Science.gov

Sample records for malaria targeting parasite

  1. Malaria Parasite Metabolic Pathways (MPMP) Upgraded with Targeted Chemical Compounds.

    PubMed

    Ginsburg, Hagai; Abdel-Haleem, Alyaa M

    2016-01-01

    Malaria Parasite Metabolic Pathways (MPMP) is the website for the functional genomics of intraerythrocytic Plasmodium falciparum. All the published information about targeted chemical compounds has now been added. Users can find the drug target and publication details linked to a drug database for further information about the medicinal properties of each compound.

  2. Host-based Prophylaxis Successfully Targets Liver Stage Malaria Parasites

    PubMed Central

    Douglass, Alyse N; Kain, Heather S; Abdullahi, Marian; Arang, Nadia; Austin, Laura S; Mikolajczak, Sebastian A; Billman, Zachary P; Hume, Jen C C; Murphy, Sean C; Kappe, Stefan H I; Kaushansky, Alexis

    2015-01-01

    Eliminating malaria parasites during the asymptomatic but obligate liver stages (LSs) of infection would stop disease and subsequent transmission. Unfortunately, only a single licensed drug that targets all LSs, Primaquine, is available. Targeting host proteins might significantly expand the repertoire of prophylactic drugs against malaria. Here, we demonstrate that both Bcl-2 inhibitors and P53 agonists dramatically reduce LS burden in a mouse malaria model in vitro and in vivo by altering the activity of key hepatocyte factors on which the parasite relies. Bcl-2 inhibitors act primarily by inducing apoptosis in infected hepatocytes, whereas P53 agonists eliminate parasites in an apoptosis-independent fashion. In combination, Bcl-2 inhibitors and P53 agonists act synergistically to delay, and in some cases completely prevent, the onset of blood stage disease. Both families of drugs are highly effective at doses that do not cause substantial hepatocyte cell death in vitro or liver damage in vivo. P53 agonists and Bcl-2 inhibitors were also effective when administered to humanized mice infected with Plasmodium falciparum. Our data demonstrate that host-based prophylaxis could be developed into an effective intervention strategy that eliminates LS parasites before the onset of clinical disease and thus opens a new avenue to prevent malaria. PMID:25648263

  3. Deconvoluting heme biosynthesis to target blood-stage malaria parasites

    PubMed Central

    Sigala, Paul A; Crowley, Jan R; Henderson, Jeffrey P; Goldberg, Daniel E

    2015-01-01

    Heme metabolism is central to blood-stage infection by the malaria parasite Plasmodium falciparum. Parasites retain a heme biosynthesis pathway but do not require its activity during infection of heme-rich erythrocytes, where they can scavenge host heme to meet metabolic needs. Nevertheless, heme biosynthesis in parasite-infected erythrocytes can be potently stimulated by exogenous 5-aminolevulinic acid (ALA), resulting in accumulation of the phototoxic intermediate protoporphyrin IX (PPIX). Here we use photodynamic imaging, mass spectrometry, parasite gene disruption, and chemical probes to reveal that vestigial host enzymes in the cytoplasm of Plasmodium-infected erythrocytes contribute to ALA-stimulated heme biosynthesis and that ALA uptake depends on parasite-established permeability pathways. We show that PPIX accumulation in infected erythrocytes can be harnessed for antimalarial chemotherapy using luminol-based chemiluminescence and combinatorial stimulation by low-dose artemisinin to photoactivate PPIX to produce cytotoxic reactive oxygen. This photodynamic strategy has the advantage of exploiting host enzymes refractory to resistance-conferring mutations. DOI: http://dx.doi.org/10.7554/eLife.09143.001 PMID:26173178

  4. Malaria, photomicrograph of cellular parasites (image)

    MedlinePlus

    Malaria is a disease caused by parasites. This picture shows dark orange-stained malaria parasites inside red blood cells (a) and outside the cells (b). Note the large cells that look like targets; ...

  5. The proteasome of malaria parasites: A multi-stage drug target for chemotherapeutic intervention?

    PubMed Central

    Aminake, Makoah Nigel; Arndt, Hans-Dieter; Pradel, Gabriele

    2012-01-01

    The ubiquitin/proteasome system serves as a regulated protein degradation pathway in eukaryotes, and is involved in many cellular processes featuring high protein turnover rates, such as cell cycle control, stress response and signal transduction. In malaria parasites, protein quality control is potentially important because of the high replication rate and the rapid transformations of the parasite during life cycle progression. The proteasome is the core of the degradation pathway, and is a major proteolytic complex responsible for the degradation and recycling of non-functional ubiquitinated proteins. Annotation of the genome for Plasmodium falciparum, the causative agent of malaria tropica, revealed proteins with similarity to human 26S proteasome subunits. In addition, a bacterial ClpQ/hslV threonine peptidase-like protein was identified. In recent years several independent studies indicated an essential function of the parasite proteasome for the liver, blood and transmission stages. In this review, we compile evidence for protein recycling in Plasmodium parasites and discuss the role of the 26S proteasome as a prospective multi-stage target for antimalarial drug discovery programs. PMID:24533266

  6. Simultaneously targeting inflammatory response and parasite sequestration in brain to treat Experimental Cerebral Malaria.

    PubMed

    Dende, Chaitanya; Meena, Jairam; Nagarajan, Perumal; Panda, Amulya K; Rangarajan, Pundi N; Padmanaban, Govindarajan

    2015-07-31

    Malaria afflicts around 200 million people annually, with a mortality number close to 600,000. The mortality rate in Human Cerebral Malaria (HCM) is unacceptably high (15-20%), despite the availability of artemisinin-based therapy. An effective adjunct therapy is urgently needed. Experimental Cerebral Malaria (ECM) in mice manifests many of the neurological features of HCM. Migration of T cells and parasite-infected RBCs (pRBCs) into the brain are both necessary to precipitate the disease. We have been able to simultaneously target both these parameters of ECM. Curcumin alone was able to reverse all the parameters investigated in this study that govern inflammatory responses, CD8(+) T cell and pRBC sequestration into the brain and blood brain barrier (BBB) breakdown. But the animals eventually died of anemia due to parasite build-up in blood. However, arteether-curcumin (AC) combination therapy even after the onset of symptoms provided complete cure. AC treatment is a promising therapeutic option for HCM.

  7. Simultaneously targeting inflammatory response and parasite sequestration in brain to treat Experimental Cerebral Malaria

    PubMed Central

    Dende, Chaitanya; Meena, Jairam; Nagarajan, Perumal; Panda, Amulya K.; Rangarajan, Pundi N.; Padmanaban, Govindarajan

    2015-01-01

    Malaria afflicts around 200 million people annually, with a mortality number close to 600,000. The mortality rate in Human Cerebral Malaria (HCM) is unacceptably high (15–20%), despite the availability of artemisinin-based therapy. An effective adjunct therapy is urgently needed. Experimental Cerebral Malaria (ECM) in mice manifests many of the neurological features of HCM. Migration of T cells and parasite-infected RBCs (pRBCs) into the brain are both necessary to precipitate the disease. We have been able to simultaneously target both these parameters of ECM. Curcumin alone was able to reverse all the parameters investigated in this study that govern inflammatory responses, CD8+ T cell and pRBC sequestration into the brain and blood brain barrier (BBB) breakdown. But the animals eventually died of anemia due to parasite build-up in blood. However, arteether-curcumin (AC) combination therapy even after the onset of symptoms provided complete cure. AC treatment is a promising therapeutic option for HCM. PMID:26227888

  8. Malaria parasite clearance.

    PubMed

    White, Nicholas J

    2017-02-23

    Following anti-malarial drug treatment asexual malaria parasite killing and clearance appear to be first order processes. Damaged malaria parasites in circulating erythrocytes are removed from the circulation mainly by the spleen. Splenic clearance functions increase markedly in acute malaria. Either the entire infected erythrocytes are removed because of their reduced deformability or increased antibody binding or, for the artemisinins which act on young ring stage parasites, splenic pitting of drug-damaged parasites is an important mechanism of clearance. The once-infected erythrocytes returned to the circulation have shortened survival. This contributes to post-artesunate haemolysis that may follow recovery in non-immune hyperparasitaemic patients. As the parasites mature Plasmodium vivax-infected erythrocytes become more deformable, whereas Plasmodium falciparum-infected erythrocytes become less deformable, but they escape splenic filtration by sequestering in venules and capillaries. Sequestered parasites are killed in situ by anti-malarial drugs and then disintegrate to be cleared by phagocytic leukocytes. After treatment with artemisinin derivatives some asexual parasites become temporarily dormant within their infected erythrocytes, and these may regrow after anti-malarial drug concentrations decline. Artemisinin resistance in P. falciparum reflects reduced ring stage susceptibility and manifests as slow parasite clearance. This is best assessed from the slope of the log-linear phase of parasitaemia reduction and is commonly measured as a parasite clearance half-life. Pharmacokinetic-pharmacodynamic modelling of anti-malarial drug effects on parasite clearance has proved useful in predicting therapeutic responses and in dose-optimization.

  9. Purine import into malaria parasites as a target for antimalarial drug development.

    PubMed

    Frame, I J; Deniskin, Roman; Arora, Avish; Akabas, Myles H

    2015-04-01

    Infection with Plasmodium species parasites causes malaria. Plasmodium parasites are purine auxotrophs. In all life cycle stages, they require purines for RNA and DNA synthesis and other cellular metabolic processes. Purines are imported from the host erythrocyte by equilibrative nucleoside transporters (ENTs). They are processed via purine salvage pathway enzymes to form the required purine nucleotides. The Plasmodium falciparum genome encodes four putative ENTs (PfENT1-4). Genetic, biochemical, and physiologic evidence suggest that PfENT1 is the primary purine transporter supplying the purine salvage pathway. Protein mass spectrometry shows that PfENT1 is expressed in all parasite stages. PfENT1 knockout parasites are not viable in culture at purine concentrations found in human blood (<10 μM). Thus, PfENT1 is a potential target for novel antimalarial drugs, but no PfENT1 inhibitors have been identified to test the hypothesis. Identifying inhibitors of PfENT1 is an essential step to validate PfENT1 as a potential antimalarial drug target.

  10. The Cytoplasmic Prolyl-tRNA Synthetase of the Malaria Parasite is a Dual-Stage Target for Drug Development

    PubMed Central

    Herman, Jonathan D.; Pepper, Lauren R.; Cortese, Joseph F.; Estiu, Guillermina; Galinsky, Kevin; Zuzarte-Luis, Vanessa; Derbyshire, Emily R.; Ribacke, Ulf; Lukens, Amanda K.; Santos, Sofia A.; Patel, Vishal; Clish, Clary B.; Sullivan, William J.; Zhou, Huihao; Bopp, Selina E.; Schimmel, Paul; Lindquist, Susan; Clardy, Jon; Mota, Maria M.; Keller, Tracy L.; Whitman, Malcolm; Wiest, Olaf; Wirth, Dyann F.; Mazitschek, Ralph

    2015-01-01

    The emergence of drug resistance is a major limitation of current antimalarials. The discovery of new druggable targets and pathways including those that are critical for multiple life cycle stages of the malaria parasite is a major goal for the development of the next-generation of antimalarial drugs. Using an integrated chemogenomics approach that combined drug-resistance selection, whole genome sequencing and an orthogonal yeast model, we demonstrate that the cytoplasmic prolyl-tRNA synthetase (PfcPRS) of the malaria parasite Plasmodium falciparum is a biochemical and functional target of febrifugine and its synthetic derivatives such as halofuginone. Febrifugine is the active principle of a traditional Chinese herbal remedy for malaria. We show that treatment with febrifugine derivatives activated the amino acid starvation response in both P. falciparum and a transgenic yeast strain expressing PfcPRS. We further demonstrate in the P. berghei mouse model of malaria that halofuginol, a new halofuginone analog that we developed, is highly active against both liver and asexual blood stages of the malaria parasite. Halofuginol, unlike halofuginone and febrifugine, is well tolerated at efficacious doses, and represents a promising lead for the development of dual-stage next generation antimalarials. PMID:25995223

  11. Ungulate malaria parasites

    PubMed Central

    Templeton, Thomas J.; Asada, Masahito; Jiratanh, Montakan; Ishikawa, Sohta A.; Tiawsirisup, Sonthaya; Sivakumar, Thillaiampalam; Namangala, Boniface; Takeda, Mika; Mohkaew, Kingdao; Ngamjituea, Supawan; Inoue, Noboru; Sugimoto, Chihiro; Inagaki, Yuji; Suzuki, Yasuhiko; Yokoyama, Naoaki; Kaewthamasorn, Morakot; Kaneko, Osamu

    2016-01-01

    Haemosporida parasites of even-toed ungulates are diverse and globally distributed, but since their discovery in 1913 their characterization has relied exclusively on microscopy-based descriptions. In order to bring molecular approaches to bear on the identity and evolutionary relationships of ungulate malaria parasites, we conducted Plasmodium cytb-specific nested PCR surveys using blood from water buffalo in Vietnam and Thailand, and goats in Zambia. We found that Plasmodium is readily detectable from water buffalo in these countries, indicating that buffalo Plasmodium is distributed in a wider region than India, which is the only area in which buffalo Plasmodium has been reported. Two types (I and II) of Plasmodium sequences were identified from water buffalo and a third type (III) was isolated from goat. Morphology of the parasite was confirmed in Giemsa-reagent stained blood smears for the Type I sample. Complete mitochondrial DNA sequences were isolated and used to infer a phylogeny in which ungulate malaria parasites form a monophyletic clade within the Haemosporida, and branch prior to the clade containing bird, lizard and other mammalian Plasmodium. Thus it is likely that host switching of Plasmodium from birds to mammals occurred multiple times, with a switch to ungulates independently from other mammalian Plasmodium. PMID:26996979

  12. The Malaria Parasite's Lactate Transporter PfFNT Is the Target of Antiplasmodial Compounds Identified in Whole Cell Phenotypic Screens

    PubMed Central

    Hapuarachchi, Sanduni V.; McConville, Malcolm J.; Martin, Rowena E.; Lehane, Adele M.

    2017-01-01

    In this study the ‘Malaria Box’ chemical library comprising 400 compounds with antiplasmodial activity was screened for compounds that perturb the internal pH of the malaria parasite, Plasmodium falciparum. Fifteen compounds induced an acidification of the parasite cytosol. Two of these did so by inhibiting the parasite’s formate nitrite transporter (PfFNT), which mediates the H+-coupled efflux from the parasite of lactate generated by glycolysis. Both compounds were shown to inhibit lactate transport across the parasite plasma membrane, and the transport of lactate by PfFNT expressed in Xenopus laevis oocytes. PfFNT inhibition caused accumulation of lactate in parasitised erythrocytes, and swelling of both the parasite and parasitised erythrocyte. Long-term exposure of parasites to one of the inhibitors gave rise to resistant parasites with a mutant form of PfFNT that showed reduced inhibitor sensitivity. This study provides the first evidence that PfFNT is a druggable antimalarial target. PMID:28178359

  13. Malaria, microscopic view of cellular parasites (image)

    MedlinePlus

    Malaria is a disease caused by parasites that are carried by mosquitoes. Once in the bloodstream, the parasite inhabits the red blood cell (RBC). This picture shows purple-stained malaria parasites inside red blood cells.

  14. Microsatellite analysis of malaria parasites.

    PubMed

    Orjuela-Sánchez, Pamela; Brandi, Michelle C; Ferreira, Marcelo U

    2013-01-01

    Microsatellites have been increasingly used to investigate the population structure of malaria parasites, to map genetic loci contributing to phenotypes such as drug resistance and virulence in laboratory crosses and genome-wide association studies and to distinguish between treatment failures and new infections in clinical trials. Here, we provide optimized protocols for genotyping highly polymorphic microsatellites sampled from across the genomes of the human malaria parasites Plasmodium falciparum and P. vivax that have been extensively used in research laboratories worldwide.

  15. Inhibition of Protein Synthesis and Malaria Parasite Development by Drug Targeting of Methionyl-tRNA Synthetases

    PubMed Central

    Hussain, Tahir; Yogavel, Manickam

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes that couple cognate tRNAs with amino acids to transmit genomic information for protein translation. The Plasmodium falciparum nuclear genome encodes two P. falciparum methionyl-tRNA synthetases (PfMRS), termed PfMRScyt and PfMRSapi. Phylogenetic analyses revealed that the two proteins are of primitive origin and are related to heterokonts (PfMRScyt) or proteobacteria/primitive bacteria (PfMRSapi). We show that PfMRScyt localizes in parasite cytoplasm, while PfMRSapi localizes to apicoplasts in asexual stages of malaria parasites. Two known bacterial MRS inhibitors, REP3123 and REP8839, hampered Plasmodium growth very effectively in the early and late stages of parasite development. Small-molecule drug-like libraries were screened against modeled PfMRS structures, and several “hit” compounds showed significant effects on parasite growth. We then tested the effects of the hit compounds on protein translation by labeling nascent proteins with 35S-labeled cysteine and methionine. Three of the tested compounds reduced protein synthesis and also blocked parasite growth progression from the ring stage to the trophozoite stage. Drug docking studies suggested distinct modes of binding for the three compounds, compared with the enzyme product methionyl adenylate. Therefore, this study provides new targets (PfMRSs) and hit compounds that can be explored for development as antimalarial drugs. PMID:25583729

  16. Malaria parasite development in mosquitoes.

    PubMed

    Beier, J C

    1998-01-01

    Mosquitoes of the genus Anopheles transmit malaria parasites to humans. Anopheles mosquito species vary in their vector potential because of environmental conditions and factors affecting their abundance, blood-feeding behavior, survival, and ability to support malaria parasite development. In the complex life cycle of the parasite in female mosquitoes, a process termed sporogony, mosquitoes acquire gametocyte-stage parasites from blood-feeding on an infected host. The parasites carry out fertilization in the midgut, transform to ookinetes, then oocysts, which produce sporozoites. Sporozoites invade the salivary glands and are transmitted when the mosquito feeds on another host. Most individual mosquitoes that ingest gametocytes do not support development to the sporozoite stage. Bottle-necks occur at every stage of the cycle in the mosquito. Powerful new techniques and approaches exist for evaluating malaria parasite development and for identifying mechanisms regulating malaria parasite-vector interactions. This review focuses on those interactions that are important for the development of new approaches for evaluating and blocking transmission in nature.

  17. Molecular targets of 5-fluoroorotate in the human malaria parasite, Plasmodium falciparum.

    PubMed Central

    Rathod, P K; Leffers, N P; Young, R D

    1992-01-01

    5-Fluoroorotate is known to have potent antimalarial activity against chloroquine-susceptible as well as chloroquine-resistant clones of Plasmodium falciparum. It was hypothesized that this activity was mediated through synthesis of 5-fluoro-2'-deoxyuridylate, an inactivator of thymidylate synthase, or through incorporation of 5-fluoropyrimidine residues into nucleic acids. Treatment of P. falciparum in culture with 100 nM 5-fluoroorotate resulted in rapid inactivation of malarial thymidylate synthase activity. A 50% loss of thymidylate synthase activity as well as a 50% decrease in parasite proliferation were seen with 5 nM 5-fluoroorotate. Dihydrofolate reductase activity, which resides on the same bifunctional protein as thymidylate synthase, was not affected by 5-fluoroorotate treatment. Incubation of malarial parasites with 3 to 10 microM radioactive 5-fluoroorotic acid for 48 h resulted in significant incorporation of radioactivity into the RNA fraction of P. falciparum; approximately 9% of the uridine residues were substituted with 5-fluorouridine. However, compared with the 50% inhibitory concentrations of 5-fluoroorotate, a 1,000-fold higher concentration of the pyrimidine analog was required to see significant modification of RNA molecules. Results of these studies are consistent with the hypothesis that thymidylate synthase is the primary target of 5-fluoroorotate in malarial parasites. PMID:1503432

  18. Malaria Parasite Liver Infection and Exoerythrocytic Biology.

    PubMed

    Vaughan, Ashley M; Kappe, Stefan H I

    2017-02-27

    In their infection cycle, malaria parasites undergo replication and population expansions within the vertebrate host and the mosquito vector. Host infection initiates with sporozoite invasion of hepatocytes, followed by a dramatic parasite amplification event during liver stage parasite growth and replication within hepatocytes. Each liver stage forms up to 90,000 exoerythrocytic merozoites, which are in turn capable of initiating a blood stage infection. Liver stages not only exploit host hepatocyte resources for nutritional needs but also endeavor to prevent hepatocyte cell death and detection by the host's immune system. Research over the past decade has identified numerous parasite factors that play a critical role during liver infection and has started to delineate a complex web of parasite-host interactions that sustain successful parasite colonization of the mammalian host. Targeting the parasites' obligatory infection of the liver as a gateway to the blood, with drugs and vaccines, constitutes the most effective strategy for malaria eradication, as it would prevent clinical disease and onward transmission of the parasite.

  19. Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7

    PubMed Central

    Ismail, Hanafy M.; Barton, Victoria; Phanchana, Matthew; Charoensutthivarakul, Sitthivut; Wong, Michael H. L.; Hemingway, Janet; Biagini, Giancarlo A.; O’Neill, Paul M.; Ward, Stephen A.

    2016-01-01

    The artemisinin (ART)-based antimalarials have contributed significantly to reducing global malaria deaths over the past decade, but we still do not know how they kill parasites. To gain greater insight into the potential mechanisms of ART drug action, we developed a suite of ART activity-based protein profiling probes to identify parasite protein drug targets in situ. Probes were designed to retain biological activity and alkylate the molecular target(s) of Plasmodium falciparum 3D7 parasites in situ. Proteins tagged with the ART probe can then be isolated using click chemistry before identification by liquid chromatography–MS/MS. Using these probes, we define an ART proteome that shows alkylated targets in the glycolytic, hemoglobin degradation, antioxidant defense, and protein synthesis pathways, processes essential for parasite survival. This work reveals the pleiotropic nature of the biological functions targeted by this important class of antimalarial drugs. PMID:26858419

  20. The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs.

    PubMed

    Herman, Jonathan D; Pepper, Lauren R; Cortese, Joseph F; Estiu, Guillermina; Galinsky, Kevin; Zuzarte-Luis, Vanessa; Derbyshire, Emily R; Ribacke, Ulf; Lukens, Amanda K; Santos, Sofia A; Patel, Vishal; Clish, Clary B; Sullivan, William J; Zhou, Huihao; Bopp, Selina E; Schimmel, Paul; Lindquist, Susan; Clardy, Jon; Mota, Maria M; Keller, Tracy L; Whitman, Malcolm; Wiest, Olaf; Wirth, Dyann F; Mazitschek, Ralph

    2015-05-20

    The emergence of drug resistance is a major limitation of current antimalarials. The discovery of new druggable targets and pathways including those that are critical for multiple life cycle stages of the malaria parasite is a major goal for developing next-generation antimalarial drugs. Using an integrated chemogenomics approach that combined drug resistance selection, whole-genome sequencing, and an orthogonal yeast model, we demonstrate that the cytoplasmic prolyl-tRNA (transfer RNA) synthetase (PfcPRS) of the malaria parasite Plasmodium falciparum is a biochemical and functional target of febrifugine and its synthetic derivative halofuginone. Febrifugine is the active principle of a traditional Chinese herbal remedy for malaria. We show that treatment with febrifugine derivatives activated the amino acid starvation response in both P. falciparum and a transgenic yeast strain expressing PfcPRS. We further demonstrate in the Plasmodium berghei mouse model of malaria that halofuginol, a new halofuginone analog that we developed, is active against both liver and asexual blood stages of the malaria parasite. Halofuginol, unlike halofuginone and febrifugine, is well tolerated at efficacious doses and represents a promising lead for the development of dual-stage next-generation antimalarials.

  1. Targeting Human Transmission Biology for Malaria Elimination

    PubMed Central

    Buckee, Caroline; Marti, Matthias

    2015-01-01

    Malaria remains one of the leading causes of death worldwide, despite decades of public health efforts. The recent commitment by many endemic countries to eliminate malaria marks a shift away from programs aimed at controlling disease burden towards one that emphasizes reducing transmission of the most virulent human malaria parasite, Plasmodium falciparum. Gametocytes, the only developmental stage of malaria parasites able to infect mosquitoes, have remained understudied, as they occur in low numbers, do not cause disease, and are difficult to detect in vivo by conventional methods. Here, we review the transmission biology of P. falciparum gametocytes, featuring important recent discoveries of genes affecting parasite commitment to gametocyte formation, microvesicles enabling parasites to communicate with each other, and the anatomical site where immature gametocytes develop. We propose potential parasite targets for future intervention and highlight remaining knowledge gaps. PMID:26086192

  2. Characterization of two malaria parasite organelle translation elongation factor G proteins: the likely targets of the anti-malarial fusidic acid.

    PubMed

    Johnson, Russell A; McFadden, Geoffrey I; Goodman, Christopher D

    2011-01-01

    Malaria parasites harbour two organelles with bacteria-like metabolic processes that are the targets of many anti-bacterial drugs. One such drug is fusidic acid, which inhibits the translation component elongation factor G. The response of P. falciparum to fusidic acid was characterised using extended SYBR-Green based drug trials. This revealed that fusidic acid kills in vitro cultured P. falciparum parasites by immediately blocking parasite development. Two bacterial-type protein translation elongation factor G genes are identified as likely targets of fusidic acid. Sequence analysis suggests that these proteins function in the mitochondria and apicoplast and both should be sensitive to fusidic acid. Microscopic examination of protein-reporter fusions confirm the prediction that one elongation factor G is a component of parasite mitochondria whereas the second is a component of the relict plastid or apicoplast. The presence of two putative targets for a single inhibitory compound emphasizes the potential of elongation factor G as a drug target in malaria.

  3. Biliverdin targets enolase and eukaryotic initiation factor 2 (eIF2α) to reduce the growth of intraerythrocytic development of the malaria parasite Plasmodium falciparum

    PubMed Central

    Alves, Eduardo; Maluf, Fernando V.; Bueno, Vânia B.; Guido, Rafael V. C.; Oliva, Glaucius; Singh, Maneesh; Scarpelli, Pedro; Costa, Fahyme; Sartorello, Robson; Catalani, Luiz H.; Brady, Declan; Tewari, Rita; Garcia, Celia R. S.

    2016-01-01

    In mammals, haem degradation to biliverdin (BV) through the action of haem oxygenase (HO) is a critical step in haem metabolism. The malaria parasite converts haem into the chemically inert haemozoin to avoid toxicity. We discovered that the knock-out of HO in P. berghei is lethal; therefore, we investigated the function of biliverdin (BV) and haem in the parasite. Addition of external BV and haem to P. falciparum-infected red blood cell (RBC) cultures delays the progression of parasite development. The search for a BV molecular target within the parasites identified P. falciparum enolase (Pf enolase) as the strongest candidate. Isothermal titration calorimetry using recombinant full-length Plasmodium enolase suggested one binding site for BV. Kinetic assays revealed that BV is a non-competitive inhibitor. We employed molecular modelling studies to predict the new binding site as well as the binding mode of BV to P. falciparum enolase. Furthermore, addition of BV and haem targets the phosphorylation of Plasmodium falciparum eIF2α factor, an eukaryotic initiation factor phosphorylated by eIF2α kinases under stress conditions. We propose that BV targets enolase to reduce parasite glycolysis rates and changes the eIF2α phosphorylation pattern as a molecular mechanism for its action. PMID:26915471

  4. Malaria parasite CelTOS targets the inner leaflet of cell membranes for pore-dependent disruption

    PubMed Central

    Jimah, John R; Salinas, Nichole D; Sala-Rabanal, Monica; Jones, Nathaniel G; Sibley, L David; Nichols, Colin G; Schlesinger, Paul H; Tolia, Niraj H

    2016-01-01

    Apicomplexan parasites contain a conserved protein CelTOS that, in malaria parasites, is essential for traversal of cells within the mammalian host and arthropod vector. However, the molecular role of CelTOS is unknown because it lacks sequence similarity to proteins of known function. Here, we determined the crystal structure of CelTOS and discovered CelTOS resembles proteins that bind to and disrupt membranes. In contrast to known membrane disruptors, CelTOS has a distinct architecture, specifically binds phosphatidic acid commonly present within the inner leaflet of plasma membranes, and potently disrupts liposomes composed of phosphatidic acid by forming pores. Microinjection of CelTOS into cells resulted in observable membrane damage. Therefore, CelTOS is unique as it achieves nearly universal inner leaflet cellular activity to enable the exit of parasites from cells during traversal. By providing novel molecular insight into cell traversal by apicomplexan parasites, our work facilitates the design of therapeutics against global pathogens. DOI: http://dx.doi.org/10.7554/eLife.20621.001 PMID:27906127

  5. SYBR Green real-time PCR-RFLP assay targeting the plasmodium cytochrome B gene--a highly sensitive molecular tool for malaria parasite detection and species determination.

    PubMed

    Xu, Weiping; Morris, Ulrika; Aydin-Schmidt, Berit; Msellem, Mwinyi I; Shakely, Delér; Petzold, Max; Björkman, Anders; Mårtensson, Andreas

    2015-01-01

    A prerequisite for reliable detection of low-density Plasmodium infections in malaria pre-elimination settings is the availability of ultra-sensitive and high-throughput molecular tools. We developed a SYBR Green real-time PCR restriction fragment length polymorphism assay (cytb-qPCR) targeting the cytochrome b gene of the four major human Plasmodium species (P. falciparum, P. vivax, P. malariae, and P. ovale) for parasite detection and species determination with DNA extracted from dried blood spots collected on filter paper. The performance of cytb-qPCR was first compared against four reference PCR methods using serially diluted Plasmodium samples. The detection limit of the cytb-qPCR was 1 parasite/μl (p/μl) for P. falciparum and P. ovale, and 2 p/μl for P. vivax and P. malariae, while the reference PCRs had detection limits of 0.5-10 p/μl. The ability of the PCR methods to detect low-density Plasmodium infections was then assessed using 2977 filter paper samples collected during a cross-sectional survey in Zanzibar, a malaria pre-elimination setting in sub-Saharan Africa. Field samples were defined as 'final positive' if positive in at least two of the five PCR methods. Cytb-qPCR preformed equal to or better than the reference PCRs with a sensitivity of 100% (65/65; 95%CI 94.5-100%) and a specificity of 99.9% (2910/2912; 95%CI 99.7-100%) when compared against 'final positive' samples. The results indicate that the cytb-qPCR may represent an opportunity for improved molecular surveillance of low-density Plasmodium infections in malaria pre-elimination settings.

  6. The interplay between drug resistance and fitness in malaria parasites.

    PubMed

    Rosenthal, Philip J

    2013-09-01

    Controlling the spread of antimalarial drug resistance, especially resistance of Plasmodium falciparum to artemisinin-based combination therapies, is a high priority. Available data indicate that, as with other microorganisms, the spread of drug-resistant malaria parasites is limited by fitness costs that frequently accompany resistance. Resistance-mediating polymorphisms in malaria parasites have been identified in putative drug transporters and in target enzymes. The impacts of these polymorphisms on parasite fitness have been characterized in vitro and in animal models. Additional insights have come from analyses of samples from clinical studies, both evaluating parasites under different selective pressures and determining the clinical consequences of infection with different parasites. With some exceptions, resistance-mediating polymorphisms lead to malaria parasites that, compared with wild type, grow less well in culture and in animals, and are replaced by wild type when drug pressure diminishes in the clinical setting. In some cases, the fitness costs of resistance may be offset by compensatory mutations that increase virulence or changes that enhance malaria transmission. However, not enough is known about effects of resistance mediators on parasite fitness. A better appreciation of the costs of fitness-mediating mutations will facilitate the development of optimal guidelines for the treatment and prevention of malaria.

  7. Active migration and passive transport of malaria parasites.

    PubMed

    Douglas, Ross G; Amino, Rogerio; Sinnis, Photini; Frischknecht, Freddy

    2015-08-01

    Malaria parasites undergo a complex life cycle between their hosts and vectors. During this cycle the parasites invade different types of cells, migrate across barriers, and transfer from one host to another. Recent literature hints at a misunderstanding of the difference between active, parasite-driven migration and passive, circulation-driven movement of the parasite or parasite-infected cells in the various bodily fluids of mosquito and mammalian hosts. Because both active migration and passive transport could be targeted in different ways to interfere with the parasite, a distinction between the two ways the parasite uses to get from one location to another is essential. We discuss the two types of motion needed for parasite dissemination and elaborate on how they could be targeted by future vaccines or drugs.

  8. Paths to a malaria vaccine illuminated by parasite genomics.

    PubMed

    Conway, David J

    2015-02-01

    More human death and disease is caused by malaria parasites than by all other eukaryotic pathogens combined. As early as the sequencing of the first human genome, malaria parasite genomics was prioritized to fuel the discovery of vaccine candidate antigens. This stimulated increased research on malaria, generating new understanding of the cellular and molecular mechanisms of infection and immunity. This review of recent developments illustrates how new approaches in parasite genomics, and increasingly large amounts of data from population studies, are helping to identify antigens that are promising lead targets. Although these results have been encouraging, effective discovery and characterization need to be coupled with more innovation and funding to translate findings into newly designed vaccine products for clinical trials.

  9. Malaria Parasites: The Great Escape

    PubMed Central

    Rénia, Laurent; Goh, Yun Shan

    2016-01-01

    Parasites of the genus Plasmodium have a complex life cycle. They alternate between their final mosquito host and their intermediate hosts. The parasite can be either extra- or intracellular, depending on the stage of development. By modifying their shape, motility, and metabolic requirements, the parasite adapts to the different environments in their different hosts. The parasite has evolved to escape the multiple immune mechanisms in the host that try to block parasite development at the different stages of their development. In this article, we describe the mechanisms reported thus far that allow the Plasmodium parasite to evade innate and adaptive immune responses. PMID:27872623

  10. The distinct proteome of placental malaria parasites.

    SciTech Connect

    Fried, Michal; Hixson, Kim K.; Anderson, Lori; Ogata, Yuko; Mutabingwa, Theonest K.; Duffy, Patrick E.

    2007-09-01

    Malaria proteins expressed on the surface of Plasmodium falciparum infected erythrocytes (IE) mediate adhesion and are targeted by protective immune responses. During pregnancy, IE sequester in the placenta. Placental IE bind to the molecule chondroitin sulfate A (CSA) and preferentially transcribe the gene that encodes VAR2CSA, a member of the PfEMP1 variant surface antigen family. Over successive pregnancies women develop specific immunity to CSA-binding IE and antibodies to VAR2CSA. We used tandem mass spectrometry together with accurate mass and time tag technology to study IE membrane fractions of placental parasites. VAR2CSA peptides were detected in placental IE and in IE from children, but the MC variant of VAR2CSA was specifically associated with placental IE. We identified six conserved hypothetical proteins with putative TM or signal peptides that were exclusively expressed by the placental IE, and 11 such proteins that were significantly more abundant in placental IE. One of these hypothetical proteins, PFI1785w, is a 42kDa molecule detected by Western blot in parasites infecting pregnant women but not those infecting children.

  11. Immune Escape Strategies of Malaria Parasites

    PubMed Central

    Gomes, Pollyanna S.; Bhardwaj, Jyoti; Rivera-Correa, Juan; Freire-De-Lima, Celio G.; Morrot, Alexandre

    2016-01-01

    Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins, and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission. PMID:27799922

  12. Immune Escape Strategies of Malaria Parasites.

    PubMed

    Gomes, Pollyanna S; Bhardwaj, Jyoti; Rivera-Correa, Juan; Freire-De-Lima, Celio G; Morrot, Alexandre

    2016-01-01

    Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins, and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission.

  13. Spatial targeting of interventions against malaria.

    PubMed Central

    Carter, R.; Mendis, K. N.; Roberts, D.

    2000-01-01

    Malaria transmission is strongly associated with location. This association has two main features. First, the disease is focused around specific mosquito breeding sites and can normally be transmitted only within certain distances from them: in Africa these are typically between a few hundred metres and a kilometre and rarely exceed 2-3 kilometres. Second, there is a marked clustering of persons with malaria parasites and clinical symptoms at particular sites, usually households. In localities of low endemicity the level of malaria risk or case incidence may vary widely between households because the specific characteristics of houses and their locations affect contact between humans and vectors. Where endemicity is high, differences in human/vector contact rates between different households may have less effect on malaria case incidences. This is because superinfection and exposure-acquired immunity blur the proportional relationship between inoculation rates and case incidences. Accurate information on the distribution of malaria on the ground permits interventions to be targeted towards the foci of transmission and the locations and households of high malaria risk within them. Such targeting greatly increases the effectiveness of control measures. On the other hand, the inadvertent exclusion of these locations causes potentially effective control measures to fail. The computerized mapping and management of location data in geographical information systems should greatly assist the targeting of interventions against malaria at the focal and household levels, leading to improved effectiveness and cost-effectiveness of control. PMID:11196487

  14. Structural and functional attributes of malaria parasite diadenosine tetraphosphate hydrolase

    PubMed Central

    Sharma, Arvind; Yogavel, Manickam; Sharma, Amit

    2016-01-01

    Malaria symptoms are driven by periodic multiplication cycles of Plasmodium parasites in human red blood corpuscles (RBCs). Malaria infection still accounts for ~600,000 annual deaths, and hence discovery of both new drug targets and drugs remains vital. In the present study, we have investigated the malaria parasite enzyme diadenosine tetraphosphate (Ap4A) hydrolase that regulates levels of signalling molecules like Ap4A by hydrolyzing them to ATP and AMP. We have tracked the spatial distribution of parasitic Ap4A hydrolase in infected RBCs, and reveal its unusual localization on the infected RBC membrane in subpopulation of infected cells. Interestingly, enzyme activity assays reveal an interaction between Ap4A hydrolase and the parasite growth inhibitor suramin. We also present a high resolution crystal structure of Ap4A hydrolase in apo- and sulphate- bound state, where the sulphate resides in the enzyme active site by mimicking the phosphate of substrates like Ap4A. The unexpected infected erythrocyte localization of the parasitic Ap4A hydrolase hints at a possible role of this enzyme in purinerigic signaling. In addition, atomic structure of Ap4A hydrolase provides insights for selective drug targeting. PMID:26829485

  15. Host-parasite interactions that guide red blood cell invasion by malaria parasites

    PubMed Central

    Paul, Aditya S.; Egan, Elizabeth S.; Duraisingh, Manoj T.

