onset of symptoms in 2014 among persons in the United States. The number of confirmed cases in 2014 is consistent with the number of confirmed cases reported in 2013 (n = 1,741; this number has been updated from a previous publication to account for delayed reporting for persons with symptom onset occurring in late 2013). Plasmodium falciparum, P. vivax, P. ovale, and P. malariae were identified in 66.1%, 13.3%, 5.2%, and 2.7% of cases, respectively. Less than 1.0% of patients were infected with two species. The infecting species was unreported or undetermined in 11.7% of cases. CDC provided diagnostic assistance for 14.2% of confirmed cases and tested 12.0% of P. falciparum specimens for antimalarial resistance markers. Of patients who reported purpose of travel, 57.5% were visiting friends and relatives (VFR). Among U.S. residents for whom information on chemoprophylaxis use and travel region was known, 7.8% reported that they initiated and adhered to a chemoprophylaxis drug regimen recommended by CDC for the regions to which they had traveled. Thirty-two cases were among pregnant women, none of whom had adhered to chemoprophylaxis. Among all reported cases, 17.0% were classified as severe illness, and five persons with malaria died. CDC received 137 P. falciparum-positive samples for the detection of antimalarial resistance markers (although some loci for chloroquine and mefloquine were untestable for up to nine samples). Of the 137 samples tested, 131 (95.6%) had genetic polymorphisms associated with pyrimethamine drug resistance, 96 (70.0%) with sulfadoxine resistance, 77 (57.5%) with chloroquine resistance, three (2.3%) with mefloquine drug resistance, one (<1.0%) with atovaquone resistance, and two (1.4%) with artemisinin resistance. The overall trend of malaria cases has been increasing since 1973; the number of cases reported in 2014 is the fourth highest annual total since then. Despite progress in reducing global prevalence of malaria, the disease remains endemic in many regions and use of appropriate prevention measures by travelers is still inadequate. Completion of data elements on the malaria case report form increased slightly in 2014 compared with 2013, but still remains unacceptably low. In 2014, at least one essential element (i.e., species, travel history, or resident status) was missing in 21.3% of case report forms. Incomplete reporting compromises efforts to examine trends in malaria cases and prevent infections. VFR travelers continue to be a difficult population to reach with effective malaria prevention strategies. Evidence-based prevention strategies that effectively target VFR travelers need to be developed and implemented to have a substantial impact on the number of imported malaria cases in the United States. Fewer U.S. resident patients reported taking chemoprophylaxis in 2014 (27.2%) compared with 2013 (28.6%), and adherence was poor among those who did take chemoprophylaxis. Proper use of malaria chemoprophylaxis will prevent the majority of malaria illnesses and reduce risk for severe disease (https://www.cdc.gov/malaria/travelers/drugs.html). Malaria infections can be fatal if not diagnosed and treated promptly with antimalarial medications appropriate for the patient's age and medical history, likely country of malaria acquisition, and previous use of antimalarial chemoprophylaxis. Recent molecular laboratory advances have enabled CDC to identify and conduct molecular surveillance of antimalarial drug resistance markers (https://www.cdc.gov/malaria/features/ars.html) and improve the ability of CDC to track, guide treatment, and manage drug resistance in malaria parasites both domestically and globally. For this effort to be successful, specimens should be submitted for all cases diagnosed in the United States. Clinicians should consult CDC Guidelines for Treatment of Malaria in the United States and contact the CDC Malaria Hotline for case management advice, when needed. Malaria treatment recommendations can be obtained online at https://www.cdc.gov/malaria/diagnosis_treatment/ or by calling the Malaria Hotline at 770-488-7788 or toll-free at 855-856-4713.
Malaria Surveillance — United States, 2014
Arguin, Paul M.
2017-01-01
Problem/Condition Malaria in humans is caused by intraerythrocytic protozoa of the genus Plasmodium. These parasites are transmitted by the bite of an infective female Anopheles mosquito. The majority of malaria infections in the United States occur among persons who have traveled to regions with ongoing malaria transmission. However, malaria is occasionally acquired by persons who have not traveled out of the country through exposure to infected blood products, congenital transmission, laboratory exposure, or local mosquitoborne transmission. Malaria surveillance in the United States is conducted to identify episodes of local transmission and to guide prevention recommendations for travelers. Period Covered This report summarizes cases in persons with onset of illness in 2014 and trends during previous years. Description of System Malaria cases diagnosed by blood film, polymerase chain reaction, or rapid diagnostic tests are reported to local and state health departments by health care providers or laboratory staff. Case investigations are conducted by local and state health departments, and reports are transmitted to CDC through the National Malaria Surveillance System, National Notifiable Diseases Surveillance System, or direct CDC consultations. CDC conducts antimalarial drug resistance marker testing on blood samples submitted by health care providers or local or state health departments. Data from these reporting systems serve as the basis for this report. Results CDC received reports of 1,724 confirmed malaria cases, including one congenital case and two cryptic cases, with onset of symptoms in 2014 among persons in the United States. The number of confirmed cases in 2014 is consistent with the number of confirmed cases reported in 2013 (n = 1,741; this number has been updated from a previous publication to account for delayed reporting for persons with symptom onset occurring in late 2013). Plasmodium falciparum, P. vivax, P. ovale, and P. malariae were identified in 66.1%, 13.3%, 5.2%, and 2.7% of cases, respectively. Less than 1.0% of patients were infected with two species. The infecting species was unreported or undetermined in 11.7% of cases. CDC provided diagnostic assistance for 14.2% of confirmed cases and tested 12.0% of P. falciparum specimens for antimalarial resistance markers. Of patients who reported purpose of travel, 57.5% were visiting friends and relatives (VFR). Among U.S. residents for whom information on chemoprophylaxis use and travel region was known, 7.8% reported that they initiated and adhered to a chemoprophylaxis drug regimen recommended by CDC for the regions to which they had traveled. Thirty-two cases were among pregnant women, none of whom had adhered to chemoprophylaxis. Among all reported cases, 17.0% were classified as severe illness, and five persons with malaria died. CDC received 137 P. falciparum-positive samples for the detection of antimalarial resistance markers (although some loci for chloroquine and mefloquine were untestable for up to nine samples). Of the 137 samples tested, 131 (95.6%) had genetic polymorphisms associated with pyrimethamine drug resistance, 96 (70.0%) with sulfadoxine resistance, 77 (57.5%) with chloroquine resistance, three (2.3%) with mefloquine drug resistance, one (<1.0%) with atovaquone resistance, and two (1.4%) with artemisinin resistance. Interpretation The overall trend of malaria cases has been increasing since 1973; the number of cases reported in 2014 is the fourth highest annual total since then. Despite progress in reducing global prevalence of malaria, the disease remains endemic in many regions and use of appropriate prevention measures by travelers is still inadequate. Public Health Action Completion of data elements on the malaria case report form increased slightly in 2014 compared with 2013, but still remains unacceptably low. In 2014, at least one essential element (i.e., species, travel history, or resident status) was missing in 21.3% of case report forms. Incomplete reporting compromises efforts to examine trends in malaria cases and prevent infections. VFR travelers continue to be a difficult population to reach with effective malaria prevention strategies. Evidence-based prevention strategies that effectively target VFR travelers need to be developed and implemented to have a substantial impact on the number of imported malaria cases in the United States. Fewer U.S. resident patients reported taking chemoprophylaxis in 2014 (27.2%) compared with 2013 (28.6%), and adherence was poor among those who did take chemoprophylaxis. Proper use of malaria chemoprophylaxis will prevent the majority of malaria illnesses and reduce risk for severe disease (https://www.cdc.gov/malaria/travelers/drugs.html). Malaria infections can be fatal if not diagnosed and treated promptly with antimalarial medications appropriate for the patient’s age and medical history, likely country of malaria acquisition, and previous use of antimalarial chemoprophylaxis. Recent molecular laboratory advances have enabled CDC to identify and conduct molecular surveillance of antimalarial drug resistance markers (https://www.cdc.gov/malaria/features/ars.html) and improve the ability of CDC to track, guide treatment, and manage drug resistance in malaria parasites both domestically and globally. For this effort to be successful, specimens should be submitted for all cases diagnosed in the United States. Clinicians should consult CDC Guidelines for Treatment of Malaria in the United States and contact the CDC Malaria Hotline for case management advice, when needed. Malaria treatment recommendations can be obtained online at https://www.cdc.gov/malaria/diagnosis_treatment/ or by calling the Malaria Hotline at 770-488-7788 or toll-free at 855-856-4713. PMID:28542123
Malaria vaccine: WHO position paper, January 2016 - Recommendations.
2018-06-14
This article presents the World Health Organization's (WHO) recommendations on the use of malaria vaccine excerpted from the WHO position paper on malaria vaccine published in the Weekly epidemiological Record in January 2016 [1]. The current document is the first WHO position paper on malaria vaccination and focuses primarily on the available evidence concerning the only malaria vaccine having received a positive regulation assessment from the European Medicines Agency (EMA) [2]. The position paper gives consideration to the epidemiological features of the disease and assesses the potential use of the vaccine for public health benefits. Footnotes to this paper provide a number of core references including references to grading tables that assess the quality of the scientific evidence, and to the evidence to recommendation table. In accordance with its mandate to provide guidance to Member States on health policy matters, WHO issues a series of regularly updated position papers on vaccines and combinations of vaccines against diseases that have an international public health impact. These papers are concerned primarily with the use of vaccines in large-scale immunization programmes; they summarize essential background information on diseases and vaccines, and conclude with WHO's current position on the use of vaccines in the global context. This paper reflects the joint recommendation of the WHO's Strategic Advisory Group of Experts (SAGE) on immunization and the Malaria Policy Advisory Committee (MPAC). These recommendations were discussed by SAGE and MPAC at the October 2015 SAGE meeting. Evidence presented at the meeting can be accessed at http://www.who.int/immunization/sage/previous/en/index.html. Copyright © 2016 Elsevier Ltd. All rights reserved.
Population based haematology reference ranges for old people in rural South-West Uganda.
Mugisha, Joseph O; Seeley, Janet; Kuper, Hannah
2016-09-07
Haematology reference values are needed to interpret haematology results and make clinical decisions, but these have not been established for old people in sub-Saharan Africa. The objective of this study was to establish haematology reference values for people aged 50 years and above in Uganda, to compare the haematology reference values for those aged 65 years and over with those less than 65 years and to compare these haematology reference values with established haematology reference values for old people from high income countries. A total of 1449 people aged 50 years and above were recruited from the Medical Research Council/Uganda Virus Research Institute general population cohort between January 2012 and January 2013 (response rate 72.3 %). From the blood samples collected, we did haematology, HIV testing and malaria tests. We also obtained stool samples and tested them for hookworm infection. Questionnaire data were obtained through interviews. In the analysis, we excluded those with HIV infection, malaria infection, hookworm infection and those not feeling well at the time of recruitment. Medians and reference ranges for 12 haematology parameters were determined, based on the Clinical Laboratory and Standards institute's guidelines. In total, 903 people aged 50 years and above were included in the analysis with the majority 545 (60.3 %) being female. Men had significant difference in median haemoglobin, haematocrit, erythrocytes counts and white blood cells counts, which were higher than those of women. Women had significant difference in mean platelet counts and neutrophil percentages which were higher than those of men. Comparing those aged 65+ and those aged less than 65 years, the following parameters were significantly lower in those aged above 65 years: haemoglobin, haematocrit, erythrocytes counts, platelets and mean corpuscular volume. Compared to the reference intervals from old people in high income countries, all the haematology parameters from our study population were low. The differences between haematology reference ranges in old people compared to adults and the very old (65+) compared to those between 50 and 65 call for more population based studies using nationwide surveys to be carried out among old people in other study settings in Uganda and the rest of Africa to explore the differences in haematology reference ranges between these different age groups with a view of establishing whether there is need to have separate reference range for these different categories of old people.
Treatment regimens for pregnant women with falciparum malaria.
Moore, Brioni R; Salman, Sam; Davis, Timothy M E
2016-08-01
With increasing parasite drug resistance, the WHO has updated treatment recommendations for falciparum malaria including in pregnancy. This review assesses the evidence for choice of treatment for pregnant women. Relevant studies, primarily those published since 2010, were identified from reference databases and were used to identify secondary data sources. Expert commentary: WHO recommends use of intravenous artesunate for severe malaria, quinine-clindamycin for uncomplicated malaria in first trimester, and artemisinin combination therapy for uncomplicated malaria in second/third trimesters. Because fear of adverse outcomes has often excluded pregnant women from conventional drug development, available data for novel therapies are usually based on preclinical studies and cases of inadvertent exposure. Changes in antimalarial drug disposition in pregnancy have been observed but are yet to be translated into specific treatment recommendations. Such targeted regimens may become important as parasite resistance demands that drug exposure is optimized.
Methodology and application of flow cytometry for investigation of human malaria parasites.
Grimberg, Brian T
2011-03-31
Historically, examinations of the inhibition of malaria parasite growth/invasion, whether using drugs or antibodies, have relied on the use of microscopy or radioactive hypoxanthine uptake. These are considered gold standards for measuring the effectiveness of antimalarial treatments, however, these methods have well known shortcomings. With the advent of flow cytometry coupled with the use of fluorescent DNA stains allowed for increased speed, reproducibility, and qualitative estimates of the effectiveness of antibodies and drugs to limit malaria parasite growth which addresses the challenges of traditional techniques. Because materials and machines available to research facilities are so varied, different methods have been developed to investigate malaria parasites by flow cytometry. This review is intended to serve as a reference guide for advanced users and importantly, as a primer for new users, to support expanded use and improvements to malaria flow cytometry, particularly in endemic countries. Copyright © 2011 Elsevier B.V. All rights reserved.
Field and laboratory comparative evaluation of ten rapid malaria diagnostic tests.
Craig, M H; Bredenkamp, B L; Williams, C H Vaughan; Rossouw, E J; Kelly, V J; Kleinschmidt, I; Martineau, A; Henry, G F J
2002-01-01
The paper reports on a comparative evaluation of 10 rapid malaria tests available in South Africa in 1998: AccuCheck (AC, developmental), Cape Biotech (CB), ICT Malaria Pf (ICT1) and Pf/Pv (ICT2), Kat Medical (KAT), MakroMal (MM), OptiMAL (OP), ParaSight-F (PS), Quorum (Q), Determine-Malaria (DM). In a laboratory study, designed to test absolute detection limits, Plasmodium falciparum-infected blood was diluted with uninfected blood to known parasite concentrations ranging from 500 to 0.1 parasites per microlitre (P/microL). The 50% detection limits were: ICT1, 3.28; ICT2, 4.86; KAT, 6.36; MM, 9.37; CB, 11.42; DM, 12.40; Q, 16.98; PS, 20; AC, 31.15 and OP, 91.16 P/microL. A field study was carried out to test post-treatment specificity. Blood samples from malaria patients were tested with all products (except AC and DM) on the day of treatment and 3 and 7 days thereafter, against a gold standard of microscopy and polymerase chain reaction (PCR). OP and PS produced fewer false-positive results on day 7 (18 and 19%, respectively) than the other rapid tests (38-56%). However, microscopy, PCR, OP and PS disagreed largely as to which individuals remained positive. The tests were further compared with regard to general specificity, particularly cross-reactivity with rheumatoid factor, speed, simplicity, their ability to detect other species, storage requirements and general presentation.
2013-01-01
Background Malaria elimination is being pursued in five of seven Central American countries. Military personnel returning from peacekeeping missions in sub-Saharan Africa could import chloroquine-resistant Plasmodium falciparum, posing a threat to elimination and to the continued efficacy of first-line chloroquine (CQ) treatment in these countries. This report describes the importation of P. falciparum from among 150 Guatemalan army special forces and support staff who spent ten months on a United Nations’ peacekeeping mission in the Democratic Republic of the Congo (DRC) in 2010. Methods Investigators reviewed patients’ medical charts and interviewed members of the contingent to identify malaria cases and risk factors for malaria acquisition. Clinical specimens were tested for malaria; isolated parasites were characterized molecularly for CQ resistance. Results Investigators identified 12 cases (8%) of laboratory-confirmed P. falciparum infection within the contingent; one case was from a soldier infected with a CQ-resistant pfcrt genotype resulting in his death. None of the contingent used an insecticide-treated bed net (ITN) or completely adhered to malaria chemoprophylaxis while in the DRC. Conclusion This report highlights the need to promote use of malaria prevention measures, in particular ITNs and chemoprophylaxis, among peacekeepers stationed in malaria-endemic areas. Countries attempting to eliminate malaria should consider appropriate methods to screen peacekeepers returning from endemic areas for malaria infections. Cases of malaria in travellers, immigrants and soldiers returning to Central America from countries with CQ-resistant malaria should be assumed to be carry resistant parasites and receive appropriate anti-malarial therapy to prevent severe disease and death. PMID:24060234
Elimination of Plasmodium falciparum malaria in Tajikistan.
Kondrashin, Anatoly V; Sharipov, Azizullo S; Kadamov, Dilshod S; Karimov, Saifuddin S; Gasimov, Elkhan; Baranova, Alla M; Morozova, Lola F; Stepanova, Ekaterina V; Turbabina, Natalia A; Maksimova, Maria S; Morozov, Evgeny N
2017-05-30
Malaria was eliminated in Tajikistan by the beginning of the 1960s. However, sporadic introduced cases of malaria occurred subsequently probably as a result of transmission from infected mosquito Anopheles flying over river the Punj from the border areas of Afghanistan. During the 1970s and 1980s local outbreaks of malaria were reported in the southern districts bordering Afghanistan. The malaria situation dramatically changed during the 1990s following armed conflict and civil unrest in the newly independent Tajikistan, which paralyzed health services including the malaria control activities and a large-scale malaria epidemic occurred with more than 400,000 malaria cases. The malaria epidemic was contained by 1999 as a result of considerable financial input from the Government and the international community. Although Plasmodium falciparum constituted only about 5% of total malaria cases, reduction of its incidence was slower than that of Plasmodium vivax. To prevent increase in P. falciparum malaria both in terms of incidence and territory, a P. falciparum elimination programme in the Republic was launched in 200, jointly supported by the Government and the Global Fund for control of AIDS, tuberculosis and malaria. The main activities included the use of pyrethroids for the IRS with determined periodicity, deployment of mosquito nets, impregnated with insecticides, use of larvivorous fishes as a biological larvicide, implementation of small-scale environmental management, and use of personal protection methods by population under malaria risk. The malaria surveillance system was strengthened by the use of ACD, PCD, RCD and selective use of mass blood surveys. All detected cases were timely epidemiologically investigated and treated based on the results of laboratory diagnosis. As a result, by 2009, P. falciparum malaria was eliminated from all of Tajikistan, one year ahead of the originally targeted date. Elimination of P. falciparum also contributed towards speedy reduction of P. vivax incidence in Tajikistan.
Severe malaria in children: A descriptive report from Kinshasa, the Democratic Republic of Congo.
Kunuanunua, Thomas S; Nsibu, Célestin N; Bodi, Joseph M; Tshibola, Thérèse K; Makusi Bura, Mimy; Magoga, Kumbundu; Ekila, Mathilde B; Situakibanza, Hypolite T; Aloni, Michel N
2015-08-01
The decline of susceptibility of Plasmodium falciparum to chloroquine and sulfadoxine-pyrimethamine resulted in the change of drug policy. This policy has probably changed the facies of the severe form of malaria. A prospective study was conducted in Kinshasa, the Democratic Republic of Congo. Data on children aged ≤13 years, diagnosed with severe malaria were analyzed. In total, 378 children were included with an overall median age of 8 years (age range: 1-13 years). Dark urine was seen in 25.1% of cases. Metabolic acidosis (85.2%), hypoglycemia (62.2%) and hemoglobin ≤5 g/dl (39.1%) were the common laboratories features. Severe malaria anemia, cerebral malaria and Blackwater fever (BWF) were found in 39.1, 30.1 and 25.4%, respectively. Mortality rate was 4%. BWF emerges as a frequent form of severe malaria in our midst. Availing artemisin-based combination treatments in the health care system is a priority to reduce the incidence of BWF in our environment. © The Author [2015]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The capacity of diagnostic laboratories in Kenya for detecting infectious diseases.
Slotved, H-C; Yatich, Kennedy K; Sam, Shem Otoi; Ndhine, Edwardina Otieno
2017-01-01
The aim of this study is to present data of the diagnostic capacity of Kenyan laboratories to diagnose a number of human pathogens. The study is based on the data obtained from a biosecurity survey conducted in Kenya in 2014/2015 and data from the Statistical Abstract of Kenya for 2015. The biosecurity survey has previously been published; however, the survey also included information on laboratory capacity to handle a number of pathogens, which have not been published. Data were retrieved from the survey on 86 laboratory facilities. The data include information from relevant categories such as training laboratories, human diagnostic laboratories, veterinary diagnostic laboratories, and research laboratories. The disease incidence in Kenya ranges widely from malaria and diarrhea with an incidence rate of around 10.000 per year to diseases such as cholera and yellow fever with an incidence rate of 1 per year or less for all age groups. The data showed that diseases with the highest number of diagnostic facilities were mainly malaria-, HIV-, tuberculosis-, and diarrhea-related infectious diseases. The study generally shows that the laboratory facilities have the capacity of detecting the infectious diseases with the highest incidence rates. Furthermore, it seems that the number of facilities able to detect a particular disease is related to the incidence rate of the disease.
Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Raghavendra, Kamaraju; Sharma, Arun
2015-01-01
Vector control is one of the major global strategies for control of malaria. However, the major obstacle for vector control is the development of multiple resistances to organochlorine, organophosphorus insecticides and pyrethroids that are currently being used in public health for spraying and in bednets. Salivary glands of vectors are the first target organ for human-vector contact during biting and parasite-vector contact prior to parasite development in the mosquito midguts. The salivary glands secrete anti-haemostatic, anti-inflammatory biologically active molecules to facilitate blood feeding from the host and also inadvertently inject malaria parasites into the vertebrate host. The Anopheles stephensi mosquito, an urban vector of malaria to both human and rodent species has been identified as a reference laboratory model to study mosquito—parasite interactions. In this study, we adopted a conventional proteomic approach of 2D-electrophoresis coupled with MALDI-TOF mass spectrometry and bioinformatics to identify putative differentially expressed annotated functional salivary proteins between An. stephensi susceptible and multiresistant strains with same genetic background. Our results show 2D gel profile and MALDI-TOF comparisons that identified 31 differentially expressed putative modulated proteins in deltamethrin/DDT resistant strains of An. stephensi. Among these 15 proteins were found to be upregulated and 16 proteins were downregulated. Our studies interpret that An. stephensi (multiresistant) caused an upregulated expression of proteins and enzymes like cytochrome 450, short chain dehyrdogenase reductase, phosphodiesterase etc that may have an impact in insecticide resistance and xenobiotic detoxification. Our study elucidates a proteomic response of salivary glands differentially regulated proteins in response to insecticide resistance development which include structural, redox and regulatory enzymes of several pathways. These identified proteins may play a role in regulating mosquito biting behavior patterns and may have implications in the development of malaria parasites in resistant mosquitoes during parasite transmission. PMID:25742511
Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Raghavendra, Kamaraju; Sharma, Arun
2015-01-01
Vector control is one of the major global strategies for control of malaria. However, the major obstacle for vector control is the development of multiple resistances to organochlorine, organophosphorus insecticides and pyrethroids that are currently being used in public health for spraying and in bednets. Salivary glands of vectors are the first target organ for human-vector contact during biting and parasite-vector contact prior to parasite development in the mosquito midguts. The salivary glands secrete anti-haemostatic, anti-inflammatory biologically active molecules to facilitate blood feeding from the host and also inadvertently inject malaria parasites into the vertebrate host. The Anopheles stephensi mosquito, an urban vector of malaria to both human and rodent species has been identified as a reference laboratory model to study mosquito-parasite interactions. In this study, we adopted a conventional proteomic approach of 2D-electrophoresis coupled with MALDI-TOF mass spectrometry and bioinformatics to identify putative differentially expressed annotated functional salivary proteins between An. stephensi susceptible and multiresistant strains with same genetic background. Our results show 2D gel profile and MALDI-TOF comparisons that identified 31 differentially expressed putative modulated proteins in deltamethrin/DDT resistant strains of An. stephensi. Among these 15 proteins were found to be upregulated and 16 proteins were downregulated. Our studies interpret that An. stephensi (multiresistant) caused an upregulated expression of proteins and enzymes like cytochrome 450, short chain dehyrdogenase reductase, phosphodiesterase etc that may have an impact in insecticide resistance and xenobiotic detoxification. Our study elucidates a proteomic response of salivary glands differentially regulated proteins in response to insecticide resistance development which include structural, redox and regulatory enzymes of several pathways. These identified proteins may play a role in regulating mosquito biting behavior patterns and may have implications in the development of malaria parasites in resistant mosquitoes during parasite transmission.
Yé, Yazoume; Eisele, Thomas P.; Eckert, Erin; Korenromp, Eline; Shah, Jui A.; Hershey, Christine L.; Ivanovich, Elizabeth; Newby, Holly; Carvajal-Velez, Liliana; Lynch, Michael; Komatsu, Ryuichi; Cibulskis, Richard E.; Moore, Zhuzhi; Bhattarai, Achuyt
2017-01-01
Abstract. Concerted efforts from national and international partners have scaled up malaria control interventions, including insecticide-treated nets, indoor residual spraying, diagnostics, prompt and effective treatment of malaria cases, and intermittent preventive treatment during pregnancy in sub-Saharan Africa (SSA). This scale-up warrants an assessment of its health impact to guide future efforts and investments; however, measuring malaria-specific mortality and the overall impact of malaria control interventions remains challenging. In 2007, Roll Back Malaria's Monitoring and Evaluation Reference Group proposed a theoretical framework for evaluating the impact of full-coverage malaria control interventions on morbidity and mortality in high-burden SSA countries. Recently, several evaluations have contributed new ideas and lessons to strengthen this plausibility design. This paper harnesses that new evaluation experience to expand the framework, with additional features, such as stratification, to examine subgroups most likely to experience improvement if control programs are working; the use of a national platform framework; and analysis of complete birth histories from national household surveys. The refined framework has shown that, despite persisting data challenges, combining multiple sources of data, considering potential contributions from both fundamental and proximate contextual factors, and conducting subnational analyses allows identification of the plausible contributions of malaria control interventions on malaria morbidity and mortality. PMID:28990923
Frickmann, Hagen; Hinz, Rebecca; Rojak, Sandra; Bonow, Insa; Ruben, Stefanie; Wegner, Christine; Zielke, Iris; Hagen, Ralf Matthias; Tannich, Egbert
2018-05-12
We assessed a commercial loop-mediated amplification (LAMP) platform for its reliability as a screening tool for malaria parasite detection. A total of 1000 blood samples from patients with suspected or confirmed malaria submitted to the German National Reference Center for Tropical Pathogens were subjected to LAMP using the Meridian illumigene Malaria platform. Results were compared with microscopy from thick and thin blood films in all cases. In case of discordant results between LAMP and microscopy (n = 60), confirmation testing was performed with real-time PCR. Persistence of circulating parasite DNA was analyzed by serial assessments of blood samples following malaria treatment. Out of 1000 blood samples analyzed, 238 were positive for malaria parasites according to microscopy (n = 181/1000) or PCR (additional n = 57/60). LAMP demonstrated sensitivity of 98.7% (235/238), specificity of 99.6% (759/762), positive predictive value (PPV) of 98.7% (235/238) and negative predictive value (NPV) of 99.6% (759/762), respectively. For first slides of patients with malaria and for follow-up slides, sensitivity values were 99.1% (106/107) and 98.5% (129/131), respectively. The performance of the Meridian illumigene Malaria platform is suitable for initial screening of patients suspected of clinical malaria. Copyright © 2018 Elsevier Ltd. All rights reserved.
Temperature alters Plasmodium blocking by Wolbachia
NASA Astrophysics Data System (ADS)
Murdock, Courtney C.; Blanford, Simon; Hughes, Grant L.; Rasgon, Jason L.; Thomas, Matthew B.
2014-02-01
Very recently, the Asian malaria vector (Anopheles stephensi) was stably transinfected with the wAlbB strain of Wolbachia, inducing refractoriness to the human malaria parasite Plasmodium falciparum. However, conditions in the field can differ substantially from those in the laboratory. We use the rodent malaria P. yoelii, and somatically transinfected An. stephensi as a model system to investigate whether the transmission blocking potential of wAlbB is likely to be robust across different thermal environments. wAlbB reduced malaria parasite prevalence and oocyst intensity at 28°C. At 24°C there was no effect on prevalence but a marked increase in oocyst intensity. At 20°C, wAlbB had no effect on prevalence or intensity. Additionally, we identified a novel effect of wAlbB that resulted in reduced sporozoite development across temperatures, counterbalancing the oocyst enhancement at 24°C. Our results demonstrate complex effects of temperature on the Wolbachia-malaria interaction, and suggest the impacts of transinfection might vary across diverse environments.
Hatz, Christoph; Soto, Jaime; Nothdurft, Hans Dieter; Zoller, Thomas; Weitzel, Thomas; Loutan, Louis; Bricaire, Francois; Gay, Frederick; Burchard, Gerd-Dieter; Andriano, Kim; Lefèvre, Gilbert; De Palacios, Patricia Ibarra; Genton, Blaise
2008-02-01
The efficacy and safety of artemether-lumefantrine for the treatment of malaria in nonimmune populations are not well defined. In this study, 165 nonimmune patients from Europe and non-malarious areas of Colombia with acute, uncomplicated falciparum malaria or mixed infection including P. falciparum were treated with the six-dose regimen of artemether-lumefantrine. The parasitologic cure rate at 28 days was 96.0% for the per protocol population (119/124 patients). Median times to parasite clearance and fever clearance were 41.5 and 36.8 hours, respectively. No patient had gametocytes after Day 7. Treatment was well tolerated; most adverse events were mild to moderate and seemed to be related to malaria. There were few serious adverse events, none of which were considered to be drug-related. No significant effects on ECG or laboratory parameters were observed. In conclusion, the six-dose regimen of artemether-lumefantrine was effective and well tolerated in the treatment of acute uncomplicated falciparum malaria in nonimmune patients.
Humanized Mouse Models for the Study of Human Malaria Parasite Biology, Pathogenesis, and Immunity.
Minkah, Nana K; Schafer, Carola; Kappe, Stefan H I
2018-01-01
Malaria parasite infection continues to inflict extensive morbidity and mortality in resource-poor countries. The insufficiently understood parasite biology, continuously evolving drug resistance and the lack of an effective vaccine necessitate intensive research on human malaria parasites that can inform the development of new intervention tools. Humanized mouse models have been greatly improved over the last decade and enable the direct study of human malaria parasites in vivo in the laboratory. Nevertheless, no small animal model developed so far is capable of maintaining the complete life cycle of Plasmodium parasites that infect humans. The ultimate goal is to develop humanized mouse systems in which a Plasmodium infection closely reproduces all stages of a parasite infection in humans, including pre-erythrocytic infection, blood stage infection and its associated pathology, transmission as well as the human immune response to infection. Here, we discuss current humanized mouse models and the future directions that should be taken to develop next-generation models for human malaria parasite research.
Bionomics and vectorial capacity of Anopheles annularis with special reference to India: a review.
Singh, R K; Haq, S; Kumar, Gaurav; Dhiman, R C
2013-01-01
Anopheles annularis is widely distributed mosquito species all over the country. An. annularis has been incriminated as a malaria vector in India, Sri Lanka, Bangladesh, Myanmar, Indonesia, Malaysia and China. In India, it has been reported to play an important role in malaria transmission as a secondary vector in certain parts of Assam, West Bengal and U.P. In Odisha and some neighbouring countries such as Sri Lanka, Nepal and Myanmar it has been recognised as a primary vector of malaria. This is a species complex of two sibling species A and B but the role of these sibling species in malaria transmission is not clearly known. An. annularis is resistant to DDT and dieldrin/HCH and susceptible to malathion and synthetic pyrethorides in most of the parts of India. In view of rapid change in ecological conditions, further studies are required on the bionomics of An. annularis and its role in malaria transmission in other parts of the country. Considering the importance of An. annularis as a malaria vector, the bionomics and its role in malaria transmission has been reviewed in this paper. In this communication, an attempt has been made to review its bionomics and its role as malaria vector. An. annularis is a competent vector of malaria, thus, due attention should be paid for its control under the vector control programmes specially in border states where it is playing a primary role in malaria transmission.
[Application of ARIMA model to predict number of malaria cases in China].
Hui-Yu, H; Hua-Qin, S; Shun-Xian, Z; Lin, A I; Yan, L U; Yu-Chun, C; Shi-Zhu, L I; Xue-Jiao, T; Chun-Li, Y; Wei, H U; Jia-Xu, C
2017-08-15
Objective To study the application of autoregressive integrated moving average (ARIMA) model to predict the monthly reported malaria cases in China, so as to provide a reference for prevention and control of malaria. Methods SPSS 24.0 software was used to construct the ARIMA models based on the monthly reported malaria cases of the time series of 20062015 and 2011-2015, respectively. The data of malaria cases from January to December, 2016 were used as validation data to compare the accuracy of the two ARIMA models. Results The models of the monthly reported cases of malaria in China were ARIMA (2, 1, 1) (1, 1, 0) 12 and ARIMA (1, 0, 0) (1, 1, 0) 12 respectively. The comparison between the predictions of the two models and actual situation of malaria cases showed that the ARIMA model based on the data of 2011-2015 had a higher accuracy of forecasting than the model based on the data of 2006-2015 had. Conclusion The establishment and prediction of ARIMA model is a dynamic process, which needs to be adjusted unceasingly according to the accumulated data, and in addition, the major changes of epidemic characteristics of infectious diseases must be considered.
Kashosi, Théophile Mitima; Mutuga, Joseph Minani; Byadunia, Devotte Sifa; Mutendela, John Kivukuto; Mulenda, Basimike; Mubagwa, Kanigula
2017-01-01
Use of malaria rapid diagnostic tests (RDTs) has improved the management of this disease. We evaluated the validity of the SD-Bioline Malaria-Ag-Pf/Pan™ (Batch 60952) RDT supplied by the Malaria Control Program of the DRCongo. cChildren (n = 460) aged below 5 years seen in curative care (CC) for suspected malaria and in pre-school consultation (PSC) in two rural centers underwent clinical evaluation and capillary blood collection for microscopic reading of thick smear (TS) and thin film (BF), and for RDT. Sensitivity (Se), specificity (Sp), positive (PPV) and negative (NPV) predictive values of the RDT, and the corresponding accuracy and Youden indices were determined using microscopic data as reference. Results were compared using the Chi-square test. Microscopy showed malaria infection in 53.8% of CC and in 10.8% of PSC children. Similar results were obtained using the RDT (CC: 47.1%; PSC: 18.3%; P > 0.05 vs. microscopy). Se of the RDT was 82.1%, Sp 92.0%, PPV 88.5% and NPV 87.4%. RDT positivity was significantly (p < 0.01) associated with some symptoms (chills, profuse sweating) and with a recent history of malaria attack. In addition, Se of the RDT depended on parasitemia and decreased at low parasite denstity. SD-Bioline Malaria-Ag-Pf/Pan™ RDT has a relatively good sensitivity and specificity but seems useful only for high parasitemia. Negative SD Bioline Malaria Ag Pf/Pan™ RDT should be complemented with microscopy when clinical signs suggest malaria.
Indigenous environmental indicators for malaria: A district study in Zimbabwe.
Macherera, Margaret; Chimbari, Moses J; Mukaratirwa, Samson
2017-11-01
This paper discusses indigenous environmental indicators for the occurrence of malaria in ward 11, 15 and 18 of Gwanda district, Zimbabwe. The study was inspired by the successes of use of indigenous knowledge systems in community based early warning systems for natural disasters. To our knowledge, no study has examined the relationship between malaria epidemics and climatic factors in Gwanda district. The aim of the study was to determine the environmental indicators for the occurrence of malaria. Twenty eight key informants from the 3 wards were studied. Questionnaires, focus group discussions and PRA sessions were used to collect data. Content analysis was used to analyse the data. The local name for malaria was 'uqhuqho' literally meaning a fever. The disease is also called, "umkhuhlane wemiyane" and is derived from the association between malaria and mosquitoes. The findings of our study reveal that trends in malaria incidence are perceived to positively correlate with variations in both temperature and rainfall, although factors other than climate seem to play an important role too. Plant phenology and insects are the commonly used indicators in malaria prediction in the study villages. Other indicators for malaria prediction included the perceived noise emanating from mountains, referred to as "roaring of mountains" and certain behaviours exhibited by ostriches. The results of the present study highlight the importance of using climatic information in the analysis of malaria surveillance data, and this knowledge can be integrated into the conventional health system to develop a community based malaria forecasting system. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Akogun, Oladele B; John, Kauna K
2005-01-01
Background A wide range of childhood illnesses are accompanied by fever,, including malaria. Child mortality due to malaria has been attributed to poor health service delivery system and ignorance. An assessment of a mother's ability to recognize malaria in children under-five was carried out among the Bwatiye, a poorly-served minority ethnic group in north-eastern Nigeria. Methods A three-stage research design involving interviews, participatory observation and laboratory tests was used to seek information from 186 Bwatiye mothers about their illness-related experiences with childhood fevers. Results Mothers classified malaria into male (fever that persists for longer than three days) and female (fever that goes away within three days) and had a system of determining when febrile illness would not be regarded as malaria. Most often, malaria would be ignored in the first 2 days before seeking active treatment. Self-medication was the preferred option. Treatment practices and sources of help were influenced by local beliefs, the parity of the mother and previous experience with child mortality. Conclusion The need to educate mothers to suspect malaria in every case of febrile illness and take appropriate action in order to expose the underlying "evil" will be more acceptable than an insistence on replacing local knowledge with biological epidemiology of malaria. The challenge facing health workers is to identify and exploit local beliefs about aetiology in effecting management procedures among culturally different peoples, who may not accept the concept of biological epidemiology. PMID:15723706
Uzochukwu, Benjamin SC; Onwujekwe, Obinna E
2004-01-01
Background Malaria is one of the leading causes of mortality and morbidity in Nigeria. It is not known how user fees introduced under the Bamako Initiative (BI) system affect healthcare seeking among different socio-economic groups in Nigeria for diagnosis and treatment of malaria. Reliable information is needed to initiate new policy thrusts to protect the poor from the adverse effect of user fees. Methods Structured questionnaires were used to collect information from 1594 female household primary care givers or household head on their socio-economic and demographic status and use of malaria diagnosis and treatment services. Principal components analysis was used to create a socio-economic status index which was decomposed into quartiles and chi-square for trends was used to calculate for any statistical difference. Results The study showed that self diagnosis was the commonest form of diagnosis by the respondents. This was followed by diagnosis through laboratory tests, community health workers, family members and traditional healers. The initial choice of care for malaria was a visit to the patent medicine dealers for most respondents. This was followed by visit to the government hospitals, the BI health centres, traditional medicine healers, private clinics, community health workers and does nothing at home. Furthermore, the private health facilities were the initial choice of treatment for the majority with a decline among those choosing them as a second source of care and an increase in the utilization of public health facilities as a second choice of care. Self diagnosis was practiced more by the poorer households while the least poor used the patent medicine dealers and community health workers less often for diagnosis of malaria. The least poor groups had a higher probability of seeking treatment at the BI health centres (creating equity problem in BI), hospitals, and private clinics and in using laboratory procedures. The least poor also used the patent medicine dealers and community health workers less often for the treatment of malaria. The richer households complained more about poor staff attitude and lack of drugs as their reasons for not attending the BI health centres. The factors that encourage people to use services in BI health centres were availability of good services, proximity of the centres to the homes and polite health workers. Conclusions Factors deterring people from using BI centres should be eliminated. The use of laboratory services for the diagnosis of malaria by the poor should be encouraged through appropriate information, education and communication which at the long run will be more cost effective and cost saving for them while devising means of reducing the equity gap created. This could be done by granting a properly worked out and implemented fee exemptions to the poor or completely abolishing user fees for the diagnosis and treatment of malaria in BI health centres. PMID:15202941
Fletcher, M; Teklehaimanot, A; Yemane, G; Kassahun, A; Kidane, G; Beyene, Y
1993-02-01
Because of problems with drug and insecticide resistance, the National Organization for the Control of Malaria and other Vectorborne Diseases, Ethiopia, has embarked on a programme of research on alternative malaria control methods, including the use of biological control agents, such as larvivorous fish. The objectives of the study were to identify indigenous larvivorous fish species which could be potential candidates for use as biological control agents; to extend knowledge of their distribution in Ethiopia; and to conduct laboratory tests to determine their feeding capacity. An extensive search resulted in the identification of 11 larvivorous fish species indigenous to Ethiopia, including five species previously unrecorded in the country. Seven species were assessed under standard laboratory conditions for their feeding capacity on larvae of Anopheles gambiae s.l. and Culex andersoni. All species tested were efficient larvivores in the laboratory. However, their larvivorous capacity should be tested further in field trials. Based on the findings of this study, two priority areas for the assessment of biological control using larvivorous fish were identified, the port city of Assab, using the local species Aphanius dispar, and the Ogaden, south-eastern Ethiopia, using the local species Oreochromis spilurus spilurus.
Ifatimehin, O. O.; Falola, O. O.; Odogbo, E. V.
2014-01-01
The infectivity of sporozoites on both mosquitoes and human is the major cause of malaria infection on its host, Man. Malaria infection had continued to blossom despite measures to curb it. Clinically diagnosed malaria data for 3 years, capture of mosquitoes for laboratory analysis to determining the infectivity of sporozoites, responses from the population on the number of episode of malaria in the last 60 days were all collected and generated, and also subjected to various analysis using methods accepted tools and methods. A fifteen weeks climatic data was also collected. It was discovered that malaria incidence of 467.2853/1000 persons is very high. This high rate is possible as out of every 10 mosquitoes in Anyigba, 4 are infected by sporozoites and can possibly transmit these sporozoites during blood feeding on the population. This is affirmed by the prevalence of malaria by 54.75% among Anyigba’s population. At p>001 (0.829), climatic variables and sporozoites rate showed a strong affinity with the prevalence of malaria. The risk map showed that the university community and the surrounding students’ lodges are areas of very high risk. Therefore, the populace is strongly advised to employed practicable measures such as regular environmental sanitation and the use of Insecticidal Treated Nets (ITN) in order to drastically address this epidemic. PMID:24373271
Ifatimehin, Olarewaju Oluseyi; Falola, O O; Odogbo, E V
2013-10-27
The infectivity of sporozoites on both mosquitoes and human is the major cause of malaria infection on its host, Man. Malaria infection had continued to blossom despite measures to curb it. Clinically diagnosed malaria data for 3 years, capture of mosquitoes for laboratory analysis to determining the infectivity of sporozoites, responses from the population on the number of episode of malaria in the last 60 days were all collected and generated, and also subjected to various analysis using methods accepted tools and methods. A fifteen weeks climatic data was also collected. It was discovered that malaria incidence of 467.2853/1000 persons is very high. This high rate is possible as out of every 10 mosquitoes in Anyigba, 4 are infected by sporozoites and can possibly transmit these sporozoites during blood feeding on the population. This is affirmed by the prevalence of malaria by 54.75% among Anyigba's population. At p>001 (0.829), climatic variables and sporozoites rate showed a strong affinity with the prevalence of malaria. The risk map showed that the university community and the surrounding students' lodges are areas of very high risk. Therefore, the populace is strongly advised to employed practicable measures such as regular environmental sanitation and the use of Insecticidal Treated Nets (ITN) in order to drastically address this epidemic.
Heinig, R L; Paaijmans, Krijn P; Hancock, Penelope A; Thomas, Matthew B
2015-12-01
The effectiveness of conventional malaria vector control is being threatened by the spread of insecticide resistance. One promising alternative to chemicals is the use of naturally-occurring insect-killing fungi. Numerous laboratory studies have shown that isolates of fungal pathogens such as Beauveria bassiana can infect and kill adult mosquitoes, including those resistant to chemical insecticides.Unlike chemical insecticides, fungi may take up to a week or more to kill mosquitoes following exposure. This slow kill speed can still reduce malaria transmission because the malaria parasite itself takes at least eight days to complete its development within the mosquito. However, both fungal virulence and parasite development rate are strongly temperature-dependent, so it is possible that biopesticide efficacy could vary across different transmission environments.We examined the virulence of a candidate fungal isolate against two key malaria vectors at temperatures from 10-34 °C. Regardless of temperature, the fungus killed more than 90% of exposed mosquitoes within the predicted duration of the malarial extrinsic incubation period, a result that was robust to realistic diurnal temperature variation.We then incorporated temperature sensitivities of a suite of mosquito, parasite and fungus life-history traits that are important determinants of malaria transmission into a stage-structured malaria transmission model. The model predicted that, at achievable daily fungal infection rates, fungal biopesticides have the potential to deliver substantial reductions in the density of malaria-infectious mosquitoes across all temperatures representative of malaria transmission environments. Synthesis and applications . Our study combines empirical data and theoretical modelling to prospectively evaluate the potential of fungal biopesticides to control adult malaria vectors. Our results suggest that Beauveria bassiana could be a potent tool for malaria control and support further development of fungal biopesticides to manage infectious disease vectors.
Malaria and World War II: German malaria experiments 1939-45.
Eckart, W U; Vondra, H
2000-06-01
The epidemiological and pharmacological fight against malaria and German malaria research during the Nazi dictatorship were completely under the spell of war. The Oberkommando des Heeres (German supreme command of the army) suffered the bitter experience of unexpected high losses caused by malaria especially at the Greek front (Metaxes line) but also in southern Russia and in the Ukraine. Hastily raised anti-malaria units tried to teach soldiers how to use the synthetic malaria drugs (Plasmochine, Atebrine) properly. Overdoses of these drugs were numerous during the first half of the war whereas in the second half it soon became clear that it would not be possible to support the army due to insufficient quantities of plasmochine and atebrine. During both running fights and troop withdrawals at all southern and southeastern fronts there was hardly any malaria prophylaxis or treatment. After war and captivity many soldiers returned home to endure heavy malaria attacks. In German industrial (Bayer, IG-Farben) and military malaria laboratories of the Heeres-Sanitäts-Akademie (Army Medical Academy) the situation was characterised by a hasty search for proper dosages of anti-malaria drugs, adequate mechanical and chemical prophylaxis (Petroleum, DDT, and other insecticides) as well as an anti-malaria vaccine. Most importantly, large scale research for proper atebrine and plasmochine dosages was conducted in German concentration camps and mental homes. In Dachau Professor Claus Schilling tested synthetic malaria drugs and injected helpless prisoners with high and sometimes lethal doses. Since the 1920s he had been furiously looking for an anti-malaria vaccine in Italian mental homes and from 1939 he continued his experiments in Dachau. Similar experiments were also performed in Buchenwald and in a psychiatric clinic in Thuringia, where Professor Gerhard Rose tested malaria drugs with mentally ill Russian prisoners of war. Schilling was put to death for his criminal research in 1946, Rose was condemned to lifelong imprisonment in 1947, though, not for his malaria research but for his dreadful experiments with epidemic typhus sera which he also had performed in concentration camps and with prisoners of war in Russia.
Requirements for diagnosis of malaria at different levels of the laboratory network in Africa.
Long, Earl G
2009-06-01
The rapid increase of resistance to cheap, reliable antimalarials, the increasing cost of effective drugs, and the low specificity of clinical diagnosis has increased the need for more reliable diagnostic methods for malaria. The most commonly used and most reliable remains microscopic examination of stained blood smears, but this technique requires skilled personnel, precision instruments, and ideally a source of electricity. Microscopy has the advantage of enabling the examiner to identify the species, stage, and density of an infection. An alternative to microscopy is the rapid diagnostic test (RDT), which uses a labeled monoclonal antibody to detect circulating parasitic antigens. This test is most commonly used to detect Plasmodium falciparum infections and is available in a plastic cassette format. Both microscopy and RDTs should be available at all levels of laboratory service in endemic areas, but in peripheral laboratories with minimally trained staff, the RDT may be a more practical diagnostic method.
[Malaria serology test: what contribution does it make in an endemic country such as Ivory Coast?
Goran-Kouacou, Amah Patricia Victorine; Dou, Gonat Serge; Zika, Kalou Dibert; Adou, Adjoumanvoulé Honoré; Yéboah, Oppong Richard; Aka, Rita Ahou; Hien, Sansan; Siransy, Kouabla Liliane; N'Guessan, Koffi; Djibangar, Tariam Agnès; Dassé, Séry Romuald; Adoubryn, Koffi Daho
2017-01-01
Malaria serology test seems to have attracted very little interest in endemic countries such as Ivory Coast. However, this examination has been regularly performed in the parasitology laboratory at the Training and Research Unit of Medical Sciences in Abidjan. Our study aimed to highlight the contribution of malaria serology test in our endemic country context. We conducted a retrospective study of malaria serology test using Falciparum-Spot IF (bioMerieux) kit for the detection of IgG antiplasmodial antibodies. It included all malaria serology tests performed from January 2007 to February 2011 and whose results were available in the registry. In total, 136 patients were selected. The average age of patients was 36,3 years, ranging from 1 to 81 years, and sex ratio was 0,97. Indications for malaria serology test were varied and dominated by splenomegaly (49.3%), cytopenias (14.7%), indeterminate fever (13.2%). Almost all of the patients (98.5%) had antiplasmodial antibodies with high medium titer of 1057,35IU/ml. There was no link between age and Ab titer, which was higher in cytopenias, prolonged fevers and the splenomegaly. Malaria serology test seems to have attracted very little interest in routine clinical practice provided in our endemic area because, whatever the reason of the prescription, titers were high.
Automated haematology analysis to diagnose malaria
2010-01-01
For more than a decade, flow cytometry-based automated haematology analysers have been studied for malaria diagnosis. Although current haematology analysers are not specifically designed to detect malaria-related abnormalities, most studies have found sensitivities that comply with WHO malaria-diagnostic guidelines, i.e. ≥ 95% in samples with > 100 parasites/μl. Establishing a correct and early malaria diagnosis is a prerequisite for an adequate treatment and to minimizing adverse outcomes. Expert light microscopy remains the 'gold standard' for malaria diagnosis in most clinical settings. However, it requires an explicit request from clinicians and has variable accuracy. Malaria diagnosis with flow cytometry-based haematology analysers could become an important adjuvant diagnostic tool in the routine laboratory work-up of febrile patients in or returning from malaria-endemic regions. Haematology analysers so far studied for malaria diagnosis are the Cell-Dyn®, Coulter® GEN·S and LH 750, and the Sysmex XE-2100® analysers. For Cell-Dyn analysers, abnormal depolarization events mainly in the lobularity/granularity and other scatter-plots, and various reticulocyte abnormalities have shown overall sensitivities and specificities of 49% to 97% and 61% to 100%, respectively. For the Coulter analysers, a 'malaria factor' using the monocyte and lymphocyte size standard deviations obtained by impedance detection has shown overall sensitivities and specificities of 82% to 98% and 72% to 94%, respectively. For the XE-2100, abnormal patterns in the DIFF, WBC/BASO, and RET-EXT scatter-plots, and pseudoeosinophilia and other abnormal haematological variables have been described, and multivariate diagnostic models have been designed with overall sensitivities and specificities of 86% to 97% and 81% to 98%, respectively. The accuracy for malaria diagnosis may vary according to species, parasite load, immunity and clinical context where the method is applied. Future developments in new haematology analysers such as considerably simplified, robust and inexpensive devices for malaria detection fitted with an automatically generated alert could improve the detection capacity of these instruments and potentially expand their clinical utility in malaria diagnosis. PMID:21118557
Montanari, R M; Bangali, A M; Talukder, K R; Baqui, A; Maheswary, N P; Gosh, A; Rahman, M; Mahmood, A H
2001-01-01
In countries where malaria is endemic, routine blood slide examinations remain the major source of data for the public health surveillance system. This approach has become inadequate, however, as the public health emphasis has changed from surveillance of laboratory-confirmed malaria infections to the early detection and treatment of the disease. As a result, it has been advocated that the information collected about malaria be changed radically and should include the monitoring of morbidity and mortality, clinical practice and quality of care. To improve the early diagnosis and prompt treatment (EDPT) of malaria patients, three malaria case definitions (MCDs) were developed, with treatment and reporting guidelines, and used in all static health facilities of Cox's Bazar district, Bangladesh (population 1.5 million). The three MCDs were: uncomplicated malaria (UM); treatment failure malaria (TFM); and severe malaria (SM). The number of malaria deaths was also reported. This paper reviews the rationale and need for MCDs in malaria control programmes and presents an analysis of the integrated surveillance information collected during the three-year period, 1995-97. The combined analysis of slide-based and clinical data and their related indicators shows that blood slide analysis is no longer used to document fever episodes but to support EDPT, with priority given to SM and TFM patients. Data indicate a decrease in the overall positive predictive value of the three MCDs as malaria prevalence decreases. Hence the data quantify the extent to which the mainly clinical diagnosis of UM leads to over-diagnosis and over-treatment in changing epidemiological conditions. Also the new surveillance data show: a halving in the case fatality rate among SM cases (from 6% to 3.1%) attributable to improved quality of care, and a stable proportion of TFM cases (around 7%) against a defined population denominator. Changes implemented in the EDPT of malaria patients and in the surveillance system were based on existing staff capacity and routine reporting structures.
Wang, Shr-Jie; Lengeler, Christian; Smith, Thomas A; Vounatsou, Penelope; Cissé, Guéladio; Tanner, Marcel
2006-01-01
Background Currently, there is a significant lack of knowledge concerning urban malaria patterns in general and in Abidjan in particular. The prevalence of malaria, its distribution in the city and the fractions of fevers attributable to malaria in the health facilities have not been previously investigated. Methods A health facility-based survey and health care system evaluation was carried out in a peripheral municipality of Abidjan (Yopougon) during the rainy season of 2002, applying a standardized Rapid Urban Malaria Appraisal (RUMA) methodology. Results According to national statistics, approximately 240,000 malaria cases (both clinical cases and laboratory confirmed cases) were reported by health facilities in the whole of Abidjan in 2001. They accounted for 40% of all consultations. In the health facilities of the Yopougon municipality, the malaria infection rates in fever cases for different age groups were 22.1% (under one year-olds), 42.8% (one to five years-olds), 42.0% (> five to 15 years-olds) and 26.8% (over 15 years-olds), while those in the control group were 13.0%. 26.7%, 21.8% and 14.6%, respectively. The fractions of malaria-attributable fever were 0.12, 0.22, 0.27 and 0.13 in the same age groups. Parasitaemia was homogenously detected in different areas of Yopougon. Among all children, 10.1% used a mosquito net (treated or not) the night before the survey and this was protective (OR = 0.52, 95% CI 0.29–0.97). Travel to rural areas within the last three months was frequent (31% of all respondents) and associated with a malaria infection (OR = 1.75, 95% CI 1.25–2.45). Conclusion Rapid urbanization has changed malaria epidemiology in Abidjan and endemicity was found to be moderate in Yopougon. Routine health statistics are not fully reliable to assess the burden of disease, and the low level of the fractions of malaria-attributable fevers indicated substantial over-treatment of malaria. PMID:16584575
Is There a Risk of Suburban Transmission of Malaria in Selangor, Malaysia?
Braima, Kamil A.; Sum, Jia-Siang; Ghazali, Amir-Ridhwan M.; Muslimin, Mustakiza; Jeffery, John; Lee, Wenn-Chyau; Shaker, Mohammed R.; Elamin, Alaa-Eldeen M.; Jamaiah, Ibrahim; Lau, Yee-Ling; Rohela, Mahmud; Kamarulzaman, Adeeba; Sitam, Frankie; Mohd-Noh, Rosnida; Abdul-Aziz, Noraishah M.
2013-01-01
Background The suburban transmission of malaria in Selangor, Malaysia’s most developed and populous state still remains a concern for public health in this region. Despite much successful control efforts directed at its reduction, sporadic cases, mostly brought in by foreigners have continued to occur. In addition, cases of simian malaria caused by Plasmodium knowlesi, some with fatal outcome have caused grave concern to health workers. The aim of this study was to investigate the possibility of local malaria transmission in suburban regions of Selangor, which are adjacent to secondary rainforests. Findings A malaria survey spanning 7 years (2006 - 2012) was conducted in Selangor. A total of 1623 laboratory confirmed malaria cases were reported from Selangor’s nine districts. While 72.6% of these cases (1178/1623) were attributed to imported malaria (cases originating from other countries), 25.5% (414/1623) were local cases and 1.9% (31/1623) were considered as relapse and unclassified cases combined. In this study, the most prevalent infection was P. vivax (1239 cases, prevalence 76.3%) followed by P. falciparum (211, 13.0%), P. knowlesi (75, 4.6%), P. malariae (71, 4.4%) and P. ovale (1, 0.06%). Mixed infections comprising of P. vivax and P. falciparum were confirmed (26, 1.6%). Entomological surveys targeting the residences of malaria patients’ showed that the most commonly trapped Anopheles species was An. maculatus. No oocysts or sporozoites were found in the An. maculatus collected. Nevertheless, the possibility of An. maculatus being the malaria vector in the investigated locations was high due to its persistent occurrence in these areas. Conclusions Malaria cases reported in this study were mostly imported cases. However the co-existence of local cases and potential Plasmodium spp. vectors should be cause for concern. The results of this survey reflect the need of maintaining closely monitored malaria control programs and continuous extensive malaria surveillance in Peninsula Malaysia. PMID:24194901
Is there a risk of suburban transmission of malaria in Selangor, Malaysia?
Braima, Kamil A; Sum, Jia-Siang; Ghazali, Amir-Ridhwan M; Muslimin, Mustakiza; Jeffery, John; Lee, Wenn-Chyau; Shaker, Mohammed R; Elamin, Alaa-Eldeen M; Jamaiah, Ibrahim; Lau, Yee-Ling; Rohela, Mahmud; Kamarulzaman, Adeeba; Sitam, Frankie; Mohd-Noh, Rosnida; Abdul-Aziz, Noraishah M
2013-01-01
The suburban transmission of malaria in Selangor, Malaysia's most developed and populous state still remains a concern for public health in this region. Despite much successful control efforts directed at its reduction, sporadic cases, mostly brought in by foreigners have continued to occur. In addition, cases of simian malaria caused by Plasmodium knowlesi, some with fatal outcome have caused grave concern to health workers. The aim of this study was to investigate the possibility of local malaria transmission in suburban regions of Selangor, which are adjacent to secondary rainforests. A malaria survey spanning 7 years (2006 - 2012) was conducted in Selangor. A total of 1623 laboratory confirmed malaria cases were reported from Selangor's nine districts. While 72.6% of these cases (1178/1623) were attributed to imported malaria (cases originating from other countries), 25.5% (414/1623) were local cases and 1.9% (31/1623) were considered as relapse and unclassified cases combined. In this study, the most prevalent infection was P. vivax (1239 cases, prevalence 76.3%) followed by P. falciparum (211, 13.0%), P. knowlesi (75, 4.6%), P. malariae (71, 4.4%) and P. ovale (1, 0.06%). Mixed infections comprising of P. vivax and P. falciparum were confirmed (26, 1.6%). Entomological surveys targeting the residences of malaria patients' showed that the most commonly trapped Anopheles species was An. maculatus. No oocysts or sporozoites were found in the An. maculatus collected. Nevertheless, the possibility of An. maculatus being the malaria vector in the investigated locations was high due to its persistent occurrence in these areas. Malaria cases reported in this study were mostly imported cases. However the co-existence of local cases and potential Plasmodium spp. vectors should be cause for concern. The results of this survey reflect the need of maintaining closely monitored malaria control programs and continuous extensive malaria surveillance in Peninsula Malaysia.
Kerber, Romy; Krumkamp, Ralf; Diallo, Boubacar; Jaeger, Anna; Rudolf, Martin; Lanini, Simone; Bore, Joseph Akoi; Koundouno, Fara Raymond; Becker-Ziaja, Beate; Fleischmann, Erna; Stoecker, Kilian; Meschi, Silvia; Mély, Stéphane; Newman, Edmund N C; Carletti, Fabrizio; Portmann, Jasmine; Korva, Misa; Wolff, Svenja; Molkenthin, Peter; Kis, Zoltan; Kelterbaum, Anne; Bocquin, Anne; Strecker, Thomas; Fizet, Alexandra; Castilletti, Concetta; Schudt, Gordian; Ottowell, Lisa; Kurth, Andreas; Atkinson, Barry; Badusche, Marlis; Cannas, Angela; Pallasch, Elisa; Bosworth, Andrew; Yue, Constanze; Pályi, Bernadett; Ellerbrok, Heinz; Kohl, Claudia; Oestereich, Lisa; Logue, Christopher H; Lüdtke, Anja; Richter, Martin; Ngabo, Didier; Borremans, Benny; Becker, Dirk; Gryseels, Sophie; Abdellati, Saïd; Vermoesen, Tine; Kuisma, Eeva; Kraus, Annette; Liedigk, Britta; Maes, Piet; Thom, Ruth; Duraffour, Sophie; Diederich, Sandra; Hinzmann, Julia; Afrough, Babak; Repits, Johanna; Mertens, Marc; Vitoriano, Inês; Bah, Amadou; Sachse, Andreas; Boettcher, Jan Peter; Wurr, Stephanie; Bockholt, Sabrina; Nitsche, Andreas; Županc, Tatjana Avšič; Strasser, Marc; Ippolito, Giuseppe; Becker, Stephan; Raoul, Herve; Carroll, Miles W; De Clerck, Hilde; Van Herp, Michel; Sprecher, Armand; Koivogui, Lamine; Magassouba, N'Faly; Keïta, Sakoba; Drury, Patrick; Gurry, Cèline; Formenty, Pierre; May, Jürgen; Gabriel, Martin; Wölfel, Roman; Günther, Stephan; Di Caro, Antonino
2016-10-15
A unit of the European Mobile Laboratory (EMLab) consortium was deployed to the Ebola virus disease (EVD) treatment unit in Guéckédou, Guinea, from March 2014 through March 2015. The unit diagnosed EVD and malaria, using the RealStar Filovirus Screen reverse transcription-polymerase chain reaction (RT-PCR) kit and a malaria rapid diagnostic test, respectively. The cleaned EMLab database comprised 4719 samples from 2741 cases of suspected EVD from Guinea. EVD was diagnosed in 1231 of 2178 hospitalized patients (57%) and in 281 of 563 who died in the community (50%). Children aged <15 years had the highest proportion of Ebola virus-malaria parasite coinfections. The case-fatality ratio was high in patients aged <5 years (80%) and those aged >74 years (90%) and low in patients aged 10-19 years (40%). On admission, RT-PCR analysis of blood specimens from patients who died in the hospital yielded a lower median cycle threshold (Ct) than analysis of blood specimens from survivors (18.1 vs 23.2). Individuals who died in the community had a median Ct of 21.5 for throat swabs. Multivariate logistic regression on 1047 data sets revealed that low Ct values, ages of <5 and ≥45 years, and, among children aged 5-14 years, malaria parasite coinfection were independent determinants of a poor EVD outcome. Virus load, age, and malaria parasite coinfection play a role in the outcome of EVD. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.
Kerber, Romy; Krumkamp, Ralf; Diallo, Boubacar; Jaeger, Anna; Rudolf, Martin; Lanini, Simone; Bore, Joseph Akoi; Koundouno, Fara Raymond; Becker-Ziaja, Beate; Fleischmann, Erna; Stoecker, Kilian; Meschi, Silvia; Mély, Stéphane; Newman, Edmund N. C.; Carletti, Fabrizio; Portmann, Jasmine; Korva, Misa; Wolff, Svenja; Molkenthin, Peter; Kis, Zoltan; Kelterbaum, Anne; Bocquin, Anne; Strecker, Thomas; Fizet, Alexandra; Castilletti, Concetta; Schudt, Gordian; Ottowell, Lisa; Kurth, Andreas; Atkinson, Barry; Badusche, Marlis; Cannas, Angela; Pallasch, Elisa; Bosworth, Andrew; Yue, Constanze; Pályi, Bernadett; Ellerbrok, Heinz; Kohl, Claudia; Oestereich, Lisa; Logue, Christopher H.; Lüdtke, Anja; Richter, Martin; Ngabo, Didier; Borremans, Benny; Becker, Dirk; Gryseels, Sophie; Abdellati, Saïd; Vermoesen, Tine; Kuisma, Eeva; Kraus, Annette; Liedigk, Britta; Maes, Piet; Thom, Ruth; Duraffour, Sophie; Diederich, Sandra; Hinzmann, Julia; Afrough, Babak; Repits, Johanna; Mertens, Marc; Vitoriano, Inês; Bah, Amadou; Sachse, Andreas; Boettcher, Jan Peter; Wurr, Stephanie; Bockholt, Sabrina; Nitsche, Andreas; Županc, Tatjana Avšič; Strasser, Marc; Ippolito, Giuseppe; Becker, Stephan; Raoul, Herve; Carroll, Miles W.; De Clerck, Hilde; Van Herp, Michel; Sprecher, Armand; Koivogui, Lamine; Magassouba, N'Faly; Keïta, Sakoba; Drury, Patrick; Gurry, Cèline; Formenty, Pierre; May, Jürgen; Gabriel, Martin; Wölfel, Roman; Günther, Stephan; Di Caro, Antonino
2016-01-01
Background. A unit of the European Mobile Laboratory (EMLab) consortium was deployed to the Ebola virus disease (EVD) treatment unit in Guéckédou, Guinea, from March 2014 through March 2015. Methods. The unit diagnosed EVD and malaria, using the RealStar Filovirus Screen reverse transcription–polymerase chain reaction (RT-PCR) kit and a malaria rapid diagnostic test, respectively. Results. The cleaned EMLab database comprised 4719 samples from 2741 cases of suspected EVD from Guinea. EVD was diagnosed in 1231 of 2178 hospitalized patients (57%) and in 281 of 563 who died in the community (50%). Children aged <15 years had the highest proportion of Ebola virus–malaria parasite coinfections. The case-fatality ratio was high in patients aged <5 years (80%) and those aged >74 years (90%) and low in patients aged 10–19 years (40%). On admission, RT-PCR analysis of blood specimens from patients who died in the hospital yielded a lower median cycle threshold (Ct) than analysis of blood specimens from survivors (18.1 vs 23.2). Individuals who died in the community had a median Ct of 21.5 for throat swabs. Multivariate logistic regression on 1047 data sets revealed that low Ct values, ages of <5 and ≥45 years, and, among children aged 5–14 years, malaria parasite coinfection were independent determinants of a poor EVD outcome. Conclusions. Virus load, age, and malaria parasite coinfection play a role in the outcome of EVD. PMID:27638946
Baiden, Frank; Webster, Jayne; Tivura, Mathilda; Delimini, Rupert; Berko, Yvonne; Amenga-Etego, Seeba; Agyeman-Budu, Akua; Karikari, Akosua B.; Bruce, Jane; Owusu-Agyei, Seth; Chandramohan, Daniel
2012-01-01
Background WHO now recommends test-based management of malaria across all transmission settings. The accuracy of rapid diagnostic test (RDT) and the outcome of treatment based on the result of tests will influence acceptability of and adherence to the new guidelines. Method We conducted a study at the Kintampo hospital in rural Ghana to evaluate the performance of CareStart, a HRP-2 based RDT, using microscopy as reference. We applied IMCI treatment guidelines, restricted ACT to RDT-positive children and followed-up both RDT-positive (malaria) and RDT-negative (non-malaria) cases over 28 days. Results 436 children were enrolled in the RDT evaluation and 391 (children with haemoglobin >8.0 gm/dl) were followed-up to assess treatment outcomes. Mean age was 25.4 months (s.d. 14.6). Sensitivity and specificity of the RDT were 100.0% and 73.0% respectively. Over the follow-up period, 32 (18.5%) RDT-negative children converted to positive, with 7 (4.0%) of them presenting with fever. More children in the non-malaria group made unscheduled visits than children in the malaria group (13.3% versus 7.7%) On all scheduled follow-up visits, proportion of children having a temperature higher than that recorded on day 0 was higher in the non-malaria group compared to the malaria group. Reports of unfavourable treatment outcomes by caregivers were higher among the non-malaria group than the malaria group. Conclusions The RDT had good sensitivity and specificity. However a minority of children who will not receive ACT based on RDT results may develop clinical malaria within a short period in high transmission settings. This could undermine caregivers' and health workers' confidence in the new guidelines. Improving the quality of management of non-malarial febrile illnesses should be a priority in the era of test-based management of malaria. Trial Registration ClinicalTrials.gov NCT00832754 PMID:22514617
Steinhardt, Laura C; Chinkhumba, Jobiba; Wolkon, Adam; Luka, Madalitso; Luhanga, Misheck; Sande, John; Oyugi, Jessica; Ali, Doreen; Mathanga, Don; Skarbinski, Jacek
2014-02-20
Prompt and effective case management is needed to reduce malaria morbidity and mortality. However, malaria diagnosis and treatment is a multistep process that remains problematic in many settings, resulting in missed opportunities for effective treatment as well as overtreatment of patients without malaria. Prior to the widespread roll-out of malaria rapid diagnostic tests (RDTs) in late 2011, a national, cross-sectional, complex-sample, health facility survey was conducted in Malawi to assess patient-, health worker-, and health facility-level factors associated with malaria case management quality using multivariate Poisson regression models. Among the 2,019 patients surveyed, 34% had confirmed malaria defined as presence of fever and parasitaemia on a reference blood smear. Sixty-seven per cent of patients with confirmed malaria were correctly prescribed the first-line anti-malarial, with most cases of incorrect treatment due to missed diagnosis; 31% of patients without confirmed malaria were overtreated with an anti-malarial. More than one-quarter of patients were not assessed for fever or history of fever by health workers. The most important determinants of correct malaria case management were patient-level clinical symptoms, such as spontaneous complaint of fever to health workers, which increased both correct treatment and overtreatment by 72 and 210%, respectively (p<0.0001). Complaint of cough was associated with a 27% decreased likelihood of correct malaria treatment (p=0.001). Lower-level cadres of health workers were more likely to prescribe anti-malarials for patients, increasing the likelihood of both correct treatment and overtreatment, but no other health worker or health facility-level factors were significantly associated with case management quality. Introduction of RDTs holds potential to improve malaria case management in Malawi, but health workers must systematically assess all patients for fever, and then test and treat accordingly, otherwise, malaria control programmes might miss an opportunity to dramatically improve malaria case management, despite better diagnostic tools.
Baiden, Frank; Webster, Jayne; Tivura, Mathilda; Delimini, Rupert; Berko, Yvonne; Amenga-Etego, Seeba; Agyeman-Budu, Akua; Karikari, Akosua B; Bruce, Jane; Owusu-Agyei, Seth; Chandramohan, Daniel
2012-01-01
WHO now recommends test-based management of malaria across all transmission settings. The accuracy of rapid diagnostic test (RDT) and the outcome of treatment based on the result of tests will influence acceptability of and adherence to the new guidelines. We conducted a study at the Kintampo hospital in rural Ghana to evaluate the performance of CareStart, a HRP-2 based RDT, using microscopy as reference. We applied IMCI treatment guidelines, restricted ACT to RDT-positive children and followed-up both RDT-positive (malaria) and RDT-negative (non-malaria) cases over 28 days. 436 children were enrolled in the RDT evaluation and 391 (children with haemoglobin >8.0 gm/dl) were followed-up to assess treatment outcomes. Mean age was 25.4 months (s.d. 14.6). Sensitivity and specificity of the RDT were 100.0% and 73.0% respectively. Over the follow-up period, 32 (18.5%) RDT-negative children converted to positive, with 7 (4.0%) of them presenting with fever. More children in the non-malaria group made unscheduled visits than children in the malaria group (13.3% versus 7.7%) On all scheduled follow-up visits, proportion of children having a temperature higher than that recorded on day 0 was higher in the non-malaria group compared to the malaria group. Reports of unfavourable treatment outcomes by caregivers were higher among the non-malaria group than the malaria group. The RDT had good sensitivity and specificity. However a minority of children who will not receive ACT based on RDT results may develop clinical malaria within a short period in high transmission settings. This could undermine caregivers' and health workers' confidence in the new guidelines. Improving the quality of management of non-malarial febrile illnesses should be a priority in the era of test-based management of malaria. ClinicalTrials.gov NCT00832754.
Kattenberg, Johanna H; Ochodo, Eleanor A; Boer, Kimberly R; Schallig, Henk Dfh; Mens, Petra F; Leeflang, Mariska Mg
2011-10-28
During pregnancy, malaria infection with Plasmodium falciparum or Plasmodium vivax is related to adverse maternal health and poor birth outcomes. Diagnosis of malaria, during pregnancy, is complicated by the absence or low parasite densities in peripheral blood. Diagnostic methods, other than microscopy, are needed for detection of placental malaria. Therefore, the diagnostic accuracy of rapid diagnostic tests (RDTs), detecting antigen, and molecular techniques (PCR), detecting DNA, for the diagnosis of Plasmodium infections in pregnancy was systematically reviewed. MEDLINE, EMBASE and Web of Science were searched for studies assessing the diagnostic accuracy of RDTs, PCR, microscopy of peripheral and placental blood and placental histology for the detection of malaria infection (all species) in pregnant women. The results of 49 studies were analysed in metandi (Stata), of which the majority described P. falciparum infections. Although both placental and peripheral blood microscopy cannot reliably replace histology as a reference standard for placental P. falciparum infection, many studies compared RDTs and PCR to these tests. The proportion of microscopy positives in placental blood (sensitivity) detected by peripheral blood microscopy, RDTs and PCR are respectively 72% [95% CI 62-80], 81% [95% CI 55-93] and 94% [95% CI 86-98]. The proportion of placental blood microscopy negative women that were negative in peripheral blood microscopy, RDTs and PCR (specificity) are 98% [95% CI 95-99], 94% [95% CI 76-99] and 77% [95% CI 71-82]. Based on the current data, it was not possible to determine if the false positives in RDTs and PCR are caused by sequestered parasites in the placenta that are not detected by placental microscopy. The findings suggest that RDTs and PCR may have good performance characteristics to serve as alternatives for the diagnosis of malaria in pregnancy, besides any other limitations and practical considerations concerning the use of these tests. Nevertheless, more studies with placental histology as reference test are urgently required to reliably determine the accuracy of RDTs and PCR for the diagnosis of placental malaria. P. vivax-infections have been neglected in diagnostic test accuracy studies of malaria in pregnancy.
2011-01-01
Background During pregnancy, malaria infection with Plasmodium falciparum or Plasmodium vivax is related to adverse maternal health and poor birth outcomes. Diagnosis of malaria, during pregnancy, is complicated by the absence or low parasite densities in peripheral blood. Diagnostic methods, other than microscopy, are needed for detection of placental malaria. Therefore, the diagnostic accuracy of rapid diagnostic tests (RDTs), detecting antigen, and molecular techniques (PCR), detecting DNA, for the diagnosis of Plasmodium infections in pregnancy was systematically reviewed. Methods MEDLINE, EMBASE and Web of Science were searched for studies assessing the diagnostic accuracy of RDTs, PCR, microscopy of peripheral and placental blood and placental histology for the detection of malaria infection (all species) in pregnant women. Results The results of 49 studies were analysed in metandi (Stata), of which the majority described P. falciparum infections. Although both placental and peripheral blood microscopy cannot reliably replace histology as a reference standard for placental P. falciparum infection, many studies compared RDTs and PCR to these tests. The proportion of microscopy positives in placental blood (sensitivity) detected by peripheral blood microscopy, RDTs and PCR are respectively 72% [95% CI 62-80], 81% [95% CI 55-93] and 94% [95% CI 86-98]. The proportion of placental blood microscopy negative women that were negative in peripheral blood microscopy, RDTs and PCR (specificity) are 98% [95% CI 95-99], 94% [95% CI 76-99] and 77% [95% CI 71-82]. Based on the current data, it was not possible to determine if the false positives in RDTs and PCR are caused by sequestered parasites in the placenta that are not detected by placental microscopy. Conclusion The findings suggest that RDTs and PCR may have good performance characteristics to serve as alternatives for the diagnosis of malaria in pregnancy, besides any other limitations and practical considerations concerning the use of these tests. Nevertheless, more studies with placental histology as reference test are urgently required to reliably determine the accuracy of RDTs and PCR for the diagnosis of placental malaria. P. vivax-infections have been neglected in diagnostic test accuracy studies of malaria in pregnancy. PMID:22035448
Malaria investigation and treatment of children admitted to county hospitals in western Kenya.
Amboko, Beatrice I; Ayieko, Philip; Ogero, Morris; Julius, Thomas; Irimu, Grace; English, Mike
2016-10-18
Up to 90 % of the global burden of malaria morbidity and mortality occurs in sub-Saharan Africa and children under-five bear a disproportionately high malaria burden. Effective inpatient case management can reduce severe malaria mortality and morbidity, but there are few reports of how successfully international and national recommendations are adopted in management of inpatient childhood malaria. A descriptive cross-sectional study of inpatient malaria case management practices was conducted using data collected over 24 months in five hospitals from high malaria risk areas participating in the Clinical Information Network (CIN) in Kenya. This study describes documented clinical features, laboratory investigations and treatment of malaria in children (2-59 months) and adherence to national guidelines. A total of 13,014 children had a malaria diagnosis on admission to the five hospitals between March, 2014 and February, 2016. Their median age was 24 months (IQR 12-36 months). The proportion with a diagnostic test for malaria requested was 11,981 (92.1 %). Of 10,388 patients with malaria test results documented, 8050 (77.5 %) were positive and anti-malarials were prescribed in 6745 (83.8 %). Malaria treatment was prescribed in 1613/2338 (69.0 %) children with a negative malaria result out of which only 52 (3.2 %) had a repeat malaria test done as recommended in national guidelines. Documentation of clinical features was good across all hospitals, but quinine remained the most prescribed malaria drug (47.2 % of positive cases) although a transition to artesunate (46.1 %) was observed. Although documented clinical features suggested approximately half of positive malaria patients were not severe cases artemether-lumefantrine was prescribed on admission in only 3.7 % cases. Despite improvements in inpatient malaria care, high rates of presumptive treatment for test negative children and likely over-use of injectable anti-malarial drugs were observed. Three years after national policy change, there is a gradual transition to artesunate. Continued efforts to support improved routine inpatient malaria care through dissemination and implementation of guidelines, and access to recommended drugs are needed together with improved capacity of hospitals to investigate other causes of severe illness in children. Efforts to improve clinical information could help track progress.
Influence of climate on malaria transmission depends on daily temperature variation.
Paaijmans, Krijn P; Blanford, Simon; Bell, Andrew S; Blanford, Justine I; Read, Andrew F; Thomas, Matthew B
2010-08-24
Malaria transmission is strongly influenced by environmental temperature, but the biological drivers remain poorly quantified. Most studies analyzing malaria-temperature relations, including those investigating malaria risk and the possible impacts of climate change, are based solely on mean temperatures and extrapolate from functions determined under unrealistic laboratory conditions. Here, we present empirical evidence to show that, in addition to mean temperatures, daily fluctuations in temperature affect parasite infection, the rate of parasite development, and the essential elements of mosquito biology that combine to determine malaria transmission intensity. In general, we find that, compared with rates at equivalent constant mean temperatures, temperature fluctuation around low mean temperatures acts to speed up rate processes, whereas fluctuation around high mean temperatures acts to slow processes down. At the extremes (conditions representative of the fringes of malaria transmission, where range expansions or contractions will occur), fluctuation makes transmission possible at lower mean temperatures than currently predicted and can potentially block transmission at higher mean temperatures. If we are to optimize control efforts and develop appropriate adaptation or mitigation strategies for future climates, we need to incorporate into predictive models the effects of daily temperature variation and how that variation is altered by climate change.
Laboratory and Field Evaluation of SS220 and Deet Against Mosquitoes in Queensland, Australia
2009-01-01
Australian Army Malaria Institute, Gallipoli Bar- racks, Enoggera, Queensland 4051, Australia. 2 Invasive Insect Biocontrol and Behavior Laborato- ry...Invasive Insect Biocontrol and Behavior Laboratory (Beltsville, MD; Klun et al. 2003). A 20% solution (V/V) of each chemical in absolute ethanol was used
Quinine (Cinchona) and the incurable malaria: India c. 1900-1930s.
Muraleedharan, V R
2000-06-01
The early decades of this century witnessed significant developments in the approaches to control of malaria in British India. These included both large-scale preventive measures and curative treatment methods (often referred to as "cinchona" or "quinine" policy). This paper identifies a number of factors that constrained the colonial government's capacity to control malaria through effective cinchona policy. The ideal of achieving "self-sufficiency" and having an efficient form of treatment and distribution within the reach of the masses in India (as originally intended in late 1850s) was far from being achieved. Both government's policy and medical profession seemed to have contributed equally to this failure.
Congenital malaria in Urabá, Colombia
2011-01-01
Background Congenital malaria has been considered a rare event; however, recent reports have shown frequencies ranging from 3% to 54.2% among newborns of mothers who had suffered malaria during pregnancy. There are only a few references concerning the epidemiological impact of this entity in Latin-America and Colombia. Objective The aim of the study was to measure the prevalence of congenital malaria in an endemic Colombian region and to determine some of its characteristics. Methods A prospective, descriptive study was carried out in the mothers who suffered malaria during pregnancy and their newborns. Neonates were clinically evaluated at birth and screened for Plasmodium spp. infection by thick smear from the umbilical cord and peripheral blood, and followed-up weekly during the first 21 days of postnatal life through clinical examinations and thick smears. Results 116 newborns were included in the study and 80 umbilical cord samples were obtained. Five cases of congenital infection were identified (four caused by P. vivax and one by P. falciparum), two in umbilical cord blood and three in newborn peripheral blood. One case was diagnosed at birth and the others during follow-up. Prevalence of congenital infection was 4.3%. One of the infected newborns was severely ill, while the others were asymptomatic and apparently healthy. The mothers of the newborns with congenital malaria had been diagnosed with malaria in the last trimester of pregnancy or during delivery, and also presented placental infection. Conclusions Congenital malaria may be a frequent event in newborns of mothers who have suffered malaria during pregnancy in Colombia. An association was found between congenital malaria and the diagnosis of malaria in the mother during the last trimester of pregnancy or during delivery, and the presence of placental infection. PMID:21846373
Chen, Junhui; Zhong, Zhen; Jian, Jianbo; Amir, Amirah; Cheong, Fei-Wen; Sum, Jia-Siang; Fong, Mun-Yik
2016-01-01
Anopheles cracens has been incriminated as the vector of human knowlesi malaria in peninsular Malaysia. Besides, it is a good laboratory vector of Plasmodium falciparum and P. vivax. The distribution of An. cracens overlaps with that of An. maculatus, the human malaria vector in peninsular Malaysia that seems to be refractory to P. knowlesi infection in natural settings. Whole genome sequencing was performed on An. cracens and An. maculatus collected here. The draft genome of An. cracens was 395 Mb in size whereas the size of An. maculatus draft genome was 499 Mb. Comparison with the published Malaysian An. maculatus genome suggested the An. maculatus specimen used in this study as a different geographical race. Comparative analyses highlighted the similarities and differences between An. cracens and An. maculatus, providing new insights into their biological behavior and characteristics. PMID:27347683
Mills, C. D.; Burgess, D. C.; Taylor, H. J.; Kain, K. C.
1999-01-01
Rapid, accurate and affordable methods are needed for the diagnosis of malaria. Reported here is an evaluation of a new immunochromatographic strip, the PATH Falciparum Malaria IC Strip, which is impregnated with an immobilized IgM monoclonal antibody that binds to the HRP-II antigen of Plasmodium falciparum. In contrast to other commercially available kits marketed for the rapid diagnosis of falciparum malaria, this kit should be affordable in the malaria-endemic world. Using microscopy and polymerase chain reaction (PCR)-based methods as reference standards, we compared two versions of the PATH test for the detection of P. falciparum infection in 200 febrile travellers. As determined by PCR and microscopy, 148 travellers had malaria, 50 of whom (33.8%) were infected with P. falciparum. Compared with PCR, the two versions of the PATH test had initial sensitivities of 90% and 88% and specificities of 97% and 96%, respectively, for the detection of falciparum malaria. When discrepant samples were retested blindly with a modified procedure (increased sample volume and longer washing step) the sensitivity and specificity of both kits improved to 96% and 99%, respectively. The two remaining false negatives occurred in samples with < 100 parasites per microliter of blood. The accuracy, simplicity and predicted low cost may make this test a useful diagnostic tool in malaria-endemic areas. PMID:10444878
Tegegne, Banchamlak; Getie, Sisay; Lemma, Wossenseged; Mohon, Abu Naser; Pillai, Dylan R
2017-01-19
Malaria is a major public health problem and an important cause of maternal and infant morbidity in sub-Saharan Africa, including Ethiopia. Early and accurate diagnosis of malaria with effective treatment is the best strategy for prevention and control of complications during pregnancy and infant morbidity and mortality. However, laboratory diagnosis has relied on the identification of malaria parasites and parasite antigens in peripheral blood using Giemsa-stained microscopy or rapid diagnostic tests (RDTs) which lack analytical and clinical sensitivity. The aim of this study was to evaluate the performance of loop-mediated isothermal amplification (LAMP) for the diagnosis of malaria among malaria suspected pregnant women in Northwest Ethiopia. A cross sectional study was conducted from January to April 2016. Pregnant women (n = 87) suspected of having malaria at six health centres were enrolled. A venous blood sample was collected from each study subject, and analysed for Plasmodium parasites by microscopy, RDT, and LAMP. Diagnostic accuracy outcome measures (sensitivity, specificity, predictive values, and Kappa scores) of microscopy, RDT and LAMP were compared to nested polymerase chain reaction (nPCR) as the gold standard. Specimen processing and reporting times were documented. Using nPCR as the gold standard technique, the sensitivity of microscopy and RDT was 90 and 70%, and the specificity was 98.7 and 97.4%, respectively. LAMP assay was 100% sensitive and 93.5% specific compared to nPCR. This study showed higher sensitivity of LAMP compared to microscopy and RDT for the detection of malaria in pregnancy. Increased sensitivity and ease of use with LAMP in point-of-care testing for malaria in pregnancy was noted. LAMP warrants further evaluation in intermittent screening and treatment programmes in pregnancy.
Tarimo, D S; Minjas, J N; Bygbjerg, I C
2001-07-01
The algorithm developed for the integrated management of childhood illness (IMCI) provides guidelines for the treatment of paediatric malaria. In areas where malaria is endemic, for example, the IMCI strategy may indicate that children who present with fever, a recent history of fever and/or pallor should receive antimalarial chemotherapy. In many holo-endemic areas, it is unclear whether laboratory tests to confirm that such signs are the result of malaria would be very relevant or useful. Children from a holo-endemic region of Tanzania were therefore checked for malarial parasites by microscopy and by using two rapid immunochromatographic tests (RIT) for the diagnosis of malaria (ICT Malaria P.f/P.v and OptiMal. At the time they were tested, each of these children had been targeted for antimalarial treatment (following the IMCI strategy) because of fever and/or pallor. Only 70% of the 395 children classified to receive antimalarial drugs by the IMCI algorithm had malarial parasitaemias (68.4% had Plasmodium falciparum trophozoites, 1.3% only P. falciparum gametocytes, 0.3% P. ovale and 0.3% P. malariae). As indicators of P. falciparum trophozoites in the peripheral blood, fever had a sensitivity of 93.0% and a specificity of 15.5% whereas pallor had a sensitivity of 72.2% and a specificity of 50.8%. The RIT both had very high corresponding sensitivities (of 100.0% for the ICT and 94.0% for OptiMal) but the specificity of the ICT (74.0%) was significantly lower than that for OptiMal (100.0%). Fever and pallor were significantly associated with the P. falciparum asexual parasitaemias that equalled or exceeded the threshold intensity (2000/microl) that has the optimum sensitivity and specificity for the definition of a malarial episode. Diagnostic likelihood ratios (DLR) showed that a positive result in the OptiMal test (DLR = infinity) was a better indication of malaria than a positive result in the ICT (DLR = 3.85). In fact, OptiMal had diagnostic reliability (0.93) which approached that of an ideal test and, since it only detects live parasites, OptiMal is superior to the ICT in monitoring therapeutic responses. Although the RIT may seem attractive for use in primary health facilities because relatively inexperienced staff can perform them, the high cost of these tests is prohibitive. In holo-endemic areas, use of RIT or microscopical examination of bloodsmears may only be relevant when malaria needs to be excluded as a cause of illness (e.g. prior to treatment with toxic or expensive drugs, or during malaria epidemics). Wherever the effective drugs for the first-line treatment of malaria are cheap (e.g. chloroquine and Fansidar), treatment based on clinical diagnosis alone should prove cost-saving in health facilities without microscopy.
[Analysis of malaria epidemiological characteristics in Henan Province from 2005 to 2013].
Liu, Ying; Zhou, Rui-min; Qian, Dan; Yang, Cheng-yun; Zhang, Hong-wei
2014-12-01
To analyze the epidemiological characteristics of malaria in Henan Province, and provide the basis for adjusting and formulating measures of malaria elimination timely. The data of malaria cases during 2005 and 2013 in Henan Province was collected and analyzed using Microsoft Office Excel 2003 and SPSS14.0. Henan Province reported 17,803 malaria cases in 2005-2013, annual incidence was 0.2/100,000 to 5.2/100,000 with an average of 2.0/100,000. The cases were mainly distributed in Shangqiu (9079), Nanyang (4923), Xinyang (1449), Zhumadian (653), and Zhoukou (564), with more young male adults. The highest-risk population was farmers. More cases concentrated in August and September before 2010, but no obvious seasonal peak were seen after 2011. Vivax malaria occupied 95.4% (16,331/17,126) before 2010, but falciparum malaria was the major one after 2011. The laboratory confirmed cases during 2005-2013 took 54.6%. The median interval from symptom appearance to diagnosis was 4 d, and there was a significant difference among the years (χ2=437.2, P<0.01). The number of imported cases increased year by year, 26 cases in 2008 increased 146 cases in 2011. The reported malaria cases were imported cases during 2012 to 2013, of which 79.6% returned from the Africa, and 10.0% were from the Southeast Asia. Malaria is still an important part of public health in Henan Province, and appropriate control measures and effective tools should be strengthened for eliminating the disease.
Boyce, Ross; Reyes, Raquel; Matte, Michael; Ntaro, Moses; Mulogo, Edgar; Siedner, Mark J
2017-10-16
In rural areas, many patients with malaria seek care at peripheral health facilities or community case management programs. While this strategy is effective for the management of uncomplicated malaria, severe malaria necessitates prompt detection and referral to facilities with adequate resources. In this prospective, observational cohort study, we assessed the accuracy of a dual-band (histidine-rich protein-2/pan-lactate dehydrogenase [HRP2/pLDH]) rapid diagnostic test (RDT) to differentiate uncomplicated from severe malaria. We included children aged <12 years who presented to a rural clinic in western Uganda with a positive HRP2 or HRP2/pLDH RDT. We estimated the test characteristics of a dual-antigen (HRP2+/pLDH+) band positive RDT compared to World Health Organization-defined clinical and laboratory criteria to detect severe malaria. A total of 2678 children underwent testing for malaria with an RDT, and 83 (9.0%) satisfied criteria for severe malaria. The sensitivity and specificity of a HRP2+/pLDH+ result for severe malaria was 97.6% (95% confidence interval [CI], 90.8%-99.6%) and 75.6% (95% CI, 73.8%-77.4%), respectively. An HRP2+/pLDH+ result was significantly more sensitive (97.6% vs 68.7%, P < .001) for the detection of severe malaria compared to algorithms that incorporate screening for danger signs. A positive dual-antigen (HRP2/pLDH) RDT has higher sensitivity than the use of clinical manifestations to detect severe malaria, making it a promising tool in the triage of children with malaria in low-resource settings. Additional work is needed to operationalize diagnostic and treatment algorithms that include dual-antigen RDTs to avoid over referral. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Shao-Sen, Zhang; Hui-Xia, Cai; Hong, Tu; He, Yan; Na, Liu; Jun-Ying, Ma
2017-04-07
To investigate the malaria knowledge of CDC staff and their demands on related training in malaria non-endemic areas, so as to provide the reference for planning the appropriate curriculum. All the participants who were the staff of county CDCs all over Qinghai Province and attended the provincial training workshop were surveyed. A self-administered questionnaire survey was carried out and the data was statistically analyzed. A total of 115 participants were involved in this survey. They were mostly (85.21%) from county CDCs. The general knowledge of malaria among the respondents was well, and the average rate of correct answers was 70.35%. However, the answers to the general knowledge of malaria and anti-malaria treatment were not well enough. The rates of correct answers were 61.96% and 48.99% respectively. The differences among the groups of job title ranking, department of working and level of CDC were not significant ( F = 0.13-2.02, all P > 0.05). The number of correct answers was significantly increased after the training course. The average score after the training was 79.20±15.16 while the pre-training score was 70.34±17.46 ( t = 3.86, P < 0.05), especially in the answers to general malaria knowledge and malaria surveillance and response ( t = 4.30, 4.97, both P < 0.05). The general knowledge of malaria was considered as the most need of training as 80% of the respondents voted "Yes", according to the demand analysis. There was no significant difference among the different groups ( F = 0.61-3.11, both P > 0.05). The malaria knowledge is well mastered by the staff of CDCs in Qinghai Province, and the further training courses are requested and addressed in the target areas such as general malaria knowledge, anti-malaria treatment, malaria surveillance and response.
An in-depth study of patent medicine sellers' perspectives on malaria in a rural Nigerian community
Okeke, Theodora A; Uzochukwu, Benjamin SC; Okafor, Henrietta U
2006-01-01
Background Malaria remains a major cause of mortality among under five children in Nigeria. Most of the early treatments for fever and malaria occur through self-medication with antimalarial drugs bought from medicine sellers. These have led to increasing calls for interventions to improve treatment obtained in these outlets. However, information about the current practices of these medicine sellers is needed before such interventions. This study aims to determine the medicine sellers' perspectives on malaria and the determinants that underlie their dispensing patterns of antimalarial drugs. Methods The study was conducted in Ugwugo-Nike, a rural community in south-east Nigeria. It involved in-depth interviews with 13 patent medicine sellers. Results A majority of the medicine sellers were not trained health professionals and malaria is recognized as a major health problem by them. There is poor knowledge and poor dispensing behaviour in relation to childhood malaria episodes. Although referral of severe malaria is common, there are those who will not refer. Verbal advice is rarely given to the care-givers. Conclusion More action research and interventions to improve prescription and referral practices and giving verbal advice to care-givers is recommended. Ways to integrate the drug sellers in the health system are also recommended. PMID:17078875
NASA Astrophysics Data System (ADS)
Krappe, Sebastian; Benz, Michaela; Gryanik, Alexander; Tannich, Egbert; Wegner, Christine; Stamminger, Marc; Wittenberg, Thomas; Münzenmayer, Chrisitan
2017-03-01
Malaria is one of the world's most common and serious tropical diseases, caused by parasites of the genus plasmodia that are transmitted by Anopheles mosquitoes. Various parts of Asia and Latin America are affected but highest malaria incidence is found in Sub-Saharan Africa. Standard diagnosis of malaria comprises microscopic detection of parasites in stained thick and thin blood films. As the process of slide reading under the microscope is an error-prone and tedious issue we are developing computer-assisted microscopy systems to support detection and diagnosis of malaria. In this paper we focus on a deep learning (DL) approach for the detection of plasmodia and the evaluation of the proposed approach in comparison with two reference approaches. The proposed classification schemes have been evaluated with more than 180,000 automatically detected and manually classified plasmodia candidate objects from so-called thick smears. Automated solutions for the morphological analysis of malaria blood films could apply such a classifier to detect plasmodia in the highly complex image data of thick smears and thereby shortening the examination time. With such a system diagnosis of malaria infections should become a less tedious, more reliable and reproducible and thus a more objective process. Better quality assurance, improved documentation and global data availability are additional benefits.
An in-depth study of patent medicine sellers' perspectives on malaria in a rural Nigerian community.
Okeke, Theodora A; Uzochukwu, Benjamin S C; Okafor, Henrietta U
2006-11-01
Malaria remains a major cause of mortality among under five children in Nigeria. Most of the early treatments for fever and malaria occur through self-medication with antimalarial drugs bought from medicine sellers. These have led to increasing calls for interventions to improve treatment obtained in these outlets. However, information about the current practices of these medicine sellers is needed before such interventions. This study aims to determine the medicine sellers' perspectives on malaria and the determinants that underlie their dispensing patterns of antimalarial drugs. The study was conducted in Ugwugo-Nike, a rural community in south-east Nigeria. It involved in-depth interviews with 13 patent medicine sellers. A majority of the medicine sellers were not trained health professionals and malaria is recognized as a major health problem by them. There is poor knowledge and poor dispensing behaviour in relation to childhood malaria episodes. Although referral of severe malaria is common, there are those who will not refer. Verbal advice is rarely given to the care-givers. More action research and interventions to improve prescription and referral practices and giving verbal advice to care-givers is recommended. Ways to integrate the drug sellers in the health system are also recommended.
Pedro, R S; Brasil, P; Pina-Costa, A; Machado, C R; Damasceno, L S; Daniel-Ribeiro, C T; Guaraldo, L
2017-12-01
Malaria is a potentially severe disease, widespread in tropical and subtropical areas. Apart from parasite drug resistance, which receives the largest share of attention, several factors directly influence the response to antimalarial treatment such as incorrect doses, adverse drug events, lack of adherence to treatment, drug quality and drug-drug interactions. Pharmacotherapy follow-up can be used to monitor and improve the effectiveness of treatment, prevent drug-related problems and ensure patient safety. The aim of this study was to describe the results of the implementation of pharmacotherapy follow-up of patients with malaria seen at a reference centre for malaria diagnosis and treatment (CPD-Mal) located in the city of Rio de Janeiro, an area without malaria transmission. A descriptive study was conducted from January 2009 to September 2013 at the Instituto Nacional de Infectologia Evandro Chagas (INI) of the Fundação Oswaldo Cruz (Fiocruz). All malaria patients enrolled in the study were treated according to the Brazilian Malaria Therapy Guidelines. Data collected during pharmacotherapy follow-up were recorded in a standardized form. The variables included were age, gender, comorbidities, antimalarials and concomitant medications used, adverse drug reactions (ADR), clinical and parasitological cure times, and treatment outcomes classified as success, recurrence (recrudescence or relapse); and lost to follow-up. The ADR were classified by severity (DAIDS-NIH), organ system affected (WHO-ART) and likelihood to be caused by drugs (Naranjo scale). One hundred thirteen cases of malaria were included. Patients were aged between 13 and 66 years and the majority of them (75.2%) were male. Ninety-four ADR were observed, most classified as mild (85.1%), related to disorders of the gastrointestinal system (63.8%), such as nausea and vomiting, and assessed as "possibly" caused by the antimalarial drugs (91.5%). The majority of clinical (90.9%) and parasitological (87.1%) cure occurred less than 72 hours after treatment initiation. Pharmacotherapy follow-up of malaria treatment by surveillance activities is therefore important regarding information about treatment outcomes as well as patient safety, resulting in better patient care and reducing the chance of relapses. The results underscore its use as a tool for monitoring adherence and drug resistance outside an endemic area. Pharmacotherapy follow-up should be considered a useful malaria surveillance tool that can be developed by reference centres for comprehensive health care assistance and monitoring of therapeutic resistance. © 2017 John Wiley & Sons Ltd.
Boyce, Ross; Reyes, Raquel; Matte, Michael; Ntaro, Moses; Mulogo, Edgar; Metlay, Joshua P; Band, Lawrence; Siedner, Mark J
2016-11-01
There are several mechanisms by which global climate change may impact malaria transmission. We sought to assess how the increased frequency of extreme precipitation events associated with global climate change will influence malaria transmission in highland areas of East Africa. We used a differences-in-differences, quasi-experimental design to examine spatial variability in the incidence rate of laboratory-confirmed malaria cases and malaria-related hospitalizations between villages (1) at high versus low elevations, (2) with versus without rivers, and (3) upstream versus downstream before and after severe flooding that occurred in Kasese District, Western Region, Uganda, in May 2013. During the study period, 7596 diagnostic tests were performed, and 1285 patients were admitted with a diagnosis of malaria. We observed that extreme flooding resulted in an increase of approximately 30% in the risk of an individual having a positive result of a malaria diagnostic test in the postflood period in villages bordering a flood-affected river, compared with villages farther from a river, with a larger relative impact on upstream versus downstream villages (adjusted rate ratio, 1.91 vs 1.33). Extreme precipitation such as the flooding described here may pose significant challenges to malaria control programs and will demand timely responses to mitigate deleterious impacts on human health. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Radar Monitoring of Wetlands for Malaria Control
NASA Technical Reports Server (NTRS)
Pope, Kevin O.
1997-01-01
Malaria is the most important vector-borne tropical disease (Collins and Paskewitz, 1995) and there is no simple and universally applicable form of vector control. While new methods such as malaria vaccine or genetic manipulation of mosquitoes are being explored in the laboratories, the need for more field research on malaria transmission remains very strong. For the foreseeable future many malaria programs must focus on controlling the vector, the anopheline mosquito, often under the specter of shrinking budgets. Therefore information on which human populations are at the greatest risk is especially valuable when allocating scarce resources. The goal of the Radar Monitoring of Wetlands for Malaria Control Project is to demonstrate the feasibility of using Radarsat or other comparable satellite radar imaging systems to determine where and when human populations are at greatest risk for contracting malaria. The study area is northern Belize, a region with abundant wetlands and a potentially serious malaria problem. A key aspect of this study is the analysis of multi-temporal satellite imagery to track seasonal flooding of anopheline mosquito breeding sites. Radarsat images of the test site in Belize have been acquired one to three times a month over the last year, however,, to date only one processed image has been received from the Alaska SAR Facility for analysis. Therefore analysis at this stage is focussed on determining the radar backscatter characteristics of known anopheline breeding sites, with future work to be dedicated toward seasonal changes.
Chipwaza, Beatrice; Mugasa, Joseph P; Selemani, Majige; Amuri, Mbaraka; Mosha, Fausta; Ngatunga, Steve D; Gwakisa, Paul S
2014-11-01
Viral etiologies of fever, including dengue, Chikungunya, influenza, rota and adeno viruses, cause major disease burden in tropical and subtropical countries. The lack of diagnostic facilities in developing countries leads to failure to estimate the true burden of such illnesses, and generally the diseases are underreported. These diseases may have similar symptoms with other causes of acute febrile illnesses including malaria and hence clinical diagnosis without laboratory tests can be difficult. This study aimed to identify viral etiologies as a cause of fever in children and their co-infections with malaria. A cross sectional study was conducted for 6 months at Kilosa district hospital, Tanzania. The participants were febrile children aged 2-13 years presented at the outpatient department. Diagnostic tests such as IgM and IgG ELISA, and PCR were used. A total of 364 patients were enrolled, of these 83(22.8%) had malaria parasites, 76 (20.9%) had presumptive acute dengue infection and among those, 29(38.2%) were confirmed cases. Dengue was more likely to occur in children ≥ 5 years than in <5 years (OR 2.28, 95% CI: 1.35-3.86). Presumptive acute Chikungunya infection was identified in 17(4.7%) of patients. We observed no presenting symptoms that distinguished patients with Chikungunya infection from those with dengue infection or malaria. Co-infections between malaria and Chikungunya, malaria and dengue fever as well as Chikungunya and dengue were detected. Most patients with Chikungunya and dengue infections were treated with antibacterials. Furthermore, our results revealed that 5(5.2%) of patients had influenza virus while 5(12.8%) had rotavirus and 2(5.1%) had adenovirus. Our results suggest that even though viral diseases are a major public health concern, they are not given due recognition as a cause of fever in febrile patients. Emphasis on laboratory diagnostic tests for proper diagnosis and management of febrile patients is recommended.
Automated and unsupervised detection of malarial parasites in microscopic images.
Purwar, Yashasvi; Shah, Sirish L; Clarke, Gwen; Almugairi, Areej; Muehlenbachs, Atis
2011-12-13
Malaria is a serious infectious disease. According to the World Health Organization, it is responsible for nearly one million deaths each year. There are various techniques to diagnose malaria of which manual microscopy is considered to be the gold standard. However due to the number of steps required in manual assessment, this diagnostic method is time consuming (leading to late diagnosis) and prone to human error (leading to erroneous diagnosis), even in experienced hands. The focus of this study is to develop a robust, unsupervised and sensitive malaria screening technique with low material cost and one that has an advantage over other techniques in that it minimizes human reliance and is, therefore, more consistent in applying diagnostic criteria. A method based on digital image processing of Giemsa-stained thin smear image is developed to facilitate the diagnostic process. The diagnosis procedure is divided into two parts; enumeration and identification. The image-based method presented here is designed to automate the process of enumeration and identification; with the main advantage being its ability to carry out the diagnosis in an unsupervised manner and yet have high sensitivity and thus reducing cases of false negatives. The image based method is tested over more than 500 images from two independent laboratories. The aim is to distinguish between positive and negative cases of malaria using thin smear blood slide images. Due to the unsupervised nature of method it requires minimal human intervention thus speeding up the whole process of diagnosis. Overall sensitivity to capture cases of malaria is 100% and specificity ranges from 50-88% for all species of malaria parasites. Image based screening method will speed up the whole process of diagnosis and is more advantageous over laboratory procedures that are prone to errors and where pathological expertise is minimal. Further this method provides a consistent and robust way of generating the parasite clearance curves.
Fawole, Olufunmilayo I; Ajumobi, Olufemi; Poggensee, Gabriele; Nguku, Patrick
2014-01-01
Although several research groups within institutions in Nigeria have been involved in extensive malaria research, the link between the research community and policy formulation has not been optimal. The workshop aimed to assist post graduate students to identify knowledge gaps and to develop relevant Malaria-related research proposals in line with identified research priorities. A training needs assessment questionnaire was completed by 22 students two week prior to the workshop. Also, a one page concept letter was received from 40 residents. Thirty students were selected based the following six criteria: - answerability and ethics; efficacy and impact; deliverability, affordability; scalability, sustainability; health systems, partnership and community involvement; and equity in achieved disease burden reduction. The workshop was over a three day period. The participants at the workshop were 30 Nigeria Field Epidemiology and Laboratory Training Programme (NFELTP) residents from cohorts 4 and 5. Ten technical papers were presented by the experts from the academia, National Malaria Elimination (NMEP) Programme, NFELTP Faculty and Implementing partners including CDC/PMI. Draft proposals were developed and presented by the residents. The "strongest need" for training was on malaria prevention, followed by malaria diagnosis. Forty seven new research questions were generated, while the 19 developed by the NMEP were shared. Evaluation revealed that all (100%) students either "agreed" that the workshop objectives were met. Full proposals were developed by some of the residents. A debriefing meeting was held with the NMEP coordinator to discuss funding of the projects. Future collaborative partnership has developed as the residents have supported NMEP to develop a research protocol for a national evaluation. Research prioritization workshops are required in most training programmes to ensure that students embark on studies that address the research needs of their country and foster collaborative linkages.
Bhattarai, Achuyt; Ali, Abdullah S; Kachur, S. Patrick; Mårtensson, Andreas; Abbas, Ali K; Khatib, Rashid; Al-mafazy, Abdul-wahiyd; Ramsan, Mahdi; Rotllant, Guida; Gerstenmaier, Jan F; Molteni, Fabrizio; Abdulla, Salim; Montgomery, Scott M; Kaneko, Akira; Björkman, Anders
2007-01-01
Background The Roll Back Malaria strategy recommends a combination of interventions for malaria control. Zanzibar implemented artemisinin-based combination therapy (ACT) for uncomplicated malaria in late 2003 and long-lasting insecticidal nets (LLINs) from early 2006. ACT is provided free of charge to all malaria patients, while LLINs are distributed free to children under age 5 y (“under five”) and pregnant women. We investigated temporal trends in Plasmodium falciparum prevalence and malaria-related health parameters following the implementation of these two malaria control interventions in Zanzibar. Methods and Findings Cross-sectional clinical and parasitological surveys in children under the age of 14 y were conducted in North A District in May 2003, 2005, and 2006. Survey data were analyzed in a logistic regression model and adjusted for complex sampling design and potential confounders. Records from all 13 public health facilities in North A District were analyzed for malaria-related outpatient visits and admissions. Mortality and demographic data were obtained from District Commissioner's Office. P. falciparum prevalence decreased in children under five between 2003 and 2006; using 2003 as the reference year, odds ratios (ORs) and 95% confidence intervals (CIs) were, for 2005, 0.55 (0.28–1.08), and for 2006, 0.03 (0.00–0.27); p for trend < 0.001. Between 2002 and 2005 crude under-five, infant (under age 1 y), and child (aged 1–4 y) mortality decreased by 52%, 33%, and 71%, respectively. Similarly, malaria-related admissions, blood transfusions, and malaria-attributed mortality decreased significantly by 77%, 67% and 75%, respectively, between 2002 and 2005 in children under five. Climatic conditions favorable for malaria transmission persisted throughout the observational period. Conclusions Following deployment of ACT in Zanzibar 2003, malaria-associated morbidity and mortality decreased dramatically within two years. Additional distribution of LLINs in early 2006 resulted in a 10-fold reduction of malaria parasite prevalence. The results indicate that the Millennium Development Goals of reducing mortality in children under five and alleviating the burden of malaria are achievable in tropical Africa with high coverage of combined malaria control interventions. PMID:17988171
Ceccato, Pietro; Vancutsem, Christelle; Klaver, Robert; Rowland, James; Connor, Stephen J.
2012-01-01
Rainfall and temperature are two of the major factors triggering malaria epidemics in warm semi-arid (desert-fringe) and high altitude (highland-fringe) epidemic risk areas. The ability of the mosquitoes to transmit Plasmodium spp. is dependent upon a series of biological features generally referred to as vectorial capacity. In this study, the vectorial capacity model (VCAP) was expanded to include the influence of rainfall and temperature variables on malaria transmission potential. Data from two remote sensing products were used to monitor rainfall and temperature and were integrated into the VCAP model. The expanded model was tested in Eritrea and Madagascar to check the viability of the approach. The analysis of VCAP in relation to rainfall, temperature and malaria incidence data in these regions shows that the expanded VCAP correctly tracks the risk of malaria both in regions where rainfall is the limiting factor and in regions where temperature is the limiting factor. The VCAP maps are currently offered as an experimental resource for testing within Malaria Early Warning applications in epidemic prone regions of sub-Saharan Africa. User feedback is currently being collected in preparation for further evaluation and refinement of the VCAP model.
The clinical burden of malaria in Nairobi: a historical review and contemporary audit
2011-01-01
Background Widespread urbanization over the next 20 years has the potential to drastically change the risk of malaria within Africa. The burden of the disease, its management, risk factors and appropriateness of targeted intervention across varied urban environments in Africa remain largely undefined. This paper presents a combined historical and contemporary review of the clinical burden of malaria within one of Africa's largest urban settlements, Nairobi, Kenya. Methods A review of historical reported malaria case burdens since 1911 within Nairobi was undertaken using archived government and city council reports. Contemporary information on out-patient case burdens due to malaria were assembled from the National Health Management and Information System (HMIS). Finally, an audit of 22 randomly selected health facilities within Nairobi was undertaken covering 12 months 2009-2010. The audit included interviews with health workers, and a checklist of commodities and guidelines necessary to diagnose, treat and record malaria. Results From the 1930's through to the mid-1960's malaria incidence declined coincidental with rapid population growth. During this period malaria notification and prevention were a priority for the city council. From 2001-2008 reporting systems for malaria were inadequate to define the extent or distribution of malaria risk within Nairobi. A more detailed facility review suggests, however that malaria remains a common diagnosis (11% of all paediatric diagnoses made) and where laboratories (n = 15) exist slide positivity rates are on average 15%. Information on the quality of diagnosis, slide reading and whether those reported as positive were imported infections was not established. The facilities and health workers included in this study were not universally prepared to treat malaria according to national guidelines or identify foci of risks due to shortages of national first-line drugs, inadequate record keeping and a view among some health workers (17%) that slide negative patients could still have malaria. Conclusion Combined with historical evidence there is a strong suggestion that very low risks of locally acquired malaria exist today within Nairobi's city limits and this requires further investigation. To be prepared for effective prevention and case-management of malaria among a diverse, mobile population in Nairobi requires a major paradigm shift and investment in improved quality of malaria diagnosis and case management, health system strengthening and case reporting. PMID:21599931
McMorrow, Meredith L.; Masanja, M. Irene; Abdulla, Salim M. K.; Kahigwa, Elizeus; Kachur, S. Patrick
2018-01-01
Rapid diagnostic tests (RDTs) represent an alternative to microscopy for malaria diagnosis and have shown high sensitivity and specificity in a variety of study settings. Current World Health Organization (WHO) guidelines for quality control of RDTs provide detailed instructions on pre-field testing, but offer little guidance for quality assurance once RDTs are deployed in health facilities. From September 2006 to April 2007, we introduced a histidine-rich protein II (HRP2)-based RDT (Paracheck) for suspected malaria cases five years of age and older in nine health facilities in Rufiji District, Tanzania, to assess sensitivity and specificity of RDTs in routine use at rural health facilities. Thick blood smears were collected for all patients tested with RDTs and stained and read by laboratory personnel in each facility. Thick smears were subsequently reviewed by a reference microscopist to determine RDT sensitivity and specificity. In all nine health facilities, there were significant problems with the quality of staining and microscopy. Sensitivity and specificity of RDTs were difficult to assess given the poor quality of routine blood smear staining. Mean operational sensitivity of RDTs based on reference microscopy was 64.8%, but varied greatly by health facility, range 18.8–85.9%. Sensitivity of RDTs increased with increasing parasite density. Specificity remained high at 87.8% despite relatively poor slide quality. Institution of quality control of RDTs based on poor quality blood smear staining may impede reliable measurement of sensitivity and specificity and undermine confidence in the new diagnostic. There is an urgent need for the development of alternative quality control procedures for rapid diagnostic tests that can be performed at the facility level. PMID:18784230
Reliable enumeration of malaria parasites in thick blood films using digital image analysis.
Frean, John A
2009-09-23
Quantitation of malaria parasite density is an important component of laboratory diagnosis of malaria. Microscopy of Giemsa-stained thick blood films is the conventional method for parasite enumeration. Accurate and reproducible parasite counts are difficult to achieve, because of inherent technical limitations and human inconsistency. Inaccurate parasite density estimation may have adverse clinical and therapeutic implications for patients, and for endpoints of clinical trials of anti-malarial vaccines or drugs. Digital image analysis provides an opportunity to improve performance of parasite density quantitation. Accurate manual parasite counts were done on 497 images of a range of thick blood films with varying densities of malaria parasites, to establish a uniformly reliable standard against which to assess the digital technique. By utilizing descriptive statistical parameters of parasite size frequency distributions, particle counting algorithms of the digital image analysis programme were semi-automatically adapted to variations in parasite size, shape and staining characteristics, to produce optimum signal/noise ratios. A reliable counting process was developed that requires no operator decisions that might bias the outcome. Digital counts were highly correlated with manual counts for medium to high parasite densities, and slightly less well correlated with conventional counts. At low densities (fewer than 6 parasites per analysed image) signal/noise ratios were compromised and correlation between digital and manual counts was poor. Conventional counts were consistently lower than both digital and manual counts. Using open-access software and avoiding custom programming or any special operator intervention, accurate digital counts were obtained, particularly at high parasite densities that are difficult to count conventionally. The technique is potentially useful for laboratories that routinely perform malaria parasite enumeration. The requirements of a digital microscope camera, personal computer and good quality staining of slides are potentially reasonably easy to meet.
Patel, Jaymin C; Oberstaller, Jenna; Xayavong, Maniphet; Narayanan, Jothikumar; DeBarry, Jeremy D; Srinivasamoorthy, Ganesh; Villegas, Leopoldo; Escalante, Ananias A; DaSilva, Alexandre; Peterson, David S; Barnwell, John W; Kissinger, Jessica C; Udhayakumar, Venkatachalam; Lucchi, Naomi W
2013-01-01
Plasmodium vivax infections remain a major source of malaria-related morbidity and mortality. Early and accurate diagnosis is an integral component of effective malaria control programs. Conventional molecular diagnostic methods provide accurate results but are often resource-intensive, expensive, have a long turnaround time and are beyond the capacity of most malaria-endemic countries. Our laboratory has recently developed a new platform called RealAmp, which combines loop-mediated isothermal amplification (LAMP) with a portable tube scanner real-time isothermal instrument for the rapid detection of malaria parasites. Here we describe new primers for the detection of P. vivax using the RealAmp method. Three pairs of amplification primers required for this method were derived from a conserved DNA sequence unique to the P. vivax genome. The amplification was carried out at 64°C using SYBR Green or SYTO-9 intercalating dyes for 90 minutes with the tube scanner set to collect fluorescence signals at 1-minute intervals. Clinical samples of P. vivax and other human-infecting malaria parasite species were used to determine the sensitivity and specificity of the primers by comparing with an 18S ribosomal RNA-based nested PCR as the gold standard. The new set of primers consistently detected laboratory-maintained isolates of P. vivax from different parts of the world. The primers detected P. vivax in the clinical samples with 94.59% sensitivity (95% CI: 87.48-98.26%) and 100% specificity (95% CI: 90.40-100%) compared to the gold standard nested-PCR method. The new primers also proved to be more sensitive than the published species-specific primers specifically developed for the LAMP method in detecting P. vivax.
Cost-effectiveness of diagnostic for malaria in Extra-Amazon Region, Brazil
2012-01-01
Background Rapid diagnostic tests (RDT) for malaria have been demonstrated to be effective and they should replace microscopy in certain areas. Method The cost-effectiveness of five RDT and thick smear microscopy was estimated and compared. Data were collected on Brazilian Extra-Amazon Region. Data sources included the National Malaria Control Programme of the Ministry of Health, the National Healthcare System reimbursement table, laboratory suppliers and scientific literature. The perspective was that of the Brazilian public health system, the analytical horizon was from the start of fever until the diagnostic results provided to patient and the temporal reference was that of year 2010. Two costing methods were produced, based on exclusive-use microscopy or shared-use microscopy. The results were expressed in costs per adequately diagnosed cases in 2010 U.S. dollars. One-way sensitivity analysis was performed considering key model parameters. Results In the cost-effectiveness analysis with exclusive-use microscopy, the RDT CareStart™ was the most cost-effective diagnostic strategy. Microscopy was the most expensive and most effective, with an additional case adequately diagnosed by microscopy costing US$ 35,550.00 in relation to CareStart™. In opposite, in the cost-effectiveness analysis with shared-use microscopy, the thick smear was extremely cost-effective. Introducing into the analytic model with shared-use microscopy a probability for individual access to the diagnosis, assuming a probability of 100% of access for a public health system user to any RDT and, hypothetically, of 85% of access to microscopy, this test saw its effectiveness reduced and was dominated by the RDT CareStart™. Conclusion The analysis of cost-effectiveness of malaria diagnosis technologies in the Brazilian Extra-Amazon Region depends on the exclusive or shared use of the microscopy. Following the assumptions of this study, shared-use microscopy would be the most cost-effective strategy of the six technologies evaluated. However, if used exclusively for diagnosing malaria, microscopy would be the worst use of resources. Microscopy would not be the most cost-effective strategy, even when structure is shared with other programmes, when the probability of a patient having access to it was reduced. Under these circumstances, the RDT CareStart™ would be the most cost-effective strategy. PMID:23176717
Imported submicroscopic malaria in Madrid.
Ramírez-Olivencia, Germán; Rubio, José Miguel; Rivas, Pablo; Subirats, Mercedes; Herrero, María Dolores; Lago, Mar; Puente, Sabino
2012-09-12
Submicroscopic malaria (SMM) can be defined as low-density infections of Plasmodium that are unlikely to be detected by conventional microscopy. Such submicroscopic infections only occasionally cause acute disease, but they are capable of infecting mosquitoes and contributing to transmission. This entity is frequent in endemic countries; however, little is known about imported SMM.The goals of this study were two-fold: a) to know the frequency of imported SMM, and b) to describe epidemiological, laboratorial and clinical features of imported SMM. A retrospective study based on review of medical records was performed. The study population consisted of patients older than 15 years attended at the Tropical Medicine Unit of Hospital Carlos III, between January 1, 2002 and December 31, 2007. Routinely detection techniques for Plasmodium included Field staining and microscopic examination through thick and thin blood smear. A semi-nested multiplex malaria PCR was used to diagnose or to confirm cases with low parasitaemia. SMM was diagnosed in 104 cases, representing 35.5% of all malaria cases. Mean age (IC95%) was 40.38 years (37.41-43.34), and sex distribution was similar. Most cases were in immigrants, but some cases were found in travellers. Equatorial Guinea was the main country where infection was acquired (81.7%). Symptoms were present only in 28.8% of all SMM cases, mainly asthenia (73.3% of symptomatic patients), fever (60%) and arthromialgias (53.3%). The associated laboratory abnormalities were anaemia (27.9%), leukopaenia (15.4%) and thrombopaenia (15.4%). Co-morbidity was described in 75 cases (72.1%). Results from this study suggest that imported SMM should be considered in some patients attended at Tropical Medicine Units. Although it is usually asymptomatic, it may be responsible of fever, or laboratory abnormalities in patients coming from endemic areas. The possibility of transmission in SMM has been previously described in endemic zones, and presence of vector in Europe has also been reported. Implementation of molecular tests in all asymptomatic individuals coming from endemic area is not economically feasible. So re-emergence of malaria (Plasmodium vivax) in Europe may be speculated.
Imported submicroscopic malaria in Madrid
2012-01-01
Background Submicroscopic malaria (SMM) can be defined as low-density infections of Plasmodium that are unlikely to be detected by conventional microscopy. Such submicroscopic infections only occasionally cause acute disease, but they are capable of infecting mosquitoes and contributing to transmission. This entity is frequent in endemic countries; however, little is known about imported SMM. The goals of this study were two-fold: a) to know the frequency of imported SMM, and b) to describe epidemiological, laboratorial and clinical features of imported SMM. Methods A retrospective study based on review of medical records was performed. The study population consisted of patients older than 15 years attended at the Tropical Medicine Unit of Hospital Carlos III, between January 1, 2002 and December 31, 2007. Routinely detection techniques for Plasmodium included Field staining and microscopic examination through thick and thin blood smear. A semi-nested multiplex malaria PCR was used to diagnose or to confirm cases with low parasitaemia. Results SMM was diagnosed in 104 cases, representing 35.5% of all malaria cases. Mean age (IC95%) was 40.38 years (37.41-43.34), and sex distribution was similar. Most cases were in immigrants, but some cases were found in travellers. Equatorial Guinea was the main country where infection was acquired (81.7%). Symptoms were present only in 28.8% of all SMM cases, mainly asthenia (73.3% of symptomatic patients), fever (60%) and arthromialgias (53.3%). The associated laboratory abnormalities were anaemia (27.9%), leukopaenia (15.4%) and thrombopaenia (15.4%). Co-morbidity was described in 75 cases (72.1%). Conclusions Results from this study suggest that imported SMM should be considered in some patients attended at Tropical Medicine Units. Although it is usually asymptomatic, it may be responsible of fever, or laboratory abnormalities in patients coming from endemic areas. The possibility of transmission in SMM has been previously described in endemic zones, and presence of vector in Europe has also been reported. Implementation of molecular tests in all asymptomatic individuals coming from endemic area is not economically feasible. So re-emergence of malaria (Plasmodium vivax) in Europe may be speculated. PMID:22970903
Imported malaria in pregnant women: a retrospective pooled analysis
Käser, Annina K.; Arguin, Paul M.; Chiodini, Peter L.; Smith, Valerie; Delmont, Jean; Jiménez, Beatriz C.; Färnert, Anna; Kimura, Mikio; Ramharter, Michael; Grobusch, Martin P.; Schlagenhauf, Patricia
2015-01-01
Summary Background Data on imported malaria in pregnant women are scarce. Method A retrospective, descriptive study of pooled data on imported malaria in pregnancy was done, using data from 1977 to 2014 from 8 different collaborators in Europe, the United States and Japan. Most cases were from the period 1991–2014. National malaria reference centresas well as specialists on this topic were asked to search their archives for cases of imported malaria in pregnancy. A total of 632 cases were collated, providing information on Plasmodium species, region of acquisition, nationality, country of residence, reason for travel, age, gestational age, prophylactic measures and treatment used, as well as on complications and outcomes in mother and child. Results Datasets from some sources were incomplete. The predominant Plasmodium species was P. falciparum in 72% of cases. Among the 543 cases where information on the use of chemoprophylaxis was known, 471 (74.5%) did not use chemoprophylaxis or used incorrect or incomplete chemoprophylaxis. The main reason for travelling was “visiting friends and relatives” VFR (48.6%) and overall, most cases of malaria were imported from West Africa (85.9%). Severe anaemia was the most frequent complication in the mother. Data on offspring outcome was limited, but spontaneous abortion was a frequently reported foetal outcome (n = 14). A total of 50 different variants of malaria treatment regimens were reported. Conclusion Imported cases of malaria in pregnancy are mainly P. falciparum acquired in sub-Saharan Africa. Malaria prevention and treatment in pregnant travellers is a challenge for travel medicine due to few data on medication safety and maternal and foetal outcomes. International, collaborative efforts are needed to capture standardized data on imported malaria cases in pregnant women. PMID:26227740
Imported malaria in pregnant women: A retrospective pooled analysis.
Käser, Annina K; Arguin, Paul M; Chiodini, Peter L; Smith, Valerie; Delmont, Jean; Jiménez, Beatriz C; Färnert, Anna; Kimura, Mikio; Ramharter, Michael; Grobusch, Martin P; Schlagenhauf, Patricia
2015-01-01
Data on imported malaria in pregnant women are scarce. A retrospective, descriptive study of pooled data on imported malaria in pregnancy was done using data from 1991 to 2014 from 8 different collaborators in Europe, the United States and Japan. National malaria reference centres as well as specialists on this topic were asked to search their archives for cases of imported malaria in pregnancy. A total of 631 cases were collated, providing information on Plasmodium species, region of acquisition, nationality, country of residence, reason for travel, age, gestational age, prophylactic measures and treatment used, as well as on complications and outcomes in mother and child. Datasets from some sources were incomplete. The predominant Plasmodium species was P. falciparum (78.5% of cases). Among the 542 cases where information on the use of chemoprophylaxis was known, 464 (85.6%) did not use chemoprophylaxis. The main reason for travelling was "visiting friends and relatives" VFR (57.8%) and overall, most cases of malaria were imported from West Africa (57.4%). Severe anaemia was the most frequent complication in the mother. Data on offspring outcome were limited, but spontaneous abortion was a frequently reported foetal outcome (n = 14). A total of 50 different variants of malaria treatment regimens were reported. Imported cases of malaria in pregnancy are mainly P. falciparum acquired in sub-Saharan Africa. Malaria prevention and treatment in pregnant travellers is a challenge for travel medicine due to few data on medication safety and maternal and foetal outcomes. International, collaborative efforts are needed to capture standardized data on imported malaria cases in pregnant women. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Small, Deborah A.
2010-01-01
Natural disasters and other traumatic events often draw a greater charitable response than do ongoing misfortunes, even those that may cause even more widespread misery, such as famine or malaria. Why is the response disproportionate to need? The notion of reference dependence critical to Prospect Theory (Kahneman & Tversky, 1979) maintains that…
A rapid malaria appraisal in the Venezuelan Amazon
2009-01-01
Background While the federal state of Amazonas bears the highest risk for malaria in Venezuela (2007: 68.4 cases/1000 inhabitants), little comprehensive information about the malaria situation is available from this area. The purpose of this rapid malaria appraisal (RMA) was to provide baseline data about malaria and malaria control in Amazonas. Methods The RMA methodology corresponds to a rapid health impact assessment (HIA) as described in the 1999 Gothenburg consensus. In conjunction with the actors of the malaria surveillance system, all useful data and information, which were accessible within a limited time-frame of five visits to Amazonas, were collected, analysed and interpreted. Results Mortality from malaria is low (< 1 in 105) and slide positivity rates have stayed at the same level for the last two decades (15% ± 6% (SD)). Active case detection accounts for ca. 40% of slides taken. The coverage of the censured population with malaria notification points (NPs) has been achieved in recent years. The main parasite is Plasmodium vivax (84% of cases). The proportion of Plasmodium falciparum is on the decline, possibly driven by the introduction of cost-free artemisinin-based combination therapy (ACT) (1988: 33.4%; 2007: 15.4%). Monitoring and documentation is complete, systematic and consistent, but poorly digitalized. Malaria transmission displayed a visible lag behind rainfall in the capital municipality of Atures, but not in the other municipalities. In comparison to reference microscopy, quality of field microscopy and rapid diagnostic tests (RDTs) is suboptimal (kappa < 0.75). Hot spots of malaria risk were seen in some indigenous ethnic groups. Conflicting strategies in respect of training of community health workers (CHW) and the introduction of new diagnostic tools (RDTs) were observed. Conclusion Malaria control is possible, even in tropical rain forest areas, if the health system is working adequately. Interventions have to be carefully designed and the features of the particular local Latin American context considered. PMID:20003328
Epidemiology and Control of Malaria, Leishmaniasis and Schistosomiasis
1985-11-01
We have permanent laboratory and living quarters in Caatinga do Moura, Bahia, an area of high endemicity for SchistoQoaQ mansoni. Malaria is a major...permitting instantaneous analysis of data and immediate feed-back of data analysis to the Brazil lab. In the schistosomiasis field study area at Caatinga ...from 67% (30/45) for the wild guinea pig (Cavia perjea) to 11% (3/27) for the field mouse (Akodon sp.). In two sites near Caatinga do Moura, a highly
Detachment of retinal pigment epithelium in retinopathy due to malaria.