    2015-01-01

    Purpose of Review Malaria is caused by the infection and proliferation of parasites from the genus Plasmodium in red blood cells (RBCs). A free Plasmodium parasite, or merozoite, released from an infected RBC must invade another RBC host cell to sustain a blood-stage infection. Here, we review recent advances on RBC invasion by Plasmodium merozoites, focusing on specific molecular interactions between host and parasite. Recent findings Recent work highlights the central role of host-parasite interactions at virtually every stage of RBC invasion by merozoites. Biophysical experiments have for the first time measured the strength of merozoite-RBC attachment during invasion. For P. falciparum, there have been many key insights regarding the invasion ligand PfRh5 in particular, including its influence on host species tropism, a co-crystal structure with its RBC receptor basigin, and its suitability as a vaccine target. For P. vivax, researchers identified the origin and emergence of the parasite from Africa, demonstrating a natural link to the Duffy-negative RBC variant in African populations. For the simian parasite P. knowlesi, zoonotic invasion into human cells is linked to RBC age, which has implications for parasitemia during an infection and thus malaria. Summary New studies of the molecular and cellular mechanisms governing RBC invasion by Plasmodium parasites have shed light on various aspects of parasite biology and host cell tropism; and indicate opportunities for malaria control. PMID:25767956

  16. PI4 Kinase Is a Prophylactic but Not Radical Curative Target in Plasmodium vivax-Type Malaria Parasites

    PubMed Central

    Zeeman, Anne-Marie; Lakshminarayana, Suresh B.; van der Werff, Nicole; Klooster, Els J.; Voorberg-van der Wel, Annemarie; Kondreddi, Ravinder R.; Bodenreider, Christophe; Simon, Oliver; Sauerwein, Robert; Yeung, Bryan K. S.

    2016-01-01

    Two Plasmodium PI4 kinase (PI4K) inhibitors, KDU691 and LMV599, were selected for in vivo testing as causal prophylactic and radical-cure agents for Plasmodium cynomolgi sporozoite-infected rhesus macaques, based on their in vitro activity against liver stages. Animals were infected with P. cynomolgi sporozoites, and compounds were dosed orally. Both the KDU691 and LMV599 compounds were fully protective when administered prophylactically, and the more potent compound LMV599 achieved protection as a single oral dose of 25 mg/kg of body weight. In contrast, when tested for radical cure, five daily doses of 20 mg/kg of KDU691 or 25 mg/kg of LMV599 did not prevent relapse, as all animals experienced a secondary infection due to the reactivation of hypnozoites in the liver. Pharmacokinetic data show that LMV599 achieved plasma exposure that was sufficient to achieve efficacy based on our in vitro data. These findings indicate that Plasmodium PI4K is a potential drug target for malaria prophylaxis but not radical cure. Longer in vitro culture systems will be required to assess these compounds' activity on established hypnozoites and predict radical cure in vivo. PMID:26926645

  17. Big bang in the evolution of extant malaria parasites.

    PubMed

    Hayakawa, Toshiyuki; Culleton, Richard; Otani, Hiroto; Horii, Toshihiro; Tanabe, Kazuyuki

    2008-10-01

    Malaria parasites (genus Plasmodium) infect all classes of terrestrial vertebrates and display host specificity in their infections. It is therefore assumed that malaria parasites coevolved intimately with their hosts. Here, we propose a novel scenario of malaria parasite-host coevolution. A phylogenetic tree constructed using the malaria parasite mitochondrial genome reveals that the extant primate, rodent, bird, and reptile parasite lineages rapidly diverged from a common ancestor during an evolutionary short time period. This rapid diversification occurred long after the establishment of the primate, rodent, bird, and reptile host lineages, which implies that host-switch events contributed to the rapid diversification of extant malaria parasite lineages. Interestingly, the rapid diversification coincides with the radiation of the mammalian genera, suggesting that adaptive radiation to new mammalian hosts triggered the rapid diversification of extant malaria parasite lineages.

  18. Topoisomerase II from Human Malaria Parasites

    PubMed Central

    Mudeppa, Devaraja G.; Kumar, Shiva; Kokkonda, Sreekanth; White, John; Rathod, Pradipsinh K.

    2015-01-01

    Historically, type II topoisomerases have yielded clinically useful drugs for the treatment of bacterial infections and cancer, but the corresponding enzymes from malaria parasites remain understudied. This is due to the general challenges of producing malaria proteins in functional forms in heterologous expression systems. Here, we express full-length Plasmodium falciparum topoisomerase II (PfTopoII) in a wheat germ cell-free transcription-translation system. Functional activity of soluble PfTopoII from the translation lysates was confirmed through both a plasmid relaxation and a DNA decatenation activity that was dependent on magnesium and ATP. To facilitate future drug discovery, a convenient and sensitive fluorescence assay was established to follow DNA decatenation, and a stable, truncated PfTopoII was engineered for high level enzyme production. PfTopoII was purified using a DNA affinity column. Existing TopoII inhibitors previously developed for other non-malaria indications inhibited PfTopoII, as well as malaria parasites in culture at submicromolar concentrations. Even before optimization, inhibitors of bacterial gyrase, GSK299423, ciprofloxacin, and etoposide exhibited 15-, 57-, and 3-fold selectivity for the malarial enzyme over human TopoII. Finally, it was possible to use the purified PfTopoII to dissect the different modes by which these varying classes of TopoII inhibitors could trap partially processed DNA. The present biochemical advancements will allow high throughput chemical screening of compound libraries and lead optimization to develop new lines of antimalarials. PMID:26055707

  19. The machinery underlying malaria parasite virulence is conserved between rodent and human malaria parasites

    PubMed Central

    De Niz, Mariana; Ullrich, Ann-Katrin; Heiber, Arlett; Blancke Soares, Alexandra; Pick, Christian; Lyck, Ruth; Keller, Derya; Kaiser, Gesine; Prado, Monica; Flemming, Sven; del Portillo, Hernando; Janse, Chris J.; Heussler, Volker; Spielmann, Tobias

    2016-01-01

    Sequestration of red blood cells infected with the human malaria parasite Plasmodium falciparum in organs such as the brain is considered important for pathogenicity. A similar phenomenon has been observed in mouse models of malaria, using the rodent parasite Plasmodium berghei, but it is unclear whether the P. falciparum proteins known to be involved in this process are conserved in the rodent parasite. Here we identify the P. berghei orthologues of two such key factors of P. falciparum, SBP1 and MAHRP1. Red blood cells infected with P. berghei parasites lacking SBP1 or MAHRP1a fail to bind the endothelial receptor CD36 and show reduced sequestration and virulence in mice. Complementation of the mutant P. berghei parasites with the respective P. falciparum SBP1 and MAHRP1 orthologues restores sequestration and virulence. These findings reveal evolutionary conservation of the machinery underlying sequestration of divergent malaria parasites and support the notion that the P. berghei rodent model is an adequate tool for research on malaria virulence. PMID:27225796

  20. The machinery underlying malaria parasite virulence is conserved between rodent and human malaria parasites.

    PubMed

    De Niz, Mariana; Ullrich, Ann-Katrin; Heiber, Arlett; Blancke Soares, Alexandra; Pick, Christian; Lyck, Ruth; Keller, Derya; Kaiser, Gesine; Prado, Monica; Flemming, Sven; Del Portillo, Hernando; Janse, Chris J; Heussler, Volker; Spielmann, Tobias

    2016-05-26

    Sequestration of red blood cells infected with the human malaria parasite Plasmodium falciparum in organs such as the brain is considered important for pathogenicity. A similar phenomenon has been observed in mouse models of malaria, using the rodent parasite Plasmodium berghei, but it is unclear whether the P. falciparum proteins known to be involved in this process are conserved in the rodent parasite. Here we identify the P. berghei orthologues of two such key factors of P. falciparum, SBP1 and MAHRP1. Red blood cells infected with P. berghei parasites lacking SBP1 or MAHRP1a fail to bind the endothelial receptor CD36 and show reduced sequestration and virulence in mice. Complementation of the mutant P. berghei parasites with the respective P. falciparum SBP1 and MAHRP1 orthologues restores sequestration and virulence. These findings reveal evolutionary conservation of the machinery underlying sequestration of divergent malaria parasites and support the notion that the P. berghei rodent model is an adequate tool for research on malaria virulence.

  1. Generation of Transgenic Rodent Malaria Parasites Expressing Human Malaria Parasite Proteins.

    PubMed

    Salman, Ahmed M; Mogollon, Catherin Marin; Lin, Jing-Wen; van Pul, Fiona J A; Janse, Chris J; Khan, Shahid M

    2015-01-01

    We describe methods for the rapid generation of transgenic rodent Plasmodium berghei (Pb) parasites that express human malaria parasite (HMP) proteins, using the recently developed GIMO-based transfection methodology. Three different genetic modifications are described resulting in three types of transgenic parasites. (1) Additional Gene (AG) mutants. In these mutants the HMP gene is introduced as an "additional gene" into a silent/neutral locus of the Pb genome under the control of either a constitutive or stage-specific Pb promoter. This method uses the GIMO-transfection protocol and AG mutants are generated by replacing the positive-negative selection marker (SM) hdhfr::yfcu cassette in a neutral locus of a standard GIMO mother line with the HMP gene expression cassette, resulting in SM free transgenic parasites. (2) Double-step Replacement (DsR) mutants. In these mutants the coding sequence (CDS) of the Pb gene is replaced with the CDS of the HMP ortholog in a two-step GIMO-transfection procedure. This process involves first the replacement of the Pb CDS with the hdhfr::yfcu SM, followed by insertion of the HMP ortholog at the same locus thereby replacing hdhfr::yfcu with the HMP CDS. These steps use the GIMO-transfection protocol, which exploits both positive selection for Pb orthologous gene-deletion and negative selection for HMP gene-insertion, resulting in SM free transgenic parasites. (3) Double-step Insertion (DsI) mutants. When a Pb gene is essential for blood stage development the DsR strategy is not possible. In these mutants the HMP expression cassette is first introduced into the neutral locus in a standard GIMO mother line as described for AG mutants but under the control elements of the Pb orthologous gene; subsequently, the Pb ortholog CDS is targeted for deletion through replacement of the Pb CDS with the hdhfr::yfcu SM, resulting in transgenic parasites with a new GIMO locus permissive for additional gene-insertion modifications.The different

  2. Identification of mitochondrial proteins of malaria parasite using analysis of variance.

    PubMed

    Ding, Hui; Li, Dongmei

    2015-02-01

    As a parasitic protozoan, Plasmodium falciparum (P. falciparum) can cause malaria. The mitochondrial proteins of malaria parasite play important roles in the discovery of anti-malarial drug targets. Thus, accurate identification of mitochondrial proteins of malaria parasite is a key step for understanding their functions and finding potential drug targets. In this work, we developed a sequence-based method to identify the mitochondrial proteins of malaria parasite. At first, we extended adjoining dipeptide composition to g-gap dipeptide composition for discretely formulating the protein sequences. Subsequently, the analysis of variance (ANOVA) combined with incremental feature selection (IFS) was used to pick out the optimal features. Finally, the jackknife cross-validation was used to evaluate the performance of the proposed model. Evaluation results showed that the maximum accuracy of 97.1% could be achieved by using 101 optimal 5-gap dipeptides. The comparison with previous methods demonstrated that our method was accurate and efficient.

  3. Malaria

    PubMed Central

    Suh, Kathryn N.; Kain, Kevin C.; Keystone, Jay S.

    2004-01-01

    Malaria is a parasitic infection of global importance. Although relatively uncommon in developed countries, where the disease occurs mainly in travellers who have returned from endemic regions, it remains one of the most prevalent infections of humans worldwide. In endemic regions, malaria is a significant cause of morbidity and mortality and creates enormous social and economic burdens. Current efforts to control malaria focus on reducing attributable morbidity and mortality. Targeted chemoprophylaxis and use of insecticide-treated bed nets have been successful in some endemic areas. For travellers to malaria-endemic regions, personal protective measures and appropriate chemoprophylaxis can significantly reduce the risk of infection. Prompt evaluation of the febrile traveller, a high degree of suspicion of malaria, rapid and accurate diagnosis, and appropriate antimalarial therapy are essential in order to optimize clinical outcomes of infected patients. Additional approaches to malaria control, including genetic manipulation of mosquitoes and malaria vaccines, are areas of ongoing research. PMID:15159369

  4. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    PubMed Central

    Smith, Ryan C; Vega-Rodríguez, Joel; Jacobs-Lorena, Marcelo

    2014-01-01

    Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission. PMID:25185005

  5. Parasites that cause problems in Malaysia: soil-transmitted helminths and malaria parasites.

    PubMed

    Singh, B; Cox-Singh, J

    2001-12-01

    Malaysia is a developing country with a range of parasitic infections. Indeed, soil-transmitted helminths and malaria parasites continue to have a significant impact on public health in Malaysia. In this article, the prevalence and distribution of these parasites, the problems associated with parasitic infections, the control measures taken to deal with these parasites and implications for the future will be discussed.

  6. Quantifying Transmission Investment in Malaria Parasites.

    PubMed

    Greischar, Megan A; Mideo, Nicole; Read, Andrew F; Bjørnstad, Ottar N

    2016-02-01

    Many microparasites infect new hosts with specialized life stages, requiring a subset of the parasite population to forgo proliferation and develop into transmission forms. Transmission stage production influences infectivity, host exploitation, and the impact of medical interventions like drug treatment. Predicting how parasites will respond to public health efforts on both epidemiological and evolutionary timescales requires understanding transmission strategies. These strategies can rarely be observed directly and must typically be inferred from infection dynamics. Using malaria as a case study, we test previously described methods for inferring transmission stage investment against simulated data generated with a model of within-host infection dynamics, where the true transmission investment is known. We show that existing methods are inadequate and potentially very misleading. The key difficulty lies in separating transmission stages produced by different generations of parasites. We develop a new approach that performs much better on simulated data. Applying this approach to real data from mice infected with a single Plasmodium chabaudi strain, we estimate that transmission investment varies from zero to 20%, with evidence for variable investment over time in some hosts, but not others. These patterns suggest that, even in experimental infections where host genetics and other environmental factors are controlled, parasites may exhibit remarkably different patterns of transmission investment.

  7. Quantifying Transmission Investment in Malaria Parasites

    PubMed Central

    Greischar, Megan A.; Mideo, Nicole; Read, Andrew F.; Bjørnstad, Ottar N.

    2016-01-01

    Many microparasites infect new hosts with specialized life stages, requiring a subset of the parasite population to forgo proliferation and develop into transmission forms. Transmission stage production influences infectivity, host exploitation, and the impact of medical interventions like drug treatment. Predicting how parasites will respond to public health efforts on both epidemiological and evolutionary timescales requires understanding transmission strategies. These strategies can rarely be observed directly and must typically be inferred from infection dynamics. Using malaria as a case study, we test previously described methods for inferring transmission stage investment against simulated data generated with a model of within-host infection dynamics, where the true transmission investment is known. We show that existing methods are inadequate and potentially very misleading. The key difficulty lies in separating transmission stages produced by different generations of parasites. We develop a new approach that performs much better on simulated data. Applying this approach to real data from mice infected with a single Plasmodium chabaudi strain, we estimate that transmission investment varies from zero to 20%, with evidence for variable investment over time in some hosts, but not others. These patterns suggest that, even in experimental infections where host genetics and other environmental factors are controlled, parasites may exhibit remarkably different patterns of transmission investment. PMID:26890485

  8. The antibiotic micrococcin is a potent inhibitor of growth and protein synthesis in the malaria parasite.

    PubMed

    Rogers, M J; Cundliffe, E; McCutchan, T F

    1998-03-01

    The antibiotic micrococcin is a potent growth inhibitor of the human malaria parasite Plasmodium falciparum, with a 50% inhibitory concentration of 35 nM. This is comparable to or less than the corresponding levels of commonly used antimalarial drugs. Micrococcin, like thiostrepton, putatively targets protein synthesis in the plastid-like organelle of the parasite.

  9. Histone as future drug target for malaria.

    PubMed

    Rawat, D S; Lumb, V; Sharma, Y D; Pasha, S T; Singh, G

    2007-06-01

    Malaria continues to be a major cause of mortality and morbidity in tropical countries and affecting around 100 countries of the world. As per WHO estimates, 300-500 million are being infected and 1-3 million deaths annually due to malaria. With the emerging knowledge about genome sequence of all the three counterparts involved in the disease of malaria, the parasite Plasmodium, vector Anopheles and host Homo sapien have helped the scientists to understand interactions between them. Simultaneous advancement in technology further improves the prospects to discover new targets for vaccines and drugs. Though the malaria vaccine is still far away in this situation there is need to develop a potent and affordable drug(s). Histones are the key protein of chromatin and play an important role in DNA packaging, replication and gene expression. They also show frequent post-translation modifications. The specific combinations of these posttranslational modifications are thought to alter chromatin structure by forming epigenetic bar codes that specify either transient or heritable patterns of genome function. Chromatin regulators and upstream pathways are therefore seen as promising targets for development of therapeutic drugs.

  10. Malaria vaccines: identifying Plasmodium falciparum liver-stage targets

    PubMed Central

    Longley, Rhea J.; Hill, Adrian V. S.; Spencer, Alexandra J.

    2015-01-01

    The development of a highly efficacious and durable vaccine for malaria remains a top priority for global health researchers. Despite the huge rise in recognition of malaria as a global health problem and the concurrent rise in funding over the past 10–15 years, malaria continues to remain a widespread burden. The evidence of increasing resistance to anti-malarial drugs and insecticides is a growing concern. Hence, an efficacious and durable preventative vaccine for malaria is urgently needed. Vaccines are one of the most cost-effective tools and have successfully been used in the prevention and control of many diseases, however, the development of a vaccine for the Plasmodium parasite has proved difficult. Given the early success of whole sporozoite mosquito-bite delivered vaccination strategies, we know that a vaccine for malaria is an achievable goal, with sub-unit vaccines holding great promise as they are simple and cheap to both manufacture and deploy. However a major difficulty in development of sub-unit vaccines lies within choosing the appropriate antigenic target from the 5000 or so genes expressed by the parasite. Given the liver-stage of malaria represents a bottle-neck in the parasite’s life cycle, there is widespread agreement that a multi-component sub-unit malaria vaccine should preferably contain a liver-stage target. In this article we review progress in identifying and screening Plasmodium falciparum liver-stage targets for use in a malaria vaccine. PMID:26441899

  11. Malaria parasites and red cell variants: when a house is not a home

    PubMed Central

    Taylor, Steve M.; Fairhurst, Rick M.

    2014-01-01

    Purpose of review Multiple red cell variants are known to confer protection from malaria. Here we review advances in identifying new variants that modulate malaria risk and in defining molecular mechanisms that mediate malaria protection. Recent findings New red cell variants, including an innate variant in the red cell’s major Ca2+ pump and the acquired state of iron deficiency, have been associated with protection from clinical falciparum malaria. The hemoglobin (Hb) mutants HbC and HbS – known to protect carriers from severe falciparum malaria – enhance parasite passage to mosquitoes and may promote malaria transmission. At the molecular level, substantial advances have been made in understanding the impact of HbS and HbC upon the interactions between host microRNAs and Plasmodium falciparum protein translation; remodeling of red cell cytoskeletal components and transport of parasite proteins to the red cell surface; and chronic activation of the human innate immune system which induces tolerance to blood-stage parasites. Several polymorphisms have now been associated with protection from clinical vivax malaria or reduced P. vivax density, including Southeast Asian ovalocytosis and two common forms of glucose-6-phosphate dehydrogenase deficiency. Summary Red cell variants that modulate malaria risk can serve as models to identify clinically relevant mechanisms of pathogenesis, and thus define parasite and host targets for next-generation therapies. PMID:24675047

  12. Laminin and the malaria parasite's journey through the mosquito midgut.

    PubMed

    Arrighi, Romanico B G; Lycett, Gareth; Mahairaki, Vassiliki; Siden-Kiamos, Inga; Louis, Christos

    2005-07-01

    During the invasion of the mosquito midgut epithelium, Plasmodium ookinetes come to rest on the basal lamina, where they transform into the sporozoite-producing oocysts. Laminin, one of the basal lamina's major components, has previously been shown to bind several surface proteins of Plasmodium ookinetes. Here, using the recently developed RNAi technique in mosquitoes, we used a specific dsRNA construct targeted against the LANB2 gene (laminin gamma1) of Anopheles gambiae to reduce its mRNA levels, leading to a substantial reduction in the number of successfully developed oocysts in the mosquito midgut. Moreover, this molecular relationship is corroborated by the intimate association of developing P. berghei parasites and laminin in the gut, as observed using confocal microscopy. Our data support the notion of laminin playing a functional role in the development of the malaria parasite within the mosquito midgut.

  13. The immunological balance between host and parasite in malaria.

    PubMed

    Deroost, Katrien; Pham, Thao-Thy; Opdenakker, Ghislain; Van den Steen, Philippe E

    2016-03-01

    Coevolution of humans and malaria parasites has generated an intricate balance between the immune system of the host and virulence factors of the parasite, equilibrating maximal parasite transmission with limited host damage. Focusing on the blood stage of the disease, we discuss how the balance between anti-parasite immunity versus immunomodulatory and evasion mechanisms of the parasite may result in parasite clearance or chronic infection without major symptoms, whereas imbalances characterized by excessive parasite growth, exaggerated immune reactions or a combination of both cause severe pathology and death, which is detrimental for both parasite and host. A thorough understanding of the immunological balance of malaria and its relation to other physiological balances in the body is of crucial importance for developing effective interventions to reduce malaria-related morbidity and to diminish fatal outcomes due to severe complications. Therefore, we discuss in this review the detailed mechanisms of anti-malarial immunity, parasite virulence factors including immune evasion mechanisms and pathogenesis. Furthermore, we propose a comprehensive classification of malaria complications according to the different types of imbalances.

  14. In Vitro Analysis of the Interaction between Atovaquone and Proguanil against Liver Stage Malaria Parasites.

    PubMed

    Barata, Lídia; Houzé, Pascal; Boutbibe, Khadija; Zanghi, Gigliola; Franetich, Jean-François; Mazier, Dominique; Clain, Jérôme

    2016-07-01

    The interaction between atovaquone and proguanil has never been studied against liver stage malaria, which is the main target of this drug combination when used for chemoprevention. Using human hepatocytes lacking cytochrome P450 activity, and thus avoiding proguanil metabolizing into potent cycloguanil, we show in vitro that the atovaquone-proguanil combination synergistically inhibits the growth of rodent Plasmodium yoelii parasites. These results provide a pharmacological basis for the high efficacy of atovaquone-proguanil used as malaria chemoprevention.

  15. In Vitro Analysis of the Interaction between Atovaquone and Proguanil against Liver Stage Malaria Parasites

    PubMed Central

    Barata, Lídia; Houzé, Pascal; Boutbibe, Khadija; Zanghi, Gigliola; Franetich, Jean-François

    2016-01-01

    The interaction between atovaquone and proguanil has never been studied against liver stage malaria, which is the main target of this drug combination when used for chemoprevention. Using human hepatocytes lacking cytochrome P450 activity, and thus avoiding proguanil metabolizing into potent cycloguanil, we show in vitro that the atovaquone-proguanil combination synergistically inhibits the growth of rodent Plasmodium yoelii parasites. These results provide a pharmacological basis for the high efficacy of atovaquone-proguanil used as malaria chemoprevention. PMID:26926628

  16. A broad analysis of resistance development in the malaria parasite.

    PubMed

    Corey, Victoria C; Lukens, Amanda K; Istvan, Eva S; Lee, Marcus C S; Franco, Virginia; Magistrado, Pamela; Coburn-Flynn, Olivia; Sakata-Kato, Tomoyo; Fuchs, Olivia; Gnädig, Nina F; Goldgof, Greg; Linares, Maria; Gomez-Lorenzo, Maria G; De Cózar, Cristina; Lafuente-Monasterio, Maria Jose; Prats, Sara; Meister, Stephan; Tanaseichuk, Olga; Wree, Melanie; Zhou, Yingyao; Willis, Paul A; Gamo, Francisco-Javier; Goldberg, Daniel E; Fidock, David A; Wirth, Dyann F; Winzeler, Elizabeth A

    2016-06-15

    Microbial resistance to chemotherapy has caused countless deaths where malaria is endemic. Chemotherapy may fail either due to pre-existing resistance or evolution of drug-resistant parasites. Here we use a diverse set of antimalarial compounds to investigate the acquisition of drug resistance and the degree of cross-resistance against common resistance alleles. We assess cross-resistance using a set of 15 parasite lines carrying resistance-conferring alleles in pfatp4, cytochrome bc1, pfcarl, pfdhod, pfcrt, pfmdr, pfdhfr, cytoplasmic prolyl t-RNA synthetase or hsp90. Subsequently, we assess whether resistant parasites can be obtained after several rounds of drug selection. Twenty-three of the 48 in vitro selections result in resistant parasites, with time to resistance onset ranging from 15 to 300 days. Our data indicate that pre-existing resistance may not be a major hurdle for novel-target antimalarial candidates, and focusing our attention on fast-killing compounds may result in a slower onset of clinical resistance.

  17. A broad analysis of resistance development in the malaria parasite

    PubMed Central

    Corey, Victoria C.; Lukens, Amanda K.; Istvan, Eva S.; Lee, Marcus C. S.; Franco, Virginia; Magistrado, Pamela; Coburn-Flynn, Olivia; Sakata-Kato, Tomoyo; Fuchs, Olivia; Gnädig, Nina F.; Goldgof, Greg; Linares, Maria; Gomez-Lorenzo, Maria G.; De Cózar, Cristina; Lafuente-Monasterio, Maria Jose; Prats, Sara; Meister, Stephan; Tanaseichuk, Olga; Wree, Melanie; Zhou, Yingyao; Willis, Paul A.; Gamo, Francisco-Javier; Goldberg, Daniel E.; Fidock, David A.; Wirth, Dyann F.; Winzeler, Elizabeth A.

    2016-01-01

    Microbial resistance to chemotherapy has caused countless deaths where malaria is endemic. Chemotherapy may fail either due to pre-existing resistance or evolution of drug-resistant parasites. Here we use a diverse set of antimalarial compounds to investigate the acquisition of drug resistance and the degree of cross-resistance against common resistance alleles. We assess cross-resistance using a set of 15 parasite lines carrying resistance-conferring alleles in pfatp4, cytochrome bc1, pfcarl, pfdhod, pfcrt, pfmdr, pfdhfr, cytoplasmic prolyl t-RNA synthetase or hsp90. Subsequently, we assess whether resistant parasites can be obtained after several rounds of drug selection. Twenty-three of the 48 in vitro selections result in resistant parasites, with time to resistance onset ranging from 15 to 300 days. Our data indicate that pre-existing resistance may not be a major hurdle for novel-target antimalarial candidates, and focusing our attention on fast-killing compounds may result in a slower onset of clinical resistance. PMID:27301419

  18. Origin of robustness in generating drug-resistant malaria parasites.

    PubMed

    Kümpornsin, Krittikorn; Modchang, Charin; Heinberg, Adina; Ekland, Eric H; Jirawatcharadech, Piyaporn; Chobson, Pornpimol; Suwanakitti, Nattida; Chaotheing, Sastra; Wilairat, Prapon; Deitsch, Kirk W; Kamchonwongpaisan, Sumalee; Fidock, David A; Kirkman, Laura A; Yuthavong, Yongyuth; Chookajorn, Thanat

    2014-07-01

    Biological robustness allows mutations to accumulate while maintaining functional phenotypes. Despite its crucial role in evolutionary processes, the mechanistic details of how robustness originates remain elusive. Using an evolutionary trajectory analysis approach, we demonstrate how robustness evolved in malaria parasites under selective pressure from an antimalarial drug inhibiting the folate synthesis pathway. A series of four nonsynonymous amino acid substitutions at the targeted enzyme, dihydrofolate reductase (DHFR), render the parasites highly resistant to the antifolate drug pyrimethamine. Nevertheless, the stepwise gain of these four dhfr mutations results in tradeoffs between pyrimethamine resistance and parasite fitness. Here, we report the epistatic interaction between dhfr mutations and amplification of the gene encoding the first upstream enzyme in the folate pathway, GTP cyclohydrolase I (GCH1). gch1 amplification confers low level pyrimethamine resistance and would thus be selected for by pyrimethamine treatment. Interestingly, the gch1 amplification can then be co-opted by the parasites because it reduces the cost of acquiring drug-resistant dhfr mutations downstream in the same metabolic pathway. The compensation of compromised fitness by extra GCH1 is an example of how robustness can evolve in a system and thus expand the accessibility of evolutionary trajectories leading toward highly resistant alleles. The evolution of robustness during the gain of drug-resistant mutations has broad implications for both the development of new drugs and molecular surveillance for resistance to existing drugs.

  19. Expanding the antimalarial toolkit: Targeting host–parasite interactions

    PubMed Central

    Duffy, Patrick E.

    2016-01-01

    Recent successes in malaria control are threatened by drug-resistant Plasmodium parasites and insecticide-resistant Anopheles mosquitoes, and first generation vaccines offer only partial protection. New research approaches have highlighted host as well as parasite molecules or pathways that could be targeted for interventions. In this study, we discuss host–parasite interactions at the different stages of the Plasmodium life cycle within the mammalian host and the potential for therapeutics that prevent parasite migration, invasion, intracellular growth, or egress from host cells, as well as parasite-induced pathology. PMID:26834158

  20. Expanding the antimalarial toolkit: Targeting host-parasite interactions.

    PubMed

    Langhorne, Jean; Duffy, Patrick E

    2016-02-08

    Recent successes in malaria control are threatened by drug-resistant Plasmodium parasites and insecticide-resistant Anopheles mosquitoes, and first generation vaccines offer only partial protection. New research approaches have highlighted host as well as parasite molecules or pathways that could be targeted for interventions. In this study, we discuss host-parasite interactions at the different stages of the Plasmodium life cycle within the mammalian host and the potential for therapeutics that prevent parasite migration, invasion, intracellular growth, or egress from host cells, as well as parasite-induced pathology.

  1. Malaria parasite epigenetics: when virulence and romance collide.

    PubMed

    Flueck, Christian; Baker, David A

    2014-08-13

    Blood-stage malaria parasites evade the immune system by switching the protein exposed at the surface of the infected erythrocyte. A small proportion of these parasites commits to sexual development to mediate mosquito transmission. Two studies in this issue (Brancucci et al., 2014; Coleman et al., 2014) shed light on shared epigenetic machinery underlying both of these events.

  2. Sickle cell microRNAs inhibit the malaria parasite.

    PubMed

    Duraisingh, Manoj T; Lodish, Harvey F

    2012-08-16

    Sickle cell hemoglobin conveys resistance to malaria. In this issue of Cell Host & Microbe, LaMonte et al. (2012) demonstrate a surprising mechanism for this innate immunity. A microRNA enriched in sickle red blood cells is translocated into the parasite, incorporated covalently into P. falciparum mRNAs and inhibits parasite growth.

  3. Chimpanzee malaria parasites related to Plasmodium ovale in Africa.

    PubMed

    Duval, Linda; Nerrienet, Eric; Rousset, Dominique; Sadeuh Mba, Serge Alain; Houze, Sandrine; Fourment, Mathieu; Le Bras, Jacques; Robert, Vincent; Ariey, Frederic

    2009-01-01

    Since the 1970's, the diversity of Plasmodium parasites in African great apes has been neglected. Surprisingly, P. reichenowi, a chimpanzee parasite, is the only such parasite to have been molecularly characterized. This parasite is closely phylogenetically related to P. falciparum, the principal cause of the greatest malaria burden in humans. Studies of malaria parasites from anthropoid primates may provide relevant phylogenetic information, improving our understanding of the origin and evolutionary history of human malaria species. In this study, we screened 130 DNA samples from chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) from Cameroon for Plasmodium infection, using cytochrome b molecular tools. Two chimpanzees from the subspecies Pan t. troglodytes presented single infections with Plasmodium strains molecularly related to the human malaria parasite P. ovale. These chimpanzee parasites and 13 human strains of P. ovale originated from a various sites in Africa and Asia were characterized using cytochrome b and cytochrome c oxidase 1 mitochondrial partial genes and nuclear ldh partial gene. Consistent with previous findings, two genetically distinct types of P. ovale, classical and variant, were observed in the human population from a variety of geographical locations. One chimpanzee Plasmodium strain was genetically identical, on all three markers tested, to variant P. ovale type. The other chimpanzee Plasmodium strain was different from P. ovale strains isolated from humans. This study provides the first evidence of possibility of natural cross-species exchange of P. ovale between humans and chimpanzees of the subspecies Pan t. troglodytes.

  4. Chimpanzee Malaria Parasites Related to Plasmodium ovale in Africa

    PubMed Central

    Duval, Linda; Nerrienet, Eric; Rousset, Dominique; Sadeuh Mba, Serge Alain; Houze, Sandrine; Fourment, Mathieu; Le Bras, Jacques; Robert, Vincent; Ariey, Frederic

    2009-01-01

    Since the 1970's, the diversity of Plasmodium parasites in African great apes has been neglected. Surprisingly, P. reichenowi, a chimpanzee parasite, is the only such parasite to have been molecularly characterized. This parasite is closely phylogenetically related to P. falciparum, the principal cause of the greatest malaria burden in humans. Studies of malaria parasites from anthropoid primates may provide relevant phylogenetic information, improving our understanding of the origin and evolutionary history of human malaria species. In this study, we screened 130 DNA samples from chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) from Cameroon for Plasmodium infection, using cytochrome b molecular tools. Two chimpanzees from the subspecies Pan t. troglodytes presented single infections with Plasmodium strains molecularly related to the human malaria parasite P. ovale. These chimpanzee parasites and 13 human strains of P. ovale originated from a various sites in Africa and Asia were characterized using cytochrome b and cytochrome c oxidase 1 mitochondrial partial genes and nuclear ldh partial gene. Consistent with previous findings, two genetically distinct types of P. ovale, classical and variant, were observed in the human population from a variety of geographical locations. One chimpanzee Plasmodium strain was genetically identical, on all three markers tested, to variant P. ovale type. The other chimpanzee Plasmodium strain was different from P. ovale strains isolated from humans. This study provides the first evidence of possibility of natural cross-species exchange of P. ovale between humans and chimpanzees of the subspecies Pan t. troglodytes. PMID:19436742

  5. Efficient expression systems for cysteine proteases of malaria parasites

    PubMed Central

    Sarduy, Emir Salas; de los A. Chávez Planes, María

    2013-01-01

    Papain-like cysteine proteases of malaria parasites are considered important chemotherapeutic targets or valuable models for the evaluation of drug candidates. Consequently, many of these enzymes have been cloned and expressed in Escherichia coli for their biochemical characterization. However, their expression has been problematic, showing low yield and leading to the formation of insoluble aggregates. Given that highly-productive expression systems are required for the high-throughput evaluation of inhibitors, we analyzed the existing expression systems to identify the causes of such apparent issues. We found that significant divergences in codon and nucleotide composition from host genes are the most probable cause of expression failure, and propose several strategies to overcome these limitations. Finally we predict that yeast hosts Saccharomyces cerevisiae and Pichia pastoris may be better suited than E. coli for the efficient expression of plasmodial genes, presumably leading to soluble and active products reproducing structural and functional characteristics of the natural enzymes. PMID:23018863

  6. Genetic engineering of attenuated malaria parasites for vaccination.

    PubMed

    Khan, Shahid M; Janse, Chris J; Kappe, Stefan H I; Mikolajczak, Sebastian A

    2012-12-01

    Vaccination with live-attenuated Plasmodium sporozoites that arrest in the liver can completely protect against a malaria infection both in animal models and in humans; this has provided the conceptual basis for the most promising, but also challenging, approach to develop an efficacious malaria vaccine. Advances in genetic manipulation of Plasmodium in conjunction with improved genomic and biological information has enabled new approaches to design genetically attenuated parasites (GAPs). In this review we discuss the principles in discovery and development of GAPs in preclinical models that are important in selecting GAP parasites for first-in-human clinical studies. Finally, we highlight the challenges in manufacture, formulation and delivery of a live-attenuated whole parasite malaria vaccine, as well as the further refinements that may be implemented in the next generation GAP vaccines.

  7. Species formation by host shifting in avian malaria parasites.

    PubMed

    Ricklefs, Robert E; Outlaw, Diana C; Svensson-Coelho, Maria; Medeiros, Matthew C I; Ellis, Vincenzo A; Latta, Steven

    2014-10-14

    The malaria parasites (Apicomplexa: Haemosporida) of birds are believed to have diversified across the avian host phylogeny well after the origin of most major host lineages. Although many symbionts with direct transmission codiversify with their hosts, mechanisms of species formation in vector-borne parasites, including the role of host shifting, are poorly understood. Here, we examine the hosts of sister lineages in a phylogeny of 181 putative species of malaria parasites of New World terrestrial birds to determine the role of shifts between host taxa in the formation of new parasite species. We find that host shifting, often across host genera and families, is the rule. Sympatric speciation by host shifting would require local reproductive isolation as a prerequisite to divergent selection, but this mechanism is not supported by the generalized host-biting behavior of most vectors of avian malaria parasites. Instead, the geographic distribution of individual parasite lineages in diverse hosts suggests that species formation is predominantly allopatric and involves host expansion followed by local host-pathogen coevolution and secondary sympatry, resulting in local shifting of parasite lineages across hosts.

  8. Functional genomic technologies applied to the control of the human malaria parasite, Plasmodium falciparum.

    PubMed

    Carucci, D J

    2001-05-01

    Infection with any of the four species of Plasmodium single cell parasites that infects humans causes the clinical disease, malaria. Of these, it is Plasmodium falciparum that is responsible for the majority of the 1.5-2.3 million deaths due to this disease each year. Worldwide there are between 300-500 million cases of malaria annually. To date there is no licensed vaccine and resistance to most of the available drugs used to prevent and/or treat malaria is spreading. There is therefore an urgent need to develop new and effective drugs and vaccines against this devastating parasite. We have outlined a strategy using a combination of DNA-based vaccines and the data derived from the soon-to-be completed P. falciparum genome and the genomes of other species of Plasmodium to develop new vaccines against malaria. Much of the technology that we are developing for vaccine target identification is directly applicable to the identification of potential targets for drug discovery. The publicly available genome sequence data also provides a means for researchers whose focus may not be primarily malaria to leverage their research on cancer, yeast biology and other research areas to the biological problems of malaria.