Rocha Cabrera, P; Rodríguez Talavera, I; Losada Castillo, M J; Alemán Valls, R; Lorenzo Morales, J
2018-05-25
A 45-year-old man was diagnosed with malaria with neurological involvement. Two months later he referred metamorphopsia in the left eye. Malarial retinopathy was observed in the fundus examination. The Optic Coherence Tomography (OCT) of the macula showed parafoveal pigment epithelium detachment (DEP). Specific anti-malarial treatment was initiated, with the disappearance of the retinopathy being observed. Plasmodium falciparum is responsible for the retinopathy in neurological malaria. A funduscopic examination and macular OCT should be performed in these patients, as it is associated with a higher mortality when there is a retinal involvement. Copyright © 2018 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.
Human ecology and behaviour in malaria control in tropical Africa
MacCormack, C. P.
1984-01-01
Since about 250 BC, human modification of African environments has created increasingly favourable breeding conditions for Anopheles gambiae. Subsequent adaptations to the increased malaria risk are briefly described and reference is made to Macdonald's mathematical model for the disease. Since values for the variables in that model are high in tropical Africa, there is little possibility that simple, inexpensive, self-help primary health care initiatives can control malaria in the region. However, in combination with more substantial public health initiatives, simple primary health care activities might be done by communities to (1) prevent mosquitos from feeding on people, (2) prevent or reduce mosquito breeding, (3) destroy adult mosquitos, and (4) eliminate malaria parasites from human hosts. Lay methods of protection and self-care are examined and some topics for further research are indicated. Culturally appropriate health education methods are also suggested. PMID:6335685
A comparative laboratory diagnosis of malaria: microscopy versus rapid diagnostic test kits.
Azikiwe, C C A; Ifezulike, C C; Siminialayi, I M; Amazu, L U; Enye, J C; Nwakwunite, O E
2012-04-01
To compare the two methods of rapid diagnostic tests (RDTs) and microscopy in the diagnosis of malaria. RDTs and microscopy were carried out to diagnose malaria. Percentage malaria parasitaemia was calculated on thin films and all non-acute cases of plasmodiasis with less than 0.001% malaria parasitaemia were regarded as negative. Results were simply presented as percentage positive of the total number of patients under study. The results of RDTs were compared to those of microscopy while those of RDTs based on antigen were compared to those of RDTs based on antibody. Patients' follow-up was made for all cases. All the 200 patients under present study tested positive to RDTs based on malaria antibodies (serum) method (100%). 128 out of 200 tested positive to RDTs based on malaria antigen (whole blood) method (64%), while 118 out of 200 patients under present study tested positive to visual microscopy of Lieshman and diluted Giemsa (59%). All patients that tested positive to microscopy also tested positive to RDTs based on antigen. All patients on the second day of follow-up were non-febrile and had antimalaria drugs. We conclude based on the present study that the RDTs based on malaria antigen (whole blood) method is as specific as the traditional microscopy and even appears more sensitive than microscopy. The RDTs based on antibody (serum) method is unspecific thus it should not be encouraged. It is most likely that Africa being an endemic region, formation of certain levels of malaria antibody may not be uncommon. The present study also supports the opinion that a good number of febrile cases is not due to malaria. We support WHO's report on cost effectiveness of RDTs but, recommend that only the antigen based method should possibly, be adopted in Africa and other malaria endemic regions of the world.
Liu, Yao-Bao; Cao, Jun; Zhou, Hua-Yun; Wang, Wei-Ming; Cao, Yuan-Yuan; Gao, Qi
2013-02-01
To analyze the epidemiological characteristics of overseas imported malaria in Jiangsu Province and explore the strategies and priorities in prevention and control, so as to provide the evidence for improving the diagnosis, treatment and management of imported malaria. The data of overseas imported malaria as well as the case epidemiological investigation in Jiangsu Province from July 18, 2011 to June 30, 2012 were collected and analyzed descriptively for the species composition, original countries, population distribution, regional distribution, onset time, diagnosis and treatment, channels to go abroad, and counterparts returned together with the patients. A total of 233 overseas imported malaria cases were reported, and 226 cases (97.0%) were imported from African countries. A total of 208 cases (89.3%) were falciparum malaria, and 224 cases (96.1%) were laboratory-confirmed. The imported malaria cases were young adults who were mainly migrant farmer and skilled male workers. There was no significant seasonal variation for onset time. Totally 145 cases (62.2%) got malaria onset in 20 days after returning home. The median time from onset to seeing doctor was two days and the median time from seeing doctor to being diagnosed was one day. The first visit health facilities by the patients were relatively scattered and the diagnostic health facilities were mainly medical institutions and CDC at the county level and above (220 cases, accounting for 94.4%). The ratio of standard treatment after malaria diagnosis was 100%. A total of 205 cases (88.0%) were workers dispatched to abroad as labor export by the company, and 142 cases (60.9%) cases had counterparts returned together. The situation of overseas imported malaria in Jiangsu Province is severe. It is necessary to further strengthen the professional training and multi-sectoral cooperation, establish the collaborative investigation mechanism for high-risk groups, and take effective prevention and control measures to reduce the risk of overseas imported malaria.
Nair, Chandrasekhar Bhaskaran; Manjula, Jagannath; Subramani, Pradeep Annamalai; Nagendrappa, Prakash B; Manoj, Mulakkapurath Narayanan; Malpani, Sukriti; Pullela, Phani Kumar; Subbarao, Pillarisetti Venkata; Ramamoorthy, Siva; Ghosh, Susanta K
2016-01-01
Sensitive and specific detection of malarial parasites is crucial in controlling the significant malaria burden in the developing world. Also important is being able to identify life threatening Plasmodium falciparum malaria quickly and accurately to reduce malaria related mortality. Existing methods such as microscopy and rapid diagnostic tests (RDTs) have major shortcomings. Here, we describe a new real-time PCR-based diagnostic test device at point-of-care service for resource-limited settings. Truenat® Malaria, a chip-based microPCR test, was developed by bigtec Labs, Bangalore, India, for differential identification of Plasmodium falciparum and Plasmodium vivax parasites. The Truenat Malaria tests runs on bigtec's Truelab Uno® microPCR device, a handheld, battery operated, and easy-to-use real-time microPCR device. The performance of Truenat® Malaria was evaluated versus the WHO nested PCR protocol. The Truenat® Malaria was further evaluated in a triple-blinded study design using a sample panel of 281 specimens created from the clinical samples characterized by expert microscopy and a rapid diagnostic test kit by the National Institute of Malaria Research (NIMR). A comparative evaluation was done on the Truelab Uno® and a commercial real-time PCR system. The limit of detection of the Truenat Malaria assay was found to be <5 parasites/μl for both P. falciparum and P. vivax. The Truenat® Malaria test was found to have sensitivity and specificity of 100% each, compared to the WHO nested PCR protocol based on the evaluation of 100 samples. The sensitivity using expert microscopy as the reference standard was determined to be around 99.3% (95% CI: 95.5-99.9) at the species level. Mixed infections were identified more accurately by Truenat Malaria (32 samples identified as mixed) versus expert microscopy and RDTs which detected 4 and 5 mixed samples, respectively. The Truenat® Malaria microPCR test is a valuable diagnostic tool and implementation should be considered not only for malaria diagnosis but also for active surveillance and epidemiological intervention.
Perceptions and home management practices of malaria in some rural communities in Abeokuta, Nigeria.
Idowu, O A; Mafiana, C F; Luwoye, I J; Adehanloye, O
2008-07-01
A survey was carried out in five rural communities that enjoy agricultural extension services from the University of Agriculture Abeokuta. Questionnaires and focus group discussions (FGDs) were used to assess perceptions and home management practices of malaria infection. The inhabitants considered malaria (which they refer to as "Iba Otutu") has the least dangerous of other types of common fever such as yellow fever and typhoid fever. A vast majority of the respondents (73%) attributed malaria infection to doing of strenuous jobs in the hot sun, while only 11.7% attributed it to mosquito bites. Hunger, eating or drinking of contaminated food or water were other sources of malaria infection mentioned by the respondent. During the FGDs, another source of infection of malaria identified was excessive exposure to heat of fire used in frying cassava (garri), therefore those frying garri and those spreading cassava flakes in the sun were identified as most vulnerable to malaria infection. During the FGD, high level of malaria infection in children was attributed to children playful activities in the sun. It is believed that malaria infection will occur even without mosquito bites but with exposure to these other factors especially the intense heat of the sun. Respondents showed good knowledge of malaria symptoms even in infants and children. However, in the event of malaria infection consumption of herbal preparations is the first line of treatment. Drug hawkers that sell modern drugs in the communities were mainly consulted for malaria treatment. The antimalarial drugs bought were often wrongly used and none of the respondents were aware of the current trend in malaria management with modern drugs. Hospital visitation is usually after many days of persistent illness without improvement despite all forms of self medication. The main measure used against malaria vectors was insecticide coils (74.6%). None of the respondents used insecticide treated net (ITN). Distance, cost and poor quality of hospital treatment were reasons for refusal to seek proper medical care. Health education and improved health care services are recommended for these farmers in order for them to be able to translate extension services provided into maximum agricultural yields.
Nair, Chandrasekhar Bhaskaran; Manjula, Jagannath; Subramani, Pradeep Annamalai; Nagendrappa, Prakash B.; Manoj, Mulakkapurath Narayanan; Malpani, Sukriti; Pullela, Phani Kumar; Subbarao, Pillarisetti Venkata; Ramamoorthy, Siva; Ghosh, Susanta K.
2016-01-01
Background Sensitive and specific detection of malarial parasites is crucial in controlling the significant malaria burden in the developing world. Also important is being able to identify life threatening Plasmodium falciparum malaria quickly and accurately to reduce malaria related mortality. Existing methods such as microscopy and rapid diagnostic tests (RDTs) have major shortcomings. Here, we describe a new real-time PCR-based diagnostic test device at point-of-care service for resource-limited settings. Methods Truenat® Malaria, a chip-based microPCR test, was developed by bigtec Labs, Bangalore, India, for differential identification of Plasmodium falciparum and Plasmodium vivax parasites. The Truenat Malaria tests runs on bigtec’s Truelab Uno® microPCR device, a handheld, battery operated, and easy-to-use real-time microPCR device. The performance of Truenat® Malaria was evaluated versus the WHO nested PCR protocol. The Truenat® Malaria was further evaluated in a triple-blinded study design using a sample panel of 281 specimens created from the clinical samples characterized by expert microscopy and a rapid diagnostic test kit by the National Institute of Malaria Research (NIMR). A comparative evaluation was done on the Truelab Uno® and a commercial real-time PCR system. Results The limit of detection of the Truenat Malaria assay was found to be <5 parasites/μl for both P. falciparum and P. vivax. The Truenat® Malaria test was found to have sensitivity and specificity of 100% each, compared to the WHO nested PCR protocol based on the evaluation of 100 samples. The sensitivity using expert microscopy as the reference standard was determined to be around 99.3% (95% CI: 95.5–99.9) at the species level. Mixed infections were identified more accurately by Truenat Malaria (32 samples identified as mixed) versus expert microscopy and RDTs which detected 4 and 5 mixed samples, respectively. Conclusion The Truenat® Malaria microPCR test is a valuable diagnostic tool and implementation should be considered not only for malaria diagnosis but also for active surveillance and epidemiological intervention. PMID:26784111
Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution
Rutledge, Gavin G.; Böhme, Ulrike; Sanders, Mandy; Reid, Adam J.; Cotton, James A.; Maiga-Ascofare, Oumou; Djimdé, Abdoulaye A.; Apinjoh, Tobias O.; Amenga-Etego, Lucas; Manske, Magnus; Barnwell, John W.; Renaud, François; Ollomo, Benjamin; Prugnolle, Franck; Anstey, Nicholas M.; Auburn, Sarah; Price, Ric N.; McCarthy, James S.; Kwiatkowski, Dominic P.; Newbold, Chris I.; Berriman, Matthew; Otto, Thomas D.
2017-01-01
Elucidation of the evolutionary history and interrelatedness of Plasmodium species that infect humans has been hampered by a lack of genetic information for three human-infective species: P. malariae and two P. ovale species (P. o. curtisi and P. o. wallikeri)1. These species are prevalent across most regions in which malaria is endemic2,3 and are often undetectable by light microscopy4, rendering their study in human populations difficult5. The exact evolutionary relationship of these species to the other human-infective species has been contested6,7. Using a new reference genome for P. malariae and a manually curated draft P. o. curtisi genome, we are now able to accurately place these species within the Plasmodium phylogeny. Sequencing of a P. malariae relative that infects chimpanzees reveals similar signatures of selection in the P. malariae lineage to another Plasmodium lineage shown to be capable of colonization of both human and chimpanzee hosts. Molecular dating suggests that these host adaptations occurred over similar evolutionary timescales. In addition to the core genome that is conserved between species, differences in gene content can be linked to their specific biology. The genome suggests that P. malariae expresses a family of heterodimeric proteins on its surface that have structural similarities to a protein crucial for invasion of red blood cells. The data presented here provide insight into the evolution of the Plasmodium genus as a whole. PMID:28117441
Plants used traditionally to treat malaria in Brazil: the archives of Flora Medicinal
Botsaris, Alexandros S
2007-01-01
The archives of Flora Medicinal, an ancient pharmaceutical laboratory that supported ethnomedical research in Brazil for more than 30 years, were searched for plants with antimalarial use. Forty plant species indicated to treat malaria were described by Dr. J. Monteiro da Silva (Flora Medicinal leader) and his co-workers. Eight species, Bathysa cuspidata, Cosmos sulphureus, Cecropia hololeuca, Erisma calcaratum, Gomphrena arborescens, Musa paradisiaca, Ocotea odorifera, and Pradosia lactescens, are related as antimalarial for the first time in ethnobotanical studies. Some species, including Mikania glomerata, Melampodium divaricatum, Galipea multiflora, Aspidosperma polyneuron, and Coutarea hexandra, were reported to have activity in malaria patients under clinical observation. In the information obtained, also, there were many details about the appropriate indication of each plant. For example, some plants are indicated to increase others' potency. There are also plants that are traditionally employed for specific symptoms or conditions that often accompany malaria, such as weakness, renal failure or cerebral malaria. Many plants that have been considered to lack activity against malaria due to absence of in vitro activity against Plasmodium can have other mechanisms of action. Thus researchers should observe ethnomedical information before deciding which kind of screening should be used in the search of antimalarial drugs. PMID:17472740
Heutmekers, Marloes; Gillet, Philippe; Maltha, Jessica; Scheirlinck, Annelies; Cnops, Lieselotte; Bottieau, Emmanuel; Van Esbroeck, Marjan; Jacobs, Jan
2012-06-18
The present study evaluated CareStart pLDH Malaria, a three-band rapid diagnostic test detecting Plasmodium falciparum-specific parasite lactate dehydrogenase (Pf-pLDH) and pan Plasmodium-specific pLDH (pan-pLDH) in a reference setting. CareStart pLDH was retrospectively and prospectively assessed with a panel of stored (n=498) and fresh (n=77) blood samples obtained in international travelers suspected of malaria. Both panels comprised all four Plasmodium species; the retrospective panel comprised also Plasmodium negative samples. The reference method was microscopy corrected by PCR. The prospective panel was run side-to-side with OptiMAL (Pf-pLDH/pan-pLDH) and SDFK60 (histidine-rich protein-2 (HRP-2)/pan-pLDH). In the retrospective evaluation, overall sensitivity for P. falciparum samples (n=247) was 94.7%, reaching 98.7% for parasite densities>1,000/μl. Most false negative results occurred among samples with pure gametocytaemia (2/12, 16.7%) and at parasite densities ≤ 100/μl (7/12, 58.3%). None of the Plasmodium negative samples (n=96) showed visible test lines. Sensitivities for Plasmodium vivax (n=70), Plasmodium ovale (n=69) and Plasmodium malariae (n=16) were 74.3%, 31.9% and 25.0% respectively. Wrong species identification occurred in 10 (2.5%) samples and was mainly due to P. vivax samples reacting with the Pf-pLDH test line. Overall, Pf-pLDH test lines showed higher line intensities compared to the pan-pLDH lines (67.9% and 23.0% medium and strong line intensities for P. falciparum). In the prospective panel (77 Plasmodium-positive samples), CareStart pLDH showed higher sensitivities for P. falciparum compared to OptiMAL (p=0.008), lower sensitivities for P. falciparum as compare to SDFK60 (although not reaching statistical significance, p=0.08) and higher sensitivities for P. ovale compared to both OptiMAL (p=0.03) and SDFK60 (p=0.01). Inter-observer and test reproducibility were good to excellent. CareStart pLDH performed excellent for the detection of P. falciparum, well for P. vivax, but poor for P. ovale and P. malariae.
Predicting Ebola infection: A malaria-sensitive triage score for Ebola virus disease
Okoni-Williams, Harry Henry; Suma, Mohamed; Mancuso, Brooke; Al-Dikhari, Ahmed; Faouzi, Mohamed
2017-01-01
Background The non-specific symptoms of Ebola Virus Disease (EVD) pose a major problem to triage and isolation efforts at Ebola Treatment Centres (ETCs). Under the current triage protocol, half the patients allocated to high-risk “probable” wards were EVD(-): a misclassification speculated to predispose nosocomial EVD infection. A better understanding of the statistical relevance of individual triage symptoms is essential in resource-poor settings where rapid, laboratory-confirmed diagnostics are often unavailable. Methods/Principal findings This retrospective cohort study analyses the clinical characteristics of 566 patients admitted to the GOAL-Mathaska ETC in Sierra Leone. The diagnostic potential of each characteristic was assessed by multivariate analysis and incorporated into a statistically weighted predictive score, designed to detect EVD as well as discriminate malaria. Of the 566 patients, 28% were EVD(+) and 35% were malaria(+). Malaria was 2-fold more common in EVD(-) patients (p<0.05), and thus an important differential diagnosis. Univariate analyses comparing EVD(+) vs. EVD(-) and EVD(+)/malaria(-) vs. EVD(-)/malaria(+) cohorts revealed 7 characteristics with the highest odds for EVD infection, namely: reported sick-contact, conjunctivitis, diarrhoea, referral-time of 4–9 days, pyrexia, dysphagia and haemorrhage. Oppositely, myalgia was more predictive of EVD(-) or EVD(-)/malaria(+). Including these 8 characteristics in a triage score, we obtained an 89% ability to discriminate EVD(+) from either EVD(-) or EVD(-)/malaria(+). Conclusions/Significance This study proposes a highly predictive and easy-to-use triage tool, which stratifies the risk of EVD infection with 89% discriminative power for both EVD(-) and EVD(-)/malaria(+) differential diagnoses. Improved triage could preserve resources by identifying those in need of more specific differential diagnostics as well as bolster infection prevention/control measures by better compartmentalizing the risk of nosocomial infection. PMID:28231242
Predicting Ebola infection: A malaria-sensitive triage score for Ebola virus disease.
Hartley, Mary-Anne; Young, Alyssa; Tran, Anh-Minh; Okoni-Williams, Harry Henry; Suma, Mohamed; Mancuso, Brooke; Al-Dikhari, Ahmed; Faouzi, Mohamed
2017-02-01
The non-specific symptoms of Ebola Virus Disease (EVD) pose a major problem to triage and isolation efforts at Ebola Treatment Centres (ETCs). Under the current triage protocol, half the patients allocated to high-risk "probable" wards were EVD(-): a misclassification speculated to predispose nosocomial EVD infection. A better understanding of the statistical relevance of individual triage symptoms is essential in resource-poor settings where rapid, laboratory-confirmed diagnostics are often unavailable. This retrospective cohort study analyses the clinical characteristics of 566 patients admitted to the GOAL-Mathaska ETC in Sierra Leone. The diagnostic potential of each characteristic was assessed by multivariate analysis and incorporated into a statistically weighted predictive score, designed to detect EVD as well as discriminate malaria. Of the 566 patients, 28% were EVD(+) and 35% were malaria(+). Malaria was 2-fold more common in EVD(-) patients (p<0.05), and thus an important differential diagnosis. Univariate analyses comparing EVD(+) vs. EVD(-) and EVD(+)/malaria(-) vs. EVD(-)/malaria(+) cohorts revealed 7 characteristics with the highest odds for EVD infection, namely: reported sick-contact, conjunctivitis, diarrhoea, referral-time of 4-9 days, pyrexia, dysphagia and haemorrhage. Oppositely, myalgia was more predictive of EVD(-) or EVD(-)/malaria(+). Including these 8 characteristics in a triage score, we obtained an 89% ability to discriminate EVD(+) from either EVD(-) or EVD(-)/malaria(+). This study proposes a highly predictive and easy-to-use triage tool, which stratifies the risk of EVD infection with 89% discriminative power for both EVD(-) and EVD(-)/malaria(+) differential diagnoses. Improved triage could preserve resources by identifying those in need of more specific differential diagnostics as well as bolster infection prevention/control measures by better compartmentalizing the risk of nosocomial infection.
Ruiz, Daniel; Poveda, Germán; Vélez, Iván D; Quiñones, Martha L; Rúa, Guillermo L; Velásquez, Luz E; Zuluaga, Juan S
2006-01-01
Background Malaria has recently re-emerged as a public health burden in Colombia. Although the problem seems to be climate-driven, there remain significant gaps of knowledge in the understanding of the complexity of malaria transmission, which have motivated attempts to develop a comprehensive model. Methods The mathematical tool was applied to represent Plasmodium falciparum malaria transmission in two endemic-areas. Entomological exogenous variables were estimated through field campaigns and laboratory experiments. Availability of breeding places was included towards representing fluctuations in vector densities. Diverse scenarios, sensitivity analyses and instabilities cases were considered during experimentation-validation process. Results Correlation coefficients and mean square errors between observed and modelled incidences reached 0.897–0.668 (P > 0.95) and 0.0002–0.0005, respectively. Temperature became the most relevant climatic parameter driving the final incidence. Accordingly, malaria outbreaks are possible during the favourable epochs following the onset of El Niño warm events. Sporogonic and gonotrophic cycles showed to be the entomological key-variables controlling the transmission potential of mosquitoes' population. Simulation results also showed that seasonality of vector density becomes an important factor towards understanding disease transmission. Conclusion The model constitutes a promising tool to deepen the understanding of the multiple interactions related to malaria transmission conducive to outbreaks. In the foreseeable future it could be implemented as a tool to diagnose possible dynamical patterns of malaria incidence under several scenarios, as well as a decision-making tool for the early detection and control of outbreaks. The model will be also able to be merged with forecasts of El Niño events to provide a National Malaria Early Warning System. PMID:16882349
Ruiz, Daniel; Poveda, Germán; Vélez, Iván D; Quiñones, Martha L; Rúa, Guillermo L; Velásquez, Luz E; Zuluaga, Juan S
2006-08-01
Malaria has recently re-emerged as a public health burden in Colombia. Although the problem seems to be climate-driven, there remain significant gaps of knowledge in the understanding of the complexity of malaria transmission, which have motivated attempts to develop a comprehensive model. The mathematical tool was applied to represent Plasmodium falciparum malaria transmission in two endemic-areas. Entomological exogenous variables were estimated through field campaigns and laboratory experiments. Availability of breeding places was included towards representing fluctuations in vector densities. Diverse scenarios, sensitivity analyses and instabilities cases were considered during experimentation-validation process. Correlation coefficients and mean square errors between observed and modelled incidences reached 0.897-0.668 (P > 0.95) and 0.0002-0.0005, respectively. Temperature became the most relevant climatic parameter driving the final incidence. Accordingly, malaria outbreaks are possible during the favourable epochs following the onset of El Niño warm events. Sporogonic and gonotrophic cycles showed to be the entomological key-variables controlling the transmission potential of mosquitoes' population. Simulation results also showed that seasonality of vector density becomes an important factor towards understanding disease transmission. The model constitutes a promising tool to deepen the understanding of the multiple interactions related to malaria transmission conducive to outbreaks. In the foreseeable future it could be implemented as a tool to diagnose possible dynamical patterns of malaria incidence under several scenarios, as well as a decision-making tool for the early detection and control of outbreaks. The model will be also able to be merged with forecasts of El Niño events to provide a National Malaria Early Warning System.
Vekemans, Johan; Marsh, Kevin; Greenwood, Brian; Leach, Amanda; Kabore, William; Soulanoudjingar, Solange; Asante, Kwaku Poku; Ansong, Daniel; Evans, Jennifer; Sacarlal, Jahit; Bejon, Philip; Kamthunzi, Portia; Salim, Nahya; Njuguna, Patricia; Hamel, Mary J; Otieno, Walter; Gesase, Samwel; Schellenberg, David
2011-08-04
An effective malaria vaccine, deployed in conjunction with other malaria interventions, is likely to substantially reduce the malaria burden. Efficacy against severe malaria will be a key driver for decisions on implementation. An initial study of an RTS, S vaccine candidate showed promising efficacy against severe malaria in children in Mozambique. Further evidence of its protective efficacy will be gained in a pivotal, multi-centre, phase III study. This paper describes the case definitions of severe malaria used in this study and the programme for standardized assessment of severe malaria according to the case definition. Case definitions of severe malaria were developed from a literature review and a consensus meeting of expert consultants and the RTS, S Clinical Trial Partnership Committee, in collaboration with the World Health Organization and the Malaria Clinical Trials Alliance. The same groups, with input from an Independent Data Monitoring Committee, developed and implemented a programme for standardized data collection.The case definitions developed reflect the typical presentations of severe malaria in African hospitals. Markers of disease severity were chosen on the basis of their association with poor outcome, occurrence in a significant proportion of cases and on an ability to standardize their measurement across research centres. For the primary case definition, one or more clinical and/or laboratory markers of disease severity have to be present, four major co-morbidities (pneumonia, meningitis, bacteraemia or gastroenteritis with severe dehydration) are excluded, and a Plasmodium falciparum parasite density threshold is introduced, in order to maximize the specificity of the case definition. Secondary case definitions allow inclusion of co-morbidities and/or allow for the presence of parasitaemia at any density. The programmatic implementation of standardized case assessment included a clinical algorithm for evaluating seriously sick children, improvements to care delivery and a robust training and evaluation programme for clinicians. The case definition developed for the pivotal phase III RTS, S vaccine study is consistent with WHO recommendations, is locally applicable and appropriately balances sensitivity and specificity in the diagnosis of severe malaria. Processes set up to standardize severe malaria data collection will allow robust assessment of the efficacy of the RTS, S vaccine against severe malaria, strengthen local capacity and benefit patient care for subjects in the trial. Clinicaltrials.gov NCT00866619.
Hayashida, Kyoko; Kajino, Kiichi; Simukoko, Humphrey; Simuunza, Martin; Ndebe, Joseph; Chota, Amos; Namangala, Boniface; Sugimoto, Chihiro
2017-01-13
Because of the low sensitivity of conventional rapid diagnostic tests (RDTs) for malaria infections, the actual prevalence of the diseases, especially those caused by non-Plasmodium falciparum (non-Pf) species, in asymptomatic populations remain less defined in countries lacking in well-equipped facilities for accurate diagnoses. Our direct blood dry LAMP system (CZC-LAMP) was applied to the diagnosis of malaria as simple, rapid and highly sensitive method as an alternative for conventional RDTs in malaria endemic areas where laboratory resources are limited. LAMP primer sets for mitochondria DNAs of Plasmodium falciparum (Pf) and human-infective species other than Pf (non-Pf; P. vivax, P. ovale, P. malariae) were designed and tested by using human blood DNA samples from 74 residents from a malaria endemic area in eastern Zambia. These malaria dry-LAMPs were optimized for field or point-of-care operations, and evaluated in the field at a malaria endemic area in Zambia with 96 human blood samples. To determine the sensitivities and specificities, results obtained by the on-site LAMP diagnosis were compared with those by the nested PCR and nucleotide sequencing of its product. The dry LAMPs showed the sensitivities of 89.7% for Pf and 85.7% for non-Pf, and the specificities of 97.2% for Pf and 100% for non-Pf, with purified blood DNA samples. The direct blood LAMP diagnostic methods, in which 1 μl of anticoagulated blood were used as the template, showed the sensitivities of 98.1% for Pf, 92.1% for non-Pf, and the specificities of 98.1% for Pf, 100% for non-Pf. The prevalences of P. falciparum, P. malariae and P. ovale in the surveyed area were 52.4, 25.3 and 10.6%, respectively, indicating high prevalence of asymptomatic carriers in endemic areas in Zambia. We have developed new field-applicable malaria diagnostic tests. The malaria CZC-LAMPs showed high sensitivity and specificity to both P. falciparum and non-P. falciparum. These malaria CZC-LAMPs provide new means for rapid, sensitive and reliable point-of-care diagnosis for low-density malaria infections, and are expected to help update current knowledge of malaria epidemiology, and can contribute to the elimination of malaria from endemic areas.
Ilunga-Ilunga, Félicien; Levêque, Alain; Dramaix, Michèle
2015-01-01
The objective of this study was to determine the source of health care funding for heads of households related to the management of severe malaria in children admitted to a Kinshasa reference hospital. This cross-sectional study was conducted on 1,350 hospitalised children under the age of 15 years treated for severe malaria in Kinshasa reference hospitals from January to November 2011 and the heads of households of these children. Only 46% of heads of households reported having sufficient funds directly available in the household budget. The remaining 54% had to call upon external sources of funding (sale of assets, loans, pawning goods). The use of a loan tended to increase significantly mainly for households with a low (adjusted odds ratio = 6.2), and intermediate socioeconomic status (adjusted odds ratio = 3.8) and for households working in the informal sector (adjusted odds ratio = 2.5). Similarly, the sale of assets was more frequently reported for households working in the informal sector (adjusted odds ratio = 2.4) and for female heads of households (adjusted odds ratio = 3.9). The management of severe malaria is a burden on household income. The majority of heads of households concerned needs to use external funding sources. A State subsidy for this management would help to reduce the risk of debt and sale of assets, especially for the poorest households.
Plasmodium knowlesi malaria in humans is widely distributed and potentially life-threatening
Cox-Singh, Janet; Davis, Timothy M. E.; Lee, Kim-Sung; Shamsul, Sunita S. G.; Matusop, Asmad; Ratnam, Shanmuga; Rahman, Hasan A.; Conway, David J; Singh, Balbir
2008-01-01
Background Until recently, Plasmodium knowlesi malaria in humans was misdiagnosed as P. malariae. The present objectives were to determine the geographic distribution of P. knowlesi in the human population in Malaysia and to investigate four suspected fatal cases. Methods Sensitive and specific nested-PCR was used to identify all Plasmodium species present in blood from i) 960 patients with malaria hospitalized in Sarawak, Malaysian Borneo from 2001-2006, ii) 54 P. malariae archival blood-films from 15 districts in Sabah, Malaysian Borneo (2003–2005) and four districts in Pahang, Peninsular Malaysia (2004–2005), and iii) suspected knowlesi fatalities. In the four latter cases, available clinical and laboratory data were reviewed. Results P. knowlesi DNA was detected in 266 of 960 (27·7%) of the samples from Sarawak hospitals, 41 of 49 (83·7%) from Sabah and all 5 from Pahang. Only P. knowlesi DNA was detected in archival blood films from the 4 fatal cases. All were hyperparasitemic and developed marked hepatorenal dysfunction. Conclusions Human infections with P. knowlesi, commonly misidentified as the more benign P. malariae, are widely distributed across Malaysian Borneo and extend to Peninsular Malaysia. Because P. knowlesi replicates every 24 hours, rapid diagnosis and prompt effective treatment are essential. In the absence of a specific routine diagnostic test for knowlesi malaria, we recommend that patients in, or who have travelled to, South-east Asia who are ill with a ‘P. malariae’ hyperparasitemia diagnosis by microscopy should receive intensive management as appropriate for severe falciparum malaria. PMID:18171245
Blanford, Simon; Shi, Wangpeng; Christian, Riann; Marden, James H.; Koekemoer, Lizette L.; Brooke, Basil D.; Coetzee, Maureen; Read, Andrew F.; Thomas, Matthew B.
2011-01-01
Rapidly emerging insecticide resistance is creating an urgent need for new active ingredients to control the adult mosquitoes that vector malaria. Biopesticides based on the spores of entomopathogenic fungi have shown considerable promise by causing very substantial mortality within 7–14 days of exposure. This mortality will generate excellent malaria control if there is a high likelihood that mosquitoes contact fungi early in their adult lives. However, where contact rates are lower, as might result from poor pesticide coverage, some mosquitoes will contact fungi one or more feeding cycles after they acquire malaria, and so risk transmitting malaria before the fungus kills them. Critics have argued that ‘slow acting’ fungal biopesticides are, therefore, incapable of delivering malaria control in real-world contexts. Here, utilizing standard WHO laboratory protocols, we demonstrate effective action of a biopesticide much faster than previously reported. Specifically, we show that transient exposure to clay tiles sprayed with a candidate biopesticide comprising spores of a natural isolate of Beauveria bassiana, could reduce malaria transmission potential to zero within a feeding cycle. The effect resulted from a combination of high mortality and rapid fungal-induced reduction in feeding and flight capacity. Additionally, multiple insecticide-resistant lines from three key African malaria vector species were completely susceptible to fungus. Thus, fungal biopesticides can block transmission on a par with chemical insecticides, and can achieve this where chemical insecticides have little impact. These results support broadening the current vector control paradigm beyond fast-acting chemical toxins. PMID:21897846
An outbreak of locally acquired Plasmodium vivax malaria among migrant workers in Oman
Simon, Bruno; Sow, Fatimata; Al Mukhaini, Said K.; Al-Abri, Seif; Ali, Osama A.M.; Bonnot, Guillaume; Bienvenu, Anne-Lise; Petersen, Eskild; Picot, Stéphane
2017-01-01
Plasmodium vivax is the most widely distributed human malaria parasite. Outside sub-Saharan Africa, the proportion of P. vivax malaria is rising. A major cause for concern is the re-emergence of Plasmodium vivax in malaria-free areas. Oman, situated in the south-eastern corner of the Arabian Peninsula, has long been an area of vivax malaria transmission but no locally acquired cases were reported in 2004. However, local transmission has been registered in small outbreaks since 2007. In this study, a local outbreak of 54 cases over 50 days in 2014 was analyzed retrospectively and stained blood slides have been obtained for parasite identification and genotyping. The aim of this study was to identify the geographical origin of these cases, in an attempt to differentiate between imported cases and local transmission. Using circumsporozoite protein (csp), merozoite surface protein 1 (msp1), and merozoite surface protein 3 (msp3) markers for genotyping of parasite DNA obtained by scrapping off the surface of smears, genetic diversity and phylogenetic analysis were performed. The study found that the samples had very low genetic diversity, a temperate genotype, and a high genetic distance, with most of the reference strains coming from endemic countries. We conclude that a small outbreak of imported malaria is not associated with re-emergence of malaria transmission in Oman, as no new cases have been seen since the outbreak ended. PMID:28695821
[Assessment of a rapid diagnostic test for malaria in rural health care facilities in Senegal].
Munier, A; Diallo, A; Sokhna, C; Chippaux, J P
2009-10-01
The aim of the study was to determine the accuracy of a rapid diagnostic test in confirming presumptive malaria diagnosis in a rural zone of Senegal. Thick blood smear was used as the reference technique for comparison. METHOHDOLOGY: Testing was conducted on children between the ages of 1 and 14 years at three health care facilities located in the Niakhar are from August 2006 to June 2007. If malaria was suspected by the nurse based on clinical findings, two thick smears and one rapid diagnostic test (Core Malaria Pf) were performed. Blood slides were stained in Niakhar and read in Dakar. A total of 474 patients were examined. Three-fourths (75%) of these patients were seen during the rainy season. Malaria was suspected in 335 patients (71%). Rapid tests and thick smears were obtained in 330 of these patients with positive results in 194 (59%) and 180 (55%) respectively. The sensitivity, specificity, positive predictive value and negative predictive value of the rapid test were 96%, 87%, 90% and 95% respectively. Our data show that the rapid diagnostic test used in this study exhibits good sensitivity and positive predictive value. Despite its cost this test could be helpful in confirming malaria diagnosis in outlying health care facilities without the necessary resources to perform blood smears. Confirmation is necessary to avoid unwarranted prescription of malaria treatment due to inaccurate clinical diagnosis
Houzé, Sandrine; Boutron, Isabelle; Marmorat, Anne; Dalichampt, Marie; Choquet, Christophe; Poilane, Isabelle; Godineau, Nadine; Le Guern, Anne-Sophie; Thellier, Marc; Broutier, Hélène; Fenneteau, Odile; Millet, Pascal; Dulucq, Stéphanie; Hubert, Véronique; Houzé, Pascal; Tubach, Florence; Le Bras, Jacques; Matheron, Sophie
2013-01-01
We compared the performance of four rapid diagnostic tests (RDTs) for imported malaria, and particularly Plasmodium falciparum infection, using thick and thin blood smears as the gold standard. All the tests are designed to detect at least one protein specific to P. falciparum ( Plasmodium histidine-rich protein 2 (PfHRP2) or Plasmodium LDH (PfLDH)) and one pan-Plasmodium protein (aldolase or Plasmodium LDH (pLDH)). 1,311 consecutive patients presenting to 9 French hospitals with suspected malaria were included in this prospective study between April 2006 and September 2008. Blood smears revealed malaria parasites in 374 cases (29%). For the diagnosis of P. falciparum infection, the three tests detecting PfHRP2 showed high and similar sensitivity (96%), positive predictive value (PPV) (90%) and negative predictive value (NPV) (98%). The PfLDH test showed lower sensitivity (83%) and NPV (80%), despite good PPV (98%). For the diagnosis of non-falciparum species, the PPV and NPV of tests targeting pLDH or aldolase were 94–99% and 52–64%, respectively. PfHRP2-based RDTs are thus an acceptable alternative to routine microscopy for diagnosing P. falciparum malaria. However, as malaria may be misdiagnosed with RDTs, all negative results must be confirmed by the reference diagnostic method when clinical, biological or other factors are highly suggestive of malaria. PMID:24098699
An assessment of national surveillance systems for malaria elimination in the Asia Pacific.
Mercado, Chris Erwin G; Ekapirat, Nattwut; Dondorp, Arjen M; Maude, Richard J
2017-03-21
Heads of Government from Asia and the Pacific have committed to a malaria-free region by 2030. In 2015, the total number of confirmed cases reported to the World Health Organization by 22 Asia Pacific countries was 2,461,025. However, this was likely a gross underestimate due in part to incidence data not being available from the wide variety of known sources. There is a recognized need for an accurate picture of malaria over time and space to support the goal of elimination. A survey was conducted to gain a deeper understanding of the collection of malaria incidence data for surveillance by National Malaria Control Programmes in 22 countries identified by the Asia Pacific Leaders Malaria Alliance. In 2015-2016, a short questionnaire on malaria surveillance was distributed to 22 country National Malaria Control Programmes (NMCP) in the Asia Pacific. It collected country-specific information about the extent of inclusion of the range of possible sources of malaria incidence data and the role of the private sector in malaria treatment. The findings were used to produce recommendations for the regional heads of government on improving malaria surveillance to inform regional efforts towards malaria elimination. A survey response was received from all 22 target countries. Most of the malaria incidence data collected by NMCPs originated from government health facilities, while many did not collect comprehensive data from mobile and migrant populations, the private sector or the military. All data from village health workers were included by 10/20 countries and some by 5/20. Other sources of data included by some countries were plantations, police and other security forces, sentinel surveillance sites, research or academic institutions, private laboratories and other government ministries. Malaria was treated in private health facilities in 19/21 countries, while anti-malarials were available in private pharmacies in 16/21 and private shops in 6/21. Most countries use primarily paper-based reporting. Most collected malaria incidence data in the Asia Pacific is from government health facilities while data from a wide variety of other known sources are often not included in national surveillance databases. In particular, there needs to be a concerted regional effort to support inclusion of data on mobile and migrant populations and the private sector. There should also be an emphasis on electronic reporting and data harmonization across organizations. This will provide a more accurate and up to date picture of the true burden and distribution of malaria and will be of great assistance in helping realize the goal of malaria elimination in the Asia Pacific by 2030.
Andersen, Finn; Douglas, Nick M; Bustos, Dorina; Galappaththy, Gawrie; Qi, Gao; Hsiang, Michelle S; Kusriastuti, Rita; Mendis, Kamini; Taleo, George; Whittaker, Maxine; Price, Ric N; von Seidlein, Lorenz
2011-05-18
Quantitative data are lacking on published malaria research. The purpose of the study is to characterize trends in malaria-related literature from 1990 to 2009 in 11 Asian-Pacific countries that are committed to malaria elimination as a national goal. A systematic search was conducted for articles published from January 1990 to December 2009 in PubMed/MEDLINE using terms for malaria and 11 target countries (Bhutan, China, North Korea, Indonesia, Malaysia, Philippines, Solomon Islands, South Korea, Sri Lanka, Thailand and Vanuatu). The references were collated and categorized according to subject, Plasmodium species, and whether they contained original or derivative data. 2,700 articles published between 1990 and 2009 related to malaria in the target countries. The annual output of malaria-related papers increased linearly whereas the overall biomedical output from these countries grew exponentially. The percentage of malaria-related publications was nearly 3% (111/3741) of all biomedical publications in 1992 and decreased to less than 1% (118/12171; p < 0.001) in 2009. Thailand had the highest absolute output of malaria-related papers (n = 1211), followed by China (n = 609) and Indonesia (n = 346). Solomon Islands and Vanuatu had lower absolute numbers of publications, but both countries had the highest number of publications per capita (1.3 and 2.5 papers/1,000 population). The largest percentage of papers concerned the epidemiology and control of malaria (53%) followed by studies of drugs and drug resistance (47%). There was an increase in the proportion of articles relating to epidemiology, entomology, biology, molecular biology, pathophysiology and diagnostics from the first to the second decade, whereas the percentage of papers on drugs, clinical aspects of malaria, immunology, and social sciences decreased. The proportion of malaria-related publications out of the overall biomedical output from the 11 target Asian-Pacific countries is decreasing. The discovery and evaluation of new, safe and effective drugs and vaccines is paramount. In addition the elimination of malaria will require operational research to implement and scale up interventions.
Mitchell, Sara N; Catteruccia, Flaminia
2017-12-01
Vectorial capacity is a mathematical approximation of the efficiency of vector-borne disease transmission, measured as the number of new infections disseminated per case per day by an insect vector. Multiple elements of mosquito biology govern their vectorial capacity, including survival, population densities, feeding preferences, and vector competence. Intriguingly, biological pathways essential to mosquito reproductive fitness directly or indirectly influence a number of these elements. Here, we explore this complex interaction, focusing on how the interplay between mating and blood feeding in female Anopheles not only shapes their reproductive success but also influences their ability to sustain Plasmodium parasite development. Central to malaria transmission, mosquito reproductive biology has recently become the focus of research strategies aimed at malaria control, and we discuss promising new methods based on the manipulation of key reproductive steps. In light of widespread resistance to all public health-approved insecticides targeting mosquito reproduction may prove crucial to the success of malaria-eradication campaigns. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
Bando, Hironori; Okado, Kiyoshi; Guelbeogo, Wamdaogo M.; Badolo, Athanase; Aonuma, Hiroka; Nelson, Bryce; Fukumoto, Shinya; Xuan, Xuenan; Sagnon, N'Fale; Kanuka, Hirotaka
2013-01-01
A critical stage in malaria transmission occurs in the Anopheles mosquito midgut, when the malaria parasite, Plasmodium, ingested with blood, first makes contact with the gut epithelial surface. To understand the response mechanisms within the midgut environment, including those influenced by resident microbiota against Plasmodium, we focus on a midgut bacteria species' intra-specific variation that confers diversity to the mosquito's competency for malaria transmission. Serratia marcescens isolated from either laboratory-reared mosquitoes or wild populations in Burkina Faso shows great phenotypic variation in its cellular and structural features. Importantly, this variation is directly correlated with its ability to inhibit Plasmodium development within the mosquito midgut. Furthermore, this anti-Plasmodium function conferred by Serratia marcescens requires increased expression of the flagellum biosynthetic pathway that is modulated by the motility master regulatory operon, flhDC. These findings point to new strategies for controlling malaria through genetic manipulation of midgut bacteria within the mosquito. PMID:23571408
Kiemde, Francois; Bonko, Massa Dit Achille; Tahita, Marc Christian; Lompo, Palpouguini; Rouamba, Toussaint; Tinto, Halidou; van Hensbroek, Michael Boele; Mens, Petra F; Schallig, Henk D F H
2017-07-20
It remains challenging to distinguish malaria from other fever causing infections, as a positive rapid diagnostic test does not always signify a true active malaria infection. This study was designed to determine the influence of other causes of fever, prior anti-malarial treatment, and a possible seasonality of the performance of a PfHRP2 RDT for the diagnosis of malaria in children under-5 years of age living in a malaria endemic area. A prospective etiology study was conducted in 2015 among febrile children under 5 years of age in Burkina Faso. In order to assess the influence of other febrile illnesses, prior treatment and seasonality on the performance of a PfHRP2 RDT in diagnosing malaria, the RDT results were compared with the gold standard (expert microscopic diagnosis of Plasmodium falciparum) and test results were analysed by assuming that prior anti-malarial use and bacterial/viral infection status would have been known prior to testing. To assess bacterial and viral infection status blood, urine and stool samples were analysed. In total 683 blood samples were analysed with microscopy and RDT-PfHRP2. Plasmodium falciparum malaria was diagnosed in 49.8% (340/683) by microscopy compared to 69.5% (475/683) by RDT-PfHRP2. The RDT-PfHRP2 reported 29.7% (141/475) false positive results and 1.8% (6/340) false negative cases. The RDT-PfHRP2 had a high sensitivity (98.2%) and negative predictive value (97.1%), but a low specificity (58.9%) and positive predictive value (70.3%). Almost 50% of the alternative cause of fever were diagnosed by laboratory testing in the RDT false positive malaria group. The use of a malaria RDT-PfHRP2 in a malaria endemic area may cause misdiagnosis of the actual cause of fever due to false positive test results. The development of a practical diagnostic tool to screen for other causes of fever in malaria endemic areas is required to save lives.
First case of a naturally acquired human infection with Plasmodium cynomolgi
2014-01-01
Since 1960, a total of seven species of monkey malaria have been reported as transmissible to man by mosquito bite: Plasmodium cynomolgi, Plasmodium brasilianum, Plasmodium eylesi, Plasmodium knowlesi, Plasmodium inui, Plasmodium schwetzi and Plasmodium simium. With the exception of P. knowlesi, none of the other species has been found to infect humans in nature. In this report, it is described the first known case of a naturally acquired P. cynomolgi malaria in humans. The patient was a 39-year-old woman from a malaria-free area with no previous history of malaria or travel to endemic areas. Initially, malaria was diagnosed and identified as Plasmodium malariae/P. knowlesi by microscopy in the Terengganu State Health Department. Thick and thin blood films stained with 10% Giemsa were performed for microscopy examination. Molecular species identification was performed at the Institute for Medical Research (IMR, Malaysia) and in the Malaria & Emerging Parasitic Diseases Laboratory (MAPELAB, Spain) using different nested PCR methods. Microscopic re-examination in the IMR showed characteristics of Plasmodium vivax and was confirmed by a nested PCR assay developed by Snounou et al. Instead, a different PCR assay plus sequencing performed at the MAPELAB confirmed that the patient was infected with P. cynomolgi and not with P. vivax. This is the first report of human P. cynomolgi infection acquired in a natural way, but there might be more undiagnosed or misdiagnosed cases, since P. cynomolgi is morphologically indistinguishable from P. vivax, and one of the most used PCR methods for malaria infection detection may identify a P. cynomolgi infection as P. vivax. Simian Plasmodium species may routinely infect humans in Southeast Asia. New diagnostic methods are necessary to distinguish between the human and monkey malaria species. Further epidemiological studies, incriminating also the mosquito vector(s), must be performed to know the relevance of cynomolgi malaria and its implication on human public health and in the control of human malaria. The zoonotic malaria cannot be ignored in view of increasing interactions between man and wild animals in the process of urbanization. PMID:24564912
First case of a naturally acquired human infection with Plasmodium cynomolgi.
Ta, Thuy H; Hisam, Shamilah; Lanza, Marta; Jiram, Adela I; Ismail, NorParina; Rubio, José M
2014-02-24
Since 1960, a total of seven species of monkey malaria have been reported as transmissible to man by mosquito bite: Plasmodium cynomolgi, Plasmodium brasilianum, Plasmodium eylesi, Plasmodium knowlesi, Plasmodium inui, Plasmodium schwetzi and Plasmodium simium. With the exception of P. knowlesi, none of the other species has been found to infect humans in nature. In this report, it is described the first known case of a naturally acquired P. cynomolgi malaria in humans.The patient was a 39-year-old woman from a malaria-free area with no previous history of malaria or travel to endemic areas. Initially, malaria was diagnosed and identified as Plasmodium malariae/P. knowlesi by microscopy in the Terengganu State Health Department. Thick and thin blood films stained with 10% Giemsa were performed for microscopy examination. Molecular species identification was performed at the Institute for Medical Research (IMR, Malaysia) and in the Malaria & Emerging Parasitic Diseases Laboratory (MAPELAB, Spain) using different nested PCR methods.Microscopic re-examination in the IMR showed characteristics of Plasmodium vivax and was confirmed by a nested PCR assay developed by Snounou et al. Instead, a different PCR assay plus sequencing performed at the MAPELAB confirmed that the patient was infected with P. cynomolgi and not with P. vivax.This is the first report of human P. cynomolgi infection acquired in a natural way, but there might be more undiagnosed or misdiagnosed cases, since P. cynomolgi is morphologically indistinguishable from P. vivax, and one of the most used PCR methods for malaria infection detection may identify a P. cynomolgi infection as P. vivax.Simian Plasmodium species may routinely infect humans in Southeast Asia. New diagnostic methods are necessary to distinguish between the human and monkey malaria species. Further epidemiological studies, incriminating also the mosquito vector(s), must be performed to know the relevance of cynomolgi malaria and its implication on human public health and in the control of human malaria.The zoonotic malaria cannot be ignored in view of increasing interactions between man and wild animals in the process of urbanization.
Kim, Saorin; Nhem, Sina; Dourng, Dany; Ménard, Didier
2015-03-14
Malaria rapid diagnostic tests (RDTs) are generally considered as point-of-care tests. However, most of the studies assessing the performance of malaria RDTs are conducted by research teams that are not representative of the classical end-users, who are typically unskilled in traditional laboratory techniques for diagnosing malaria. To evaluate the performance of a malaria RDT by end-users in a malaria-endemic area, a study protocol was designed and the VIKIA Malaria Ag Pf/Pan test, previously evaluated in 2013, was re-evaluated by representative end-users. Twenty end-users with four different profiles in seven communes in Kampot Province (Cambodia) were selected. A set of 20 calibrated aliquots, including negative samples, low positive samples (200 parasites/μL of Plasmodium falciparum and Plasmodium vivax) and high positive samples (2,000 parasites/μL of P. falciparum and P. vivax) was used. Testing was performed directly by the end-users without any practical training on the VIKIA Malaria Ag Pf/Pan kit. All results obtained by the end-users were consistent with the expected results, except for the low positive (200 parasites/μL) P. vivax aliquot (35% of concordant results). No significant difference was observed between the different end-users. End-user interviews evaluating ease-of-use and ease-of-reading of the VIKIA Malaria Ag Pf/Pan kit recorded 159 positive answers and only one negative answer. Out of 20 end-users, only one considered the test was not easy to perform with the support of the quick guide. The data presented in this study clearly demonstrate that the performance of the VIKIA Malaria Ag Pf/Pan test when performed by traditional end-users in field conditions is similar to that obtained by a research team and that this RDT can be considered as a point-of-care tool/assay. Furthermore, the protocol designed for this study could be used systematically in parallel to conventional evaluation studies to determine the performance of malaria RDTs in field conditions.
te Witt, René; van Wolfswinkel, Marlies E; Petit, Pieter L; van Hellemond, Jaap J; Koelewijn, Rob; van Belkum, Alex; van Genderen, Perry J J
2010-09-14
Most clinicians in developed, non-malaria endemic countries have limited or no experience in making clinical assessments of malaria disease severity and subsequent decisions regarding the need for parenteral therapy or high-level monitoring in febrile patients with imported malaria. In the present study, the diagnostic accuracy of plasma soluble Triggering Receptor Expressed on Myeloid cells 1 (TREM-1), neopterin and procalcitonin levels as biomarkers for severe Plasmodium falciparum disease was evaluated in 104 travellers with imported malaria (26 patients with non-P. falciparum malaria, 64 patients with uncomplicated P. falciparum malaria and 14 patients with severe P. falciparum malaria). TREM-1, neopterin and procalcitonin were determined in serum using commercially available ELISA or EIA tests. The diagnostic performance of these biomarkers for severe disease was compared with plasma lactate, a well-validated parameter for disease severity in patients with malaria, as reference. Severe malaria was defined according to the modified WHO criteria. No significant differences in TREM-1 levels were detected between the different patient groups. Patients with severe P. falciparum malaria had significantly higher neopterin and procalcitonin levels on admission when compared to patients with uncomplicated P. falciparum malaria or non-P. falciparum malaria. Receiver Operating Characteristic (ROC) curve analysis showed that neopterin had the highest Area-Under-the-ROC curve (AUROC 0.85) compared with plasma lactate (AUROC 0.80) and procalcitonin (AUROC 0.78). At a cut-off point of 10.0 ng/ml, neopterin had a positive and negative predictive value of 0.38 and 0.98 whereas procalcitonin, at a cut-off point of 0.9 ng/ml, had a positive and negative predictive value of 0.30 and 1.00. Although the diagnostic value of neopterin and procalcitonin is limited, the high negative predictive value of both neopterin and procalcitonin may be helpful for a rapid exclusion of severe malaria disease on admission. This may be a valuable tool for physicians only occasionally dealing with ill-returned travellers from malaria-endemic regions and who need to decide on subsequent oral anti-malarial treatment or timely referral to a specialized centre for high-level monitoring and intensified parenteral treatment.
Manning, Laurens; Laman, Moses; Rosanas-Urgell, Anna; Turlach, Berwin; Aipit, Susan; Bona, Cathy; Warrell, Jonathan; Siba, Peter; Mueller, Ivo; Davis, Timothy M E
2012-01-01
Although rapid diagnostic tests (RDTs) have practical advantages over light microscopy (LM) and good sensitivity in severe falciparum malaria in Africa, their utility where severe non-falciparum malaria occurs is unknown. LM, RDTs and polymerase chain reaction (PCR)-based methods have limitations, and thus conventional comparative malaria diagnostic studies employ imperfect gold standards. We assessed whether, using Bayesian latent class models (LCMs) which do not require a reference method, RDTs could safely direct initial anti-infective therapy in severe ill children from an area of hyperendemic transmission of both Plasmodium falciparum and P. vivax. We studied 797 Papua New Guinean children hospitalized with well-characterized severe illness for whom LM, RDT and nested PCR (nPCR) results were available. For any severe malaria, the estimated prevalence was 47.5% with RDTs exhibiting similar sensitivity and negative predictive value (NPV) to nPCR (≥96.0%). LM was the least sensitive test (87.4%) and had the lowest NPV (89.7%), but had the highest specificity (99.1%) and positive predictive value (98.9%). For severe falciparum malaria (prevalence 42.9%), the findings were similar. For non-falciparum severe malaria (prevalence 6.9%), no test had the WHO-recommended sensitivity and specificity of >95% and >90%, respectively. RDTs were the least sensitive (69.6%) and had the lowest NPV (96.7%). RDTs appear a valuable point-of-care test that is at least equivalent to LM in diagnosing severe falciparum malaria in this epidemiologic situation. None of the tests had the required sensitivity/specificity for severe non-falciparum malaria but the number of false-negative RDTs in this group was small.
2012-01-01
Background Malaria case management is a key strategy for malaria control. Effective coverage of parasite-based malaria diagnosis (PMD) remains limited in malaria endemic countries. This study assessed the health system's capacity to absorb PMD at primary health care facilities in Uganda. Methods In a cross sectional survey, using multi-stage cluster sampling, lower level health facilities (LLHF) in 11 districts in Uganda were assessed for 1) tools, 2) skills, 3) staff and infrastructure, and 4) structures, systems and roles necessary for the implementing of PMD. Results Tools for PMD (microscopy and/or RDTs) were available at 30 (24%) of the 125 LLHF. All LLHF had patient registers and 15% had functional in-patient facilities. Three months’ long stock-out periods were reported for oral and parenteral quinine at 39% and 47% of LLHF respectively. Out of 131 health workers interviewed, 86 (66%) were nursing assistants; 56 (43%) had received on-job training on malaria case management and 47 (36%) had adequate knowledge in malaria case management. Overall, only 18% (131/730) Ministry of Health approved staff positions were filled by qualified personnel and 12% were recruited or transferred within six months preceding the survey. Of 186 patients that received referrals from LLHF, 130(70%) had received pre-referral anti-malarial drugs, none received pre-referral rectal artesunate and 35% had been referred due to poor response to antimalarial drugs. Conclusion Primary health care facilities had inadequate human and infrastructural capacity to effectively implement universal parasite-based malaria diagnosis. The priority capacity building needs identified were: 1) recruitment and retention of qualified staff, 2) comprehensive training of health workers in fever management, 3) malaria diagnosis quality control systems and 4) strengthening of supply chain, stock management and referral systems. PMID:22920954
2012-01-01
Background Rapid diagnostic tests for malaria (RDTs) allow accurate diagnosis and prompt treatment. Validation of their usefulness in travellers with fever was needed. The safety of a strategy to diagnose falciparum malaria based on RDT followed by immediate or delayed microscopy reading at first attendance was evaluated in one referral hospital in Switzerland. Methods A retrospective study was conducted in the outpatient clinic and emergency ward of University Hospital, covering a period of eight years (1999–2007). The study was conducted in the outpatient clinic and emergency ward of University Hospital. All adults suspected of malaria with a diagnostic test performed were included. RDT and microscopy as immediate tests were performed during working hours, and RDT as immediate test and delayed microscopy reading out of laboratory working hours. The main outcome measure was occurrence of specific complications in RDT negative and RDT positive adults. Results 2,139 patients were recruited. 1987 had both initial RDT and blood smear (BS) result negative. Among those, 2/1987 (0.1%) developed uncomplicated malaria with both RDT and BS positive on day 1 and day 6 respectively. Among the 152 patients initially malaria positive, 137 had both RDT and BS positive, four only BS positive and five only RDT positive (PCR confirmed) (six had only one test performed). None of the four initially RDT negative/BS positive and none of the five initially BS negative/RDT positive developed severe malaria while 6/137 of both RDT and BS positive did so. The use of RDT allowed a reduction of a median of 2.1 hours to get a first malaria test result. Conclusions A malaria diagnostic strategy based on RDTs and a delayed BS is safe in non-immune populations, and shortens the time to first malaria test result. PMID:23158019
Presumptive treatment of malaria from formal and informal drug vendors in Nigeria.
Isiguzo, Chinwoke; Anyanti, Jennifer; Ujuju, Chinazo; Nwokolo, Ernest; De La Cruz, Anna; Schatzkin, Eric; Modrek, Sepideh; Montagu, Dominic; Liu, Jenny
2014-01-01
Despite policies that recommend parasitological testing before treatment for malaria, presumptive treatment remains widespread in Nigeria. The majority of Nigerians obtain antimalarial drugs from two types of for-profit drug vendors-formal and informal medicine shops-but little is known about the quality of malaria care services provided at these shops. This study seeks to (1) describe the profile of patients who seek treatment at different types of drug outlets, (2) document the types of drugs purchased for treating malaria, (3) assess which patients are purchasing recommended drugs, and (4) estimate the extent of malaria over-treatment. In urban, peri-urban, and rural areas in Oyo State, customers exiting proprietary and patent medicine vendor (PPMV) shops or pharmacies having purchased anti-malarial drugs were surveyed and tested with malaria rapid diagnostic test. A follow-up phone survey was conducted four days after to assess self-reported drug administration. Bivariate and multivariate regression analysis was conducted to determine the correlates of patronizing a PPMV versus pharmacy, and the likelihood of purchasing an artemisinin-combination therapy (ACT) drug. Of the 457 participants who sought malaria treatment in 49 enrolled outlets, nearly 92% had diagnosed their condition by themselves, a family member, or a friend. Nearly 60% pharmacy customers purchased an ACT compared to only 29% of PPMV customers, and pharmacy customers paid significantly more on average. Multivariate regression results show that patrons of PPMVs were younger, less wealthy, waited fewer days before seeking care, and were less likely to be diagnosed at a hospital, clinic, or laboratory. Only 3.9% of participants tested positive with a malaria rapid diagnostic test. Poorer individuals seeking care at PPMVs are more likely to receive inappropriate malaria treatment when compared to those who go to pharmacies. Increasing accessibility to reliable diagnosis should be explored to reduce malaria over-treatment.
Presumptive Treatment of Malaria from Formal and Informal Drug Vendors in Nigeria
Isiguzo, Chinwoke; Anyanti, Jennifer; Ujuju, Chinazo; Nwokolo, Ernest; De La Cruz, Anna; Schatzkin, Eric; Modrek, Sepideh; Montagu, Dominic; Liu, Jenny
2014-01-01
Background Despite policies that recommend parasitological testing before treatment for malaria, presumptive treatment remains widespread in Nigeria. The majority of Nigerians obtain antimalarial drugs from two types of for-profit drug vendors—formal and informal medicine shops—but little is known about the quality of malaria care services provided at these shops. Aims This study seeks to (1) describe the profile of patients who seek treatment at different types of drug outlets, (2) document the types of drugs purchased for treating malaria, (3) assess which patients are purchasing recommended drugs, and (4) estimate the extent of malaria over-treatment. Methods In urban, peri-urban, and rural areas in Oyo State, customers exiting proprietary and patent medicine vendor (PPMV) shops or pharmacies having purchased anti-malarial drugs were surveyed and tested with malaria rapid diagnostic test. A follow-up phone survey was conducted four days after to assess self-reported drug administration. Bivariate and multivariate regression analysis was conducted to determine the correlates of patronizing a PPMV versus pharmacy, and the likelihood of purchasing an artemisinin-combination therapy (ACT) drug. Results Of the 457participants who sought malaria treatment in 49 enrolled outlets, nearly 92% had diagnosed their condition by themselves, a family member, or a friend. Nearly 60% pharmacy customers purchased an ACT compared to only 29% of PPMV customers, and pharmacy customers paid significantly more on average. Multivariate regression results show that patrons of PPMVs were younger, less wealthy, waited fewer days before seeking care, and were less likely to be diagnosed at a hospital, clinic, or laboratory. Only 3.9% of participants tested positive with a malaria rapid diagnostic test. Conclusions Poorer individuals seeking care at PPMVs are more likely to receive inappropriate malaria treatment when compared to those who go to pharmacies. Increasing accessibility to reliable diagnosis should be explored to reduce malaria over-treatment. PMID:25333909
Wumba, Roger D; Zanga, Josué; Aloni, Michel N; Mbanzulu, Kennedy; Kahindo, Aimé; Mandina, Madone N; Ekila, Mathilde B; Mouri, Oussama; Kendjo, Eric
2015-02-18
HIV and malaria are among the leading causes of morbidity and mortality during pregnancy in Africa. However, data from Congolese pregnant women are lacking. The aim of the study was to determine the magnitude, predictive factors, clinical, biologic and anthropometric consequences of malaria infection, HIV infection, and interactions between malaria and HIV infections in pregnant women. A cross-sectional study was conducted among pregnant women admitted and followed up at Camp Kokolo Military Hospital from 2009 to 2012 in Kinshasa, the Democratic Republic of Congo. Differences in means between malaria-positive and malaria-negative cases or between HIV-positive and HIV-negative cases were compared using the Student's t-test or a non-parametric test, if appropriate. Categorical variables were compared using the Chi-square or Fisher's exact test, if appropriate. Backward multivariable analysis was used to evaluate the potential risk factors of malaria and HIV infections. The odds ratios with their 95% confidence interval (95% CI) were estimated to measure the strengths of the associations. Analyses resulting in values of P < 0.05 were considered significant. A malaria infection was detected in 246/332 (74.1%) pregnant women, and 31.9% were anaemic. Overall, 7.5% (25/332) of mothers were infected by HIV, with a median CD4 count of 375 (191; 669) cells/μL. The mean (±SD) birth weight was 2,613 ± 227 g, with 35.7% of newborns weighing less than 2,500 g (low birth weight). Low birth weight, parity and occupation were significantly different between malaria-infected and uninfected women in adjusted models. However, fever, anemia, placenta previa, marital status and district of residence were significantly associated to HIV infection. The prevalence of malaria infection was high in pregnant women attending the antenatal facilities or hospitalized and increased when associated with HIV infection.
Akerele, David; Ljolje, Dragan; Talundzic, Eldin; Udhayakumar, Venkatachalam
2017-01-01
Accurate diagnosis of malaria infections continues to be challenging and elusive, especially in the detection of submicroscopic infections. Developing new malaria diagnostic tools that are sensitive enough to detect low-level infections, user friendly, cost effective and capable of performing large scale diagnosis, remains critical. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. ovale by real-time PCR. In our study, a total of 173 clinical samples, consisting of different malaria species, were utilized to test this novel PET-PCR primer. The sensitivity and specificity were calculated using nested-PCR as the reference test. The novel primer set demonstrated a sensitivity of 97.5% and a specificity of 99.2% (95% CI 85.2–99.8% and 95.2–99.9% respectively). Furthermore, the limit of detection for P. ovale was found to be 1 parasite/μl. The PET-PCR assay is a new molecular diagnostic tool with comparable performance to other commonly used PCR methods. It is relatively easy to perform, and amiable to large scale malaria surveillance studies and malaria control and elimination programs. Further field validation of this novel primer will be helpful to ascertain the utility for large scale malaria screening programs. PMID:28640824
Akerele, David; Ljolje, Dragan; Talundzic, Eldin; Udhayakumar, Venkatachalam; Lucchi, Naomi W
2017-01-01
Accurate diagnosis of malaria infections continues to be challenging and elusive, especially in the detection of submicroscopic infections. Developing new malaria diagnostic tools that are sensitive enough to detect low-level infections, user friendly, cost effective and capable of performing large scale diagnosis, remains critical. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. ovale by real-time PCR. In our study, a total of 173 clinical samples, consisting of different malaria species, were utilized to test this novel PET-PCR primer. The sensitivity and specificity were calculated using nested-PCR as the reference test. The novel primer set demonstrated a sensitivity of 97.5% and a specificity of 99.2% (95% CI 85.2-99.8% and 95.2-99.9% respectively). Furthermore, the limit of detection for P. ovale was found to be 1 parasite/μl. The PET-PCR assay is a new molecular diagnostic tool with comparable performance to other commonly used PCR methods. It is relatively easy to perform, and amiable to large scale malaria surveillance studies and malaria control and elimination programs. Further field validation of this novel primer will be helpful to ascertain the utility for large scale malaria screening programs.
NASA Astrophysics Data System (ADS)
Rezeki, S.; Pasaribu, A. P.
2018-03-01
Indonesia is the country where malaria is still the most common population problem. The high rate of mortality and morbidity occurred due to delays in diagnosis whichis strongly influenced by the availability of diagnostic tools and personnel with required laboratory skill. This diagnostic study aims to compare the accuracy of a Rapid Diagnostic Test (RDT) without skill requirement, to agold standard microscopic method for malaria diagnosis. The study was conducted in Subdistrict Lima Puluh North Sumatera Province from December 2015 to January 2016. The subject was taken cross-sectionally from a population with characteristics typically found in malaria patients in Subdistrict Lima Puluh. The result showed a sensitivity of 100% and a specificity of 72.4% with a positive predictive value of 89.9% and a negative predictive value of 100%; the negative likelihood ratio is 0 and the positive likelihood ratio of 27.6 for Parascreen. This research indicates that Parascreen had a high sensitivity and specificity and may be consideredas an alternative for the diagnosis of malaria in Subdistrict Lima Puluh North Sumatera Province especially in areas where no skilled microscopist is available.
Dhorda, Mehul; Piola, Patrice; Nyehangane, Dan; Tumwebaze, Benon; Nalusaji, Aisha; Nabasumba, Carolyn; Turyakira, Eleanor; McGready, Rose; Ashley, Elizabeth; Guerin, Philippe J; Snounou, Georges
2012-01-01
Improved laboratory diagnosis is critical to reduce the burden of malaria in pregnancy. Peripheral blood smears appear less sensitive than Plasmodium falciparum histidine-rich protein 2-based rapid diagnostic tests (RDTs) for placental malaria infections in studies conducted at delivery. In this study, 81 women in Uganda in the second or third trimester of pregnancy were followed-up until delivery. At each visit, peripheral blood was tested by blood smear, RDT, and nested species-specific polymerase chain reaction (PCR). Sensitivity and specificity of the tests was calculated with PCR, which detected 22 infections of P. falciparum, as the gold standard. The sensitivity and specificity of blood smears were 36.4% (95% confidence interval [CI] = 18.0-59.2%) and 99.6% (95% CI = 97.7-100%), respectively. The corresponding values for RDT were 31.8% (95% CI = 14.7-54.9%) and 100% (95% CI = 98.3-100%). The RDTs could replace blood smears for diagnosis of malaria in pregnancy by virtue of their relative ease of use. Field-based sensitive tests for malaria in pregnancy are urgently needed.
[Rapid diagnostic test for malaria].
Houzé, S
2017-02-01
The rapid diagnostic tests (RDTs) whose main interest lies in their implementation without special equipment by unskilled personnel have grown significantly over the past fifteen years to diagnose malaria. They rely on the detection of specific Plasmodium proteins, PfHRP2, pLDH and aldolase. If the detection of PfHRP2 has very good sensitivity for the diagnosis of Plasmodium falciparum malaria, the detection of pLDH or aldolase is less efficient for other species, leaving its place to the reference microscopic diagnosis. RDT could not generally be used to monitor therapeutic efficacy because they can remain positive after clinical and parasitological cure. Furthermore, the development of the use of these tests has highlighted the need for quality assurance programs to monitor their production as their use.
Internet-based media coverage on dengue in Sri Lanka between 2007 and 2015.
Wilder-Smith, Annelies; Cohn, Emily; Lloyd, David C; Tozan, Yesim; Brownstein, John S
2016-01-01
Internet-based media coverage to explore the extent of awareness of a disease and perceived severity of an outbreak at a national level can be used for early outbreak detection. Dengue has emerged as a major public health problem in Sri Lanka since 2009. To compare Internet references to dengue in Sri Lana with references to other diseases (malaria and influenza) in Sri Lanka and to compare Internet references to dengue in Sri Lanka with notified cases of dengue in Sri Lanka. We examined Internet-based news media articles on dengue queried from HealthMap for Sri Lanka, for the period January 2007 to November 2015. For comparative purposes, we compared hits on dengue with hits on influenza and malaria. There were 565 hits on dengue between 2007 and 2015, with a rapid rise in 2009 and followed by a rising trend ever since. These hits were highly correlated with the national epidemiological trend of dengue. The volume of digital media coverage of dengue was much higher than of influenza and malaria. Dengue in Sri Lanka is receiving increasing media attention. Our findings underpin previous claims that digital media reports reflect national epidemiological trends, both in annual trends and inter-annual seasonal variation, thus acting as proxy biosurveillance to provide early warning and situation awareness of emerging infectious diseases.
Fluorescence microscope (Cyscope) for malaria diagnosis in pregnant women in Medani Hospital, Sudan.
Hassan, Saad El-Din H; Haggaz, Abd Elrahium D; Mohammed-Elhassan, Ehab B; Malik, Elfatih M; Adam, Ishag
2011-09-24
Accuracy of diagnosis is the core for malaria control. Although microscopy is the gold standard in malaria diagnosis, its reliability is largely dependent on user skill. We compared performance of Cyscope fluorescence microscope with the Giemsa stained light microscopy for the diagnosis of malaria among pregnant women at Medani Hospital in Central Sudan. The area is characterized by unstable malaria transmission. Socio-demographic characteristics and obstetrics history were gathered using pre-tested questionnaires. Blood samples were collected from febrile pregnant women who were referred as malaria case following initial diagnosis by general microscopist. During the study period 128 febrile pregnant women presented at the hospital. Among them, Plasmodium falciparum malaria was detected in 82 (64.1%) and 80 (62.5%) by the Giemsa-stained light microscopy and the Cyscope fluorescence microscope, respectively. The sensitivity of the Cyscope fluorescence microscope was 97.6% (95% CI: 92.2%-99.6%). Out of 46 which were negative by Giemsa-stained light microscopy, 5 were positive by the Cyscope fluorescence microscope. This is translated in specificity of 89.1% (95% CI: 77.5%-95.9%). The positive and negative predictive value of Cyscope fluorescence microscope was 94.1% (95% CI: 87.4% -97.8%) and 95.3% (95% CI: 85.4% - 99.2%), respectively. This study has shown that Cyscope fluorescence microscope is a reliable diagnostic, sensitive and specific in diagnosing P. falciparum malaria among pregnant women in this setting. Further studies are needed to determine effectiveness in diagnosing other Plasmodium species and to compare it with other diagnostic tools e.g. rapid diagnostic tests and PCR.
Sakandé, Jean; Nikièma, Abdoulaye; Kabré, Elie; Sawadogo, Charles; Nacoulma, Eric W; Sanou, Mamadou; Sangaré, Lassana; Traoré-Ouédraogo, Rasmata; Sawadogo, Mamadou; Gershy-Damet, Guy Michel
2014-02-01
The National External Quality Assessment (NEQA) program of Burkina Faso is a proficiency testing program mandatory for all laboratories in the country since 2006. The program runs two cycles per year and covers all areas of laboratories. All panels were validated by the expert committee before dispatch under optimal storage and transport conditions to participating laboratories along with report forms. Performance in the last 5 years varied by panel, with average annual performance of bacteriology panels for all laboratories rising from 75% in 2006 to 81% in 2010 and with a best average performance of 87% in 2007 and 2008. During the same period, malaria microscopy performance varied from 85% to 94%, with a best average performance of 94% in 2010; chemistry performance increased from 87% to 94%, with a best average annual performance of 97% in 2009. Hematology showed more variation in performance, ranging from 61% to 86%, with a best annual average performance of 90% in 2008. Average annual performance for immunology varied less between 2006 and 2010, recording 97%, 90%, and 95%. Except for malaria microscopy, annual performances for enrolled panels varied substantially from year to year, indicating some difficulty in maintaining consistency in quality. The main challenges of the NEQA program observed between 2006 to 2010 were funding, sourcing, and safe transportation of quality panels to all laboratories countrywide.
Molecular entomology and prospects for malaria control.
Collins, F. H.; Kamau, L.; Ranson, H. A.; Vulule, J. M.
2000-01-01
During the past decade, the techniques of molecular and cell biology have been embraced by many scientists doing research on anopheline vectors of malaria parasites. Some of the most important research advances in molecular entomology have concerned the development of sophisticated molecular tools for procedures such as genetic and physical mapping and germ line transformation. Major advances have also been made in the study of specific biological processes such as insect defence against pathogens and the manner in which malaria parasites and their anopheline hosts interact during sporogony. One of the most important highlights of this research trend has been the emergence during the past year of a formal international Anopheles gambiae genome project, which at present includes investigators in several laboratories in Europe and the USA. Although much of this molecular research is directed towards the development of malaria control strategies that are probably many years from implementation, there are some important areas of molecular entomology that may have a more near-term impact on malaria control. We highlight developments over the past decade in three such areas that we believe can make important contributions to the development of near-term malaria control strategies. These areas are anopheline species identification, the detection and monitoring of insecticide susceptibility/resistance in wild anopheline populations and the determination of the genetic structure of anopheline populations. PMID:11196488
GCRBS score: a new scoring system for predicting outcome in severe falciparum malaria.
Mohapatra, Biranchi Narayan; Jangid, Sanjay Kumar; Mohanty, Rina
2014-01-01
Severe falciparum malaria is a critical illness resulting in multi-organ dysfunction and death. Severe malaria is defined by the World Health Organisation as a qualitative variable. The purpose of this study is to devise a scoring system for predicting outcome in severe falciparum malaria. 112 cases of severe falciparum malaria diagnosed as per the WHO criteria, were evaluated to determine the parameters which were significantly associated with mortality. Of all the parameters studied, five variables namely cerebral malaria (GCS < 11), Renal failure (Creatinine > 3 mg/dl), Respiratory distress (Respiratory rate > 24/min), Jaundice (Bilirubin >10 mg/dl) and Shock (Systolic BP < 90 mm of Hg) were all found to be associated with a poor prognosis. The five selected parameters were analysed using the Odds ratio and a new scoring system named as GCRBS score was designed with a possible score from 0-10. With a cut-off score of 5, the GCRBS score predicted mortality with a sensitivity of 85.3% and a specificity of 95.6%. The GCRBS score is easy to calculate and apply. Of the 5 parameters, 3 are clinical which can be determined at bedside and only 2 are biochemical which can be done in any laboratory.The most important advantage of this scoring system is that all the 5 parameters are to be assessed quantitatively for allotting a score, which would eliminate the possibility of observer bias.
Njua-Yafi, Clarisse; Achidi, Eric A; Anchang-Kimbi, Judith K; Apinjoh, Tobias O; Mugri, Regina N; Chi, Hanesh F; Tata, Rolland B; Njumkeng, Charles; Nkock, Emmanuel N; Nkuo-Akenji, Theresa
2016-02-06
Malaria and helminthiases frequently co-infect the same individuals in endemic zones. Plasmodium falciparum and helminth infections have long been recognized as major contributors to anaemia in endemic countries. Several studies have explored the influence of helminth infections on the course of malaria in humans but how these parasites interact within co-infected individuals remains controversial. In a community-based longitudinal study from March 2011 to February 2012, the clinical and malaria parasitaemia status of a cohort of 357 children aged 6 months to 10 years living in Mutengene, south-western region of Cameroon, was monitored. Following the determination of baseline malaria/helminths status and haemoglobin levels, the incidence of malaria and anaemia status was determined in a 12 months longitudinal study by both active and passive case detection. Among all the children who completed the study, 32.5 % (116/357) of them had at least one malaria episode. The mean (±SEM) number of malaria attacks per year was 1.44 ± 0.062 (range: 1-4 episodes) with the highest incidence of episodes occuring during the rainy season months of March-October. Children <5 years old were exposed to more malaria attacks [OR = 2.34, 95 % CI (1.15-4.75), p = 0.019] and were also more susceptible to anaemia [OR = 2.24, 95 % CI (1.85-4.23), p = 0.013] compared to older children (5-10 years old). Likewise children with malaria episodes [OR = 4.45, 95 % CI (1.66-11.94), p = 0.003] as well as those with asymptomatic parasitaemia [OR = 2.41, 95 % CI (1.58-3.69) p < 0.001] were susceptible to anaemia compared to their malaria parasitaemia negative counterparts. Considering children infected with Plasmodium alone as the reference, children infected with helminths alone were associated with protection from anaemia [OR = 0.357, 95 % CI (0.141-0.901), p = 0.029]. The mean haemoglobin level (g/dl) of participants co-infected with Plasmodium and helminths was higher (p = 0.006) compared to participants infected with Plasmodium or helminths alone. Children below 5 years of age were more susceptible to malaria and anaemia. The high prevalence of anaemia in this community was largely due to malaria parasitaemia. Malaria and helminths co-infection was protective against anaemia.
2011-01-01
Background An effective malaria vaccine, deployed in conjunction with other malaria interventions, is likely to substantially reduce the malaria burden. Efficacy against severe malaria will be a key driver for decisions on implementation. An initial study of an RTS, S vaccine candidate showed promising efficacy against severe malaria in children in Mozambique. Further evidence of its protective efficacy will be gained in a pivotal, multi-centre, phase III study. This paper describes the case definitions of severe malaria used in this study and the programme for standardized assessment of severe malaria according to the case definition. Methods Case definitions of severe malaria were developed from a literature review and a consensus meeting of expert consultants and the RTS, S Clinical Trial Partnership Committee, in collaboration with the World Health Organization and the Malaria Clinical Trials Alliance. The same groups, with input from an Independent Data Monitoring Committee, developed and implemented a programme for standardized data collection. The case definitions developed reflect the typical presentations of severe malaria in African hospitals. Markers of disease severity were chosen on the basis of their association with poor outcome, occurrence in a significant proportion of cases and on an ability to standardize their measurement across research centres. For the primary case definition, one or more clinical and/or laboratory markers of disease severity have to be present, four major co-morbidities (pneumonia, meningitis, bacteraemia or gastroenteritis with severe dehydration) are excluded, and a Plasmodium falciparum parasite density threshold is introduced, in order to maximize the specificity of the case definition. Secondary case definitions allow inclusion of co-morbidities and/or allow for the presence of parasitaemia at any density. The programmatic implementation of standardized case assessment included a clinical algorithm for evaluating seriously sick children, improvements to care delivery and a robust training and evaluation programme for clinicians. Conclusions The case definition developed for the pivotal phase III RTS, S vaccine study is consistent with WHO recommendations, is locally applicable and appropriately balances sensitivity and specificity in the diagnosis of severe malaria. Processes set up to standardize severe malaria data collection will allow robust assessment of the efficacy of the RTS, S vaccine against severe malaria, strengthen local capacity and benefit patient care for subjects in the trial. Trial registration Clinicaltrials.gov NCT00866619 PMID:21816031
Oguttu, David W; Matovu, Joseph K B; Okumu, David C; Ario, Alex R; Okullo, Allen E; Opigo, Jimmy; Nankabirwa, Victoria
2017-05-30
In 2012, Tororo District had the highest malaria burden in Uganda with community Plasmodium prevalence of 48%. To control malaria in the district, the Ministry of Health introduced universal distribution of long lasting insecticide-treated nets (LLINs) in 2013 and added indoor residual spraying (IRS) in 2014. This study assessed malaria incidence, test positivity rates and outpatient (OPD) attendance due to malaria before and after vector control interventions. This study was based on analysis of Health Management Information System (HMIS) secondary malaria surveillance data of 2,727,850 patient records in OPD registers of 61 health facilities from 2012 to 2015. The analysis estimated monthly malaria incidence for the entire population and also separately for <5- and ≥5-year-olds before and after introduction of vector control interventions; determined laboratory test positivity rates and annual percentage of malaria cases in OPD. Chi square for trends was used to analyse annual change in malaria incidence and logistic regression for monthly reduction. Following universal LLINs coverage, the annual mean monthly malaria incidence fell from 95 cases in 2013 to 76 cases per 1000 in 2014 with no significant monthly reduction (OR = 0.99, 95% CI 0.96-1.01, P = 0.37). Among children <5 years, the malaria incidence reduced from 130 to 100 cases per 1000 (OR = 0.98, 95% CI 0.97-1.00, P = 0.08) when LLINs were used alone in 2014, but declined to 45 per 1000 in 2015 when IRS was combined with LLINs (OR = 0.94, 95% CI 0.91-0.996, P < 0.0001). Among individuals aged ≥5 years, mean monthly malaria incidence reduced from 59 to 52 cases per 1000 (OR = 0.99, 95% CI 0.97-1.02, P = 0.8) when LLINs were used alone in 2014, but reduced significantly to 25 per 1000 in 2015 (OR = 0.91, 95% CI 0.88-0.94, P < 0.0001). Malaria test positivity rate reduced from 57% in 2013 to 30% (Chi = 15, P < 0.0001) in 2015. Slide positivity rate reduced from 45% in 2013 to 21% in 2015 (P = 0.004) while RDT positivity declined from 69 to 40%. A rapid reduction in malaria incidence was observed in Tororo District following the introduction of IRS in addition to LLINs. There was no significant reduction in malaria incidence following universal distribution of LLINs to communities before introduction of IRS.
2013-01-01
Background Anopheles arabiensis is a major malaria vector in Africa. It thrives in agricultural areas and has been associated with increased malaria incidence in areas under rice and maize cultivation. This effect may be due to increased adult size and abundance as a consequence of optimal larval nutrition. The aim of this study was to examine the effect of larval nutrition on the life history and expression of insecticide resistance in adults of laboratory reared An. arabiensis. Methods Larvae drawn from an insecticide susceptible An. arabiensis strain (SENN) as well as a DDT-resistant strain (SENN-DDT) were subjected to three fasting regimes: 1 mg of food per larva offered once per day, once every second day and once every third day. Control cohorts included larvae offered 1 mg food thrice per day. The rate of larval development was compared between matched cohorts from each strain as well as between fasted larvae and their respective controls. The expression of DDT resistance/tolerance in adults was compared between the starved cohorts and their controls by strain. Factors potentially affecting variation in DDT resistance/tolerance were examined including: adult body size (wing length), knock-down resistance (kdr) status and levels of detoxification enzyme activity. Results and conclusion Anopheles arabiensis larval development is prolonged by nutrient deprivation and adults that eclose from starved larvae are smaller and less tolerant to DDT intoxication. This effect on DDT tolerance in adults is also associated with reduced detoxification enzyme activity. Conversely, well fed larvae develop comparatively quickly into large, more DDT tolerant (SENN) or resistant (SENN-DDT) adults. This is important in those instances where cereal farming is associated with increased An. arabiensis transmitted malaria incidence, because large adult females with high teneral reserves and decreased susceptibility to insecticide intoxication may also prove to be more efficient malaria vectors. In general, larval nutrient deprivation in An. arabiensis has important implications for subsequent adults in terms of their size and relative insecticide susceptibility, which may in turn impact on their malaria vector capacity in areas where insecticide based control measures are in place. PMID:23368928
King, Christopher L.; Adams, John H.; Xianli, Jia; Grimberg, Brian T.; McHenry, Amy M.; Greenberg, Lior J.; Siddiqui, Asim; Howes, Rosalind E.; da Silva-Nunes, Monica; Ferreira, Marcelo U.; Zimmerman, Peter A.
2011-01-01
Plasmodium vivax (Pv) is a major cause of human malaria and is increasing in public health importance compared with falciparum malaria. Pv is unique among human malarias in that invasion of erythrocytes is almost solely dependent on the red cell's surface receptor, known as the Duffy blood-group antigen (Fy). Fy is an important minor blood-group antigen that has two immunologically distinct alleles, referred to as Fya or Fyb, resulting from a single-point mutation. This mutation occurs within the binding domain of the parasite's red cell invasion ligand. Whether this polymorphism affects susceptibility to clinical vivax malaria is unknown. Here we show that Fya, compared with Fyb, significantly diminishes binding of Pv Duffy binding protein (PvDBP) at the erythrocyte surface, and is associated with a reduced risk of clinical Pv in humans. Erythrocytes expressing Fya had 41–50% lower binding compared with Fyb cells and showed an increased ability of naturally occurring or artificially induced antibodies to block binding of PvDBP to their surface. Individuals with the Fya+b− phenotype demonstrated a 30–80% reduced risk of clinical vivax, but not falciparum malaria in a prospective cohort study in the Brazilian Amazon. The Fya+b− phenotype, predominant in Southeast Asian and many American populations, would confer a selective advantage against vivax malaria. Our results also suggest that efficacy of a PvDBP-based vaccine may differ among populations with different Fy phenotypes. PMID:22123959
King, Christopher L; Adams, John H; Xianli, Jia; Grimberg, Brian T; McHenry, Amy M; Greenberg, Lior J; Siddiqui, Asim; Howes, Rosalind E; da Silva-Nunes, Monica; Ferreira, Marcelo U; Zimmerman, Peter A
2011-12-13
Plasmodium vivax (Pv) is a major cause of human malaria and is increasing in public health importance compared with falciparum malaria. Pv is unique among human malarias in that invasion of erythrocytes is almost solely dependent on the red cell's surface receptor, known as the Duffy blood-group antigen (Fy). Fy is an important minor blood-group antigen that has two immunologically distinct alleles, referred to as Fy(a) or Fy(b), resulting from a single-point mutation. This mutation occurs within the binding domain of the parasite's red cell invasion ligand. Whether this polymorphism affects susceptibility to clinical vivax malaria is unknown. Here we show that Fy(a), compared with Fy(b), significantly diminishes binding of Pv Duffy binding protein (PvDBP) at the erythrocyte surface, and is associated with a reduced risk of clinical Pv in humans. Erythrocytes expressing Fy(a) had 41-50% lower binding compared with Fy(b) cells and showed an increased ability of naturally occurring or artificially induced antibodies to block binding of PvDBP to their surface. Individuals with the Fy(a+b-) phenotype demonstrated a 30-80% reduced risk of clinical vivax, but not falciparum malaria in a prospective cohort study in the Brazilian Amazon. The Fy(a+b-) phenotype, predominant in Southeast Asian and many American populations, would confer a selective advantage against vivax malaria. Our results also suggest that efficacy of a PvDBP-based vaccine may differ among populations with different Fy phenotypes.
van Eijk, Anna M; Ayisi, John G; Slutsker, Laurence; Ter Kuile, Feiko O; Rosen, Daniel H; Otieno, Juliana A; Shi, Ya-Ping; Kager, Piet A; Steketee, Richard W; Nahlen, Bernard L
2007-03-01
To evaluate the effect of routine antenatal haematinic supplementation programmes and intermittent preventive treatment (IPT) with sulphadoxine-pyrimethamine (SP) in Kenya. Anaemia [haemoglobin (Hb) <11 g/dl), severe anaemia (Hb <8 g/dl) and placental malaria were compared among women with known HIV status who delivered at a provincial hospital after study enrolment in the third trimester during three consecutive periods: period 1, no routine intervention (reference); period 2, routine haematinic supplementation (60 mg elementary iron three times/day, folic acid 5 mg once daily) and period 3, haematinics and IPT with SP. Among 3108 participants, prevalence of placental malaria, anaemia and severe anaemia postpartum was 16.7%, 53.6% and 12.7%, respectively. Compared with period 1, women in period 2 were less anaemic [adjusted odds ratio (AOR), 95% confidence interval anaemia: 0.56, 0.47-0.67; severe anaemia 0.37, 0.28-0.49] and shared a similar prevalence of placental malaria (AOR 1.07, 0.86-1.32). Women in period 3 were also less anaemic (AOR anaemia: 0.43, 0.35-0.53 and severe anaemia: 0.43, 0.31-0.59), and had less placental malaria (AOR 0.56, 0.42-0.73). The effect of intervention did not differ significantly by HIV status. The haematinic supplementation programme was associated with significant reductions in anaemia in HIV-seropositive and HIV-seronegative women. The subsequent introduction of IPT was associated with halving of malaria, but no additional haematological benefit over haematinics.
An outbreak of locally acquired Plasmodium vivax malaria among migrant workers in Oman.
Simon, Bruno; Sow, Fatimata; Al Mukhaini, Said K; Al-Abri, Seif; Ali, Osama A M; Bonnot, Guillaume; Bienvenu, Anne-Lise; Petersen, Eskild; Picot, Stéphane
2017-01-01
Plasmodium vivax is the most widely distributed human malaria parasite. Outside sub-Saharan Africa, the proportion of P. vivax malaria is rising. A major cause for concern is the re-emergence of Plasmodium vivax in malaria-free areas. Oman, situated in the south-eastern corner of the Arabian Peninsula, has long been an area of vivax malaria transmission but no locally acquired cases were reported in 2004. However, local transmission has been registered in small outbreaks since 2007. In this study, a local outbreak of 54 cases over 50 days in 2014 was analyzed retrospectively and stained blood slides have been obtained for parasite identification and genotyping. The aim of this study was to identify the geographical origin of these cases, in an attempt to differentiate between imported cases and local transmission. Using circumsporozoite protein (csp), merozoite surface protein 1 (msp1), and merozoite surface protein 3 (msp3) markers for genotyping of parasite DNA obtained by scrapping off the surface of smears, genetic diversity and phylogenetic analysis were performed. The study found that the samples had very low genetic diversity, a temperate genotype, and a high genetic distance, with most of the reference strains coming from endemic countries. We conclude that a small outbreak of imported malaria is not associated with re-emergence of malaria transmission in Oman, as no new cases have been seen since the outbreak ended. © B. Simon et al., published by EDP Sciences, 2017.
Evaluation of the Palutop+4 malaria rapid diagnostic test in a non-endemic setting.
van Dijk, David P J; Gillet, Philippe; Vlieghe, Erika; Cnops, Lieselotte; van Esbroeck, Marjan; Jacobs, Jan
2009-12-12
Palutop+4 (All. Diag, Strasbourg, France), a four-band malaria rapid diagnostic test (malaria RDT) targeting the histidine-rich protein 2 (HRP-2), Plasmodium vivax-specific parasite lactate dehydrogenase (Pv-pLDH) and pan Plasmodium-specific pLDH (pan-pLDH) was evaluated in a non-endemic setting on stored whole blood samples from international travellers suspected of malaria. Microscopy corrected by PCR was the reference method. Samples include those infected by Plasmodium falciparum (n = 323), Plasmodium vivax (n = 97), Plasmodium ovale (n = 73) and Plasmodium malariae (n = 25) and 95 malaria negative samples. The sensitivities for the diagnosis of P. falciparum, P. vivax, P. malariae and P. ovale were 85.1%, 66.0%, 32.0% and 5.5%. Sensitivities increased at higher parasite densities and reached 90.0% for P. falciparum >100/microl and 83.8% for P. vivax > 500/microl. Fourteen P. falciparum samples reacted with the Pv-pLDH line, one P. vivax sample with the HRP-2 line, and respectively two and four P. ovale and P. malariae samples reacted with the HRP-2 line. Two negative samples gave a signal with the HRP-2 line. Faint and weak line intensities were observed for 129/289 (44.6%) HRP-2 lines in P. falciparum samples, for 50/64 (78.1%) Pv-pLDH lines in P. vivax samples and for 9/13 (69.2%) pan-pLDH lines in P. ovale and P. malariae samples combined. Inter-observer reliabilities for positive and negative readings were excellent for the HRP-2 and Pv-pLDH lines (overall agreement > 92.0% and kappa-values for each pair of readers >or= 0.88), and good for the pan-pLDH line (85.5% overall agreement and kappa-values >or= 0.74). Palutop+4 performed moderately for the detection of P. falciparum and P. vivax, but sensitivities were lower than those of three-band malaria RDTs.
2012-01-01
Background Early diagnosis, as well as prompt and effective treatment of uncomplicated malaria, are essential components of the anti-malaria strategy in Madagascar to prevent severe malaria, reduce mortality and limit malaria transmission. The purpose of this study was to assess the performance of the malaria rapid diagnostic tests (RDTs) used by community health workers (CHWs) by comparing RDT results with two reference methods (microscopy and Polymerase Chain Reaction, PCR). Methods Eight CHWs in two districts, each with a different level of endemic malaria transmission, were trained to use RDTs in the management of febrile children under five years of age. RDTs were performed by CHWs in all febrile children who consulted for fever. In parallel, retrospective parasitological diagnoses were made by microscopy and PCR. The results of these different diagnostic methods were analysed to evaluate the diagnostic performance of the RDTs administered by the CHWs. The stability of the RDTs stored by CHWs was also evaluated. Results Among 190 febrile children with suspected malaria who visited CHWs between February 2009 and February 2010, 89.5% were found to be positive for malaria parasites by PCR, 51.6% were positive by microscopy and 55.8% were positive by RDT. The performance accuracy of the RDTs used by CHWs in terms of sensitivity, specificity, positive and negative predictive values was greater than 85%. Concordance between microscopy and RDT, estimated by the Kappa value was 0.83 (95% CI: 0.75-0.91). RDTs stored by CHWs for 24 months were capable of detecting Plasmodium falciparum in blood at a level of 200 parasites/μl. Conclusion Introduction of easy-to-use diagnostic tools, such as RDTs, at the community level appears to be an effective strategy for improving febrile patient management and for reducing excessive use of anti-malarial drugs. PMID:22443344
Ratsimbasoa, Arsène; Ravony, Harintsoa; Vonimpaisomihanta, Jeanne-Aimée; Raherinjafy, Rogelin; Jahevitra, Martial; Rapelanoro, Rabenja; Rakotomanga, Jean De Dieu Marie; Malvy, Denis; Millet, Pascal; Ménard, Didier
2012-03-25
Early diagnosis, as well as prompt and effective treatment of uncomplicated malaria, are essential components of the anti-malaria strategy in Madagascar to prevent severe malaria, reduce mortality and limit malaria transmission. The purpose of this study was to assess the performance of the malaria rapid diagnostic tests (RDTs) used by community health workers (CHWs) by comparing RDT results with two reference methods (microscopy and Polymerase Chain Reaction, PCR). Eight CHWs in two districts, each with a different level of endemic malaria transmission, were trained to use RDTs in the management of febrile children under five years of age. RDTs were performed by CHWs in all febrile children who consulted for fever. In parallel, retrospective parasitological diagnoses were made by microscopy and PCR. The results of these different diagnostic methods were analysed to evaluate the diagnostic performance of the RDTs administered by the CHWs. The stability of the RDTs stored by CHWs was also evaluated. Among 190 febrile children with suspected malaria who visited CHWs between February 2009 and February 2010, 89.5% were found to be positive for malaria parasites by PCR, 51.6% were positive by microscopy and 55.8% were positive by RDT. The performance accuracy of the RDTs used by CHWs in terms of sensitivity, specificity, positive and negative predictive values was greater than 85%. Concordance between microscopy and RDT, estimated by the Kappa value was 0.83 (95% CI: 0.75-0.91). RDTs stored by CHWs for 24 months were capable of detecting Plasmodium falciparum in blood at a level of 200 parasites/μl. Introduction of easy-to-use diagnostic tools, such as RDTs, at the community level appears to be an effective strategy for improving febrile patient management and for reducing excessive use of anti-malarial drugs.
Playford, E. Geoffrey; Walker, John
2002-01-01
Rapid diagnostic tests (RDTs) are less reliant on expert microscopy and have the potential to reduce errors in malaria diagnosis but have not been extensively evaluated in nonimmune persons or in countries where infection is not endemic. We evaluated the ICT P.f/P.v (ICT-Amrad, Sydney, Australia) and OptiMal (Flow Inc., Portland, Oreg.) assays prospectively for the diagnosis of malaria in 158 specimens from 144 febrile returned travellers in Australia by using expert microscopy and PCR as reference standards. Malaria was diagnosed in 93 specimens from 87 patients by expert microscopy, with 3 additional specimens from recently treated patients testing positive for Plasmodium falciparum by PCR. For the diagnosis of asexual-stage P. falciparum malaria, the sensitivity and specificity of the ICT P.f/P.v assay were 97 and 90%, respectively, and those of the OptiMal assay were 85 and 96%, respectively. The ICT P.f/P.v assay missed one infection with a density of 45 parasites/μl, whereas the OptiMal assay missed infections up to 2,500/μl; below 1,000/μl, its sensitivity was only 43%. For the diagnosis of P. vivax malaria, the sensitivity and specificity of the ICT P.f/P.v assay were 44 and 100%, respectively, and those of the OptiMal assay were 80 and 97%, respectively. Both assays missed infections with parasite densities over 5,000/μl: up to 10,000/μl with the former and 5,300/μl with the latter. Despite the high sensitivity of the ICT P.f/P.v assay for P. falciparum malaria, caution is warranted before RDTs are widely adopted for the diagnosis of malaria in nonimmune patients or in countries where malaria is not endemic. PMID:12409392
Ogutu, Bernhards R; Baiden, Rita; Diallo, Diadier; Smith, Peter G; Binka, Fred N
2010-04-20
The Malaria Clinical Trials Alliance (MCTA), a programme of INDEPTH network of demographic surveillance centres, was launched in 2006 with two broad objectives: to facilitate the timely development of a network of centres in Africa with the capacity to conduct clinical trials of malaria vaccines and drugs under conditions of good clinical practice (GCP); and to support, strengthen and mentor the centres in the network to facilitate their progression towards self-sustaining clinical research centres. Sixteen research centres in 10 African malaria-endemic countries were selected that were already working with the Malaria Vaccine Initiative (MVI) or the Medicines for Malaria Venture (MMV). All centres were visited to assess their requirements for research capacity development through infrastructure strengthening and training. Support provided by MCTA included: laboratory and facility refurbishment; workshops on GCP, malaria diagnosis, strategic management and media training; and training to support staff to undertake accreditation examinations of the Association of Clinical Research Professionals (ACRP). Short attachments to other network centres were also supported to facilitate sharing practices within the Alliance. MCTA also played a key role in the creation of the African Media & Malaria Research Network (AMMREN), which aims to promote interaction between researchers and the media for appropriate publicity and media reporting of research and developments on malaria, including drug and vaccine trials. In three years, MCTA strengthened 13 centres to perform GCP-compliant drug and vaccine trials, including 11 centres that form the backbone of a large phase III malaria vaccine trial. MCTA activities have demonstrated that centres can be brought up to GCP compliance on this time scale, but the costs are substantial and there is a need for further support of other centres to meet the growing demand for clinical trial capacity. The MCTA experience also indicates that capacity development in clinical trials is best carried out in the context of preparation for specific trials. In this regard MCTA centres involved in the phase III malaria vaccine trial were, on average, more successful at consolidating the training and infrastructure support than those centres focussing only on drug trials.
Owusu-Ofori, Alex; Gadzo, Dominic; Bates, Imelda
2016-04-23
Transfusion-transmitted malaria (TTM) is a risk of transfusion that has not been well described in malaria endemic regions. The risk of the recipient getting malaria is related to the prevalence of malaria in the blood donors. There is however little information on the prevalence of malaria among donors in Akatsi district of Ghana. Further, the knowledge and practices of healthcare workers to TTM is unknown. The study was undertaken to determine the prevalence of malaria parasite infection among blood donors and to evaluate the knowledge and practices of healthcare workers to TTM in the Akatsi district of Ghana. The study was conducted at Akatsi South District Hospital between May and August 2014. To screen for Plasmodium falciparum, 5 µl of capillary blood was obtained by finger prick from 200 participants (100 donors and 100 healthy controls). Plasmodium falciparum screening was done using CareStart™ Malaria Antigen kit. To obtain information regarding TTM knowledge and practices, questionnaires were completed by 100 health workers including nurses, doctors and laboratory staff. The prevalence of P. falciparum was the same (10 %) in both donors and controls. All those who were malaria RDT positive were aged 15-25 years. Out of the 100 healthcare workers (31 males and 69 females) surveyed, 45 % of respondents (45/100) had never heard of transfusion-transmitted malaria. Almost all respondents (91 %) had not attended any lecture/seminar/workshop on blood transfusion in the past 12 months. There were 44 respondents (44 %) who wrongly said malaria was being screened for prior to transfusion in their hospital. However, 98.2 % (54/55) of those who had heard about TTM rightly stated that TTM can be prevented. The prevalence of P. falciparum parasitaemia is 10 % in healthy blood donors in the Akatsi district and represents a risk for TTM though the extent of this risk is unclear. Knowledge about TTM in healthcare workers in the district is low. Continuous education and in-service training may be a means to improve TTM knowledge and preventive practices by the health workers in the district.
2010-01-01
Background The Malaria Clinical Trials Alliance (MCTA), a programme of INDEPTH network of demographic surveillance centres, was launched in 2006 with two broad objectives: to facilitate the timely development of a network of centres in Africa with the capacity to conduct clinical trials of malaria vaccines and drugs under conditions of good clinical practice (GCP); and to support, strengthen and mentor the centres in the network to facilitate their progression towards self-sustaining clinical research centres. Case description Sixteen research centres in 10 African malaria-endemic countries were selected that were already working with the Malaria Vaccine Initiative (MVI) or the Medicines for Malaria Venture (MMV). All centres were visited to assess their requirements for research capacity development through infrastructure strengthening and training. Support provided by MCTA included: laboratory and facility refurbishment; workshops on GCP, malaria diagnosis, strategic management and media training; and training to support staff to undertake accreditation examinations of the Association of Clinical Research Professionals (ACRP). Short attachments to other network centres were also supported to facilitate sharing practices within the Alliance. MCTA also played a key role in the creation of the African Media & Malaria Research Network (AMMREN), which aims to promote interaction between researchers and the media for appropriate publicity and media reporting of research and developments on malaria, including drug and vaccine trials. Conclusion In three years, MCTA strengthened 13 centres to perform GCP-compliant drug and vaccine trials, including 11 centres that form the backbone of a large phase III malaria vaccine trial. MCTA activities have demonstrated that centres can be brought up to GCP compliance on this time scale, but the costs are substantial and there is a need for further support of other centres to meet the growing demand for clinical trial capacity. The MCTA experience also indicates that capacity development in clinical trials is best carried out in the context of preparation for specific trials. In this regard MCTA centres involved in the phase III malaria vaccine trial were, on average, more successful at consolidating the training and infrastructure support than those centres focussing only on drug trials. PMID:20406478
Stepień, Małgorzata
2012-01-01
The objective of this study was to describe the epidemiology of imported malaria in Poland in 2010 in comparison to previous years. The study included malaria cases that were collected and registered by the State Sanitary Inspection in 2010 in Poland. Data reported was verified, processed and published by National Institute of Public Health - National Institute of Hygiene. All cases were laboratory confirmed by blood film, polymerase chain reaction or rapid diagnostic tests outlined by the EU case definition. Differences in the distribution of demographic, parasitological and clinical characteristics, and incidence were analyzed. In 2010, a total of 35 confirmed malaria cases were notified in Poland, 13 more than 2009. All cases were imported, 49% from Africa, including 1 case with relapsing malaria caused by P. vivax and 2 cases of recrudescence falciparum malaria following failure of treatment. The number of cases acquired in Asia (37% of the total), mainly from India and Indonesia, was significantly higher than observed in previous years. Among cases with species-specific diagnosis 19 (63%) were caused by P. falciparum, 9 (30%) by P. vivax, one by P. ovale and one by P. malariae. The median age of all cases was 42 years (range 9 months to 71 years), males comprised 69% of patients, females 31%, three patients were Indian citizens temporarily in Poland. Common reasons for travel to endemic countries were tourism (57%), work-related visits (37%), one person visited family and in one case the reason for travel was unknown. Sixteen travelers took chemoprophylaxis, but only three of them appropriately (adherence to the recommended drug regimen, continuation upon return and use of appropriate medicines). In 2010, there were no deaths due to malaria and clinical course of disease was severe in 7 cases. When compared with 2009, there was a marked increase in the number of imported malaria cases in Poland, however the total number of notified cases remained low. Serious malaria (caused by P. falciparum), most frequently due to delayed diagnosis and treatment, is a continual problem. Such cases underline the need for adequate pre-travel information regarding the risk of malaria and preventive measures available.
Lu, Guangyu; Liu, Yaobao; Beiersmann, Claudia; Feng, Yu; Cao, Jun; Müller, Olaf
2016-10-05
China has made great progress in malaria control over the last century and now aims to eliminate malaria by 2020. In 2012, the country launched its 1-3-7 surveillance and response strategy for malaria elimination. The strategy involves to case reporting within 1 day, case investigation within 3 days, and focus investigation and public health actions within 7 days. The aim of this study was to evaluate the challenges in and lessons learned during the implementation of the 1-3-7 strategy in China so far. This qualitative study was conducted in two provinces in China: Gansu province (northwestern China) and Jiangsu province (southeastern China) in 2014. Key informant interviews (n = 6) and in-depth interviews (n = 36) about the implementation aspects of the 1-3-7 strategy were conducted with malaria experts, health staff, laboratory practitioners, and village doctors at the provincial, city, county, township, and village levels. Broad themes related to the challenges in and lessons learned during the implementation of the 1-3-7 strategy were identified according to: case reporting within 1 day, case investigation within 3 days, focus investigation within 7 days, and the overall strategy. The major challenges outlined were related to respecting the timeline of surveillance procedures, the absence of or difficulties in following guidelines on conducting focus investigations, diagnostics, and the increasing number of returning migrant workers from malaria-endemic countries. Important lessons learned revolve around the importance of continuous capacity building, supervision and motivation, quality control, information technology support, applied research, governmental commitment, and intersectoral collaboration. Surveillance is a key intervention in malaria elimination programs. The Chinese 1-3-7 strategy has already proven to be successful but still needs to be improved. In particular, dealing appropriately with imported malaria cases through the screening of migrant workers from malaria-endemic countries is essential for achieving and sustaining malaria elimination in China. China has perfect preconditions for successful malaria elimination provided political commitment and financial investment are guaranteed. The 1-3-7 strategy may also be considered as a model for other countries.
Santos, Jorge M; Egarter, Saskia; Zuzarte-Luís, Vanessa; Kumar, Hirdesh; Moreau, Catherine A; Kehrer, Jessica; Pinto, Andreia; da Costa, Mário; Franke-Fayard, Blandine; Janse, Chris J; Frischknecht, Friedrich; Mair, Gunnar R
2017-01-01
Gliding motility allows malaria parasites to migrate and invade tissues and cells in different hosts. It requires parasite surface proteins to provide attachment to host cells and extracellular matrices. Here, we identify the Plasmodium protein LIMP (the name refers to a gliding phenotype in the sporozoite arising from epitope tagging of the endogenous protein) as a key regulator for adhesion during gliding motility in the rodent malaria model P. berghei. Transcribed in gametocytes, LIMP is translated in the ookinete from maternal mRNA, and later in the sporozoite. The absence of LIMP reduces initial mosquito infection by 50%, impedes salivary gland invasion 10-fold, and causes a complete absence of liver invasion as mutants fail to attach to host cells. GFP tagging of LIMP caused a limping defect during movement with reduced speed and transient curvature changes of the parasite. LIMP is an essential motility and invasion factor necessary for malaria transmission. DOI: http://dx.doi.org/10.7554/eLife.24109.001 PMID:28525314
Osman, Mamoun M M; Nour, Bakri Y M; Sedig, Mohamed F; De Bes, Laura; Babikir, Adil M; Mohamedani, Ahmed A; Mens, Petra F
2010-12-01
Rapid diagnostic tests (RDTs) are promoted for the diagnosis of malaria in many countries. The question arises whether laboratories where the current method of diagnosis is microscopy should also switch to RDT. This problem was studied in Kassala, Sudan where the issue of switching to RDT is under discussion. Two hundred and three blood samples were collected from febrile patients suspected of having malaria. These were subsequently analysed with microscopy, RDT (SD Bioline P.f/P.v) and PCR for the detection and identification of Plasmodium parasites. Malaria parasites were detected in 36 blood samples when examined microscopically, 54 (26.6%) samples were found positive for malaria parasites by RDT, and 44 samples were positive by PCR. Further analysis showed that the RDT used in our study resulted in a relatively high number of false positive samples. When microscopy was compared with PCR, an agreement of 96.1% and k = 0.88 (sensitivity 85.7% and specificity 100%) was found. However, when RDT was compared with PCR, an agreement of only 81.2 and k = 0.48 (sensitivity 69% and specificity 84%) was found. PCR has proven to be one of the most specific and sensitive diagnostic methods, particularly for malaria cases with low parasitaemia. However, this technique has limitations in its routine use under resource-limited conditions, such as our study location. At present, based on these results, microscopy remains the best option for routine diagnosis of malaria in Kassala, eastern Sudan. © 2010 Blackwell Publishing Ltd.
Etiology of Severe Febrile Illness in Low- and Middle-Income Countries: A Systematic Review
Prasad, Namrata; Murdoch, David R.; Reyburn, Hugh; Crump, John A.
2015-01-01
Background With apparent declines in malaria worldwide during the last decade and more widespread use of malaria rapid diagnostic tests, healthcare workers in low-resource areas face a growing proportion of febrile patients without malaria. We sought to describe current knowledge and identify information gaps of the etiology severe febrile illness in low-and middle-income countries. Methods and Findings We conducted a systematic review of studies conducted in low-and-middle income countries 1980–2013 that prospectively assessed consecutive febrile patients admitted to hospital using rigorous laboratory-based case definitions. We found 45 eligible studies describing 54,578 patients; 9,771 (17.9%) had a positive result for ≥1 pathogen meeting diagnostic criteria. There were no eligible studies identified from Southern and Middle Africa, Eastern Asia, Oceania, Latin American and Caribbean regions, and the European region. The median (range) number of diagnostic tests meeting our confirmed laboratory case definitions was 2 (1 to 11) per study. Of diagnostic tests, 5,052 (10.3%) of 49,143 had confirmed bacterial or fungal bloodstream infection; 709 (3.8%) of 18,142 had bacterial zoonosis; 3,488 (28.5%) of 12,245 had malaria; and 1,804 (17.4%) of 10,389 had a viral infection. Conclusions We demonstrate a wide range of pathogens associated with severe febrile illness and highlight the substantial information gaps regarding the geographic distribution and role of common pathogens. High quality severe febrile illness etiology research that is comprehensive with respect to pathogens and geographically representative is needed. PMID:26126200
Willingness to pay and determinants of choice for improved malaria treatment in rural Nepal.
Morey, Edward R; Sharma, Vijaya R; Mills, Anne
2003-07-01
A logit model is used to estimate provider choice from six types by malaria patients in rural Nepal. Patient characteristics that influence choice include travel costs, income category, household size, gender, and severity of malaria. Income effects are introduced by assuming the marginal utility of money is a step function of expenditures on the numeraire. This method of incorporating income effects is ideally suited for situations when exact income data is not available. Significant provider characteristics include wait time for treatment and wait time for laboratory results. Household willingness to pay (wtp) is estimated for increasing the number of providers and for providing more sites with blood testing capabilities. Wtp estimates vary significantly across households and allow one to assess how much different households would benefit or lose under different government proposals.
Conroy, Andrea L; Glover, Simon J; Hawkes, Michael; Erdman, Laura K; Seydel, Karl B; Taylor, Terrie E; Molyneux, Malcolm E; Kain, Kevin C
2012-03-01
To investigate the relationship among the angiopoietin-Tie-2 system, retinopathy, and mortality in children with cerebral malaria. A case-control study of retinopathy-positive vs. retinopathy-negative children with clinically defined cerebral malaria. Queen Elizabeth Central Hospital in Blantyre, Malawi. One hundred fifty-five children presenting with severe malaria and meeting a strict definition of clinical cerebral malaria (Blantyre Coma Score ≤ 2, Plasmodium falciparum parasitemia, no other identifiable cause for coma) were included in the study. None. Clinical and laboratory parameters were recorded at admission and funduscopic examinations were performed. Admission levels of angiopoietin-1, angiopoietin-2, and a soluble version of their cognate receptor were measured by enzyme-linked immunosorbent assay. We show that angiopoietin-1 levels are decreased and angiopoietin-2 and soluble Tie-2 levels are increased in children with cerebral malaria who had retinopathy compared with those who did not. Angiopoietin-2 and soluble Tie-2 were independent predictors of retinopathy (adjusted odds ratio [95% CI], angiopoietin-2, 4.3 [1.3-14.6], p = .019; soluble Tie-2, 9.7 [2.1-45.8], p = .004). Angiopoietin-2 and soluble Tie-2 were positively correlated with the number of hemorrhages, the severity or retinal whitening, and the extent of capillary whitening observed on funduscopic examination (p < .05 after adjustment for multiple comparisons). Angiopoietin-2 and soluble Tie-2 levels were elevated in children with cerebral malaria who subsequently died and angiopoetin-2 was an independent predictor of death (adjusted odds ratio: 3.9 [1.2-12.7], p = .024). When combined with clinical parameters, angiopoetin-2 improved prediction of mortality using logistic regression models and classification trees. These results provide insights into mechanisms of endothelial activation in cerebral malaria and indicate that the angiopoietin-Tie-2 axis is associated with retinopathy and mortality in pediatric cerebral malaria.
Calderaro, Adriana; Piccolo, Giovanna; Montecchini, Sara; Buttrini, Mirko; Rossi, Sabina; Dell'Anna, Maria Loretana; De Remigis, Valeria; Arcangeletti, Maria Cristina; Chezzi, Carlo; De Conto, Flora
2018-02-05
Malaria is no longer endemic in Italy since 1970 when the World Health Organization declared Italy malaria-free, but it is now the most commonly imported disease. The aim of the study was to analyse the trend of imported malaria cases in Parma, Italy, during January 2013-June 2017, reporting also the treatment and the outcome of cases, exploring the comparison of the three diagnostic tests used for malaria diagnosis: microscopy, immunochromatographic assay (ICT) (BinaxNOW ® ) and Real-time PCR assays detecting Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale curtisi, Plasmodium ovale wallikeri, and Plasmodium knowlesi. Of the 288 patients with suspected malaria, 87 were positive by microscopy: 73 P. falciparum, 2 P. vivax, 8 P. ovale, 1 P. vivax/P. ovale, 1 P. malariae and 2 Plasmodium sp. All samples were positive by ICT except 6. Plasmodial DNA was revealed in the 87 cases and in 2 additional cases showing P. falciparum-specific bands by ICT, as follows: 75 P. falciparum, 2 P. vivax, 6 P. ovale curtisi, 3 P. ovale wallikeri, 1 P. malariae, and 2 mixed infections. 72 patients were foreigners and 17 Italians travelling for tourism or business. The majority of these patients presented with fever at blood collection and did not have chemoprophylaxis. No fatal cases were observed and the drug mostly used was quinine observing a negative blood smear or a parasitaemia < 0.001% after 48-72 h' therapy. The study shows an update and a thorough analysis of imported malaria cases in the area of Parma during 4.5 years from the point of view of the total case management, clinical and diagnostic. The prevalence of malaria in such area in the considered period was especially due to immigrants mostly from Africa. Molecular methods were more sensitive and specific than microscopy and ICT, both detecting additional cases of P. falciparum malaria missed by microscopy and correctly identifying the Plasmodium species of medical interest. The data reported in this study may stimulate the clinicians in non-endemic areas to suspect malaria also in cases, where the most typical symptoms are absent, and the parasitologists to confirm the results of microscopy, remaining the reference method, with molecular methods to avoid misdiagnosis.
Getnet, Gebeyaw; Getie, Sisay; Srivastava, Mitaly; Birhan, Wubet; Fola, Abebe A; Noedl, Harald
2015-11-01
To assess the performance of RDTs against nested polymerase chain reaction (nPCR) for the diagnosis of malaria in public health facilities in north-western Ethiopia. Cross-sectional study at public health facilities in North Gondar, Ethiopia, of 359 febrile patients with signs and symptoms consistent with malaria. Finger prick blood samples were collected for testing in a P. falciparum/pan-malaria RDTs and for molecular analysis. Sensitivity, specificity and predictive values were determined for the RDTs using nPCR as reference diagnostic method. Kappa value was determined to demonstrate the consistency of the results between the diagnostic tools. By RDTs, 22.28% (80/359) of patients tested positive for malaria, and by nPCR, 27.02% (97/359) did. In nPCR, 1.67% (6/359) and 0.28% (1/359) samples were positive for P. ovale and P. malariae, which had almost all tested negative in the RDTs. The sensitivity, specificity, positive and negative predictive values of RDTs for the diagnosis of malaria were 62.9%, 92.7%, 76.3% and 87.1%, respectively, with 0.589 measurement agreement between RDTs and nPCR. The sensitivity and specificity of RDTs for P. falciparum identification only were 70.8% and 95.2%, and 65.2% and 93.1% for P. vivax. Although RDTs are commonly used at health posts in resource-limited environments, their sensitivity and specificity for the detection and species identification of Plasmodium parasites were poor compared to nPCR, suggesting caution in interpreting RDTs results. Particularly, in the light of expanded efforts to eliminate malaria in the country, more sensitive diagnostic procedures will be needed. © 2015 John Wiley & Sons Ltd.
2009-01-01
Background Malaria remains a major cause of morbidity and mortality among children under five years of age in Nigeria. Most of the early treatments for fever and malaria occur through self-medication with anti-malarials bought over-the-counter (OTC) from untrained drug vendors. Self-medication through drug vendors can be ineffective, with increased risks of drug toxicity and development of drug resistance. Global malaria control initiatives highlights the potential role of drug vendors to improve access to early effective malaria treatment, which underscores the need for interventions to improve treatment obtained from these outlets. This study aimed to determine the feasibility and impact of training rural drug vendors on community-based malaria treatment and advice with referral of severe cases to a health facility. Methods A drug vendor-training programme was carried out between 2003 and 2005 in Ugwuogo-Nike, a rural community in south-east Nigeria. A total of 16 drug vendors were trained and monitored for eight months. The programme was evaluated to measure changes in drug vendor practice and knowledge using exit interviews. In addition, home visits were conducted to measure compliance with referral. Results The intervention achieved major improvements in drug selling and referral practices and knowledge. Exit interviews confirmed significant increases in appropriate anti-malarial drug dispensing, correct history questions asked and advice given. Improvements in malaria knowledge was established and 80% compliance with referred cases was observed during the study period, Conclusion The remarkable change in knowledge and practices observed indicates that training of drug vendors, as a means of communication in the community, is feasible and strongly supports their inclusion in control strategies aimed at improving prompt effective treatment of malaria with referral of severe cases. PMID:19930561
Chipukuma, Helen Mwiinga; Zulu, Joseph Mumba; Jacobs, Choolwe; Chongwe, Gershom; Chola, Mumbi; Halwiindi, Hikabasa; Zgambo, Jessy; Michelo, Charles
2018-05-08
Community health workers (CHWs) are an important human resource in improving coverage of and success to interventions aimed at reducing malaria incidence. Evidence suggests that the performance of CHWs in malaria programs varies in different contexts. However, comprehensive frameworks, based on systematic reviews, to guide the analysis of determinants of performance of CHWs in malaria prevention and control programs are lacking. We systematically searched Google Scholar, Science Direct, and PubMed including reference lists that had English language publications. We included 16 full text articles that evaluated CHW performance in malaria control. Search terms were used and studies that had performance as an outcome of interest attributed to community-based interventions done by CHWs were included. Sixteen studies were included in the final review and were mostly on malaria Rapid Diagnosis and Treatment, as well as adherence to referral guidelines. Factors determining performance and effective implementation of CHW malaria programs included health system factors such as nature of training of CHWs; type of supervision including feedback process; availability of stocks, supplies, and job aids; nature of work environment and reporting systems; availability of financial resources and transport systems; types of remuneration; health staff confidence in CHWs; and workload. In addition, community dynamics such as nature of community connectedness and support from the community and utilization of services by the community also influenced performance. Furthermore, community health worker characteristics such marital status, sex, and CHW confidence levels also shaped CHW performance. Effectively analyzing and promoting the performance of CHWs in malaria prevention and control programs may require adopting a framework that considers health systems and community factors as well as community health worker characteristics.
Okeke, Theodora A; Uzochukwu, Benjamin S C
2009-11-20
Malaria remains a major cause of morbidity and mortality among children under five years of age in Nigeria. Most of the early treatments for fever and malaria occur through self-medication with anti-malarials bought over-the-counter (OTC) from untrained drug vendors. Self-medication through drug vendors can be ineffective, with increased risks of drug toxicity and development of drug resistance. Global malaria control initiatives highlights the potential role of drug vendors to improve access to early effective malaria treatment, which underscores the need for interventions to improve treatment obtained from these outlets. This study aimed to determine the feasibility and impact of training rural drug vendors on community-based malaria treatment and advice with referral of severe cases to a health facility. A drug vendor-training programme was carried out between 2003 and 2005 in Ugwuogo-Nike, a rural community in south-east Nigeria. A total of 16 drug vendors were trained and monitored for eight months. The programme was evaluated to measure changes in drug vendor practice and knowledge using exit interviews. In addition, home visits were conducted to measure compliance with referral. The intervention achieved major improvements in drug selling and referral practices and knowledge. Exit interviews confirmed significant increases in appropriate anti-malarial drug dispensing, correct history questions asked and advice given. Improvements in malaria knowledge was established and 80% compliance with referred cases was observed during the study period, The remarkable change in knowledge and practices observed indicates that training of drug vendors, as a means of communication in the community, is feasible and strongly supports their inclusion in control strategies aimed at improving prompt effective treatment of malaria with referral of severe cases.
Gillet, Philippe; Mumba Ngoyi, Dieudonné; Lukuka, Albert; Kande, Viktor; Atua, Benjamin; van Griensven, Johan; Muyembe, Jean-Jacques; Jacobs, Jan; Lejon, Veerle
2013-01-01
Background In endemic settings, diagnosis of malaria increasingly relies on the use of rapid diagnostic tests (RDTs). False positivity of such RDTs is poorly documented, although it is especially relevant in those infections that resemble malaria, such as human African trypanosomiasis (HAT). We therefore examined specificity of malaria RDT products among patients infected with Trypanosoma brucei gambiense. Methodology/Principal Findings Blood samples of 117 HAT patients and 117 matched non-HAT controls were prospectively collected in the Democratic Republic of the Congo. Reference malaria diagnosis was based on real-time PCR. Ten commonly used malaria RDT products were assessed including three two-band and seven three-band products, targeting HRP-2, Pf-pLDH and/or pan-pLDH antigens. Rheumatoid factor was determined in PCR negative subjects. Specificity of the 10 malaria RDT products varied between 79.5 and 100% in HAT-negative controls and between 11.3 and 98.8% in HAT patients. For seven RDT products, specificity was significantly lower in HAT patients compared to controls. False positive reactions in HAT were mainly observed for pan-pLDH test lines (specificities between 13.8 and 97.5%), but also occurred frequently for the HRP-2 test line (specificities between 67.9 and 98.8%). The Pf-pLDH test line was not affected by false-positive lines in HAT patients (specificities between 97.5 and 100%). False positivity was not associated to rheumatoid factor, detected in 7.6% of controls and 1.2% of HAT patients. Conclusions/Significance Specificity of some malaria RDT products in HAT was surprisingly low, and constitutes a risk for misdiagnosis of a fatal but treatable infection. Our results show the importance to assess RDT specificity in non-targeted infections when evaluating diagnostic tests. PMID:23638201
Household food insecurity is associated with childhood malaria in rural Haiti.
Pérez-Escamilla, Rafael; Dessalines, Michael; Finnigan, Mousson; Pachón, Helena; Hromi-Fiedler, Amber; Gupta, Nishang
2009-11-01
Haiti is the poorest country in the Western Hemisphere and is heavily affected by food insecurity and malaria. To find out if these 2 conditions are associated with each other, we studied a convenience sample of 153 women with children 1-5 y old in Camp Perrin, South Haiti. Household food insecurity was assessed with the 16-item Escala Latinoamericana y Caribeña de Seguridad Alimentaria (ELCSA) scale previously validated in the target communities. ELCSA's reference time period was the 3 mo preceding the survey and it was answered by the mother. Households were categorized as either food secure (2%; ELCSA score = 0), food insecure/very food insecure (42.7%; ELCSA score range: 1-10), or severely food insecure (57.3%; ELCSA score range: 11-16). A total of 34.0% of women reported that their children had malaria during the 2 mo preceding the survey. Multivariate analyses showed that severe food insecure was a risk factor for perceived clinical malaria (odds ratio: 5.97; 95% CI: 2.06-17.28). Additional risk factors for perceived clinical malaria were as follows: not receiving colostrum, poor child health (via maternal self-report), a child BMI <17 kg/m(2), and child vitamin A supplementation more than once since birth. Findings suggest that policies and programs that address food insecurity are also likely to reduce the risk of malaria in Haiti.
Arévalo-Herrera, Myriam; Solarte, Yezid; Marin, Catherin; Santos, Mariana; Castellanos, Jenniffer; Beier, John C; Valencia, Sócrates Herrera
2016-01-01
Malaria is a vector-borne disease that is considered to be one of the most serious public health problems due to its high global mortality and morbidity rates. Although multiple strategies for controlling malaria have been used, many have had limited impact due to the appearance and rapid dissemination of mosquito resistance to insecticides, parasite resistance to multiple antimalarial drug, and the lack of sustainability. Individuals in endemic areas that have been permanently exposed to the parasite develop specific immune responses capable of diminishing parasite burden and the clinical manifestations of the disease, including blocking of parasite transmission to the mosquito vector. This is referred to as transmission blocking (TB) immunity (TBI) and is mediated by specific antibodies and other factors ingested during the blood meal that inhibit parasite development in the mosquito. These antibodies recognize proteins expressed on either gametocytes or parasite stages that develop in the mosquito midgut and are considered to be potential malaria vaccine candidates. Although these candidates, collectively called TB vaccines (TBV), would not directly stop malaria from infecting individuals, but would stop transmission from infected person to non-infected person. Here, we review the progress that has been achieved in TBI studies and the development of TBV and we highlight their potential usefulness in areas of low endemicity such as Latin America. PMID:21881775
Ippolito, Matthew M; Kamavu, Luc K; Kabuya, Jean-Bertin; Tente, Catherine; Chileshe, Edward; Wapachole, McBerth; Thuma, Philip E; Muleba, Mbanga; Chaponda, Mike; Mulenga, Modest; Moss, William J; For The Southern And Central Africa International Centers Of Excellence For Malaria Research
2018-04-23
Malaria remains a public health crisis in areas where it has resisted control efforts. In Nchelenge District, a high- transmission area in northern Zambia, malaria accounts for more than one-third of pediatric hospitalizations and nearly one-half of hospital deaths in children. To identify risk factors for death due to malaria, we conducted a retrospective, time-matched case-control study of 126 children hospitalized with malaria who died (cases) and 126 children who survived (controls). There were no differences in age, gender, hemoglobin concentration, or prevalence of severe anemia between cases and controls. Children who died were more likely to come from villages located at greater distances from the hospital than children who survived (median 13.5 versus 3.2 km). Each additional kilometer of distance from the hospital increased the odds of death by 4% (odds ratio 1.04, 95% confidence interval 1.01-1.07, P < 0.01). Extent of anemia and admission during periods when blood was unavailable for transfusion were associated with early death ( P ≤ 0.03). Delays in initiation of treatment of severe malaria contribute to the increased odds of death in children referred from more distant health centers, and might be mitigated by transportation improvements, capacity at rural health posts to administer treatment before transfer, hospital triage systems that minimize time to treatment, and reliable blood product stores at referral hospitals.
[Current malaria situation in the Republic of Uzbekistan].