  9. Malaria genomics: tracking a diverse and evolving parasite population.

    PubMed

    Kwiatkowski, Dominic

    2015-03-01

    Malaria parasites are continually evolving to evade the immune system and human attempts to control the disease. To eliminate malaria from regions where it is deeply entrenched we need ways of monitoring what is going on in the parasite population, detecting problematic changes as soon as they arise, and executing a prompt and effective response based on a deep understanding of this natural evolutionary process. Powerful new tools to address this problem are emerging from the fast-growing field of genomic epidemiology, driven by new sequencing technologies and computational methods that allow parasite genome variation to be studied in much greater detail and in many more samples than was previously considered possible. These new tools will provide a deep understanding of what is going on in the parasite population, generating actionable knowledge for strategic planning of control interventions, for monitoring their effects and steering them for greatest impact, and for raising the alert if things start to go wrong.

  10. A clash to conquer: the malaria parasite liver infection.

    PubMed

    Mikolajczak, Sebastian A; Kappe, Stefan H

    2006-12-01

    All mammalian malaria parasite species have an initial tissue stage in liver cells. The liver stage produces new parasite forms that can enter and live inside red blood cells. Accordingly, the first place of residence provides parasites with a radically different cellular and molecular environment from their subsequent red blood cell home. Liver stages have remained refractory to reveal their secrets, yet the last few years have seen several advances in elucidating their biology. This review looks at the more recent findings concerning the liver stage-host hepatocyte association, some of which may become powerful weapons in the prevention of malaria infection. We also outline areas of liver stage research and technological development that provide promising foci to accelerate a better understanding of this most elusive of the parasites many life cycle stages.

  11. Can a single "powerless" mitochondrion in the malaria parasite contribute to parasite programmed cell death in the asexual stages?

    PubMed

    Ch'ng, Jun-Hong; Yeo, Su-Ping; Shyong-Wei Tan, Kevin

    2013-05-01

    The protozoan pathogens responsible for malaria are from the Plasmodium genus, with Plasmodium falciparum and Plasmodium vivax accounting for almost all clinical infections. With recent estimates of mortality exceeding 800,000 annually, malaria continues to take a terrible toll on lives and the early promises of medicine to eradicate the disease have yet to approach realization, in part due to the spread of drug resistant parasites. Recent reports of artemisinin-resistance have prompted renewed efforts to identify novel therapeutic options, and one such pathway being considered for antimalarial exploit is the parasite's programmed cell death (PCD) pathway. In this mini-review, we will discuss the roles of the plasmodium mitochondria in cell death and as a target of antimalarial compounds, taking into account recent data suggesting that PCD pathways involving the mitochondria may be attractive antimalarial targets.

  12. New molecular detection methods of malaria parasites with multiple genes from genomes.

    PubMed

    Gupta, Himanshu; Srivastava, Shikha; Chaudhari, Sima; Vasudevan, Thanvanthri G; Hande, Manjunath H; D'souza, Sydney C; Umakanth, Shashikiran; Satyamoorthy, Kapaettu

    2016-08-01

    For the effective control of malaria, development of sensitive, accurate and rapid tool to diagnose and manage the disease is essential. In humans subjects, the severe form of malaria is caused by Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) and there is need to identify these parasites in acute, chronic and latent (during and post-infection) stages of the disease. In this study, we report a species specific and sensitive diagnostic method for the detection of Pf and Pv in humans. First, we identified intra and intergenic multiloci short stretch of 152 (PfMLS152) and 110 (PvMLS110) nucleotides which is present up to 44 and 34 times in the genomes of Pf and Pv respectively. We developed the single-step amplification-based method using isolated DNA or from lysed red blood cells for the detection of the two malaria parasites. The limit of detection of real-time polymerase chain reaction based assays were 0.1copyof parasite/μl for PfMLS152 and PvMLS110 target sequences. Next, we have tested 250 clinically suspected cases of malaria to validate the method. Sensitivity and specificity for both targets were 100% compared to the quantitative buffy coat microscopy analysis and real-time PCR (Pf-chloroquine resistance transporter (PfCRT) and Pv-lactate dehydrogenase (PvLDH)) based assays. The sensitivity of microscopy and real-time PCR (PfCRT and PvLDH primers) assays were 80.63%; 95%CI 75.22%-85.31%; p<0.05 and 97.61%; 95%CI 94.50%-99.21%; p<0.05 in detecting malaria infection respectively when compared to PfMLS152 and PvMLS110 targets to identify malaria infection in patients. These improved assays may have potential applications in evaluating malaria in asymptomatic patients, treatment, blood donors and in vaccine studies.

  13. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasite Plasmodium knowlesi.

    PubMed

    Moon, Robert W; Sharaf, Hazem; Hastings, Claire H; Ho, Yung Shwen; Nair, Mridul B; Rchiad, Zineb; Knuepfer, Ellen; Ramaprasad, Abhinay; Mohring, Franziska; Amir, Amirah; Yusuf, Noor A; Hall, Joanna; Almond, Neil; Lau, Yee Ling; Pain, Arnab; Blackman, Michael J; Holder, Anthony A

    2016-06-28

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.

  14. Effects of lime juice on malaria parasite clearance.

    PubMed

    Adegoke, S A; Oyelami, O A; Olatunya, O S; Adeyemi, L A

    2011-10-01

    One hundred and twenty children with acute uncomplicated malaria who were managed at the children's outpatient department of the Wesley Guild Hospital, Ilesa (a unit of Obafemi Awolowo University Teaching Hospitals' Complex, Ile-Ife, Osun state, Nigeria) were recruited into the study to determine the effects of lime juice on malaria parasite clearance. These children were randomized into treatment with World Health Organization recommended antimalarials (artemisinin combination therapy, ACT) either alone or with lime juice. Nine of them were lost to follow-up, four were in the group that were managed with ACT and lime, and five in the group that were managed on ACT alone. The average (SD) time to achieve >75% reduction in parasite load was significantly lower in patients on ACT and lime; 30.5 ± 2.4 h against 38.6 ± 3.3 h for those on ACT alone (p < 0.001). Also, while a significantly higher proportion of children on antimalarial drugs and lime juice achieved complete parasite clearance by 72 h of therapy (p = 0.007), ten (18.2%) patients without lime had early treatment failure (p = 0.003). There were no side effects with the use of lime juice. It may therefore be inferred, from this preliminary work, that lime juice when used with the appropriate antimalarial may enhance malaria parasite clearance especially in those with uncomplicated malaria.

  15. Numerical Distributions of Parasite Densities During Asymptomatic Malaria

    PubMed Central

    Imwong, Mallika; Stepniewska, Kasia; Tripura, Rupam; Peto, Thomas J.; Lwin, Khin Maung; Vihokhern, Benchawan; Wongsaen, Klanarong; von Seidlein, Lorenz; Dhorda, Mehul; Snounou, Georges; Keereecharoen, Lilly; Singhasivanon, Pratap; Sirithiranont, Pasathorn; Chalk, Jem; Nguon, Chea; Day, Nicholas P. J.; Nosten, Francois; Dondorp, Arjen; White, Nicholas J.

    2016-01-01

    Background. Asymptomatic parasitemia is common even in areas of low seasonal malaria transmission, but the true proportion of the population infected has not been estimated previously because of the limited sensitivity of available detection methods. Methods. Cross-sectional malaria surveys were conducted in areas of low seasonal transmission along the border between eastern Myanmar and northwestern Thailand and in western Cambodia. DNA was quantitated by an ultrasensitive polymerase chain reaction (uPCR) assay (limit of accurate detection, 22 parasites/mL) to characterize parasite density distributions for Plasmodium falciparum and Plasmodium vivax, and the proportions of undetected infections were imputed. Results. The prevalence of asymptomatic malaria as determined by uPCR was 27.5% (1303 of 4740 people tested). Both P. vivax and P. falciparum density distributions were unimodal and log normal, with modal values well within the quantifiable range. The estimated proportions of all parasitemic individuals identified by uPCR were >70% among individuals infected with P. falciparum and >85% among those infected with P. vivax. Overall, 83% of infections were predicted to be P. vivax infections, 13% were predicted to be P. falciparum infections, and 4% were predicted to be mixed infections. Geometric mean parasite densities were similar; 5601 P. vivax parasites/mL and 5158 P. falciparum parasites/mL. Conclusions. This uPCR method identified most infected individuals in malaria-endemic areas. Malaria parasitemia persists in humans at levels that optimize the probability of generating transmissible gametocyte densities without causing illness. PMID:26681777

  16. Malaria parasite liver stages render host hepatocytes susceptible to mitochondria-initiated apoptosis

    PubMed Central

    Kaushansky, A; Metzger, P G; Douglass, A N; Mikolajczak, S A; Lakshmanan, V; Kain, H S; Kappe, S HI

    2013-01-01

    Intracellular eukaryotic parasites and their host cells constitute complex, coevolved cellular interaction systems that frequently cause disease. Among them, Plasmodium parasites cause a significant health burden in humans, killing up to one million people annually. To succeed in the mammalian host after transmission by mosquitoes, Plasmodium parasites must complete intracellular replication within hepatocytes and then release new infectious forms into the blood. Using Plasmodium yoelii rodent malaria parasites, we show that some liver stage (LS)-infected hepatocytes undergo apoptosis without external triggers, but the majority of infected cells do not, and can also resist Fas-mediated apoptosis. In contrast, apoptosis is dramatically increased in hepatocytes infected with attenuated parasites. Furthermore, we find that blocking total or mitochondria-initiated host cell apoptosis increases LS parasite burden in mice, suggesting that an anti-apoptotic host environment fosters parasite survival. Strikingly, although LS infection confers strong resistance to extrinsic host hepatocyte apoptosis, infected hepatocytes lose their ability to resist apoptosis when anti-apoptotic mitochondrial proteins are inhibited. This is demonstrated by our finding that B-cell lymphoma 2 family inhibitors preferentially induce apoptosis in LS-infected hepatocytes and significantly reduce LS parasite burden in mice. Thus, targeting critical points of susceptibility in the LS-infected host cell might provide new avenues for malaria prophylaxis. PMID:23928701

  17. HDP—A Novel Heme Detoxification Protein from the Malaria Parasite

    PubMed Central

    Beatty, Wandy; Angel, Ross; Slebodnick, Carla; Andersen, John; Kumar, Sanjai; Rathore, Dharmendar

    2008-01-01

    When malaria parasites infect host red blood cells (RBC) and proteolyze hemoglobin, a unique, albeit poorly understood parasite-specific mechanism, detoxifies released heme into hemozoin (Hz). Here, we report the identification and characterization of a novel Plasmodium Heme Detoxification Protein (HDP) that is extremely potent in converting heme into Hz. HDP is functionally conserved across Plasmodium genus and its gene locus could not be disrupted. Once expressed, the parasite utilizes a circuitous “Outbound–Inbound” trafficking route by initially secreting HDP into the cytosol of infected RBC. A subsequent endocytosis of host cytosol (and hemoglobin) delivers HDP to the food vacuole (FV), the site of Hz formation. As Hz formation is critical for survival, involvement of HDP in this process suggests that it could be a malaria drug target. PMID:18437218

  18. African origin of the malaria parasite Plasmodium vivax

    PubMed Central

    Liu, Weimin; Li, Yingying; Shaw, Katharina S.; Learn, Gerald H.; Plenderleith, Lindsey J.; Malenke, Jordan A.; Sundararaman, Sesh A.; Ramirez, Miguel A.; Crystal, Patricia A.; Smith, Andrew G.; Bibollet-Ruche, Frederic; Ayouba, Ahidjo; Locatelli, Sabrina; Esteban, Amandine; Mouacha, Fatima; Guichet, Emilande; Butel, Christelle; Ahuka-Mundeke, Steve; Inogwabini, Bila-Isia; Ndjango, Jean-Bosco N.; Speede, Sheri; Sanz, Crickette M.; Morgan, David B.; Gonder, Mary K.; Kranzusch, Philip J.; Walsh, Peter D.; Georgiev, Alexander V.; Muller, Martin N.; Piel, Alex K.; Stewart, Fiona A.; Wilson, Michael L.; Pusey, Anne E.; Cui, Liwang; Wang, Zenglei; Färnert, Anna; Sutherland, Colin J.; Nolder, Debbie; Hart, John A.; Hart, Terese B.; Bertolani, Paco; Gillis, Amethyst; LeBreton, Matthew; Tafon, Babila; Kiyang, John; Djoko, Cyrille F.; Schneider, Bradley S.; Wolfe, Nathan D.; Mpoudi-Ngole, Eitel; Delaporte, Eric; Carter, Richard; Culleton, Richard L.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Hahn, Beatrice H.; Sharp, Paul M.

    2014-01-01

    Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa. PMID:24557500

  19. Maternally supplied S-acyl-transferase is required for crystalloid organelle formation and transmission of the malaria parasite

    PubMed Central

    Duarte, Neuza; Ramesar, Jai; Avramut, M. Cristina; Koster, Abraham J.; Dessens, Johannes T.; Frischknecht, Friedrich; Chevalley-Maurel, Séverine; Janse, Chris J.; Franke-Fayard, Blandine; Mair, Gunnar R.

    2016-01-01

    Transmission of the malaria parasite from the mammalian host to the mosquito vector requires the formation of adequately adapted parasite forms and stage-specific organelles. Here we show that formation of the crystalloid—a unique and short-lived organelle of the Plasmodium ookinete and oocyst stage required for sporogony—is dependent on the precisely timed expression of the S-acyl-transferase DHHC10. DHHC10, translationally repressed in female Plasmodium berghei gametocytes, is activated translationally during ookinete formation, where the protein is essential for the formation of the crystalloid, the correct targeting of crystalloid-resident protein LAP2, and malaria parasite transmission. PMID:27303037

  20. The development of malaria parasites in the mosquito midgut

    PubMed Central

    Bennink, Sandra; Kiesow, Meike J.

    2016-01-01

    Summary The mosquito midgut stages of malaria parasites are crucial for establishing an infection in the insect vector and to thus ensure further spread of the pathogen. Parasite development in the midgut starts with the activation of the intraerythrocytic gametocytes immediately after take‐up and ends with traversal of the midgut epithelium by the invasive ookinetes less than 24 h later. During this time period, the plasmodia undergo two processes of stage conversion, from gametocytes to gametes and from zygotes to ookinetes, both accompanied by dramatic morphological changes. Further, gamete formation requires parasite egress from the enveloping erythrocytes, rendering them vulnerable to the aggressive factors of the insect gut, like components of the human blood meal. The mosquito midgut stages of malaria parasites are unprecedented objects to study a variety of cell biological aspects, including signal perception, cell conversion, parasite/host co‐adaptation and immune evasion. This review highlights recent insights into the molecules involved in gametocyte activation and gamete formation as well as in zygote‐to‐ookinete conversion and ookinete midgut exit; it further discusses factors that can harm the extracellular midgut stages as well as the measures of the parasites to protect themselves from any damage. PMID:27111866

  1. [From malaria parasite point of view--Plasmodium falciparum evolution].

    PubMed

    Zerka, Agata; Kaczmarek, Radosław; Jaśkiewicz, Ewa

    2015-12-31

    Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium, which have arguably exerted the greatest selection pressure on humans in the history of our species. Besides humans, different Plasmodium parasites infect a wide range of animal hosts, from marine invertebrates to primates. On the other hand, individual Plasmodium species show high host specificity. The extraordinary evolution of Plasmodium probably began when a free-living red algae turned parasitic, and culminated with its ability to thrive inside a human red blood cell. Studies on the African apes generated new data on the evolution of malaria parasites in general and the deadliest human-specific species, Plasmodium falciparum, in particular. Initially, it was hypothesized that P. falciparum descended from the chimpanzee malaria parasite P. reichenowi, after the human and the chimp lineage diverged about 6 million years ago. However, a recently identified new species infecting gorillas, unexpectedly showed similarity to P. falciparum and was therefore named P. praefalciparum. That finding spurred an alternative hypothesis, which proposes that P. falciparum descended from its gorilla rather than chimp counterpart. In addition, the gorilla-to-human host shift may have occurred more recently (about 10 thousand years ago) than the theoretical P. falciparum-P. reichenowi split. One of the key aims of the studies on Plasmodium evolution is to elucidate the mechanisms that allow the incessant host shifting and retaining the host specificity, especially in the case of human-specific species. Thorough understanding of these phenomena will be necessary to design effective malaria treatment and prevention strategies.

  2. Investigating the evolution of apoptosis in malaria parasites: the importance of ecology

    PubMed Central

    2010-01-01

    Apoptosis is a precisely regulated process of cell death which occurs widely in multicellular organisms and is essential for normal development and immune defences. In recent years, interest has grown in the occurrence of apoptosis in unicellular organisms. In particular, as apoptosis has been reported in a wide range of species, including protozoan malaria parasites and trypanosomes, it may provide a novel target for intervention. However, it is important to understand when and why parasites employ an apoptosis strategy before the likely long- and short-term success of such an intervention can be evaluated. The occurrence of apoptosis in unicellular parasites provides a challenge for evolutionary theory to explain as organisms are expected to have evolved to maximise their own proliferation, not death. One possible explanation is that protozoan parasites undergo apoptosis in order to gain a group benefit from controlling their density as this prevents premature vector mortality. However, experimental manipulations to examine the ultimate causes behind apoptosis in parasites are lacking. In this review, we focus on malaria parasites to outline how an evolutionary framework can help make predictions about the ecological circumstances under which apoptosis could evolve. We then highlight the ecological considerations that should be taken into account when designing evolutionary experiments involving markers of cell death, and we call for collaboration between researchers in different fields to identify and develop appropriate markers in reference to parasite ecology and to resolve debates on terminology. PMID:21080937

  3. Proteomics of the human malaria parasite Plasmodium falciparum.

    PubMed

    Sims, Paul F G; Hyde, John E

    2006-02-01

    The lethal species of malaria parasite, Plasmodium falciparum, continues to exact a huge toll of mortality and morbidity, particularly in sub-Saharan Africa. Completion of the genome sequence of this organism and advances in proteomics and mass spectrometry have opened up unprecedented opportunities for understanding the complex biology of this parasite and how it responds to drug challenge and other interventions. This review describes recent progress that has been made in applying proteomics technology to this important pathogen and provides a look forward to likely future developments.

  4. Malaria parasite chitinase and penetration of the mosquito peritrophic membrane.

    PubMed Central

    Huber, M; Cabib, E; Miller, L H

    1991-01-01

    Malaria parasites (ookinetes) appear to digest the peritrophic membrane in the mosquito midgut during penetration. Previous studies demonstrated that lectins specific for N-acetylglucosamine bind to the peritrophic membrane and proposed that the membrane contains chitin [Rudin, W. & Hecker, H. (1989) Parasitol. Res. 75, 268-279]. In the present study, we show that the peritrophic membrane is digested by Serratia marcescens chitinase (EC 3.2.1.14), leading to the release of N-acetylglucosamine and fragmentation of the membrane. We also report the presence of a malaria parasite chitinase that digests 4-methylumbelliferyl chitotriose. The enzyme is not detectable until 15 hr after zygote formation, the time required for maturation of the parasite from a zygote to an ookinete, the invasive form of the parasite. At 20 hr, the enzyme begins to appear in the culture supernatant. The chitinase extracted from the parasite and found in the culture supernatant consists of a major band and two minor bands of activity on native polyacrylamide gel electrophoresis. The presence of chitin in the peritrophic membrane, the disruption of the peritrophic membrane during invasion, and the presence of chitinase in ookinetes suggest that the chitinase in ookinetes is used in the penetration of the peritrophic membrane. Images PMID:2011589

  5. Ferrous iron-dependent delivery of therapeutic agents to the malaria parasite

    PubMed Central

    Mahajan, Sumit S; Gut, Jiri; Rosenthal, Philip J; Renslo, Adam R

    2013-01-01

    Background The malaria parasites Plasmodium falciparum and Plasmodium vivax generate significant concentrations of free unbound ferrous iron heme as a side product of hemoglobin degradation. The presence of these chemically reactive forms of iron, rare in healthy cells, presents an opportunity for parasite-selective drug delivery. Accordingly, our group is developing technologies for the targeted delivery of therapeutics to the intra-erythrocytic malaria parasite. These so-called ‘fragmenting hybrids’ employ a 1,2,4-trioxolane ring system as an iron(II)-sensing ‘trigger’ moiety and a ‘traceless’ retro-Michael linker to which a variety of partner drug species may be attached. After ferrous iron-promoted activation in the parasite, the partner drug is released via a β-elimination reaction. Methods In this report, we describe three orthogonal experimental approaches that were explored in order to generate in vitro proof-of-concept for ferrous iron-dependent drug delivery from a prototypical fragmenting hybrid. Conclusion Studies of two fragmenting hybrids by orthogonal approaches confirm that a partner drug species can be delivered to live P. falciparum parasites. A key advantage of this approach is the potential to mask a partner drug’s intrinsic bioactivity prior to release in the parasite. PMID:23234548

  6. Statistical properties of parasite density estimators in malaria.

    PubMed

    Hammami, Imen; Nuel, Grégory; Garcia, André

    2013-01-01

    Malaria is a global health problem responsible for nearly one million deaths every year around 85% of which concern children younger than five years old in Sub-Saharan Africa. In addition, around 300 million clinical cases are declared every year. The level of infection, expressed as parasite density, is classically defined as the number of asexual parasites relative to a microliter of blood. Microscopy of Giemsa-stained thick blood films is the gold standard for parasite enumeration. Parasite density estimation methods usually involve threshold values; either the number of white blood cells counted or the number of high power fields read. However, the statistical properties of parasite density estimators generated by these methods have largely been overlooked. Here, we studied the statistical properties (mean error, coefficient of variation, false negative rates) of parasite density estimators of commonly used threshold-based counting techniques depending on variable threshold values. We also assessed the influence of the thresholds on the cost-effectiveness of parasite density estimation methods. In addition, we gave more insights on the behavior of measurement errors according to varying threshold values, and on what should be the optimal threshold values that minimize this variability.

  7. Visualization of Malaria Parasites in the Skin Using the Luciferase Transgenic Parasite, Plasmodium berghei.

    PubMed

    Matsuoka, Hiroyuki; Tomita, Hiroyuki; Hattori, Ryuta; Arai, Meiji; Hirai, Makoto

    2015-03-01

    We produced a transgenic rodent malaria parasite (Plasmodium berghei) that contained the luciferase gene under a promoter region of elongation factor-1α. These transgenic (TG) parasites expressed luciferase in all stages of their life cycle, as previously reported. However, we were the first to succeed in observing sporozoites as a mass in mouse skin following their deposition by the probing of infective mosquitoes. Our transgenic parasites may have emitted stronger bioluminescence than previous TG parasites. The estimated number of injected sporozoites by mosquitoes was between 34 and 775 (median 80). Since luciferase activity diminished immediately after the death of the parasites, luciferase activity could be an indicator of the existence of live parasites. Our results indicated that sporozoites survived at the probed site for more than 42 hours. We also detected sporozoites in the liver within 15 min of the intravenous injection. Bioluminescence was not observed in the lung, kidney or spleen. We confirmed the observation that the liver was the first organ in which malaria parasites entered and increased in number.

  8. Pre-erythrocytic malaria vaccines: identifying the targets

    PubMed Central

    Duffy, Patrick E; Sahu, Tejram; Akue, Adovi; Milman, Neta; Anderson, Charles

    2013-01-01

    Pre-erythrocytic malaria vaccines target Plasmodium during its sporozoite and liver stages, and can prevent progression to blood-stage disease, which causes a million deaths each year. Whole organism sporozoite vaccines induce sterile immunity in animals and humans and guide subunit vaccine development. A recombinant protein-in-adjuvant pre-erythrocytic vaccine called RTS,S reduces clinical malaria without preventing infection in field studies and additional antigens may be required to achieve sterile immunity. Although few vaccine antigens have progressed to human testing, new insights into parasite biology, expression profiles and immunobiology have offered new targets for intervention. Future advances require human trials of additional antigens, as well as platforms to induce the durable antibody and cellular responses including CD8+ T cells that contribute to sterile protection. PMID:23176657

  9. Erythrocytic vacuolar rafts induced by malaria parasites.

    PubMed

    Haldar, K; Samuel, B U; Mohandas, N; Harrison, T; Hiller, N L

    2001-03-01

    Studies in the past year displaced long-standing dogmas and provided many new molecular insights into how proteins and solutes move between the erythrocyte plasma membrane and the malarial vacuole. Highlights include a demonstration that (1) detergent-resistant membrane (DRM) rafts exist in the red cell membrane and their resident proteins are detected as rafts in the plasmodial vacuole, (2) a voltage-gated channel in the infected red cell membrane mediates uptake of extracellular nutrient solutes, and (3) intraerythrocytic membranes transport a parasite-encoded adherence antigen to the red cell surface.

  10. Evaluation of the NOW Malaria Immunochromatographic Test for Quantitative Diagnosis of Falciparum and Vivax Malaria Parasite Density

    PubMed Central

    Katakai, Yuko; Komaki-Yasuda, Kanako; Tangpukdee, Noppadon; Wilairatana, Polrat; Krudsood, Srivicha; Kano, Shigeyuki

    2011-01-01

    The NOW® Malaria Test, an immunochromatographic test (ICT), was evaluated to determine its ability to quantitatively detect malaria parasites using 100 blood samples from Thailand, including 50 Plasmodium falciparum (Pf) infections and 50 P. vivax (Pv) infections. Intensities of the thickness of the visible bands of the positive ICT were compared with the parasite densities. In cases of Pf infection, the intensities of both HRP-2 bands (T1 bands: Pf specific bands) and aldolase bands (T2 bands: pan-Plasmodium bands) correlated with the parasite densities. The intensities of T2 bands in Pf positive samples showed better correlation with the parasite densities than the T1 bands. In the cases of Pv infection, the intensities of T2 bands were also well correlated with parasite density. These results suggest that the ICT is useful not only for rapid detection of malaria parasites but also for estimating parasite density. PMID:22438699

  11. Evaluation of the NOW Malaria Immunochromatographic Test for Quantitative Diagnosis of Falciparum and Vivax Malaria Parasite Density.

    PubMed

    Katakai, Yuko; Komaki-Yasuda, Kanako; Tangpukdee, Noppadon; Wilairatana, Polrat; Krudsood, Srivicha; Kano, Shigeyuki

    2011-12-01

    The NOW® Malaria Test, an immunochromatographic test (ICT), was evaluated to determine its ability to quantitatively detect malaria parasites using 100 blood samples from Thailand, including 50 Plasmodium falciparum (Pf) infections and 50 P. vivax (Pv) infections. Intensities of the thickness of the visible bands of the positive ICT were compared with the parasite densities. In cases of Pf infection, the intensities of both HRP-2 bands (T1 bands: Pf specific bands) and aldolase bands (T2 bands: pan-Plasmodium bands) correlated with the parasite densities. The intensities of T2 bands in Pf positive samples showed better correlation with the parasite densities than the T1 bands. In the cases of Pv infection, the intensities of T2 bands were also well correlated with parasite density. These results suggest that the ICT is useful not only for rapid detection of malaria parasites but also for estimating parasite density.

  12. The Rheopathobiology of Plasmodium vivax and Other Important Primate Malaria Parasites.

    PubMed

    Russell, Bruce M; Cooke, Brian M

    2017-04-01

    Our current understanding of how malaria parasites remodel their host red blood cells (RBCs) and ultimately cause disease is largely based on studies of Plasmodium falciparum. In this review, we expand our knowledge to include what is currently known about pathophysiological changes to RBCs that are infected by non-falciparum malaria parasites. We highlight the potential folly of making generalizations about the rheology of malaria infection, and emphasize the need for more systematic studies into the erythrocytic biology of non-falciparum malaria parasites. We propose that a better understanding of the mechanisms that underlie the changes to RBCs induced by malaria parasites other than P. falciparum may be highly informative for the development of therapeutics that specifically disrupt the altered rheological profile of RBCs infected with either sexual- or asexual-stage parasites, resulting in drugs that block transmission, reduce disease severity, and help delay the onset of resistance to current and future anti-malaria drugs.

  13. Disrupting Mosquito Reproduction and Parasite Development for Malaria Control

    PubMed Central

    Gabrieli, Paolo; Buckee, Caroline O.; Catteruccia, Flaminia

    2016-01-01

    The control of mosquito populations with insecticide treated bed nets and indoor residual sprays remains the cornerstone of malaria reduction and elimination programs. In light of widespread insecticide resistance in mosquitoes, however, alternative strategies for reducing transmission by the mosquito vector are urgently needed, including the identification of safe compounds that affect vectorial capacity via mechanisms that differ from fast-acting insecticides. Here, we show that compounds targeting steroid hormone signaling disrupt multiple biological processes that are key to the ability of mosquitoes to transmit malaria. When an agonist of the steroid hormone 20-hydroxyecdysone (20E) is applied to Anopheles gambiae females, which are the dominant malaria mosquito vector in Sub Saharan Africa, it substantially shortens lifespan, prevents insemination and egg production, and significantly blocks Plasmodium falciparum development, three components that are crucial to malaria transmission. Modeling the impact of these effects on Anopheles population dynamics and Plasmodium transmission predicts that disrupting steroid hormone signaling using 20E agonists would affect malaria transmission to a similar extent as insecticides. Manipulating 20E pathways therefore provides a powerful new approach to tackle malaria transmission by the mosquito vector, particularly in areas affected by the spread of insecticide resistance. PMID:27977810

  14. Evaluation of the Illumigene Malaria LAMP: A Robust Molecular Diagnostic Tool for Malaria Parasites

    PubMed Central

    Lucchi, Naomi W.; Gaye, Marie; Diallo, Mammadou Alpha; Goldman, Ira F.; Ljolje, Dragan; Deme, Awa Bineta; Badiane, Aida; Ndiaye, Yaye Die; Barnwell, John W.; Udhayakumar, Venkatachalam; Ndiaye, Daouda

    2016-01-01

    Isothermal nucleic acid amplification assays such as the loop mediated isothermal amplification (LAMP), are well suited for field use as they do not require thermal cyclers to amplify the DNA. To further facilitate the use of LAMP assays in remote settings, simpler sample preparation methods and lyophilized reagents are required. The performance of a commercial malaria LAMP assay (Illumigene Malaria LAMP) was evaluated using two sample preparation workflows (simple filtration prep (SFP)) and gravity-driven filtration prep (GFP)) and pre-dispensed lyophilized reagents. Laboratory and clinical samples were tested in a field laboratory in Senegal and the results independently confirmed in a reference laboratory in the U.S.A. The Illumigene Malaria LAMP assay was easily implemented in the clinical laboratory and gave similar results to a real-time PCR reference test with limits of detection of ≤2.0 parasites/μl depending on the sample preparation method used. This assay reliably detected Plasmodium sp. parasites in a simple low-tech format, providing a much needed alternative to the more complex molecular tests for malaria diagnosis. PMID:27827432

  15. Motility precedes egress of malaria parasites from oocysts

    PubMed Central

    Klug, Dennis; Frischknecht, Friedrich

    2017-01-01

    Malaria is transmitted when an infected Anopheles mosquito deposits Plasmodium sporozoites in the skin during a bite. Sporozoites are formed within oocysts at the mosquito midgut wall and are released into the hemolymph, from where they invade the salivary glands and are subsequently transmitted to the vertebrate host. We found that a thrombospondin-repeat containing sporozoite-specific protein named thrombospondin-releated protein 1 (TRP1) is important for oocyst egress and salivary gland invasion, and hence for the transmission of malaria. We imaged the release of sporozoites from oocysts in situ, which was preceded by active motility. Parasites lacking TRP1 failed to migrate within oocysts and did not egress, suggesting that TRP1 is a vital component of the events that precede intra-oocyst motility and subsequently sporozoite egress and salivary gland invasion. DOI: http://dx.doi.org/10.7554/eLife.19157.001 PMID:28115054

  16. Costs of crowding for the transmission of malaria parasites

    PubMed Central

    Pollitt, Laura C; Churcher, Thomas S; Dawes, Emma J; Khan, Shahid M; Sajid, Mohammed; Basáñez, María-Gloria; Colegrave, Nick; Reece, Sarah E

    2013-01-01

    The utility of using evolutionary and ecological frameworks to understand the dynamics of infectious diseases is gaining increasing recognition. However, integrating evolutionary ecology and infectious disease epidemiology is challenging because within-host dynamics can have counterintuitive consequences for between-host transmission, especially for vector-borne parasites. A major obstacle to linking within- and between-host processes is that the drivers of the relationships between the density, virulence, and fitness of parasites are poorly understood. By experimentally manipulating the intensity of rodent malaria (Plasmodium berghei) infections in Anopheles stephensi mosquitoes under different environmental conditions, we show that parasites experience substantial density-dependent fitness costs because crowding reduces both parasite proliferation and vector survival. We then use our data to predict how interactions between parasite density and vector environmental conditions shape within-vector processes and onward disease transmission. Our model predicts that density-dependent processes can have substantial and unexpected effects on the transmission potential of vector-borne disease, which should be considered in the development and evaluation of transmission-blocking interventions. PMID:23789029

  17. Electrophysiological studies of malaria parasite-infected erythrocytes: Current status

    PubMed Central

    Staines, Henry M.; Alkhalil, Abdulnaser; Allen, Richard J.; De Jonge, Hugo R.; Derbyshire, Elvira; Egée, Stéphane; Ginsburg, Hagai; Hill, David A.; Huber, Stephan M.; Kirk, Kiaran; Lang, Florian; Lisk, Godfrey; Oteng, Eugene; Pillai, Ajay D.; Rayavara, Kempaiah; Rouhani, Sherin; Saliba, Kevin J.; Shen, Crystal; Solomon, Tsione; Thomas, Serge L. Y.; Verloo, Patrick; Desai, Sanjay A.

    2009-01-01

    The altered permeability characteristics of erythrocytes infected with malaria parasites have been a source of interest for over 30 years. Recent electrophysiological studies have provided strong evidence that these changes reflect transmembrane transport through ion channels in the host erythrocyte plasma membrane. However, conflicting results and differing interpretations of the data have led to confusion in this field. In an effort to unravel these issues, the groups involved recently came together for a week of discussion and experimentation. In this article, the various models for altered transport are reviewed, together with the areas of consensus in the field and those that require a better understanding. PMID:17292372

  18. Proteomic Study of Human Malaria Parasite Plasmodium Vivax Liver Stages for Development of Vaccines and Drugs

    DTIC Science & Technology

    2008-10-02

    Proteomic Study of Human Malaria Parasite Plasmodium Vivax Liver Stages for Development of Vaccines and Drugs PRINCIPAL INVESTIGATOR: Dr...AND SUBTITLE 5a. CONTRACT NUMBER Proteomic Study of Human Malaria Parasite Plasmodium Vivax 5b. GRANT NUMBER W81XWH-07-2-0090 Liver Stages...3. Production of sporozoite and preparation for transcriptome and proteomic analysis: Sporozoites harvested from salivary gland, haemolymph

  19. Comparison of Texture Features Used for Classification of Life Stages of Malaria Parasite

    PubMed Central

    2016-01-01

    Malaria is a vector borne disease widely occurring at equatorial region. Even after decades of campaigning of malaria control, still today it is high mortality causing disease due to improper and late diagnosis. To prevent number of people getting affected by malaria, the diagnosis should be in early stage and accurate. This paper presents an automatic method for diagnosis of malaria parasite in the blood images. Image processing techniques are used for diagnosis of malaria parasite and to detect their stages. The diagnosis of parasite stages is done using features like statistical features and textural features of malaria parasite in blood images. This paper gives a comparison of the textural based features individually used and used in group together. The comparison is made by considering the accuracy, sensitivity, and specificity of the features for the same images in database. PMID:27247560

  20. Ape parasite origins of human malaria virulence genes

    PubMed Central

    Larremore, Daniel B.; Sundararaman, Sesh A.; Liu, Weimin; Proto, William R.; Clauset, Aaron; Loy, Dorothy E.; Speede, Sheri; Plenderleith, Lindsey J.; Sharp, Paul M.; Hahn, Beatrice H.; Rayner, Julian C.; Buckee, Caroline O.

    2015-01-01

    Antigens encoded by the var gene family are major virulence factors of the human malaria parasite Plasmodium falciparum, exhibiting enormous intra- and interstrain diversity. Here we use network analysis to show that var architecture and mosaicism are conserved at multiple levels across the Laverania subgenus, based on var-like sequences from eight single-species and three multi-species Plasmodium infections of wild-living or sanctuary African apes. Using select whole-genome amplification, we also find evidence of multi-domain var structure and synteny in Plasmodium gaboni, one of the ape Laverania species most distantly related to P. falciparum, as well as a new class of Duffy-binding-like domains. These findings indicate that the modular genetic architecture and sequence diversity underlying var-mediated host-parasite interactions evolved before the radiation of the Laverania subgenus, long before the emergence of P. falciparum. PMID:26456841

  1. Signaling Strategies of Malaria Parasite for Its Survival, Proliferation, and Infection during Erythrocytic Stage.

    PubMed

    Soni, Rani; Sharma, Drista; Rai, Praveen; Sharma, Bhaskar; Bhatt, Tarun K

    2017-01-01

    Irrespective of various efforts, malaria persist the most debilitating effect in terms of morbidity and mortality. Moreover, the existing drugs are also vulnerable to the emergence of drug resistance. To explore the potential targets for designing the most effective antimalarial therapies, it is required to focus on the facts of biochemical mechanism underlying the process of parasite survival and disease pathogenesis. This review is intended to bring out the existing knowledge about the functions and components of the major signaling pathways such as kinase signaling, calcium signaling, and cyclic nucleotide-based signaling, serving the various aspects of the parasitic asexual stage and highlighted the Toll-like receptors, glycosylphosphatidylinositol-mediated signaling, and molecular events in cytoadhesion, which elicit the host immune response. This discussion will facilitate a look over essential components for parasite survival and disease progression to be implemented in discovery of novel antimalarial drugs and vaccines.

  2. Signaling Strategies of Malaria Parasite for Its Survival, Proliferation, and Infection during Erythrocytic Stage

    PubMed Central

    Soni, Rani; Sharma, Drista; Rai, Praveen; Sharma, Bhaskar; Bhatt, Tarun K.