Razakov, Sh A; Shakhgunova, G Sh
2001-01-01
Malaria was once one of the most common diseases in Uzbekistan. There were massive epidemics with high mortality rates, wherein 140,000 to 700,000 cases of malaria were recorded. Following large-scale malaria control measures, the disease was eradicated in Uzbekistan in 1961 and the epidemiological situation is still favorable. The natural and climatic conditions that prevail in the Republic of Uzbekistan mean that the country is very susceptible to malaria. There are large water areas varying in type and origin, which provide a habitat for a number of epidemiologically dangerous species of malaria-transmitting mosquitoes in a single area. These are Anopheles maculipennis, An. pulcherrimus and An. superpictus. The prevailing temperatures promote rapid growth of vector mosquitoes and parasites and the malaria transmission season is over 5 months long. Seven malaria-transmitting mosquito species have been recently recorded in the Republic. DDT resistance has been so far noted in Anopheles maculipennis, An. hyrcanus and An. bifurcatus. An. superpictus is sensitive to all insecticides used in clinical practice (organophosphorus and organochlorine compounds, HOS, carbamates, pyrethroids). The most dangerous areas for transmitting malaria by importation are the flood plains of the country's main rivers, such as Syrdarya, Amudarya, Chirchik, Surkhana, etc., and rice-growing areas (an area of about 150,000 ha was under rice cultivation in 1999). The Republic is still very subjected to large-scale importations of malaria particularly in the towns and areas along the border with Tajikistan. There has been recently an increase in the incidence of infections imported into the Republic: 27 cases in 1995, 51 in 1996, 52 in 1997, 74 in 1998, and 78 in 1999. Eight regions of Uzbekistan border Tajikistan, their population is over 5.6 million people. In addition, close family ties between the populations of the frontier towns and regions further increase the risk for malaria to be imported and passed on. Noteworthy is the Surkhandaryin region that accounted for 60% of the cases recorded in 1999. The number of towns and villages where malaria occurs for the first time increased (49 and 46 cases in 1999 and 1998, respectively). The number of cases imported into rural areas also increased (70 (83%) cases in 1999 versus 48 (65%) cases in 1998); due to the large populations of malaria mosquitoes, there is a real danger that the disease may spread. In 1999, most cases of malaria were imported from Tajikistan (65 cases or 76% of all cases). There was a case from each of the following countries: Afghanistan, Pakistan, and Kazakhstan and 5 cases from Azerbaijan and Kyrgyzstan. The recorded cases included slighly more men than women (54% vs 46%). There were 10 infected children under 14 years, which was 23.5% of all notified cases. Analyzing various populations showed that 67.1% of the patients visited their relatives in malaria-endemic countries (mostly Tajikistan) and 25.8% migrated from Tajikistan. All the detected cases were confirmed by laboratory tests. As in the past, most cases were tertian (P. vivax) malaria (n = 82 or 96.4% of all cases). Tropical (P. falciparum) malaria was confirmed in 3 (3.5%) cases. These cases had been imported from Tajikistan into the Surkhandaryin region. Seventy seven (91%) cases were detected in the epidemical season. Of them 58 (68.2%) cases were detected during a malaria transmission season. Seven cases who contacted the patients with imported malaria and were infected were recorded in 1999. They included 4 and 3 cases in the Surkhandaryin and Kashkadaryin Regions, respectively. In 1999, there was a decline in the number of malaria patients who needed health care and in the diagnosed malaria cases in therapeutical and prophylactic institutions. Throughout the country, 34 (40%) of the 85 detected cases presented within 3 days of malaria outbreak (68.9% in 1998). Malaria was immediate diagnosed in 43.5% of cases (64.9% in 1998). The remaining cases were diagnosed as having acute respiratory viral infections, tropical and parasitic diseases, viral hepatitis, or influenza. Early diagnosis of malaria was made in 60% of cases (77% in 1998). Three cases of imported tertian malaria were recorded in the Tashkent Region in the first quarter of 2000. They were imported from Tajikistan into rural areas and the patients had been infected during the 1999 season. Epidemiological surveillance of malaria in Uzbekistan is regularly carried out by the general network of health facilities and by the departments of parasitology of state epidemiological surveillance centers in collaboration with medical administrative departments, the Ministry of Agriculture and Fisheries, the L.M. Isayev Research Institute of Medical Parasitology, and other agencies. Active links are maintained with WHO under the Roll Back Malaria programme. Great emphasis is laid on medical staff training at all levels. During the 1999 epidemiological survey, 672,536 laboratory tests were performed on blood samples from suspected malaria patients and individuals who had visited malaria-endemic countries, 55% of them suffering from fever. A total area of 17 million m2 of dwelling and nondwelling buildings 20 ha of water areas were treated against mosquitoes and the larvivorous fish Gambusia was put into the water areas occupying 6,500 ha. In all cases of malaria, the focus of infection was epidemiologically surveyed and required epidemic preventive measures were implemented. All malaria patients received a full course of radical therapy and recovered completely. The epidemiological surveillance system for malaria is affected by staff shortages at the parasitology departments of state epidemiological surveillance centers and by shortages of microscopes, reagents, sterilizing equipment, insecticides, etc. There are still difficulties in obtaining supplies of primaquine although a small stock is locally available as due to WHO humanitarian assistance. The Epidemiological Malaria Surveillance Programme for the Republic of Uzbekistan for 2000-2004, intended to strengthen the epidemic control capacity of health care facilities, Ministry of Health, is under adoption. The following activities are scheduled for 2000: to plan malaria control activities, including the zoning of the country by the risk of malaria transmission in accordance with republic-leveled directives, instructions, and methodology and WHO recommendations: adjustments to these plans to be made as necessary; to fill vacant posts in the parasitology departments of state epidemiological surveillance centers; to procure stocks of antimalarial drugs, reagents, insecticides, sterilizing equipment, etc., to be paid for from epidemiological service resources; to include malaria issues into certifying tests for physicians, as appropriate for the posts to be occupied and their level of qualifications; to publish posters, brochures, and leaflets about malaria prevention before the malaria transmission season for health education; to hold seminars and meetings for health workers on the etiology of malaria, its clinical features, diagnosis, treatment, and prevention.
Landman, Keren Z; Jean, Samuel E; Existe, Alexandre; Akom, Eniko E; Chang, Michelle A; Lemoine, Jean Frantz; Mace, Kimberly E
2015-10-09
Malaria is a public health concern in Haiti, although there are limited data on its burden and case management. National malaria guidelines updated in 2012 recommend treatment with chloroquine and primaquine. In December 2012, a nationally-representative cross-sectional survey of health facilities (HFs) was conducted to determine malaria prevalence among febrile outpatients and malaria case management quality at baseline before scale-up of diagnostics and case management training. Among all 833 HFs nationwide, 30 were selected randomly, in proportion to total HFs per region, for 2-day evaluations. Survey teams inventoried HF material and human resources. Outpatients of all ages were screened for temperature >37.5 °C or history of fever; those without severe symptoms were consented and enrolled. Providers evaluated and treated enrolled patients according to HF standards; the survey teams documented provider-ordered diagnostic tests and treatment decisions. Facility-based test results [microscopy and malaria rapid diagnostic tests (RDTs)] were collected from HF laboratories. Blood smears for gold-standard microscopy, and dried blood spots for polymerase chain reaction (PCR) were obtained. Malaria diagnostic capacity, defined as completing a test for an enrolled patient or having adequate resources for RDTs or microscopy, was present in 11 (37 %) HFs. Among 459 outpatients screened, 257 (56 %) were febrile, of which 193 (75 %) were eligible, and 153 (80 %) were enrolled. Among 39 patients with facility-level malaria test results available on the survey day, 11 (28 %) were positive, of whom 6 (55 %) were treated with an anti-malarial. Twenty-seven (95 %) of the 28 patients testing negative were not treated with an anti-malarial. Of 114 patients without test results available, 35 (31 %) were presumptively treated for malaria. Altogether, 42 patients were treated with an anti-malarial, one (2 %) according to Haiti's 2012 guidelines. Of 140 gold-standard smears, none were positive, although one patient tested positive by PCR, a more sensitive technique. The national prevalence of malaria among febrile outpatients is estimated to be 0.5 % (95 % confidence interval 0-1.7 %). Malaria is an uncommon cause of fever in Haitian outpatients, and limited, often inaccurate, diagnostic capacity at baseline contributes to over diagnosis. Scale-up of diagnostics and training on new guidelines should improve malaria diagnosis and treatment in Haiti.
Swana, Edouard Kawawa; Makan, Ghislain Yav; Mukeng, Clarence Kaut; Mupumba, Henriette Ilunga; Kalaba, Gabriel Mutabusha; Luboya, Oscar Numbi; Bangs, Michael J
2016-08-15
Malaria prevalence in the Mulumbu Health Area in Lualaba Province, Democratic Republic of the Congo has remained high (>70 %) despite repeated vector control (indoor residual spray) and mass insecticide-treated bed net coverage. Therefore, a pilot study was implemented to attack the parasite directly and demonstrate the feasibility and acceptability of community case management of malaria (CCMm) using trained community health workers (CHWs). A 13 month prospective evaluation of CCMm was undertaken in 14 rural villages. Focus group discussions and structured interviews were conducted in pre- and post-intervention periods to assess community acceptability of CCMm. Weekly data collected by CHWs assessed program impact over time, matched with malaria school-based prevalence surveys (MSPS) in the Mulumbu Health Area (CCMm study arm) compared to a comparison (non-CCMm) arm in the Mpala Health Area approximately 25 km apart. Overall population perception of the CCMm was highly positive. 6619 community contacts were managed by CHWs from which 1433 (21.6 %) were malaria positive by rapid detection tests during the 10 month intervention. Among the malaria infected, 94.7 % (1358) were recorded as 'uncomplicated' infections with 99.7 % provided full course of treatment. CHWs referred 278 (4.2 %) patients deemed 'complicated' to a designated primary health center for advanced care. While pre-intervention MSPS data revealed significantly higher (p = 0.0135) malaria in the CCMm area compared to the non-CCMm area, at post-intervention there was no statistical difference (p = 0.562) between the two areas. Notably, for the first time, no malaria-related deaths were recorded in the 14 CCMm intervention villages during observation. Community case management of malaria was shown to be an effective and promising strategy for prompt and effective management of malaria. It was well accepted by the community and showed evidence of a reduction in malaria morbidity and mortality. Further refinement of CCMm implementation, cost implications and sustainability is advised before expanding the programme.
The detection of cryptic Plasmodium infection among villagers in Attapeu province, Lao PDR.
Iwagami, Moritoshi; Keomalaphet, Sengdeuane; Khattignavong, Phonepadith; Soundala, Pheovaly; Lorphachan, Lavy; Matsumoto-Takahashi, Emilie; Strobel, Michel; Reinharz, Daniel; Phommasansack, Manisack; Hongvanthong, Bouasy; Brey, Paul T; Kano, Shigeyuki
2017-12-01
Although the malaria burden in the Lao PDR has gradually decreased, the elimination of malaria by 2030 presents many challenges. Microscopy and malaria rapid diagnostic tests (RDTs) are used to diagnose malaria in the Lao PDR; however, some studies have reported the prevalence of sub-microscopic Plasmodium infections or asymptomatic Plasmodium carriers in endemic areas. Thus, highly sensitive detection methods are needed to understand the precise malaria situation in these areas. A cross-sectional malaria field survey was conducted in 3 highly endemic malaria districts (Xaysetha, Sanamxay, Phouvong) in Attapeu province, Lao PDR in 2015, to investigate the precise malaria endemicity in the area; 719 volunteers from these villages participated in the survey. Microscopy, RDTs and a real-time nested PCR were used to detect Plasmodium infections and their results were compared. A questionnaire survey of all participants was also conducted to estimate risk factors of Plasmodium infection. Numbers of infections detected by the three methods were microscopy: P. falciparum (n = 1), P. vivax (n = 2); RDTs: P. falciparum (n = 2), P. vivax (n = 3); PCR: Plasmodium (n = 47; P. falciparum [n = 4], P. vivax [n = 41], mixed infection [n = 2]; 6.5%, 47/719). Using PCR as a reference, the sensitivity and specificity of microscopy were 33.3% and 100.0%, respectively, for detecting P. falciparum infection, and 7.0% and 100.0%, for detecting P. vivax infection. Among the 47 participants with parasitemia, only one had a fever (≥37.5°C) and 31 (66.0%) were adult males. Risk factors of Plasmodium infection were males and soldiers, whereas a risk factor of asymptomatic Plasmodium infection was a history of ≥3 malaria episodes. There were many asymptomatic Plasmodium carriers in the study areas of Attapeu province in 2015. Adult males, probably soldiers, were at high risk for malaria infection. P. vivax, the dominant species, accounted for 87.2% of the Plasmodium infections among the participants. To achieve malaria elimination in the Lao PDR, highly sensitive diagnostic tests, including PCR-based diagnostic methods should be used, and plans targeting high-risk populations and elimination of P. vivax should be designed and implemented.
A field-deployable mobile molecular diagnostic system for malaria at the point of need.
Choi, Gihoon; Song, Daniel; Shrestha, Sony; Miao, Jun; Cui, Liwang; Guan, Weihua
2016-11-01
In response to the urgent need of a field-deployable and highly sensitive malaria diagnosis, we developed a standalone, "sample-in-answer-out" molecular diagnostic system (AnyMDx) to enable quantitative molecular analysis of blood-borne malaria in low resource areas. The system consists of a durable battery-powered analyzer and a disposable microfluidic compact disc loaded with reagents ready for use. A low power thermal module and a novel fluorescence-sensing module are integrated into the analyzer for real-time monitoring of loop-mediated isothermal nucleic acid amplification (LAMP) of target parasite DNA. With 10 μL of raw blood sample, the AnyMDx system automates the nucleic acid sample preparation and subsequent LAMP and real-time detection. Under laboratory conditions with whole-blood samples spiked with cultured Plasmodium falciparum, we achieved a detection limit of ∼0.6 parasite per μL, much lower than those for the conventional microscopy and rapid diagnostic tests (∼50-100 parasites per μL). The turnaround time from sample to answer is less than 40 minutes. The AnyMDx is user-friendly requiring minimal technological training. The analyzer and the disposable reagent compact discs are cost-effective, making AnyMDx a potential tool for malaria molecular diagnosis under field settings for malaria elimination.
Pennetier, Cédric; Costantini, Carlo; Corbel, Vincent; Licciardi, Séverine; Dabiré, Roch K; Lapied, Bruno; Chandre, Fabrice; Hougard, Jean-Marc
2009-11-19
Chemicals are used on bed nets in order to prevent infected bites and to kill aggressive malaria vectors. Because pyrethroid resistance has become widespread in the main malaria vectors, research for alternative active ingredients becomes urgent. Mixing a repellent and a non-pyrethroid insecticide seemed to be a promising tool as mixtures in the laboratory showed the same features as pyrethroids. We present here the results of two trials run against free-flying Anopheles gambiae populations comparing the effects of two insect repellents (either DEET or KBR 3023, also known as icaridin) and an organophosphate insecticide at low-doses (pirimiphos-methyl, PM) used alone and in combination on bed nets. We showed that mixtures of PM and the repellents induced higher exophily, blood feeding inhibition and mortality among wild susceptible and resistant malaria vectors than compounds used alone. Nevertheless the synergistic interactions are only involved in the high mortality induced by the two mixtures. These field trials argue in favour of the strategy of mixing repellent and organophosphate on bed nets to better control resistant malaria vectors.
Ashraf, Sania; Kao, Angie; Hugo, Cecilia; Christophel, Eva M; Fatunmbi, Bayo; Luchavez, Jennifer; Lilley, Ken; Bell, David
2012-10-24
Malaria diagnosis has received renewed interest in recent years, associated with the increasing accessibility of accurate diagnosis through the introduction of rapid diagnostic tests and new World Health Organization guidelines recommending parasite-based diagnosis prior to anti-malarial therapy. However, light microscopy, established over 100 years ago and frequently considered the reference standard for clinical diagnosis, has been neglected in control programmes and in the malaria literature and evidence suggests field standards are commonly poor. Microscopy remains the most accessible method for parasite quantitation, for drug efficacy monitoring, and as a reference of assessing other diagnostic tools. This mismatch between quality and need highlights the importance of the establishment of reliable standards and procedures for assessing and assuring quality. This paper describes the development, function and impact of a multi-country microscopy external quality assurance network set up for this purpose in Asia. Surveys were used for key informants and past participants for feedback on the quality assurance programme. Competency scores for each country from 14 participating countries were compiled for analyses using paired sample t-tests. In-depth interviews were conducted with key informants including the programme facilitators and national level microscopists. External assessments and limited retraining through a formalized programme based on a reference slide bank has demonstrated an increase in standards of competence of senior microscopists over a relatively short period of time, at a potentially sustainable cost. The network involved in the programme now exceeds 14 countries in the Asia-Pacific, and the methods are extended to other regions. While the impact on national programmes varies, it has translated in some instances into a strengthening of national microscopy standards and offers a possibility both for supporting revival of national microcopy programmes, and for the development of globally recognized standards of competency needed both for patient management and field research.
2012-01-01
Background Malaria diagnosis has received renewed interest in recent years, associated with the increasing accessibility of accurate diagnosis through the introduction of rapid diagnostic tests and new World Health Organization guidelines recommending parasite-based diagnosis prior to anti-malarial therapy. However, light microscopy, established over 100 years ago and frequently considered the reference standard for clinical diagnosis, has been neglected in control programmes and in the malaria literature and evidence suggests field standards are commonly poor. Microscopy remains the most accessible method for parasite quantitation, for drug efficacy monitoring, and as a reference of assessing other diagnostic tools. This mismatch between quality and need highlights the importance of the establishment of reliable standards and procedures for assessing and assuring quality. This paper describes the development, function and impact of a multi-country microscopy external quality assurance network set up for this purpose in Asia. Methods Surveys were used for key informants and past participants for feedback on the quality assurance programme. Competency scores for each country from 14 participating countries were compiled for analyses using paired sample t-tests. In-depth interviews were conducted with key informants including the programme facilitators and national level microscopists. Results External assessments and limited retraining through a formalized programme based on a reference slide bank has demonstrated an increase in standards of competence of senior microscopists over a relatively short period of time, at a potentially sustainable cost. The network involved in the programme now exceeds 14 countries in the Asia-Pacific, and the methods are extended to other regions. Conclusions While the impact on national programmes varies, it has translated in some instances into a strengthening of national microscopy standards and offers a possibility both for supporting revival of national microcopy programmes, and for the development of globally recognized standards of competency needed both for patient management and field research. PMID:23095668
Plasmodium vivax malaria in spite of atovaquone/proguanil (malarone) prophylaxis.
Povinelli, Laura; Monson, Tim A; Fox, Barry C; Parise, Monica E; Morrisey, Joanne M; Vaidya, Akhil B
2003-01-01
A 70-year-old male scientist, who had returned 5 weeks earlier from Ethiopia, was admitted to the hospital with symptoms consistent with malaria. On physical examination, he had orthostatic hypotension. He was dehydrated and showed a mild clinical delirium. Abdominal examination revealed a possible spleen tip, and he had petechial lesions bilaterally below his knees. Laboratory data revealed his white blood cell count to be 4,500/mL, with 67% polymorphonuclear cells and 15% band forms. The hemoglobin level was 13.9 g/dL, and the platelet count was low, at 32,000/mL.
Arnáez, Juan; Roa, Miguel A; Albert, Leticia; Cogollos, Rosario; Rubio, Jose M; Villares, Rebeca; Alarabe, Abdulkareem; Cervera, Aurea; López-Vélez, Rogelio
2010-01-01
In Europe, imported malarial cases occur in returning travelers and immigrants mostly from African countries. There have been an increasing number of cases in the past years in Spain. An analysis of all cases of malaria who attended at the Hospital of Mostoles in the Southwest of Madrid from 1995 to 2007 was performed. Clinical, epidemiological, laboratory, and parasitological findings were analyzed and compared between immigrants coming from endemic countries (recent immigrants) and children who traveled to endemic areas to visit friends and relatives (VFRs). Sixty cases of imported malaria were detected. Most of the cases (59 of 60) were acquired in sub-Saharan Africa. The most common species was Plasmodium falciparum (43 of 60). Microscopic examination was positive in 95%, and the polymerase chain reaction (PCR) for Plasmodium achieved additional diagnosis in seven cases. Fourteen cases were VFRs; none of them used appropriate malaria chemoprophylaxis. Fever and thrombocytopenia were significantly more common among VFRs. They also had significantly higher parasite density. Twelve cases were asymptomatic at the time of diagnosis; all of them were recent immigrants. VFRs account for a significant number of childhood malarial cases. These patients had not taken malaria chemoprophylaxis and malarial cases were more severe. VFR children are a high-risk group, and pretravel advice should underline the risk for malaria. Recent immigrants can be asymptomatic and parasitemias are lower. Therefore, a high index of suspicion is necessary, and PCR for Plasmodium should be performed in case of negative thick smears.
Micronutrient Deficiencies and Plasmodium vivax Malaria among Children in the Brazilian Amazon
Benzecry, Silvana Gomes; Alexandre, Márcia Almeida; Vítor-Silva, Sheila; Salinas, Jorge Luis; de Melo, Gisely Cardoso; Marinho, Helyde Albuquerque; Paes, Ângela Tavares; de Siqueira, André Machado; Monteiro, Wuelton Marcelo; Lacerda, Marcus Vinícius Guimarães; Leite, Heitor Pons
2016-01-01
Background There is a growing body of evidence linking micronutrient deficiencies and malaria incidence arising mostly from P. falciparum endemic areas. We assessed the impact of micronutrient deficiencies on malaria incidence and vice versa in the Brazilian state of Amazonas. Methodology/Principal Findings We evaluated children <10 years old living in rural communities in the state of Amazonas, Brazil, from May 2010 to May 2011. All children were assessed for sociodemographic, anthropometric and laboratory parameters, including vitamin A, beta-carotene, zinc and iron serum levels at the beginning of the study (May 2010) and one year later (May 2011). Children were followed in between using passive surveillance for detection of symptomatic malaria. Those living in the study area at the completion of the observation period were reassessed for micronutrient levels. Univariate Cox-proportional Hazards models were used to assess whether micronutrient deficiencies had an impact on time to first P. vivax malaria episode. We included 95 children median age 4.8 years (interquartile range [IQR]: 2.3–6.6), mostly males (60.0%) and with high maternal illiteracy (72.6%). Vitamin A deficiencies were found in 36% of children, beta-carotene deficiency in 63%, zinc deficiency in 61% and iron deficiency in 51%. Most children (80%) had at least one intestinal parasite. During follow-up, 16 cases of vivax malaria were diagnosed amongst 13 individuals. Micronutrient deficiencies were not associated with increased malaria incidence: vitamin A deficiency [Hazard ratio (HR): 1.51; P-value: 0.45]; beta-carotene [HR: 0.47; P-value: 0.19]; zinc [HR: 1.41; P-value: 0.57] and iron [HR: 2.31; P-value: 0.16]). Upon reevaluation, children with al least one episode of malaria did not present significant changes in micronutrient levels. Conclusion Micronutrient serum levels were not associated with a higher malaria incidence nor the malaria episode influenced micronutrient levels. Future studies targeting larger populations to assess micronutrients levels in P. vivax endemic areas are warranted in order to validate these results. PMID:26963624
Paton, Doug; Touré, Mahamoudou; Sacko, Adama; Coulibaly, Mamadou B; Traoré, Sékou F; Tripet, Frédéric
2013-01-01
Anopheles gambiae sensu stricto, the main vector of malaria in Africa, is characterized by its vast geographical range and complex population structure. Assortative mating amongst the reproductively isolated cryptic forms that co-occur in many areas poses unique challenges for programs aiming to decrease malaria incidence via the release of sterile or genetically-modified mosquitoes. Importantly, whether laboratory-rearing affects the ability of An. gambiae individuals of a given cryptic taxa to successfully mate with individuals of their own form in field conditions is still unknown and yet crucial for mosquito-releases. Here, the independent effects of genetic and environmental factors associated with laboratory rearing on male and female survival, mating success and assortative mating were evaluated in the Mopti form of An. gambiae over 2010 and 2011. In semi-field enclosures experiments and despite strong variation between years, the overall survival and mating success of male and female progeny from a laboratory strain was not found to be significantly lower than those of the progeny of field females from the same population. Adult progeny from field-caught females reared at the larval stage in the laboratory and from laboratory females reared outdoors exhibited a significant decrease in survival but not in mating success. Importantly, laboratory individuals reared as larvae indoors were unable to mate assortatively as adults, whilst field progeny reared either outdoors or in the laboratory, as well as laboratory progeny reared outdoors all mated significantly assortatively. These results highlight the importance of genetic and environment interactions for the development of An. gambiae's full mating behavioral repertoire and the challenges this creates for mosquito rearing and release-based control strategies.
Oduola, Adedayo O; Obembe, Abiodun; Adelaja, Olukayode J; Adeneye, Adeniyi K; Akilah, Joel; Awolola, Taiwo S
2018-05-15
Despite the availability of effective malaria vector control intervention tools, implementation of control programmes in Nigeria is challenged by inadequate entomological surveillance data. This study was designed to assess and build the existing capacity for malaria vector surveillance, control and research (MVSC&R) in Nigerian institutions. Application call to select qualified candidates for the capacity building (CB) intervention training programme was advertised in a widely read newspaper and online platforms of national and international professional bodies. Two trainings were organized to train selected applicants on field activities, laboratory tools and techniques relevant to malaria vector surveillance and control research. A semi-structured questionnaire was administered to collect data on socio-demographic characteristics of participants, knowledge and access of participants to field and laboratory techniques in MVSC&R. Similarly, pre and post-intervention tests were conducted to assess the performance and improvement in knowledge of the participants. Mentoring activities to sustain CB activities after the training were also carried out. A total of 23 suitable applicants were shortlisted out of the 89 applications received. The South West, South East and North Central geopolitical zones of the country had the highest applications and the highest selected number of qualified applicants compared to the South South and North East geopolitical zones. The distribution with respect to gender indicated that males (72.7%) were more than females (27.3%). Mean score of participants' knowledge of field techniques was 27.8 (± 10.8) before training and 67.7 (± 9.8) after the training. Similarly, participants' knowledge on laboratory techniques also improved from 37.4 (± 5.6) to 77.2 (± 10.8). The difference in the mean scores at pre and post-test was statistically significant (p < 0.05). Access of participants to laboratory and field tools used in MVSC&R was generally low with insecticide susceptibility bioassays and pyrethrum spray collection methods being the most significant (p < 0.05). The capacity available for vector control research and surveillance at institutional level in Nigeria is weak and require further strengthening. Increased training and access of personnel to relevant tools for MVSC&R is required in higher institutions in the six geopolitical zones of the country.
2011-01-01
Background Malaria has a negative effect on the outcome of pregnancy. Pregnant women are at high risk of severe malaria and severe haemolytic anaemia, which contribute 60-70% of foetal and perinatal losses. Peripheral blood smear microscopy under-estimates sequestered placental infections, therefore malaria rapid diagnostic tests (RDTs) detecting histidine rich protein-2 antigen (HRP-2) in peripheral blood are a potential alternative. Methods HRP-2 RDTs accuracy in detecting malaria in pregnancy (MIP >28 weeks gestation) and placental Plasmodium falciparum malaria (after childbirth) were conducted using Giemsa microscopy and placental histopathology respectively as the reference standard. The study was conducted in Mbale Hospital, using the midwives to perform and interpret the RDT results. Discordant results samples were spot checked using PCR techniques. Results Among 433 febrile women tested, RDTs had a sensitivity of 96.8% (95% CI 92-98.8), specificity of 73.5% (95% CI 67.8-78.6), a positive predictive value (PPV) of 68.0% (95% CI 61.4-73.9), and negative predictive value (NPV) of 97.5% (95% CI 94.0-99.0) in detecting peripheral P. falciparum malaria during pregnancy. At delivery, in non-symptomatic women, RDTs had a 80.9% sensitivity (95% CI 57.4-93.7) and a 87.5% specificity (95%CI 80.9-92.1), PPV of 47.2% (95% CI 30.7-64.2) and NPV of 97.1% (95% CI 92.2-99.1) in detecting placental P. falciparum infections among 173 samples. At delivery, 41% of peripheral infections were detected by microscopy without concurrent placental infection. The combination of RDTs and microscopy improved the sensitivity to 90.5% and the specificity to 98.4% for detecting placental malaria infection (McNemar's X 2> 3.84). RDTs were not superior to microscopy in detecting placental infection (McNemar's X 2< 3.84). Presence of malaria in pregnancy and active placental malaria infection were 38% and 12% respectively. Placental infections were associated with poor pregnancy outcome [pre-term, still birth and low birth weight] (aOR = 37.9) and late pregnancy malaria infection (aOR = 20.9). Mosquito net use (aOR 2.1) and increasing parity (aOR 2.7) were associated with lower risk for malaria in pregnancy. Conclusion Use of HRP-2 RDTs to detect malaria in pregnancy in symptomatic women was accurate when performed by midwives. A combination of RDTs and microscopy provided the best means of detecting placental malaria. RDTs were not superior to microscopy in detecting placental infection. With a high sensitivity and specificity, RDTs could be a useful tool for assessing malaria in pregnancy, with further (cost-) effectiveness studies. PMID:22004666
Progress towards malaria elimination in Zimbabwe with special reference to the period 2003-2015.
Sande, Shadreck; Zimba, Moses; Mberikunashe, Joseph; Tangwena, Andrew; Chimusoro, Anderson
2017-07-24
An intensive effort to control malaria in Zimbabwe has produced dramatic reductions in the burden of the disease over the past 13 years. The successes have prompted the Zimbabwe's National Malaria Control Programme to commit to elimination of malaria. It is critical to analyse the changes in the morbidity trends based on surveillance data, and scrutinize reorientation to strategies for elimination. This is a retrospective study of available Ministry of Health surveillance data and programme reports, mostly from 2003 to 2015. Malaria epidemiological data were drawn from the National Health Information System database. Data on available resources, malaria control strategies, morbidity and mortality trends were analysed, and opportunities for Zimbabwe malaria elimination agenda was perused. With strong government commitment and partner support, the financial gap for malaria programming shrank by 91.4% from about US$13 million in 2012 to US$1 million in 2015. Vector control comprises indoor residual house spraying (IRS) and long-lasting insecticidal nets, and spray coverage increased from 28% in 2003 to 95% in 2015. Population protected by IRS increased also from 20 to 96% for the same period. In 2009, diagnostics improved from clinical to parasitological confirmation either by rapid diagnostic tests or microscopy. Artemisinin-based combination therapy was used to treat malaria following chloroquine resistance in 2000, and sulfadoxine-pyrimethamine in 2004. In 2003, there were 155 malaria cases per 1000 populations reported from all health facilities throughout the country. The following decade witnessed a substantial decline in cases to only 22 per 1000 populations in 2012. A resurgence was reported in 2013 (29/1000) and 2014 (39/1000), thereafter morbidity declined to 29 cases per 1000 populations, only to the same level as in 2013. Overall, morbidity declined by 81% from 2003 to 2015. Inpatient malaria deaths per 100,000 populations doubled in 4 years, from 2/100,000 to 4/100,000 populations in 2012-2015 respectively. Twenty of the 47 moderate to high burdened districts were upgraded from control to malaria pre-elimination between 2012 and 2015. A significant progress to reduce malaria transmission in Zimbabwe has been made. While a great potential and opportunities to eliminate malaria in the country exist, elimination is not a business as usual approach. Instead, it needs an improved, systematic and new programmatic strategy supported strongly by political will, sustained funding, good leadership, community engagement, and a strong monitoring and evaluation system all year round until the cessation of local transmission.
Evaluation of Commercially Available Anti–Dengue Virus Immunoglobulin M Tests
Hunsperger, Elizabeth A.; Yoksan, Sutee; Buchy, Philippe; Nguyen, Vinh Chau; Sekaran, Shamala D.; Enria, Delia A.; Pelegrino, Jose L.; Vázquez, Susana; Artsob, Harvey; Drebot, Michael; Gubler, Duane J.; Halstead, Scott B.; Guzmán, María G.; Margolis, Harold S.; Nathanson, Carl-Michael; Lic, Nidia R. Rizzo; Bessoff, Kovi E.; Kliks, Srisakul
2009-01-01
Anti–dengue virus immunoglobulin M kits were evaluated. Test sensitivities were 21%–99% and specificities were 77%–98% compared with reference ELISAs. False-positive results were found for patients with malaria or past dengue infections. Three ELISAs showing strong agreement with reference ELISAs will be included in the World Health Organization Bulk Procurement Scheme. PMID:19239758
Sun, Jun-Ling; Zhou, Sheng; Geng, Qi-Bin; Zhang, Qian; Zhang, Zi-Ke; Zheng, Can-Jun; Hu, Wen-Biao; Clements, Archie C A; Lai, Sheng-Jie; Li, Zhong-Jie
2016-06-27
The elimination of malaria requires high-quality surveillance data to enable rapid detection and response to individual cases. Evaluation of the performance of a national malaria surveillance system could identify shortcomings which, if addressed, will improve the surveillance program for malaria elimination. Case-level data for the period 2005-2014 were extracted from the China National Notifiable Infectious Disease Reporting Information System and Malaria Enhanced Surveillance Information System. The occurrence of cases, accuracy and timeliness of case diagnosis, reporting and investigation, were assessed and compared between the malaria control stage (2005-2010) and elimination stage (2011-2014) in mainland China. A total of 210 730 malaria cases were reported in mainland China in 2005-2014. The average annual incidence declined dramatically from 2.5 per 100 000 people at the control stage to 0.2 per 100 000 at the elimination stage, but the proportion of migrant cases increased from 9.8 % to 41.0 %. Since the initiation of the National Malaria Elimination Programme in 2010, the overall proportion of cases diagnosed by laboratory testing consistently improved, with the highest of 99.0 % in 2014. However, this proportion was significantly lower in non-endemic provinces (79.0 %) than that in endemic provinces (91.4 %) during 2011-2014. The median interval from illness onset to diagnosis was 3 days at the elimination stage, with one day earlier than that at the control stage. Since 2011, more than 99 % cases were reported within 1 day after being diagnosed, while the proportion of cases that were reported within one day after diagnosis was lowest in Tibet (37.5 %). The predominant source of cases reporting shifted from town-level hospitals at the control stage (67.9 % cases) to city-level hospitals and public health institutes at the eliminate stage (69.4 % cases). The proportion of investigation within 3 days after case reporting has improved, from 74.6 % in 2010 to 98.5 % in 2014. The individual case-based malaria surveillance system in China operated well during the malaria elimination stage. This ensured that malaria cases could be diagnosed, reported and timely investigated at local level. However, domestic migrants and overseas populations, as well as cases in the historically malarial non-endemic areas and hard-to-reach area are new challenges in the surveillance for malaria elimination.
Spatial heterogeneity of malaria in Indian reserves of Southwestern Amazonia, Brazil
Souza-Santos, Reinaldo; de Oliveira, Maurício VG; Escobar, Ana Lúcia; Santos, Ricardo Ventura; Coimbra, Carlos EA
2008-01-01
Background Malaria constitutes a major cause of morbidity in the Brazilian Amazon where an estimated 6 million people are considered at high risk of transmission. Indigenous peoples in the Amazon are particularly vulnerable to potentially epidemic disease such as malaria; notwithstanding, very little is known about the epidemiology of malaria in Indian reservations of the region. The aim of this paper is to present a spatial analysis of malaria cases over a four-year time period (2003–2006) among indigenous peoples of the Brazilian State of Rondônia, southwestern Amazon, by using passive morbidity data (results from Giemsa-stained thick blood smears) gathered from the National Malaria Epidemiologic Surveillance System databank. Results A total of 4,160 cases of malaria were recorded in 14 Indian reserves in the State of Rondônia between 2003 and 2006. In six reservations no cases of malaria were reported in the period. Overall, P. vivax accounted for 76.18 of malaria cases reported in the indigenous population of Rondônia. The P. vivax/P. falciparum ratio for the period was 3.78. Two reserves accounted for over half of the cases reported for the total indigenous population in the period – Roosevelt and Pacaas Novas – with a total of 1,646 (39.57%) and 1,145 (27.52%) cases, respectively. Kernel mapping of malaria mean Annual Parasite Index – API according to indigenous reserves and environmental zones revealed a heterogeneous pattern of disease distribution, with one clear area of high risk of transmission comprising reservations of west Rondônia along the Guaporé-Madeira River basins, and another high risk area to the east, on the Roosevelt reserve. Conclusion By means of kernel mapping, it was shown that malaria risk varies widely between Indian reserves and environmental zones defined on the basis of predominant ecologic characteristics and land use patterns observed in the southwestern Brazilian Amazon. The geographical approach in this paper helped to determine where the greatest needs lie for more intensively focused malaria control activities in Indian reserves in the region. It also provided a reference to assess the effectiveness of control measures that have been put in place by Brazilian public health authorities. PMID:18980681
Block the Buzzing, Bites, and Bumps: Preventing Mosquito-Borne Illnesses
... Ten Mosquito Facts West Nile Virus Dengue Fever Malaria Zika Virus Infection Zika Virus Information and Resources References The live attenuated dengue vaccine TV003 elicits complete protection against dengue in a ...
Twomey, Patrick S; Smith, Bryan L; McDermott, Cathy; Novitt-Moreno, Anne; McCarthy, William; Kachur, S Patrick; Arguin, Paul M
2015-10-06
Quinidine gluconate, the only U.S. Food and Drug Administration-approved treatment for life-threatening malaria in the United States, has a problematic safety profile and is often unavailable in hospitals. To assess the safety and clinical benefit of intravenous artesunate as an alternative to quinidine. Retrospective case series. U.S. hospitals. 102 patients aged 1 to 72 years (90% adults; 61% men) with severe and complicated malaria. Patients received 4 weight-based doses of intravenous artesunate (2.4 mg/kg) under a treatment protocol implemented by the Centers for Disease Control and Prevention between January 2007 and December 2010. At baseline, 35% had evidence of cerebral malaria, and 17% had severe hepatic impairment. Eligibility required the presence of microscopically confirmed malaria, need for intravenous treatment, and an impediment to quinidine. Clinical and laboratory data from each patient's hospital records were abstracted retrospectively, including information from baseline through a maximum 7-day follow-up, and presented before a physician committee to evaluate safety and clinical benefit outcomes. 7 patients died (mortality rate, 6.9%). The most frequent adverse events were anemia (65%) and elevated hepatic enzyme levels (49%). All deaths and most adverse events were attributed to the severity of malaria. Patients' symptoms generally improved or resolved within 3 days, and the median time to discharge from the intensive care unit was 4 days, even for patients with severe liver disease or cerebral malaria. More than 100 concomitant medications were used, with no documented drug-drug interactions. Potential late-presenting safety issues might occur outside the 7-day follow-up. Artesunate was a safe and clinically beneficial alternative to quinidine.
Owusu, Ewurama D A; Djonor, Samson K; Brown, Charles A; Grobusch, Martin P; Mens, Petra F
2018-02-23
Plasmodium falciparum, the most dominant species in sub-Saharan Africa, causes the most severe clinical malaria manifestations. In resource-limited Ghana, where malaria and HIV geographically overlap, histidine-rich protein 2 (HRP2)-based rapid diagnostic test (RDT) is a faster, easier and cheaper alternative to clinical gold standard light microscopy. However, mutations in parasite hrp2 gene may result in missed infections, which have severe implications for malaria control. The performance of a common HRP2-based RDT and expert light microscopy in HIV-positive and HIV-negative children under 5 years old was compared with PCR as laboratory gold standard. Finger-prick capillary blood was tested with First Response ® Malaria Ag P. falciparum (HRP2). Giemsa-stained thick and thin blood films were examined with ≥ 200 high power fields and parasites counted per 200 white blood cells. Nested PCR species identification of P. falciparum was performed and resolved on agarose gel. False negatives from RDT were further tested for deleted pfhrp2/3 and flanking genes, using PCR. The study was performed in two anti-retroviral therapy clinics in Accra and Atibie. Out of 401 participants enrolled, 150 were HIV positive and 251 HIV negative. Malaria was more prevalent in children without HIV. Microscopy had a higher sensitivity [100% (99-100)] than RDT [83% (53.5-100)]. Parasites with pfhrp2/3 deletions contributed to missed infections from RDT false negatives. Circulation of malaria parasites with pfrhp2/3 deletions in this population played a role in missed infections with RDT. This ought to be addressed if further strides in malaria control are to be made.
Parasitic infections in sickle cell crisis: Nigerian experience.
Sodipo, J. O.; Padgett, D.; Warrie, E.; Olopoenia, L.
1997-01-01
Data collected on 150 sickle cell patients in Nigeria were analyzed to determine the frequency of parasitic infections in clinical and hematologic crisis. Fifty-three adult and 97 pediatric patients (mean age: 27.6 years and 9.7 years, respectively) were studied. Of these patients, 82 were males and 68 females. One hundred thirty-nine had the SS and 11 the SC genotype. Blood samples collected from patients on admission for sickle cell-related illnesses were examined microscopically for evidence of Plasmodium sp, and stool samples were analyzed for presence of any helminth. A total of 102 parasitic infections associated with clinical cases of sickle cell crisis were recorded (malaria, 36[35.3%]; helminths, 49 ([48%]; and malaria and helminths together, 17 [16.7%]). Of the 49 helminthic infections, 26 (53.1%) were due to Ascaris lumbricoides, 15 (30.6%) were due to hookworms, 7 (14.3%) were due to Trichuris trichiura, and 1 (2%) was due to Strongyloides stercoralis. The mean hemoglobin levels during clinical crisis were 7.1 g/dL for helminths, 6.4 g/dL for malaria, and 6.1 g/dL for malaria and helminths together. Reticulocyte counts were 1.4% for helminths, 1.5% for malaria, and 1.2% for both malaria and helminths together. Severity and duration of the clinical crisis were longer for events associated with a single parasitic organism infection than for those with multiple organisms. Routine blood smear examination for malaria and stool analysis should be included in the laboratory evaluation of individuals with sickle cell anemia in developing countries as these infestations could play an important role in precipitating a crisis. PMID:9145635
Bardají, Azucena; Sanz, Sergi; Alonso, Sergi; Hanson, Kara; Arevalo-Herrera, Myriam; Menéndez, Clara
2018-01-01
Malaria in pregnancy threatens birth outcomes and the health of women and their newborns. This is also the case in low transmission areas, such as Colombia, where Plasmodium vivax is the dominant parasite species. Within the Colombian health system, which underwent major reforms in the 90s, malaria treatment is provided free of charge to patients. However, patients still incur costs, such as transportation and value of time lost due to the disease. We estimated such costs among 40 pregnant women with clinical malaria (30% Plasmodium falciparum, 70% Plasmodium vivax) in the municipality of Tierralta, Northern Colombia. In a cross-sectional study, women were interviewed after an outpatient or inpatient laboratory confirmed malaria episode. Women were asked to report all types of cost incurred before (including prevention), during and immediately after the contact with the health facility. Median total cost was over 16US$ for an outpatient visit, rising to nearly 30US$ if other treatments were sought before reaching the health facility. Median total inpatient cost was 26US$ or 54US$ depending on whether costs incurred prior to admission were excluded or included. For both outpatients and inpatients, direct costs were largely due to transportation and indirect costs constituted the largest share of total costs. Estimated costs are likely to represent only one of the constraints that women face when seeking treatment in an area characterized, at the time of the study, by armed conflict, displacement, and high vulnerability of indigenous women, the group at highest risk of malaria. Importantly, the Colombian peace process, which culminated with the cease-fire in August 2016, may have a positive impact on achieving universal access to healthcare in conflict areas. The current study can inform malaria elimination initiatives in Colombia. PMID:29718903
Sicuri, Elisa; Bardají, Azucena; Sanz, Sergi; Alonso, Sergi; Fernandes, Silke; Hanson, Kara; Arevalo-Herrera, Myriam; Menéndez, Clara
2018-05-01
Malaria in pregnancy threatens birth outcomes and the health of women and their newborns. This is also the case in low transmission areas, such as Colombia, where Plasmodium vivax is the dominant parasite species. Within the Colombian health system, which underwent major reforms in the 90s, malaria treatment is provided free of charge to patients. However, patients still incur costs, such as transportation and value of time lost due to the disease. We estimated such costs among 40 pregnant women with clinical malaria (30% Plasmodium falciparum, 70% Plasmodium vivax) in the municipality of Tierralta, Northern Colombia. In a cross-sectional study, women were interviewed after an outpatient or inpatient laboratory confirmed malaria episode. Women were asked to report all types of cost incurred before (including prevention), during and immediately after the contact with the health facility. Median total cost was over 16US$ for an outpatient visit, rising to nearly 30US$ if other treatments were sought before reaching the health facility. Median total inpatient cost was 26US$ or 54US$ depending on whether costs incurred prior to admission were excluded or included. For both outpatients and inpatients, direct costs were largely due to transportation and indirect costs constituted the largest share of total costs. Estimated costs are likely to represent only one of the constraints that women face when seeking treatment in an area characterized, at the time of the study, by armed conflict, displacement, and high vulnerability of indigenous women, the group at highest risk of malaria. Importantly, the Colombian peace process, which culminated with the cease-fire in August 2016, may have a positive impact on achieving universal access to healthcare in conflict areas. The current study can inform malaria elimination initiatives in Colombia.
Lal, Sham; Ndyomugenyi, Richard; Paintain, Lucy; Alexander, Neal D; Hansen, Kristian S; Magnussen, Pascal; Chandramohan, Daniel; Clarke, Siân E
2018-05-02
Several malaria endemic countries have implemented community health worker (CHW) programmes to increase access to populations underserved by health care. There is considerable evidence on CHW adherence to case management guidelines, however, there is limited evidence on the compliance to referral advice and the outcomes of children under-5 referred by CHWs. This analysis examined whether caregivers complied with CHWs referral advice. Data from two cluster (village) randomised trials, one in a moderate-to-high malaria transmission setting, another in a low-transmission setting conducted between January 2010-July 2011 were analysed. CHW were trained to recognise signs and symptoms that required referral to a health centre. CHW in the intervention arm also had training on; malaria rapid diagnostic tests (mRDT) and administering artemisinin based combination therapy (ACT); CHW in the control arm were trained to treat malaria with ACTs based on fever symptoms. Caregivers' referral forms were linked with CHW treatment forms to determine whether caregivers complied with the referral advice. Factors associated with compliance were examined with logistic regression. CHW saw 18,497 child visits in the moderate-to-high transmission setting and referred 15.2% (2815/18,497) of all visits; in the low-transmission setting, 35.0% (1135/3223) of all visits were referred. Compliance to referral was low, in both settings < 10% of caregivers complied with referral advice. In the moderate-to-high transmission setting compliance was higher if children were tested with mRDT compared to children who were not tested with mRDT. In both settings, nearly all children treated with pre-referral rectal artesunate failed to comply with referral and compliance was independently associated with factors such as health centre distance and day of referral by a CHW. In the moderate-to-high transmission setting, time of presentation, severity of referral were also associated with compliance, whilst in the low-transmission setting, compliance was low if an ACT was prescribed. This analysis suggests there are several barriers to comply with CHWs referral advice by caregivers. This is concerning for children who received rectal artesunate. As CHW programmes continue scale-up, barriers to referral compliance need to be addressed to ensure a continuum of care from the community to the health centre. The study was registered with ClinicalTrials.gov. Identifier NCT01048801 , 13th January 2010.
Feng, Xinyu; Zhang, Shaosen; Huang, Fang; Zhang, Li; Feng, Jun; Xia, Zhigui; Zhou, Hejun; Hu, Wei; Zhou, Shuisen
2017-01-01
China has set a goal to eliminate all malaria in the country by 2020, but it is unclear if current understanding of malaria vectors and transmission is sufficient to achieve this objective. Anopheles sinensis is the most widespread malaria vector specie in China, which is also responsible for vivax malaria outbreak in central China. We reviewed literature from 1954 to 2016 on An. sinensis with emphasis on biology, bionomics, and molecular biology. A total of 538 references were relevant and included. An. sienesis occurs in 29 Chinese provinces. Temperature can affect most life-history parameters. Most An. sinensis are zoophilic, but sometimes they are facultatively anthropophilic. Sporozoite analysis demonstrated An. sinensis efficacy on Plasmodium vivax transmission. An. sinensis was not stringently refractory to P. falciparum under experimental conditions, however, sporozoite was not found in salivary glands of field collected An. sinensis. The literature on An. sienesis biology and bionomics was abundant, but molecular studies, such as gene functions and mechanisms, were limited. Only 12 molecules (genes, proteins or enzymes) have been studied. In addition, there were considerable untapped omics resources for potential vector control tools. Existing information on An. sienesis could serve as a baseline for advanced research on biology, bionomics and genetics relevant to vector control strategies. PMID:28848504
Feng, Xinyu; Zhang, Shaosen; Huang, Fang; Zhang, Li; Feng, Jun; Xia, Zhigui; Zhou, Hejun; Hu, Wei; Zhou, Shuisen
2017-01-01
China has set a goal to eliminate all malaria in the country by 2020, but it is unclear if current understanding of malaria vectors and transmission is sufficient to achieve this objective. Anopheles sinensis is the most widespread malaria vector specie in China, which is also responsible for vivax malaria outbreak in central China. We reviewed literature from 1954 to 2016 on An. sinensis with emphasis on biology, bionomics, and molecular biology. A total of 538 references were relevant and included. An. sienesis occurs in 29 Chinese provinces. Temperature can affect most life-history parameters. Most An. sinensis are zoophilic, but sometimes they are facultatively anthropophilic. Sporozoite analysis demonstrated An. sinensis efficacy on Plasmodium vivax transmission. An. sinensis was not stringently refractory to P. falciparum under experimental conditions, however, sporozoite was not found in salivary glands of field collected An. sinensis . The literature on An. sienesis biology and bionomics was abundant, but molecular studies, such as gene functions and mechanisms, were limited. Only 12 molecules (genes, proteins or enzymes) have been studied. In addition, there were considerable untapped omics resources for potential vector control tools. Existing information on An. sienesis could serve as a baseline for advanced research on biology, bionomics and genetics relevant to vector control strategies.
Fernández López, María; Ruiz Giardín, Jose Manuel; San Martín López, Juan Víctor; Jaquetti, Jerónimo; García Arata, Isabel; Jiménez Navarro, Carolina; Cabello Clotet, Noemi
2015-09-17
Arrival of inmigrants from malaria endemic areas has led to a emergence of cases of this parasitic disease in Spain. The objective of this study was to analyse the high incidence rate of imported malaria in Fuenlabrada, a city in the south of Madrid, together with the frequent the lack of chemoprophylaxis, for the period between 2004 and 2014. Both pregnant women and HIV risk groups have been considered. Retrospective descriptive study of laboratory-confirmed malaria at the Fuenlabrada University Hospital, in Madrid, during a 10-year period (2004-2014). These data were obtained reviewing medical histories of the cases. Relevant epidemiological, clinical and laboratory results were analysed, with focus on the following risk groups: pregnant women and individuals with HIV. A total of 185 cases were diagnosed (90.3 % Plasmodium falciparum). The annual incidence rate was 11.9/100,000 inhabitants/year. The average age was 30.8 years (SD: 14.3). Infections originating in sub-Saharan Africa comprised the 97.6 % of the cases. A total of 85.9 % were Visiting Friends and Relatives. Only a 4.3 % completed adequate prophylaxis. A total of 14.28 % of the fertile women were pregnant, and 8 cases (4.3 %) had HIV. None of them in these special groups completed prophylaxis. The incidence rate in Fuenlabrada is higher than in the rest of Spain, due to the large number of immigrants from endemic areas living in the municipality. However, the results are not representative of all the country. It seems to be reasonable to implement prevention and pre-travel assessment programs to increase chemoprophylaxis. Pregnancy tests and HIV serology should be completed for all patients to improve prophylactic methods.
Eisele, Thomas P.; Silumbe, Kafula; Yukich, Josh; Hamainza, Busiku; Keating, Joseph; Bennett, Adam; Miller, John M.
2013-01-01
Background To assess progress in the scale-up of rapid diagnostic tests and artemisinin-based combination therapies (ACTs) across Africa, malaria control programs have increasingly relied on standardized national household surveys to determine the proportion of children with a fever in the past 2 wk who received an effective antimalarial within 1–2 d of the onset of fever. Here, the validity of caregiver recall for measuring the primary coverage indicators for malaria diagnosis and treatment of children <5 y old is assessed. Methods and Findings A cross-sectional study was conducted in five public clinics in Kaoma District, Western Provence, Zambia, to estimate the sensitivity, specificity, and accuracy of caregivers' recall of malaria testing, diagnosis, and treatment, compared to a gold standard of direct observation at the health clinics. Compared to the gold standard of clinic observation, for recall for children with fever in the past 2 wk, the sensitivity for recalling that a finger/heel stick was done was 61.9%, with a specificity of 90.0%. The sensitivity and specificity of caregivers' recalling a positive malaria test result were 62.4% and 90.7%, respectively. The sensitivity and specificity of recalling that the child was given a malaria diagnosis, irrespective of whether a laboratory test was actually done, were 76.8% and 75.9%, respectively. The sensitivity and specificity for recalling that an ACT was given were 81.0% and 91.5%, respectively. Conclusions Based on these findings, results from household surveys should continue to be used for ascertaining the coverage of children with a fever in the past 2 wk that received an ACT. However, as recall of a malaria diagnosis remains suboptimal, its use in defining malaria treatment coverage is not recommended. Please see later in the article for the Editors' Summary PMID:23667337
Naing, Cho; Aung, Kyan; Win, Daw-Khin; Wah, Mak Joon
2010-11-01
Chloroquine (CQ) is a relatively inexpensive drug for treatment of malaria. If efficacy of CQ is still assumed, then it should be indicated in malaria treatment policies as the drug of choice for uncomplicated Plasmodium vivax malaria in endemic countries with resource constraints. The objective of this review is to summarize the existing evidence on the relative efficacy and safety of CQ in treating patients with uncomplicated P. vivax malaria in endemic countries. We searched online data bases (PUBMED, MEDLINE, EMBASE, The Cochrane Library) and the reference lists of the retrieved articles. Fifteen randomized controlled trials (n=6215) assessing the relative efficacy and safety of CQ for treatment of uncomplicated P. vivax malaria were included. CQ monotherapy was compared to CQ plus primaquine (PQ), artemisinin/artemether, artemisinin based combination therapy, quinine, CQ plus tafenoquine, chlorguanil plus dapsone, azithromycin, or placebo. Treatment efficacy was not significantly different between the CQ monotherapy group and that of the CQ with PQ 14 day group at 28 day follow-up (55/711, 7.7% vs 35/712, 4.9%; P=0.16). Evidence from the trials identified for this review draw a fairly clear conclusion about the relative efficacy and safety of CQ for treating uncomplicated P. vivax malaria infection. However, further research in this field with well powered, randomized, non-inferiority design, using the standardized protocol is needed. Copyright © 2010 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Supporting the goals and ideals of World Malaria Day.
Rep. Crenshaw, Ander [R-FL-4
2014-05-06
House - 06/10/2014 Referred to the Subcommittee on Africa, Global Health, Global Human Rights and International Organizations. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Odaga, John; Sinclair, David; Lokong, Joseph A; Donegan, Sarah; Hopkins, Heidi; Garner, Paul
2014-01-01
Background In 2010, the World Health Organization recommended that all patients with suspected malaria are tested for malaria before treatment. In rural African settings light microscopy is often unavailable. Diagnosis has relied on detecting fever, and most people were given antimalarial drugs presumptively. Rapid diagnostic tests (RDTs) provide a point-of-care test that may improve management, particularly of people for whom the RDT excludes the diagnosis of malaria. Objectives To evaluate whether introducing RDTs into algorithms for diagnosing and treating people with fever improves health outcomes, reduces antimalarial prescribing, and is safe, compared to algorithms using clinical diagnosis. Search methods We searched the Cochrane Infectious Disease Group Specialized Register; CENTRAL (The Cochrane Library); MEDLINE; EMBASE; CINAHL; LILACS; and the metaRegister of Controlled Trials for eligible trials up to 10 January 2014. We contacted researchers in the field and reviewed the reference lists of all included trials to identify any additional trials. Selection criteria Individual or cluster randomized trials (RCTs) comparing RDT-supported algorithms and algorithms using clinical diagnosis alone for diagnosing and treating people with fever living in malaria-endemic settings. Data collection and analysis Two authors independently applied the inclusion criteria and extracted data. We combined data from individually and cluster RCTs using the generic inverse variance method. We presented all outcomes as risk ratios (RR) with 95% confidence intervals (CIs), and assessed the quality of evidence using the GRADE approach. Main results We included seven trials, enrolling 17,505 people with fever or reported history of fever in this review; two individually randomized trials and five cluster randomized trials. All trials were conducted in rural African settings. In most trials the health workers diagnosing and treating malaria were nurses or clinical officers with less than one week of training in RDT supported diagnosis. Health worker prescribing adherence to RDT results was highly variable: the number of participants with a negative RDT result who received antimalarials ranged from 0% to 81%. Overall, RDT supported diagnosis had little or no effect on the number of participants remaining unwell at four to seven days after treatment (6990 participants, five trials, low quality evidence); but using RDTs reduced prescribing of antimalarials by up to three-quarters (17,287 participants, seven trials, moderate quality evidence). As would be expected, the reduction in antimalarial prescriptions was highest where health workers adherence to the RDT result was high, and where the true prevalence of malaria was lower. Using RDTs to support diagnosis did not have a consistent effect on the prescription of antibiotics, with some trials showing higher antibiotic prescribing and some showing lower prescribing in the RDT group (13,573 participants, five trials, very low quality evidence). One trial reported malaria microscopy on all enrolled patients in an area of moderate endemicity, so we could compare the number of patients in the RDT and clinical diagnosis groups that actually had microscopy confirmed malaria infection but did not receive antimalarials. No difference was detected between the two diagnostic strategies (1280 participants, one trial, low quality evidence). Authors' conclusions Algorithms incorporating RDTs can substantially reduce antimalarial prescribing if health workers adhere to the test results. Introducing RDTs has not been shown to improve health outcomes for patients, but adherence to the test result does not seem to result in worse clinical outcomes than presumptive treatment. Concentrating on improving the care of RDT negative patients could improve health outcomes in febrile children. PLAIN LANGUAGE SUMMARY Rapid diagnostic tests versus clinical diagnosis for managing fever in settings where malaria is common Cochrane Collaboration researchers conducted a review of the effects of introducing rapid diagnostic tests (RDTs) for diagnosing malaria in areas where diagnosis has traditionally been based on clinical symptoms alone. After searching for relevant trials, they included seven randomized controlled trials, which enrolled 17,505 people with fever. What are RDTs and how might they improve patient care RDTs are simple to use diagnostic kits which can detect the parasites that cause malaria from one drop of the patient's blood. They do not require laboratory facilities or extensive training, and can provide a simple positive or negative result within 20 minutes, making them suitable for use in rural areas of Africa where most malaria cases occur. Improving malaria diagnosis by introducing RDTs is unlikely to improve the health outcomes of people with true malaria as they would probably have received antimalarials even if the health worker was relying on clinical symptoms alone. However, for patients with fever not due to malaria, RDTs could improve health outcomes by prompting the health worker to look for and treat the true cause of their fever earlier. What the research says In these trials, diagnosis using RDTs had little or no effect on the number of people remaining unwell four to seven days after treatment (low quality evidence). However, using RDTs reduced the prescription of antimalarials by up to three-quarters (moderate quality evidence), and this reduction was highest where health workers only prescribed antimalarials following a positive test, and where malaria was less common. Using RDTs to support diagnosis did not have a consistent effect on the prescription of antibiotics, with some trials showing an increase in antibiotic prescription and some showing a decrease (very low quality evidence). Use of RDTs did not result in more patients with malaria being incorrectly diagnosed as not having malaria and being sent home without treatment (low quality evidence). PMID:24740584
Malaria surveillance - United States, 2008.
Mali, Sonja; Steele, Stefanie; Slutsker, Laurence; Arguin, Paul M
2010-06-25
Malaria in humans is caused by intraerythrocytic protozoa of the genus Plasmodium. These parasites are transmitted by the bite of an infective female Anopheles species mosquito. The majority of malaria infections in the United States occur among persons who have traveled to areas with ongoing malaria transmission. In the United States, cases can occur through exposure to infected blood products, congenital transmission, or local mosquitoborne transmission. Malaria surveillance is conducted to identify episodes of local transmission and to guide prevention recommendations for travelers. This report summarizes cases in patients with onset of illness in 2008 and summarizes trends during previous years. Malaria cases diagnosed by blood film, polymerase chain reaction, or rapid diagnostic tests are mandated to be reported to local and state health departments by health-care providers or laboratory staff members. Case investigations are conducted by local and state health departments, and reports are transmitted to CDC through the National Malaria Surveillance System (NMSS), National Notifiable Diseases Surveillance System (NNDSS), and direct CDC consultations. Data from these reporting systems are the basis for this report. CDC received reports of 1,298 cases of malaria with an onset of symptoms in 2008 among patients in the United States, a decrease of 13.8% from the 1,505 cases reported for 2007 (p<0.001). These cases included one cryptic [corrected] case, one congenital case, and two fatal cases. Plasmodium falciparum, P. vivax, P. malariae, and P. ovale were identified in 40.6%, 14.6%, 1.5%, and 1.4% of cases, respectively. The first documented case of simian malaria, P. knowlesi, was reported in a U.S. traveler. Eight (0.6%) of the 1,298 patients were infected by two or more species. The infecting species was unreported or undetermined in 41.2% of cases. Based on estimated volume of travel from the World Tourism Organization, the highest estimated relative case rates of malaria among travelers occurred among those returning from countries in West Africa. A total of 508 U.S. civilians acquired malaria abroad; among the 480 civilians for whom chemoprophylaxis information was known, 344 (71.7%) reported that they had not followed a chemoprophylactic drug regimen recommended by CDC for the area to which they had traveled. Fourteen cases were reported in pregnant women, among whom none adhered to a complete prevention drug regimen. A significant decrease in the number of malaria cases occurred from 2007 to 2008. No change occurred in the proportions of cases caused by the various Plasmodium species. U.S. civilians traveling to countries in West Africa had the highest estimated relative case rates. In the majority of reported cases, U.S. civilians who acquired malaria abroad had not adhered to a chemoprophylaxis regimen that was appropriate for the country in which they acquired the infection. Persons traveling to an area in which malaria is endemic should take steps to prevent malaria, which might include taking one of the recommended chemoprophylaxis regimens appropriate for the region of travel and using personal protection measures to prevent mosquito bites. Any person who has been to a malarious area and who subsequently develops a fever or influenza-like symptoms should seek medical care immediately and report their travel history to the clinician; investigation should always include blood-film tests for malaria with results available immediately. Malaria infections can be fatal if not diagnosed and treated promptly. Malaria prevention recommendations are available from CDC online (http://wwwn.cdc.gov/travel/contentDiseases.aspx#malaria) or by calling the Malaria Hotline (telephone 770-488-7788). Malaria treatment recommendations can be obtained from CDC online (http://www.cdc.gov/malaria/diagnosis_treatment/treatment.htm) or by calling the Malaria Hotline.
Poyer, Stephen; Musuva, Anne; Njoki, Nancy; Okara, Robi; Cutherell, Andrea; Sievers, Dana; Lussiana, Cristina; Memusi, Dorothy; Kiptui, Rebecca; Ejersa, Waqo; Dolan, Stephanie; Charman, Nicole
2018-03-13
Private sector availability and use of malaria rapid diagnostic tests (RDTs) lags behind the public sector in Kenya. Increasing channels through which quality malaria diagnostic services are available can improve access to testing and help meet the target of universal diagnostic testing. Registered pharmacies are currently not permitted to perform blood tests, and evidence of whether malaria RDTs can be used by non-laboratory private providers in line with the national malaria control guidelines is required to inform ongoing policy discussions in Kenya. Two rounds of descriptive cross-sectional exit interviews and mystery client surveys were conducted at private health facilities and registered pharmacies in 2014 and 2015, 6 and 18 months into a multi-country project to prime the private sector market for the introduction of RDTs. Data were collected on reported RDT use, medicines received and prescribed, and case management of malaria test-negative mystery clients. Analysis compared outcomes at facilities and pharmacies independently for the two survey rounds. Across two rounds, 534 and 633 clients (including patients) from 130 and 120 outlets were interviewed, and 214 and 250 mystery client visits were completed. Reported testing by any malaria diagnostic test was higher in private health facilities than registered pharmacies in both rounds (2014: 85.6% vs. 60.8%, p < 0.001; 2015: 85.3% vs. 56.3%, p < 0.001). In registered pharmacies, testing by RDT was 52.1% in 2014 and 56.3% in 2015. At least 75% of test-positive patients received artemisinin-based combination therapy (ACT) in both rounds, with no significant difference between outlet types in either round. Provision of any anti-malarial for test-negative patients ranged from 0 to 13.9% across outlet types and rounds. In 2015, mystery clients received the correct (negative) diagnosis and did not receive an anti-malarial in 75.5% of visits to private health facilities and in 78.4% of visits to registered pharmacies. Non-laboratory staff working in registered pharmacies in Kenya can follow national guidelines for diagnosis with RDTs when provided with the same level of training and supervision as private health facility staff. Performance and compliance to treatment recommendations are comparable to diagnostic testing outcomes recorded in private health facilities.
Devising novel strategies against vector mosquitoes and house flies
USDA-ARS?s Scientific Manuscript database
In 1932, the United States Department of Agriculture established an entomological research laboratory in Orlando, Florida. The initial focus of the program was on investigations of mosquitoes (including malaria vectors under conditions “simulating those of South Pacific jungles”) and other insects ...
Prevalence and hematological indicators of G6PD deficiency in malaria-infected patients.
Kotepui, Manas; Uthaisar, Kwuntida; PhunPhuech, Bhukdee; Phiwklam, Nuoil
2016-04-25
This study aimed to evaluate the prevalence and alteration of hematological parameters in malaria patients with a glucose-6-phosphate dehydrogenase (G6PD) deficiency, in the western region of Thailand, an endemic region for malaria. Data about patients with malaria hospitalized between 2013 and 2015 were collected. Clinical and sociodemographic characteristics such as age and gender, diagnosis on admission, and parasitological results were mined from medical records of the laboratory unit of the Phop Phra Hospital in Tak Province, Thailand. Venous blood samples were collected at the time of admission to hospital to determine G6PD deficiency by fluorescence spot test and detect malaria parasites by thick and thin film examination. Other data such as complete blood count and parasite density were also collected and analyzed. Among the 245 malaria cases, 28 (11.4 %) were diagnosed as Plasmodium falciparum infections and 217 cases (88.6 %) were diagnosed as P. vivax infections. Seventeen (6.9 %) patients had a G6PD deficiency and 228 (93.1 %) patients did not have a G6PD deficiency. Prevalence of male patients with G6PD deficiency was higher than that of female patients (P < 0.05, OR = 5.167). Among the patients with a G6PD deficiency, two (11.8 %) were infected with P. falciparum, while the remaining were infected with P. vivax. Malaria patients with a G6PD deficiency have higher monocyte counts (0.6 × 10(3)/μL) than those without a G6PD deficiency (0.33 × 10(3)/μL) (P < 0.05, OR = 5.167). Univariate and multivariate analyses also confirmed that malaria patients with a G6PD deficiency have high monocyte counts. The association between G6PD status and monocyte counts was independent of age, gender, nationality, Plasmodium species, and parasite density (P < 0.005). This study showed a prevalence of G6PD deficiency in a malaria-endemic area. This study also supported the assertion that patients with G6PD-deficient red blood cells had no protection against the P. falciparum infection. In addition, malaria patients with a G6PD deficiency had higher monocyte counts than those without a G6PD deficiency. These findings will help to recognize and diagnose malaria patients with a G6PD deficiency, as well as to identify the risks and protective factors against malaria in endemic areas.
2011-01-01
Background Malaria and Tuberculosis (TB) are important causes of morbidity and mortality in Africa. Malaria prevention reduces mortality among HIV patients, pregnant women and children, but its role in TB patients is not clear. In the TB National Reference Center in Guinea-Bissau, admitted patients are in severe clinical conditions and mortality during the rainy season is high. We performed a three-step malaria prevention program to reduce mortality in TB patients during the rainy season. Methods Since 2005 Permethrin treated bed nets were given to every patient. Since 2006 environmental prevention with permethrin derivates was performed both indoor and outdoor during the rainy season. In 2007 cotrimoxazole prophylaxis was added during the rainy season. Care was without charge; health education on malaria prevention was performed weekly. Primary outcomes were death, discharge, drop-out. Results 427, 346, 549 patients were admitted in 2005, 2006, 2007, respectively. Mortality dropped from 26.46% in 2005 to 18.76% in 2007 (p-value 0.003), due to the significant reduction in rainy season mortality (death/discharge ratio: 0.79, 0.55 and 0.26 in 2005, 2006 and 2007 respectively; p-value 0.001) while dry season mortality remained constant (0.39, 0.37 and 0.32; p-value 0.647). Costs of malaria prevention were limited: 2€/person. No drop-outs were observed. Health education attendance was 96-99%. Conclusions Malaria prevention in African tertiary care hospitals seems feasible with limited costs. Vector control, personal protection and cotrimoxazole prophylaxis seem to reduce mortality in severely ill TB patients. Prospective randomized trials are needed to confirm our findings in similar settings. Trial registration number Current Controlled Trials: ISRCTN83944306 PMID:21366907
2009-01-01
Background The SD FK80 P.f/P.v Malaria Antigen Rapid Test (Standard Diagnostics, Korea) (FK80) is a three-band malaria rapid diagnostic test detecting Plasmodium falciparum histidine-rich protein-2 (HRP-2) and Plasmodium vivax-specific lactate dehydrogenase (Pv-pLDH). The present study assessed its performance in a non-endemic setting. Methods Stored blood samples (n = 416) from international travellers suspected of malaria were used, with microscopy corrected by PCR as the reference method. Samples infected by Plasmodium falciparum (n = 178), Plasmodium vivax (n = 99), Plasmodium ovale (n = 75) and Plasmodium malariae (n = 24) were included, as well as 40 malaria negative samples. Results Overall sensitivities for the diagnosis of P. falciparum and P. vivax were 91.6% (95% confidence interval (CI): 86.2% - 95.0%) and 75.8% (65.9% - 83.6%). For P. falciparum, sensitivity at parasite densities ≥ 100/μl was 94.6% (88.8% - 97.6%); for P. vivax, sensitivity at parasite densities ≥ 500/μl was 86.8% (75.4% - 93.4%). Four P. falciparum samples showed a Pv-pLDH line, three of them had parasite densities exceeding 50.000/μl. Two P. vivax samples, one P. ovale and one P. malariae sample showed a HRP-2 line. For the HRP-2 and Pv-pLDH lines, respectively 81.4% (136/167) and 55.8% (43/77) of the true positive results were read as medium or strong line intensities. The FK80 showed good reproducibility and reliability for test results and line intensities (kappa values for both exceeding 0.80). Conclusion The FK80 test performed satisfactorily in diagnosing P. falciparum and P. vivax infections in a non-endemic setting. PMID:19930609
Oral iron supplements for children in malaria-endemic areas
Neuberger, Ami; Okebe, Joseph; Yahav, Dafna; Paul, Mical
2016-01-01
Background Iron-deficiency anaemia is common during childhood. Iron administration has been claimed to increase the risk of malaria. Objectives To evaluate the effects and safety of iron supplementation, with or without folic acid, in children living in areas with hyperendemic or holoendemic malaria transmission. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library, MEDLINE (up to August 2015) and LILACS (up to February 2015). We also checked the metaRegister of Controlled Trials (mRCT) and World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) up to February 2015. We contacted the primary investigators of all included trials, ongoing trials, and those awaiting assessment to ask for unpublished data and further trials. We scanned references of included trials, pertinent reviews, and previous meta-analyses for additional references. Selection criteria We included individually randomized controlled trials (RCTs) and cluster RCTs conducted in hyperendemic and holoendemic malaria regions or that reported on any malaria-related outcomes that included children younger than 18 years of age. We included trials that compared orally administered iron, iron with folic acid, and iron with antimalarial treatment versus placebo or no treatment. We included trials of iron supplementation or fortification interventions if they provided at least 80% of the Recommended Dietary Allowance (RDA) for prevention of anaemia by age. Antihelminthics could be administered to either group, and micronutrients had to be administered equally to both groups. Data collection and analysis The primary outcomes were clinical malaria, severe malaria, and death from any cause. We assessed the risk of bias in included trials with domain-based evaluation and assessed the quality of the evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. We performed a fixed-effect meta-analysis for all outcomes and random-effects meta-analysis for hematological outcomes, and adjusted analyses for cluster RCTs. We based the subgroup analyses for anaemia at baseline, age, and malaria prevention or management services on trial-level data. Main results Thirty-five trials (31,955 children) met the inclusion criteria. Overall, iron does not cause an excess of clinical malaria (risk ratio (RR) 0.93, 95% confidence intervals (CI) 0.87 to 1.00; 14 trials, 7168 children, high quality evidence). Iron probably does not cause an excess of clinical malaria in both populations where anaemia is common and those in which anaemia is uncommon. In areas where there are prevention and management services for malaria, iron (with or without folic acid) may reduce clinical malaria (RR 0.91, 95% CI 0.84 to 0.97; seven trials, 5586 participants, low quality evidence), while in areas where such services are unavailable, iron (with or without folic acid) may increase the incidence of malaria, although the lower CIs indicate no difference (RR 1.16, 95% CI 1.02 to 1.31; nine trials, 19,086 participants, low quality evidence). Iron supplementation does not cause an excess of severe malaria (RR 0.90, 95% CI 0.81 to 0.98; 6 trials, 3421 children, high quality evidence). We did not observe any differences for deaths (control event rate 1%, low quality evidence). Iron and antimalarial treatment reduced clinical malaria (RR 0.54, 95% CI 0.43 to 0.67; three trials, 728 children, high quality evidence). Overall, iron resulted in fewer anaemic children at follow up, and the end average change in haemoglobin from base line was higher with iron. Authors' conclusions Iron treatment does not increase the risk of clinical malaria when regular malaria prevention or management services are provided. Where resources are limited, iron can be administered without screening for anaemia or for iron deficiency, as long as malaria prevention or management services are provided efficiently. PLAIN LANGUAGE SUMMARY Iron supplements for children living in malaria-endemic countries Why the review is important Children living in malarial areas commonly develop anaemia. Long-term anaemia is thought to delay a child's development and make children more likely to get infections. In areas where anaemia is common, health providers may give iron to prevent anaemia, but there is a concern amongst researchers that this may increase the risk of malaria. It is thought that the iron tablets will increase iron levels in the blood, and this will promote the growth of the Plasmodium parasite that causes malaria. We aimed to assess the effects of oral iron supplementation in children living in countries where malaria is common. Main findings of the review Cochrane researchers searched the available evidence up to 30 August 2015 and included 35 trials (31,955 children). Iron did not increase the risk of malaria, indicated by fever and the presence of parasites in the blood (high quality evidence). There was no increased risk of death among children treated with iron, although the quality of the evidence for this was low. Among children treated with iron, there was no increased risk of severe malaria (high quality evidence). Although it is hypothesized that iron supplementation might harm children who do not have anaemia living in malarial areas, there is probably no increased risk for malaria in these children (moderate quality evidence). In areas where health services are sufficient to help prevent and treat malaria, giving iron supplements (with or without folic acid) may reduce clinical malaria. In areas where these services are not available, iron supplementation (with or without folic acid) may increase the number of children with clinical malaria (low quality evidence). Overall, iron resulted in fewer anaemic children at follow up, and the end average change in haemoglobin from base line was higher with iron. Conclusions Our conclusions are that iron supplementation does not adversely affect children living in malaria-endemic areas. Based on our review, routine iron supplementation should not be withheld from children living in countries where malaria is prevalent and malaria management services are available. PMID:26921618
Genotype Imputation with Thousands of Genomes
Howie, Bryan; Marchini, Jonathan; Stephens, Matthew
2011-01-01
Genotype imputation is a statistical technique that is often used to increase the power and resolution of genetic association studies. Imputation methods work by using haplotype patterns in a reference panel to predict unobserved genotypes in a study dataset, and a number of approaches have been proposed for choosing subsets of reference haplotypes that will maximize accuracy in a given study population. These panel selection strategies become harder to apply and interpret as sequencing efforts like the 1000 Genomes Project produce larger and more diverse reference sets, which led us to develop an alternative framework. Our approach is built around a new approximation that uses local sequence similarity to choose a custom reference panel for each study haplotype in each region of the genome. This approximation makes it computationally efficient to use all available reference haplotypes, which allows us to bypass the panel selection step and to improve accuracy at low-frequency variants by capturing unexpected allele sharing among populations. Using data from HapMap 3, we show that our framework produces accurate results in a wide range of human populations. We also use data from the Malaria Genetic Epidemiology Network (MalariaGEN) to provide recommendations for imputation-based studies in Africa. We demonstrate that our approximation improves efficiency in large, sequence-based reference panels, and we discuss general computational strategies for modern reference datasets. Genome-wide association studies will soon be able to harness the power of thousands of reference genomes, and our work provides a practical way for investigators to use this rich information. New methodology from this study is implemented in the IMPUTE2 software package. PMID:22384356
Risk factors of shock in severe falciparum malaria.
Arnold, Brendan J; Tangpukdee, Noppadon; Krudsood, Srivicha; Wilairatana, Polrat
2013-07-04
The objective of this study was to determine the risk factors for the development of shock in adult patients admitted with severe falciparum malaria. As an unmatched case-control study, the records of patients who were admitted to the Bangkok Hospital for Tropical Diseases, Thailand, between the years 2000-2010, were reviewed. One hundred patients with severe falciparum malaria and shock, and another 100 patients with severe malaria but without shock were studied. Demographics, presenting symptoms, physical observations, and laboratory data of these patients were analyzed. Five risk factors for the development of shock were identified: female gender (OR 6.16; 95% CI 3.17-11.97), red cell distribution width (RDW) >15% (adjusted OR 2.90; 95% CI 1.11-7.57), anorexia (adjusted OR 2.76; 95% CI 1.03-7.39), hypoalbuminemia (adjusted OR 2.19; 95% CI 1.10-4.34), and BUN-creatinine ratio >20 (adjusted OR 2.38; 95% CI 1.22-4.64). Diarrhea was found to be a protective factor (adjusted OR 0.33; 95% CI 0.14-0.78). Metabolic acidosis was only weakly correlated to mean arterial blood pressure on admission (r(s) = 0.23). Female gender was the strongest risk factor for the development of shock. We concluded that female gender, RDW >15%, anorexia, hypoalbuminemia, and BUN-creatinine ratio >20 were risk factors of shock development in severe falciparum malaria.
Muhindo, Hypolite Mavoko; Ilombe, Gillon; Meya, Ruth; Mitashi, Patrick M; Kutekemeni, Albert; Gasigwa, Didier; Lutumba, Pascal; Van Geertruyden, Jean-Pierre
2012-07-06
Despite some problems related to accuracy and applicability, malaria rapid diagnostic tests (RDTs), are currently considered the best option in areas with limited laboratory services for improving case management and reducing over-treatment. However, their performance must be established taking into the account the particularities of each endemic area. In the Democratic Republic of Congo, the validity of Optimal-IT(®) and Paracheck-Pf(®), respectively based on the detection of lactate dehydrogenase and histidine-rich protein-2, was assessed at primary health care level (PHC). This was a two-stage cluster randomized survey, conducted in one health centre in 12 health zones in Kinshasa city. All patients with malaria presumptive diagnosis were eligible. Gold standard was microscopy performed by experts from the parasitology unit, Kinshasa University. 624 patients were enrolled. 53.4% (95% CI: 49.4-57.3) owed a bed net, obtained in 74.5% of cases (95% CI: 69.4-79.1) through community-based distribution by the National Malaria Control Programme. Microscopy expert reading confirmed 123 malaria cases (19.7%; 95% CI: 16.7-23.1). Overall sensitivity were 79.7% (95% CI: 72.4-86.8), 87.8% (95% CI: 81.9-93.6) and 86.2% (95% CI: 79.9-92.3), respectively, for Optimal-IT(®), Paracheck-Pf(®) and microscopy performed at PHC. Specificity was 97.0% (95% CI: 95.5-98.5), 91.6% (95% CI: 89.1-94.0) and 49.1% (95% CI: 44.7-53.4). The proportion of confirmed cases seemed similar in under-fives compared to others. Any treatment prior to the current visit was a predictor for malaria (AOR: 2.3; 95% CI: 1.5-3.5), but not malaria treatment (AOR: 0.87; 95% CI: 0.4-1.8). Bed net ownership tended to protect against malaria (AOR: 0.67; 95% CI: 0.45-0.99). Although microscopy is considered as the "gold standard" for malaria diagnosis at point of care level, this study showed that its accuracy may not always be satisfactory when performed in health centres.
Boyce, Ross; Reyes, Raquel; Ntaro, Moses; Mulogo, Edgar; Matte, Michael; Boum, Yap; Siedner, Mark J
2015-12-01
The detection of severe malaria in resource-constrained settings is often difficult because of requirements for laboratory infrastructure and/or clinical expertise. The aim of this study, therefore, was to explore the utility of a multiple antigen (HRP-2/pLDH) rapid diagnostic test (RDT) as a low-cost, surrogate marker of patients at high risk for complications of severe malaria. We reviewed programmatic data at a peripheral health center in Western Uganda. Available demographic and clinical data on all individuals presenting to the center who underwent an RDT for suspected malaria infection were reviewed. We fit logistic regression models to identify correlates of two outcomes of interest: 1) severe malaria-related anemia, defined here as hemoglobin ≤7g/dL and 2) receipt of parenteral quinine. 1509 patients underwent malaria testing with an SD FK60 RDT during the observation period. A total of 637 (42%) RDTs were positive for at least one species of malaria, of which 326 (51%) exhibited a single HRP-2 band and 307 (48%) exhibited both HRP-2 and pLDH bands, while 4 exhibited only a single pLDH band. There was a trend towards more severe anemia in patients with a HRP-2/pLDH positive RDT compared to a HRP-2 only RDT (β = -0.99 g/dl, 95% CI -1.99 to 0.02, P = 0.055). A HRP-2/pLDH positive RDT was associated with an increased risk of severe malaria-related anemia compared to a negative RDT (adjusted odds ratio (AOR) 18.8, 95% CI 4.32 to 82.0, P < 0.001) and to a HRP-2 only RDT (AOR 2.46, 95% CI 0.75 to 8.04, P = 0.14). There was no significant association between RDT result and the administration of parenteral quinine. These results offer preliminary evidence that specific patterns of antigen positivity on RDTs could be utilized to identify patients at an increased risk for complications of severe malaria.
The detection of cryptic Plasmodium infection among villagers in Attapeu province, Lao PDR
Khattignavong, Phonepadith; Soundala, Pheovaly; Lorphachan, Lavy; Matsumoto-Takahashi, Emilie; Strobel, Michel; Reinharz, Daniel; Phommasansack, Manisack; Hongvanthong, Bouasy; Brey, Paul T.
2017-01-01
Background Although the malaria burden in the Lao PDR has gradually decreased, the elimination of malaria by 2030 presents many challenges. Microscopy and malaria rapid diagnostic tests (RDTs) are used to diagnose malaria in the Lao PDR; however, some studies have reported the prevalence of sub-microscopic Plasmodium infections or asymptomatic Plasmodium carriers in endemic areas. Thus, highly sensitive detection methods are needed to understand the precise malaria situation in these areas. Methodology/Principal findings A cross-sectional malaria field survey was conducted in 3 highly endemic malaria districts (Xaysetha, Sanamxay, Phouvong) in Attapeu province, Lao PDR in 2015, to investigate the precise malaria endemicity in the area; 719 volunteers from these villages participated in the survey. Microscopy, RDTs and a real-time nested PCR were used to detect Plasmodium infections and their results were compared. A questionnaire survey of all participants was also conducted to estimate risk factors of Plasmodium infection. Numbers of infections detected by the three methods were microscopy: P. falciparum (n = 1), P. vivax (n = 2); RDTs: P. falciparum (n = 2), P. vivax (n = 3); PCR: Plasmodium (n = 47; P. falciparum [n = 4], P. vivax [n = 41], mixed infection [n = 2]; 6.5%, 47/719). Using PCR as a reference, the sensitivity and specificity of microscopy were 33.3% and 100.0%, respectively, for detecting P. falciparum infection, and 7.0% and 100.0%, for detecting P. vivax infection. Among the 47 participants with parasitemia, only one had a fever (≥37.5°C) and 31 (66.0%) were adult males. Risk factors of Plasmodium infection were males and soldiers, whereas a risk factor of asymptomatic Plasmodium infection was a history of ≥3 malaria episodes. Conclusions/Significance There were many asymptomatic Plasmodium carriers in the study areas of Attapeu province in 2015. Adult males, probably soldiers, were at high risk for malaria infection. P. vivax, the dominant species, accounted for 87.2% of the Plasmodium infections among the participants. To achieve malaria elimination in the Lao PDR, highly sensitive diagnostic tests, including PCR-based diagnostic methods should be used, and plans targeting high-risk populations and elimination of P. vivax should be designed and implemented. PMID:29261647
Silva, Wilson P.; Vermund, Sten H.; Valverde, Emilio; Buene, Manuel; Moon, Troy D.
2016-01-01
Abstract Mozambique's updated guideline for management of HIV-associated anemia prompts clinicians to consider opportunistic conditions, adverse drug reactions, and untreated immunosuppression in addition to iron deficiency, intestinal helminthes, and malaria. We prospectively evaluated this guideline in rural Zambézia Province. Likely cause(s) of anemia were determined through prespecified history, physical examination, and laboratory testing. Diagnoses were “etiologic” if laboratory confirmed (sputum microscopy, blood culture, Plasmodium falciparum malaria rapid test) or “syndromic” if not. To assess hemoglobin response, we used serial point-of-care measurements. We studied 324 ambulatory, anemic (hemoglobin <10 g/dl) HIV-infected adults. Study clinicians treated nearly all [315 (97.2%)] for suspected iron deficiency and/or helminthes; 56 (17.3%) had laboratory-confirmed malaria. Other assigned diagnoses included tuberculosis [30 (9.3%)], adverse drug reactions [26 (8.0%)], and bacteremia [13 (4.1%)]. Etiologic diagnosis was achieved in 79 (24.4%). Of 169 (52.2%) subjects who improved (hemoglobin increase of ≥1 g/dl without indications for hospitalization), only 65 (38.5%) received conventional management (iron supplementation, deworming, and/or antimalarials) alone. Thirty (9.3%) died and/or were hospitalized, and 125 (38.6%) were lost to follow-up. Multivariable linear and logistic regression models described better hemoglobin responses and/or outcomes in subjects with higher CD4+ T-lymphocyte counts, pre-enrollment antiretroviral therapy and/or co-trimoxazole prophylaxis, discontinuation of zidovudine for suspected adverse reaction, and smear-positive tuberculosis. Adverse outcomes were associated with fever, low body mass index, bacteremia, esophageal candidiasis, and low or missing CD4+ T cell counts. In this severely resource-limited setting, successful anemia management often required interventions other than conventional presumptive treatment, thus supporting Mozambique's guideline revision. PMID:26178574
English, Mike; Reyburn, Hugh; Goodman, Catherine; Snow, Robert W
2009-01-01
Background to the debate: Current guidelines recommend that all fever episodes in African children be treated presumptively with antimalarial drugs. But declining malarial transmission in parts of sub-Saharan Africa, declining proportions of fevers due to malaria, and the availability of rapid diagnostic tests mean it may be time for this policy to change. This debate examines whether enough evidence exists to support abandoning presumptive treatment and whether African health systems have the capacity to support a shift toward laboratory-confirmed rather than presumptive diagnosis and treatment of malaria in children under five. PMID:19127977
Yeboah-Antwi, Kojo; Pilingana, Portipher; Macleod, William B.; Semrau, Katherine; Siazeele, Kazungu; Kalesha, Penelope; Hamainza, Busiku; Seidenberg, Phil; Mazimba, Arthur; Sabin, Lora; Kamholz, Karen; Thea, Donald M.; Hamer, Davidson H.
2010-01-01
Background Pneumonia and malaria, two of the leading causes of morbidity and mortality among children under five in Zambia, often have overlapping clinical manifestations. Zambia is piloting the use of artemether-lumefantrine (AL) by community health workers (CHWs) to treat uncomplicated malaria. Valid concerns about potential overuse of AL could be addressed by the use of malaria rapid diagnostics employed at the community level. Currently, CHWs in Zambia evaluate and treat children with suspected malaria in rural areas, but they refer children with suspected pneumonia to the nearest health facility. This study was designed to assess the effectiveness and feasibility of using CHWs to manage nonsevere pneumonia and uncomplicated malaria with the aid of rapid diagnostic tests (RDTs). Methods and Findings Community health posts staffed by CHWs were matched and randomly allocated to intervention and control arms. Children between the ages of 6 months and 5 years were managed according to the study protocol, as follows. Intervention CHWs performed RDTs, treated test-positive children with AL, and treated those with nonsevere pneumonia (increased respiratory rate) with amoxicillin. Control CHWs did not perform RDTs, treated all febrile children with AL, and referred those with signs of pneumonia to the health facility, as per Ministry of Health policy. The primary outcomes were the use of AL in children with fever and early and appropriate treatment with antibiotics for nonsevere pneumonia. A total of 3,125 children with fever and/or difficult/fast breathing were managed over a 12-month period. In the intervention arm, 27.5% (265/963) of children with fever received AL compared to 99.1% (2066/2084) of control children (risk ratio 0.23, 95% confidence interval 0.14–0.38). For children classified with nonsevere pneumonia, 68.2% (247/362) in the intervention arm and 13.3% (22/203) in the control arm received early and appropriate treatment (risk ratio 5.32, 95% confidence interval 2.19–8.94). There were two deaths in the intervention and one in the control arm. Conclusions The potential for CHWs to use RDTs, AL, and amoxicillin to manage both malaria and pneumonia at the community level is promising and might reduce overuse of AL, as well as provide early and appropriate treatment to children with nonsevere pneumonia. Trial registration ClinicalTrials.gov NCT00513500 Please see later in the article for the Editors' Summary PMID:20877714
de Paula, Renata Cristina; Dolabela, Maria Fâni; de Oliveira, Alaíde Braga
2014-03-01
Several plant species belonging to the genus Aspidosperma are traditionally used in Brazil and other Meso- and South American countries for the treatment of malaria and fevers. These traditional uses were motivation for this review. A literature survey completed for this review has identified scientific bibliographical references to the use of 24 Aspidosperma species to treat malaria/fevers and to 19 species that have had their extracts and/or alkaloids evaluated, with good results, for in vitro and/or in vivo antimalarial activity. Indole alkaloids are typical constituents of Aspidosperma species. However, only 20 out of more than 200 known indole alkaloids isolated from this genus have been assayed for antimalarial activity. These data support the potential of Aspidosperma species as sources of antimalarials and the importance of research aimed at validating their use in the treatment of human malaria. Georg Thieme Verlag KG Stuttgart · New York.
[Exploring pharmacological principle of Artemisia carvifolia with textmining technology].
Zhao, Yu-Ping; Wang, Hui; Yang, Guang; Qiu, Zhi-Dong; Qu, Xiao-Bo; Zhang, Xiao-Bo
2016-08-01
To explore the pharmacological principle of Artemisia carvifolia,the text mining technique was used. All the references of A. carvifolia were collected from PubMed database, and then the rules of the main ingredient,relative diseases, organs, tissues, proteins and metabolites were analyzed. Finally, a network was set up. Then it was found that the main ingredients included sesquiterpenoids,flavonoids,and volatileoils.The diseases such as malaria, cerebral malaria, falciparum malaria, visceral leishmaniasis and systemic lupus erythematosus were often treated with A. carvifolia. In association in organ were the liver, skin, trachea,lungs,and spleen.Correlations with tissues were mainly including macrophages, T lymphocytes, blood vessels, epithelial cells.The protein was correlation with it involved CYP450, PI3K, TNF-α, AASDPPT, DNA polymerase and so on. Comprehensive and systematic treatment principle of A. carvifolia was obtained by text mining, which was helpful in clinical application. Copyright© by the Chinese Pharmaceutical Association.
Ashley, Elizabeth A; Touabi, Malek; Ahrer, Margareta; Hutagalung, Robert; Htun, Khayae; Luchavez, Jennifer; Dureza, Christine; Proux, Stephane; Leimanis, Mara; Lwin, Myo Min; Koscalova, Alena; Comte, Eric; Hamade, Prudence; Page, Anne-Laure; Nosten, François; Guerin, Philippe J
2009-10-27
In areas where non-falciparum malaria is common rapid diagnostic tests (RDTs) capable of distinguishing malaria species reliably are needed. Such tests are often based on the detection of parasite lactate dehydrogenase (pLDH). In Dawei, southern Myanmar, three pLDH based RDTs (CareStart Malaria pLDH (Pan), CareStart Malaria pLDH (Pan, Pf) and OptiMAL-IT)were evaluated in patients presenting with clinically suspected malaria. Each RDT was read independently by two readers. A subset of patients with microscopically confirmed malaria had their RDTs repeated on days 2, 7 and then weekly until negative. At the end of the study, samples of study batches were sent for heat stability testing. Between August and November 2007, 1004 patients aged between 1 and 93 years were enrolled in the study. Slide microscopy (the reference standard) diagnosed 213 Plasmodium vivax (Pv) monoinfections, 98 Plasmodium falciparum (Pf) mono-infections and no malaria in 650 cases. The sensitivities (sens) and specificities (spec), of the RDTs for the detection of malaria were- CareStart Malaria pLDH (Pan) test: sens 89.1% [CI95 84.2-92.6], spec 97.6% [CI95 96.5-98.4]. OptiMal-IT: Pf+/- other species detection: sens 95.2% [CI95 87.5-98.2], spec 94.7% [CI95 93.3-95.8]; non-Pf detection alone: sens 89.6% [CI95 83.6-93.6], spec 96.5% [CI95 94.8-97.7]. CareStart Malaria pLDH (Pan, Pf): Pf+/- other species: sens 93.5% [CI95 85.4-97.3], spec 97.4% [95.9-98.3]; non-Pf: sens 78.5% [CI95 71.1-84.4], spec 97.8% [CI95 96.3-98.7]. Inter-observer agreement was excellent for all tests (kappa > 0.9). The median time for the RDTs to become negative was two days for the CareStart Malaria tests and seven days for OptiMAL-IT. Tests were heat stable up to 90 days except for OptiMAL-IT (Pf specific pLDH stable to day 20 at 35 degrees C). None of the pLDH-based RDTs evaluated was able to detect non-falciparum malaria with high sensitivity, particularly at low parasitaemias. OptiMAL-IT performed best overall and would perform best in an area of high malaria prevalence among screened fever cases. However, heat stability was unacceptable and the number of steps to perform this test is a significant drawback in the field. A reliable, heat-stable, highly sensitive RDT, capable of diagnosing all Plasmodium species has yet to be identified.
John Alexander Sinton, MD FRS VC (1884-1956).
Cook, G C
2016-05-01
Brigadier John Sinton is the only individual in history to have been both awarded the Victoria Cross and also elected to the Royal Society. He qualified at Belfast and afterwards joined the Indian Medical Service (IMS). Serving before and during the Great War (1914-18), he was first posted to the North-West Frontier province, and afterwards as a captain in the Indian Expeditionary force in Mesopotamia (now Iraq). It was there in 1916 that, shot in both arms during an engagement and under heavy gunfire, he remained steadfastly at his post; for this bravery he received the Victoria Cross. Following the war he carried out major researches into malaria in India, and became Director of the Malaria Survey of India Both there and shortly afterwards, Sinton published about 200 papers on various aspects of malaria and leishmaniasis. In England, he later worked at the London School of Hygiene and Tropical Medicine and the Ministry of Health's laboratory at Horton, Epsom. In 1946, he was elected to the Royal Society for his researches into malaria and kala-azar, and following retirement he underwent another distinguished career in Northern Ireland. © The Author(s) 2014.
Molecular Signaling Involved in Entry and Exit of Malaria Parasites from Host Erythrocytes.
Singh, Shailja; Chitnis, Chetan E
2017-10-03
During the blood stage, Plasmodium spp. merozoites invade host red blood cells (RBCs), multiply, exit, and reinvade uninfected RBCs in a continuing cycle that is responsible for all the clinical symptoms associated with malaria. Entry into (invasion) and exit from (egress) RBCs are highly regulated processes that are mediated by an array of parasite proteins with specific functional roles. Many of these parasite proteins are stored in specialized apical secretory vesicles, and their timely release is critical for successful invasion and egress. For example, the discharge of parasite protein ligands to the apical surface of merozoites is required for interaction with host receptors to mediate invasion, and the timely discharge of proteases and pore-forming proteins helps in permeabilization and dismantling of limiting membranes during egress. This review focuses on our understanding of the signaling mechanisms that regulate apical organelle secretion during host cell invasion and egress by malaria parasites. The review also explores how understanding key signaling mechanisms in the parasite can open opportunities to develop novel strategies to target Plasmodium parasites and eliminate malaria. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
NASA Astrophysics Data System (ADS)
Jamil, K. F.; Supargiyono, S.; Syafruddin, D.; Pratama, N.; Silvy, S.
2018-03-01
An estimated of 3.3 million Indonesian population were infected with malaria. However, extensive genetic polymorphism of the field isolates msp-1 of P. falciparum represents a major obstacle for the development of malaria treatment. The aim of this study was to investigate the genetic diversity of msp-1 genotype in field isolates of P. falciparum collected in Aceh Province. A total of 90 patients with malaria (+) were selected from eleven district hospitals in Aceh from 2013-2015. Data were collected by anamnesis, complete physical examination and laboratory tests for msp-1. All protocols to diagnose malaria followed the WHO 2010 guideline. All samples were stored in Eijkman Biology Molecular Institute, Jakarta. Among 90 samples, 57.7% were male, and 42.3% were female with the most cases found between 21-30 years old. From the allele typing analysis of P. falciparum from Aceh; K1, MAD20, and RO33 allele types were identified. MAD20 type was the highest allele found in this study (57.9%). It was found in single and mixed infection. A moderate level of the mixed allele was also observed.
Basilua Kanza, Jean Pierre; El Fahime, Elmostafa; Alaoui, Sanaa; Essassi, El Mokhtar; Brooke, Basil; Nkebolo Malafu, André; Watsenga Tezzo, Francis
2013-01-01
Malaria remains the most important parasitic disease in sub-Saharan Africa. We investigated the extent of resistance in the malaria vector Anopheles gambiae from the Democratic Republic of Congo (DRC) to three classes of insecticide approved by WHO for indoor residual spraying. Standard WHO bioassays were performed on adult Anopheles mosquitoes reared in the laboratory from larvae collected from different sites. Molecular techniques were used for species identification and to identify knockdown resistance (kdr) and acetylcholinesterase (ace-1(R)) mutations in individual mosquitoes. Only A. gambiae s.s., the nominal member of the A. gambiae species complex, was found. Bioassays showed phenotypic resistance to the main insecticides used in the region, notably pyrethroids (deltamethrin, permethrin, lambda-cyhalothrin), an organochlorine (DDT) and an organophosphate (malathion). The L1014F kdr allele, often associated with resistance to pyrethroids and DDT, was detected in samples from all collection sites at varying frequencies. No ace-1(R) resistance alleles (associated with organophosphate and carbamate resistance) were detected. These data can be used to inform a resistance management strategy that requires comprehensive information concerning malaria vector species composition in the areas of interest, and their susceptibility to the insecticides proposed for their control.
Pennetier, Cédric; Costantini, Carlo; Corbel, Vincent; Licciardi, Séverine; Dabiré, Roch K.; Lapied, Bruno; Chandre, Fabrice; Hougard, Jean-Marc
2009-01-01
Background Chemicals are used on bed nets in order to prevent infected bites and to kill aggressive malaria vectors. Because pyrethroid resistance has become widespread in the main malaria vectors, research for alternative active ingredients becomes urgent. Mixing a repellent and a non-pyrethroid insecticide seemed to be a promising tool as mixtures in the laboratory showed the same features as pyrethroids. Methodology/Principal Findings We present here the results of two trials run against free-flying Anopheles gambiae populations comparing the effects of two insect repellents (either DEET or KBR 3023, also known as icaridin) and an organophosphate insecticide at low-doses (pirimiphos-methyl, PM) used alone and in combination on bed nets. We showed that mixtures of PM and the repellents induced higher exophily, blood feeding inhibition and mortality among wild susceptible and resistant malaria vectors than compounds used alone. Nevertheless the synergistic interactions are only involved in the high mortality induced by the two mixtures. Conclusion These field trials argue in favour of the strategy of mixing repellent and organophosphate on bed nets to better control resistant malaria vectors. PMID:19936249
External quality assessment of national public health laboratories in Africa, 2002–2009
Perovic, Olga; Fensham, Vivian; McCarthy, Kerrigan; von Gottberg, Anne; de Gouveia, Linda; Poonsamy, Bhavani; Dini, Leigh; Rossouw, Jenny; Keddy, Karen; Alemu, Wondimagegnehu; Yahaya, Ali; Pierson, Antoine; Dolmazon, Virginie; Cognat, Sébastien; Ndihokubwayo, Jean Bosco
2012-01-01
Abstract Objective To describe findings from an external quality assessment programme involving laboratories in Africa that routinely investigate epidemic-prone diseases. Methods Beginning in 2002, the Regional Office for Africa of the World Health Organization (WHO) invited national public health laboratories and related facilities in Africa to participate in the programme. Three surveys comprising specimens and questionnaires associated with bacterial enteric diseases, bacterial meningitis, plague, tuberculosis and malaria were sent annually to test participants’ diagnostic proficiency. Identical surveys were sent to referee laboratories for quality control. Materials were prepared, packaged and shipped in accordance with standard protocols. Findings and reports were due within 30 days. Key methodological decisions and test results were categorized as acceptable or unacceptable on the basis of consensus feedback from referees, using established grading schemes. Findings Between 2002 and 2009, participation increased from 30 to 48 Member States of the WHO and from 39 to 78 laboratories. Each survey was returned by 64–93% of participants. Mean turnaround time was 25.9 days. For bacterial enteric diseases and meningitis components, bacterial identification was acceptable in 65% and 69% of challenges, respectively, but serotyping and antibiotic susceptibility testing and reporting were frequently unacceptable. Microscopy was acceptable for 73% of plague challenges. Tuberculosis microscopy was satisfactorily performed, with 87% of responses receiving acceptable scores. In the malaria component, 82% of responses received acceptable scores for species identification but only 51% of parasite quantitation scores were acceptable. Conclusion The external quality assessment programme consistently identified certain functional deficiencies requiring strengthening that were present in African public health microbiology laboratories. PMID:22461714
Ekechukwu, Nkiru E.; Baeshen, Rowida; Traorè, Sékou F.; Coulibaly, Mamadou; Diabate, Abdoulaye; Catteruccia, Flaminia; Tripet, Frédéric
2015-01-01
The success of vector control strategies aiming to decrease disease transmission via the release of sterile or genetically-modified male mosquitoes critically depends on mating between laboratory-reared males and wild females. Unfortunately, mosquito colonization, laboratory rearing, and genetic manipulations can all negatively affect male competitiveness. Heterosis is commonly used to produce domestic animals with enhanced vigor and homogenous genetic background and could therefore potentially improve the mating performance of mass-reared male mosquitoes. Here, we produced enhanced hybrid males of the malaria mosquito Anopheles coluzzii by crossing two strains colonized >35 and 8 years ago. We compared the amount of sperm and mating plug proteins they transferred to females, as well as their insemination rate, reproductive success and longevity under various experimental conditions. Across experiments, widespread adaptations to laboratory mating were detected in the older strain. In large-group mating experiments, no overall hybrid advantage in insemination rates and the amount of sperm and accessory gland proteins transferred to females was detected. Despite higher sperm activity, hybrid males did not appear more fecund. However, individual-male mating and laboratory-swarm experiments revealed that hybrid males, while inseminating fewer females than older inbred males, were significantly more fertile, producing larger mating plugs and drastically increasing female fecundity. Heterotic males also showed increased longevity. These results validate the use of heterosis for creating hybrid males with improved fitness from long-established inbred laboratory strains. Therefore, this simple approach could facilitate disease control strategies based on male mosquito releases with important ultimate benefits to human health. PMID:26497140
Lucchi, Naomi W.; Ljolje, Dragan; Silva-Flannery, Luciana; Udhayakumar, Venkatachalam
2016-01-01
Malaria elimination efforts are hampered by the lack of sensitive tools to detect infections with low-level parasitemia, usually below the threshold of standard diagnostic methods, microscopy and rapid diagnostic tests. Isothermal nucleic acid amplification assays such as the loop-mediated isothermal amplification (LAMP), are well suited for field use as they do not require thermal cyclers to run the test. However, the use of specialized equipment, as described by many groups, reduces the versatility of the LAMP technique as a simple tool for use in endemic countries. In this study, the use of the malachite green (MG) dye, as a visual endpoint readout, together with a simple mini heat block was evaluated for the detection of malaria parasites. The assay was performed for 1 hour at 63°C and the results scored by 3 independent human readers. The limit of detection of the assay was determined using well-quantified Plasmodium spp. infected reference samples and its utility in testing clinical samples was determined using 190 pre-treatment specimens submitted for reference diagnosis of imported malaria in the United States. Use of a simplified boil and spin methods of DNA extraction from whole blood and filter paper was also investigated. We demonstrate the accurate and sensitive detection of malaria parasites using this assay with a detection limit ranging between 1–8 parasites/μL, supporting its applicability for the detection of infections with low parasite burden. This assay is compatible with the use of a simple boil and spin sample preparation method from both whole blood and filter papers without a loss of sensitivity. The MG-LAMP assay described here has great potential to extend the reach of molecular tools to settings where they are needed. PMID:26967908
Alareqi, Lina M Q; Mahdy, Mohammed A K; Lau, Yee-Ling; Fong, Mun-Yik; Abdul-Ghani, Rashad; Ali, Arwa A; Cheong, Fei-Wen; Tawfek, Rehab; Mahmud, Rohela
2016-01-28
Malaria is a public health threat in Yemen, with 149,451 cases being reported in 2013. Of these, Plasmodium falciparum represents 99%. Prompt diagnosis by light microscopy (LM) and rapid diagnostic tests (RTDs) is a key element in the national strategy of malaria control. The heterogeneous epidemiology of malaria in the country necessitates the field evaluation of the current diagnostic strategies, especially RDTs. Thus, the present study aimed to evaluate LM and an RDT, combining both P. falciparum histidine-rich protein-2 (PfHRP-2) and Plasmodium lactate dehydrogenase (pLDH), for falciparum malaria diagnosis and survey in a malaria-endemic area during the transmission season against nested polymerase chain reaction (PCR) as the reference method. A household-based, cross-sectional malaria survey was conducted in Mawza District, a malaria-endemic area in Taiz governorate. A total of 488 participants were screened using LM and PfHRP-2/pLDH RDT. Positive samples (160) and randomly selected negative samples (52) by both RDT and LM were further analysed using 18S rRNA-based nested PCR. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the RDT were 96.0% (95% confidence interval (CI): 90.9-98.3), 56.0% (95% CI: 44.7-66.8), 76.3% (95% CI: 69.0-82.3), and 90.4% (95% CI: 78.8-96.8), respectively. On the other hand, LM showed sensitivity of 37.6% (95% CI: 29.6-46.3), specificity of 97.6% (95% CI: 91.7-99.7), PPV of 95.9% (95% CI: 86.3-98.9), and NPV of 51.3% (95% CI: 43.2-59.2). The sensitivity of LM dropped to 8.5% for detecting asymptomatic malaria. Malaria prevalence was 32.8% (32.1 and 37.5% for ≥10 and <10 years, respectively) with the RDT compared with 10.7% (10.8 and 9.4% for age groups of ≥10 and <10 years, respectively) with LM. Among asymptomatic malaria individuals, LM and RDT-based prevalence rates were 1.6 and 25.6%, respectively. However, rates of 88.2 and 94.1% of infection with P. falciparum were found among patients who reported fever in the 48 h prior to the survey by LM and PfHRP-2/pLDH RDT, respectively. The PfHRP-2/pLDH RDT shows high sensitivity for the survey of falciparum malaria even for asymptomatic malaria cases. Although the RDT had high sensitivity, its high false-positivity rate limits its utility as a single diagnostic tool for clinical diagnosis of malaria. On the other hand, low sensitivity of LM indicates that a high proportion of malaria cases is missed, underestimating the true prevalence of malaria in the community. Higher NPV of PfHRP-2/pLDH RDT than LM can give a straightforward exclusion of malaria among febrile patients, helping to avoid unnecessary presumptive treatments.
Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control.
Benelli, Giovanni; Mehlhorn, Heinz
2016-05-01
The fight against mosquito-borne diseases is a challenge of huge public health importance. To our mind, 2015 was an extraordinary year for malaria control, due to three hot news: the Nobel Prize to Youyou Tu for the discovery of artemisinin, the development of the first vaccine against Plasmodium falciparum malaria [i.e. RTS,S/AS01 (RTS,S)], and the fall of malaria infection rates worldwide, with special reference to sub-Saharan Africa. However, there are major challenges that still deserve attention, in order to boost malaria prevention and control. Indeed, parasite strains resistant to artemisinin have been detected, and RTS,S vaccine does not offer protection against Plasmodium vivax malaria, which predominates in many countries outside of Africa. Furthermore, the recent outbreaks of Zika virus infections, occurring in South America, Central America and the Caribbean, represent the most recent of four arrivals of important arboviruses in the Western Hemisphere, over the last 20 years. Zika virus follows dengue (which slyly arrived in the hemisphere over decades and became more aggressive in the 1990s), West Nile virus (emerged in 1999) and chikungunya (emerged in 2013). Notably, there are no specific treatments for these arboviruses. The emerging scenario highlights that the effective and eco-friendly control of mosquito vectors, with special reference to highly invasive species such as Aedes aegypti and Aedes albopictus, is crucial. The concrete potential of screening plant species as sources of metabolites for parasitological purposes is worthy of attention, as elucidated by the Y. Tu's example. Notably, plant-borne molecules are often effective at few parts per million against Aedes, Ochlerotatus, Anopheles and Culex young instars, can be used for the rapid synthesis of mosquitocidal nanoformulations and even employed to prepare cheap repellents with low human toxicity. In addition, behaviour-based control tools relying to the employ of sound traps and the manipulation of swarming behaviour (i.e. "lure and kill" approach) are discussed. The importance of further research on the chemical cues routing mosquito swarming and mating dynamics is highlighted. Besides radiation, transgenic and symbiont-based mosquito control approaches, an effective option may be the employ of biological control agents of mosquito young instars, in the presence of ultra-low quantities of nanoformulated botanicals, which boost their predation rates.
Anemia and malaria in a Yanomami Amerindian population from the southern Venezuelan Amazon.
Pérez Mato, S
1998-12-01
The prevalence and age distribution of anemia and malaria among Yanomami Amerindians undergoing sociocultural assimilation are described. Anemia and malaria proportions were determined in 103 individuals randomly selected from 515 villagers in Mavaca in the southern Venezuelan Amazon. The age and sex distribution reflected that of the entire village cluster. Anemia (hematocrit less than World Health Organization/Centers for Disease Control and Prevention reference values) was found in 91% of the study population. As a group, adults (> or = 15 years old) had the highest proportion of anemia (P=0.037). Adult females had lower mean hematocrit values than adult males (P=0.013). The anemia was predominantly hypochromic and microcytic (62%), a finding that could suggest a diagnosis of iron deficiency in the absence of known hereditary hemoglobinopathies in these Amerindians. Malaria was diagnosed in 14% overall. Children (< 10 years old) displayed the highest proportion of Plasmodium falciparum (17%) and P. vivax (14%) parasitemia, splenomegaly (94%), and fever (34%) (P=0.059, 0.039, 0.005, and 0.008, respectively). The high proportions of anemia and splenomegaly observed in the survey may be used as indicators of inadequately controlled malaria in this community. Further studies to assess the epidemiology of risk factors for the high prevalence of anemia, and predominance of P. falciparum infections in the area are urgently needed.
Comparison of quantitative and qualitative tests for glucose-6-phosphate dehydrogenase deficiency.
LaRue, Nicole; Kahn, Maria; Murray, Marjorie; Leader, Brandon T; Bansil, Pooja; McGray, Sarah; Kalnoky, Michael; Zhang, Hao; Huang, Huiqiang; Jiang, Hui; Domingo, Gonzalo J
2014-10-01
A barrier to eliminating Plasmodium vivax malaria is inadequate treatment of infected patients. 8-Aminoquinoline-based drugs clear the parasite; however, people with glucose-6-phosphate dehydrogenase (G6PD) deficiency are at risk for hemolysis from these drugs. Understanding the performance of G6PD deficiency tests is critical for patient safety. Two quantitative assays and two qualitative tests were evaluated. The comparison of quantitative assays gave a Pearson correlation coefficient of 0.7585 with significant difference in mean G6PD activity, highlighting the need to adhere to a single reference assay. Both qualitative tests had high sensitivity and negative predictive value at a cutoff G6PD value of 40% of normal activity if interpreted conservatively and performed under laboratory conditions. The performance of both tests dropped at a cutoff level of 45%. Cytochemical staining of specimens confirmed that heterozygous females with > 50% G6PD-deficient cells can seem normal by phenotypic tests. © The American Society of Tropical Medicine and Hygiene.
2010-01-01
Background Carbon dioxide (CO2) plays an important role in the host-seeking process of opportunistic, zoophilic and anthropophilic mosquito species and is, therefore, commonly added to mosquito sampling tools. The African malaria vector Anopheles gambiae sensu stricto is attracted to human volatiles augmented by CO2. This study investigated whether CO2, usually supplied from gas cylinders acquired from commercial industry, could be replaced by CO2 derived from fermenting yeast (yeast-produced CO2). Methods Trapping experiments were conducted in the laboratory, semi-field and field, with An. gambiae s.s. as the target species. MM-X traps were baited with volatiles produced by mixtures of yeast, sugar and water, prepared in 1.5, 5 or 25 L bottles. Catches were compared with traps baited with industrial CO2. The additional effect of human odours was also examined. In the laboratory and semi-field facility dual-choice experiments were conducted. The effect of traps baited with yeast-produced CO2 on the number of mosquitoes entering an African house was studied in the MalariaSphere. Carbon dioxide baited traps, placed outside human dwellings, were also tested in an African village setting. The laboratory and semi-field data were analysed by a χ2-test, the field data by GLM. In addition, CO2 concentrations produced by yeast-sugar solutions were measured over time. Results Traps baited with yeast-produced CO2 caught significantly more mosquitoes than unbaited traps (up to 34 h post mixing the ingredients) and also significantly more than traps baited with industrial CO2, both in the laboratory and semi-field. Adding yeast-produced CO2 to traps baited with human odour significantly increased trap catches. In the MalariaSphere, outdoor traps baited with yeast-produced or industrial CO2 + human odour reduced house entry of mosquitoes with a human host sleeping under a bed net indoors. Anopheles gambiae s.s. was not caught during the field trials. However, traps baited with yeast-produced CO2 caught similar numbers of Anopheles arabiensis as traps baited with industrial CO2. Addition of human odour increased trap catches. Conclusions Yeast-produced CO2 can effectively replace industrial CO2 for sampling of An. gambiae s.s.. This will significantly reduce costs and allow sustainable mass-application of odour-baited devices for mosquito sampling in remote areas. PMID:20973963
Ngarivhume, Talkmore; Van't Klooster, Charlotte I E A; de Jong, Joop T V M; Van der Westhuizen, Jan H
2015-01-15
Because about 50% of the Zimbabwean population is at risk of contracting malaria each year, the majority of people, especially in rural areas, use traditional plant-based medicines to combat malaria. This explorative ethnobotanical survey was undertaken to document how malaria is conceptualized and diagnosed by traditional healers, and to record the medicinal plants used in the prevention and treatment of malaria, their mode of preparation and administration. The research was conducted in three villages in Headman Muzite׳s area and in Chiriga village. These villages are located in the Chipinge district in the Manicaland Province in Zimbabwe.Traditional healers were selected with the assistance of the headman of the Muzite area and a representative of the Zimbabwe National Traditional Healers Association. Semi-structured interviews were conducted with 14 traditional healers from four villages in the Chipinge district in Zimbabwe. In total, 28 plants from 16 plant families are used by the healers who manage malaria with medicinal plants. The most cited plant is Cassia abbreviata Oliv. (Leguminosae) followed by Aristolochia albida Duch (Aristolociaceae) and Toddalia asiatica (L.) Lam. (Rutaceae). Roots (55.3%) are the most common part used. Most of the plant parts used to treat malaria are stored as dried powders in closed bottles. The powders are soaked in hot or cold water and the water extract is taken as the active medicine. The healers consider their medicinal knowledge as a spiritual family heritage. Only 25% of the healers refer the malaria patients that do not respond to their treatment to hospital - they believe evil spirits cause their remedies to failure and they would rather try a different plant or perform a cleansing ceremony. Local knowledge of medicinal plants in the treatment of malaria still exists in all four villages surveyed and traditional healers appear to play an important role in primary health care services in this remote rural area in Zimbabwe. This explorative survey underscores the need to preserve and document traditional healing for managing malaria and for more future scientific research on the plants to determine their efficacy and their safety. This could improve their traditional anti-malarial recipes and might contribute to a better integration of Zimbabwean traditional medicine into the national health system in the future. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Sykes, Melissa L.; Jones, Amy J.; Shelper, Todd B.; Simpson, Moana; Lang, Rebecca; Poulsen, Sally-Ann; Sleebs, Brad E.
2017-01-01
ABSTRACT Open-access drug discovery provides a substantial resource for diseases primarily affecting the poor and disadvantaged. The open-access Pathogen Box collection is comprised of compounds with demonstrated biological activity against specific pathogenic organisms. The supply of this resource by the Medicines for Malaria Venture has the potential to provide new chemical starting points for a number of tropical and neglected diseases, through repurposing of these compounds for use in drug discovery campaigns for these additional pathogens. We tested the Pathogen Box against kinetoplastid parasites and malaria life cycle stages in vitro. Consequently, chemical starting points for malaria, human African trypanosomiasis, Chagas disease, and leishmaniasis drug discovery efforts have been identified. Inclusive of this in vitro biological evaluation, outcomes from extensive literature reviews and database searches are provided. This information encompasses commercial availability, literature reference citations, other aliases and ChEMBL number with associated biological activity, where available. The release of this new data for the Pathogen Box collection into the public domain will aid the open-source model of drug discovery. Importantly, this will provide novel chemical starting points for drug discovery and target identification in tropical disease research. PMID:28674055
Duffy, Sandra; Sykes, Melissa L; Jones, Amy J; Shelper, Todd B; Simpson, Moana; Lang, Rebecca; Poulsen, Sally-Ann; Sleebs, Brad E; Avery, Vicky M
2017-09-01
Open-access drug discovery provides a substantial resource for diseases primarily affecting the poor and disadvantaged. The open-access Pathogen Box collection is comprised of compounds with demonstrated biological activity against specific pathogenic organisms. The supply of this resource by the Medicines for Malaria Venture has the potential to provide new chemical starting points for a number of tropical and neglected diseases, through repurposing of these compounds for use in drug discovery campaigns for these additional pathogens. We tested the Pathogen Box against kinetoplastid parasites and malaria life cycle stages in vitro Consequently, chemical starting points for malaria, human African trypanosomiasis, Chagas disease, and leishmaniasis drug discovery efforts have been identified. Inclusive of this in vitro biological evaluation, outcomes from extensive literature reviews and database searches are provided. This information encompasses commercial availability, literature reference citations, other aliases and ChEMBL number with associated biological activity, where available. The release of this new data for the Pathogen Box collection into the public domain will aid the open-source model of drug discovery. Importantly, this will provide novel chemical starting points for drug discovery and target identification in tropical disease research. Copyright © 2017 Duffy et al.
Lucantoni, Leonardo; Silvestrini, Francesco; Signore, Michele; Siciliano, Giulia; Eldering, Maarten; Dechering, Koen J.; Avery, Vicky M.; Alano, Pietro
2015-01-01
Plasmodium falciparum gametocytes, specifically the mature stages, are the only malaria parasite stage in humans transmissible to the mosquito vector. Anti-malarial drugs capable of killing these forms are considered essential for the eradication of malaria and tools allowing the screening of large compound libraries with high predictive power are needed to identify new candidates. As gametocytes are not a replicative stage it is difficult to apply the same drug screening methods used for asexual stages. Here we propose an assay, based on high content imaging, combining “classic” gametocyte viability readout based on gametocyte counts with a functional viability readout, based on gametocyte activation and the discrimination of the typical gamete spherical morphology. This simple and rapid assay has been miniaturized to a 384-well format using acridine orange staining of wild type P. falciparum 3D7A sexual forms, and was validated by screening reference antimalarial drugs and the MMV Malaria Box. The assay demonstrated excellent robustness and ability to identify quality hits with high likelihood of confirmation of transmission reducing activity in subsequent mosquito membrane feeding assays. PMID:26553647
Birx, Deborah; de Souza, Mark; Nkengasong, John N
2009-06-01
Strengthening national health laboratory systems in resource-poor countries is critical to meeting the United Nations Millennium Development Goals. Despite strong commitment from the international community to fight major infectious diseases, weak laboratory infrastructure remains a huge rate-limiting step. Some major challenges facing laboratory systems in resource-poor settings include dilapidated infrastructure; lack of human capacity, laboratory policies, and strategic plans; and limited synergies between clinical and research laboratories. Together, these factors compromise the quality of test results and impact patient management. With increased funding, the target of laboratory strengthening efforts in resource-poor countries should be the integrating of laboratory services across major diseases to leverage resources with respect to physical infrastructure; types of assays; supply chain management of reagents and equipment; and maintenance of equipment.
Abba, Katharine; Kirkham, Amanda J; Olliaro, Piero L; Deeks, Jonathan J; Donegan, Sarah; Garner, Paul; Takwoingi, Yemisi
2014-12-18
In settings where both Plasmodium vivax and Plasmodium falciparum infection cause malaria, rapid diagnostic tests (RDTs) need to distinguish which species is causing the patients' symptoms, as different treatments are required. Older RDTs incorporated two test lines to distinguish malaria due to P. falciparum, from malaria due to any other Plasmodium species (non-falciparum). These RDTs can be classified according to which antibodies they use: Type 2 RDTs use HRP-2 (for P. falciparum) and aldolase (all species); Type 3 RDTs use HRP-2 (for P. falciparum) and pLDH (all species); Type 4 use pLDH (fromP. falciparum) and pLDH (all species).More recently, RDTs have been developed to distinguish P. vivax parasitaemia by utilizing a pLDH antibody specific to P. vivax. To assess the diagnostic accuracy of RDTs for detecting non-falciparum or P. vivax parasitaemia in people living in malaria-endemic areas who present to ambulatory healthcare facilities with symptoms suggestive of malaria, and to identify which types and brands of commercial test best detect non-falciparum and P. vivax malaria. We undertook a comprehensive search of the following databases up to 31 December 2013: Cochrane Infectious Diseases Group Specialized Register; MEDLINE; EMBASE; MEDION; Science Citation Index; Web of Knowledge; African Index Medicus; LILACS; and IndMED. Studies comparing RDTs with a reference standard (microscopy or polymerase chain reaction) in blood samples from a random or consecutive series of patients attending ambulatory health facilities with symptoms suggestive of malaria in non-falciparum endemic areas. For each study, two review authors independently extracted a standard set of data using a tailored data extraction form. We grouped comparisons by type of RDT (defined by the combinations of antibodies used), and combined in meta-analysis where appropriate. Average sensitivities and specificities are presented alongside 95% confidence intervals (95% CI). We included 47 studies enrolling 22,862 participants. Patient characteristics, sampling methods and reference standard methods were poorly reported in most studies. RDTs detecting 'non-falciparum' parasitaemiaEleven studies evaluated Type 2 tests compared with microscopy, 25 evaluated Type 3 tests, and 11 evaluated Type 4 tests. In meta-analyses, average sensitivities and specificities were 78% (95% CI 73% to 82%) and 99% (95% CI 97% to 99%) for Type 2 tests, 78% (95% CI 69% to 84%) and 99% (95% CI 98% to 99%) for Type 3 tests, and 89% (95% CI 79% to 95%) and 98% (95% CI 97% to 99%) for Type 4 tests, respectively. Type 4 tests were more sensitive than both Type 2 (P = 0.01) and Type 3 tests (P = 0.03).Five studies compared Type 3 tests with PCR; in meta-analysis, the average sensitivity and specificity were 81% (95% CI 72% to 88%) and 99% (95% CI 97% to 99%) respectively. RDTs detecting P.vivax parasitaemiaEight studies compared pLDH tests to microscopy; the average sensitivity and specificity were 95% (95% CI 86% to 99%) and 99% (95% CI 99% to 100%), respectively. RDTs designed to detect P. vivax specifically, whether alone or as part of a mixed infection, appear to be more accurate than older tests designed to distinguish P. falciparum malaria from non-falciparum malaria. Compared to microscopy, these tests fail to detect around 5% ofP. vivax cases. This Cochrane Review, in combination with other published information about in vitro test performance and stability in the field, can assist policy-makers to choose between the available RDTs.
Riewpaiboon, Arthorn; Dondorp, Arjen M; von Seidlein, Lorenz; Mokuolu, Olugbenga A; Nansumba, Margaret; Gesase, Samwel; Kent, Alison; Mtove, George; Olaosebikan, Rasaq; Ngum, Wirichada Pan; Fanello, Caterina I; Hendriksen, Ilse; Day, Nicholas PJ; White, Nicholas J; Yeung, Shunmay
2011-01-01
Abstract Objective To explore the cost-effectiveness of parenteral artesunate for the treatment of severe malaria in children and its potential impact on hospital budgets. Methods The costs of inpatient care of children with severe malaria were assessed in four of the 11 sites included in the African Quinine Artesunate Malaria Treatment trial, conducted with over 5400 children. The drugs, laboratory tests and intravenous fluids provided to 2300 patients from admission to discharge were recorded, as was the length of inpatient stay, to calculate the cost of inpatient care. The data were matched with pooled clinical outcomes and entered into a decision model to calculate the cost per disability-adjusted life year (DALY) averted and the cost per death averted. Findings The mean cost of treating severe malaria patients was similar in the two study groups: 63.5 United States dollars (US$) (95% confidence interval, CI: 61.7–65.2) in the quinine arm and US$ 66.5 (95% CI: 63.7–69.2) in the artesunate arm. Children treated with artesunate had 22.5% lower mortality than those treated with quinine and the same rate of neurological sequelae: (artesunate arm: 2.3 DALYs per patient; quinine arm: 3.0 DALYs per patient). Compared with quinine as a baseline, artesunate showed an incremental cost per DALY averted and an incremental cost per death averted of US$ 3.8 and US$ 123, respectively. Conclusion Artesunate is a highly cost-effective and affordable alternative to quinine for treating children with severe malaria. The budgetary implications of adopting artesunate for routine use in hospital-based care are negligible. PMID:21734764
Memory T cells maintain protracted protection against malaria.
Krzych, Urszula; Zarling, Stasya; Pichugin, Alexander
2014-10-01
Immunologic memory is one of the cardinal features of antigen-specific immune responses, and the persistence of memory cells contributes to prophylactic immunizations against infectious agents. Adequately maintained memory T and B cell pools assure a fast, effective and specific response against re-infections. However, many aspects of immunologic memory are still poorly understood, particularly immunologic memory inducible by parasites, for example, Plasmodium spp., the causative agents of malaria. For example, memory responses to Plasmodium antigens amongst residents of malaria endemic areas appear to be either inadequately developed or maintained, because persons who survive episodes of childhood malaria remain vulnerable to intermittent malaria infections. By contrast, multiple exposures of humans and laboratory rodents to radiation-attenuated Plasmodium sporozoites (γ-spz) induce sterile and long-lasting protection against experimental sporozoite challenge. Multifactorial immune mechanisms maintain this protracted and sterile protection. While the presence of memory CD4 T cell subsets has been associated with lasting protection in humans exposed to multiple bites from Anopheles mosquitoes infected with attenuated Plasmodium falciparum, memory CD8 T cells maintain protection induced with Plasmodium yoelii and Plasmodium berghei γ-spz in murine models. In this review, we discuss our observations that show memory CD8 T cells specific for antigens expressed by P. berghei liver stage parasites as an indispensable component for the maintenance of protracted protective immunity against experimental malaria infection; moreover, the provision of an Ag-depot assures a quick recall of memory T cells as IFN-γ-producing effector CD8 T cells and IL-4- producing CD4 T cells that collaborate with B cells for an effective antibody response. Published by Elsevier B.V.
Outbreak of Plague in a High Malaria Endemic Region - Nyimba District, Zambia, March-May 2015.
Sinyange, Nyambe; Kumar, Ramya; Inambao, Akatama; Moonde, Loveness; Chama, Jonathan; Banda, Mapopa; Tembo, Elliot; Nsonga, Beron; Mwaba, John; Fwoloshi, Sombo; Musokotwane, Kebby; Chizema, Elizabeth; Kapin'a, Muzala; Hang'ombe, Benard Mudenda; Baggett, Henry C; Hachaambwa, Lottie
2016-08-12
Outbreaks of plague have been recognized in Zambia since 1917 (1). On April 10, 2015, Zambia's Ministry of Health was notified by the Eastern Provincial Medical Office of possible bubonic plague cases in Nyimba District. Eleven patients with acute fever and cervical lymphadenopathy had been evaluated at two rural health centers during March 28-April 9, 2015; three patients died. To confirm the outbreak and develop control measures, the Zambia Ministry of Health's Field Epidemiology Training Program (ZFETP) conducted epidemiologic and laboratory investigations in partnership with the University of Zambia's schools of Medicine and Veterinary Medicine and the provincial and district medical offices. Twenty-one patients with clinically compatible plague were identified, with symptom onset during March 26-May 5, 2015. The median age was 8 years, and all patients were from the same village. Blood specimens or lymph node aspirates from six (29%) patients tested positive for Yersinia pestis by polymerase chain reaction (PCR). There is an urgent need to improve early identification and treatment of plague cases. PCR is a potential complementary tool for identifying plague, especially in areas with limited microbiologic capacity. Twelve (57%) patients, including all six with PCR-positive plague and all three who died, also tested positive for malaria by rapid diagnostic test (RDT). Plague patients coinfected with malaria might be misdiagnosed as solely having malaria, and appropriate antibacterial treatment to combat plague might not be given, increasing risk for mortality. Because patients with malaria might be coinfected with other pathogens, broad spectrum antibiotic treatment to cover other pathogens is recommended for all children with severe malaria, until a bacterial infection is excluded.