    2017-01-01

    Irrespective of various efforts, malaria persist the most debilitating effect in terms of morbidity and mortality. Moreover, the existing drugs are also vulnerable to the emergence of drug resistance. To explore the potential targets for designing the most effective antimalarial therapies, it is required to focus on the facts of biochemical mechanism underlying the process of parasite survival and disease pathogenesis. This review is intended to bring out the existing knowledge about the functions and components of the major signaling pathways such as kinase signaling, calcium signaling, and cyclic nucleotide-based signaling, serving the various aspects of the parasitic asexual stage and highlighted the Toll-like receptors, glycosylphosphatidylinositol-mediated signaling, and molecular events in cytoadhesion, which elicit the host immune response. This discussion will facilitate a look over essential components for parasite survival and disease progression to be implemented in discovery of novel antimalarial drugs and vaccines.

  3. Targeting Plasmodium PI(4)K to eliminate malaria

    NASA Astrophysics Data System (ADS)

    McNamara, Case W.; Lee, Marcus C. S.; Lim, Chek Shik; Lim, Siau Hoi; Roland, Jason; Nagle, Advait; Simon, Oliver; Yeung, Bryan K. S.; Chatterjee, Arnab K.; McCormack, Susan L.; Manary, Micah J.; Zeeman, Anne-Marie; Dechering, Koen J.; Kumar, T. R. Santha; Henrich, Philipp P.; Gagaring, Kerstin; Ibanez, Maureen; Kato, Nobutaka; Kuhen, Kelli L.; Fischli, Christoph; Rottmann, Matthias; Plouffe, David M.; Bursulaya, Badry; Meister, Stephan; Rameh, Lucia; Trappe, Joerg; Haasen, Dorothea; Timmerman, Martijn; Sauerwein, Robert W.; Suwanarusk, Rossarin; Russell, Bruce; Renia, Laurent; Nosten, Francois; Tully, David C.; Kocken, Clemens H. M.; Glynne, Richard J.; Bodenreider, Christophe; Fidock, David A.; Diagana, Thierry T.; Winzeler, Elizabeth A.

    2013-12-01

    Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.

  4. Targeting Plasmodium PI(4)K to eliminate malaria.

    PubMed

    McNamara, Case W; Lee, Marcus C S; Lim, Chek Shik; Lim, Siau Hoi; Roland, Jason; Nagle, Advait; Simon, Oliver; Yeung, Bryan K S; Chatterjee, Arnab K; McCormack, Susan L; Manary, Micah J; Zeeman, Anne-Marie; Dechering, Koen J; Kumar, T R Santha; Henrich, Philipp P; Gagaring, Kerstin; Ibanez, Maureen; Kato, Nobutaka; Kuhen, Kelli L; Fischli, Christoph; Rottmann, Matthias; Plouffe, David M; Bursulaya, Badry; Meister, Stephan; Rameh, Lucia; Trappe, Joerg; Haasen, Dorothea; Timmerman, Martijn; Sauerwein, Robert W; Suwanarusk, Rossarin; Russell, Bruce; Renia, Laurent; Nosten, Francois; Tully, David C; Kocken, Clemens H M; Glynne, Richard J; Bodenreider, Christophe; Fidock, David A; Diagana, Thierry T; Winzeler, Elizabeth A

    2013-12-12

    Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.

  5. A transcriptional switch underlies commitment to sexual development in malaria parasites.

    PubMed

    Kafsack, Björn F C; Rovira-Graells, Núria; Clark, Taane G; Bancells, Cristina; Crowley, Valerie M; Campino, Susana G; Williams, April E; Drought, Laura G; Kwiatkowski, Dominic P; Baker, David A; Cortés, Alfred; Llinás, Manuel

    2014-03-13

    The life cycles of many parasites involve transitions between disparate host species, requiring these parasites to go through multiple developmental stages adapted to each of these specialized niches. Transmission of malaria parasites (Plasmodium spp.) from humans to the mosquito vector requires differentiation from asexual stages replicating within red blood cells into non-dividing male and female gametocytes. Although gametocytes were first described in 1880, our understanding of the molecular mechanisms involved in commitment to gametocyte formation is extremely limited, and disrupting this critical developmental transition remains a long-standing goal. Here we show that expression levels of the DNA-binding protein PfAP2-G correlate strongly with levels of gametocyte formation. Using independent forward and reverse genetics approaches, we demonstrate that PfAP2-G function is essential for parasite sexual differentiation. By combining genome-wide PfAP2-G cognate motif occurrence with global transcriptional changes resulting from PfAP2-G ablation, we identify early gametocyte genes as probable targets of PfAP2-G and show that their regulation by PfAP2-G is critical for their wild-type level expression. In the asexual blood-stage parasites pfap2-g appears to be among a set of epigenetically silenced loci prone to spontaneous activation. Stochastic activation presents a simple mechanism for a low baseline of gametocyte production. Overall, these findings identify PfAP2-G as a master regulator of sexual-stage development in malaria parasites and mark the first discovery of a transcriptional switch controlling a differentiation decision in protozoan parasites.

  6. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    PubMed

    Matsubara, Ryuma; Aonuma, Hiroka; Kojima, Mikiko; Tahara, Michiru; Andrabi, Syed Bilal Ahmad; Sakakibara, Hitoshi; Nagamune, Kisaburo

    2015-01-01

    The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  7. Culture adaptation of malaria parasites selects for convergent loss-of-function mutants

    PubMed Central

    Claessens, Antoine; Affara, Muna; Assefa, Samuel A.; Kwiatkowski, Dominic P.; Conway, David J.

    2017-01-01

    Cultured human pathogens may differ significantly from source populations. To investigate the genetic basis of laboratory adaptation in malaria parasites, clinical Plasmodium falciparum isolates were sampled from patients and cultured in vitro for up to three months. Genome sequence analysis was performed on multiple culture time point samples from six monoclonal isolates, and single nucleotide polymorphism (SNP) variants emerging over time were detected. Out of a total of five positively selected SNPs, four represented nonsense mutations resulting in stop codons, three of these in a single ApiAP2 transcription factor gene, and one in SRPK1. To survey further for nonsense mutants associated with culture, genome sequences of eleven long-term laboratory-adapted parasite strains were examined, revealing four independently acquired nonsense mutations in two other ApiAP2 genes, and five in Epac. No mutants of these genes exist in a large database of parasite sequences from uncultured clinical samples. This implicates putative master regulator genes in which multiple independent stop codon mutations have convergently led to culture adaptation, affecting most laboratory lines of P. falciparum. Understanding the adaptive processes should guide development of experimental models, which could include targeted gene disruption to adapt fastidious malaria parasite species to culture. PMID:28117431

  8. Emerging functions of transcription factors in malaria parasite.

    PubMed

    Tuteja, Renu; Ansari, Abulaish; Chauhan, Virander Singh

    2011-01-01

    Transcription is a process by which the genetic information stored in DNA is converted into mRNA by enzymes known as RNA polymerase. Bacteria use only one RNA polymerase to transcribe all of its genes while eukaryotes contain three RNA polymerases to transcribe the variety of eukaryotic genes. RNA polymerase also requires other factors/proteins to produce the transcript. These factors generally termed as transcription factors (TFs) are either associated directly with RNA polymerase or add in building the actual transcription apparatus. TFs are the most common tools that our cells use to control gene expression. Plasmodium falciparum is responsible for causing the most lethal form of malaria in humans. It shows most of its characteristics common to eukaryotic transcription but it is assumed that mechanisms of transcriptional control in P. falciparum somehow differ from those of other eukaryotes. In this article we describe the studies on the main TFs such as myb protein, high mobility group protein and ApiA2 family proteins from malaria parasite. These studies show that these TFs are slowly emerging to have defined roles in the regulation of gene expression in the parasite.

  9. Malaria

    MedlinePlus

    ... a parasite. You get it when an infected mosquito bites you. Malaria is a major cause of ... insect repellent with DEET Cover up Sleep under mosquito netting Centers for Disease Control and Prevention

  10. Malaria

    MedlinePlus

    ... Malaria can be carried by mosquitoes in temperate climates, but the parasite disappears over the winter. The ... a major disease hazard for travelers to warm climates. In some areas of the world, mosquitoes that ...

  11. Population Structure Shapes Copy Number Variation in Malaria Parasites

    PubMed Central

    Cheeseman, Ian H.; Miller, Becky; Tan, John C.; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C.; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H.; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J.; Nosten, François; Ferdig, Michael T.; Anderson, Tim J. C.

    2016-01-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen. PMID:26613787

  12. Population Structure Shapes Copy Number Variation in Malaria Parasites.

    PubMed

    Cheeseman, Ian H; Miller, Becky; Tan, John C; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J; Nosten, François; Ferdig, Michael T; Anderson, Tim J C

    2016-03-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen.

  13. Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite

    PubMed Central

    Kenthirapalan, Sanketha; Waters, Andrew P.; Matuschewski, Kai; Kooij, Taco W. A.

    2016-01-01

    Assigning function to orphan membrane transport proteins and prioritizing candidates for detailed biochemical characterization remain fundamental challenges and are particularly important for medically relevant pathogens, such as malaria parasites. Here we present a comprehensive genetic analysis of 35 orphan transport proteins of Plasmodium berghei during its life cycle in mice and Anopheles mosquitoes. Six genes, including four candidate aminophospholipid transporters, are refractory to gene deletion, indicative of essential functions. We generate and phenotypically characterize 29 mutant strains with deletions of individual transporter genes. Whereas seven genes appear to be dispensable under the experimental conditions tested, deletion of any of the 22 other genes leads to specific defects in life cycle progression in vivo and/or host transition. Our study provides growing support for a potential link between heavy metal homeostasis and host switching and reveals potential targets for rational design of new intervention strategies against malaria. PMID:26796412

  14. Identification of malaria parasite-infected red blood cell surface aptamers by inertial microfluidic SELEX (I-SELEX)

    NASA Astrophysics Data System (ADS)

    Birch, Christina M.; Hou, Han Wei; Han, Jongyoon; Niles, Jacquin C.

    2015-07-01

    Plasmodium falciparum malaria parasites invade and remodel human red blood cells (RBCs) by trafficking parasite-synthesized proteins to the RBC surface. While these proteins mediate interactions with host cells that contribute to disease pathogenesis, the infected RBC surface proteome remains poorly characterized. Here we use a novel strategy (I-SELEX) to discover high affinity aptamers that selectively recognize distinct epitopes uniquely present on parasite-infected RBCs. Based on inertial focusing in spiral microfluidic channels, I-SELEX enables stringent partitioning of cells (efficiency ≥ 106) from unbound oligonucleotides at high volume throughput (~2 × 106 cells min-1). Using an RBC model displaying a single, non-native antigen and live malaria parasite-infected RBCs as targets, we establish suitability of this strategy for de novo aptamer selections. We demonstrate recovery of a diverse set of aptamers that recognize distinct, surface-displayed epitopes on parasite-infected RBCs with nanomolar affinity, including an aptamer against the protein responsible for placental sequestration, var2CSA. These findings validate I-SELEX as a broadly applicable aptamer discovery platform that enables identification of new reagents for mapping the parasite-infected RBC surface proteome at higher molecular resolution to potentially contribute to malaria diagnostics, therapeutics and vaccine efforts.

  15. Identification of malaria parasite-infected red blood cell surface aptamers by inertial microfluidic SELEX (I-SELEX).

    PubMed

    Birch, Christina M; Hou, Han Wei; Han, Jongyoon; Niles, Jacquin C

    2015-07-01

    Plasmodium falciparum malaria parasites invade and remodel human red blood cells (RBCs) by trafficking parasite-synthesized proteins to the RBC surface. While these proteins mediate interactions with host cells that contribute to disease pathogenesis, the infected RBC surface proteome remains poorly characterized. Here we use a novel strategy (I-SELEX) to discover high affinity aptamers that selectively recognize distinct epitopes uniquely present on parasite-infected RBCs. Based on inertial focusing in spiral microfluidic channels, I-SELEX enables stringent partitioning of cells (efficiency ≥ 10(6)) from unbound oligonucleotides at high volume throughput (~2 × 10(6) cells min(-1)). Using an RBC model displaying a single, non-native antigen and live malaria parasite-infected RBCs as targets, we establish suitability of this strategy for de novo aptamer selections. We demonstrate recovery of a diverse set of aptamers that recognize distinct, surface-displayed epitopes on parasite-infected RBCs with nanomolar affinity, including an aptamer against the protein responsible for placental sequestration, var2CSA. These findings validate I-SELEX as a broadly applicable aptamer discovery platform that enables identification of new reagents for mapping the parasite-infected RBC surface proteome at higher molecular resolution to potentially contribute to malaria diagnostics, therapeutics and vaccine efforts.

  16. Identification of malaria parasite-infected red blood cell surface aptamers by inertial microfluidic SELEX (I-SELEX)

    PubMed Central

    Birch, Christina M.; Hou, Han Wei; Han, Jongyoon; Niles, Jacquin C.

    2015-01-01

    Plasmodium falciparum malaria parasites invade and remodel human red blood cells (RBCs) by trafficking parasite-synthesized proteins to the RBC surface. While these proteins mediate interactions with host cells that contribute to disease pathogenesis, the infected RBC surface proteome remains poorly characterized. Here we use a novel strategy (I-SELEX) to discover high affinity aptamers that selectively recognize distinct epitopes uniquely present on parasite-infected RBCs. Based on inertial focusing in spiral microfluidic channels, I-SELEX enables stringent partitioning of cells (efficiency ≥ 106) from unbound oligonucleotides at high volume throughput (~2 × 106 cells min−1). Using an RBC model displaying a single, non-native antigen and live malaria parasite-infected RBCs as targets, we establish suitability of this strategy for de novo aptamer selections. We demonstrate recovery of a diverse set of aptamers that recognize distinct, surface-displayed epitopes on parasite-infected RBCs with nanomolar affinity, including an aptamer against the protein responsible for placental sequestration, var2CSA. These findings validate I-SELEX as a broadly applicable aptamer discovery platform that enables identification of new reagents for mapping the parasite-infected RBC surface proteome at higher molecular resolution to potentially contribute to malaria diagnostics, therapeutics and vaccine efforts. PMID:26126714

  17. Interspecific competition during transmission of two sympatric malaria parasite species to the mosquito vector.

    PubMed Central

    Paul, Rick E L; Nu, Van Anh Ton; Krettli, Antoniana U; Brey, Paul T

    2002-01-01

    The role of species interactions in structuring parasite communities remains controversial. Here, we show that interspecific competition between two avian malaria parasite species, Plasmodium gallinaceum and P. juxtanucleare, occurs as a result of interference during parasite fertilization within the bloodmeal of the mosquito. The significant reduction in the transmission success of P. gallinaceum to mosquitoes, due to the co-infecting P. juxtanucleare, is predicted to have compromised its colonization of regions occupied by P. juxtanucleare and, thus, may have contributed to the restricted global distribution of P. gallinaceum. Such interspecies interactions may occur between human malaria parasites and, thus, impact upon parasite species epidemiology, especially in regions of seasonal transmission. PMID:12573069

  18. Malaria heat shock proteins: drug targets that chaperone other drug targets.

    PubMed

    Pesce, E-R; Cockburn, I L; Goble, J L; Stephens, L L; Blatch, G L

    2010-06-01

    Ongoing research into the chaperone systems of malaria parasites, and particularly of Plasmodium falciparum, suggests that heat shock proteins (Hsps) could potentially be an excellent class of drug targets. The P. falciparum genome encodes a vast range and large number of chaperones, including 43 Hsp40, six Hsp70, and three Hsp90 proteins (PfHsp40s, PfHsp70s and PfHsp90s), which are involved in a number of fundamental cellular processes including protein folding and assembly, protein translocation, signal transduction and the cellular stress response. Despite the fact that Hsps are relatively conserved across different species, PfHsps do exhibit a considerable number of unique structural and functional features. One PfHsp90 is thought to be sufficiently different to human Hsp90 to allow for selective targeting. PfHsp70s could potentially be used as drug targets in two ways: either by the specific inhibition of Hsp70s by small molecule modulators, as well as disruption of the interactions between Hsp70s and co-chaperones such as the Hsp70/Hsp90 organising protein (Hop) and Hsp40s. Of the many PfHsp40s present on the parasite, there are certain unique or essential members which are considered to have good potential as drug targets. This review critically evaluates the potential of Hsps as malaria drug targets, as well as the use of chaperones as aids in the heterologous expression of other potential malarial drug targets.

  19. Expression, characterization, and cellular localization of knowpains, papain-like cysteine proteases of the Plasmodium knowlesi malaria parasite.

    PubMed

    Prasad, Rajesh; Atul; Soni, Awakash; Puri, Sunil Kumar; Sijwali, Puran Singh

    2012-01-01

    Papain-like cysteine proteases of malaria parasites degrade haemoglobin in an acidic food vacuole to provide amino acids for intraerythrocytic parasites. These proteases are potential drug targets because their inhibitors block parasite development, and efforts are underway to develop chemotherapeutic inhibitors of these proteases as the treatments for malaria. Plasmodium knowlesi has recently been shown to be an important human pathogen in parts of Asia. We report expression and characterization of three P. knowlesi papain-like proteases, termed knowpains (KP2-4). Recombinant knowpains were produced using a bacterial expression system, and tested for various biochemical properties. Antibodies against recombinant knowpains were generated and used to determine their cellular localization in parasites. Inhibitory effects of the cysteine protease inhibitor E64 were assessed on P. knowlesi culture to validate drug target potential of knowpains. All three knowpains were present in the food vacuole, active in acidic pH, and capable of degrading haemoglobin at the food vacuolar pH (≈5.5), suggesting roles in haemoglobin degradation. The proteases showed absolute (KP2 and KP3) to moderate (KP4) preference for peptide substrates containing leucine at the P2 position; KP4 preferred arginine at the P2 position. While the three knowpains appear to have redundant roles in haemoglobin degradation, KP4 may also have a role in degradation of erythrocyte cytoskeleton during merozoite egress, as it displayed broad substrate specificity and was primarily localized at the parasite periphery. Importantly, E64 blocked erythrocytic development of P. knowlesi, with enlargement of food vacuoles, indicating inhibition of haemoglobin hydrolysis and supporting the potential for inhibition of knowpains as a strategy for the treatment of malaria. Functional expression and characterization of knowpains should enable simultaneous screening of available cysteine protease inhibitor libraries

  20. Identification of a vir-orthologous immune evasion gene family from primate malaria parasites.

    PubMed

    Prajapati, Surendra Kumar; Singh, Om Prakash

    2014-04-01

    The immune evasion gene family of malaria parasites encodes variant surface proteins that are expressed at the surface of infected erythrocytes and help the parasite in evading the host immune response by means of antigenic variation. The identification of Plasmodium vivax vir orthologous immune evasion gene family from primate malaria parasites would provide new insight into the evolution of virulence and pathogenesis. Three vir subfamilies viz. vir-B, vir-D and vir-G were successfully PCR amplified from primate malaria parasites, cloned and sequenced. DNA sequence analysis confirmed orthologues of vir-D subfamily in Plasmodium cynomolgi, Plasmodium simium, Plasmodium simiovale and Plasmodium fieldi. The identified vir-D orthologues are 1-9 distinct members of the immune evasion gene family which have 68-83% sequence identity with vir-D and 71.2-98.5% sequence identity within the members identified from primate malaria parasites. The absence of other vir subfamilies among primate malaria parasites reflects the limitations in the experimental approach. This study clearly identified the presence of vir-D like sequences in four species of Plasmodium infecting primates that would be useful in understanding the evolution of virulence in malaria parasites.

  1. Genetic Characterization of Plasmodium Putative Pantothenate Kinase Genes Reveals Their Essential Role in Malaria Parasite Transmission to the Mosquito.

    PubMed

    Hart, Robert J; Cornillot, Emmanuel; Abraham, Amanah; Molina, Emily; Nation, Catherine S; Ben Mamoun, Choukri; Aly, Ahmed S I

    2016-09-20

    The metabolic machinery for the biosynthesis of Coenzyme A (CoA) from exogenous pantothenic acid (Vitamin B5) has long been considered as an excellent target for the development of selective antimicrobials. Earlier studies in the human malaria parasite Plasmodium falciparum have shown that pantothenate analogs interfere with pantothenate phosphorylation and block asexual blood stage development. Although two eukaryotic-type putative pantothenate kinase genes (PanK1 and PanK2) have been identified in all malaria parasite species, their role in the development of Plasmodium life cycle stages remains unknown. Here we report on the genetic characterization of PanK1 and PanK2 in P. yoelii. We show that P. yoelii parasites lacking either PanK1 or PanK2 undergo normal asexual stages development and sexual stages differentiation, however they are severely deficient in ookinete, oocyst and sporozoite formation inside the mosquito vector. Quantitative transcriptional analyses in wild-type and knockout parasites demonstrate an important role for these genes in the regulation of expression of other CoA biosynthesis genes. Together, our data provide the first genetic evidence for the importance of the early steps of pantothenate utilization in the regulation of CoA biosynthesis and malaria parasite transmission to Anopheles mosquitoes.

  2. Genetic Characterization of Plasmodium Putative Pantothenate Kinase Genes Reveals Their Essential Role in Malaria Parasite Transmission to the Mosquito

    PubMed Central

    Hart, Robert J.; Cornillot, Emmanuel; Abraham, Amanah; Molina, Emily; Nation, Catherine S.; Ben Mamoun, Choukri; Aly, Ahmed S. I.

    2016-01-01

    The metabolic machinery for the biosynthesis of Coenzyme A (CoA) from exogenous pantothenic acid (Vitamin B5) has long been considered as an excellent target for the development of selective antimicrobials. Earlier studies in the human malaria parasite Plasmodium falciparum have shown that pantothenate analogs interfere with pantothenate phosphorylation and block asexual blood stage development. Although two eukaryotic-type putative pantothenate kinase genes (PanK1 and PanK2) have been identified in all malaria parasite species, their role in the development of Plasmodium life cycle stages remains unknown. Here we report on the genetic characterization of PanK1 and PanK2 in P. yoelii. We show that P. yoelii parasites lacking either PanK1 or PanK2 undergo normal asexual stages development and sexual stages differentiation, however they are severely deficient in ookinete, oocyst and sporozoite formation inside the mosquito vector. Quantitative transcriptional analyses in wild-type and knockout parasites demonstrate an important role for these genes in the regulation of expression of other CoA biosynthesis genes. Together, our data provide the first genetic evidence for the importance of the early steps of pantothenate utilization in the regulation of CoA biosynthesis and malaria parasite transmission to Anopheles mosquitoes. PMID:27644319

  3. Artesunate-tafenoquine combination therapy promotes clearance and abrogates transmission of the avian malaria parasite Plasmodium gallinaceum.

    PubMed

    Tasai, Suchada; Saiwichai, Tawee; Kaewthamasorn, Morakot; Tiawsirisup, Sonthaya; Buddhirakkul, Prayute; Chaichalotornkul, Sirintip; Pattaradilokrat, Sittiporn

    2017-01-15

    Clinical manifestations of malaria infection in vertebrate hosts arise from the multiplication of the asexual stage parasites in the blood, while the gametocytes are responsible for the transmission of the disease. Antimalarial drugs that target the blood stage parasites and transmissible gametocytes are rare, but are essentially needed for the effective control of malaria and for limiting the spread of resistance. Artemisinin and its derivatives are the current first-line antimalarials that are effective against the blood stage parasites and gametocytes, but resistance to artemisinin has now emerged and spread in various malaria endemic areas. Therefore, a novel antimalarial drug, or a new drug combination, is critically needed to overcome this problem. The objectives of this study were to evaluate the efficacy of a relatively new antimalarial compound, tafenoquine (TQ), and a combination of TQ and a low dose of artesunate (ATN) on the in vivo blood stage multiplication, gametocyte development and transmission of the avian malaria parasite Plasmodium gallinaceum to the vector Aedes aegypti. The results showed that a 5-d treatment with TQ alone was unable to clear the blood stage parasites, but was capable of reducing the mortality rate, while TQ monotherapy at a high dose of 30mg/kg was highly effective against the gametocytes and completely blocked the transmission of P. gallinaceum. In addition, the combination therapy of TQ+ATN completely cleared P. gallinaceum blood stages and sped up the gametocyte clearance from chickens, suggesting the synergistic effect of the two drugs. In conclusion, TQ is demonstrated to be effective for limiting avian malaria transmission and may be used in combination with a low dose of ATN for safe and effective treatment.

  4. Genetically engineered parasites: the solution to designing an effective malaria vaccine?

    PubMed

    Fitchett, Joseph R; Cooke, Mary K

    2010-07-01

    Genetic engineering provides an ingenious method of attenuating Plasmodium falciparum parasites for next generation vaccines. A novel approach stimulates new optimism in the struggle to eliminate the burden of malaria.

  5. A Stem Cell Strategy Identifies Glycophorin C as a Major Erythrocyte Receptor for the Rodent Malaria Parasite Plasmodium berghei

    PubMed Central

    Yiangou, Loukia; Montandon, Ruddy; Modrzynska, Katarzyna; Rosen, Barry; Bushell, Wendy; Hale, Christine; Billker, Oliver; Rayner, Julian C.

    2016-01-01

    The clinical complications of malaria are caused by the parasite expansion in the blood. Invasion of erythrocytes is a complex process that depends on multiple receptor-ligand interactions. Identification of host receptors is paramount for fighting the disease as it could reveal new intervention targets, but the enucleated nature of erythrocytes makes genetic approaches impossible and many receptors remain unknown. Host-parasite interactions evolve rapidly and are therefore likely to be species-specific. As a results, understanding of invasion receptors outside the major human pathogen Plasmodium falciparum is very limited. Here we use mouse embryonic stem cells (mESCs) that can be genetically engineered and differentiated into erythrocytes to identify receptors for the rodent malaria parasite Plasmodium berghei. Two proteins previously implicated in human malaria infection: glycophorin C (GYPC) and Band-3 (Slc4a1) were deleted in mESCs to generate stable cell lines, which were differentiated towards erythropoiesis. In vitro infection assays revealed that while deletion of Band-3 has no effect, absence of GYPC results in a dramatic decrease in invasion, demonstrating the crucial role of this protein for P. berghei infection. This stem cell approach offers the possibility of targeting genes that may be essential and therefore difficult to disrupt in whole organisms and has the potential to be applied to a variety of parasites in diverse host cell types. PMID:27362409

  6. Do malaria parasites manipulate the escape behaviour of their avian hosts? An experimental study.

    PubMed

    Garcia-Longoria, Luz; Møller, Anders P; Balbontín, Javier; de Lope, Florentino; Marzal, Alfonso

    2015-12-01

    Escape behaviour is the behaviour that birds and other animals display when already caught by a predator. An individual exhibiting higher intensity of such anti-predator behaviour could have greater probabilities of escape from predators. Parasites are known to affect different aspects of host behaviour to increase their own fitness. Vector-transmitted parasites such as malaria parasites should gain by manipulating their hosts to enhance the probability of transmission. Several studies have shown that malaria parasites can manipulate their vectors leading to increased transmission success. However, little is known about whether malaria parasites can manipulate escape behaviour of their avian hosts thereby increasing the spread of the parasite. Here we used an experimental approach to explore if Plasmodium relictum can manipulate the escape behaviour of one of its most common avian hosts, the house sparrow Passer domesticus. We experimentally tested whether malaria parasites manipulate the escape behaviour of their avian host. We showed a decrease in the intensity of biting and tonic immobility after removal of infection with anti-malaria medication compared to pre-experimental behaviour. These outcomes suggest that infected sparrows performed more intense escape behaviour, which would increase the likelihood of individuals escaping from predators, but also benefit the parasite by increasing its transmission opportunities.

  7. Plasma concentration of parasite DNA as a measure of disease severity in falciparum malaria.

    PubMed

    Imwong, Mallika; Woodrow, Charles J; Hendriksen, Ilse C E; Veenemans, Jacobien; Verhoef, Hans; Faiz, M Abul; Mohanty, Sanjib; Mishra, Saroj; Mtove, George; Gesase, Samwel; Seni, Amir; Chhaganlal, Kajal D; Day, Nicholas P J; Dondorp, Arjen M; White, Nicholas J

    2015-04-01

    In malaria-endemic areas, Plasmodium falciparum parasitemia is common in apparently healthy children and severe malaria is commonly misdiagnosed in patients with incidental parasitemia. We assessed whether the plasma Plasmodium falciparum DNA concentration is a useful datum for distinguishing uncomplicated from severe malaria in African children and Asian adults. P. falciparum DNA concentrations were measured by real-time polymerase chain reaction (PCR) in 224 African children (111 with uncomplicated malaria and 113 with severe malaria) and 211 Asian adults (100 with uncomplicated malaria and 111 with severe malaria) presenting with acute falciparum malaria. The diagnostic accuracy of plasma P. falciparum DNA concentrations in identifying severe malaria was 0.834 for children and 0.788 for adults, similar to that of plasma P. falciparum HRP2 levels and substantially superior to that of parasite densities (P < .0001). The diagnostic accuracy of plasma P. falciparum DNA concentrations plus plasma P. falciparum HRP2 concentrations was significantly greater than that of plasma P. falciparum HRP2 concentrations alone (0.904 for children [P = .004] and 0.847 for adults [P = .003]). Quantitative real-time PCR measurement of parasite DNA in plasma is a useful method for diagnosing severe falciparum malaria on fresh or archived plasma samples.

  8. Time-Lapse Imaging of Red Blood Cell Invasion by the Rodent Malaria Parasite Plasmodium yoelii

    PubMed Central

    Yahata, Kazuhide; Treeck, Moritz; Culleton, Richard; Gilberger, Tim-Wolf; Kaneko, Osamu

    2012-01-01

    In order to propagate within the mammalian host, malaria parasites must invade red blood cells (RBCs). This process offers a window of opportunity in which to target the parasite with drugs or vaccines. However, most of the studies relating to RBC invasion have analyzed the molecular interactions of parasite proteins with host cells under static conditions, and the dynamics of these interactions remain largely unstudied. Time-lapse imaging of RBC invasion is a powerful technique to investigate cell invasion and has been reported for Plasmodium knowlesi and Plasmodium falciparum. However, experimental modification of genetic loci is laborious and time consuming for these species. We have established a system of time-lapse imaging for the rodent malaria parasite Plasmodium yoelii, for which modification of genetic loci is quicker and simpler. We compared the kinetics of RBC invasion by P. yoelii with that of P. falciparum and found that the overall kinetics during invasion were similar, with some exceptions. The most striking of these differences is that, following egress from the RBC, the shape of P. yoelii merozoites gradually changes from flat elongated ovals to spherical bodies, a process taking about 60 sec. During this period merozoites were able to attach to and deform the RBC membrane, but were not able to reorient and invade. We propose that this morphological change of P. yoelii merozoites may be related to the secretion or activation of invasion-related proteins. Thus the P. yoelii merozoite appears to be an excellent model to analyze the molecular dynamics of RBC invasion, particularly during the morphological transition phase, which could serve as an expanded window that cannot be observed in P. falciparum. PMID:23227208

  9. An essential malaria protein defines the architecture of blood-stage and transmission-stage parasites

    PubMed Central

    Absalon, Sabrina; Robbins, Jonathan A.; Dvorin, Jeffrey D.

    2016-01-01

    Blood-stage replication of the human malaria parasite Plasmodium falciparum occurs via schizogony, wherein daughter parasites are formed by a specialized cytokinesis known as segmentation. Here we identify a parasite protein, which we name P. falciparum Merozoite Organizing Protein (PfMOP), as essential for cytokinesis of blood-stage parasites. We show that, following PfMOP knockdown, parasites undergo incomplete segmentation resulting in a residual agglomerate of partially divided cells. While organelles develop normally, the structural scaffold of daughter parasites, the inner membrane complex (IMC), fails to form in this agglomerate causing flawed segmentation. In PfMOP-deficient gametocytes, the IMC formation defect causes maturation arrest with aberrant morphology and death. Our results provide insight into the mechanisms of replication and maturation of malaria parasites. PMID:27121004

  10. A class of tricyclic compounds blocking malaria parasite oocyst development and transmission.

    PubMed

    Eastman, Richard T; Pattaradilokrat, Sittiporn; Raj, Dipak K; Dixit, Saurabh; Deng, Bingbing; Miura, Kazutoyo; Yuan, Jing; Tanaka, Takeshi Q; Johnson, Ronald L; Jiang, Hongying; Huang, Ruili; Williamson, Kim C; Lambert, Lynn E; Long, Carole; Austin, Christopher P; Wu, Yimin; Su, Xin-Zhuan

    2013-01-01

    Malaria is a deadly infectious disease in many tropical and subtropical countries. Previous efforts to eradicate malaria have failed, largely due to the emergence of drug-resistant parasites, insecticide-resistant mosquitoes and, in particular, the lack of drugs or vaccines to block parasite transmission. ATP-binding cassette (ABC) transporters are known to play a role in drug transport, metabolism, and resistance in many organisms, including malaria parasites. To investigate whether a Plasmodium falciparum ABC transporter (Pf14_0244 or PfABCG2) modulates parasite susceptibility to chemical compounds or plays a role in drug resistance, we disrupted the gene encoding PfABCG2, screened the recombinant and the wild-type 3D7 parasites against a library containing 2,816 drugs approved for human or animal use, and identified an antihistamine (ketotifen) that became less active against the PfABCG2-disrupted parasite in culture. In addition to some activity against asexual stages and gametocytes, ketotifen was highly potent in blocking oocyst development of P. falciparum and the rodent parasite Plasmodium yoelii in mosquitoes. Tests of structurally related tricyclic compounds identified additional compounds with similar activities in inhibiting transmission. Additionally, ketotifen appeared to have some activity against relapse of Plasmodium cynomolgi infection in rhesus monkeys. Further clinical evaluation of ketotifen and related compounds, including synthetic new derivatives, in blocking malaria transmission may provide new weapons for the current effort of malaria eradication.

  11. Plasmodium Drug Targets Outside the Genetic Control of the Parasite

    PubMed Central

    Sullivan, David J.

    2014-01-01

    Drug development often seeks to find “magic bullets” which target microbiologic proteins while not affecting host proteins. Paul Ehrlich tested methylene blue as an antimalarial but this dye was not superior to quinine. Many successful antimalarial therapies are “magic shotguns” which target many Plasmodium pathways with little interference in host metabolism. Two malaria drug classes, the 8-aminoquinolines and the artemisinins interact with cytochrome P450s and host iron protoporphyrin IX or iron, respectively, to generate toxic metabolites and/or radicals, which kill the parasite by interference with many proteins. The non 8-amino antimalarial quinolines like quinine or piperaquine bind heme to inhibit the process of heme crystallization, which results in multiple enzyme inhibition and membrane dysfunction. The quinolines and artemisinins are rapidly parasiticidal in contrast to metal chelators, which have a slower parasite clearance rate with higher drug concentrations. Iron chelators interfere with the artemisinins but otherwise represent a strategy of targeting multiple enzymes containing iron. Interest has been revived in antineoplastic drugs that target DNA metabolism as antimalarials. Specific drug targeting or investigation of the innate immunity directed to the more permeable trophozoite or schizont infected erythrocyte membrane has been under explored. Novel drug classes in the antimalarial development pipeline which either target multiple proteins or unchangeable cellular targets will slow the pace of drug resistance acquisition. PMID:22973888

  12. Microbial control of malaria: biological warfare against the parasite and its vector.

    PubMed

    Abdul-Ghani, Rashad; Al-Mekhlafi, Abdulsalam M; Alabsi, Mogeeb S

    2012-02-01

    Microbial applications in malaria transmission control have drawn global attention. Mosquito midgut microbiota can modulate vector immunity and block Plasmodium development. Paratransgenic manipulation of bacterial symbionts and Wolbachia can affect reproductive characteristics of mosquitoes. Bacillus-based biolarvicides can control mosquito larvae in different breeding habitats, but their effectiveness differs according to the type of formulation applied, and the physical and ecological conditions of the environment. Entomopathogenic fungi show promise as effective and evolution-proof agents against adult mosquitoes. In addition, transgenic fungi can express anti-plasmodial effector molecules that can target the parasite inside its vector. Despite showing effectiveness in domestic environments as well as against insecticide-resistant mosquitoes, claims towards their deployability in the field and their possible use in integrated vector management programmes have yet to be investigated. Viral pathogens show efficacy in the interruption of sporogonic development of the parasite, and protozoal pathogens exert direct pathogenic potential on larvae and adults with substantial effects on mosquito longevity and fecundity. However, the technology required for their isolation and maintenance impedes their field application. Many agents show promising findings; however, the question remains about the epidemiologic reality of these approaches because even those that have been tried under field conditions still have certain limitations. This review addresses aspects of the microbial control of malaria between proof-of-concept and epidemiologic reality.

  13. The Plasmodium PHIST and RESA-Like Protein Families of Human and Rodent Malaria Parasites

    PubMed Central

    Moreira, Cristina K.; Naissant, Bernina; Coppi, Alida; Bennett, Brandy L.; Aime, Elena; Franke-Fayard, Blandine; Janse, Chris J.; Coppens, Isabelle; Sinnis, Photini; Templeton, Thomas J.

    2016-01-01

    The phist gene family has members identified across the Plasmodium genus, defined by the presence of a domain of roughly 150 amino acids having conserved aromatic residues and an all alpha-helical structure. The family is highly amplified in P. falciparum, with 65 predicted genes in the genome of the 3D7 isolate. In contrast, in the rodent malaria parasite P. berghei 3 genes are identified, one of which is an apparent pseudogene. Transcripts of the P. berghei phist genes are predominant in schizonts, whereas in P. falciparum transcript profiles span different asexual blood stages and gametocytes. We pursued targeted disruption of P. berghei phist genes in order to characterize a simplistic model for the expanded phist gene repertoire in P. falciparum. Unsuccessful attempts to disrupt P. berghei PBANKA_114540 suggest that this phist gene is essential, while knockout of phist PBANKA_122900 shows an apparent normal progression and non-essential function throughout the life cycle. Epitope-tagging of P. falciparum and P. berghei phist genes confirmed protein export to the erythrocyte cytoplasm and localization with a punctate pattern. Three P. berghei PEXEL/HT-positive exported proteins exhibit at least partial co-localization, in support of a common vesicular compartment in the cytoplasm of erythrocytes infected with rodent malaria parasites. PMID:27022937

  14. Intravenous Artesunate Reduces Parasite Clearance Time, Duration of Intensive Care, and Hospital Treatment in Patients With Severe Malaria in Europe: The TropNet Severe Malaria Study.

    PubMed

    Kurth, Florian; Develoux, Michel; Mechain, Matthieu; Clerinx, Jan; Antinori, Spinello; Gjørup, Ida E; Gascon, Joaquím; Mørch, Kristine; Nicastri, Emanuele; Ramharter, Michael; Bartoloni, Alessandro; Visser, Leo; Rolling, Thierry; Zanger, Philipp; Calleri, Guido; Salas-Coronas, Joaquín; Nielsen, Henrik; Just-Nübling, Gudrun; Neumayr, Andreas; Hachfeld, Anna; Schmid, Matthias L; Antonini, Pietro; Pongratz, Peter; Kern, Peter; Saraiva da Cunha, José; Soriano-Arandes, Antoni; Schunk, Mirjam; Suttorp, Norbert; Hatz, Christoph; Zoller, Thomas

    2015-11-01

    Intravenous artesunate improves survival in severe malaria, but clinical trial data from nonendemic countries are scarce. The TropNet severe malaria database was analyzed to compare outcomes of artesunate vs quinine treatment. Artesunate reduced parasite clearance time and duration of intensive care unit and hospital treatment in European patients with imported severe malaria.

  15. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi

    DOE PAGES

    Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; ...

    2015-03-12

    Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties ofmore » PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs.« less

  16. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi

    SciTech Connect

    Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; Choi, Jae-Yeon; Augagneur, Yoann; Voelker, Dennis R.; Nair, Satish; Mamoun, Choukri Ben

    2015-03-12

    Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties of PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs.

  17. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi

    PubMed Central

    Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; Choi, Jae-Yeon; Augagneur, Yoann; Voelker, Dennis R.; Nair, Satish; Mamoun, Choukri Ben

    2015-01-01

    Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties of PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs. PMID:25761669

  18. Heritability of the Human Infectious Reservoir of Malaria Parasites

    PubMed Central

    Marrama, Laurence; Konate, Lassana; Phimpraphi, Waraphon; Sokhna, Cheikh; Tall, Adama; Diène Sarr, Fatoumata; Peerapittayamongkol, Chayanon; Louicharoen, Chalisa; Schneider, Bradley S.; Levescot, Anaïs; Talman, Arthur; Casademont, Isabelle; Menard, Didier; Trape, Jean-François; Rogier, Christophe; Kaewkunwal, Jaranit; Sura, Thanyachai; Nuchprayoon, Issarang; Ariey, Frederic; Baril, Laurence; Singhasivanon, Pratap; Mercereau-Puijalon, Odile; Paul, Rick

    2010-01-01

    Background Studies on human genetic factors associated with malaria have hitherto concentrated on their role in susceptibility to and protection from disease. In contrast, virtually no attention has been paid to the role of human genetics in eliciting the production of parasite transmission stages, the gametocytes, and thus enhancing the spread of disease. Methods and Findings We analysed four longitudinal family-based cohort studies from Senegal and Thailand followed for 2–8 years and evaluated the relative impact of the human genetic and non-genetic factors on gametocyte production in infections of Plasmodium falciparum or P. vivax. Prevalence and density of gametocyte carriage were evaluated in asymptomatic and symptomatic infections by examination of Giemsa-stained blood smears and/or RT-PCR (for falciparum in one site). A significant human genetic contribution was found to be associated with gametocyte prevalence in asymptomatic P. falciparum infections. By contrast, there was no heritability associated with the production of gametocytes for P. falciparum or P. vivax symptomatic infections. Sickle cell mutation, HbS, was associated with increased gametocyte prevalence but its contribution was small. Conclusions The existence of a significant human genetic contribution to gametocyte prevalence in asymptomatic infections suggests that candidate gene and genome wide association approaches may be usefully applied to explore the underlying human genetics. Prospective epidemiological studies will provide an opportunity to generate novel and perhaps more epidemiologically pertinent gametocyte data with which similar analyses can be performed and the role of human genetics in parasite transmission ascertained. PMID:20613877

  19. Methodology and Application of Flow Cytometry for Investigation of Human Malaria Parasites

    PubMed Central

    Grimberg, Brian T.

    2011-01-01

    Historically, examinations of the inhibition of malaria parasite growth/invasion, whether using drugs or antibodies, have relied on the use of microscopy or radioactive hypoxanthine uptake. These are considered gold standards for measuring the effectiveness of antimalarial treatments, however, these methods have well known shortcomings. With the advent of flow cytometry coupled with the use of fluorescent DNA stains allowed for increased speed, reproducibility, and qualitative estimates of the effectiveness of antibodies and drugs to limit malaria parasite growth which addresses the challenges of traditional techniques. Because materials and machines available to research facilities are so varied, different methods have been developed to investigate malaria parasites by flow cytometry. This review is intended to serve as a reference guide for advanced users and importantly, as a primer for new users, to support expanded use and improvements to malaria flow cytometry, particularly in endemic countries. PMID:21296083

  20. Cloning, expression and functional characterization of heme detoxification protein (HDP) from the rodent malaria parasite Plasmodium vinckei.

    PubMed

    Soni, Awakash; Goyal, Manish; Prakash, Kirtika; Bhardwaj, Jyoti; Siddiqui, Arif Jamal; Puri, Sunil K

    2015-07-15

    Malaria parasite resides within the host red blood cells, where it degrades vast amount of haemoglobin. During haemoglobin degradation, toxic free heme is liberated which subsequently gets converted into hemozoin. This process is facilitated by action of various proteins viz. heme detoxification protein (HDP), and histidine rich proteins II and III (HRP II & III). Out of these, HDP is the most potent in hemozoin formation and plays indispensible role for parasite survival. Despite this, the detailed study of HDP from rodent and simian parasite has not been performed till date. Here, we have cloned and sequenced hdp gene from different malaria parasites Plasmodium vinckei, Plasmodium yoelii, Plasmodium knowlesi, and Plasmodium cynomolgi. Furthermore, HDP from P. vinckei (PvHDP) was over-expressed and purified for detailed characterization. The PvHDP is cytosolic, expressed throughout the intra erythrocytic stages and its expression is higher in late trophozoite and schizont stages of parasite. The PvHDP interacts with free heme (KD=89 nM) and efficiently converts heme into hemozoin in a time and concentration dependent manner. Moreover, PvHDP showed activity in acidic pH and over a broad range of temperature. Histidine modification of PvHDP using DEPC showed reduction in heme binding and hemozoin formation, thus emphasizing the importance of histidine residues in heme binding and subsequent hemozoin production. Furthermore, applicability of PvHDP to screen anti-plasmodial agents (targeting heme to hemozoin conversion) was also determined using chloroquine, and mefloquine as reference antimalarials. Results showed that these drugs inhibit heme polymerization effectively in a concentration dependent manner. In conclusion, our study identified and biochemically characterized HDP from rodent malaria parasite P. vinckei and this will help to develop a high throughput assay to evaluate new antimalarials targeting hemozoin pathway.

  1. The Genome of Haemoproteus tartakovskyi and Its Relationship to Human Malaria Parasites

    PubMed Central

    Bensch, Staffan; Canbäck, Björn; DeBarry, Jeremy D.; Johansson, Tomas; Hellgren, Olof; Kissinger, Jessica C.; Palinauskas, Vaidas; Videvall, Elin; Valkiūnas, Gediminas

    2016-01-01

    The phylogenetic relationships among hemosporidian parasites, including the origin of Plasmodium falciparum, the most virulent malaria parasite of humans, have been heavily debated for decades. Studies based on multiple-gene sequences have helped settle many of these controversial phylogenetic issues. However, denser taxon sampling and genome-wide analyses are needed to confidently resolve the evolutionay relationships among hemosporidian parasites. Genome sequences of several Plasmodium parasites are available but only for species infecting primates and rodents. To root the phylogenetic tree of Plasmodium, genomic data from related parasites of birds or reptiles are required. Here, we use a novel approach to isolate parasite DNA from microgametes and describe the first genome of a bird parasite in the sister genus to Plasmodium, Haemoproteus tartakovskyi. Similar to Plasmodium parasites, H. tartakovskyi has a small genome (23.2 Mb, 5,990 genes) and a GC content (25.4%) closer to P. falciparum (19.3%) than to Plasmodium vivax (42.3%). Combined with novel transcriptome sequences of the bird parasite Plasmodium ashfordi, our phylogenomic analyses of 1,302 orthologous genes demonstrate that mammalian-infecting malaria parasites are monophyletic, thus rejecting the repeatedly proposed hypothesis that the ancestor of Laverania parasites originated from a secondary host shift from birds to humans. Genes and genomic features previously found to be shared between P. falciparum and bird malaria parasites, but absent in other mammal malaria parasites, are therefore signatures of maintained ancestral states. We foresee that the genome of H. tartakovskyi will open new directions for comparative evolutionary analyses of malarial adaptive traits. PMID:27190205

  2. Malaria parasite infection compromises control of concurrent systemic non-typhoidal Salmonella infection via IL-10-mediated alteration of myeloid cell function.

    PubMed

    Lokken, Kristen L; Mooney, Jason P; Butler, Brian P; Xavier, Mariana N; Chau, Jennifer Y; Schaltenberg, Nicola; Begum, Ramie H; Müller, Werner; Luckhart, Shirley; Tsolis, Renée M

    2014-05-01

    Non-typhoidal Salmonella serotypes (NTS) cause a self-limited gastroenteritis in immunocompetent individuals, while children with severe Plasmodium falciparum malaria can develop a life-threatening disseminated infection. This co-infection is a major source of child mortality in sub-Saharan Africa. However, the mechanisms by which malaria contributes to increased risk of NTS bacteremia are incompletely understood. Here, we report that in a mouse co-infection model, malaria parasite infection blunts inflammatory responses to NTS, leading to decreased inflammatory pathology and increased systemic bacterial colonization. Blunting of NTS-induced inflammatory responses required induction of IL-10 by the parasites. In the absence of malaria parasite infection, administration of recombinant IL-10 together with induction of anemia had an additive effect on systemic bacterial colonization. Mice that were conditionally deficient for either myeloid cell IL-10 production or myeloid cell expression of IL-10 receptor were better able to control systemic Salmonella infection, suggesting that phagocytic cells are both producers and targets of malaria parasite-induced IL-10. Thus, IL-10 produced during the immune response to malaria increases susceptibility to disseminated NTS infection by suppressing the ability of myeloid cells, most likely macrophages, to control bacterial infection.

  3. Determination of glutathione redox potential and pH value in subcellular compartments of malaria parasites.

    PubMed

    Mohring, Franziska; Rahbari, Mahsa; Zechmann, Bernd; Rahlfs, Stefan; Przyborski, Jude M; Meyer, Andreas J; Becker, Katja

    2017-03-01

    The malaria parasite Plasmodium falciparum is exposed to multiple sources of oxidative challenge during its complex life cycle in the Anopheles vector and its human host. In order to further elucidate redox-based parasite host cell interactions and mechanisms of drug action, we targeted the genetically encoded glutathione redox sensor roGFP2 coupled to human glutaredoxin 1 (roGFP2-hGrx1) as well as the ratiometric pH sensor pHluorin to the apicoplast and the mitochondrion of P. falciparum. Using live cell imaging, this allowed for the first time the determination of the pH values of the apicoplast (7.12±0.40) and mitochondrion (7.37±0.09) in the intraerythrocytic asexual stages of the parasite. Based on the roGFP2-hGrx1 signals, glutathione-dependent redox potentials of -267mV and -328mV, respectively, were obtained. Employing these novel tools, initial studies on the effects of redox-active agents and clinically employed antimalarial drugs were carried out on both organelles.

  4. Efficient expression systems for cysteine proteases of malaria parasites: too good to be true?

    PubMed

    Sarduy, Emir Salas; Chávez Planes, María de los A

    2013-01-01

    Papain-like cysteine proteases of malaria parasites are considered important chemotherapeutic targets or valuable models for the evaluation of drug candidates. Consequently, many of these enzymes have been cloned and expressed in Escherichia coli for their biochemical characterization. However, their expression has been problematic, showing low yield and leading to the formation of insoluble aggregates. Given that highly-productive expression systems are required for the high-throughput evaluation of inhibitors, we analyzed the existing expression systems to identify the causes of such apparent issues. We found that significant divergences in codon and nucleotide composition from host genes are the most probable cause of expression failure, and propose several strategies to overcome these limitations. Finally we predict that yeast hosts Saccharomyces cerevisiae and Pichia pastoris may be better suited than E. coli for the efficient expression of plasmodial genes, presumably leading to soluble and active products reproducing structural and functional characteristics of the natural enzymes.

  5. PbCap380, a novel oocyst capsule protein, is essential for malaria parasite survival in the mosquito

    PubMed Central

    Srinivasan, Prakash; Fujioka, Hisashi; Jacobs-Lorena, Marcelo

    2014-01-01

    Summary An essential requisite for transmission of Plasmodium, the causative agent of malaria, is the successful completion of a complex developmental cycle in its mosquito vector. Of hundreds of ookinetes that form in the mosquito midgut, only few transform into oocysts, a loss attributed to the action of the mosquito immune system. However, once oocysts form, they appear to be resistant to mosquito defences. During oocyst development, a thick capsule forms around the parasite and appears to function as a protective cover. Little information is available about the composition of this capsule. Here we report on the identification and partial characterization of the first Plasmodium oocyst capsule protein (PbCap380). Genetic analysis indicates that the gene is essential and that PbCap380(−) mutant parasites form oocysts in normal numbers but are gradually eliminated. As a result, mosquitoes infected with PbCap380(−) parasites do not transmit malaria. Targeting of the oocyst capsule may provide a new strategy for malaria control. PMID:18248630

  6. Anti-Schistosoma IgG responses in Schistosoma haematobium single and concomitant infection with malaria parasites.

    PubMed

    Morenikeji, Olajumoke A; Adeleye, Olumide; Omoruyi, Ewean C; Oyeyemi, Oyetunde T

    2016-03-01

    Areas prone to schistosomiasis are also at risk of malaria transmission. The interaction between the causal agents of the two diseases could modulate immune responses tailored toward protecting or aggravating morbidity dynamics and impair Schistosoma diagnostic precision. This study aimed at assessing the effect of Plasmodium spp. in concomitant infection with Schistosoma haematobium in modulation of anti-Schistosoma IgG antibodies. The school-based cross-sectional study recruited a total of 322 children screened for S. haematobium and Plasmodium spp. Levels of IgG against S. haematobium-soluble egg antigen (SEA) in single S. haematobium/malaria parasites infection and co-infection of the two parasites in schoolchildren were determined. Data were analyzed using χ(2), Fisher's exact test, and Tukey's multiple comparison test analyses. The prevalence of single infection by S. haematobium, Plasmodium spp., and concurrent infection due to the two pathogens was 27.7, 41.0, and 9.3%, respectively (p < 0.0001). Anti-Schistosoma IgG production during co-infection of the two pathogens (1.950 ± 0.742 AU) was significantly higher than the value recorded for single malaria parasites' infection (1.402 ± 0.670 AU) (p < 0.01) but not in S. haematobium infection (1.591 ± 0.604 AU) (p > 0.05). The anti-Schistosoma IgG production in co-infection status was however dependent on the intensity of Plasmodium spp. with individuals having high intensity of malaria parasites recording lower anti-Schistosoma IgG. This study has implication for diagnosis of schistosomiasis where anti-Schistosoma IgG is used as an indicator of infection. Efforts should be made to control the two infections simultaneously in order not to undermine the efforts targeted toward the control of one.

  7. Total and Putative Surface Proteomics of Malaria Parasite Salivary Gland Sporozoites*

    PubMed Central

    Lindner, Scott E.; Swearingen, Kristian E.; Harupa, Anke; Vaughan, Ashley M.; Sinnis, Photini; Moritz, Robert L.; Kappe, Stefan H. I.

    2013-01-01

    Malaria infections of mammals are initiated by the transmission of Plasmodium salivary gland sporozoites during an Anopheles mosquito vector bite. Sporozoites make their way through the skin and eventually to the liver, where they infect hepatocytes. Blocking this initial stage of infection is a promising malaria vaccine strategy. Therefore, comprehensively elucidating the protein composition of sporozoites will be invaluable in identifying novel targets for blocking infection. Previous efforts to identify the proteins expressed in Plasmodium mosquito stages were hampered by the technical difficulty of separating the parasite from its vector; without effective purifications, the large majority of proteins identified were of vector origin. Here we describe the proteomic profiling of highly purified salivary gland sporozoites from two Plasmodium species: human-infective Plasmodium falciparum and rodent-infective Plasmodium yoelii. The combination of improved sample purification and high mass accuracy mass spectrometry has facilitated the most complete proteome coverage to date for a pre-erythrocytic stage of the parasite. A total of 1991 P. falciparum sporozoite proteins and 1876 P. yoelii sporozoite proteins were identified, with >86% identified with high sequence coverage. The proteomic data were used to confirm the presence of components of three features critical for sporozoite infection of the mammalian host: the sporozoite motility and invasion apparatus (glideosome), sporozoite signaling pathways, and the contents of the apical secretory organelles. Furthermore, chemical labeling and identification of proteins on live sporozoites revealed previously uncharacterized complexity of the putative sporozoite surface-exposed proteome. Taken together, the data constitute the most comprehensive analysis to date of the protein expression of salivary gland sporozoites and reveal novel potential surface-exposed proteins that might be valuable targets for antibody blockage

  8. Total and putative surface proteomics of malaria parasite salivary gland sporozoites.

    PubMed

    Lindner, Scott E; Swearingen, Kristian E; Harupa, Anke; Vaughan, Ashley M; Sinnis, Photini; Moritz, Robert L; Kappe, Stefan H I

    2013-05-01

    Malaria infections of mammals are initiated by the transmission of Plasmodium salivary gland sporozoites during an Anopheles mosquito vector bite. Sporozoites make their way through the skin and eventually to the liver, where they infect hepatocytes. Blocking this initial stage of infection is a promising malaria vaccine strategy. Therefore, comprehensively elucidating the protein composition of sporozoites will be invaluable in identifying novel targets for blocking infection. Previous efforts to identify the proteins expressed in Plasmodium mosquito stages were hampered by the technical difficulty of separating the parasite from its vector; without effective purifications, the large majority of proteins identified were of vector origin. Here we describe the proteomic profiling of highly purified salivary gland sporozoites from two Plasmodium species: human-infective Plasmodium falciparum and rodent-infective Plasmodium yoelii. The combination of improved sample purification and high mass accuracy mass spectrometry has facilitated the most complete proteome coverage to date for a pre-erythrocytic stage of the parasite. A total of 1991 P. falciparum sporozoite proteins and 1876 P. yoelii sporozoite proteins were identified, with >86% identified with high sequence coverage. The proteomic data were used to confirm the presence of components of three features critical for sporozoite infection of the mammalian host: the sporozoite motility and invasion apparatus (glideosome), sporozoite signaling pathways, and the contents of the apical secretory organelles. Furthermore, chemical labeling and identification of proteins on live sporozoites revealed previously uncharacterized complexity of the putative sporozoite surface-exposed proteome. Taken together, the data constitute the most comprehensive analysis to date of the protein expression of salivary gland sporozoites and reveal novel potential surface-exposed proteins that might be valuable targets for antibody blockage

  9. A novel live-dead staining methodology to study malaria parasite viability

    PubMed Central

    2013-01-01

    Background Malaria is a major health and socio-economical problem in tropical and sub-tropical areas of the world. Several methodologies have been used to assess parasite viability during the adaption of field strains to culture or the assessment of drug potential, but these are in general not able to provide an accurate real-time assessment of whether parasites are alive or dead. Methods Different commercial dyes and kits were assessed for their potential to allow for the real-time detection of whether a blood stage malaria parasite is dead or alive. Results Here, a methodology is presented based on the potential-sensitive mitochondrial probe JC-1, which allows for the real-time visualization of live (red staining) and/or dead (absence of red staining) blood stage parasites in vitro and ex vivo. This method is applicable across malaria parasite species and strains and allows to visualize all parasite blood stages including gametocytes. Further, this methodology has been assessed also for use in drug sensitivity testing. Conclusions The JC-1 staining approach is a versatile methodology that can be used to assess parasite viability during the adaptation of field samples to culture and during drug treatment. It was found to hold promise in the assessment of drugs expected to lead to delayed death phenotypes and it currently being evaluated as a method for the assessment of parasite viability during the adaptation of patient-derived Plasmodium vivax to long-term in vitro culture. PMID:23758788

  10. Development and Assessment of Transgenic Rodent Parasites for the Preclinical Evaluation of Malaria Vaccines.

    PubMed

    Espinosa, Diego A; Radtke, Andrea J; Zavala, Fidel

    2016-01-01

    Rodent transgenic parasites are useful tools for the preclinical evaluation of malaria vaccines. Over the last decade, several studies have reported the development of transgenic rodent parasites expressing P. falciparum antigens for the assessment of vaccine-induced immune responses, which traditionally have been limited to in vitro assays. However, the genetic manipulation of rodent Plasmodium species can have detrimental effects on the parasite's infectivity and development. In this chapter, we present a few guidelines for designing transfection plasmids, which should improve transfection efficiency and facilitate the generation of functional transgenic parasite strains. In addition, we provide a transfection protocol for the development of transgenic P. berghei parasites as well as practical methods to assess the viability and infectivity of these newly generated strains throughout different stages of their life cycle. These techniques should allow researchers to develop novel rodent malaria parasites expressing antigens from human malaria species and to determine whether these transgenic strains are fully infectious and thus represent stringent platforms for the in vivo evaluation of malaria vaccine candidates.

  11. Development of humanized mouse models to study human malaria parasite infection.

    PubMed

    Vaughan, Ashley M; Kappe, Stefan H I; Ploss, Alexander; Mikolajczak, Sebastian A

    2012-05-01

    Malaria is a disease caused by infection with Plasmodium parasites that are transmitted by mosquito bite. Five different species of Plasmodium infect humans with severe disease, but human malaria is primarily caused by Plasmodium falciparum. The burden of malaria on the developing world is enormous, and a fully protective vaccine is still elusive. One of the biggest challenges in the quest for the development of new antimalarial drugs and vaccines is the lack of accessible animal models to study P. falciparum infection because the parasite is restricted to the great apes and human hosts. Here, we review the current state of research in this field and provide an outlook of the development of humanized small animal models to study P. falciparum infection that will accelerate fundamental research into human parasite biology and could accelerate drug and vaccine design in the future.

  12. Vaccines against malaria.

    PubMed

    Ouattara, Amed; Laurens, Matthew B

    2015-03-15

    Despite global efforts to control malaria, the illness remains a significant public health threat. Currently, there is no licensed vaccine against malaria, but an efficacious vaccine would represent an important public health tool for successful malaria elimination. Malaria vaccine development continues to be hindered by a poor understanding of antimalarial immunity, a lack of an immune correlate of protection, and the genetic diversity of malaria parasites. Current vaccine development efforts largely target Plasmodium falciparum parasites in the pre-erythrocytic and erythrocytic stages, with some research on transmission-blocking vaccines against asexual stages and vaccines against pregnancy-associated malaria. The leading pre-erythrocytic vaccine candidate is RTS,S, and early results of ongoing Phase 3 testing show overall efficacy of 46% against clinical malaria. The next steps for malaria vaccine development will focus on the design of a product that is efficacious against the highly diverse strains of malaria and the identification of a correlate of protection against disease.

  13. Unusual presentation of Plasmodium vivax: a neglected human malaria parasite.

    PubMed

    Kute, Vivek B; Goswami, Jitendra G; Vanikar, Aruna V; Shah, Pankaj R; Gumber, Manoj R; Patel, Himanshu V; Kanodia, Kamal V; Trivedi, Hargovind L

    2012-06-01

    Severe and complicated malaria is usually caused by Plasmodium falciparum malaria (PF) but it has been increasingly observed that Plasmodium vivax malaria (PV), which was otherwise considered to be benign malaria, with a low case-fatality ratio, can also occasionally result in severe disease as with PF malaria. There is an urgent need to re-examine the clinical spectrum and burden of PV so that adequate control measures can be implemented against this emerging but neglected disease. We report a case of severe PV malaria with multi-organ dysfunction. Patients exhibited acute kidney injury, severe anemia/thrombocytopenia, jaundice, hypoglycemia, hyponatremia, and pulmonary edema. Peripheral blood microscopy by trained and expert pathologist and rapid diagnostic test showed the presence of PV and absence of PF. The patient recovered completely with anti-malarial drugs, supportive measures, and hemodialysis.Recent microrheologic research that analyzed malaria severity in PV clearly demonstrated enhanced aggregation, erythrocyte clumping, and reduced deformability affecting microcirculation. Our case report highlights the fact that PV malaria is benign by name but not always by nature. PV can lead to unusual and potentially life-threatening complications. Further large-scale multi-centric studies are needed to define this less known entity.

  14. The structural basis for CD36 binding by the malaria parasite

    PubMed Central

    Hsieh, Fu-Lien; Turner, Louise; Bolla, Jani Reddy; Robinson, Carol V.; Lavstsen, Thomas; Higgins, Matthew K.

    2016-01-01

    CD36 is a scavenger receptor involved in fatty acid metabolism, innate immunity and angiogenesis. It interacts with lipoprotein particles and facilitates uptake of long chain fatty acids. It is also the most common target of the PfEMP1 proteins of the malaria parasite, Plasmodium falciparum, tethering parasite-infected erythrocytes to endothelial receptors. This prevents their destruction by splenic clearance and allows increased parasitaemia. Here we describe the structure of CD36 in complex with long chain fatty acids and a CD36-binding PfEMP1 protein domain. A conserved hydrophobic pocket allows the hugely diverse PfEMP1 protein family to bind to a conserved phenylalanine residue at the membrane distal tip of CD36. This phenylalanine is also required for CD36 to interact with lipoprotein particles. By targeting a site on CD36 that is required for its physiological function, PfEMP1 proteins maintain the ability to tether to the endothelium and avoid splenic clearance. PMID:27667267

  15. Parasitic procrastination: late-presenting ovale malaria and schistosomiasis.

    PubMed

    Davis, T M; Singh, B; Sheridan, G

    2001-08-06

    A 29-year-old woman with ovale malaria (most likely contracted, together with asymptomatic schistosomiasis, in East Africa two years previously) had fever, nausea and confusion, jaundice, anaemia, thrombocytopenia, hyponatraemia and hypokalaemia. She was initially diagnosed with and treated for blood-smear-positive vivax malaria. Because of the unusual clinical presentation, blood was analysed by a malaria species-specific nested polymerase chain reaction (PCR) assay which identified Plasmodium ovale as the only infecting species. This case illustrates (i) that a detailed travel history remains a vital part of clinical assessment, (ii) ovale malaria can have an exceptionally long incubation period and features of a moderately severe acute infection, and (iii) PCR assay may prove a valuable adjunct to blood film examination in the diagnosis and speciation of malaria.

  16. How Robust Are Malaria Parasite Clearance Rates as Indicators of Drug Effectiveness and Resistance?

    PubMed Central

    Kay, Katherine

    2015-01-01

    Artemisinin-based combination therapies (ACTs) are currently the first-line drugs for treating uncomplicated falciparum malaria, the most deadly of the human malarias. Malaria parasite clearance rates estimated from patients' blood following ACT treatment have been widely adopted as a measure of drug effectiveness and as surveillance tools for detecting the presence of potential artemisinin resistance. This metric has not been investigated in detail, nor have its properties or potential shortcomings been identified. Herein, the pharmacology of drug treatment, parasite biology, and human immunity are combined to investigate the dynamics of parasite clearance following ACT. This approach parsimoniously recovers the principal clinical features and dynamics of clearance. Human immunity is the primary determinant of clearance rates, unless or until artemisinin killing has fallen to near-ineffective levels. Clearance rates are therefore highly insensitive metrics for surveillance that may lead to overconfidence, as even quite substantial reductions in drug sensitivity may not be detected as lower clearance rates. Equally serious is the use of clearance rates to quantify the impact of ACT regimen changes, as this strategy will plausibly miss even very substantial increases in drug effectiveness. In particular, the malaria community may be missing the opportunity to dramatically increase ACT effectiveness through regimen changes, particularly through a switch to twice-daily regimens and/or increases in artemisinin dosing levels. The malaria community therefore appears overreliant on a single metric of drug effectiveness, the parasite clearance rate, that has significant and serious shortcomings. PMID:26239987

  17. Quantitation of malaria parasite-erythrocyte cell-cell interactions using optical tweezers.

    PubMed

    Crick, Alex J; Theron, Michel; Tiffert, Teresa; Lew, Virgilio L; Cicuta, Pietro; Rayner, Julian C

    2014-08-19

    Erythrocyte invasion by Plasmodium falciparum merozoites is an essential step for parasite survival and hence the pathogenesis of malaria. Invasion has been studied intensively, but our cellular understanding has been limited by the fact that it occurs very rapidly: invasion is generally complete within 1 min, and shortly thereafter the merozoites, at least in in vitro culture, lose their invasive capacity. The rapid nature of the process, and hence the narrow time window in which measurements can be taken, have limited the tools available to quantitate invasion. Here we employ optical tweezers to study individual invasion events for what we believe is the first time, showing that newly released P. falciparum merozoites, delivered via optical tweezers to a target erythrocyte, retain their ability to invade. Even spent merozoites, which had lost the ability to invade, retain the ability to adhere to erythrocytes, and furthermore can still induce transient local membrane deformations in the erythrocyte membrane. We use this technology to measure the strength of the adhesive force between merozoites and erythrocytes, and to probe the cellular mode of action of known invasion inhibitory treatments. These data add to our understanding of the erythrocyte-merozoite interactions that occur during invasion, and demonstrate the power of optical tweezers technologies in unraveling the blood-stage biology of malaria.

  18. Serological Conservation of Parasite-Infected Erythrocytes Predicts Plasmodium falciparum Erythrocyte Membrane Protein 1 Gene Expression but Not Severity of Childhood Malaria.

    PubMed

    Warimwe, George M; Abdi, Abdirahman I; Muthui, Michelle; Fegan, Gregory; Musyoki, Jennifer N; Marsh, Kevin; Bull, Peter C

    2016-05-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), expressed on P. falciparum-infected erythrocytes, is a major family of clonally variant targets of naturally acquired immunity to malaria. Previous studies have demonstrated that in areas where malaria is endemic, antibodies to infected erythrocytes from children with severe malaria tend to be more seroprevalent than antibodies to infected erythrocytes from children with nonsevere malaria. These data have led to a working hypothesis that PfEMP1 variants associated with parasite virulence are relatively conserved in structure. However, the longevity of such serologically conserved variants in the parasite population is unknown. Here, using infected erythrocytes from recently sampled clinical P. falciparum samples, we measured serological conservation using pools of antibodies in sera that had been sampled 10 to 12 years earlier. The serological conservation of infected erythrocytes strongly correlated with the expression of specific PfEMP1 subsets previously found to be associated with severe malaria. However, we found no association between serological conservation per se and disease severity within these data. This contrasts with the simple hypothesis that P. falciparum isolates with a serologically conserved group of PfEMP1 variants cause severe malaria. The data are instead consistent with periodic turnover of the immunodominant epitopes of PfEMP1 associated with severe malaria.

  19. Resistance of a Rodent Malaria Parasite to a Thymidylate Synthase Inhibitor Induces an Apoptotic Parasite Death and Imposes a Huge Cost of Fitness

    PubMed Central

    Muregi, Francis W.; Ohta, Isao; Masato, Uchijima; Kino, Hideto; Ishih, Akira

    2011-01-01

    Background The greatest impediment to effective malaria control is drug resistance in Plasmodium falciparum, and thus understanding how resistance impacts on the parasite's fitness and pathogenicity may aid in malaria control strategy. Methodology/Principal Findings To generate resistance, P. berghei NK65 was subjected to 5-fluoroorotate (FOA, an inhibitor of thymidylate synthase, TS) pressure in mice. After 15 generations of drug pressure, the 2% DT (the delay time for proliferation of parasites to 2% parasitaemia, relative to untreated wild-type controls) reduced from 8 days to 4, equalling the controls. Drug sensitivity studies confirmed that FOA-resistance was stable. During serial passaging in the absence of drug, resistant parasite maintained low growth rates (parasitaemia, 15.5%±2.9, 7 dpi) relative to the wild-type (45.6%±8.4), translating into resistance cost of fitness of 66.0%. The resistant parasite showed an apoptosis-like death, as confirmed by light and transmission electron microscopy and corroborated by oligonucleosomal DNA fragmentation. Conclusions/Significance The resistant parasite was less fit than the wild-type, which implies that in the absence of drug pressure in the field, the wild-type alleles may expand and allow drugs withdrawn due to resistance to be reintroduced. FOA resistance led to depleted dTTP pools, causing thymineless parasite death via apoptosis. This supports the tenet that unicellular eukaryotes, like metazoans, also undergo apoptosis. This is the first report where resistance to a chemical stimulus and not the stimulus itself is shown to induce apoptosis in a unicellular parasite. This finding is relevant in cancer therapy, since thymineless cell death induced by resistance to TS-inhibitors can further be optimized via inhibition of pyrimidine salvage enzymes, thus providing a synergistic impact. We conclude that since apoptosis is a process that can be pharmacologically modulated, the parasite's apoptotic machinery may

  20. Lactate retards the development of erythrocytic stages of the human malaria parasite Plasmodium falciparum.

    PubMed

    Hikosaka, Kenji; Hirai, Makoto; Komatsuya, Keisuke; Ono, Yasuo; Kita, Kiyoshi

    2015-06-01

    The intraerythrocytic form of the human malaria parasite Plasmodium falciparum relies on glycolysis for its energy requirements. In glycolysis, lactate is an end product. It is therefore known that lactate accumulates in in vitro culture; however, its influence on parasite growth remains unknown. Here we investigated the effect of lactate on the development of P. falciparum during in vitro culture under lactate supplementation in detail. Results revealed that lactate retarded parasite development and reduced the number of merozoites in the schizont stage. These findings suggest that lactate has the potential to affect parasite development.

  1. Malaria Facts

    MedlinePlus

    ... Laveran and the Discovery of the Malaria Parasite Ross and the Discovery that Mosquitoes Transmit Malaria Parasites ... for work associated with malaria: to Sir Ronald Ross (1902), Charles Louis Alphonse Laveran (1907), Julius Wagner- ...

  2. Analysis of Antibodies Directed against Merozoite Surface Protein 1 of the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Woehlbier, Ute; Epp, Christian; Kauth, Christian W.; Lutz, Rolf; Long, Carole A.; Coulibaly, Boubacar; Kouyaté, Bocar; Arevalo-Herrera, Myriam; Herrera, Sócrates; Bujard, Hermann

    2006-01-01

    The 190-kDa merozoite surface protein 1 (MSP-1) of Plasmodium falciparum, an essential component in the parasite's life cycle, is a primary candidate for a malaria vaccine. Rabbit antibodies elicited by the heterologously produced MSP-1 processing products p83, p30, p38, and p42, derived from strain 3D7, were analyzed for the potential to inhibit in vitro erythrocyte invasion by the parasite and parasite growth. Our data show that (i) epitopes recognized by antibodies, which inhibit parasite replication, are distributed throughout the entire MSP-1 molecule; (ii) when combined, antibodies specific for different regions of MSP-1 inhibit in a strictly additive manner; (iii) anti-MSP-1 antibodies interfere with erythrocyte invasion as well as with the intraerythrocytic growth of the parasite; and (iv) antibodies raised against MSP-1 of strain 3D7 strongly cross-inhibit replication of the heterologous strain FCB-1. Accordingly, anti-MSP-1 antibodies appear to be capable of interfering with parasite multiplication at more than one level. Since the overall immunogenicity profile of MSP-1 in rabbits closely resembles that found in sera of Aotus monkeys immunized with parasite-derived MSP-1 and of humans semi-immune to malaria from whom highly inhibiting antigen-specific antibodies were recovered, we consider the findings reported here to be relevant for the development of MSP-1-based vaccines against malaria. PMID:16428781

  3. Standardization in generating and reporting genetically modified rodent malaria parasites: the RMgmDB database.

    PubMed

    Khan, Shahid M; Kroeze, Hans; Franke-Fayard, Blandine; Janse, Chris J

    2013-01-01

    Genetically modified Plasmodium parasites are central gene function reagents in malaria research. The Rodent Malaria genetically modified DataBase (RMgmDB) ( www.pberghei.eu ) is a manually curated Web - based repository that contains information on genetically modified rodent malaria parasites. It provides easy and rapid access to information on the genotype and phenotype of genetically modified mutant and reporter parasites. Here, we provide guidelines for generating and describing rodent malaria parasite mutants. Standardization in describing mutant genotypes and phenotypes is important not only to enhance publication quality but also to facilitate cross-linking and mining data from multiple sources, and should permit information derived from mutant parasites to be used in integrative system biology approaches. We also provide guidelines on how to submit information to RMgmDB on non-published mutants, mutants that do not exhibit a clear phenotype, as well as negative attempts to disrupt/mutate genes. Such information helps to prevent unnecessary duplication of experiments in different laboratories, and can provide indirect evidence that these genes are essential for blood-stage development.