Poespoprodjo, Jeanne Rini; Kenangalem, Enny; Wafom, Johny; Chandrawati, Freis; Puspitasari, Agatha M; Ley, Benedikt; Trianty, Leily; Korten, Zoé; Surya, Asik; Syafruddin, Din; Anstey, Nicholas M; Marfurt, Jutta; Noviyanti, Rintis; Price, Ric N
2018-03-01
Dihydroartemisinin-piperaquine (DHP) has been the first-line treatment of uncomplicated malaria due to both Plasmodium falciparum and Plasmodium vivax infections in Papua, Indonesia, since March 2006. The efficacy of DHP was reassessed to determine whether there had been any decline following almost a decade of its extensive use. An open-label drug efficacy study of DHP for uncomplicated P. falciparum and P. vivax malaria was carried out between March 2015 and April 2016 in Timika, Papua, Indonesia. Patients with uncomplicated malaria were administered supervised DHP tablets once daily for 3 days. Clinical and laboratory data were collected daily until parasite clearance and then weekly for 6 weeks. Molecular analysis was undertaken for all patients with recurrent parasitemia. A total of 129 study patients were enrolled in the study. At day 42, the polymerase chain reaction-adjusted efficacy was 97.7% (95% confidence intervals [CI]: 87.4-99.9) in the 61 patients with P. falciparum malaria, and 98.2% [95% CI: 90.3-100] in the 56 patients with P. vivax malaria. By day 2, 98% (56/57) of patients with P. falciparum and 96.9% (63/65) of those with P. vivax had cleared their peripheral parasitemia; none of the patients were still parasitaemic on day 3. Molecular analysis of P. falciparum parasites showed that none (0/61) had K13 mutations associated previously with artemisinin resistance or increased copy number of plasmepsin 2-3 (0/61). In the absence of artemisinin resistance, DHP has retained high efficacy for the treatment of uncomplicated malaria despite extensive drug pressure over a 9-year period.
Paratransgenesis to control malaria vectors: a semi-field pilot study.
Mancini, Maria Vittoria; Spaccapelo, Roberta; Damiani, Claudia; Accoti, Anastasia; Tallarita, Mario; Petraglia, Elisabetta; Rossi, Paolo; Cappelli, Alessia; Capone, Aida; Peruzzi, Giulia; Valzano, Matteo; Picciolini, Matteo; Diabaté, Abdoulaye; Facchinelli, Luca; Ricci, Irene; Favia, Guido
2016-03-10
Malaria still remains a serious health burden in developing countries, causing more than 1 million deaths annually. Given the lack of an effective vaccine against its major etiological agent, Plasmodium falciparum, and the growing resistance of this parasite to the currently available drugs repertoire and of Anopheles mosquitoes to insecticides, the development of innovative control measures is an imperative to reduce malaria transmission. Paratransgenesis, the modification of symbiotic organisms to deliver anti-pathogen effector molecules, represents a novel strategy against Plasmodium development in mosquito vectors, showing the potential to reduce parasite development. However, the field application of laboratory-based evidence of paratransgenesis imposes the use of more realistic confined semi-field environments. Large cages were used to evaluate the ability of bacteria of the genus Asaia expressing green fluorescent protein (Asaia (gfp)), to diffuse in Anopheles stephensi and Anopheles gambiae target mosquito populations. Asaia (gfp) was introduced in large cages through the release of paratransgenic males or by sugar feeding stations. Recombinant bacteria transmission was directly detected by fluorescent microscopy, and further assessed by molecular analysis. Here we show the first known trial in semi-field condition on paratransgenic anophelines. Modified bacteria were able to spread at high rate in different populations of An. stephensi and An. gambiae, dominant malaria vectors, exploring horizontal ways and successfully colonising mosquito midguts. Moreover, in An. gambiae, vertical and trans-stadial diffusion mechanisms were demonstrated. Our results demonstrate the considerable ability of modified Asaia to colonise different populations of malaria vectors, including pecies where its association is not primary, in large environments. The data support the potential to employ transgenic Asaia as a tool for malaria control, disclosing promising perspective for its field application with suitable effector molecules.
Bastiaens, Guido J H; Schaftenaar, Erik; Ndaro, Arnold; Keuter, Monique; Bousema, Teun; Shekalaghe, Seif A
2011-04-02
Patterns of decreasing malaria transmission intensity make presumptive treatment of malaria an unjustifiable approach in many African settings. The controlled use of anti-malarials after laboratory confirmed diagnosis is preferable in low endemic areas. Diagnosis may be facilitated by malaria rapid diagnostic tests (RDTs). In this study, the impact of a government policy change, comprising the provision of RDTs and advice to restrict anti-malarial treatment to RDT-positive individuals, was assessed by describing diagnostic behaviour and treatment decision-making in febrile outpatients <10 years of age in three hospitals in the Kagera and Mwanza Region in northern Tanzania. Prospective data from Biharamulo and Rubya Designated District Hospital (DDH) were collected before and after policy change, in Sumve DDH no new policy was implemented. Diagnosis of malaria was confirmed by RDT; transmission intensity was evaluated by a serological marker of malaria exposure in hospital attendees. Prior to policy change, there was no evident association between the actual level of transmission intensity and drug-prescribing behaviour. After policy change, there was a substantial decrease in anti-malarial prescription and an increase in prescription of antibiotics. The proportion of parasite-negative individuals who received anti-malarials decreased from 89.1% (244/274) to 38.7% (46/119) in Biharamulo and from 76.9% (190/247) to 10.0% (48/479) in Rubya after policy change. This study shows that an official policy change, where RDTs were provided and healthcare providers were advised to adhere to RDT results in prescribing drugs can be followed by more rational drug-prescribing behaviour. The current findings are promising for improving treatment policy in Tanzanian hospitals.
Tiffany, Amanda; Moundekeno, Faya Pascal; Traoré, Alexis; Haile, Melat; Sterk, Esther; Guilavogui, Timothé; Serafini, Micaela; Genton, Blaise; Grais, Rebecca F
2016-12-07
Multiple community-based approaches can aid in quantifying mortality in the absence of reliable health facility data. Community-based sentinel site surveillance that was used to document mortality and the systems utility for outbreak detection was evaluated. We retrospectively analyzed data from 46 sentinel sites in three sous-préfectures with a reinforced malaria control program and one sous-préfecture without (Koundou) in Guinea. Deaths were recorded by key informants and classified as due to malaria or another cause. Malaria deaths were those reported as due to malaria or fever in the 3 days before death with no other known cause. Suspect Ebola virus disease (sEVD) deaths were those due to select symptoms in the EVD case definition. Deaths were aggregated by sous-préfecture and analyzed by a 6-month period. A total of 43,000 individuals were monitored by the surveillance system; 1,242 deaths were reported from July 2011-June 2014, of which 55.2% (N = 686) were reported as due to malaria. Malaria-attributable proportional mortality decreased by 26.5% (95% confidence interval [CI] = 13.9-33.1, P < 0.001) in the program area and by 6.6% (95% CI = -17.3-30.5, P = 0.589) in Koundou. Sixty-eight deaths were classified as sEVD and increased by 6.1% (95% CI = 1.3-10.8, P = 0.021). Seventeen sEVD deaths were reported from November 2013 to March 2014 including the first two laboratory-confirmed EVD deaths. Community surveillance can capture information on mortality in areas where data collection is weak, but determining causes of death remains challenging. It can also be useful for outbreak detection if timeliness of data collection and reporting facilitate real-time data analysis. © The American Society of Tropical Medicine and Hygiene.
Singh, Neeru; Mishra, A K; Shukla, M M; Chand, S K; Bharti, Praveen Kumar
2005-06-21
Malaria presents a diagnostic challenge in most tropical countries. Rapid detection of the malaria parasite and early treatment of infection still remain the most important goals of disease management. Therefore, performance characteristics of the new indigenous ParaHIT f test (Span diagnostic Ltd, Surat, India) was determined among ethnic tribal population in four districts of different transmission potential in central India to assess whether this rapid diagnostic test (RDT) could be widely applied as a diagnostic tool to control malaria. Beyond diagnosis, the logical utilization of RDTs is to monitor treatment outcome. A finger prick blood sample was collected from each clinically suspected case of malaria to prepare blood smear and for testing with the RDT after taking informed consent. The blood smears were read by an experienced technician blinded to the RDT results and clinical status of the subjects. The figures for specificity, sensitivity, accuracy and predictive values were calculated using microscopy as gold standard. The prevalence of malaria infection estimated by RDT in parallel with microscopy provide evidence of the type of high, low or no transmission in the study area. Analysis revealed (pooled data of all four epidemiological settings) that overall sensitivity, specificity and accuracy of the RDT were >90% in areas of different endemicity. While, RDT is useful to confirm the diagnosis of new symptomatic cases of suspected P. falciparum infection, the persistence of parasite antigen leading to false positives even after clearance of asexual parasitaemia has limited its utility as a prognostic tool. The study showed that the ParaHIT f test was easy to use, reliable and cheap. Thus this RDT is an appropriate test for the use in the field by paramedical staff when laboratory facilities are not available and thus likely to contribute greatly to an effective control of malaria in resource poor countries.
A New Single-Step PCR Assay for the Detection of the Zoonotic Malaria Parasite Plasmodium knowlesi
Lucchi, Naomi W.; Poorak, Mitra; Oberstaller, Jenna; DeBarry, Jeremy; Srinivasamoorthy, Ganesh; Goldman, Ira; Xayavong, Maniphet; da Silva, Alexandre J.; Peterson, David S.; Barnwell, John W.; Kissinger, Jessica; Udhayakumar, Venkatachalam
2012-01-01
Background Recent studies in Southeast Asia have demonstrated substantial zoonotic transmission of Plasmodium knowlesi to humans. Microscopically, P. knowlesi exhibits several stage-dependent morphological similarities to P. malariae and P. falciparum. These similarities often lead to misdiagnosis of P. knowlesi as either P. malariae or P. falciparum and PCR-based molecular diagnostic tests are required to accurately detect P. knowlesi in humans. The most commonly used PCR test has been found to give false positive results, especially with a proportion of P. vivax isolates. To address the need for more sensitive and specific diagnostic tests for the accurate diagnosis of P. knowlesi, we report development of a new single-step PCR assay that uses novel genomic targets to accurately detect this infection. Methodology and Significant Findings We have developed a bioinformatics approach to search the available malaria parasite genome database for the identification of suitable DNA sequences relevant for molecular diagnostic tests. Using this approach, we have identified multi-copy DNA sequences distributed in the P. knowlesi genome. We designed and tested several novel primers specific to new target sequences in a single-tube, non-nested PCR assay and identified one set of primers that accurately detects P. knowlesi. We show that this primer set has 100% specificity for the detection of P. knowlesi using three different strains (Nuri, H, and Hackeri), and one human case of malaria caused by P. knowlesi. This test did not show cross reactivity with any of the four human malaria parasite species including 11 different strains of P. vivax as well as 5 additional species of simian malaria parasites. Conclusions The new PCR assay based on novel P. knowlesi genomic sequence targets was able to accurately detect P. knowlesi. Additional laboratory and field-based testing of this assay will be necessary to further validate its utility for clinical diagnosis of P. knowlesi. PMID:22363751
Tamminga, Cindy; Kavanaugh, Michael; Fedders, Charlotte; Maiolatesi, Santina; Abraham, Neethu; Bonhoeffer, Jan; Heininger, Ulrich; Vasquez, Carlos S; Moorthy, Vasee S; Epstein, Judith E; Richie, Thomas L
2013-08-02
Malaria, tuberculosis (TB) and human immunodeficiency virus (HIV) are diseases with devastating effects on global public health, especially in the developing world. Clinical trials of candidate vaccines for these diseases are being conducted at an accelerating rate, and require accurate and consistent methods for safety data collection and reporting. We performed a systematic review of publications describing the safety results from clinical trials of malaria, TB and HIV vaccines, to ascertain the nature and consistency of safety data collection and reporting. The target for the review was pre-licensure trials for malaria, TB and HIV vaccines published in English from 2000 to 2009. Search strategies were customized for each of the databases utilized (MEDLINE, EMBASE, the Cochrane Database of Systematic Reviews and the Database of Reviews and Effects). Data extracted included age of trial participants, vaccine platform, route and method of vaccine administration, duration of participant follow-up, reporting of laboratory abnormalities, and the type, case definitions, severity, reporting methods and internal reporting consistency of adverse events. Of 2278 publications screened, 124 were eligible for inclusion (malaria: 66, TB: 9, HIV: 49). Safety data reporting was found to be highly variable among publications and often incomplete: overall, 269 overlapping terms were used to describe specific adverse events. 17% of publications did not mention fever. Descriptions of severity or degree of relatedness to immunization of adverse events were frequently omitted. 26% (32/124) of publications failed to report data on serious adverse events. The review demonstrated lack of standardized safety data reporting in trials for vaccines against malaria, TB and HIV. Standardization of safety data collection and reporting should be encouraged to improve data quality and comparability. The search strategy missed studies published in languages other than English and excluded studies reporting on vaccine trials for diseases besides malaria, TB and HIV. Copyright © 2013 Elsevier Ltd. All rights reserved.
Viputtigul, Kwanjai; Tungpukdee, Noppadon; Ruangareerate, Toon; Luplertlop, Natthanej; Wilairatana, Polrat; Gaywee, Jariyanart; Krudsood, Srivicha
2013-01-01
This study was undertaken to ascertain the extent of polymorphism in the C-terminal region of Plasmodium falciparum merozoite surface protein (MSP-1) from 119 malaria patients in Tak Province on the western border of Thailand, who were admitted to the Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. P. falciparum infection was confirmed by microscopic examination of peripheral blood smears. Clinical manifestations were categorized into 2 groups: uncomplicated (94 cases) and complicated/severe (25 cases). A 1,040 basepair fragment of P. falciparum MSP-1 gene was compared with MSP-1 of reference strains retrieved from GenBank. The consensus sequences of MSP-1 block 16 showed it belonged to MAD20 genotype, which is the major allele of falciparum malaria from the western border of Thailand. MSP-1 block 16 amino acid fragment could be separated into 2 groups: similar and dissimilar to reference sequence. Four variations in MSP-1 block 16 were -1494K, D1510G, D1556N, and K1696I. MSP-1 block 16 diversity is not significantly associated with clinical manifestation although MAD 20 genotype is the predominant genotype in this area. The genetic data of MSP1 gene of faciparum malaria isolated from western Thai border contribute to the existing genetic database of Thai P. falciparum strain.
Datta, Mousumi; Dasgupta, Shyamal; Banerjee, Kaushik; Choudhury, Subhendu; Sengupta, Sandip Kumar; Das, Prakash
2017-01-01
Introduction Malaria occurring in pregnancy is associated with considerable maternal and perinatal morbidity. In India, the problem is compounded by dual parasitological aetiology of Plasmodium vivax (P. vivax) and Plasmodium falciparum (P. falciparum). Aim To compare the outcome of infections by P. vivax and P. falciparum species among pregnant women in a hospital setting. Materials and Methods Pregnant women who tested positive for malaria either by microscopy of peripheral blood smear or ELISA test for double antigen were enrolled in the study. They were followed up till their delivery and discharge from hospital. Demographic, clinical and laboratory data was collected at enrolment, on event of complication and at delivery. Data was analyzed for univariate and multivariate associations. Results There were 64 pregnant women diagnosed with malaria. A total of 76.6% study subjects had vivax infection rest were infected with p. falciparum. Anaemia (84%) was the commonest complication. A total of 60.9% women had pathological placenta. Preterm delivery, low birth weight and Apgar score <7 were the adverse pregnancy outcomes which were more frequent with falciparum infection. There were three perinatal deaths. Multigravidas were at significantly higher risk for low birth weight and low Apgar score of newborn. Infection in later trimester was associated with low Apgar score. Conclusion Both types of malaria cause considerable morbidity in pregnant women. More cases occurred among primigravida but multigravida and later trimester of pregnancy had more severe disease. PMID:28274003
USDA-ARS?s Scientific Manuscript database
Near-infrared spectroscopy (NIRS) was recently applied to age-grade and differentiate laboratory reared Anopheles gambiae sensu strico and Anopheles arabiensis sibling species of Anopheles gambiae sensu lato. In this study, we report further on the accuracy of this tool in simultaneously estimating ...
2010-12-14
Parasitology in the Amazon city of Iquitos, Peru , where NAMRU-6 has 90 permanent field and laboratory staff. Over 10 years of research have focused on...laboratory in Iquitos, Peru , a city of approximately 380,000 people (INEI 2008) in the Amazon Basin (Figures 3 and 4). The mission of NAMRU-6 is... Amazon Malaria Initiative and a military-to-military training program in Peru , Ecuador, and Colombia (Figure 5). NAMRU-6 Entomology has been
Ndyomugyenyi, Richard; Magnussen, Pascal; Lal, Sham; Hansen, Kristian; Clarke, Siân E
2016-09-01
To compare the impact of malaria rapid diagnostic tests (mRDTs), used by community health workers (CHWs), on the proportion of children <5 years of age receiving appropriately targeted treatment with artemisinin-based combination therapy (ACT), vs. presumptive treatment. Cluster-randomized trials were conducted in two contrasting areas of moderate-to-high and low malaria transmission in rural Uganda. Each trial examined the effectiveness of mRDTs in the management of malaria and targeting of ACTs by CHWs comparing two diagnostic approaches: (i) presumptive clinical diagnosis of malaria [control arm] and (ii) confirmatory diagnosis with mRDTs followed by ACT treatment for positive patients [intervention arm], with village as the unit of randomisation. Treatment decisions by CHWs were validated by microscopy on a reference blood slide collected at the time of consultation, to compare the proportion of children <5 years receiving appropriately targeted ACT treatment, defined as patients with microscopically-confirmed presence of parasites in a peripheral blood smear receiving artemether-lumefantrine or rectal artesunate, and patients with no malaria parasites not given ACT. In the moderate-to-high transmission area, ACT treatment was appropriately targeted in 79.3% (520/656) of children seen by CHWs using mRDTs to diagnose malaria, vs. 30.8% (215/699) of children seen by CHWs using presumptive diagnosis (P < 0.001). In the low transmission area, 90.1% (363/403) children seen by CHWs using mRDTs received appropriately targeted ACT treatment vs. 7.8% (64/817) seen by CHWs using presumptive diagnosis (P < 0.001). Low mRDT sensitivity in children with low-density parasitaemia (<200 parasites/μl) was identified as a potential concern. When equipped with mRDTs, ACT treatments delivered by CHWs are more accurately targeted to children with malaria parasites. mRDT use could play an important role in reducing overdiagnosis of malaria and improving fever case management within iCCM, in both moderate-to-high and low transmission areas. Nonetheless, missed treatments due to the low sensitivity of current mRDTs in patients with low parasite density are a concern. For community-based treatment in areas of low transmission and/or non-immune populations, presumptive treatment of all fevers as malaria may be advisable, until more sensitive diagnostic assays, suitable for routine use by CHWs in remote settings, become available. © 2016 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.
Falade, Catherine O; Ajayi, IkeOluwapo O; Nsungwa-Sabiiti, Jesca; Siribié, Mohamadou; Diarra, Amidou; Sermé, Luc; Afonne, Chinenye; Yusuf, Oyindamola B; Gansane, Zakaria; Jegede, Ayodele S; Singlovic, Jan; Gomes, Melba
2016-12-15
The World Health Organization recommends that malaria treatment be based on demonstration of the infecting Plasmodium parasite specie. Malaria rapid diagnostic tests (RDTs) are recommended at community points of care because they are accurate and rapid. We report on parasitological results in a malaria study in selected rural communities in 3 African countries. In Nigeria, community health workers (CHWs) performed RDTs (SD-Bioline) and thick blood smears on all children suspected to have malaria. Malaria RDT-positive children able to swallow received artemisinin-based combination therapy (Coartem). In all countries, children unable to take oral drugs received prereferral rectal artesunate irrespective of RDT result and were referred to the nearest health facility. Thick blood smears and RDTs were usually taken at hospital admission. In Nigeria and Burkina Faso, RDT cassettes and blood smears were re-read by an experienced investigator at study end. Trained CHWs enrolled 2148 children in Nigeria. Complete parasitological data of 1860 (86.6%) enrollees were analyzed. The mean age of enrollees was 30.4 ± 15.7 months. The prevalence of malaria parasitemia in the study population was 77.8% (1447/1860), 77.6% (1439/1855), and 54.1% (862/1593) by RDT performed by CHWs vs an expert clinical research assistant vs microscopy (gold standard), respectively. Geometric mean parasite density was 6946/µL (range, 40-436 450/µL). There were 49 cases of RDT false-negative results with a parasite density range of 40-54 059/µL. False-negative RDT results with high parasitemia could be due to non-falciparum infection or result from a prozone effect. Sensitivity and specificity of SD-Bioline RDT results as read by CHWs were 94.3% and 41.6%, respectively, while the negative and positive predictive values were 86.1% and 65.6%, respectively. The level of agreement in RDT reading by the CHWs and experienced research staff was 86.04% and κ statistic of 0.60. The malaria parasite positivity rate by RDT and microscopy among children with danger signs in the 3 countries was 67.9% and 41.8%, respectively. RDTs are useful in guiding malaria management and were successfully used for diagnosis by trained CHWs. However, false-negative RDT results were identified and can undermine confidence in results and control efforts. © 2016 World Health Organization; licensee Oxford Journals.
Falade, Catherine O.; Ajayi, IkeOluwapo O.; Nsungwa-Sabiiti, Jesca; Siribié, Mohamadou; Diarra, Amidou; Sermé, Luc; Afonne, Chinenye; Yusuf, Oyindamola B.; Gansane, Zakaria; Jegede, Ayodele S.; Singlovic, Jan; Gomes, Melba
2016-01-01
Background. The World Health Organization recommends that malaria treatment be based on demonstration of the infecting Plasmodium parasite specie. Malaria rapid diagnostic tests (RDTs) are recommended at community points of care because they are accurate and rapid. We report on parasitological results in a malaria study in selected rural communities in 3 African countries. Methods. In Nigeria, community health workers (CHWs) performed RDTs (SD-Bioline) and thick blood smears on all children suspected to have malaria. Malaria RDT-positive children able to swallow received artemisinin-based combination therapy (Coartem). In all countries, children unable to take oral drugs received prereferral rectal artesunate irrespective of RDT result and were referred to the nearest health facility. Thick blood smears and RDTs were usually taken at hospital admission. In Nigeria and Burkina Faso, RDT cassettes and blood smears were re-read by an experienced investigator at study end. Results. Trained CHWs enrolled 2148 children in Nigeria. Complete parasitological data of 1860 (86.6%) enrollees were analyzed. The mean age of enrollees was 30.4 ± 15.7 months. The prevalence of malaria parasitemia in the study population was 77.8% (1447/1860), 77.6% (1439/1855), and 54.1% (862/1593) by RDT performed by CHWs vs an expert clinical research assistant vs microscopy (gold standard), respectively. Geometric mean parasite density was 6946/µL (range, 40–436 450/µL). There were 49 cases of RDT false-negative results with a parasite density range of 40–54 059/µL. False-negative RDT results with high parasitemia could be due to non-falciparum infection or result from a prozone effect. Sensitivity and specificity of SD-Bioline RDT results as read by CHWs were 94.3% and 41.6%, respectively, while the negative and positive predictive values were 86.1% and 65.6%, respectively. The level of agreement in RDT reading by the CHWs and experienced research staff was 86.04% and κ statistic of 0.60. The malaria parasite positivity rate by RDT and microscopy among children with danger signs in the 3 countries was 67.9% and 41.8%, respectively. Conclusions. RDTs are useful in guiding malaria management and were successfully used for diagnosis by trained CHWs. However, false-negative RDT results were identified and can undermine confidence in results and control efforts. PMID:27941107
Miller, James S; English, Lacey; Matte, Michael; Mbusa, Rapheal; Ntaro, Moses; Bwambale, Shem; Kenney, Jessica; Siedner, Mark J; Reyes, Raquel; Lee, Patrick T; Mulogo, Edgar; Stone, Geren S
2018-02-27
Village health workers (VHWs) in five villages in Bugoye subcounty (Kasese District, Uganda) provide integrated community case management (iCCM) services, in which VHWs evaluate and treat malaria, pneumonia, and diarrhoea in children under 5 years of age. VHWs use a "Sick Child Job Aid" that guides them through the evaluation and treatment of these illnesses. A retrospective observational study was conducted to measure the quality of iCCM care provided by 23 VHWs in 5 villages in Bugoye subcounty over a 2-year period. Patient characteristics and clinical services were summarized using existing aggregate programme data. Lot quality assurance sampling of individual patient records was used to estimate adherence to the iCCM algorithm, VHW-level quality (based on adherence to the iCCM protocol), and change over time in quality of care (using generalized estimating equations regression modelling). For each of 23 VHWs, 25 patient visits were randomly selected from a 2-year period after iCCM care initiation. In these visits, 97% (150) of patients with diarrhoea were treated with oral rehydration and zinc, 95% (216) of patients with pneumonia were treated with amoxicillin, and 94% (240) of patients with malaria were treated with artemisinin-based combination therapy or rectal artesunate. However, only 44% (44) of patients with a negative rapid test for malaria were appropriately referred to a health facility. Overall, 75% (434) of patients received all the correct evaluation and management steps. Only 9 (39%) of the 23 VHWs met the pre-determined LQAS threshold for high-quality care over the 2-year observation period. Quality of care increased significantly in the first 6 months after initiation of iCCM services (p = 0.003), and then plateaued during months 7-24. Quality of care was high for uncomplicated malaria, pneumonia and diarrhoea. Overall quality of care was lower, in part because VHWs often did not follow the guidelines to refer patients with fever who tested negative for malaria. Quality of care appears to improve in the initial months after iCCM implementation, as VHWs gain initial experience in iCCM care.
Bayesian Latent Class Models in Malaria Diagnosis
Gonçalves, Luzia; Subtil, Ana; de Oliveira, M. Rosário; do Rosário, Virgílio; Lee, Pei-Wen; Shaio, Men-Fang
2012-01-01
Aims The main focus of this study is to illustrate the importance of the statistical analysis in the evaluation of the accuracy of malaria diagnostic tests, without admitting a reference test, exploring a dataset (3317) collected in São Tomé and Príncipe. Methods Bayesian Latent Class Models (without and with constraints) are used to estimate the malaria infection prevalence, together with sensitivities, specificities, and predictive values of three diagnostic tests (RDT, Microscopy and PCR), in four subpopulations simultaneously based on a stratified analysis by age groups (, 5 years old) and fever status (febrile, afebrile). Results In the afebrile individuals with at least five years old, the posterior mean of the malaria infection prevalence is 3.2% with a highest posterior density interval of [2.3–4.1]. The other three subpopulations (febrile 5 years, afebrile or febrile children less than 5 years) present a higher prevalence around 10.3% [8.8–11.7]. In afebrile children under-five years old, the sensitivity of microscopy is 50.5% [37.7–63.2]. In children under-five, the estimated sensitivities/specificities of RDT are 95.4% [90.3–99.5]/93.8% [91.6–96.0] – afebrile – and 94.1% [87.5–99.4]/97.5% [95.5–99.3] – febrile. In individuals with at least five years old are 96.0% [91.5–99.7]/98.7% [98.1–99.2] – afebrile – and 97.9% [95.3–99.8]/97.7% [96.6–98.6] – febrile. The PCR yields the most reliable results in four subpopulations. Conclusions The utility of this RDT in the field seems to be relevant. However, in all subpopulations, data provide enough evidence to suggest caution with the positive predictive values of the RDT. Microscopy has poor sensitivity compared to the other tests, particularly, in the afebrile children less than 5 years. This type of findings reveals the danger of statistical analysis based on microscopy as a reference test. Bayesian Latent Class Models provide a powerful tool to evaluate malaria diagnostic tests, taking into account different groups of interest. PMID:22844405
Singh, Neeru; Bharti, Praveen K.; Singh, Mrigendra P.; Mishra, Sweta; Shukla, Man M.; Sharma, Ravendra K.; Singh, Rajesh K.
2013-01-01
Background Malaria presents a diagnostic challenge in areas where both Plasmodium falciparum and P.vivax are co-endemic. Bivalent Rapid Diagnostic tests (RDTs) showed promise as diagnostic tools for P.falciparum and P.vivax. To assist national malaria control programme in the selection of RDTs, commercially available seven malaria RDTs were evaluated in terms of their performance with special reference to heat stability. Methodology/Principal Findings This study was undertaken in four forested districts of central India (July, 2011– March, 2012). All RDTs were tested simultaneously in field along with microscopy as gold standard. These RDTs were stored in their original packing at 25°C before transport to the field or they were stored at 35°C and 45°C upto 100 days for testing the performance of RDTs at high temperature. In all 2841 patients with fever were screened for malaria of which 26% were positive for P.falciparum, and 17% for P.vivax. The highest sensitivity of any RDT for P.falciparum was 98% (95% CI; 95.9–98.8) and lowest sensitivity was 76% (95% CI; 71.7–79.6). For P.vivax highest and lowest sensitivity for any RDT was 80% (95% CI; 94.9 - 83.9) and 20% (95% CI; 15.6–24.5) respectively. Heat stability experiments showed that most RDTs for P.falciparum showed high sensitivity at 45°C upto 90 days. While for P.vivax only two RDTs maintained good sensitivity upto day 90 when compared with RDTs kept at room temperature. Agreement between observers was excellent for positive and negative readings for both P.falciparum and P.vivax (Kappa >0.6–0.9). Conclusion This is first field evaluation of RDTs regarding their temperature stability. Although RDTs are useful as diagnostic tool for P.falciparum and P.vivax even at high temperature, the quality of RDTs should be regulated and monitored more closely. PMID:23472135
[Current malaria situation in the Republic of Kazakhstan].
Bismil'din, F B; Shapieva, Zh Zh; Anpilova, E N
2001-01-01
The Republic of Kazakhstan is situated in the northern hemisphere on the boundary of two continents--Europe and Asia--at a longitude of 45 degrees E--87 degrees E and a latitude of 40 degrees N--55 degrees N. The total area of the republic is 2,724,900 square kilometers. Kazakhstan shares a border with the Russian Federation to the north-west, north and east: the border between the two countries is almost 6500 km long. To the south, Kazakhstan shares a border with the Central Asian states of Turkmenistan (380 km), Uzbekistan (2300 km) and Kyrgystan (980 km). To the south-east, it shares a border with China (1460 km): to the west is the Caspian Sea (600 km). Thus, the total length of Kazakhstan's external borders is 12,000 km. Because of the geographical, natural and climatic features prevailing throughout most of the Republic, there is a potential danger that local transmission of malaria may begin again if the disease is imported from abroad. The areas most at risk are the Panfilov and Uigur raions of Almaty oblast, which share a border with malaria-endemic regions of China, and the Saryagash and Makhtaral' raions of South Kazakhstan oblast along the border with Uzbekistan. The Government of the Republic of Kazakhstan places particular emphasis on malaria prevention and control, taking into account the historical data about the prevalence of malaria from the late 1920s to the early 1940s, amounting to hundreds of thousands of cases every year. Government Decree No. 840 entitled "Urgent Measures to Protect the Population from Blood-Sucking Insects and Ticks Dangerous to Humans", which lays down measures for the control of malarial mosquitoes in the areas most susceptible to malaria resurgence, was adopted in 1996. The Ministry of Health of the Republic of Kazakhstan issued instructions in 1998 and 1999 which were designed to motivate all health facilities in the field of malaria prevention and control. At present, as part of the directives developed by the Republican Health Epidemiology Posts, work is being done on the planning of malaria control measures in Kazakhstan for the period 2001-2003. In 1994 a programme of epidemiological malaria surveillance was introduced, which has enabled us to improve our monitoring of the epidemiological situation of malaria. The number of cases of imported malaria has declined: in 1997, there were 102 cases, in 1998-87 and in 1999-52. There have been occasional local cases in some years, and in 1998 there were four local cases in the south and north-west of the country: two cases in Almaty oblast, one case in Zhambyl oblast and one in West Kazakhstan oblast (see Fig. 1). Most malaria infections are imported from Tajikistan and Azerbaijan, with occasional cases from Pakistan, India, Turkey and Afghanistan. Analysis of the occupational status of patients shows that around 45% are military personnel who have served on the Tajik-Afghan border. The others are refugees, merchants, unemployed people or students. The overall aetiological structure of malaria cases is dominated by P. vivax malaria. For example, in 1999, there were 48 cases of P. vivax malaria (90.5% of the total), one case of tropical malaria (1.9%), two cases of quartan malaria (3.8%) and two cases of P. vivax + P. malariae (3.8%). In order to prevent indigenous malaria occurring within the country, a system of malaria screening has been set up; screening is carried out every year on groups who have visited neighbouring or more distant malaria-endemic countries and for patients with a persistent fever who are suspected of suffering from malaria. The area of water throughout the country within communities or within a 3-5 km radius of them which is susceptible to colonization by the Anopheles mosquito amounts to over 5000 hectares, according to the certification system in force. In addition, approximately 70,000 hectares in three oblasts used for rice cultivation also provide a habitat for Anopheles. The main malaria vector, An. messeae, is found throughout the country: in a few areas An. hyrcanus and An. claviger are found and, in the south, An. pulcherrimus. Data from recent years show the presence of An. superpictus, An. plumbeus and An. algeriensis. In 1999, from data collected during systematic observations of the phenology and seasonal variations in the number of Anopheles at 114 observation posts, the average seasonal numerical indicators for the mosquito imago reached a maximum of between 21 and 46.5 adult mosquitoes per cattle shed, up to 2.7-3.3 adult mosquitoes per residential building and 30-67.3 larvae per square metre of surface water. According to the results of large scale trapping programmes (486 communities were screened in 1999), the maximum value of the numerical indicator was 16.8-74.1 adult mosquitoes per cattle shed and 4.1-3.8 adult mosquitoes per residential building. In 1999, compared with 1998, the number of malarial mosquitoes detected throughout the country declined encouragingly, or stayed at the same level, which is one of the factors responsible for the country's favourable epidemiological situation with regard to malaria. According to data going back many years, there has been a significant increase in the number of mosquitoes at some observation posts in Almaty, East Kazakhstan and Kyzlorda oblasts. There is a tendency everywhere for the numbers of imagos detected in residential buildings to increase, which presents a definite epidemiological risk that indigenous malaria will re-emerge if the disease is imported into Kazakhstan from countries which suffer from it. If we consider the species of mosquito present in the country and the temperature factor (the number of days in the year when the average daily temperature is over 16 degrees C), the country can be divided, on the basis of incomplete 1999 data, into zones at very high risk of re-emergence of malaria (Almaty, Zhambyl and South Kazakhstan oblasts), high risk (Karaganda oblasts and Almaty city), medium risk (Aktyubinsk and Akmolinsk oblasts), and low risk (Kostanay oblast). The malaria risk of the other oblasts has been calculated using data from earlier years (map attached) [Translator's Note: map missing]. Preventive malaria control measures in Kazakhstan are divided into three categories to suit three different groups of communities. One hundred and seventy-nine communities have been allocated to the first group, at high risk of malaria resurgence; 1377 communities to the second group, at medium risk; and the remainder to the third group, at little or no risk of malaria resurgence. The following factors were used to categorize communities according to the risk that malaria might become reestablished if the disease should be imported from elsewhere: species of malarial mosquito present; changes in mosquito numbers and in the area of water susceptible to population by Anopheles; temperature conditions and, consequently, the length of the malaria transmission season and the season of effective susceptibility of the mosquito to infection; population migration; quality of laboratory testing for the diagnosis of malaria. Measures aimed at the destruction of mosquitoes are intended to reduce the numbers of Anopheles in the communities most at risk of malaria resurgence, i.e. those in group 1 above and the actual foci of malaria infection. Because of the economic crisis and financial difficulties, fewer areas have been treated in recent years. In 1999, 1387 hectares of water and 450,000 square metres of buildings were treated (see Fig. 2). Measures to control biting flies in health establishments, recreation areas, etc. Certainly also help to protect people from malarial mosquitoes. In 1999, 12,501 hectares of water and land were treated from the ground or the air (see Fig. 3). In the present situation, the main reasons for the difficulties affecting the malaria control and prevention campaign are as follows. Staff numbers in the Republic's parasitology service have been unjustifiably reduced. For example, the number of entomologists and entomology assistants employed is 58% and 48%, respectively, of the number laid down in Ministry of Health directives. At the health epidemiology posts, the number of disinfectors has been reduced to a minimum, and practically all engineer/water engineer posts have been abolished. The country does not possess the necessary education base for initial training or continuing education of staff for the parasitology service. The lack of basic scientific information about the problems of malaria control and prevention and parasitology in general. There is no research to test or introduce the most effective, safe and low-cost malaria control products and insecticides. The methodological literature required to use certain modern insecticides is not available. Entomologists are not provided with specialist insect control equipment. Entomological surveys are left incomplete because of shortages of transport and fuel at the health epidemiology posts. Because of the economic crisis and the high cost of the radical water engineering measures necessary to combat malaria, these measures cannot be implemented on the scale required. The equipment and materials stocks of the parasitology laboratories are highly inadequate: there is a lack of modern laboratory equipment, as well as a lack of opportunities for high-level professional training for staff. The exchange of information between the CIS countries is unsatisfactory, and there is no common information space: nor is there any systematic data available from other foreign countries. In the period 2000-2003, Kazakhstan plans to carry out malaria control activities (mosquito destruction) over an area of 2000 hectares of water and 1.5 million square metres of buildings.
Plasmodium malariae and Plasmodium ovale infections in the China-Myanmar border area.
Li, Peipei; Zhao, Zhenjun; Xing, Hua; Li, Wenli; Zhu, Xiaotong; Cao, Yaming; Yang, Zhaoqing; Sattabongkot, Jetsumon; Yan, Guiyun; Fan, Qi; Cui, Liwang
2016-11-15
The Greater Mekong Subregion is aiming to achieve regional malaria elimination by 2030. Though a shift in malaria parasite species predominance by Plasmodium vivax has been recently documented, the transmission of the two minor Plasmodium species, Plasmodium malariae and Plasmodium ovale spp., is poorly characterized in the region. This study aims to determine the prevalence of these minor species in the China-Myanmar border area and their genetic diversity. Epidemiology study was conducted during passive case detection in hospitals and clinics in Myanmar and four counties in China along the China-Myanmar border. Cross-sectional surveys were conducted in villages and camps for internally displaced persons to determine the prevalence of malaria infections. Malaria infections were diagnosed initially by microscopy and later in the laboratory using nested PCR for the SSU rRNA genes. Plasmodium malariae and P. ovale infections were confirmed by sequencing the PCR products. The P. ovale subtypes were determined by sequencing the Pocytb, Pocox1 and Pog3p genes. Parasite populations were evaluated by PCR amplification and sequencing of the MSP-1 genes. Antifolate sensitivity was assessed by sequencing the dhfr-ts and dhps genes from the P. malariae and P. ovale isolates. Analysis of 2701 blood samples collected from the China-Myanmar border by nested PCR targeting the parasite SSU rRNA genes identified 561 malaria cases, including 161 Plasmodium falciparum, 327 P. vivax, 66 P. falciparum/P. vivax mixed infections, 4 P. malariae and 3 P. ovale spp. P. vivax and P. falciparum accounted for >60 and ~30% of all malaria cases, respectively. In comparison, the prevalence of P. malariae and P. ovale spp. was very low and only made up ~1% of all PCR-positive cases. Nevertheless, these two species were often misidentified as P. vivax infections or completely missed by microscopy even among symptomatic patients. Phylogenetic analysis of the SSU rRNA, Pocytb, Pocox1 and Pog3p genes confirmed that the three P. ovale spp. isolates belonged to the subtype P. ovale curtisi. Low-level genetic diversity was detected in the MSP-1, dhfr and dhps genes of these minor parasite species, potentially stemming from the low prevalence of these parasites preventing their mixing. Whereas most of the dhfr and dhps positions equivalent to those conferring antifolate resistance in P. falciparum and P. vivax were wild type, a new mutation S113C corresponding to the S108 position in pfdhfr was identified in two P. ovale curtisi isolates. The four human malaria parasite species all occurred sympatrically at the China-Myanmar border. While P. vivax has become the predominant species, the two minor parasite species also occurred at very low prevalence but were often misidentified or missed by conventional microscopy. These minor parasite species displayed low levels of polymorphisms in the msp-1, dhfr and dhps genes.
2010-01-01
Background In south-eastern Senegal, malaria and onchocerciasis are co-endemic. Onchocerciasis in this region has been controlled by once or twice yearly mass drug administration (MDA) with ivermectin (IVM) for over fifteen years. Since laboratory-raised Anopheles gambiae s.s. are susceptible to ivermectin at concentrations found in human blood post-ingestion of IVM, it is plausible that a similar effect could be quantified in the field, and that IVM might have benefits as a malaria control tool. Methods In 2008 and 2009, wild-caught blood fed An. gambiae s.l. mosquitoes were collected from huts of three pairs of Senegalese villages before and after IVM MDAs. Mosquitoes were held in an insectary to assess their survival rate, subsequently identified to species, and their blood meals were identified. Differences in mosquito survival were statistically analysed using a Glimmix model. Lastly, changes in the daily probability of mosquito survivorship surrounding IVM MDAs were calculated, and these data were inserted into a previously developed, mosquito age-structured model of malaria transmission. Results Anopheles gambiae s.s. (P < 0.0001) and Anopheles arabiensis (P = 0.0191) from the treated villages had significantly reduced survival compared to those from control villages. Furthermore, An gambiae s.s. caught 1-6 days after MDA in treated villages had significantly reduced survival compared to control village collections (P = 0.0003), as well as those caught pre-MDA (P < 0.0001) and >7 days post-MDA (P < 0.0001). The daily probability of mosquito survival dropped >10% for the six days following MDA. The mosquito age-structured model of malaria transmission demonstrated that a single IVM MDA would reduce malaria transmission (Ro) below baseline for at least eleven days, and that repeated IVM MDAs would result in a sustained reduction in malaria Ro. Conclusions Ivermectin MDA significantly reduced the survivorship of An. gambiae s.s. for six days past the date of the MDA, which is sufficient to temporarily reduce malaria transmission. Repeated IVM MDAs could be a novel and integrative malaria control tool in areas with seasonal transmission, and which would have simultaneous impacts on neglected tropical diseases in the same villages. PMID:21171970
An overview of malaria transmission from the perspective of Amazon Anopheles vectors
Pimenta, Paulo FP; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana PM; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe AC; Oliveira, Giselle A; Campos, Keillen MM; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José BP; Barbosa, Maria GV; Lacerda, Marcus VG; Tadei, Wanderli P; Secundino, Nágila FC
2015-01-01
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence. PMID:25742262
[Microbiological diagnosis of imported malaria].
Torrús, Diego; Carranza, Cristina; Manuel Ramos, José; Carlos Rodríguez, Juan; Rubio, José Miguel; Subirats, Mercedes; Ta-Tang, Thuy-Huong
2015-07-01
Current diagnosis of malaria is based on the combined and sequential use of rapid antigen detection tests (RDT) of Plasmodium and subsequent visualization of the parasite stained with Giemsa solution in a thin and thick blood smears. If an expert microscopist is not available, should always be a sensitive RDT to rule out infection by Plasmodium falciparum, output the result immediately and prepare thick smears (air dried) and thin extensions (fixed with methanol) for subsequent staining and review by an expert microscopist. The RDT should be used as an initial screening test, but should not replace microscopy techniques, which should be done in parallel. The diagnosis of malaria should be performed immediately after clinical suspicion. The delay in laboratory diagnosis (greater than 3 hours) should not prevent the initiation of empirical antimalarial treatment if the probability of malaria is high. If the first microscopic examination and RDT are negative, they must be repeated daily in patients with high suspicion. If suspicion remains after three negative results must be sought the opinion of an tropical diseases expert. Genomic amplification methods (PCR) are useful as confirmation of microscopic diagnosis, to characterize mixed infections undetectable by other methods, and to diagnose asymptomatic infections with submicroscopic parasitaemia. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.
An overview of malaria transmission from the perspective of Amazon Anopheles vectors.
Pimenta, Paulo F P; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana P M; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe A C; Oliveira, Giselle A; Campos, Keillen M M; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José B P; Barbosa, Maria G V; Lacerda, Marcus V G
2015-02-01
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.
A World Malaria Map: Plasmodium falciparum Endemicity in 2007
Hay, Simon I; Guerra, Carlos A; Gething, Peter W; Patil, Anand P; Tatem, Andrew J; Noor, Abdisalan M; Kabaria, Caroline W; Manh, Bui H; Elyazar, Iqbal R. F; Brooker, Simon; Smith, David L; Moyeed, Rana A; Snow, Robert W
2009-01-01
Background Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007. Methods and Findings A total of 8,938 P. falciparum parasite rate (PfPR) surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2–10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia), 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+), and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR2−10 ≤ 5%). The vast majority (88%) of those living under stable risk in CSE Asia were also in this low endemicity class; a small remainder (11%) were in the intermediate endemicity class (PfPR2−10 > 5 to < 40%); and the remaining fraction (1%) in high endemicity (PfPR2−10 ≥ 40%) areas. High endemicity was widespread in the Africa+ region, where 0.35 billion people are at this level of risk. Most of the rest live at intermediate risk (0.20 billion), with a smaller number (0.11 billion) at low stable risk. Conclusions High levels of P. falciparum malaria endemicity are common in Africa. Uniformly low endemic levels are found in the Americas. Low endemicity is also widespread in CSE Asia, but pockets of intermediate and very rarely high transmission remain. There are therefore significant opportunities for malaria control in Africa and for malaria elimination elsewhere. This 2007 global P. falciparum malaria endemicity map is the first of a series with which it will be possible to monitor and evaluate the progress of this intervention process. PMID:19323591
Ashley, Elizabeth A; Touabi, Malek; Ahrer, Margareta; Hutagalung, Robert; Htun, Khayae; Luchavez, Jennifer; Dureza, Christine; Proux, Stephane; Leimanis, Mara; Lwin, Myo Min; Koscalova, Alena; Comte, Eric; Hamade, Prudence; Page, Anne-Laure; Nosten, François; Guerin, Philippe J
2009-01-01
Background In areas where non-falciparum malaria is common rapid diagnostic tests (RDTs) capable of distinguishing malaria species reliably are needed. Such tests are often based on the detection of parasite lactate dehydrogenase (pLDH). Methods In Dawei, southern Myanmar, three pLDH based RDTs (CareStart™ Malaria pLDH (Pan), CareStart™ Malaria pLDH (Pan, Pf) and OptiMAL-IT®)were evaluated in patients presenting with clinically suspected malaria. Each RDT was read independently by two readers. A subset of patients with microscopically confirmed malaria had their RDTs repeated on days 2, 7 and then weekly until negative. At the end of the study, samples of study batches were sent for heat stability testing. Results Between August and November 2007, 1004 patients aged between 1 and 93 years were enrolled in the study. Slide microscopy (the reference standard) diagnosed 213 Plasmodium vivax (Pv) monoinfections, 98 Plasmodium falciparum (Pf) mono-infections and no malaria in 650 cases. The sensitivities (sens) and specificities (spec), of the RDTs for the detection of malaria were- CareStart Malaria™ pLDH (Pan) test: sens 89.1% [CI95 84.2-92.6], spec 97.6% [CI95 96.5-98.4] OptiMal-IT®: Pf+/- other species detection: sens 95.2% [CI95 87.5-98.2], spec 94.7% [CI95 93.3-95.8]; non-Pf detection alone: sens 89.6% [CI95 83.6-93.6], spec 96.5% [CI95 94.8-97.7] CareStart Malaria™ pLDH (Pan, Pf): Pf+/- other species: sens 93.5% [CI9585.4-97.3], spec 97.4% [95.9-98.3]; non-Pf: sens 78.5% [CI9571.1-84.4], spec 97.8% [CI95 96.3-98.7] Inter-observer agreement was excellent for all tests (kappa > 0.9). The median time for the RDTs to become negative was two days for the CareStart™ Malaria tests and seven days for OptiMAL-IT®. Tests were heat stable up to 90 days except for OptiMAL-IT® (Pf specific pLDH stable to day 20 at 35°C). Conclusion None of the pLDH-based RDTs evaluated was able to detect non-falciparum malaria with high sensitivity, particularly at low parasitaemias. OptiMAL-IT® performed best overall and would perform best in an area of high malaria prevalence among screened fever cases. However, heat stability was unacceptable and the number of steps to perform this test is a significant drawback in the field. A reliable, heat-stable, highly sensitive RDT, capable of diagnosing all Plasmodium species has yet to be identified. PMID:19860920
[Tasks and duties of veterinary reference laboratories for food borne zoonoses].
Ellerbroek, Lüppo; Alter, T; Johne, R; Nöckler, K; Beutin, L; Helmuth, R
2009-02-01
Reference laboratories are of central importance for consumer protection. Field expertise and high scientific competence are basic requirements for the nomination of a national reference laboratory. To ensure a common approach in the analysis of zoonotic hazards, standards have been developed by the reference laboratories together with national official laboratories on the basis of Art. 33 of Directive (EG) No. 882/2004. Reference laboratories function as arbitrative boards in the case of ambivalent or debatable results. New methods for detection of zoonotic agents are developed and validated to provide tools for analysis, e. g., in legal cases, if results from different parties are disputed. Besides these tasks, national reference laboratories offer capacity building and advanced training courses and control the performance of ring trials to ensure consistency in the quality of analyses in official laboratories. All reference laboratories work according to the ISO standard 17025 which defines the grounds for strict laboratory quality rules and in cooperation with the respective Community Reference Laboratories (CRL). From the group of veterinary reference laboratories for food-borne zoonoses, the national reference laboratories are responsible for Listeria monocytogenes, for Campylobacter, for the surveillance and control of viral and bacterial contamination of bivalve molluscs, for E. coli, for the performance of analysis and tests on zoonoses (Salmonella), and from the group of parasitological zoonotic agents, the national reference laboratory for Trichinella.
Ilunga-Ilunga, Félicien; Levêque, Alain; Ngongo, Léon Okenge; Laokri, Samia; Dramaix, Michèle
2015-03-01
In the Democratic Republic of Congo (DRC), few studies have focused on treatment-seeking paths selected by caretakers for the management of severe childhood malaria in an urban environment. The present study aims at describing the treatment-seeking paths according to the characteristics of households, as well as the subsequent impact on pre-hospitalisation delay and malarial fatality and on the main syndromes associated with severe childhood malaria. This descriptive study included data collected at nine hospitals in Kinshasa between January and November 2011. A total of 1,350 children, under 15 years of age and hospitalised for severe malaria, were included in the study. Regarding the management of malaria, 31.5% of households went directly to the health centre or hospital while 68.5% opted for self-medication, church and/or traditional healing therapy. The most frequent first-line option was self-medication, adopted by more than 61.5% of households. Nevertheless, rational self-medication using antimalarial drugs recommended by the WHO (artemisinin-based combinations) was reported for only 5.5% of children. Only 12.5% of households combined 2 or 3 traditional options. The following criteria influenced the choice of a modern vs. traditional path: household socioeconomic level, residential environment, maternal education level and religious beliefs. When caretakers opted for traditional healing therapy, the pre-hospitalisation delay was longer and the occurrence of respiratory distress, severe anaemia and mortality was higher. The implementation of a malaria action plan in the Democratic Republic of Congo should take into account the diversity and pluralistic character of treatment-seeking behaviours in order to promote the most appropriate options (hospital and rational self-medication) and to avoid detrimental outcomes.
Ilunga-Ilunga, Félicien; Levêque, Alain; Ngongo, Léon Okenge; Laokri, Samia; Dramaix, Michèle
2015-01-01
Background: In the Democratic Republic of Congo (DRC), few studies have focused on treatment-seeking paths selected by caretakers for the management of severe childhood malaria in an urban environment. The present study aims at describing the treatment-seeking paths according to the characteristics of households, as well as the subsequent impact on pre-hospitalisation delay and malarial fatality and on the main syndromes associated with severe childhood malaria. Methods: This descriptive study included data collected at nine hospitals in Kinshasa between January and November 2011. A total of 1,350 children, under 15 years of age and hospitalised for severe malaria, were included in the study. Results: Regarding the management of malaria, 31.5% of households went directly to the health centre or hospital while 68.5% opted for self-medication, church and/or traditional healing therapy. The most frequent first-line option was self-medication, adopted by more than 61.5% of households. Nevertheless, rational self-medication using antimalarial drugs recommended by the WHO (artemisinin-based combinations) was reported for only 5.5% of children. Only 12.5% of households combined 2 or 3 traditional options. The following criteria influenced the choice of a modern vs. traditional path: household socioeconomic level, residential environment, maternal education level and religious beliefs. When caretakers opted for traditional healing therapy, the pre-hospitalisation delay was longer and the occurrence of respiratory distress, severe anaemia and mortality was higher. Conclusion: The implementation of a malaria action plan in the Democratic Republic of Congo should take into account the diversity and pluralistic character of treatment-seeking behaviours in order to promote the most appropriate options (hospital and rational self-medication) and to avoid detrimental outcomes. PMID:25729313
Faure, Eric
2014-01-01
In nature, organisms are commonly infected by an assemblage of different parasite species or by genetically distinct parasite strains that interact in complex ways. Linked to co-infections, pathocoenosis, a term proposed by M. Grmek in 1969, refers to a pathological state arising from the interactions of diseases within a population and to the temporal and spatial dynamics of all of the diseases. In the long run, malaria was certainly one of the most important component of past pathocoenoses. Today this disease, which affects hundreds of millions of individuals and results in approximately one million deaths each year, is always highly endemic in over 20% of the world and is thus co-endemic with many other diseases. Therefore, the incidences of co-infections and possible direct and indirect interactions with Plasmodium parasites are very high. Both positive and negative interactions between malaria and other diseases caused by parasites belonging to numerous taxa have been described and in some cases, malaria may modify the process of another disease without being affected itself. Interactions include those observed during voluntary malarial infections intended to cure neuro-syphilis or during the enhanced activations of bacterial gastro-intestinal diseases and HIV infections. Complex relationships with multiple effects should also be considered, such as those observed during helminth infections. Moreover, reports dating back over 2000 years suggested that co- and multiple infections have generally deleterious consequences and analyses of historical texts indicated that malaria might exacerbate both plague and cholera, among other diseases. Possible biases affecting the research of etiological agents caused by the protean manifestations of malaria are discussed. A better understanding of the manner by which pathogens, particularly Plasmodium, modulate immune responses is particularly important for the diagnosis, cure, and control of diseases in human populations. PMID:25484866
2011-01-01
Background Insecticide-resistant mosquitoes are compromising the ability of current mosquito control tools to control malaria vectors. A proposed new approach for mosquito control is to use entomopathogenic fungi. These fungi have been shown to be lethal to both insecticide-susceptible and insecticide-resistant mosquitoes under laboratory conditions. The goal of this study was to see whether entomopathogenic fungi could be used to infect insecticide-resistant malaria vectors under field conditions, and to see whether the virulence and viability of the fungal conidia decreased after exposure to ambient African field conditions. Methods This study used the fungus Beauveria bassiana to infect the insecticide-resistant malaria vector Anopheles gambiae s.s (Diptera: Culicidae) VKPER laboratory colony strain. Fungal conidia were applied to polyester netting and kept under West African field conditions for varying periods of time. The virulence of the fungal-treated netting was tested 1, 3 and 5 days after net application by exposing An. gambiae s.s. VKPER mosquitoes in WHO cone bioassays carried out under field conditions. In addition, the viability of B. bassiana conidia was measured after up to 20 days exposure to field conditions. Results The results show that B. bassiana infection caused significantly increased mortality with the daily risk of dying being increased by 2.5× for the fungus-exposed mosquitoes compared to the control mosquitoes. However, the virulence of the B. bassiana conidia decreased with increasing time spent exposed to the field conditions, the older the treatment on the net, the lower the fungus-induced mortality rate. This is likely to be due to the climate because laboratory trials found no such decline within the same trial time period. Conidial viability also decreased with increasing exposure to the net and natural abiotic environmental conditions. After 20 days field exposure the conidial viability was 30%, but the viability of control conidia not exposed to the net or field conditions was 79%. Conclusions This work shows promise for the use of B. bassiana fungal conidia against insecticide-resistant mosquitoes in the field, but further work is required to examine the role of environmental conditions on fungal virulence and viability with a view to eventually making the fungal conidia delivery system more able to withstand the ambient African climate. PMID:21288359
Ndong, Ignatius C; Reenen, Mari van; Boakye, Daniel A; Mbacham, Wilfred F; Grobler, Anne F
2015-10-01
National malaria treatment policies are devised to guide health professionals and to facilitate diagnosis and case management. Following the recommendations of the WHO, Cameroon changed its malaria treatment policy from monotherapy to artemisinin-based combination therapy (ACT) as the first-line treatment for uncomplicated malaria. We report an investigation into trends of case management following this change in policy. Data was collected retrospectively, through consultation and perusal of laboratory and prescription registers of the Mbakong Health Centre. Analysis of data was done using SPSS and SAS Statistics. Data presented herein demonstrate that from 2006 to 2012, a total of 2484 (58.7%) of the total prescriptions included an anti-malarial, 1989 (47.0%) included an antibiotic and 1935(45.7%) included an antipyretic. The anti-malarials prescribed were Anti-malaria combination therapy (ACT) - 1216 (47.6%), quinine 1044 (40.8%) or SP 296 (11.6%). Of the 1216 patients prescribed an ACT, 441(36.3%) had a positive malaria parasite confirmation, 746 (61.3%) were negative for plasmodium. Overall, 29 patients (2.4%) were treated either with an ACT without any test performed. Quinine intake was recorded in 566 (54.2%) patients positive for plasmodium. ACT prescription increased from 23% in 2007 to between 44 and 45% in 2008-2009. During this period there was a corresponding drop in the prescription of quinine from 38% in 2007 to 13% in 2009 (r=-0.43, p>0.05). Sulphadoxine-Pyrimethamine (SP) was restrictively prescribed to women of childbearing age (97.0%) after 2008. Antibiotics prescription dropped from 53.7% to 39.3% from 2010 to 2012. The odds of being prescribed an antibiotic was significantly higher in patients with a malaria negative result compared to malaria positive patients (OR=6.12, CI 4.74-7.91, p<0.00001). Overall, there is an over treatment of malaria, thus departing from the WHO guidelines of appropriate treatment. Although there is an overall increase in the prescription of ACT, less prescription of quinine and a noticeable restrain from prescription of SP to febrile cases, the old practice was still rampant. There is need for healthcare workers to adhere to guidelines in order to enhance the rational use of drugs to achieve appropriate treatment of uncomplicated malaria according to WHO guidelines. Copyright © 2015 Elsevier B.V. All rights reserved.
Kalinowska-Nowak, Anna; Bociaga-Jasik, Monika; Leśniak, Maciej; Mach, Tomasz; Garlicki, Aleksander
2012-01-01
Actually in Poland malaria is not present as an endemic disease, but is one of the most common "imported" diseases. In its mild form it is an awkward illness with recurring fever, whereas the more severe form, which is caused by Plasmodium falciparum can be life-threatening. Epidemiological and clinical analysis on malaria-infected patients hospitalized in the Department of Infectious Diseases in Cracow from 1996 to 2010. Interview, physical examination, laboratory tests and usg of the abdomen were performed among all patients. Diagnosis was performed by malaria parasites detection in direct microscopic observation of thick and thin blood films. Patients were treated with antimalarial drugs according to parasites species and previously used prophylaxis. 33 people with malaria, 26 men (79%) and 7 women (21%), aged 24-71 years were hospitalized. Annually 1 to 4 patients were treated, but in year 2008 - 7 patients. 18 persons (54%) were travelling as a tourists to the endemic regions, including 15 persons on short trips (up to 1 month). 15 persons (46%) were involved in business-trips and missions with over 2 years stay. Most patients visited Africa (25 persons), 4 travelled to Oceania, 3 to Asia and 1 to South America. Only 3 patients (9%) used recommended antimalarial prophylaxis. Symptoms of malaria usually appeared a few days after returning to Poland, 1 woman presented the symptoms after 1 year, 4 patients were presenting the symptoms already in the tropics. 25 persons (76%) had malaria for the first time. Clinical symptoms among patients were: fever preceded by shivering (100%), sweating (94%), muscles and joints pain (84%), nausea and vomiting (24%), diarrhoea (12%), jaundice (12%), cough (6%), coma (6%), multiorgan failure (6%). 12 persons were diagnosed with hepatomegaly, 21 with splenomegaly, 9 with hemolytic anaemia, 18 with thrombocytopenia and 14 with elevation of liver enzymes. P. falciparum infection was proven in 15 patients (46%), P. vivax in 11 patients (33%), P. ovale in 1 patient (3%), mixed infection (P. falciparum and P. ovale) in 6 patients (18%). In the treatment of P. falciparum infection quinine with doxycycline (18 patients) or mefloquine (2 patients) were used, in other cases chloroquine with following primaquine. 32 patients recovered, 1 patient with cerebral malaria died. Malaria was most commonly diagnosed among tourists staying for short period of time in an endemic area. Travelers did not use accurate antimalarial prophylaxis. Malaria must be excluded as a potential diagnosis among all fever suffering persons returning from the tropics.
Ranadive, Nikhil; Kunene, Simon; Darteh, Sarah; Ntshalintshali, Nyasatu; Nhlabathi, Nomcebo; Dlamini, Nomcebo; Chitundu, Stanley; Saini, Manik; Murphy, Maxwell; Soble, Adam; Schwartz, Alanna; Greenhouse, Bryan
2017-01-01
Abstract Background. The performance of Plasmodium falciparum–specific histidine-rich protein 2–based rapid diagnostic tests (RDTs) to evaluate suspected malaria in low-endemicity settings has not been well characterized. Methods. Using dried blood spot samples from patients with suspected malaria at 37 health facilities from 2012 to 2014 in the low-endemicity country of Swaziland, we investigated the diagnostic accuracy of histidine-rich protein 2–based RDTs using qualitative polymerase chain reaction (PCR) (nested PCR targeting the cytochrome b gene) and quantitative PCR as reference standards. To explore reasons for false-negative and/or false-positive results, we used pfhrp2/3-specific PCR and logistic regression analyses of potentially associated epidemiological factors. Results. From 1353 patients, 93.0% of RDT-positive (n = 185) and 31.2% of RDT-negative samples (n = 340) were available and selected for testing. Compared with nested PCR, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of RDTs were 51.7%, 94.1%, 67.3%, and 89.1%, respectively. After exclusion of samples with parasite densities <100/μL, which accounted for 75.7% of false-negative results and 33.3% of PCR-detectable infections, the sensitivity, specificity, PPV, and NPV were 78.8%, 93.7%, 62.3%, and 97.1%. Deletions of pfhrp2 were not detected. False-positivity was more likely during the second year and was not associated with demographics, recent malaria, health facility testing characteristics, or potential DNA degradation. Conclusions. In the low-transmission setting of Swaziland, we demonstrated low sensitivity of RDT for malaria diagnosis, owing to an unexpectedly high proportion of low-density infection among symptomatic subjects. The PPV was also low, requiring further investigation. A more accurate point-of-care diagnostic may be needed to support malaria elimination efforts. PMID:28369268
Abdullah, Saleh; Karunamoorthi, Kaliyaperumal
2016-01-01
Malaria inflicts humankind over centuries, and it remains as a major threat to both clinical medicine and public health worldwide. Though hemotherapy is a life-sustaining modality, it continues to be a possible source of disease transmission. Hence, hemovigilance is a matter of grave concern in the malaria-prone third-world countries. In order to pursue an effective research on hemovigilance, a comprehensive search has been conducted by using the premier academic-scientific databases, WHO documents, and English-language search engines. One hundred two appropriate articles were chosen for data extraction, with a particular reference to emerging pathogens transmitted through blood transfusion, specifically malaria. Blood donation screening is done through microscopic examination and immunological assays to improve the safety of blood products by detection major blood-borne pathogens, viz., HIV, HBV, HCV, syphilis, and malarial parasites. Transfusion therapy significantly dwindles the preventable morbidity and mortality attributed to various illnesses and diseases, particularly AIDS, tuberculosis, and malaria. Examination of thick and thin blood smears are performed to detect positivity and to identify the Plasmodium species, respectively. However, all of these existing diagnostic tools have their own limitations in terms of sensitivity, specificity, cost-effectiveness, and lack of resources and skilled personnel. Globally, despite the mandate need of screening blood and its components according to the blood-establishment protocols, it is seldom practiced in the low-income/poverty-stricken settings. In addition, each and every single phase of transfusion chain carries sizable inherent risks from donors to recipients. Interestingly, opportunities also lie ahead to enhance the safety of blood-supply chain and patients. It can be achieved through sustainable blood-management strategies like (1) appropriate usage of precise diagnostic tools/techniques, (2) promoting hemovigilance system, and (3) adopting novel processes of inactivation technology. Furthermore, selection of the zero-risk donors could pave the way to build a transmissible malaria-free world in the near future.