  4. Population Parameters Underlying an Ongoing Soft Sweep in Southeast Asian Malaria Parasites

    PubMed Central

    Anderson, Timothy J.C.; Nair, Shalini; McDew-White, Marina; Cheeseman, Ian H.; Nkhoma, Standwell; Bilgic, Fatma; McGready, Rose; Ashley, Elizabeth; Pyae Phyo, Aung; White, Nicholas J.; Nosten, François

    2017-01-01

    Multiple kelch13 alleles conferring artemisinin resistance (ART-R) are currently spreading through Southeast Asian malaria parasite populations, providing a unique opportunity to observe an ongoing soft selective sweep, investigate why resistance alleles have evolved multiple times and determine fundamental population genetic parameters for Plasmodium. We sequenced kelch13 (n = 1,876), genotyped 75 flanking SNPs, and measured clearance rate (n = 3,552) in parasite infections from Western Thailand (2001–2014). We describe 32 independent coding mutations including common mutations outside the kelch13 propeller associated with significant reductions in clearance rate. Mutations were first observed in 2003 and rose to 90% by 2014, consistent with a selection coefficient of ∼0.079. ART-R allele diversity rose until 2012 and then dropped as one allele (C580Y) spread to high frequency. The frequency with which adaptive alleles arise is determined by the rate of mutation and the population size. Two factors drive this soft sweep: (1) multiple kelch13 amino-acid mutations confer resistance providing a large mutational target—we estimate the target is 87–163 bp. (2) The population mutation parameter (Θ = 2Neμ) can be estimated from the frequency distribution of ART-R alleles and is ∼5.69, suggesting that short term effective population size is 88 thousand to 1.2 million. This is 52–705 times greater than Ne estimated from fluctuation in allele frequencies, suggesting that we have previously underestimated the capacity for adaptive evolution in Plasmodium. Our central conclusions are that retrospective studies may underestimate the complexity of selective events and the Ne relevant for adaptation for malaria is considerably higher than previously estimated. PMID:28025270

  5. Targeting the hypnozoite reservoir of Plasmodium vivax: the hidden obstacle to malaria elimination.

    PubMed

    Wells, Timothy N C; Burrows, Jeremy N; Baird, J Kevin

    2010-03-01

    Plasmodium vivax is the major species of malaria parasite outside Africa. It is especially problematic in that the infection can relapse in the absence of mosquitoes by activation of dormant hypnozoites in the liver. Medicines that target the erythrocytic stages of Plasmodium falciparum are also active against P. vivax, except where these have been compromised by resistance. However, the only clinical therapy against relapse of vivax malaria is the 8-aminoquinoline, primaquine. This molecule has the drawback of causing haemolysis in genetically sensitive patients and requires 14 days of treatment. New, safer and more-easily administered drugs are urgently needed, and this is a crucial gap in the broader malaria-elimination agenda. New developments in cell biology are starting to open ways to the next generation of drugs against hypnozoites. This search is urgent, given the time needed to develop a new medication.

  6. Emerging importance of mismatch repair components including UvrD helicase and their cross-talk with the development of drug resistance in malaria parasite.

    PubMed

    Ahmad, Moaz; Tuteja, Renu

    2014-12-01

    Human malaria is an important parasitic infection responsible for a significant number of deaths worldwide, particularly in tropical and subtropical regions. The recent scenario has worsened mainly because of the emergence of drug-resistant malaria parasites having the potential to spread across the world. Drug-resistant parasites possess a defective mismatch repair (MMR); therefore, it is essential to explore its mechanism in detail to determine the underlying cause. Recently, artemisinin-resistant parasites have been reported to exhibit nonsynonymous single nucleotide polymorphisms in genes involved in MMR pathways such as MutL homolog (MLH) and UvrD. Plasmodium falciparum MLH is an endonuclease required to restore the defective MMR in drug-resistant W2 strain of P. falciparum. Although the role of helicases in eukaryotic MMR has been questioned, the identification and characterization of the UvrD helicase and their cross-talk with MLH in P. falciparum suggests the possible involvement of UvrD in MMR. A comparative genome-wide analysis revealed the presence of the UvrD helicase in Plasmodium species, while it is absent in human host. Therefore, PfUvrD may emerge as a suitable drug target to control malaria. This review study is focused on recent developments in MMR biochemistry, emerging importance of the UvrD helicase, possibility of its involvement in MMR and the emerging cross-talk between MMR components and drug resistance in malaria parasite.

  7. Parasitic diarrheal disease: drug development and targets

    PubMed Central

    Azam, Amir; Peerzada, Mudasir N.; Ahmad, Kamal

    2015-01-01

    Diarrhea is the manifestation of gastrointestinal infection and is one of the major causes of mortality and morbidity specifically among the children of less than 5 years age worldwide. Moreover, in recent years there has been a rise in the number of reports of intestinal infections continuously in the industrialized world. These are largely related to waterborne and food borne outbreaks. These occur by the pathogenesis of both prokaryotic and eukaryotic organisms like bacteria and parasites. The parasitic intestinal infection has remained mostly unexplored and under assessed in terms of therapeutic development. The lack of new drugs and the risk of resistance have led us to carry out this review on drug development for parasitic diarrheal diseases. The major focus has been depicted on commercially available drugs, currently synthesized active heterocyclic compounds and unique drug targets, that are vital for the existence and growth of the parasites and can be further exploited for the search of therapeutically active anti-parasitic agents. PMID:26617574

  8. Combination therapy counteracts the enhanced transmission of drug-resistant malaria parasites to mosquitoes.

    PubMed

    Hallett, Rachel L; Sutherland, Colin J; Alexander, Neal; Ord, Rosalynn; Jawara, Musa; Drakeley, Chris J; Pinder, Margaret; Walraven, Gijs; Targett, Geoffrey A T; Alloueche, Ali

    2004-10-01

    Malaria parasites carrying genes conferring resistance to antimalarials are thought to have a selective advantage which leads to higher rates of transmissibility from the drug-treated host. This is a likely mechanism for the increasing prevalence of parasites with resistance to chloroquine (CQ) and sulfadoxine-pyrimethamine in sub-Saharan Africa. Combination therapy is the key strategy being implemented to reduce the impact of resistance, but its effect on the transmission of genetically resistant parasites from treated patients to mosquito vectors has not been measured directly. In a trial comparing CQ monotherapy to the combination CQ plus artesunate (AS) in Gambian children with uncomplicated falciparum malaria, we measured transmissibility by feeding Anopheles gambiae mosquitoes with blood from 43 gametocyte-positive patients through a membrane. In the CQ-treated group, gametocytes from patients carrying parasites with the CQ resistance-associated allele pfcrt-76T prior to treatment produced infected mosquitoes with 38 times higher Plasmodium falciparum oocyst burdens than mosquitoes fed on gametocytes from patients infected with sensitive parasites (P < 0.001). Gametocytes from parasites carrying the resistance-associated allele pfmdr1-86Y produced 14-fold higher oocyst burdens than gametocytes from patients infected with sensitive parasites (P = 0.011). However, parasites carrying either of these resistance-associated alleles pretreatment were not associated with higher mosquito oocyst burdens in the CQ-AS-treated group. Thus, combination therapy overcomes the transmission advantage enjoyed by drug-resistant parasites.

  9. Apparent vector-mediated parent-to-offspring transmission in an avian malaria-like parasite.

    PubMed

    Chakarov, Nayden; Linke, Burkhard; Boerner, Martina; Goesmann, Alexander; Krüger, Oliver; Hoffman, Joseph I

    2015-03-01

    Parasite transmission strategies strongly impact host-parasite co-evolution and virulence. However, studies of vector-borne parasites such as avian malaria have neglected the potential effects of host relatedness on the exchange of parasites. To test whether extended parental care in the presence of vectors increases the probability of transmission from parents to offspring, we used high-throughput sequencing to develop microsatellites for malaria-like Leucocytozoon parasites of a wild raptor population. We show that host siblings carry genetically more similar parasites than unrelated chicks both within and across years. Moreover, chicks of mothers of the same plumage morph carried more similar parasites than nestlings whose mothers were of different morphs, consistent with matrilineal transmission of morph-specific parasite strains. Ours is the first evidence of an association between host relatedness and parasite genetic similarity, consistent with vector-mediated parent-to-offspring transmission. The conditions for such 'quasi-vertical' transmission may be common and could suppress the evolution of pathogen virulence.

  10. The Plasmodium apicoplast genome: conserved structure and close relationship of P. ovale to rodent malaria parasites.

    PubMed

    Arisue, Nobuko; Hashimoto, Tetsuo; Mitsui, Hideya; Palacpac, Nirianne M Q; Kaneko, Akira; Kawai, Satoru; Hasegawa, Masami; Tanabe, Kazuyuki; Horii, Toshihiro

    2012-09-01

    Apicoplast, a nonphotosynthetic plastid derived from secondary symbiotic origin, is essential for the survival of malaria parasites of the genus Plasmodium. Elucidation of the evolution of the apicoplast genome in Plasmodium species is important to better understand the functions of the organelle. However, the complete apicoplast genome is available for only the most virulent human malaria parasite, Plasmodium falciparum. Here, we obtained the near-complete apicoplast genome sequences from eight Plasmodium species that infect a wide variety of vertebrate hosts and performed structural and phylogenetic analyses. We found that gene repertoire, gene arrangement, and other structural attributes were highly conserved. Phylogenetic reconstruction using 30 protein-coding genes of the apicoplast genome inferred, for the first time, a close relationship between P. ovale and rodent parasites. This close relatedness was robustly supported using multiple evolutionary assumptions and models. The finding suggests that an ancestral host switch occurred between rodent and human Plasmodium parasites.

  11. Parasite Specific Antibody Increase Induced by an Episode of Acute P. falciparum Uncomplicated Malaria

    PubMed Central

    Kaddumukasa, Mark; Lwanira, Catherine; Lugaajju, Allan; Katabira, Elly; Persson, Kristina E. M.; Wahlgren, Mats; Kironde, Fred

    2015-01-01

    Introduction There is no approved vaccine for malaria, and precisely how human antibody responses to malaria parasite components and potential vaccine molecules are developed and maintained remains poorly defined. In this study, antibody anamnestic or memory response elicited by a single episode of P. falciparum infection was investigated. Methods This study involved 362 malaria patients aged between 6 months to 60 years, of whom 19% were early-diagnosed people living with HIV/AIDS (PLWHA). On the day malaria was diagnosed and 42 days later, blood specimens were collected. Parasite density, CD4+ cells, and antibodies specific to synthetic peptides representing antigenic regions of the P. falciparum proteins GLURP, MSP3 and HRPII were measured. Results On the day of malaria diagnosis, Immunoglobulin (IgG) antibodies against GLURP, MSP3 and HRP II peptides were present in the blood of 75%, 41% and 60% of patients, respectively. 42 days later, the majority of patients had boosted their serum IgG antibody more than 1.2 fold. The increase in level of IgG antibody against the peptides was not affected by parasite density at diagnosis. The median CD4+ cell counts of PLWHAs and HIV negative individuals were not statistically different, and median post-infection increases in anti-peptide IgG were similar in both groups of patients. Conclusion In the majority (70%) of individuals, an infection of P. falciparum elicits at least 20% increase in level of anti-parasite IgG. This boost in anti-P. falciparum IgG is not affected by parasite density on the day of malaria diagnosis, or by HIV status. PMID:25906165

  12. Parasite biomass-related inflammation, endothelial activation, microvascular dysfunction and disease severity in vivax malaria.

    PubMed

    Barber, Bridget E; William, Timothy; Grigg, Matthew J; Parameswaran, Uma; Piera, Kim A; Price, Ric N; Yeo, Tsin W; Anstey, Nicholas M

    2015-01-01

    Plasmodium vivax can cause severe malaria, however its pathogenesis is poorly understood. In contrast to P. falciparum, circulating vivax parasitemia is low, with minimal apparent sequestration in endothelium-lined microvasculature, and pathogenesis thought unrelated to parasite biomass. However, the relationships between vivax disease-severity and total parasite biomass, endothelial autocrine activation and microvascular dysfunction are unknown. We measured circulating parasitemia and markers of total parasite biomass (plasma parasite lactate dehydrogenase [pLDH] and PvLDH) in adults with severe (n = 9) and non-severe (n = 53) vivax malaria, and examined relationships with disease-severity, endothelial activation, and microvascular function. Healthy controls and adults with non-severe and severe falciparum malaria were enrolled for comparison. Median peripheral parasitemia, PvLDH and pLDH were 2.4-fold, 3.7-fold and 6.9-fold higher in severe compared to non-severe vivax malaria (p = 0.02, p = 0.02 and p = 0.015, respectively), suggesting that, as in falciparum malaria, peripheral P. vivax parasitemia underestimates total parasite biomass, particularly in severe disease. P. vivax schizonts were under-represented in peripheral blood. Severe vivax malaria was associated with increased angiopoietin-2 and impaired microvascular reactivity. Peripheral vivax parasitemia correlated with endothelial activation (angiopoietin-2, von-Willebrand-Factor [VWF], E-selectin), whereas markers of total vivax biomass correlated only with systemic inflammation (IL-6, IL-10). Activity of the VWF-cleaving-protease, ADAMTS13, was deficient in proportion to endothelial activation, IL-6, thrombocytopenia and vivax disease-severity, and associated with impaired microvascular reactivity in severe disease. Impaired microvascular reactivity correlated with lactate in severe vivax malaria. Findings suggest that tissue accumulation of P. vivax may occur, with the hidden

  13. Parasite Biomass-Related Inflammation, Endothelial Activation, Microvascular Dysfunction and Disease Severity in Vivax Malaria

    PubMed Central

    Barber, Bridget E.; William, Timothy; Grigg, Matthew J.; Parameswaran, Uma; Piera, Kim A.; Price, Ric N.; Yeo, Tsin W.; Anstey, Nicholas M.

    2015-01-01

    Plasmodium vivax can cause severe malaria, however its pathogenesis is poorly understood. In contrast to P. falciparum, circulating vivax parasitemia is low, with minimal apparent sequestration in endothelium-lined microvasculature, and pathogenesis thought unrelated to parasite biomass. However, the relationships between vivax disease-severity and total parasite biomass, endothelial autocrine activation and microvascular dysfunction are unknown. We measured circulating parasitemia and markers of total parasite biomass (plasma parasite lactate dehydrogenase [pLDH] and PvLDH) in adults with severe (n = 9) and non-severe (n = 53) vivax malaria, and examined relationships with disease-severity, endothelial activation, and microvascular function. Healthy controls and adults with non-severe and severe falciparum malaria were enrolled for comparison. Median peripheral parasitemia, PvLDH and pLDH were 2.4-fold, 3.7-fold and 6.9-fold higher in severe compared to non-severe vivax malaria (p = 0.02, p = 0.02 and p = 0.015, respectively), suggesting that, as in falciparum malaria, peripheral P. vivax parasitemia underestimates total parasite biomass, particularly in severe disease. P. vivax schizonts were under-represented in peripheral blood. Severe vivax malaria was associated with increased angiopoietin-2 and impaired microvascular reactivity. Peripheral vivax parasitemia correlated with endothelial activation (angiopoietin-2, von-Willebrand-Factor [VWF], E-selectin), whereas markers of total vivax biomass correlated only with systemic inflammation (IL-6, IL-10). Activity of the VWF-cleaving-protease, ADAMTS13, was deficient in proportion to endothelial activation, IL-6, thrombocytopenia and vivax disease-severity, and associated with impaired microvascular reactivity in severe disease. Impaired microvascular reactivity correlated with lactate in severe vivax malaria. Findings suggest that tissue accumulation of P. vivax may occur, with the hidden

  14. The multifunctional autophagy pathway in the human malaria parasite, Plasmodium falciparum.

    PubMed

    Cervantes, Serena; Bunnik, Evelien M; Saraf, Anita; Conner, Christopher M; Escalante, Aster; Sardiu, Mihaela E; Ponts, Nadia; Prudhomme, Jacques; Florens, Laurence; Le Roch, Karine G

    2014-01-01

    Autophagy is a catabolic pathway typically induced by nutrient starvation to recycle amino acids, but can also function in removing damaged organelles. In addition, this pathway plays a key role in eukaryotic development. To date, not much is known about the role of autophagy in apicomplexan parasites and more specifically in the human malaria parasite Plasmodium falciparum. Comparative genomic analysis has uncovered some, but not all, orthologs of autophagy-related (ATG) genes in the malaria parasite genome. Here, using a genome-wide in silico analysis, we confirmed that ATG genes whose products are required for vesicle expansion and completion are present, while genes involved in induction of autophagy and cargo packaging are mostly absent. We subsequently focused on the molecular and cellular function of P. falciparum ATG8 (PfATG8), an autophagosome membrane marker and key component of the autophagy pathway, throughout the parasite asexual and sexual erythrocytic stages. In this context, we showed that PfATG8 has a distinct and atypical role in parasite development. PfATG8 localized in the apicoplast and in vesicles throughout the cytosol during parasite development. Immunofluorescence assays of PfATG8 in apicoplast-minus parasites suggest that PfATG8 is involved in apicoplast biogenesis. Furthermore, treatment of parasite cultures with bafilomycin A 1 and chloroquine, both lysosomotropic agents that inhibit autophagosome and lysosome fusion, resulted in dramatic morphological changes of the apicoplast, and parasite death. Furthermore, deep proteomic analysis of components associated with PfATG8 indicated that it may possibly be involved in ribophagy and piecemeal microautophagy of the nucleus. Collectively, our data revealed the importance and specificity of the autophagy pathway in the malaria parasite and offer potential novel therapeutic strategies.

  15. A sugar phosphatase regulates the methylerythritol phosphate (MEP) pathway in malaria parasites.

    PubMed

    Guggisberg, Ann M; Park, Jooyoung; Edwards, Rachel L; Kelly, Megan L; Hodge, Dana M; Tolia, Niraj H; Odom, Audrey R

    2014-07-24

    Isoprenoid biosynthesis through the methylerythritol phosphate (MEP) pathway generates commercially important products and is a target for antimicrobial drug development. MEP pathway regulation is poorly understood in microorganisms. Here we employ a forward genetics approach to understand MEP pathway regulation in the malaria parasite, Plasmodium falciparum. The antimalarial fosmidomycin inhibits the MEP pathway enzyme deoxyxylulose 5-phosphate reductoisomerase (DXR). Fosmidomycin-resistant P. falciparum are enriched for changes in the PF3D7_1033400 locus (hereafter referred to as PfHAD1), encoding a homologue of haloacid dehalogenase (HAD)-like sugar phosphatases. We describe the structural basis for loss-of-function PfHAD1 alleles and find that PfHAD1 dephosphorylates a variety of sugar phosphates, including glycolytic intermediates. Loss of PfHAD1 is required for fosmidomycin resistance. Parasites lacking PfHAD1 have increased MEP pathway metabolites, particularly the DXR substrate, deoxyxylulose 5-phosphate. PfHAD1 therefore controls substrate availability to the MEP pathway. Because PfHAD1 has homologues in plants and bacteria, other HAD proteins may be MEP pathway regulators.

  16. Nanomimics of host cell membranes block invasion and expose invasive malaria parasites.

    PubMed

    Najer, Adrian; Wu, Dalin; Bieri, Andrej; Brand, Françoise; Palivan, Cornelia G; Beck, Hans-Peter; Meier, Wolfgang

    2014-12-23

    The fight against most infectious diseases, including malaria, is often hampered by the emergence of drug resistance and lack or limited efficacies of vaccines. Therefore, new drugs, vaccines, or other strategies to control these diseases are needed. Here, we present an innovative nanotechnological strategy in which the nanostructure itself represents the active substance with no necessity to release compounds to attain therapeutic effect and which might act in a drug- and vaccine-like dual function. Invasion of Plasmodium falciparum parasites into red blood cells was selected as a biological model for the initial validation of this approach. Stable nanomimics-polymersomes presenting receptors required for parasite attachment to host cells-were designed to efficiently interrupt the life cycle of the parasite by inhibiting invasion. A simple way to build nanomimics without postformation modifications was established. First, a block copolymer of the receptor with a hydrophobic polymer was synthesized and then mixed with a polymersome-forming block copolymer. The resulting nanomimics bound parasite-derived ligands involved in the initial attachment to host cells and they efficiently blocked reinvasion of malaria parasites after their egress from host cells in vitro. They exhibited efficacies of more than 2 orders of magnitude higher than the soluble form of the receptor, which can be explained by multivalent interactions of several receptors on one nanomimic with multiple ligands on the infective parasite. In the future, our strategy might offer interesting treatment options for severe malaria or a way to modulate the immune response.

  17. Enhanced transmission of drug-resistant parasites to mosquitoes following drug treatment in rodent malaria.

    PubMed

    Bell, Andrew S; Huijben, Silvie; Paaijmans, Krijn P; Sim, Derek G; Chan, Brian H K; Nelson, William A; Read, Andrew F

    2012-01-01

    The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasmodium chabaudi, co-infection with drug-sensitive parasites can prevent the transmission of initially rare resistant parasites to mosquitoes. Removal of drug-sensitive parasites following chemotherapy enabled resistant parasites to transmit to mosquitoes as successfully as sensitive parasites in the absence of treatment. We also show that the genetic composition of gametocyte populations in host venous blood accurately reflects the genetic composition of gametocytes taken up by mosquitoes. Our data demonstrate that, at least for this mouse model, aggressive chemotherapy leads to very effective transmission of highly resistant parasites that are present in an infection, the very parasites which undermine the long term efficacy of front-line drugs.

  18. Plasmodium falciparum: food vacuole localization of nitric oxide-derived species in intraerythrocytic stages of the malaria parasite

    PubMed Central

    Ostera, Graciela; Tokumasu, Fuyuki; Oliveira, Fabiano; Sa, Juliana; Furuya, Tetsuya; Teixeira, Clarissa; Dvorak, James

    2008-01-01

    Nitric oxide (NO) has diverse biological functions. Numerous studies have documented NO’s biosynthetic pathway in a wide variety of organisms. Little is known, however, about NO production in intraerythrocytic Plasmodium falciparum. Using diaminorhodamine-4-methyl acetoxymethylester (DAR-4M AM), a fluorescent indicator, we obtained direct evidence of NO and NO-derived reactive nitrogen species (RNS) production in intraerythrocytic P. falciparum parasites, as well as in isolated food vacuoles from trophozoite stage parasites. We preliminarily identified two gene sequences that might be implicated in NO synthesis in intraerythrocytic P. falciparum. We showed localization of the protein product of one of these two genes, a molecule that is structurally similar to a plant nitrate reductase, in trophozoite food vacuole membranes. We confirmed previous reports on the antiproliferative effect of NOS (nitric oxide synthase) inhibitors in P.falciparum cultures; however, we did not obtain evidence that NOS inhibitors had the ability to inhibit RNS production or that there is an active NOS in mature forms of the parasite. We concluded that a nitrate reductase activity produce NO and NO-derived RNS in or around the food vacuole in P. falciparum parasites. The food vacuole is a critical parasitic compartment involved in hemoglobin degradation, heme detoxification and a target for antimalarial drug action. Characterization of this relatively unexplored synthetic activity could provide important clues into poorly understood metabolic processes of the malaria parasite, PMID:18504040

  19. Intestinal parasites coinfection does not alter plasma cytokines profile elicited in acute malaria in subjects from endemic area of Brazil.

    PubMed

    Sánchez-Arcila, Juan Camilo; Perce-da-Silva, Daiana de Souza; Vasconcelos, Mariana Pinheiro Alves; Rodrigues-da-Silva, Rodrigo Nunes; Pereira, Virginia Araujo; Aprígio, Cesarino Junior Lima; Lima, Cleoni Alves Mendes; Fonseca e Fonseca, Bruna de Paula; Banic, Dalma Maria; Lima-Junior, Josué da Costa; Oliveira-Ferreira, Joseli

    2014-01-01

    In Brazil, malaria is prevalent in the Amazon region and these regions coincide with high prevalence of intestinal parasites but few studies explore the interaction between malaria and other parasites. Therefore, the present study evaluates changes in cytokine, chemokine, C-reactive protein, and nitric oxide (NO) concentrations in 264 individuals, comparing plasma from infected individuals with concurrent malaria and intestinal parasites to individuals with either malaria infection alone and uninfected. In the studied population 24% of the individuals were infected with Plasmodium and 18% coinfected with intestinal parasites. Protozoan parasites comprised the bulk of the intestinal parasites infections and subjects infected with intestinal parasites were more likely to have malaria. The use of principal component analysis and cluster analysis associated increased levels of IL-6, TNF-α, IL-10, and CRP and low levels of IL-17A predominantly with individuals with malaria alone and coinfected individuals. In contrast, low levels of almost all inflammatory mediators were associated predominantly with individuals uninfected while increased levels of IL-17A were associated predominantly with individuals with intestinal parasites only. In conclusion, our data suggest that, in our population, the infection with intestinal parasites (mainly protozoan) does not modify the pattern of cytokine production in individuals infected with P. falciparum and P. vivax.

  20. Intestinal Parasites Coinfection Does Not Alter Plasma Cytokines Profile Elicited in Acute Malaria in Subjects from Endemic Area of Brazil

    PubMed Central

    Perce-da-Silva, Daiana de Souza; Lima-Junior, Josué da Costa

    2014-01-01

    In Brazil, malaria is prevalent in the Amazon region and these regions coincide with high prevalence of intestinal parasites but few studies explore the interaction between malaria and other parasites. Therefore, the present study evaluates changes in cytokine, chemokine, C-reactive protein, and nitric oxide (NO) concentrations in 264 individuals, comparing plasma from infected individuals with concurrent malaria and intestinal parasites to individuals with either malaria infection alone and uninfected. In the studied population 24% of the individuals were infected with Plasmodium and 18% coinfected with intestinal parasites. Protozoan parasites comprised the bulk of the intestinal parasites infections and subjects infected with intestinal parasites were more likely to have malaria. The use of principal component analysis and cluster analysis associated increased levels of IL-6, TNF-α, IL-10, and CRP and low levels of IL-17A predominantly with individuals with malaria alone and coinfected individuals. In contrast, low levels of almost all inflammatory mediators were associated predominantly with individuals uninfected while increased levels of IL-17A were associated predominantly with individuals with intestinal parasites only. In conclusion, our data suggest that, in our population, the infection with intestinal parasites (mainly protozoan) does not modify the pattern of cytokine production in individuals infected with P. falciparum and P. vivax. PMID:25309052

  1. Polymerase chain reaction detection of human host preference and Plasmodium parasite infections in field collected potential malaria vectors.

    PubMed

    Dhiman, Sunil; Bhola, Rakesh Kumar; Goswami, Diganta; Rabha, Bipul; Kumar, Dinesh; Baruah, Indra; Singh, Lokendra

    2012-07-01

    This study was carried out to determine the human host preference and presence of Plasmodium parasite in field collected Anopheles mosquitoes among four villages around a military cantonment located in malaria endemic Sonitpur district of Assam, India. Encountered malaria vector mosquitoes were identified and tested for host preference and Plasmodium presence using PCR method. Human host preference was detected using simple PCR, whereas vectorial status for Plasmodium parasite was confirmed using first round PCR with genus specific primers and thereafter nested PCR with three Plasmodium species specific primers. Out of 1874 blood fed vector mosquitoes collected, 187 (10%) were processed for PCR, which revealed that 40·6% had fed on human blood; 9·2% of human blood fed mosquito were harbouring Plasmodium parasites, 71·4% of which were confirmed to Plasmodium falciparum. In addition to An. minimus, An. annularis and An. culicifacies were also found positive for malaria parasites. The present study exhibits the human feeding tendency of Anopheles vectors highlighting their malaria parasite transmission potential. The present study may serve as a model for understanding the human host preference of malaria vectors and detection of malaria parasite inside the anopheline vector mosquitoes in order to update their vectorial status for estimating the possible role of these mosquitoes in malaria transmission. The study has used PCR method and suggests that PCR-based method should be used in this entire malarious region to correctly report the vectorial position of different malaria vectors.

  2. Hidden in plain sight: Cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus).

    PubMed

    Martinsen, Ellen S; McInerney, Nancy; Brightman, Heidi; Ferebee, Ken; Walsh, Tim; McShea, William J; Forrester, Tavis D; Ware, Lisa; Joyner, Priscilla H; Perkins, Susan L; Latch, Emily K; Yabsley, Michael J; Schall, Joseph J; Fleischer, Robert C

    2016-02-01

    Malaria parasites of the genus Plasmodium are diverse in mammal hosts, infecting five mammalian orders in the Old World, but were long considered absent from the diverse deer family (Cervidae) and from New World mammals. There was a description of a Plasmodium parasite infecting a single splenectomized white-tailed deer (WTD; Odocoileus virginianus) in 1967 but none have been reported since, which has proven a challenge to our understanding of malaria parasite biogeography. Using both microscopy and polymerase chain reaction, we screened a large sample of native and captive ungulate species from across the United States for malaria parasites. We found a surprisingly high prevalence (up to 25%) and extremely low parasitemia of Plasmodium parasites in WTD throughout the eastern United States. We did not detect infections in the other ungulate species nor in western WTD. We also isolated the parasites from the mosquito Anopheles punctipennis. Morphologically, the parasites resemble the parasite described in 1967, Plasmodium odocoilei. Our analysis of the cytochrome b gene revealed two divergent Plasmodium clades in WTD representative of species that likely diverged 2.3 to 6 million years ago, concurrent with the arrival of the WTD ancestor into North America across Beringia. Multigene phylogenetic analysis placed these clades within the larger malaria parasite clade. We document Plasmodium parasites to be common in WTD, endemic to the New World, and as the only known malaria parasites from deer (Cervidae). These findings reshape our knowledge of the phylogeography of the malaria parasites and suggest that other mammal taxa may harbor infection by endemic and occult malaria parasites.

  3. Hidden in plain sight: Cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus)

    PubMed Central

    Martinsen, Ellen S.; McInerney, Nancy; Brightman, Heidi; Ferebee, Ken; Walsh, Tim; McShea, William J.; Forrester, Tavis D.; Ware, Lisa; Joyner, Priscilla H.; Perkins, Susan L.; Latch, Emily K.; Yabsley, Michael J.; Schall, Joseph J.; Fleischer, Robert C.

    2016-01-01

    Malaria parasites of the genus Plasmodium are diverse in mammal hosts, infecting five mammalian orders in the Old World, but were long considered absent from the diverse deer family (Cervidae) and from New World mammals. There was a description of a Plasmodium parasite infecting a single splenectomized white-tailed deer (WTD; Odocoileus virginianus) in 1967 but none have been reported since, which has proven a challenge to our understanding of malaria parasite biogeography. Using both microscopy and polymerase chain reaction, we screened a large sample of native and captive ungulate species from across the United States for malaria parasites. We found a surprisingly high prevalence (up to 25%) and extremely low parasitemia of Plasmodium parasites in WTD throughout the eastern United States. We did not detect infections in the other ungulate species nor in western WTD. We also isolated the parasites from the mosquito Anopheles punctipennis. Morphologically, the parasites resemble the parasite described in 1967, Plasmodium odocoilei. Our analysis of the cytochrome b gene revealed two divergent Plasmodium clades in WTD representative of species that likely diverged 2.3 to 6 million years ago, concurrent with the arrival of the WTD ancestor into North America across Beringia. Multigene phylogenetic analysis placed these clades within the larger malaria parasite clade. We document Plasmodium parasites to be common in WTD, endemic to the New World, and as the only known malaria parasites from deer (Cervidae). These findings reshape our knowledge of the phylogeography of the malaria parasites and suggest that other mammal taxa may harbor infection by endemic and occult malaria parasites. PMID:26989785

  4. Parasite-host interaction in malaria: genetic clues and copy number variation

    PubMed Central

    2009-01-01

    In humans, infections contribute highly to mortality and morbidity rates worldwide. Malaria tropica is one of the major infectious diseases globally and is caused by the protozoan parasite Plasmodium falciparum. Plasmodia have accompanied human beings since the emergence of humankind. Due to its pathogenicity, malaria is a powerful selective force on the human genome. Genetic epidemiology approaches such as family and twin studies, candidate gene studies, and disease-association studies have identified a number of genes that mediate relative protection against the severest forms of the disease. New molecular approaches, including genome-wide association studies, have recently been performed to expand our knowledge on the functional effect of human variation in malaria. For the future, a systematic determination of gene-dosage effects and expression profiles of protective genes might unveil the functional impact of structural alterations in these genes on either side of the host-parasite interaction. PMID:19725943

  5. DNA from pre-erythrocytic stage malaria parasites is detectable by PCR in the faeces and blood of hosts.

    PubMed

    Abkallo, Hussein M; Liu, Weimin; Hokama, Sarina; Ferreira, Pedro E; Nakazawa, Shusuke; Maeno, Yoshimasa; Quang, Nguyen T; Kobayashi, Nobuyuki; Kaneko, Osamu; Huffman, Michael A; Kawai, Satoru; Marchand, Ron P; Carter, Richard; Hahn, Beatrice H; Culleton, Richard

    2014-06-01

    Following the bite of an infective mosquito, malaria parasites first invade the liver where they develop and replicate for a number of days before being released into the bloodstream where they invade red blood cells and cause disease. The biology of the liver stages of malaria parasites is relatively poorly understood due to the inaccessibility of the parasites to sampling during this phase of their life cycle. Here we report the detection in blood and faecal samples of malaria parasite DNA throughout their development in the livers of mice and before the parasites begin their growth in the blood circulation. It is shown that parasite DNA derived from pre-erythrocytic stage parasites reaches the faeces via the bile. We then show that different primate malaria species can be detected by PCR in blood and faecal samples from naturally infected captive macaque monkeys. These results demonstrate that pre-erythrocytic parasites can be detected and quantified in experimentally infected animals. Furthermore, these results have important implications for both molecular epidemiology and phylogenetics of malaria parasites. In the former case, individuals who are malaria parasite negative by microscopy, but PCR positive for parasite DNA in their blood, are considered to be "sub-microscopic" blood stage parasite carriers. We now propose that PCR positivity is not necessarily an indicator of the presence of blood stage parasites, as the DNA could derive from pre-erythrocytic parasites. Similarly, in the case of molecular phylogenetics based on DNA sequences alone, we argue that DNA amplified from blood or faeces does not necessarily come from a parasite species that infects the red blood cells of that particular host.

  6. Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite.

    PubMed

    Zhang, Yao; Huang, Changjin; Kim, Sangtae; Golkaram, Mahdi; Dixon, Matthew W A; Tilley, Leann; Li, Ju; Zhang, Sulin; Suresh, Subra

    2015-05-12

    During its asexual development within the red blood cell (RBC), Plasmodium falciparum (Pf), the most virulent human malaria parasite, exports proteins that modify the host RBC membrane. The attendant increase in cell stiffness and cytoadherence leads to sequestration of infected RBCs in microvasculature, which enables the parasite to evade the spleen, and leads to organ dysfunction in severe cases of malaria. Despite progress in understanding malaria pathogenesis, the molecular mechanisms responsible for the dramatic loss of deformability of Pf-infected RBCs have remained elusive. By recourse to a coarse-grained (CG) model that captures the molecular structures of Pf-infected RBC membrane, here we show that nanoscale surface protrusions, known as "knobs," introduce multiple stiffening mechanisms through composite strengthening, strain hardening, and knob density-dependent vertical coupling. On one hand, the knobs act as structural strengtheners for the spectrin network; on the other, the presence of knobs results in strain inhomogeneity in the spectrin network with elevated shear strain in the knob-free regions, which, given its strain-hardening property, effectively stiffens the network. From the trophozoite to the schizont stage that ensues within 24-48 h of parasite invasion into the RBC, the rise in the knob density results in the increased number of vertical constraints between the spectrin network and the lipid bilayer, which further stiffens the membrane. The shear moduli of Pf-infected RBCs predicted by the CG model at different stages of parasite maturation are in agreement with experimental results. In addition to providing a fundamental understanding of the stiffening mechanisms of Pf-infected RBCs, our simulation results suggest potential targets for antimalarial therapies.

  7. Defining the protein interaction network of human malaria parasite Plasmodium falciparum.

    PubMed

    Ramaprasad, Abhinay; Pain, Arnab; Ravasi, Timothy

    2012-02-01

    Malaria, caused by the protozoan parasite Plasmodium falciparum, affects around 225 million people yearly and a huge international effort is directed towards combating this grave threat to world health and economic development. Considerable advances have been made in malaria research triggered by the sequencing of its genome in 2002, followed by several high-throughput studies defining the malaria transcriptome and proteome. A protein-protein interaction (PPI) network seeks to trace the dynamic interactions between proteins, thereby elucidating their local and global functional relationships. Experimentally derived PPI network from high-throughput methods such as yeast two hybrid (Y2H) screens are inherently noisy, but combining these independent datasets by computational methods tends to give a greater accuracy and coverage. This review aims to discuss the computational approaches used till date to construct a malaria protein interaction network and to catalog the functional predictions and biological inferences made from analysis of the PPI network.

  8. Parasite-based malaria diagnosis: Are Health Systems in Uganda equipped enough to implement the policy?

    PubMed Central

    2012-01-01

    Background Malaria case management is a key strategy for malaria control. Effective coverage of parasite-based malaria diagnosis (PMD) remains limited in malaria endemic countries. This study assessed the health system's capacity to absorb PMD at primary health care facilities in Uganda. Methods In a cross sectional survey, using multi-stage cluster sampling, lower level health facilities (LLHF) in 11 districts in Uganda were assessed for 1) tools, 2) skills, 3) staff and infrastructure, and 4) structures, systems and roles necessary for the implementing of PMD. Results Tools for PMD (microscopy and/or RDTs) were available at 30 (24%) of the 125 LLHF. All LLHF had patient registers and 15% had functional in-patient facilities. Three months’ long stock-out periods were reported for oral and parenteral quinine at 39% and 47% of LLHF respectively. Out of 131 health workers interviewed, 86 (66%) were nursing assistants; 56 (43%) had received on-job training on malaria case management and 47 (36%) had adequate knowledge in malaria case management. Overall, only 18% (131/730) Ministry of Health approved staff positions were filled by qualified personnel and 12% were recruited or transferred within six months preceding the survey. Of 186 patients that received referrals from LLHF, 130(70%) had received pre-referral anti-malarial drugs, none received pre-referral rectal artesunate and 35% had been referred due to poor response to antimalarial drugs. Conclusion Primary health care facilities had inadequate human and infrastructural capacity to effectively implement universal parasite-based malaria diagnosis. The priority capacity building needs identified were: 1) recruitment and retention of qualified staff, 2) comprehensive training of health workers in fever management, 3) malaria diagnosis quality control systems and 4) strengthening of supply chain, stock management and referral systems. PMID:22920954

  9. Parasite Polymorphism and Severe Malaria in Dakar (Senegal): A West African Urban Area

    PubMed Central

    Bob, Ndeye Sakha; Diop, Bernard Marcel; Renaud, Francois; Marrama, Laurence; Durand, Patrick; Tall, Adama; Ka, Boubacar; Ekala, Marie Therese; Bouchier, Christiane; Mercereau-Puijalon, Odile; Jambou, Ronan

    2010-01-01

    Background Transmission of malaria in West African urban areas is low and healthcare facilities are well organized. However, malaria mortality remains high. We conducted a survey in Dakar with the general objective to establish who died from severe malaria (SM) in urban areas (particularly looking at the age-groups) and to compare parasite isolates associated with mild or severe malaria. Methodology/Principal Findings The current study included mild- (MM) and severe malaria (SM) cases, treated in dispensaries (n = 2977) and hospitals (n = 104), We analysed Pfdhfr/Pfcrt-exon2 and nine microsatellite loci in 102 matched cases of SM and MM. Half of the malaria cases recorded at the dispensaries and 87% of SM cases referred to hospitals, occurred in adults, although adults only accounted for 26% of all dispensary consultations. This suggests that, in urban settings, whatever the reason for this adult over-representation, health-workers are forced to take care of increasing numbers of malaria cases among adults. Inappropriate self treatment and mutations in genes associated with drug resistance were found associated with SM in adults. SM was also associated with a specific pool of isolates highly polymorphic and different from those associated with MM. Conclusion In this urban setting, adults currently represent one of the major groups of patients attending dispensaries for malaria treatment. For these patients, despite the low level of transmission, SM was associated with a specific and highly polymorphic pool of parasites which may have been selected by inappropriate treatment. PMID:20352101

  10. Crowdsourcing Malaria Parasite Quantification: An Online Game for Analyzing Images of Infected Thick Blood Smears

    PubMed Central

    Arranz, Asier; Frean, John

    2012-01-01

    Background There are 600,000 new malaria cases daily worldwide. The gold standard for estimating the parasite burden and the corresponding severity of the disease consists in manually counting the number of parasites in blood smears through a microscope, a process that can take more than 20 minutes of an expert microscopist’s time. Objective This research tests the feasibility of a crowdsourced approach to malaria image analysis. In particular, we investigated whether anonymous volunteers with no prior experience would be able to count malaria parasites in digitized images of thick blood smears by playing a Web-based game. Methods The experimental system consisted of a Web-based game where online volunteers were tasked with detecting parasites in digitized blood sample images coupled with a decision algorithm that combined the analyses from several players to produce an improved collective detection outcome. Data were collected through the MalariaSpot website. Random images of thick blood films containing Plasmodium falciparum at medium to low parasitemias, acquired by conventional optical microscopy, were presented to players. In the game, players had to find and tag as many parasites as possible in 1 minute. In the event that players found all the parasites present in the image, they were presented with a new image. In order to combine the choices of different players into a single crowd decision, we implemented an image processing pipeline and a quorum algorithm that judged a parasite tagged when a group of players agreed on its position. Results Over 1 month, anonymous players from 95 countries played more than 12,000 games and generated a database of more than 270,000 clicks on the test images. Results revealed that combining 22 games from nonexpert players achieved a parasite counting accuracy higher than 99%. This performance could be obtained also by combining 13 games from players trained for 1 minute. Exhaustive computations measured the parasite

  11. Monitoring parasite diversity for malaria elimination in sub-Saharan Africa.

    PubMed

    Ghansah, Anita; Amenga-Etego, Lucas; Amambua-Ngwa, Alfred; Andagalu, Ben; Apinjoh, Tobias; Bouyou-Akotet, Marielle; Cornelius, Victoria; Golassa, Lemu; Andrianaranjaka, Voahangy Hanitriniaina; Ishengoma, Deus; Johnson, Kimberly; Kamau, Edwin; Maïga-Ascofaré, Oumou; Mumba, Dieudonne; Tindana, Paulina; Tshefu-Kitoto, Antoinette; Randrianarivelojosia, Milijaona; William, Yavo; Kwiatkowski, Dominic P; Djimde, Abdoulaye A

    2014-09-12

    The African continent continues to bear the greatest burden of malaria and the greatest diversity of parasites, mosquito vectors, and human victims. The evolutionary plasticity of malaria parasites and their vectors is a major obstacle to eliminating the disease. Of current concern is the recently reported emergence of resistance to the front-line drug, artemisinin, in South-East Asia in Plasmodium falciparum, which calls for preemptive surveillance of the African parasite population for genetic markers of emerging drug resistance. Here we describe the Plasmodium Diversity Network Africa (PDNA), which has been established across 11 countries in sub-Saharan Africa to ensure that African scientists are enabled to work together and to play a key role in the global effort for tracking and responding to this public health threat.

  12. Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance.

    PubMed

    Mok, Sachel; Ashley, Elizabeth A; Ferreira, Pedro E; Zhu, Lei; Lin, Zhaoting; Yeo, Tomas; Chotivanich, Kesinee; Imwong, Mallika; Pukrittayakamee, Sasithon; Dhorda, Mehul; Nguon, Chea; Lim, Pharath; Amaratunga, Chanaki; Suon, Seila; Hien, Tran Tinh; Htut, Ye; Faiz, M Abul; Onyamboko, Marie A; Mayxay, Mayfong; Newton, Paul N; Tripura, Rupam; Woodrow, Charles J; Miotto, Olivo; Kwiatkowski, Dominic P; Nosten, François; Day, Nicholas P J; Preiser, Peter R; White, Nicholas J; Dondorp, Arjen M; Fairhurst, Rick M; Bozdech, Zbynek

    2015-01-23

    Artemisinin resistance in Plasmodium falciparum threatens global efforts to control and eliminate malaria. Polymorphisms in the kelch domain-carrying protein K13 are associated with artemisinin resistance, but the underlying molecular mechanisms are unknown. We analyzed the in vivo transcriptomes of 1043 P. falciparum isolates from patients with acute malaria and found that artemisinin resistance is associated with increased expression of unfolded protein response (UPR) pathways involving the major PROSC and TRiC chaperone complexes. Artemisinin-resistant parasites also exhibit decelerated progression through the first part of the asexual intraerythrocytic development cycle. These findings suggest that artemisinin-resistant parasites remain in a state of decelerated development at the young ring stage, whereas their up-regulated UPR pathways mitigate protein damage caused by artemisinin. The expression profiles of UPR-related genes also associate with the geographical origin of parasite isolates, further suggesting their role in emerging artemisinin resistance in the Greater Mekong Subregion.

  13. Transgenic Expression of the Anti-parasitic Factor TEP1 in the Malaria Mosquito Anopheles gambiae

    PubMed Central

    Hopp, Ann-Katrin; Saenger, Mélanie; Soichot, Julien; Scholze, Heidi; Boch, Jens; Blandin, Stéphanie A.; Marois, Eric

    2017-01-01

    Mosquitoes genetically engineered to be resistant to Plasmodium parasites represent a promising novel approach in the fight against malaria. The insect immune system itself is a source of anti-parasitic genes potentially exploitable for transgenic designs. The Anopheles gambiae thioester containing protein 1 (TEP1) is a potent anti-parasitic protein. TEP1 is secreted and circulates in the mosquito hemolymph, where its activated cleaved form binds and eliminates malaria parasites. Here we investigated whether TEP1 can be used to create malaria resistant mosquitoes. Using a GFP reporter transgene, we determined that the fat body is the main site of TEP1 expression. We generated transgenic mosquitoes that express TEP1r, a potent refractory allele of TEP1, in the fat body and examined the activity of the transgenic protein in wild-type or TEP1 mutant genetic backgrounds. Transgenic TEP1r rescued loss-of-function mutations, but did not increase parasite resistance in the presence of a wild-type susceptible allele. Consistent with previous reports, TEP1 protein expressed from the transgene in the fat body was taken up by hemocytes upon a challenge with injected bacteria. Furthermore, although maturation of transgenic TEP1 into the cleaved form was impaired in one of the TEP1 mutant lines, it was still sufficient to reduce parasite numbers and induce parasite melanization. We also report here the first use of Transcription Activator Like Effectors (TALEs) in Anopheles gambiae to stimulate expression of endogenous TEP1. We found that artificial elevation of TEP1 expression remains moderate in vivo and that enhancement of endogenous TEP1 expression did not result in increased resistance to Plasmodium. Taken together, our results reveal the difficulty of artificially influencing TEP1-mediated Plasmodium resistance, and contribute to further our understanding of the molecular mechanisms underlying mosquito resistance to Plasmodium parasites. PMID:28095489

  14. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    PubMed Central

    2012-01-01

    Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR). Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically accessible desiccant will likely

  15. Submicroscopic malaria parasite carriage: how reproducible are polymerase chain reaction-based methods?

    PubMed

    Costa, Daniela Camargos; Madureira, Ana Paula; Amaral, Lara Cotta; Sanchez, Bruno Antônio Marinho; Gomes, Luciano Teixeira; Fontes, Cor Jésus Fernandes; Limongi, Jean Ezequiel; Brito, Cristiana Ferreira Alves de; Carvalho, Luzia Helena

    2014-02-01

    The polymerase chain reaction (PCR)-based methods for the diagnosis of malaria infection are expected to accurately identify submicroscopic parasite carriers. Although a significant number of PCR protocols have been described, few studies have addressed the performance of PCR amplification in cases of field samples with submicroscopic malaria infection. Here, the reproducibility of two well-established PCR protocols (nested-PCR and real-time PCR for the Plasmodium 18 small subunit rRNA gene) were evaluated in a panel of 34 blood field samples from individuals that are potential reservoirs of malaria infection, but were negative for malaria by optical microscopy. Regardless of the PCR protocol, a large variation between the PCR replicates was observed, leading to alternating positive and negative results in 38% (13 out of 34) of the samples. These findings were quite different from those obtained from the microscopy-positive patients or the unexposed individuals; the diagnosis of these individuals could be confirmed based on the high reproducibility and specificity of the PCR-based protocols. The limitation of PCR amplification was restricted to the field samples with very low levels of parasitaemia because titrations of the DNA templates were able to detect < 3 parasites/µL in the blood. In conclusion, conventional PCR protocols require careful interpretation in cases of submicroscopic malaria infection, as inconsistent and false-negative results can occur.

  16. EVALUATION OF AROMATIC 6-SUBSTITUTED THIENOPYRIMIDINES AS SCAFFOLDS AGAINST PARASITES THAT CAUSE TRYPANOSOMIASIS, LEISHMANIASIS, AND MALARIA

    PubMed Central

    Woodring, Jennifer L.; Patel, Gautam; Erath, Jessey; Behera, Ranjan; Lee, Patricia J.; Leed, Susan E.; Rodriguez, Ana; Sciotti, Richard J.; Mensa-Wilmot, Kojo; Pollastri, Michael P.

    2014-01-01

    Target repurposing is a proven method for finding new lead compounds that target Trypanosoma brucei, the causative agent of human African trypanosomiasis. Due to the recent discovery of a lapatinib-derived analog 2 with excellent potency against T. brucei (EC50 = 42 nM) and selectivity over human host cells, we have explored other classes of human tyrosine kinase inhibitor scaffolds in order to expand the range of chemotypes for pursuit. Following library expansion, we found compound 11e to have an EC50 of 84 nM against T. brucei cells while maintaining selectivity over human hepatocytes. In addition, the library was tested against causative agents of Chagas’ disease, leishmaniasis, and malaria. Two analogs with sub-micromolar potencies for T. cruzi (4j) and Plasmodium falciparum (11j) were discovered, along with an analog with considerable potency against Leishmania major amastigotes (4e). Besides identifying new and potent protozoan growth inhibitors, these data highlight the value of concurrent screening of a chemical library against different protozoan parasites. PMID:25685309

  17. M17 leucine aminopeptidase of the human malaria parasite Plasmodium vivax.

    PubMed

    Lee, Jung-Yub; Song, Su-Min; Seok, Ji-Woong; Jha, Bijay Kumar; Han, Eun-Taek; Song, Hyun-Ouk; Yu, Hak-Sun; Hong, Yeonchul; Kong, Hyun-Hee; Chung, Dong-Il

    2010-03-01

    Amino acids derived from hemoglobin are essential to protein synthesis required for growth and development of the Plasmodium vivax malaria parasite. M17 leucine aminopeptidase (LAP) is a cytosolic metallo-exopeptidase that catalyzes the removal of amino acids from the peptide generated in the process of hemoglobin degradation. Inhibitors of the enzyme have shown promise as drugs against Plasmodium infections, implicating aminopeptidases as a novel potential anti-malarial chemotherapy target. In this study, we isolated a cDNA encoding a 68kDa P. vivax LAP (PvLAP). Deduced amino acid sequence of PvLAP exhibited significant sequence homology with LAP from Plasmodium falciparum. Biochemical analysis of the recombinant PvLAP protein produced in Escherichia coli demonstrated preferential substrate specificity for the fluorogenic peptide Leu-7-amido-4-methylcoumarin hydroxide and inhibition by EDTA, 1,10-phenanthroline, and bestatin, which are conserved characteristics of the M17 family of LAP. PvLAP was optimally active at slightly alkaline pH and its activity was dependent on divalent metal ions. Based on the biochemical properties and immunofluorescence localization, PvLAP is concluded to represent a LAP in P. vivax. The enzyme is most likely responsible for the catabolism of host hemoglobin and, hence, represents a potential target of both P. falciparum and P. vivax chemotherapy.

  18. Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution.

    PubMed

    Rutledge, Gavin G; Böhme, Ulrike; Sanders, Mandy; Reid, Adam J; Cotton, James A; Maiga-Ascofare, Oumou; Djimdé, Abdoulaye A; Apinjoh, Tobias O; Amenga-Etego, Lucas; Manske, Magnus; Barnwell, John W; Renaud, François; Ollomo, Benjamin; Prugnolle, Franck; Anstey, Nicholas M; Auburn, Sarah; Price, Ric N; McCarthy, James S; Kwiatkowski, Dominic P; Newbold, Chris I; Berriman, Matthew; Otto, Thomas D

    2017-02-02

    Elucidation of the evolutionary history and interrelatedness of Plasmodium species that infect humans has been hampered by a lack of genetic information for three human-infective species: P. malariae and two P. ovale species (P. o. curtisi and P. o. wallikeri). These species are prevalent across most regions in which malaria is endemic and are often undetectable by light microscopy, rendering their study in human populations difficult. The exact evolutionary relationship of these species to the other human-infective species has been contested. Using a new reference genome for P. malariae and a manually curated draft P. o. curtisi genome, we are now able to accurately place these species within the Plasmodium phylogeny. Sequencing of a P. malariae relative that infects chimpanzees reveals similar signatures of selection in the P. malariae lineage to another Plasmodium lineage shown to be capable of colonization of both human and chimpanzee hosts. Molecular dating suggests that these host adaptations occurred over similar evolutionary timescales. In addition to the core genome that is conserved between species, differences in gene content can be linked to their specific biology. The genome suggests that P. malariae expresses a family of heterodimeric proteins on its surface that have structural similarities to a protein crucial for invasion of red blood cells. The data presented here provide insight into the evolution of the Plasmodium genus as a whole.

  19. Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution

    PubMed Central

    Rutledge, Gavin G.; Böhme, Ulrike; Sanders, Mandy; Reid, Adam J.; Cotton, James A.; Maiga-Ascofare, Oumou; Djimdé, Abdoulaye A.; Apinjoh, Tobias O.; Amenga-Etego, Lucas; Manske, Magnus; Barnwell, John W.; Renaud, François; Ollomo, Benjamin; Prugnolle, Franck; Anstey, Nicholas M.; Auburn, Sarah; Price, Ric N.; McCarthy, James S.; Kwiatkowski, Dominic P.; Newbold, Chris I.; Berriman, Matthew; Otto, Thomas D.

    2017-01-01

    Elucidation of the evolutionary history and interrelatedness of Plasmodium species that infect humans has been hampered by a lack of genetic information for three human-infective species: P. malariae and two P. ovale species (P. o. curtisi and P. o. wallikeri)1. These species are prevalent across most regions in which malaria is endemic2,3 and are often undetectable by light microscopy4, rendering their study in human populations difficult5. The exact evolutionary relationship of these species to the other human-infective species has been contested6,7. Using a new reference genome for P. malariae and a manually curated draft P. o. curtisi genome, we are now able to accurately place these species within the Plasmodium phylogeny. Sequencing of a P. malariae relative that infects chimpanzees reveals similar signatures of selection in the P. malariae lineage to another Plasmodium lineage shown to be capable of colonization of both human and chimpanzee hosts. Molecular dating suggests that these host adaptations occurred over similar evolutionary timescales. In addition to the core genome that is conserved between species, differences in gene content can be linked to their specific biology. The genome suggests that P. malariae expresses a family of heterodimeric proteins on its surface that have structural similarities to a protein crucial for invasion of red blood cells. The data presented here provide insight into the evolution of the Plasmodium genus as a whole. PMID:28117441

  20. Maduramicin Rapidly Eliminates Malaria Parasites and Potentiates the Gametocytocidal Activity of the Pyrazoleamide PA21A050

    PubMed Central

    Maron, Maxim I.; Magle, Crystal T.; Czesny, Beata; Turturice, Benjamin A.; Huang, Ruili; Zheng, Wei; Vaidya, Akhil B.

    2015-01-01

    New strategies targeting Plasmodium falciparum gametocytes, the sexual-stage parasites that are responsible for malaria transmission, are needed to eradicate this disease. Most commonly used antimalarials are ineffective against P. falciparum gametocytes, allowing patients to continue to be infectious for over a week after asexual parasite clearance. A recent screen for gametocytocidal compounds demonstrated that the carboxylic polyether ionophore maduramicin is active at low nanomolar concentrations against P. falciparum sexual stages. In this study, we showed that maduramicin has an EC50 (effective concentration that inhibits the signal by 50%) of 14.8 nM against late-stage gametocytes and significantly blocks in vivo transmission in a mouse model of malaria transmission. In contrast to other reported gametocytocidal agents, maduramicin acts rapidly in vitro, eliminating gametocytes and asexual schizonts in less than 12 h without affecting uninfected red blood cells (RBCs). Ring stage parasites are cleared by 24 h. Within an hour of drug treatment, 40% of the normally crescent-shaped gametocytes round up and become spherical. The number of round gametocytes increases to >60% by 2 h, even before a change in membrane potential as monitored by MitoProbe DiIC1 (5) is detectable. Maduramicin is not preferentially taken up by gametocyte-infected RBCs compared to uninfected RBCs, suggesting that gametocytes are more sensitive to alterations in cation concentration than RBCs. Moreover, the addition of 15.6 nM maduramicin enhanced the gametocytocidal activity of the pyrazoleamide PA21A050, which is a promising new antimalarial candidate associated with an increase in intracellular Na+ concentration that is proposed to be due to inhibition of PfATP4, a putative Na+ pump. These results underscore the importance of cation homeostasis in sexual as well as asexual intraerythrocytic-stage P. falciparum parasites and the potential of targeting this pathway for drug development

  1. Distinct malaria parasite sporozoites reveal transcriptional changes that cause differential tissue infection competence in the mosquito vector and mammalian host.

    PubMed

    Mikolajczak, Sebastian A; Silva-Rivera, Hilda; Peng, Xinxia; Tarun, Alice S; Camargo, Nelly; Jacobs-Lorena, Vanessa; Daly, Thomas M; Bergman, Lawrence W; de la Vega, Patricia; Williams, Jack; Aly, Ahmed S I; Kappe, Stefan H I

    2008-10-01

    The malaria parasite sporozoite transmission stage develops and differentiates within parasite oocysts on the Anopheles mosquito midgut. Successful inoculation of the parasite into a mammalian host is critically dependent on the sporozoite's ability to first infect the mosquito salivary glands. Remarkable changes in tissue infection competence are observed as the sporozoites transit from the midgut oocysts to the salivary glands. Our microarray analysis shows that compared to oocyst sporozoites, salivary gland sporozoites upregulate expression of at least 124 unique genes. Conversely, oocyst sporozoites show upregulation of at least 47 genes (upregulated in oocyst sporozoites [UOS genes]) before they infect the salivary glands. Targeted gene deletion of UOS3, encoding a putative transmembrane protein with a thrombospondin repeat that localizes to the sporozoite secretory organelles, rendered oocyst sporozoites unable to infect the mosquito salivary glands but maintained the parasites' liver infection competence. This phenotype demonstrates the significance of differential UOS expression. Thus, the UIS-UOS gene classification provides a framework to elucidate the infectivity and transmission success of Plasmodium sporozoites on a whole-genome scale. Genes identified herein might represent targets for vector-based transmission blocking strategies (UOS genes), as well as strategies that prevent mammalian host infection (UIS genes).

  2. Chemotherapy, within-host ecology and the fitness of drug-resistant malaria parasites.

    PubMed

    Huijben, Silvie; Nelson, William A; Wargo, Andrew R; Sim, Derek G; Drew, Damien R; Read, Andrew F

    2010-10-01

    A major determinant of the rate at which drug-resistant malaria parasites spread through a population is the ecology of resistant and sensitive parasites sharing the same host. Drug treatment can significantly alter this ecology by removing the drug-sensitive parasites, leading to competitive release of resistant parasites. Here, we test the hypothesis that the spread of resistance can be slowed by reducing drug treatment and hence restricting competitive release. Using the rodent malaria model Plasmodium chabaudi, we found that low-dose chemotherapy did reduce competitive release. A higher drug dose regimen exerted stronger positive selection on resistant parasites for no detectable clinical gain. We estimated instantaneous selection coefficients throughout the course of replicate infections to analyze the temporal pattern of the strength and direction of within-host selection. The strength of selection on resistance varied through the course of infections, even in untreated infections, but increased immediately following drug treatment, particularly in the high-dose groups. Resistance remained under positive selection for much longer than expected from the half life of the drug. Although there are many differences between mice and people, our data do raise the question whether the aggressive treatment regimens aimed at complete parasite clearance are the best resistance-management strategies for humans.

  3. H2O2 dynamics in the malaria parasite Plasmodium falciparum

    PubMed Central

    Rahbari, Mahsa; Bogeski, Ivan

    2017-01-01

    Hydrogen peroxide is an important antimicrobial agent but is also crucially involved in redox signaling and pathogen-host cell interactions. As a basis for systematically investigating intracellular H2O2 dynamics and regulation in living malaria parasites, we established the genetically encoded fluorescent H2O2 sensors roGFP2-Orp1 and HyPer-3 in Plasmodium falciparum. Both ratiometric redox probes as well as the pH control SypHer were expressed in the cytosol of blood-stage parasites. Both redox sensors showed reproducible sensitivity towards H2O2 in the lower micromolar range in vitro and in the parasites. Due to the pH sensitivity of HyPer-3, we used parasites expressing roGFP2-Orp1 for evaluation of short-, medium-, and long-term effects of antimalarial drugs on H2O2 levels and detoxification in Plasmodium. None of the quinolines or artemisinins tested had detectable direct effects on the H2O2 homeostasis at pharmacologically relevant concentrations. However, pre-treatment of the cells with antimalarial drugs or heat shock led to a higher tolerance towards exogenous H2O2. The systematic evaluation and comparison of the two genetically encoded cytosolic H2O2 probes in malaria parasites provides a basis for studying parasite-host cell interactions or drug effects with spatio-temporal resolution while preserving cell integrity. PMID:28369083

  4. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa.

    PubMed

    Schaer, Juliane; Perkins, Susan L; Decher, Jan; Leendertz, Fabian H; Fahr, Jakob; Weber, Natalie; Matuschewski, Kai

    2013-10-22

    As the only volant mammals, bats are captivating for their high taxonomic diversity, for their vital roles in ecosystems--particularly as pollinators and insectivores--and, more recently, for their important roles in the maintenance and transmission of zoonotic viral diseases. Genome sequences have identified evidence for a striking expansion of and positive selection in gene families associated with immunity. Bats have also been known to be hosts of malaria parasites for over a century, and as hosts, they possess perhaps the most phylogenetically diverse set of hemosporidian genera and species. To provide a molecular framework for the study of these parasites, we surveyed bats in three remote areas of the Upper Guinean forest ecosystem. We detected four distinct genera of hemosporidian parasites: Plasmodium, Polychromophilus, Nycteria, and Hepatocystis. Intriguingly, the two species of Plasmodium in bats fall within the clade of rodent malaria parasites, indicative of multiple host switches across mammalian orders. We show that Nycteria species form a very distinct phylogenetic group and that Hepatocystis parasites display an unusually high diversity and prevalence in epauletted fruit bats. The diversity and high prevalence of novel lineages of chiropteran hemosporidians underscore the exceptional position of bats among all other mammalian hosts of hemosporidian parasites and support hypotheses of pathogen tolerance consistent with the exceptional immunology of bats.

  5. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa

    PubMed Central

    Schaer, Juliane; Perkins, Susan L.; Decher, Jan; Leendertz, Fabian H.; Fahr, Jakob; Weber, Natalie; Matuschewski, Kai

    2013-01-01

    As the only volant mammals, bats are captivating for their high taxonomic diversity, for their vital roles in ecosystems—particularly as pollinators and insectivores—and, more recently, for their important roles in the maintenance and transmission of zoonotic viral diseases. Genome sequences have identified evidence for a striking expansion of and positive selection in gene families associated with immunity. Bats have also been known to be hosts of malaria parasites for over a century, and as hosts, they possess perhaps the most phylogenetically diverse set of hemosporidian genera and species. To provide a molecular framework for the study of these parasites, we surveyed bats in three remote areas of the Upper Guinean forest ecosystem. We detected four distinct genera of hemosporidian parasites: Plasmodium, Polychromophilus, Nycteria, and Hepatocystis. Intriguingly, the two species of Plasmodium in bats fall within the clade of rodent malaria parasites, indicative of multiple host switches across mammalian orders. We show that Nycteria species form a very distinct phylogenetic group and that Hepatocystis parasites display an unusually high diversity and prevalence in epauletted fruit bats. The diversity and high prevalence of novel lineages of chiropteran hemosporidians underscore the exceptional position of bats among all other mammalian hosts of hemosporidian parasites and support hypotheses of pathogen tolerance consistent with the exceptional immunology of bats. PMID:24101466

  6. Malaria parasites form filamentous cell-to-cell connections during reproduction in the mosquito midgut.

    PubMed

    Rupp, Ingrid; Sologub, Ludmilla; Williamson, Kim C; Scheuermayer, Matthias; Reininger, Luc; Doerig, Christian; Eksi, Saliha; Kombila, Davy U; Frank, Matthias; Pradel, Gabriele

    2011-04-01

    Physical contact is important for the interaction between animal cells, but it can represent a major challenge for protists like malaria parasites. Recently, novel filamentous cell-cell contacts have been identified in different types of eukaryotic cells and termed nanotubes due to their morphological appearance. Nanotubes represent small dynamic membranous extensions that consist of F-actin and are considered an ancient feature evolved by eukaryotic cells to establish contact for communication. We here describe similar tubular structures in the malaria pathogen Plasmodium falciparum, which emerge from the surfaces of the forming gametes upon gametocyte activation in the mosquito midgut. The filaments can exhibit a length of > 100 μm and contain the F-actin isoform actin 2. They actively form within a few minutes after gametocyte activation and persist until the zygote transforms into the ookinete. The filaments originate from the parasite plasma membrane, are close ended and express adhesion proteins on their surfaces that are typically found in gametes, like Pfs230, Pfs48/45 or Pfs25, but not the zygote surface protein Pfs28. We show that these tubular structures represent long-distance cell-to-cell connections between sexual stage parasites and demonstrate that they meet the characteristics of nanotubes. We propose that malaria parasites utilize these adhesive "nanotubes" in order to facilitate intercellular contact between gametes during reproduction in the mosquito midgut.

  7. Mosquitoes as Potential Bridge Vectors of Malaria Parasites from Non-Human Primates to Humans

    PubMed Central

    Verhulst, Niels O.; Smallegange, Renate C.; Takken, Willem

    2012-01-01

    Malaria is caused by Plasmodium parasites which are transmitted by mosquitoes. Until recently, human malaria was considered to be caused by human-specific Plasmodium species. Studies on Plasmodium parasites in non-human primates (NHPs), however, have identified parasite species in gorillas and chimpanzees that are closely related to human Plasmodium species. Moreover, P. knowlesi, long known as a parasite of monkeys, frequently infects humans. The requirements for such a cross-species exchange and especially the role of mosquitoes in this process are discussed, as the latter may act as bridge vectors of Plasmodium species between different primates. Little is known about the mosquito species that would bite both humans and NHPs and if so, whether humans and NHPs share the same Plasmodium vectors. To understand the vector-host interactions that can lead to an increased Plasmodium transmission between species, studies are required that reveal the nature of these interactions. Studying the potential role of NHPs as a Plasmodium reservoir for humans will contribute to the ongoing efforts of human malaria elimination, and will help to focus on critical areas that should be considered in achieving this goal. PMID:22701434

  8. Interferon-mediated innate immune responses against malaria parasite liver stages.

    PubMed

    Miller, Jessica L; Sack, Brandon K; Baldwin, Michael; Vaughan, Ashley M; Kappe, Stefan H I

    2014-04-24

    Mosquito-transmitted malaria parasites infect hepatocytes and asymptomatically replicate as liver stages. Using RNA sequencing, we show that a rodent malaria liver-stage infection stimulates a robust innate immune response including type I interferon (IFN) and IFNγ pathways. Liver-stage infection is suppressed by these infection-engendered innate responses. This suppression was abrogated in mice deficient in IFNγ, the type I IFN α/β receptor (IFNAR), and interferon regulatory factor 3. Natural killer and CD49b(+)CD3(+) natural killer T (NKT) cells increased in the liver after a primary infection, and CD1d-restricted NKT cells, which secrete IFNγ, were critical in reducing liver-stage burden of a secondary infection. Lack of IFNAR signaling abrogated the increase in NKT cell numbers in the liver, showing a link between type I IFN signaling, cell recruitment, and subsequent parasite elimination. Our findings demonstrate innate immune sensing of malaria parasite liver-stage infection and that the ensuing innate responses can eliminate the parasite.

  9. Usefulness of quantitative buffy coat blood parasite detection system in diagnosis of malaria.

    PubMed

    Pinto, M J; Rodrigues, S R; Desouza, R; Verenkar, M P

    2001-01-01

    A rapid test for diagnosis of malaria based on acridine orange staining of centrifuged blood samples in a microhematocrit tube (QBC) was compared with thick and thin peripheral blood smears in 2274 samples. Malaria was diagnosed in 239 (10.5%) patients by Leishman's staining technique and QBC method. The QBC method allowed detection of an additional 89 (3.9%) cases. Thus the prevalence rate of malaria during the study was 14.4%. In 1946 patients who were negative by the QBC technique, the Leishman's stained smears did not provide any help in malaria diagnosis. Analysis of the relative quantity of parasites in the specimens, in the QBC method, revealed that 80 out of 89 QBC positive but smear negative cases, had a very low parasite number (less than 10 parasites per QBC field). Although QBC method was superior to the smear for malarial parasite detection, species identification was not possible in 26 (7.9%) cases by this technique. In 95.7% (n = 314) QBC positive cases, the buffy coat in the QBC tube appeared pigmented (gray to black). The colour of the buffy coat was therefore considered by us as a predictor of positivity and could be taken as an indicator for a careful and more prolonged search for the parasites. Thus, the QBC technique has its advantages in terms of speed, sensitivity and ease, especially in an endemic area as ours, where the level of parasitaemia is low and more than 70 to 80 smears need to be examined per day. However, the age old Romanowsky stains still appear superior for species identification.

  10. Mechanism-based model of parasite growth and dihydroartemisinin pharmacodynamics in murine malaria.

    PubMed

    Patel, Kashyap; Batty, Kevin T; Moore, Brioni R; Gibbons, Peter L; Bulitta, Jürgen B; Kirkpatrick, Carl M

    2013-01-01

    Murine models are used to study erythrocytic stages of malaria infection, because parasite morphology and development are comparable to those in human malaria infections. Mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) models for antimalarials are scarce, despite their potential to optimize antimalarial combination therapy. The aim of this study was to develop a mechanism-based growth model (MBGM) for Plasmodium berghei and then characterize the parasiticidal effect of dihydroartemisinin (DHA) in murine malaria (MBGM-PK-PD). Stage-specific (ring, early trophozoite, late trophozoite, and schizont) parasite density data from Swiss mice inoculated with Plasmodium berghei were used for model development in S-ADAPT. A single dose of intraperitoneal DHA (10 to 100 mg/kg) or vehicle was administered 56 h postinoculation. The MBGM explicitly reflected all four erythrocytic stages of the 24-hour P. berghei life cycle. Merozoite invasion of erythrocytes was described by a first-order process that declined with increasing parasitemia. An efflux pathway with subsequent return was additionally required to describe the schizont data, thus representing parasite sequestration or trapping in the microvasculature, with a return to circulation. A 1-compartment model with zero-order absorption described the PK of DHA, with an estimated clearance and distribution volume of 1.95 liters h(-1) and 0.851 liter, respectively. Parasite killing was described by a turnover model, with DHA inhibiting the production of physiological intermediates (IC(50), 1.46 ng/ml). Overall, the MBGM-PK-PD described the rise in parasitemia, the nadir following DHA dosing, and subsequent parasite resurgence. This novel model is a promising tool for studying malaria infections, identifying the stage specificity of antimalarials, and providing insight into antimalarial treatment strategies.

  11. Crystallization and preliminary X-ray analysis of the aspartic protease plasmepsin 4 from the malarial parasite Plasmodium malariae

    SciTech Connect

    Madabushi, Amrita; Chakraborty, Sibani; Fisher, S. Zoë; Clemente, José C.; Yowell, Charles; Agbandje-McKenna, Mavis; Dame, John B.; Dunn, Ben M.; McKenna, Robert

    2005-02-01

    Plasmepsin 4 from the malarial parasite P. malariae has been crystallized in complex with a small molecular inhibitor. Preliminary X-ray analysis of the diffraction data collected at 3.3 Å resolution is reported.

  12. Pathogenicity Determinants of the Human Malaria Parasite Plasmodium falciparum Have Ancient Origins

    PubMed Central

    Brazier, Andrew J.; Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell

    2017-01-01

    ABSTRACT Plasmodium falciparum, the most deadly of the human malaria parasites, is a member of the Laverania subgenus that also infects African Great Apes. The virulence of P. falciparum is related to cytoadhesion of infected erythrocytes in microvasculature, but the origin of dangerous parasite adhesion traits is poorly understood. To investigate the evolutionary history of the P. falciparum cytoadhesion pathogenicity determinant, we studied adhesion domains from the chimpanzee malaria parasite P. reichenowi. We demonstrate that the P. reichenowi var gene repertoire encodes cysteine-rich interdomain region (CIDR) domains which bind human CD36 and endothelial protein C receptor (EPCR) with the same levels of affinity and at binding sites similar to those bound by P. falciparum. Moreover, P. reichenowi domains interfere with the protective function of the activated protein C-EPCR pathway on endothelial cells, a presumptive virulence trait in humans. These findings provide evidence for ancient evolutionary origins of two key cytoadhesion properties of P. falciparum that contribute to human infection and pathogenicity. IMPORTANCE Cytoadhesion of P. falciparum-infected erythrocytes in the microcirculation is a major virulence determinant. P. falciparum is descended from a subgenus of parasites that also infect chimpanzees and gorillas and exhibits strict host species specificity. Despite their high genetic similarity to P. falciparum, it is unknown whether ape parasites encode adhesion properties similar to those of P. falciparum or are as virulent in their natural hosts. Consequently, it has been unclear when virulent adhesion traits arose in P. falciparum and how long they have been present in the parasite population. It is also unknown whether cytoadhesive interactions pose a barrier to cross-species transmission. We show that parasite domains from the chimpanzee malaria parasite P. reichenowi bind human receptors with specificity similar to that of P

  13. Malaria.

    PubMed

    Heck, J E

    1991-03-01

    Human malaria is caused by four species of the genus plasmodium. The sexual stage of the parasite occurs in the mosquito and asexual reproduction occurs in man. Symptoms of fever, chills, headache, and myalgia result from the invasion and rupture of erythrocytes. Merozoites are released from erythrocytes and invade other cells, thus propagating the infection. The most vulnerable hosts are nonimmune travelers, young children living in the tropics, and pregnant women. P. falciparum causes the most severe infections because it infects RBCs of all ages and has the propensity to develop resistance to antimalarials. Rapid diagnosis can be made with a malarial smear, and treatment should be initiated promptly. In some regions (Mexico, Central America except Panama, and North Africa) chloroquine phosphate is effective therapy. In subsaharan Africa, South America, and Southeast Asia, chloroquine resistance has become widespread, and other antimalarials are necessary. The primary care physician should have a high index of suspicion for malaria in the traveler returning from the tropics. Malaria should also be suspected in the febrile transfusion recipient and newborns of mothers with malaria.

  14. An image analysis algorithm for malaria parasite stage classification and viability quantification.

    PubMed

    Moon, Seunghyun; Lee, Sukjun; Kim, Heechang; Freitas-Junior, Lucio H; Kang, Myungjoo; Ayong, Lawrence; Hansen, Michael A E

    2013-01-01

    With more than 40% of the world's population at risk, 200-300 million infections each year, and an estimated 1.2 million deaths annually, malaria remains one of the most important public health problems of mankind today. With the propensity of malaria parasites to rapidly develop resistance to newly developed therapies, and the recent failures of artemisinin-based drugs in Southeast Asia, there is an urgent need for new antimalarial compounds with novel mechanisms of action to be developed against multidrug resistant malaria. We present here a novel image analysis algorithm for the quantitative detection and classification of Plasmodium lifecycle stages in culture as well as discriminating between viable and dead parasites in drug-treated samples. This new algorithm reliably estimates the number of red blood cells (isolated or clustered) per fluorescence image field, and accurately identifies parasitized erythrocytes on the basis of high intensity DAPI-stained parasite nuclei spots and Mitotracker-stained mitochondrial in viable parasites. We validated the performance of the algorithm by manual counting of the infected and non-infected red blood cells in multiple image fields, and the quantitative analyses of the different parasite stages (early rings, rings, trophozoites, schizonts) at various time-point post-merozoite invasion, in tightly synchronized cultures. Additionally, the developed algorithm provided parasitological effective concentration 50 (EC50) values for both chloroquine and artemisinin, that were similar to known growth inhibitory EC50 values for these compounds as determined using conventional SYBR Green I and lactate dehydrogenase-based assays.