Sandeu, Maurice Marcel; Moussiliou, Azizath; Moiroux, Nicolas; Padonou, Gilles G.; Massougbodji, Achille; Corbel, Vincent; Tuikue Ndam, Nicaise
2012-01-01
Background An accurate method for detecting malaria parasites in the mosquito’s vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP) is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus. Methods Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin. Results The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6%) and specificity (98%), compared to ELISA-CSP as the referent standard. The agreement between both methods was “excellent” (κ = 0.8, P<0.05). The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P = 0, 2). All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed. Conclusion This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the utility of employing an accurate molecular diagnostic tool for detecting malaria parasites in field mosquito populations. PMID:23285168
Primaquine treatment and relapse in Plasmodium vivax malaria
2016-01-01
The relapsing peculiarity of Plasmodium vivax is one of the prime reasons for sustained global malaria transmission. Global containment of P. vivax is more challenging and crucial compared to other species for achieving total malaria control/elimination. Primaquine (PQ) failure and P. vivax relapse is a major global public health concern. Identification and characterization of different relapse strains of P. vivax prevalent across the globe should be one of the thrust areas in malaria research. Despite renewed and rising global concern by researchers on this once ‘neglected’ species, research and development on the very topic of P. vivax reappearance remains inadequate. Many malaria endemic countries have not mandated routine glucose-6-phosphate dehydrogenase (G6PD) testing before initiating PQ radical cure in P. vivax malaria. This results in either no PQ prescription or thoughtless prescription and administration of PQ to P. vivax patients by healthcare providers without being concerned about patients’ G6PD status and associated complications. It is imperative to ascertain the G6PD status and optimum dissemination of PQ radical cure in all cases of P. vivax malaria across the globe. There persists a compelling need to develop/validate a rapid, easy-to-perform, easy-to-interpret, quality controllable, robust, and cost-effective G6PD assay. High-dose PQ of both standard and short duration appears to be safe and more effective for preventing relapses and should be practiced among patients with normal G6PD activity. Multicentric studies involving adequately representative populations across the globe with reference PQ dose must be carried out to determine the true distribution of PQ failure. Study proving role of cytochrome P450-2D6 gene in PQ metabolism and association of CYP2D6 metabolizer phenotypes and P. vivax relapse is of prime importance and should be carried forward in multicentric systems across the globe. PMID:27077309
Awor, Phyllis; Miller, Jane; Peterson, Stefan
2014-12-01
Despite substantial investments made over the past 40 years in low income countries, governments cannot be viewed as the principal health care provider in many countries. Evidence on the role of the private sector in the delivery of health services is becoming increasingly available. In this study, we set out to determine the extent to which the private sector has been utilized in providing integrated care for sick children under 5 years of age with community-acquired malaria, pneumonia or diarrhoea. We reviewed the published literature for integrated community case management (iCCM) related experiences within both the public and private sector. We searched PubMed and Google/Google Scholar for all relevant literature until July 2014. The search terms used were "malaria", "pneumonia", "diarrhoea", "private sector" and "community case management". A total of 383 articles referred to malaria, pneumonia or diarrhoea in the private sector. The large majority of these studies (290) were only malaria related. Most of the iCCM-related studies evaluated introduction of only malaria drugs and/or diagnostics into the private sector. Only one study evaluated the introduction of drugs and diagnostics for malaria, pneumonia and diarrhoea in the private sector. In contrast, most iCCM-related studies in the public sector directly reported on community case management of 2 or more of the illnesses. While the private sector is an important source of care for children in low income countries, little has been done to harness the potential of this sector in improving access to care for non-malaria-associated fever in children within the community. It would be logical for iCCM programs to expand their activities to include the private sector to achieve higher population coverage. An implementation research agenda for private sector integrated care of febrile childhood illness needs to be developed and implemented in conjunction with private sector intervention programs.
Artemisinin derivatives for treating severe malaria.
McIntosh, H M; Olliaro, P
2000-01-01
Artemisinin derivatives may have advantages over quinoline drugs for treating severe malaria since they are fast acting and effective against quinine resistant malaria parasites. The objective of this review was to assess the effects of artemisinin drugs for severe and complicated falciparum malaria in adults and children. We searched the Cochrane Infectious Diseases Group trials register, Cochrane Controlled Trials Register, Medline, Embase, Science Citation Index, Lilacs, African Index Medicus, conference abstracts and reference lists of articles. We contacted organisations, researchers in the field and drug companies. Randomised and pseudo-randomised trials comparing artemisinin drugs (rectal, intramuscular or intravenous) with standard treatment, or comparisons between artemisinin derivatives in adults or children with severe or complicated falciparum malaria. Eligibility, trial quality assessment and data extraction were done independently by two reviewers. Study authors were contacted for additional information. Twenty three trials are included, allocation concealment was adequate in nine. Sixteen trials compared artemisinin drugs with quinine in 2653 patients. Artemisinin drugs were associated with better survival (mortality odds ratio 0.61, 95% confidence interval 0.46 to 0.82, random effects model). In trials where concealment of allocation was adequate (2261 patients), this was barely statistically significant (odds ratio 0.72, 95% CI 0.54 to 0.96, random effects model). In 1939 patients with cerebral malaria, mortality was also lower with artemisinin drugs overall (odds ratio 0.63, 95% CI 0.44 to 0.88, random effects model). The difference was not significant however when only trials reporting adequate concealment of allocation were analysed (odds ratio 0.78, 95% CI 0.55 to 1.10, random effects model) based on 1607 patients. No difference in neurological sequelae was shown. Compared with quinine, artemisinin drugs showed faster parasite clearance from the blood and similar adverse effects. The evidence suggests that artemisinin drugs are no worse than quinine in preventing death in severe or complicated malaria. No artemisinin derivative appears to be better than the others.
Ranadive, Nikhil; Kunene, Simon; Darteh, Sarah; Ntshalintshali, Nyasatu; Nhlabathi, Nomcebo; Dlamini, Nomcebo; Chitundu, Stanley; Saini, Manik; Murphy, Maxwell; Soble, Adam; Schwartz, Alanna; Greenhouse, Bryan; Hsiang, Michelle S
2017-05-01
The performance of Plasmodium falciparum-specific histidine-rich protein 2-based rapid diagnostic tests (RDTs) to evaluate suspected malaria in low-endemicity settings has not been well characterized. Using dried blood spot samples from patients with suspected malaria at 37 health facilities from 2012 to 2014 in the low-endemicity country of Swaziland, we investigated the diagnostic accuracy of histidine-rich protein 2-based RDTs using qualitative polymerase chain reaction (PCR) (nested PCR targeting the cytochrome b gene) and quantitative PCR as reference standards. To explore reasons for false-negative and/or false-positive results, we used pfhrp2/3-specific PCR and logistic regression analyses of potentially associated epidemiological factors. From 1353 patients, 93.0% of RDT-positive (n = 185) and 31.2% of RDT-negative samples (n = 340) were available and selected for testing. Compared with nested PCR, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of RDTs were 51.7%, 94.1%, 67.3%, and 89.1%, respectively. After exclusion of samples with parasite densities <100/μL, which accounted for 75.7% of false-negative results and 33.3% of PCR-detectable infections, the sensitivity, specificity, PPV, and NPV were 78.8%, 93.7%, 62.3%, and 97.1%. Deletions of pfhrp2 were not detected. False-positivity was more likely during the second year and was not associated with demographics, recent malaria, health facility testing characteristics, or potential DNA degradation. In the low-transmission setting of Swaziland, we demonstrated low sensitivity of RDT for malaria diagnosis, owing to an unexpectedly high proportion of low-density infection among symptomatic subjects. The PPV was also low, requiring further investigation. A more accurate point-of-care diagnostic may be needed to support malaria elimination efforts. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Jazuli, Farah; Lynd, Terence; Mah, Jordan; Klowak, Michael; Jechel, Dale; Klowak, Stefanie; Ovens, Howard; Sabbah, Sam; Boggild, Andrea K
2016-01-01
Background Fever in the returned traveller is a potential medical emergency warranting prompt attention to exclude life-threatening illnesses. However, prolonged evaluation in the emergency department (ED) may not be required for all patients. As a quality improvement initiative, we implemented an algorithm for rapid assessment of febrile travelers (RAFT) in an ambulatory setting. Methods Criteria for RAFT referral include: presentation to the ED, reported fever and travel to the tropics or subtropics within the past year. Exclusion criteria include Plasmodium falciparum malaria, and fulfilment of admission criteria such as unstable vital signs or significant laboratory derangements. We performed a time series analysis preimplementation and postimplementation, with primary outcome of wait time to tropical medicine consultation. Secondary outcomes included number of ED visits averted for repeat malaria testing, and algorithm adherence. Results From February 2014 to December 2015, 154 patients were seen in the RAFT clinic: 68 men and 86 women. Median age was 36 years (range 16–78 years). Mean time to RAFT clinic assessment was 1.2±0.07 days (range 0–4 days) postimplementation, compared to 5.4±1.8 days (range 0–26 days) prior to implementation (p<0.0001). The RAFT clinic averted 132 repeat malaria screens in the ED over the study period (average 6 per month). Common diagnoses were: traveller's diarrhoea (n=27, 17.5%), dengue (n=12, 8%), viral upper respiratory tract infection (n=11, 7%), chikungunya (n=10, 6.5%), laboratory-confirmed influenza (n=8, 5%) and lobar pneumonia (n=8, 5%). Conclusions In addition to provision of more timely care to ambulatory febrile returned travellers, we reduced ED bed-usage by providing an alternate setting for follow-up malaria screening, and treatment of infectious diseases manageable in an outpatient setting, but requiring specific therapy. PMID:27473947
Adeli, Khosrow; Higgins, Victoria; Seccombe, David; Collier, Christine P; Balion, Cynthia M; Cembrowski, George; Venner, Allison A; Shaw, Julie
2017-11-01
Reference intervals are widely used decision-making tools in laboratory medicine, serving as health-associated standards to interpret laboratory test results. Numerous studies have shown wide variation in reference intervals, even between laboratories using assays from the same manufacturer. Lack of consistency in either sample measurement or reference intervals across laboratories challenges the expectation of standardized patient care regardless of testing location. Here, we present data from a national survey conducted by the Canadian Society of Clinical Chemists (CSCC) Reference Interval Harmonization (hRI) Working Group that examines variation in laboratory reference sample measurements, as well as pediatric and adult reference intervals currently used in clinical practice across Canada. Data on reference intervals currently used by 37 laboratories were collected through a national survey to examine the variation in reference intervals for seven common laboratory tests. Additionally, 40 clinical laboratories participated in a baseline assessment by measuring six analytes in a reference sample. Of the seven analytes examined, alanine aminotransferase (ALT), alkaline phosphatase (ALP), and creatinine reference intervals were most variable. As expected, reference interval variation was more substantial in the pediatric population and varied between laboratories using the same instrumentation. Reference sample results differed between laboratories, particularly for ALT and free thyroxine (FT4). Reference interval variation was greater than test result variation for the majority of analytes. It is evident that there is a critical lack of harmonization in laboratory reference intervals, particularly for the pediatric population. Furthermore, the observed variation in reference intervals across instruments cannot be explained by the bias between the results obtained on instruments by different manufacturers. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Malaria treatment in the retail sector: Knowledge and practices of drug sellers in rural Tanzania
Hetzel, Manuel W; Dillip, Angel; Lengeler, Christian; Obrist, Brigit; Msechu, June J; Makemba, Ahmed M; Mshana, Christopher; Schulze, Alexander; Mshinda, Hassan
2008-01-01
Background Throughout Africa, the private retail sector has been recognised as an important source of antimalarial treatment, complementing formal health services. However, the quality of advice and treatment at private outlets is a widespread concern, especially with the introduction of artemisinin-based combination therapies (ACTs). As a result, ACTs are often deployed exclusively through public health facilities, potentially leading to poorer access among parts of the population. This research aimed at assessing the performance of the retail sector in rural Tanzania. Such information is urgently required to improve and broaden delivery channels for life-saving drugs. Methods During a comprehensive shop census in the districts of Kilombero and Ulanga, Tanzania, we interviewed 489 shopkeepers about their knowledge of malaria and malaria treatment. A complementary mystery shoppers study was conducted in 118 retail outlets in order to assess the vendors' drug selling practices. Both studies included drug stores as well as general shops. Results Shopkeepers in drug stores were able to name more malaria symptoms and were more knowledgeable about malaria treatment than their peers in general shops. In drug stores, 52% mentioned the correct child-dosage of sulphadoxine-pyrimethamine (SP) compared to only 3% in general shops. In drug stores, mystery shoppers were more likely to receive an appropriate treatment (OR = 9.6), but at an approximately seven times higher price. Overall, adults were more often sold an antimalarial than children (OR = 11.3). On the other hand, general shopkeepers were often ready to refer especially children to a higher level if they felt unable to manage the case. Conclusion The quality of malaria case-management in the retail sector is not satisfactory. Drug stores should be supported and empowered to provide correct malaria-treatment with drugs they are allowed to dispense. At the same time, the role of general shops as first contact points for malaria patients needs to be re-considered. Interventions to improve availability of ACTs in the retail sector are urgently required within the given legal framework. PMID:18471299
Holy, Marcel; Schmidt, Gunther; Schröder, Winfried
2011-03-01
Climate warming can change the geographic distribution and intensity of the transmission of vector-borne diseases such as malaria. The transmitted parasites usually benefit from increased temperatures as both their reproduction and development are accelerated. Lower Saxony (northwestern Germany) has been a malaria region until the 1950s, and the vector species are still present throughout Germany. This gave reason to investigate whether a new autochthonous transmission could take place if the malaria pathogen was introduced again in Germany. The spatial distribution of potential temperature-driven malaria transmissions was investigated using the basic reproduction rate (R (0)) to model and geostatistically map areas at risk of an outbreak of tertian malaria based on measured (1961-1990, 1991-2007) and predicted (1991-2020, 2021-2050, 2051-2080) monthly mean air temperature data. From the computations, maps were derived showing that during the period 1961-1990, the seasonal transmission gate ranges from 0 to 4 months and then expands up to 5 months in the period 1991-2007. For the projection of future trends, the regional climate models REMO and WettReg were used each with two different scenarios (A1B and B1). Both modelling approaches resulted in prolonged seasonal transmission gates in the future, enabling malaria transmissions up to 6 months in the climate reference period 2051-2080 (REMO, scenario A1B). The presented risk prognosis is based on the R (0) formula for the estimation of the reproduction of the malaria pathogen Plasmodium vivax. The presented model focuses on mean air temperatures; thus, other driving factors like the distribution of water bodies (breeding habitats) or population density are not integrated. Nevertheless, the modelling presented in this study can help identify areas at risk and initiate prevention. The described findings may also help in the investigation and assessment of related diseases caused by temperature-dependent vectors and pathogens, including those being dangerous for livestock as well, e.g. insect-borne bluetongue disease transmitted by culicoids.
Patouillard, Edith; Hanson, Kara G; Goodman, Catherine A
2010-02-11
In many low-income countries, the retail sector plays an important role in the treatment of malaria and is increasingly being considered as a channel for improving medicine availability. Retailers are the last link in a distribution chain and their supply sources are likely to have an important influence on the availability, quality and price of malaria treatment. This article presents the findings of a systematic literature review on the retail sector distribution chain for malaria treatment in low and middle-income countries. Publication databases were searched using key terms relevant to the distribution chain serving all types of anti-malarial retailers. Organizations involved in malaria treatment and distribution chain related activities were contacted to identify unpublished studies. A total of 32 references distributed across 12 developing countries were identified. The distribution chain had a pyramid shape with numerous suppliers at the bottom and fewer at the top. The chain supplying rural and less-formal outlets was made of more levels than that serving urban and more formal outlets. Wholesale markets tended to be relatively concentrated, especially at the top of the chain where few importers accounted for most of the anti-malarial volumes sold. Wholesale price mark-ups varied across chain levels, ranging from 27% to 99% at the top of the chain, 8% at intermediate level (one study only) and 2% to 67% at the level supplying retailers directly. Retail mark-ups tended to be higher, and varied across outlet types, ranging from 3% to 566% in pharmacies, 29% to 669% in drug shops and 100% to 233% in general shops. Information on pricing determinants was very limited. Evidence on the distribution chain for retail sector malaria treatment was mainly descriptive and lacked representative data on a national scale. These are important limitations in the advent of the Affordable Medicine Facility for Malaria, which aims to increase consumer access to artemisinin-based combination therapy (ACT), through a subsidy introduced at the top of the distribution chain. This review calls for rigorous distribution chain analysis, notably on the factors that influence ACT availability and prices in order to contribute to efforts towards improved access to effective malaria treatment.
Dkhil, Mohamed A.; Al-Quraishy, Saleh A.; Abdel-Baki, Abdel-Azeem S.; Delic, Denis; Wunderlich, Frank
2017-01-01
MicroRNAs are increasingly recognized as epigenetic regulators for outcome of diverse infectious diseases and vaccination efficacy, but little information referring to this exists for malaria. This study investigates possible effects of both protective vaccination and P. chabaudi malaria on the miRNome of the liver as an effector against blood-stage malaria using miRNA microarrays and quantitative PCR. Plasmodium chabaudi blood-stage malaria takes a lethal outcome in female Balb/c mice, but a self-healing course after immunization with a non-infectious blood-stage vaccine. The liver robustly expresses 71 miRNA species at varying levels, among which 65 miRNA species respond to malaria evidenced as steadily increasing or decreasing expressions reaching highest or lowest levels toward the end of the crisis phase on day 11 p.i. in lethal malaria. Protective vaccination does not affect constitutive miRNA expression, but leads to significant (p < 0.05) changes in the expression of 41 miRNA species, however evidenced only during crisis. In vaccination-induced self-healing infections, 18 miRNA-species are up- and 14 miRNA-species are down-regulated by more than 50% during crisis in relation to non-vaccinated mice. Vaccination-induced self-healing and survival of otherwise lethal infections of P. chabaudi activate epigenetic miRNA-regulated remodeling processes in the liver manifesting themselves during crisis. Especially, liver regeneration is accelerated as suggested by upregulation of let-7a-5p, let-7b-5p, let-7c-5p, let-7d-5p, let-7f-5p, let-7g-5p, let-7i-5p, miR-26a, miR-122-5p, miR30a, miR27a, and mir-29a, whereas the up-regulated expression of miR-142-3p by more than 100% is compatible with the view of enhanced hepatic erythropoiesis, possibly at expense of megakaryopoiesis, during crisis of P. chabaudi blood-stage malaria. PMID:28123381
Kratz, Alexander
2016-09-01
Results from reference laboratories are often not easily available in electronic health records. This article describes a multi-pronged, long-term approach that includes bringing send-out tests in-house, upgrading the laboratory information system, interfacing more send-out tests and more reference laboratories, utilizing the "miscellaneous assay" option offered by some reference laboratories, and scanning all remaining paper reports from reference laboratories for display in the electronic health record. This allowed all laboratory results obtained in association with a patient visit, whether performed in-house or at a reference laboratory, to be available in the integrated electronic health record. This was achieved without manual data entry of reference laboratory results, thereby avoiding the risk of transcription errors. A fully integrated electronic health record that contains all laboratory results can be achieved by maximizing the number of interfaced reference laboratory assays and making all non-interfaced results available as scanned documents. © The Author(s) 2015.
2012-01-01
Background The World Health Organization recommends parasitological confirmation of all malaria cases. Tanzania is implementing a phased rollout of malaria rapid diagnostic tests (RDTs) for routine use in all levels of care as one strategy to increase parasitological confirmation of malaria diagnosis. This study was carried out to evaluated artemisinin combination therapy (ACT) prescribing patterns in febrile patients with and without uncomplicated malaria in one pre-RDT implementation and one post-RDT implementation area. Methods A cross-sectional health facility surveys was conducted during high and low malaria transmission seasons in 2010 in both areas. Clinical information and a reference blood film on all patients presenting for an initial illness consultation were collected. Malaria was defined as a history of fever in the past 48 h and microscopically confirmed parasitaemia. Routine diagnostic testing was defined as RDT or microscopy ordered by the health worker and performed at the health facility as part of the health worker-patient consultation. Correct diagnostic testing was defined as febrile patient tested with RDT or microscopy. Over-testing was defined as a non-febrile patient tested with RDT or microscopy. Correct treatment was defined as patient with malaria prescribed ACT. Over-treatment was defined as patient without malaria prescribed ACT. Results A total of 1,247 febrile patients (627 from pre-implementation area and 620 from post-implementation area) were included in the analysis. In the post-RDT implementation area, 80.9% (95% CI, 68.2-89.3) of patients with malaria received recommended treatment with ACT compared to 70.3% (95% CI, 54.7-82.2) of patients in the pre-RDT implementation area. Correct treatment was significantly higher in the post-implementation area during high transmission season (85.9% (95%CI, 72.0-93.6) compared to 58.3% (95%CI, 39.4-75.1) in pre-implementation area (p = 0.01). Over-treatment with ACT of patients without malaria was less common in the post-RDT implementation area (20.9%; 95% CI, 14.7-28.8) compared to the pre-RDT implementation area (45.8%; 95% CI, 37.2-54.6) (p < 0.01) in high transmission. The odds of overtreatment was significantly lower in post- RDT area (adjusted Odds Ratio (OR: 95%CI) 0.57(0.36-0.89); and much higher with clinical diagnosis adjusted OR (95%CI) 2.24(1.37-3.67) Conclusion Implementation of RDTs increased use of RDTs for parasitological confirmation and reduced over-treatment with ACT during high malaria transmission season in one area in Tanzania. Continued monitoring of the national RDT rollout will be needed to assess whether these changes in case management practices will be replicated in other areas and sustained over time. Additional measures (such as refresher trainings, closer supervisions, etc.) may be needed to improve ACT targeting during low transmission seasons. PMID:22747655
Laboratory Validation of the Sand Fly Fever Virus Antigen Assay
2015-12-01
several commercially available assays from VecTOR Test Systems Inc. for malaria, West Nile virus, Rift Valley fever virus, dengue , chikungunya, and...Sabin AB. 1955. Recent advances in our knowledge of dengue and sandfly fever. Am J Trop Med Hyg 4:198–207. Sather GE. 1970. Catalogue of arthropod
Mbonye, Anthony K.; Magnussen, Pascal; Lal, Sham; Hansen, Kristian S.; Cundill, Bonnie; Chandler, Clare; Clarke, Siân E.
2015-01-01
Background Inappropriate treatment of malaria is widely reported particularly in areas where there is poor access to health facilities and self-treatment of fevers with anti-malarial drugs bought in shops is the most common form of care-seeking. The main objective of the study was to examine the impact of introducing rapid diagnostic tests for malaria (mRDTs) in registered drug shops in Uganda, with the aim to increase appropriate treatment of malaria with artemisinin-based combination therapy (ACT) in patients seeking treatment for fever in drug shops. Methods A cluster-randomized trial of introducing mRDTs in registered drug shops was implemented in 20 geographical clusters of drug shops in Mukono district, central Uganda. Ten clusters were randomly allocated to the intervention (diagnostic confirmation of malaria by mRDT followed by ACT) and ten clusters to the control arm (presumptive treatment of fevers with ACT). Treatment decisions by providers were validated by microscopy on a reference blood slide collected at the time of consultation. The primary outcome was the proportion of febrile patients receiving appropriate treatment with ACT defined as: malaria patients with microscopically-confirmed presence of parasites in a peripheral blood smear receiving ACT or rectal artesunate, and patients with no malaria parasites not given ACT. Findings A total of 15,517 eligible patients (8672 intervention and 6845 control) received treatment for fever between January-December 2011. The proportion of febrile patients who received appropriate ACT treatment was 72·9% versus 33·7% in the control arm; a difference of 36·1% (95% CI: 21·3 – 50·9), p<0·001. The majority of patients with fever in the intervention arm accepted to purchase an mRDT (97·8%), of whom 58·5% tested mRDT-positive. Drug shop vendors adhered to the mRDT results, reducing over-treatment of malaria by 72·6% (95% CI: 46·7– 98·4), p<0·001) compared to drug shop vendors using presumptive diagnosis (control arm). Conclusion Diagnostic testing with mRDTs compared to presumptive treatment of fevers implemented in registered drug shops substantially improved appropriate treatment of malaria with ACT. Trial Registration ClinicalTrials.gov NCT01194557. PMID:26200467
Mbonye, Anthony K; Magnussen, Pascal; Lal, Sham; Hansen, Kristian S; Cundill, Bonnie; Chandler, Clare; Clarke, Siân E
2015-01-01
Inappropriate treatment of malaria is widely reported particularly in areas where there is poor access to health facilities and self-treatment of fevers with anti-malarial drugs bought in shops is the most common form of care-seeking. The main objective of the study was to examine the impact of introducing rapid diagnostic tests for malaria (mRDTs) in registered drug shops in Uganda, with the aim to increase appropriate treatment of malaria with artemisinin-based combination therapy (ACT) in patients seeking treatment for fever in drug shops. A cluster-randomized trial of introducing mRDTs in registered drug shops was implemented in 20 geographical clusters of drug shops in Mukono district, central Uganda. Ten clusters were randomly allocated to the intervention (diagnostic confirmation of malaria by mRDT followed by ACT) and ten clusters to the control arm (presumptive treatment of fevers with ACT). Treatment decisions by providers were validated by microscopy on a reference blood slide collected at the time of consultation. The primary outcome was the proportion of febrile patients receiving appropriate treatment with ACT defined as: malaria patients with microscopically-confirmed presence of parasites in a peripheral blood smear receiving ACT or rectal artesunate, and patients with no malaria parasites not given ACT. A total of 15,517 eligible patients (8672 intervention and 6845 control) received treatment for fever between January-December 2011. The proportion of febrile patients who received appropriate ACT treatment was 72·9% versus 33·7% in the control arm; a difference of 36·1% (95% CI: 21·3 - 50·9), p<0·001. The majority of patients with fever in the intervention arm accepted to purchase an mRDT (97·8%), of whom 58·5% tested mRDT-positive. Drug shop vendors adhered to the mRDT results, reducing over-treatment of malaria by 72·6% (95% CI: 46·7- 98·4), p<0·001) compared to drug shop vendors using presumptive diagnosis (control arm). Diagnostic testing with mRDTs compared to presumptive treatment of fevers implemented in registered drug shops substantially improved appropriate treatment of malaria with ACT. ClinicalTrials.gov NCT01194557.
Mapping malaria risk among children in Côte d'Ivoire using Bayesian geo-statistical models.
Raso, Giovanna; Schur, Nadine; Utzinger, Jürg; Koudou, Benjamin G; Tchicaya, Emile S; Rohner, Fabian; N'goran, Eliézer K; Silué, Kigbafori D; Matthys, Barbara; Assi, Serge; Tanner, Marcel; Vounatsou, Penelope
2012-05-09
In Côte d'Ivoire, an estimated 767,000 disability-adjusted life years are due to malaria, placing the country at position number 14 with regard to the global burden of malaria. Risk maps are important to guide control interventions, and hence, the aim of this study was to predict the geographical distribution of malaria infection risk in children aged <16 years in Côte d'Ivoire at high spatial resolution. Using different data sources, a systematic review was carried out to compile and geo-reference survey data on Plasmodium spp. infection prevalence in Côte d'Ivoire, focusing on children aged <16 years. The period from 1988 to 2007 was covered. A suite of Bayesian geo-statistical logistic regression models was fitted to analyse malaria risk. Non-spatial models with and without exchangeable random effect parameters were compared to stationary and non-stationary spatial models. Non-stationarity was modelled assuming that the underlying spatial process is a mixture of separate stationary processes in each ecological zone. The best fitting model based on the deviance information criterion was used to predict Plasmodium spp. infection risk for entire Côte d'Ivoire, including uncertainty. Overall, 235 data points at 170 unique survey locations with malaria prevalence data for individuals aged <16 years were extracted. Most data points (n = 182, 77.4%) were collected between 2000 and 2007. A Bayesian non-stationary regression model showed the best fit with annualized rainfall and maximum land surface temperature identified as significant environmental covariates. This model was used to predict malaria infection risk at non-sampled locations. High-risk areas were mainly found in the north-central and western area, while relatively low-risk areas were located in the north at the country border, in the north-east, in the south-east around Abidjan, and in the central-west between two high prevalence areas. The malaria risk map at high spatial resolution gives an important overview of the geographical distribution of the disease in Côte d'Ivoire. It is a useful tool for the national malaria control programme and can be utilized for spatial targeting of control interventions and rational resource allocation.
Mapping malaria risk among children in Côte d’Ivoire using Bayesian geo-statistical models
2012-01-01
Background In Côte d’Ivoire, an estimated 767,000 disability-adjusted life years are due to malaria, placing the country at position number 14 with regard to the global burden of malaria. Risk maps are important to guide control interventions, and hence, the aim of this study was to predict the geographical distribution of malaria infection risk in children aged <16 years in Côte d’Ivoire at high spatial resolution. Methods Using different data sources, a systematic review was carried out to compile and geo-reference survey data on Plasmodium spp. infection prevalence in Côte d’Ivoire, focusing on children aged <16 years. The period from 1988 to 2007 was covered. A suite of Bayesian geo-statistical logistic regression models was fitted to analyse malaria risk. Non-spatial models with and without exchangeable random effect parameters were compared to stationary and non-stationary spatial models. Non-stationarity was modelled assuming that the underlying spatial process is a mixture of separate stationary processes in each ecological zone. The best fitting model based on the deviance information criterion was used to predict Plasmodium spp. infection risk for entire Côte d’Ivoire, including uncertainty. Results Overall, 235 data points at 170 unique survey locations with malaria prevalence data for individuals aged <16 years were extracted. Most data points (n = 182, 77.4%) were collected between 2000 and 2007. A Bayesian non-stationary regression model showed the best fit with annualized rainfall and maximum land surface temperature identified as significant environmental covariates. This model was used to predict malaria infection risk at non-sampled locations. High-risk areas were mainly found in the north-central and western area, while relatively low-risk areas were located in the north at the country border, in the north-east, in the south-east around Abidjan, and in the central-west between two high prevalence areas. Conclusion The malaria risk map at high spatial resolution gives an important overview of the geographical distribution of the disease in Côte d’Ivoire. It is a useful tool for the national malaria control programme and can be utilized for spatial targeting of control interventions and rational resource allocation. PMID:22571469
Autopsy discoveries of death from malaria.
Menezes, Ritesh G; Pant, Sadip; Kharoshah, Magdy A; Senthilkumaran, Subramanian; Arun, M; Nagesh, K R; Bhat, Nishanth B; Mahadeshwara Prasad, D R; Karki, Raj Kumar; Subba, S H; Fazil, Abul
2012-05-01
Malaria inflicts a huge health care burden in terms of mortality and morbidity worldwide. There has been evidence in the literature where many unexpected/unexplained deaths turned out to be related to malaria on autopsy. The aim of this study is to review autopsy diagnosed malaria related deaths in the literature with due stress to its biologic and forensic aspects. A meticulous literature search was performed for "sudden malaria death", "malaria death postmortem diagnosis" and "unexplained death malaria" across PubMed, SCOPUS, Cochrane Database of Systematic Reviews, Allied and Complementary Medicine, British Nursing Index, CINAHL, EMBASE, Ovid-MEDLINE and Google Scholar. All the literature was thoroughly reviewed and analyzed with reference to the type of study, location, travel history, age, gender, circumstance of death, method of diagnosis, species involved, chemoprophylaxis usage and take home message from the particular study. Plasmodium falciparum was responsible in most of the cases. The symptoms mimicked influenza in most of the case reports. Travel to endemic areas was common to most of the victims. The travelers were from all over the world including USA, France, Switzerland, Spain, Portugal, Germany and Asia (China and Japan). Vascular congestion with the presence of malarial pigment laden RBCs in capillaries of various organs was the major histopathology finding. Such lesions were found in the brains of all subjects (100%), liver of 78% of the cases, spleen in 67%, lungs in 56% and myocardium in 43% of the cases. Peripheral smear and rapid diagnostic test was of great aid to the autopsy in many cases. PCR was used for diagnosis as well as exclusion of possibility of co-infection with other species in case of Plasmodium knowlesi related death. The postmortem and histopathology findings in this case were similar to P. falciparum except for the fact that brain sections were negative for intracellular adhesion molecule-1. Chemoprophylaxis was not taken by the victims except for two in whom history of chloroquine based chemoprophylaxis was mentioned. Given the worldwide prevalence of the disease, increasing international travel and rapidly developing drug resistance, malaria will continue to be an important disease and should be considered in all cases of unexpected deaths particularly in malaria endemic regions or in presence of travel history to endemic regions. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Veenemans, Jacobien; Milligan, Paul; Prentice, Andrew M.; Schouten, Laura R. A.; Inja, Nienke; van der Heijden, Aafke C.; de Boer, Linsey C. C.; Jansen, Esther J. S.; Koopmans, Anna E.; Enthoven, Wendy T. M.; Kraaijenhagen, Rob J.; Demir, Ayse Y.; Uges, Donald R. A.; Mbugi, Erasto V.; Savelkoul, Huub F. J.; Verhoef, Hans
2011-01-01
Background It is uncertain to what extent oral supplementation with zinc can reduce episodes of malaria in endemic areas. Protection may depend on other nutrients. We measured the effect of supplementation with zinc and other nutrients on malaria rates. Methods and Findings In a 2×2 factorial trial, 612 rural Tanzanian children aged 6–60 months in an area with intense malaria transmission and with height-for-age z-score≤−1.5 SD were randomized to receive daily oral supplementation with either zinc alone (10 mg), multi-nutrients without zinc, multi-nutrients with zinc, or placebo. Intervention group was indicated by colour code, but neither participants, researchers, nor field staff knew who received what intervention. Those with Plasmodium infection at baseline were treated with artemether-lumefantrine. The primary outcome, an episode of malaria, was assessed among children reported sick at a primary care clinic, and pre-defined as current Plasmodium infection with an inflammatory response, shown by axillary temperature ≥37.5°C or whole blood C-reactive protein concentration ≥8 mg/L. Nutritional indicators were assessed at baseline and at 251 days (median; 95% reference range: 191–296 days). In the primary intention-to-treat analysis, we adjusted for pre-specified baseline factors, using Cox regression models that accounted for multiple episodes per child. 592 children completed the study. The primary analysis included 1,572 malaria episodes during 526 child-years of observation (median follow-up: 331 days). Malaria incidence in groups receiving zinc, multi-nutrients without zinc, multi-nutrients with zinc and placebo was 2.89/child-year, 2.95/child-year, 3.26/child-year, and 2.87/child-year, respectively. There was no evidence that multi-nutrients influenced the effect of zinc (or vice versa). Neither zinc nor multi-nutrients influenced malaria rates (marginal analysis; adjusted HR, 95% CI: 1.04, 0.93–1.18 and 1.10, 0.97–1.24 respectively). The prevalence of zinc deficiency (plasma zinc concentration <9.9 µmol/L) was high at baseline (67% overall; 60% in those without inflammation) and strongly reduced by zinc supplementation. Conclusions We found no evidence from this trial that zinc supplementation protected against malaria. Trial Registration ClinicalTrials.gov NCT00623857 Please see later in the article for the Editors' Summary. PMID:22131908
Bi, Yaw
2018-01-01
Although drug-based treatment is the primary intervention for malaria control and elimination, optimal use of targeted treatments remains unclear. From 2008 to 2016, three targeted programs on treatment were undertaken in Kachin Special Region II (KR2), Myanmar. Program I (2008–2011) treated all confirmed, clinical and suspected cases; program II (2012–2013) treated confirmed and clinical cases; and program III (2014–2016) targeted confirmed cases only. This study aims to evaluate the impacts of the three programs on malaria burden individually based on the annual parasite incidence (API), slide positivity rate (SPR) and their relative values. The API is calculated from original collected data and the incidence rate ratio (IRR) for each year is calculated by using the first-year API as a reference in each program phase across the KR2. Same method is applied to calculate SPR and risk ratio (RR) at the sentinel hospital too. During program I (2008–2011), malaria burden was reduced by 61% (95%CI: 58%-74%) and the actual API decreased from 9.8 (95%CI: 9.6–10.1) per 100 person-years in 2008 to 3.8 (3.6–4.1) per 100 person-years in 2011. Amid program II (2012–2013), the malaria burden increased by 33% (95%CI: 22%-46%) and the actual API increased from 2.1(95%CI: 2.0–2.3) per 100 person-years in 2012 to 2.8 (95%CI: 2.7–2.9) per 100 person-years in 2013. During program III (2014–2016) the malaria burden increased furtherly by 60% (95%CI: 51% - 69%) and the actual API increased from 3.2(95%CI: 3.0–3.3) per 100 person-years in 2014 to 5.1 (95%CI: 4.9–5.2) per 100 person-years in 2016. Results of the slide positivity of the sentinel hospital also confirm these results. Resurgence of malaria was mainly due to Plasmodium vivax during program II and III. This study indicates that strategy adopted in program I (2008–2011) should be more appropriate for the KR2. Quality-assured treatment of all confirmed, clinical and suspected malaria cases may be helpful for the reduction of malaria burden. PMID:29614088
Zhang, Hong-Wei; Li, San-Jin; Hu, Tao; Yu, Yong-Min; Yang, Cheng-Yun; Zhou, Rui-Min; Liu, Ying; Tang, Jing; Wang, Jing-Jing; Wang, Xiu-Yun; Sun, Yong-Xiang; Feng, Zhan-Chun; Xu, Bian-Li
2017-04-04
The spleen plays a pivotal role in the rapid clearance of parasitized red blood cells in patients with falciparum malaria after artemisinin treatment. Prolonged parasite clearance can be found in patients who have had a splenectomy, or those with hemoglobin abnormalities and/or reduced immunity, which are all distinguishable from artemisinin resistance. This paper reports on a case of prolonged parasite clearance in a Chinese splenectomized patient with falciparum malaria imported from Nigeria. A 35-year-old Chinese male suffered 2 days of febrile illness after returning to Zhumadian city of Henan province from Nigeria on October 1, 2014. The main symptoms were febrile, including the highest axillary temperature of 40 °C, headache, and chills. A peripheral blood smear showed parasitemia (53 913 asexual parasites/μl) of Plasmodium falciparum. The patient had not used any chemoprophylaxis against malaria in Nigeria when he worked there as a construction worker between 2009 and 2014. The patient had three episodes of malaria in Nigeria and had a splenectomy due to a traffic accident 8 years ago from the time he was admitted to hospital. The patient was orally administrated a total of 320 mg/2.56 g dihydroartemisinin-piperaquine for 2 days and intravenously administrated a total of 3 000 mg artesunate for 18 days. The axillary temperature of the patient ranged between 37.0 and 37.7 °C from Day 0 to Day 3, and blood microscopy revealed falciparum malaria parasitemia (26 674 asexual parasites/μl) on Day 3. The patient was afebrile on Day 4, falciparum malaria parasitemia was continuously present and then gradually decreased on the next days, and was negative on Day 21. The patient was cured and left hospital on Day 24 after no plasmodium falciparum was found in the blood on Day 21 to Day 23. No mutation was found in the K13 propeller gene when compared with the PF3D7_1343700 K13 propeller gene reference sequence. This is the first reported case in China of prolonged parasite clearance in a splenectomized patient with imported falciparum malaria. Artemisinin resistance should be distinguished when prolonged parasite clearance is found in a malaria patient who has had splenectomy.
[Laboratory analysis of the first case of imported oval malaria in Rizhao City].
Chao, Li; Ying, Zhang; Ting, Xiao
2016-01-25
To diagnose the first imported case of Plasmodium ovale infection by laboratory detection. The epidemiological data and blood samples of the case were collected, and the samples were detected by the microscopic examination, rapid diagnostic test (RDT) and nested PCR. The patient was a construction worker backing from Congo, Africa. He experienced the symptoms of irregular fever and weakness one month after returning in Lingyang Town, Junxian County. The results of RDT only suggested no- Plasmodium falciparum infection. Under the microscope, it was seen that the infected RBC were obviously disfigured and in irregular shape, the ring forms were thick and big, and also thick granulas in big trophozoite stage and schizont stage were found. The results of PCR showed that the size of amplified product was about 800 bp, which was conformed to that of P. ovale . Though microscopic examination is the golden standard for malaria diagnosis, as P. ovale is difficult to be identified under microscope, the microscopic method combined with PCR test can be used for definite diagnosis.
Splenomegaly in Hmong refugees.
Paulson, R R; Duvall, K L; Godes, J R; Holtan, N R
1984-02-01
We review asymptomatic splenomegaly in Indochinese refugees and provide recommendations for evaluation of the problem. Prevalence of splenomegaly in newly arrived Indochinese refugees was 2.5%, three times more prevalent in the Hmong than in the non-Hmong refugees. Male Hmong refugees aged 15 to 29 years had the highest prevalence (10%). For the 50 Hmong refugees studied, there was no evidence that their splenomegaly was caused by clonorchiasis, schistosomiasis, tuberculosis, syphillis, lymphoma, tropical splenomegaly syndrome, or clinical malaria. Cases were more likely to have hepatomegaly, hepatitis B surface antigen positivity, and a low mean corpuscular volume than a reference population of Hmong refugees. Malaria antibody titers were elevated in all but one of the 41 cases (98%) tested.
Odoh, Uchenna E; Uzor, Philip F; Eze, Chidimma L; Akunne, Theophine C; Onyegbulam, Chukwuma M; Osadebe, Patience O
2018-05-23
Malaria is a serious public health problem especially in sub-Saharan African countries such as Nigeria. The causative parasite is increasingly developing resistance to the existing drugs. There is urgent need for alternative and affordable therapy from medicinal plants which have been used by the indigenous people for many years. This study was conducted to document the medicinal plant species traditionally used by the people of Nsukka Local Government Area in south-eastern Nigeria for the treatment of malaria. A total of 213 respondents, represented by women (59.2%) and men (40.8%), were interviewed using a semi-structured questionnaire. The results were analysed and discussed in the context of previously published information on anti-malarial and phytochemical studies of the identified plants. The survey revealed that 50 plant species belonging to 30 botanical families were used in this region for the treatment of malaria. The most cited families were Apocynaceae (13.3%), Annonaceae (10.0%), Asteraceae (10.0%), Lamiaceae (10.0%), Poaceae (10.0%), Rubiaceae (10.0%) and Rutaceae (10.0%). The most cited plant species were Azadirachta indica (11.3%), Mangifera indica (9.1%), Carica papaya (8.5%), Cymbopogon citratus (8.5%) and Psidium guajava (8.5%). The present findings showed that the people of Nsukka use a large variety of plants for the treatment of malaria. The identified plants are currently undergoing screening for anti-malarial, toxicity and chemical studies in our laboratory. Copyright © 2018 Elsevier B.V. All rights reserved.
2010-01-01
Background There have been a number of interventions to date aimed at improving malaria diagnostic accuracy in sub-Saharan Africa. Yet, limited success is often reported for a number of reasons, especially in rural settings. This paper seeks to provide a framework for applied research aimed to improve malaria diagnosis using a combination of the established methods, participatory action research and social entrepreneurship. Methods This case study introduces the idea of using the social entrepreneurship approach (SEA) to create innovative and sustainable applied health research outcomes. The following key elements define the SEA: (1) identifying a locally relevant research topic and plan, (2) recognizing the importance of international multi-disciplinary teams and the incorporation of local knowledge, (3) engaging in a process of continuous innovation, adaptation and learning, (4) remaining motivated and determined to achieve sustainable long-term research outcomes and, (5) sharing and transferring ownership of the project with the international and local partner. Evaluation The SEA approach has a strong emphasis on innovation lead by local stakeholders. In this case, innovation resulted in a unique holistic research program aimed at understanding patient, laboratory and physician influences on accurate diagnosis of malaria. An evaluation of milestones for each SEA element revealed that the success of one element is intricately related to the success of other elements. Conclusions The SEA will provide an additional framework for researchers and local stakeholders that promotes innovation and adaptability. This approach will facilitate the development of new ideas, strategies and approaches to understand how health issues, such as malaria, affect vulnerable communities. PMID:20128922
Allen, Lisa K; Hetherington, Erin; Manyama, Mange; Hatfield, Jennifer M; van Marle, Guido
2010-02-03
There have been a number of interventions to date aimed at improving malaria diagnostic accuracy in sub-Saharan Africa. Yet, limited success is often reported for a number of reasons, especially in rural settings. This paper seeks to provide a framework for applied research aimed to improve malaria diagnosis using a combination of the established methods, participatory action research and social entrepreneurship. This case study introduces the idea of using the social entrepreneurship approach (SEA) to create innovative and sustainable applied health research outcomes. The following key elements define the SEA: (1) identifying a locally relevant research topic and plan, (2) recognizing the importance of international multi-disciplinary teams and the incorporation of local knowledge, (3) engaging in a process of continuous innovation, adaptation and learning, (4) remaining motivated and determined to achieve sustainable long-term research outcomes and, (5) sharing and transferring ownership of the project with the international and local partner. The SEA approach has a strong emphasis on innovation lead by local stakeholders. In this case, innovation resulted in a unique holistic research program aimed at understanding patient, laboratory and physician influences on accurate diagnosis of malaria. An evaluation of milestones for each SEA element revealed that the success of one element is intricately related to the success of other elements. The SEA will provide an additional framework for researchers and local stakeholders that promotes innovation and adaptability. This approach will facilitate the development of new ideas, strategies and approaches to understand how health issues, such as malaria, affect vulnerable communities.
Corpolongo, Angela; De Nardo, Pasquale; Ghirga, Piero; Gentilotti, Elisa; Bellagamba, Rita; Tommasi, Chiara; Paglia, Maria Grazia; Nicastri, Emanuele; Narciso, Pasquale
2012-03-27
Intravenous (i.v.) artesunate is now the recommended first-line treatment of severe falciparum malaria in adults and children by WHO guidelines. Nevertheless, several cases of haemolytic anaemia due to i.v. artesunate treatment have been reported. This paper describes the case of an HIV-infected patient with severe falciparum malaria who was diagnosed with haemolytic anaemia after treatment with oral artemether-lumefantrine.The patient presented with fever, headache, and arthromyalgia after returning from Central African Republic where he had been working. The blood examination revealed acute renal failure, thrombocytopaenia and hypoxia. Blood for malaria parasites indicated hyperparasitaemia (6%) and Plasmodium falciparum infection was confirmed by nested-PCR. Severe malaria according to the laboratory WHO criteria was diagnosed. A treatment with quinine and doxycycline for the first 12 hours was initially administered, followed by arthemeter/lumefantrine (Riamet(®)) for a further three days. At day 10, a diagnosis of severe haemolytic anaemia was made (Hb 6.9 g/dl, LDH 2071 U/l). Hereditary and autoimmune disorders and other infections were excluded through bone marrow aspiration, total body TC scan and a wide panel of molecular and serologic assays. The patient was treated by transfusion of six units of packed blood red cell. He was discharged after complete remission at day 25. At present, the patient is in a good clinical condition and there is no evidence of haemolytic anaemia recurrence.This is the first report of haemolytic anaemia probably associated with oral artemether/lumefantrine. Further research is warranted to better define the adverse events occurring during combination therapy with artemisinin derivatives.
Genetic approaches to interfere with malaria transmission by vector mosquitoes
Wang, Sibao; Jacobs-Lorena, Marcelo
2013-01-01
Malaria remains one of the world’s most devastating diseases, causing over one million deaths every year. The most vulnerable stages of Plasmodium development in the vector mosquito occur in the midgut lumen, making the midgut a prime target for intervention. Mosquito transgenesis and paratransgenesis are two novel strategies that aim at rendering the vector incapable of sustaining Plasmodium development. Mosquito transgenesis involves direct genetic engineering of the mosquito itself for delivery of anti-Plasmodium effector molecules. Conversely, paratransgenesis involves the genetic modification of mosquito symbionts for expression of anti-pathogen effector molecules. Here we consider both genetic manipulation strategies for rendering mosquitoes refractory to Plasmodium infection, and discuss challenges for the translation of laboratory findings to field applications. PMID:23395485
Adams, Pornpimon; Prakobtham, Sukanya; Limphattharacharoen, Chanthima; Vutikes, Pitchapa; Khusmith, Srisin; Pengsaa, Krisana; Wilairatana, Polrat; Kaewkungwal, Jaranit
2015-09-14
Malaria research is typically conducted in developing countries in areas of endemic disease. This raises specific ethical issues, including those related to local cultural concepts of health and disease, the educational background of study subjects, and principles of justice at the community and country level. Research Ethics Committees (RECs) are responsible for regulating the ethical conduct of research, but questions have been raised whether RECs facilitate or impede research, and about the quality of REC review itself. This study examines the review process for malaria research proposals submitted to the Ethics Committee of the Faculty of Tropical Medicine at Mahidol University, Thailand. Proposals for all studies submitted for review from January 2010 to December 2014 were included. Individual REC members' reviewing forms were evaluated. Ethical issues (e.g., scientific merit, risk-benefit, sample size, or informed-consent) raised in the forms were counted and analysed according to characteristics, including study classification/design, use of specimens, study site, and study population. All 114 proposals submitted during the study period were analysed, comprising biomedical studies (17 %), drug trials (13 %), laboratory studies (24 %) and epidemiological studies (46 %). They included multi-site (13 %) and international studies (4 %), and those involving minority populations (28 %), children (17 %) and pregnant women (7 %). Drug trials had the highest proportion of questions raised for most ethical issues, while issues concerning privacy and confidentiality tended to be highest for laboratory and epidemiology studies. Clarifications on ethical issues were requested by the ethics committee more for proposals involving new specimen collection. Studies involving stored data and specimens tended to attract more issues around privacy and confidentiality. Proposals involving minority populations were more likely to raise issues than those that did not. Those involving vulnerable populations were more likely to attract concerns related to study rationale and design. This study stratified ethical issues raised in a broad spectrum of research proposals. The Faculty of Tropical Medicine at Mahidol University is a significant contributor to global malaria research output. The findings shed light on the ethical review process that may be useful for stakeholders, including researchers, RECs and sponsors, conducting malaria research in other endemic settings.
Ioset, Jean-Robert; Kaur, Harparkash
2009-01-01
Introduction Malaria continues to be one of the major public health problems in Africa, Asia and Latin America. Artemisinin derivatives (ARTs; artesunate, artemether, and dihydroartemisinin) derived from the herb, Artemisia annua, are the most effective antimalarial drugs available providing rapid cures. The World Health Organisation (WHO) has recommended that all antimalarials must be combined with an artemisinin component (artemisinin-based combination therapy; ACT) for use as first line treatment against malaria. This class of drugs is now first-line policy in most malaria-endemic countries. Reports of ad hoc surveys from South East Asia show that up to 50% of the artesunate currently sold is counterfeit. Drug quality is rarely assessed in resource poor countries in part due to lack of dedicated laboratory facilities which are expensive to build, equip and maintain. With a view to address this unmet need we developed two novel colour reaction assays that can be used in the field to check the quality of ARTs. Methods and Findings Our assays utilise thin layer chromatography silica gel sheets and 2, 4 dinitrophenylhydrazine or 4-Benzoylamino-2, 5-dimethoxybenzenediazonium chloride hemi (zinc chloride) salt as the reagents showing a pink or blue product respectively only in the presence ARTs. We are able to detect as low as 10% of ARTs in ACTs (WINTHROP - artesunate/amodiaquine, Coartem®-artemether/lumefantrine and Duocortexcin - dihydroartemisinin/piperaquine). The assays have been validated extensively by testing eighty readily accessible and widely used drugs in malaria endemic countries. None of the other antimalarial drugs or a range of commonly used excipients, antiretroviral drugs or other frequently used drugs from the WHO essential drugs list such as analgesics or antibiotics are detected with our assays. Conclusions Our two independent assays requiring no specialist training are specific, simple to use, rapid, robust, reproducible, inexpensive and, have successfully resulted in detecting two counterfeit drugs within a small scale screening survey of over 100 declared artemisinin-containing drugs collected from various Asian and African countries. These promising results indicate that the assays will provide a useful first test to assure the quality of the ACTs formulations in resource poor malaria endemic areas when there is an absence of dedicated medicines quality laboratory facilities. PMID:19789707
Artemisinin-resistant malaria: research challenges, opportunities, and public health implications.
Fairhurst, Rick M; Nayyar, Gaurvika M L; Breman, Joel G; Hallett, Rachel; Vennerstrom, Jonathan L; Duong, Socheat; Ringwald, Pascal; Wellems, Thomas E; Plowe, Christopher V; Dondorp, Arjen M
2012-08-01
Artemisinin-based combination therapies are the most effective drugs to treat Plasmodium falciparum malaria. Reduced sensitivity to artemisinin monotherapy, coupled with the emergence of parasite resistance to all partner drugs, threaten to place millions of patients at risk of inadequate treatment of malaria. Recognizing the significance and immediacy of this possibility, the Fogarty International Center and the National Institute of Allergy and Infectious Diseases of the U.S. National Institutes of Health convened a conference in November 2010 to bring together the diverse array of stakeholders responding to the growing threat of artemisinin resistance, including scientists from malarious countries in peril. This conference encouraged and enabled experts to share their recent unpublished data from studies that may improve our understanding of artemisinin resistance. Conference sessions addressed research priorities to forestall artemisinin resistance and fostered collaborations between field- and laboratory-based researchers and international programs, with the aim of translating new scientific evidence into public health solutions. Inspired by this conference, this review summarizes novel findings and perspectives on artemisinin resistance, approaches for translating research data into relevant public health information, and opportunities for interdisciplinary collaboration to combat artemisinin resistance.
Breman, Joel G.; de Quadros, Ciro A.; Dowdle, Walter R.; Foege, William H.; Henderson, Donald A.; John, T. Jacob; Levine, Myron M.
2011-01-01
By examining the role research has played in eradication or regional elimination initiatives for three viral diseases—smallpox, poliomyelitis, and measles—we derive nine cross-cutting lessons applicable to malaria eradication. In these initiatives, some types of research commenced as the programs began and proceeded in parallel. Basic laboratory, clinical, and field research all contributed notably to progress made in the viral programs. For each program, vaccine was the lynchpin intervention, but as the programs progressed, research was required to improve vaccine formulations, delivery methods, and immunization schedules. Surveillance was fundamental to all three programs, whilst polio eradication also required improved diagnostic methods to identify asymptomatic infections. Molecular characterization of pathogen isolates strengthened surveillance and allowed insights into the geographic source of infections and their spread. Anthropologic, sociologic, and behavioural research were needed to address cultural and religious beliefs to expand community acceptance. The last phases of elimination and eradication became increasingly difficult, as a nil incidence was approached. Any eradication initiative for malaria must incorporate flexible research agendas that can adapt to changing epidemiologic contingencies and allow planning for posteradication scenarios. PMID:21311582
DNA Repair Mechanisms and Their Biological Roles in the Malaria Parasite Plasmodium falciparum
Lee, Andrew H.; Symington, Lorraine S.
2014-01-01
SUMMARY Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen. PMID:25184562
Hien, Tran Tinh; Hanpithakpong, Warunee; Truong, Nguyen Thanh; Dung, Nguyen Thi; Toi, Pham Van; Farrar, Jeremy; Lindegardh, Niklas; Tarning, Joel; Ashton, Michael
2011-01-01
Background Artemisinin derivatives are used in antimalarial drug combination therapy. Artemisinin and piperaquine have recently been proven to be prospective candidates for combination therapy in the treatment of uncomplicated Plasmodium falciparum malaria. Objective The goal of this study was to evaluate the relative bioavailability and to characterize the pharmacokinetic properties of a new micronized powder formulation of artemisinin against the previous standard Vietnamese formulation when administered as a single oral dose or in combination with piperaquine. Methods This was a single-center, randomized, 4-sequence, open-label, crossover study conducted in 15 healthy male Vietnamese volunteers under fasting conditions with a washout period of 3 weeks between study visits. A single oral dose of 160 or 500 mg of artemisinin was administered alone or in combination with piperaquine. Potential adverse events were monitored daily by the clinician and by using laboratory test results. Frequent blood samples were drawn for 12 hours after dose. Artemisinin was quantified in plasma using LC-MS/MS. Pharmacokinetic parameters were computed from the plasma concentration–time profiles using a noncompartmental analysis method. Results Pharmacokinetic parameters Tmax, Cmax, AUC0-∞, Vd/F, CL/F, and t1/2 (mean [SD]) for the new formulation of artemisinin were 1.83 (0.88) hours, 178 (97) ng/mL, 504 (210) h × ng/mL, 1270 (780) L, 401 (260) L/h, and 2.21 (0.29) hours, respectively. The mean percentage of the test/reference formulation ratio for the logarithmically transformed values of Cmax, AUC0–last, and AUC0–∞ were 121% (90% CI, 92.5–158), 122% (90% CI, 101–148), and 120% (90% CI, 98.0–146), respectively. Conclusions This single-dose study found that the dose-normalized Cmax, AUC0–last, and AUC0–∞ mean geometric differences between the test and reference formulations were relatively small (<40%) and will probably not have a clinical impact in the treatment of malaria infections. PMID:21665048
2014-01-01
Background Although G6PDd individuals are generally asymptomatic throughout their life, the clinical burden of this genetic condition includes a range of haematological conditions, including acute haemolytic anaemia (AHA), neonatal jaundice (NNJ) and chronic non-sphaerocytic anaemia (CNSA). In Latin America (LA), the huge knowledge gap regarding G6PDd is related to the scarce understanding of the burden of clinical manifestation underlying G6PDd carriage. The aim of this work was to study the clinical significance of G6PDd in LA and the Caribbean region through a systematic review. Methods A systematic search of the published literature was undertaken in August 2013. Bibliographies of manuscripts were also searched and additional references were identified. Only original research was included. All study designs were included, as long as any clinical information was present. Studies were eligible for inclusion if they reported clinical information from populations living in LA or Caribbean countries or about migrants from these countries living in countries outside this continent. Results The Medline search generated 487 papers, and the LILACS search identified 140 papers. After applying the inclusion criteria, 100 original papers with any clinical information on G6PDd in LA were retrieved. Additionally, 16 articles were included after reading the references from these papers. These 116 articles reported data from 18 LA and Caribbean countries. The major clinical manifestations reported from LA countries were those related to AHA, namely drug-induced haemolysis. Most of the published works regarding drug-induced haemolysis in LA referred to haemolytic crises in P. vivax malaria patients during the course of the treatment with primaquine (PQ). Favism, infection-induced haemolysis, NNJ and CNSA appear to play only a minor public health role in this continent. Conclusion Haemolysis in patients using PQ seems to be the major clinical manifestation of G6PDd in LA and contributes to the morbidity of P. vivax infection in this continent, although the low number of reported cases, which could be linked to under-reporting of complications. These results support the need for better strategies to diagnose and manage G6PDd in malaria field conditions. Additionally, Malaria Control Programmes in LA should not overlook this condition in their national guidelines. PMID:24568147
Protocol for production of a genetic cross of the rodent malaria parasites.
Pattaradilokrat, Sittiporn; Li, Jian; Su, Xin-zhuan
2011-01-03
Variation in response to antimalarial drugs and in pathogenicity of malaria parasites is of biologic and medical importance. Linkage mapping has led to successful identification of genes or loci underlying various traits in malaria parasites of rodents and humans. The malaria parasite Plasmodium yoelii is one of many malaria species isolated from wild African rodents and has been adapted to grow in laboratories. This species reproduces many of the biologic characteristics of the human malaria parasites; genetic markers such as microsatellite and amplified fragment length polymorphism (AFLP) markers have also been developed for the parasite. Thus, genetic studies in rodent malaria parasites can be performed to complement research on Plasmodium falciparum. Here, we demonstrate the techniques for producing a genetic cross in P. yoelii that were first pioneered by Drs. David Walliker, Richard Carter, and colleagues at the University of Edinburgh. Genetic crosses in P. yoelii and other rodent malaria parasites are conducted by infecting mice Mus musculus with an inoculum containing gametocytes of two genetically distinct clones that differ in phenotypes of interest and by allowing mosquitoes to feed on the infected mice 4 days after infection. The presence of male and female gametocytes in the mouse blood is microscopically confirmed before feeding. Within 48 hrs after feeding, in the midgut of the mosquito, the haploid gametocytes differentiate into male and female gametes, fertilize, and form a diploid zygote (Fig. 1). During development of a zygote into an ookinete, meiosis appears to occur. If the zygote is derived through cross-fertilization between gametes of the two genetically distinct parasites, genetic exchanges (chromosomal reassortment and cross-overs between the non-sister chromatids of a pair of homologous chromosomes; Fig. 2) may occur, resulting in recombination of genetic material at homologous loci. Each zygote undergoes two successive nuclear divisions, leading to four haploid nuclei. An ookinete further develops into an oocyst. Once the oocyst matures, thousands of sporozoites (the progeny of the cross) are formed and released into mosquito hemoceal. Sporozoites are harvested from the salivary glands and injected into a new murine host, where pre-erythrocytic and erythrocytic stage development takes place. Erythrocytic forms are cloned and classified with regard to the characters distinguishing the parental lines prior to genetic linkage mapping. Control infections of individual parental clones are performed in the same way as the production of a genetic cross.
Epidemiology of imported malaria among children and young adults in Barcelona (1990-2008)
2011-01-01
Background Increasing international travel and migration is producing changes in trends in infectious diseases, especially in children from many European cities. The objective of this study was to describe the epidemiology and determine the trends of imported malaria in patients under 20 years old in the city of Barcelona, Spain, during an 18-year period. Methods The study included malaria cases that were laboratory confirmed and reported to the malaria register at the Public Health Agency of Barcelona from 1990 to 2008, residing in Barcelona and less than 20 years old. Patients were classified as natives (born in Spain) or immigrants. Differences in the distribution of demographic, clinical characteristics, and incidence per 100,000 person-year evolution were analysed. Natives and immigrants were compared by logistic regression by calculating the odds ratio (OR) with a 95% confidence interval (CI) and Chi-square for a linear trend (p < 0.05). Results Of the total 174 cases, 143 (82.1%) were immigrants, 100 (57.5%) were female, 121 (69.5%) Plasmodium falciparum, and 108 (62.1%) were visiting friends and relatives (VFR) as the reason for travel. Among the immigrants, 99 (67.8%) were from Equatorial Guinea. Immigrant cases more frequently travelled to Africa than natives (p = 0.02). The factors associated with imported malaria among immigrant residents was travelling for VFR (OR: 6.2 CI 1.9-20.2) and age 15-19 (OR: 3.7 CI 1-13.3). The incidence increased from 1990 to 1999 (p < 0.001) and decreased from 2000 to 2008 (p = 0.01), although the global linear trend was not statistically significant (p = 0.41). The fatality rate was 0.5%. Conclusions The majority of cases of malaria in population less than 20 years in Barcelona were immigrants, travelling to Africa for VFR and Plasmodium falciparum was most frequently detected. The trend analysis of the entire study period did not show a statistically significant decline. It is recommended to be aware of malaria, especially among children of immigrants who travel to their parent's home country for VFR. Better access to pre travel advice should be provided. PMID:22118531
Epidemiology of imported malaria among children and young adults in Barcelona (1990-2008).
Garcia-Villarrubia, Mireia; Millet, Juan-Pablo; de Olalla, Patricia Garcia; Gascón, Joaquim; Fumadó, Victoria; i Prat, Jordi Gómez; Treviño, Begoña; Pinazo, María-Jesús; Cabezos, Juan; Muñoz, José; Zarzuela, Francesc; Caylà, Joan A
2011-11-25
Increasing international travel and migration is producing changes in trends in infectious diseases, especially in children from many European cities. The objective of this study was to describe the epidemiology and determine the trends of imported malaria in patients under 20 years old in the city of Barcelona, Spain, during an 18-year period. The study included malaria cases that were laboratory confirmed and reported to the malaria register at the Public Health Agency of Barcelona from 1990 to 2008, residing in Barcelona and less than 20 years old. Patients were classified as natives (born in Spain) or immigrants. Differences in the distribution of demographic, clinical characteristics, and incidence per 100,000 person-year evolution were analysed. Natives and immigrants were compared by logistic regression by calculating the odds ratio (OR) with a 95% confidence interval (CI) and Chi-square for a linear trend (p<0.05). Of the total 174 cases, 143 (82.1%) were immigrants, 100 (57.5%) were female, 121 (69.5%) Plasmodium falciparum, and 108 (62.1%) were visiting friends and relatives (VFR) as the reason for travel. Among the immigrants, 99 (67.8%) were from Equatorial Guinea. Immigrant cases more frequently travelled to Africa than natives (p=0.02). The factors associated with imported malaria among immigrant residents was travelling for VFR (OR: 6.2 CI 1.9-20.2) and age 15-19 (OR: 3.7 CI 1-13.3). The incidence increased from 1990 to 1999 (p<0.001) and decreased from 2000 to 2008 (p=0.01), although the global linear trend was not statistically significant (p=0.41). The fatality rate was 0.5%. The majority of cases of malaria in population less than 20 years in Barcelona were immigrants, travelling to Africa for VFR and Plasmodium falciparum was most frequently detected. The trend analysis of the entire study period did not show a statistically significant decline. It is recommended to be aware of malaria, especially among children of immigrants who travel to their parent's home country for VFR. Better access to pre travel advice should be provided.