  15. Towards genome-wide experimental genetics in the in vivo malaria model parasite Plasmodium berghei.

    PubMed

    Matz, Joachim M; Kooij, Taco W A

    2015-03-01

    Plasmodium berghei was identified as a parasite of thicket rats (Grammomys dolichurus) and Anopheles dureni mosquitoes in African highland forests. Successful adaptation to a range of rodent and mosquito species established P. berghei as a malaria model parasite. The introduction of stable transfection technology, permitted classical reverse genetics strategies and thus systematic functional profiling of the gene repertoire. In the past 10 years following the publication of the P. berghei genome sequence, many new tools for experimental genetics approaches have been developed and existing ones have been improved. The infection of mice is the principal limitation towards a genome-wide repository of mutant parasite lines. In the past few years, there have been some promising and most welcome developments that allow rapid selection and isolation of recombinant parasites while simultaneously minimising animal usage. Here, we provide an overview of all the currently available tools and methods.

  16. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts.

    PubMed

    Otto, Thomas D; Rayner, Julian C; Böhme, Ulrike; Pain, Arnab; Spottiswoode, Natasha; Sanders, Mandy; Quail, Michael; Ollomo, Benjamin; Renaud, François; Thomas, Alan W; Prugnolle, Franck; Conway, David J; Newbold, Chris; Berriman, Matthew

    2014-09-09

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host-parasite interface may have mediated host switching.

  17. Plasmodium falciparum kelch 13: a potential molecular marker for tackling artemisinin-resistant malaria parasites.

    PubMed

    Mita, Toshihiro; Tachibana, Shin-Ichiro; Hashimoto, Muneaki; Hirai, Makoto

    2016-01-01

    Although artemisinin combination therapies have been deployed as a first-line treatment for uncomplicated malaria in almost all endemic countries, artemisinin-resistant parasites have emerged and have gradually spread across the Greater Mekong subregions. There is growing concern that the resistant parasites may migrate to or emerge indigenously in sub-Saharan Africa, which might provoke a global increase in malaria-associated morbidity and mortality. Therefore, development of molecular markers that enable identification of artemisinin resistance with high sensitivity is urgently required to combat this issue. In 2014, a potential artemisinin-resistance responsible gene, Plasmodium falciparum kelch13, was discovered. Here, we review the genetic features of P. falciparum kelch13 and discuss its related resistant mechanisms and potential as a molecular marker.

  18. Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells

    NASA Astrophysics Data System (ADS)

    Park, Yongkeun; Diez-Silva, Monica; Fu, Dan; Popescu, Gabriel; Choi, Wonshik; Barman, Ishan; Suresh, Subra; Feld, Michael S.

    2010-03-01

    We present the light scattering of individual Plasmodium falciparum-parasitized human red blood cells (Pf-RBCs), and demonstrate progressive alterations to the scattering signal arising from the development of malaria-inducing parasites. By selectively imaging the electric fields using quantitative phase microscopy and a Fourier transform light scattering technique, we calculate the light scattering maps of individual Pf-RBCs. We show that the onset and progression of pathological states of the Pf-RBCs can be clearly identified by the static scattering maps. Progressive changes to the biophysical properties of the Pf-RBC membrane are captured from dynamic light scattering.

  19. Development and Application of a Simple Plaque Assay for the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Thomas, James A.; Collins, Christine R.; Das, Sujaan; Hackett, Fiona; Graindorge, Arnault; Bell, Donald; Deu, Edgar; Blackman, Michael J.

    2016-01-01

    Malaria is caused by an obligate intracellular protozoan parasite that replicates within and destroys erythrocytes. Asexual blood stages of the causative agent of the most virulent form of human malaria, Plasmodium falciparum, can be cultivated indefinitely in vitro in human erythrocytes, facilitating experimental analysis of parasite cell biology, biochemistry and genetics. However, efforts to improve understanding of the basic biology of this important pathogen and to develop urgently required new antimalarial drugs and vaccines, suffer from a paucity of basic research tools. This includes a simple means of quantifying the effects of drugs, antibodies and gene modifications on parasite fitness and replication rates. Here we describe the development and validation of an extremely simple, robust plaque assay that can be used to visualise parasite replication and resulting host erythrocyte destruction at the level of clonal parasite populations. We demonstrate applications of the plaque assay by using it for the phenotypic characterisation of two P. falciparum conditional mutants displaying reduced fitness in vitro. PMID:27332706

  20. A mosquito 2-Cys peroxiredoxin protects against nitrosative and oxidative stresses associated with malaria parasite infection

    PubMed Central

    Peterson, Tina M.L.; Luckhart, Shirley

    2008-01-01

    Malaria parasite infection in anopheline mosquitoes induces nitrosative and oxidative stresses that limit parasite development, but also damage mosquito tissues in proximity to the response. Based on these observations, we proposed that cellular defenses in the mosquito may be induced to minimize self-damage. Specifically, we hypothesized that peroxiredoxins (Prxs), enzymes known to detoxify reactive oxygen species (ROS) and reactive nitrogen oxide species (RNOS), protect mosquito cells. We identified an Anopheles stephensi 2-Cys Prx ortholog of Drosophila melanogaster Prx-4783, which protects fly cells against oxidative stresses. To assess function, AsPrx-4783 was overexpressed in D. melanogaster (S2) and in A. stephensi (MSQ43) cells and silenced in MSQ43 cells with RNA interference before treatment with various ROS and RNOS. Our data revealed that AsPrx-4783 and DmPrx-4783 differ in host cell protection and that AsPrx-4783 protects A. stephensi cells against stresses that are relevant to malaria parasite infection in vivo, namely nitric oxide (NO), hydrogen peroxide, nitroxyl, and peroxynitrite. Further, AsPrx-4783 expression is induced in the mosquito midgut by parasite infection at times associated with peak nitrosative and oxidative stresses. Hence, whereas the NO-mediated defense response is toxic to both host and parasite, AsPrx-4783 may shift the balance in favor of the mosquito. PMID:16540402

  1. A mosquito 2-Cys peroxiredoxin protects against nitrosative and oxidative stresses associated with malaria parasite infection.

    PubMed

    Peterson, Tina M L; Luckhart, Shirley

    2006-03-15

    Malaria parasite infection in anopheline mosquitoes induces nitrosative and oxidative stresses that limit parasite development, but also damage mosquito tissues in proximity to the response. Based on these observations, we proposed that cellular defenses in the mosquito may be induced to minimize self-damage. Specifically, we hypothesized that peroxiredoxins (Prxs), enzymes known to detoxify reactive oxygen species (ROS) and reactive nitrogen oxide species (RNOS), protect mosquito cells. We identified an Anopheles stephensi 2-Cys Prx ortholog of Drosophila melanogaster Prx-4783, which protects fly cells against oxidative stresses. To assess function, AsPrx-4783 was overexpressed in D. melanogaster S2 and in A. stephensi (MSQ43) cells and silenced in MSQ43 cells with RNA interference before treatment with various ROS and RNOS. Our data revealed that AsPrx-4783 and DmPrx-4783 differ in host cell protection and that AsPrx-4783 protects A. stephensi cells against stresses that are relevant to malaria parasite infection in vivo, namely nitric oxide (NO), hydrogen peroxide, nitroxyl, and peroxynitrite. Further, AsPrx-4783 expression is induced in the mosquito midgut by parasite infection at times associated with peak nitrosative and oxidative stresses. Hence, whereas the NO-mediated defense response is toxic to both host and parasite, AsPrx-4783 may shift the balance in favor of the mosquito.

  2. Malaria parasite sequences from chimpanzee support the co-speciation hypothesis for the origin of virulent human malaria (Plasmodium falciparum).

    PubMed

    Hughes, Austin L; Verra, Federica

    2010-10-01

    Phylogenetic analyses of the mitochondrial cytochrome b (cytb), apicoplast caseinolytic protease C (clpC), and 18S rRNA sequences of Plasmodium isolates from chimpanzees along with those of the virulent human malaria parasite P. falciparum showed that the common chimpanzee (Pan troglodytes) malaria parasites, assigned by Rich et al. (2009) to P. reichenowi, constitute a paraphyletic assemblage. The assumption that P. falciparum diverged from P. reichenowi as recently as 5000-50,000 years ago would require a rate of synonymous substitution/site/year in cytb and clpC on the order of 10(-5)-10(-6), several orders of magnitude higher than any known from eukaryotic organelle genomes, and would imply an unrealistically recent timing of the most recent common ancestor of P. falciparum mitochondrial genomes. The available data are thus most consistent with the hypothesis that P. reichenowi (in the strict sense) and P. falciparum co-speciated with their hosts about 5-7 million years ago.

  3. The 'permeome' of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum

    PubMed Central

    Martin, Rowena E; Henry, Roselani I; Abbey, Janice L; Clements, John D; Kirk, Kiaran

    2005-01-01

    Background The uptake of nutrients, expulsion of metabolic wastes and maintenance of ion homeostasis by the intraerythrocytic malaria parasite is mediated by membrane transport proteins. Proteins of this type are also implicated in the phenomenon of antimalarial drug resistance. However, the initial annotation of the genome of the human malaria parasite Plasmodium falciparum identified only a limited number of transporters, and no channels. In this study we have used a combination of bioinformatic approaches to identify and attribute putative functions to transporters and channels encoded by the malaria parasite, as well as comparing expression patterns for a subset of these. Results A computer program that searches a genome database on the basis of the hydropathy plots of the corresponding proteins was used to identify more than 100 transport proteins encoded by P. falciparum. These include all the transporters previously annotated as such, as well as a similar number of candidate transport proteins that had escaped detection. Detailed sequence analysis enabled the assignment of putative substrate specificities and/or transport mechanisms to all those putative transport proteins previously without. The newly-identified transport proteins include candidate transporters for a range of organic and inorganic nutrients (including sugars, amino acids, nucleosides and vitamins), and several putative ion channels. The stage-dependent expression of RNAs for 34 candidate transport proteins of particular interest are compared. Conclusion The malaria parasite possesses substantially more membrane transport proteins than was originally thought, and the analyses presented here provide a range of novel insights into the physiology of this important human pathogen. PMID:15774027

  4. Virulence of lizard malaria: the evolutionary ecology of an ancient parasite-host association.

    PubMed

    Schall, J J

    1990-01-01

    The negative consequences of parasitic infection (virulence) were examined for two lizard malaria parasite-host associations: Plasmodium agamae and P. giganteum, parasites of the rainbow lizard, Agama agama, in Sierra Leone, West Africa; and P. mexicanum in the western fence lizard, Sceloporus occidentalis, in northern California. These malaria species vary greatly in their reproductive characteristics: P. agamae produces only 8 merozoites per schizont, P. giganteum yields over 100, and P. mexicanum an intermediate number. All three parasites appear to have had an ancient association with their host. In fence lizards, infection with malaria is associated with increased numbers of immature erythrocytes, decreased haemoglobin levels, decreased maximal oxygen consumption, and decreased running stamina. Not affected were numbers of erythrocytes, resting metabolic rate, and sprint running speed which is supported by anaerobic means in lizards. Infected male fence lizards had smaller testes, stored less fat in preparation for winter dormancy, were more often socially submissive and, unexpectedly, were more extravagantly coloured on the ventral surface (a sexually dimorphic trait) than non-infected males. Females also stored less fat and produced smaller clutches of eggs, a directly observed reduction in fitness. Infected fence lizards do not develop behavioural fevers. P. mexicanum appears to have broad thermal buffering abilities and thermal tolerance; the parasite's population growth was unaffected by experimental alterations in the lizard's body temperature. The data are less complete for A. agama, but infected lizards suffered similar haematological and physiological effects. Infected animals may be socially submissive because they appear to gather less insect prey, possibly a result of being forced into inferior territories. Infection does not reduce clutch size in rainbow lizards, but may lengthen the time between clutches. These results are compared with

  5. Horizontal gene transfer of epigenetic machinery and evolution of parasitism in the malaria parasite Plasmodium falciparum and other apicomplexans

    PubMed Central

    2013-01-01

    Background The acquisition of complex transcriptional regulatory abilities and epigenetic machinery facilitated the transition of the ancestor of apicomplexans from a free-living organism to an obligate parasite. The ability to control sophisticated gene expression patterns enabled these ancient organisms to evolve several differentiated forms, invade multiple hosts and evade host immunity. How these abilities were acquired remains an outstanding question in protistan biology. Results In this work, we study SET domain bearing genes that are implicated in mediating immune evasion, invasion and cytoadhesion pathways of modern apicomplexans, including malaria parasites. We provide the first conclusive evidence of a horizontal gene transfer of a Histone H4 Lysine 20 (H4K20) modifier, Set8, from an animal host to the ancestor of apicomplexans. Set8 is known to contribute to the coordinated expression of genes involved in immune evasion in modern apicomplexans. We also show the likely transfer of a H3K36 methyltransferase (Ashr3 from plants), possibly derived from algal endosymbionts. These transfers appear to date to the transition from free-living organisms to parasitism and coincide with the proposed horizontal acquisition of cytoadhesion domains, the O-glycosyltransferase that modifies these domains, and the primary family of transcription factors found in apicomplexan parasites. Notably, phylogenetic support for these conclusions is robust and the genes clearly are dissimilar to SET sequences found in the closely related parasite Perkinsus marinus, and in ciliates, the nearest free-living organisms with complete genome sequences available. Conclusions Animal and plant sources of epigenetic machinery provide new insights into the evolution of parasitism in apicomplexans. Along with the horizontal transfer of cytoadhesive domains, O-linked glycosylation and key transcription factors, the acquisition of SET domain methyltransferases marks a key transitional event in

  6. Experiential relationship between malaria parasite density and some haematological parameters in malaria infected male subjects in Port Harcourt, Nigeria.

    PubMed

    M, Eze Evelyn; Ezeiruaku, F C; Ukaji, D C

    2012-06-15

    This study examined the experiential relationship between the parasite density and haematological parameters in male patients with Plasmodium falciparum infection in Port Harcourt, Nigeria reporting to malaria clinics. A total of one hundred and thirty-six (136) male patients were recruited. QBC haematological analysis, QBC malaria parasite specie identification and quantification and thin blood film for differential leucocytes count was used. The mean values of the haematological parameters in each quartile of parasite densities were determined using Microsoft Excel statistical package. Regression analysis was employed to model the experiential relationship between parasite density and haematological parameters. All regression relationships were tested and the relationship with the highest coefficient of determination (R2) was accepted as the valid relationship. The relationships tested included linear, polynomial, exponential, logarithmic and power relationships. The X- axis of the regression graphs stand for the parasite density while Y-axis stands for the respective haematological parameters  Neutrophil count had a negative  exponential relationship with the parasite density and is related to the parasite density by a polynomial equation model: ynm = -7E-07x2 - 0.0003x + 56.685.The coefficient of determination (R2) was 0.6140. This means that the rate of change of the parasitemia will depend on the initial value of the neutrophil. As the neutrophil increases, the parasitemia will tend to decrease in a double, triple and quadruple manner. The relationship between lymphocyte count, monocyte count and eosinophil count and parasite density was logarithmic and expressed by the following linear equation models: ylm = -2.371ln(x) + 37.296, ymm = 0.6965ln(x) + 5.7692 and yem = 0.9334ln(x) + 4.1718 in the same order. Their respective high coefficients of determination (R2) were 0.8027, 0.8867 and 0.9553. This logarithmic relationship means that each doubling of

  7. Experiential Relationship between Malaria Parasite Density and Some Haematological Parameters in Malaria Infected Male Subjects in Port Harcourt, Nigeria

    PubMed Central

    M., Eze Evelyn; Ezeiruaku, F. C.; Ukaji, D. C.

    2012-01-01

    This study examined the experiential relationship between the parasite density and haematological parameters in male patients with Plasmodium falciparum infection in Port Harcourt, Nigeria reporting to malaria clinics. A total of one hundred and thirty-six (136) male patients were recruited. QBC haematological analysis, QBC malaria parasite specie identification and quantification and thin blood film for differential leucocytes count was used. The mean values of the haematological parameters in each quartile of parasite densities were determined using Microsoft Excel statistical package. Regression analysis was employed to model the experiential relationship between parasite density and haematological parameters. All regression relationships were tested and the relationship with the highest coefficient of determination (R2) was accepted as the valid relationship. The relationships tested included linear, polynomial, exponential, logarithmic and power relationships. The X- axis of the regression graphs stand for the parasite density while Y-axis stands for the respective haematological parameters Neutrophil count had a negative exponential relationship with the parasite density and is related to the parasite density by a polynomial equation model: ynm = -7E-07x2 - 0.0003x + 56.685. The coefficient of determination (R2) was 0.6140. This means that the rate of change of the parasitemia will depend on the initial value of the neutrophil. As the neutrophil increases, the parasitemia will tend to decrease in a double, triple and quadruple manner. The relationship between lymphocyte count, monocyte count and eosinophil count and parasite density was logarithmic and expressed by the following linear equation models: ylm = -2.371ln(x) + 37.296, ymm = 0.6965ln(x) + 5.7692 and yem = 0.9334ln(x) + 4.1718 in the same order. Their respective high coefficients of determination (R2) were 0.8027, 0.8867 and 0.9553. This logarithmic relationship means that each doubling of monocyte

  8. Reduced erythrocyte susceptibility and increased host clearance of young parasites slows Plasmodium growth in a murine model of severe malaria

    NASA Astrophysics Data System (ADS)

    Khoury, David S.; Cromer, Deborah; Best, Shannon E.; James, Kylie R.; Sebina, Ismail; Haque, Ashraful; Davenport, Miles P.

    2015-05-01

    The best correlate of malaria severity in human Plasmodium falciparum (Pf) infection is the total parasite load. Pf-infected humans could control parasite loads by two mechanisms, either decreasing parasite multiplication, or increasing parasite clearance. However, few studies have directly measured these two mechanisms in vivo. Here, we have directly quantified host clearance of parasites during Plasmodium infection in mice. We transferred labelled red blood cells (RBCs) from Plasmodium infected donors into uninfected and infected recipients, and tracked the fate of donor parasites by frequent blood sampling. We then applied age-based mathematical models to characterise parasite clearance in the recipient mice. Our analyses revealed an increased clearance of parasites in infected animals, particularly parasites of a younger developmental stage. However, the major decrease in parasite multiplication in infected mice was not mediated by increased clearance alone, but was accompanied by a significant reduction in the susceptibility of RBCs to parasitisation.

  9. Probability of Transmission of Malaria from Mosquito to Human Is Regulated by Mosquito Parasite Density in Naïve and Vaccinated Hosts

    PubMed Central

    Sinden, Robert E.; Poulton, Ian D.; Griffin, Jamie T.; Upton, Leanna M.; Sala, Katarzyna A.; Angrisano, Fiona; Hill, Adrian V. S.; Blagborough, Andrew M.

    2017-01-01

    Over a century since Ronald Ross discovered that malaria is caused by the bite of an infectious mosquito it is still unclear how the number of parasites injected influences disease transmission. Currently it is assumed that all mosquitoes with salivary gland sporozoites are equally infectious irrespective of the number of parasites they harbour, though this has never been rigorously tested. Here we analyse >1000 experimental infections of humans and mice and demonstrate a dose-dependency for probability of infection and the length of the host pre-patent period. Mosquitoes with a higher numbers of sporozoites in their salivary glands following blood-feeding are more likely to have caused infection (and have done so quicker) than mosquitoes with fewer parasites. A similar dose response for the probability of infection was seen for humans given a pre-erythrocytic vaccine candidate targeting circumsporozoite protein (CSP), and in mice with and without transfusion of anti-CSP antibodies. These interventions prevented infection more efficiently from bites made by mosquitoes with fewer parasites. The importance of parasite number has widespread implications across malariology, ranging from our basic understanding of the parasite, how vaccines are evaluated and the way in which transmission should be measured in the field. It also provides direct evidence for why the only registered malaria vaccine RTS,S was partially effective in recent clinical trials. PMID:28081253

  10. Severe adult malaria is associated with specific PfEMP1 adhesion types and high parasite biomass

    PubMed Central

    Bernabeu, Maria; Danziger, Samuel A.; Avril, Marion; Vaz, Marina; Babar, Prasad H.; Brazier, Andrew J.; Herricks, Thurston; Maki, Jennifer N.; Pereira, Ligia; Mascarenhas, Anjali; Gomes, Edwin; Chery, Laura; Aitchison, John D.; Rathod, Pradipsinh K.; Smith, Joseph D.

    2016-01-01

    The interplay between cellular and molecular determinants that lead to severe malaria in adults is unexplored. Here, we analyzed parasite virulence factors in an infected adult population in India and investigated whether severe malaria isolates impair endothelial protein C receptor (EPCR), a protein involved in coagulation and endothelial barrier permeability. Severe malaria isolates overexpressed specific members of the Plasmodium falciparum var gene/PfEMP1 (P. falciparum erythrocyte membrane protein 1) family that bind EPCR, including DC8 var genes that have previously been linked to severe pediatric malaria. Machine learning analysis revealed that DC6- and DC8-encoding var transcripts in combination with high parasite biomass were the strongest indicators of patient hospitalization and disease severity. We found that DC8 CIDRα1 domains from severe malaria isolates had substantial differences in EPCR binding affinity and blockade activity for its ligand activated protein C. Additionally, even a low level of inhibition exhibited by domains from two cerebral malaria isolates was sufficient to interfere with activated protein C-barrier protective activities in human brain endothelial cells. Our findings demonstrate an interplay between parasite biomass and specific PfEMP1 adhesion types in the development of adult severe malaria, and indicate that low impairment of EPCR function may contribute to parasite virulence. PMID:27185931

  11. Three Divergent Subpopulations of the Malaria Parasite Plasmodium knowlesi

    PubMed Central

    Lin, Lee C.; Rovie-Ryan, Jeffrine J.; Kadir, Khamisah A.; Anderios, Fread; Hisam, Shamilah; Sharma, Reuben S.K.; Singh, Balbir; Conway, David J.

    2017-01-01

    Multilocus microsatellite genotyping of Plasmodium knowlesi isolates previously indicated 2 divergent parasite subpopulations in humans on the island of Borneo, each associated with a different macaque reservoir host species. Geographic divergence was also apparent, and independent sequence data have indicated particularly deep divergence between parasites from mainland Southeast Asia and Borneo. To resolve the overall population structure, multilocus microsatellite genotyping was conducted on a new sample of 182 P. knowlesi infections (obtained from 134 humans and 48 wild macaques) from diverse areas of Malaysia, first analyzed separately and then in combination with previous data. All analyses confirmed 2 divergent clusters of human cases in Malaysian Borneo, associated with long-tailed macaques and pig-tailed macaques, and a third cluster in humans and most macaques in peninsular Malaysia. High levels of pairwise divergence between each of these sympatric and allopatric subpopulations have implications for the epidemiology and control of this zoonotic species. PMID:28322705

  12. Fate of haem iron in the malaria parasite Plasmodium falciparum.

    PubMed Central

    Egan, Timothy J; Combrinck, Jill M; Egan, Joanne; Hearne, Giovanni R; Marques, Helder M; Ntenteni, Skhumbuzo; Sewell, B Trevor; Smith, Peter J; Taylor, Dale; van Schalkwyk, Donelly A; Walden, Jason C

    2002-01-01

    Chemical analysis has shown that Plasmodium falciparum trophozoites contain 61+/-2% of the iron within parasitized erythrocytes, of which 92+/-6% is located within the food vacuole. Of this, 88+/-9% is in the form of haemozoin. (57)Fe-Mössbauer spectroscopy shows that haemozoin is the only detectable iron species in trophozoites. Electron spectroscopic imaging confirms this conclusion. PMID:12033986

  13. Parasite impairment by targeting Plasmodium-infected RBCs using glyceryl-dilaurate nanostructured lipid carriers.

    PubMed

    Jain, Soniya A; Basu, Himanish; Prabhu, Priyanka S; Soni, Umangi; Joshi, Medha D; Mathur, Deepak; Patravale, Vandana B; Pathak, Sulabha; Sharma, Shobhona

    2014-08-01

    Antimalarial therapy is a major contributor to declining malaria morbidity and mortality. However, the high toxicity and low bioavailability of current antimalarials and emerging drug resistance necessitates drug-delivery research. We have previously developed glyceryl-dilaurate nanolipid carriers (GDL-NLCs) for antimalarial drug delivery. Here, we show evidence that GDL-NLCs themselves selectively target Plasmodium-infected red blood cells (iRBCs), and cause severe parasite impairment. The glyceryl-dilaurate lipid-moiety was important in the targeting. GDL-NLCs localized to the parasite mitochondrion and uptake led to mitochondrial-membrane polarization and Ca(2+) ion accumulation, ROS release, and stage-specific iRBC lysis. GDL-NLC treatment also resulted in externalization of iRBC-membrane phosphatidylserine and enhanced iRBC clearance by macrophages. GDL-NLC uptake disrupted the parasite-induced tubulovesicular network, which is vital for nutrient import by the parasite. Laser optical trap studies revealed that GDL-NLCs also restored iRBC flexibility. Such restoration of iRBC flexibility may help mitigate the vasculature clogging that can lead to cerebral malaria. We demonstrate the suitability of GDL-NLCs for intravenous delivery of antimalarial combinations artemether-clindamycin and artemether-lumefantrine in the murine model. Complete parasite clearance was achieved at 5-20% of the therapeutic dose of these combinations. Thus, this nanostructured lipid formulation can solubilize lipophilic drugs, selectively target and impair the parasite-infected red cell, and therefore constitutes a potent delivery vehicle for antimalarials.

  14. Relevance of undetectably rare resistant malaria parasites in treatment failure: experimental evidence from Plasmodium chabaudi.

    PubMed

    Huijben, Silvie; Chan, Brian H K; Read, Andrew F

    2015-06-01

    Resistant malaria parasites are frequently found in mixed infections with drug-sensitive parasites. Particularly early in the evolutionary process, the frequency of these resistant mutants can be extremely low and below the level of molecular detection. We tested whether the rarity of resistance in infections impacted the health outcomes of treatment failure and the potential for onward transmission of resistance. Mixed infections of different ratios of resistant and susceptible Plasmodium chabaudi parasites were inoculated in laboratory mice and dynamics tracked during the course of infection using highly sensitive genotype-specific quantitative polymerase chain reaction (qPCR). Frequencies of resistant parasites ranged from 10% to 0.003% at the onset of treatment. We found that the rarer the resistant parasites were, the lower the likelihood of their onward transmission, but the worse the treatment failure was in terms of parasite numbers and disease severity. Strikingly, drug resistant parasites had the biggest impact on health outcomes when they were too rare to be detected by any molecular methods currently available for field samples. Indeed, in the field, these treatment failures would not even have been attributed to resistance.

  15. Geographic genetic differentiation of a malaria parasite, Plasmodium mexicanum, and its lizard host, Sceloporus occidentalis.

    PubMed

    Fricke, Jennifer M; Vardo-Zalik, Anne M; Schall, Jos J

    2010-04-01

    Gene flow, and resulting degree of genetic differentiation among populations, will shape geographic genetic patterns and possibly local adaptation of parasites and their hosts. Some studies of Plasmodium falciparum in humans show substantial differentiation of the parasite in locations separated by only a few kilometers, a paradoxical finding for a parasite in a large, mobile host. We examined genetic differentiation of the malaria parasite Plasmodium mexicanum, and its lizard host, Sceloporus occidentalis, at 8 sites in northern California, with the use of variable microsatellite markers for both species. These lizards are small and highly territorial, so we expected local genetic differentiation of both parasite and lizard. Populations of P. mexicanum were found to be differentiated by analysis of 5 markers (F(st) values >0.05-0.10) over distances as short as 230-400 m, and greatly differentiated (F(st) values >0.25) for sites separated by approximately 10 km. In contrast, the lizard host had no, or very low, levels of differentiation for 3 markers, even for sites >40 km distant. Thus, gene flow for the lizard was great, but despite the mobility of the vertebrate host, the parasite was locally genetically distinct. This discrepancy could result if infected lizards move little, but their noninfected relatives were more mobile. Previous studies on the virulence of P. mexicanum for fence lizards support this hypothesis. However, changing prevalence of the parasite, without changes in density of the lizard, could also result in this pattern.

  16. Targeted mutagenesis in the malaria mosquito using TALE nucleases.

    PubMed

    Smidler, Andrea L; Terenzi, Olivier; Soichot, Julien; Levashina, Elena A; Marois, Eric

    2013-01-01

    Anopheles gambiae, the main mosquito vector of human malaria, is a challenging organism to manipulate genetically. As a consequence, reverse genetics studies in this disease vector have been largely limited to RNA interference experiments. Here, we report the targeted disruption of the immunity gene TEP1 using transgenic expression of Transcription-Activator Like Effector Nucleases (TALENs), and the isolation of several TEP1 mutant A. gambiae lines. These mutations inhibited protein production and rendered TEP1 mutants hypersusceptible to Plasmodium berghei. The TALEN technology opens up new avenues for genetic analysis in this disease vector and may offer novel biotechnology-based approaches for malaria control.

  17. An essential dual-function complex mediates erythrocyte invasion and channel-mediated nutrient uptake in malaria parasites

    PubMed Central

    Ito, Daisuke; Schureck, Marc A; Desai, Sanjay A

    2017-01-01

    Malaria parasites evade immune detection by growth and replication within erythrocytes. After erythrocyte invasion, the intracellular pathogen must increase host cell uptake of nutrients from plasma. Here, we report that the parasite-encoded RhopH complex contributes to both invasion and channel-mediated nutrient uptake. As rhoph2 and rhoph3 gene knockouts were not viable in the human P. falciparum pathogen, we used conditional knockdowns to determine that the encoded proteins are essential and to identify their stage-specific functions. We exclude presumed roles for RhopH2 and CLAG3 in erythrocyte invasion but implicate a RhopH3 contribution either through ligand-receptor interactions or subsequent parasite internalization. These proteins then traffic via an export translocon to the host membrane, where they form a nutrient channel. Knockdown of either RhopH2 or RhopH3 disrupts the entire complex, interfering with organellar targeting and subsequent trafficking. Therapies targeting this complex should attack the pathogen at two critical points in its cycle. DOI: http://dx.doi.org/10.7554/eLife.23485.001 PMID:28221136

  18. DNA repair mechanisms and their biological roles in the malaria parasite Plasmodium falciparum.

    PubMed

    Lee, Andrew H; Symington, Lorraine S; Fidock, David A

    2014-09-01

    Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen.

  19. Cytometric quantification of singlet oxygen in the human malaria parasite Plasmodium falciparum.

    PubMed

    Butzloff, Sabine; Groves, Matthew R; Wrenger, Carsten; Müller, Ingrid B

    2012-08-01

    The malaria parasite Plasmodium falciparum proliferates within human erythrocytes and is thereby exposed to a variety of reactive oxygen species (ROS) such as hydrogen peroxide, hydroxyl radical, superoxide anion, and highly reactive singlet oxygen ((1)O(2)). While most ROS are already well studied in the malaria parasite, singlet oxygen has been neglected to date. In this study we visualized the generation of (1)O(2) by live cell fluorescence microscopy using 3-(p-aminophenyl) fluorescein as an indicator dye. While (1) O(2) is found restrictively in the parasite, its amount varies during erythrocytic schizogony. Since the photosensitizer cercosporin generates defined amounts of (1)O(2) we have established a new cytometric method that allows the stage specific quantification of (1)O(2). Therefore, the parasites were first classified into three main stages according to their respective pixel-area of 200-600 pixels for rings, 700-1,200 pixels for trophozoites and 1,400-2,500 pixels for schizonts. Interestingly the highest mean concentration of endogenous (1)O(2) of 0.34 nM is found in the trophozoites stage, followed by 0.20 nM (ring stage) and 0.10 nM (schizont stage) suggesting that (1)O(2) derives predominantly from the digestion of hemoglobin.

  20. Proteolysis at a Specific Extracellular Residue Implicates Integral Membrane CLAG3 in Malaria Parasite Nutrient Channels

    PubMed Central

    Nguitragool, Wang; Rayavara, Kempaiah; Desai, Sanjay A.

    2014-01-01

    The plasmodial surface anion channel mediates uptake of nutrients and other solutes into erythrocytes infected with malaria parasites. The clag3 genes of P. falciparum determine this channel’s activity in human malaria, but how the encoded proteins contribute to transport is unknown. Here, we used proteases to examine the channel’s composition and function. While proteases with distinct specificities all cleaved within an extracellular domain of CLAG3, they produced differing degrees of transport inhibition. Chymotrypsin-induced inhibition depended on parasite genotype, with channels induced by the HB3 parasite affected to a greater extent than those of the Dd2 clone. Inheritance of functional proteolysis in the HB3×Dd2 genetic cross, DNA transfection, and gene silencing experiments all pointed to the clag3 genes, providing independent evidence for a role of these genes. Protease protection assays with a Dd2-specific inhibitor and site-directed mutagenesis revealed that a variant L1115F residue on a CLAG3 extracellular loop contributes to inhibitor binding and accounts for differences in functional proteolysis. These findings indicate that surface-exposed CLAG3 is the relevant pool of this protein for channel function. They also suggest structural models for how exposed CLAG3 domains contribute to pore formation and parasite nutrient uptake. PMID:24699906

  1. Cyclic GMP Balance Is Critical for Malaria Parasite Transmission from the Mosquito to the Mammalian Host

    PubMed Central

    Lakshmanan, Viswanathan; Fishbaugher, Matthew E.; Morrison, Bob; Baldwin, Michael; Macarulay, Michael; Vaughan, Ashley M.; Mikolajczak, Sebastian A.

    2015-01-01

    ABSTRACT Transmission of malaria occurs during Anopheles mosquito vector blood meals, when Plasmodium sporozoites that have invaded the mosquito salivary glands are delivered to the mammalian host. Sporozoites display a unique form of motility that is essential for their movement across cellular host barriers and invasion of hepatocytes. While the molecular machinery powering motility and invasion is increasingly well defined, the signaling events that control these essential parasite activities have not been clearly delineated. Here, we identify a phosphodiesterase (PDEγ) in Plasmodium, a regulator of signaling through cyclic nucleotide second messengers. Reverse transcriptase PCR (RT-PCR) analysis and epitope tagging of endogenous PDEγ detected its expression in blood stages and sporozoites of Plasmodium yoelii. Deletion of PDEγ (pdeγ−) rendered sporozoites nonmotile, and they failed to invade the mosquito salivary glands. Consequently, PDEγ deletion completely blocked parasite transmission by mosquito bite. Strikingly, pdeγ− sporozoites showed dramatically elevated levels of cyclic GMP (cGMP), indicating that a perturbation in cyclic nucleotide balance is involved in the observed phenotypic defects. Transcriptome sequencing (RNA-Seq) analysis of pdeγ− sporozoites revealed reduced transcript abundance of genes that encode key components of the motility and invasion apparatus. Our data reveal a crucial role for PDEγ in maintaining the cyclic nucleotide balance in the malaria parasite sporozoite stage, which in turn is essential for parasite transmission from mosquito to mammal. PMID:25784701

  2. Of men in mice: the success and promise of humanized mouse models for human malaria parasite infections

    PubMed Central

    Kaushansky, Alexis; Mikolajczak, Sebastian A.; Vignali, Marissa; Kappe, Stefan H.I.

    2014-01-01

    Forty percent of people worldwide are at risk of malaria infection, and despite control efforts it remains the most deadly parasitic disease. Unfortunately, rapid discovery and development of new interventions for malaria are hindered by the lack of small animal models that support the complex life cycles of the main parasite species infecting humans. Such tools must accommodate human parasite tropism for human tissue. Mouse models with human tissue developed to date have already enhanced our knowledge of human parasites, and are useful tools for assessing anti-parasitic interventions. Although these systems are imperfect, their continued refinement will likely broaden their utility. Some of the malaria parasite’s interactions with human hepatocytes and human erythrocytes can already be modeled with available humanized mouse systems. However, interactions with other relevant human tissues such as the skin and immune system, as well as most transitions between life cycle stages in vivo will require refinement of existing humanized mouse models. Here, we review the recent successes achieved in modeling human malaria parasite biology in humanized mice, and discuss how these models have potential to become an valuable part of the toolbox used for understanding the biology of, and development of interventions to, malaria. PMID:24506682

  3. Increasing the potential for malaria elimination by targeting zoophilic vectors

    PubMed Central

    Waite, Jessica L.; Swain, Sunita; Lynch, Penelope A.; Sharma, S. K.; Haque, Mohammed Asrarul; Montgomery, Jacqui; Thomas, Matthew B.

    2017-01-01

    Countries in the Asia Pacific region aim to eliminate malaria by 2030. A cornerstone of malaria elimination is the effective management of Anopheles mosquito vectors. Current control tools such as insecticide treated nets or indoor residual sprays target mosquitoes in human dwellings. We find in a high transmission region in India, malaria vector populations show a high propensity to feed on livestock (cattle) and rest in outdoor structures such as cattle shelters. We also find evidence for a shift in vector species complex towards increased zoophilic behavior in recent years. Using a malaria transmission model we demonstrate that in such regions dominated by zoophilic vectors, existing vector control tactics will be insufficient to achieve elimination, even if maximized. However, by increasing mortality in the zoophilic cycle, the elimination threshold can be reached. Current national vector control policy in India restricts use of residual insecticide sprays to domestic dwellings. Our study suggests substantial benefits of extending the approach to treatment of cattle sheds, or deploying other tactics that target zoophilic behavior. Optimizing use of existing tools will be essential to achieving the ambitious 2030 elimination target. PMID:28091570

  4. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs.

    PubMed

    Spillman, Natalie Jane; Kirk, Kiaran

    2015-12-01

    The intraerythrocytic malaria parasite, Plasmodium falciparum, maintains a low cytosolic Na(+) concentration and the plasma membrane P-type cation translocating ATPase 'PfATP4' has been implicated as playing a key role in this process. PfATP4 has been the subject of significant attention in recent years as mutations in this protein confer resistance to a growing number of new antimalarial compounds, including the spiroindolones, the pyrazoles, the dihydroisoquinolones, and a number of the antimalarial agents in the Medicines for Malaria Venture's 'Malaria Box'. On exposure of parasites to these compounds there is a rapid disruption of cytosolic Na(+). Whether, and if so how, such chemically distinct compounds interact with PfATP4, and how such interactions lead to parasite death, is not yet clear. The fact that multiple different chemical classes have converged upon PfATP4 highlights its significance as a potential target for new generation antimalarial agents. A spiroindolone (KAE609, now known as cipargamin) has progressed through Phase I and IIa clinical trials with favourable results. In this review we consider the physiological role of PfATP4, summarise the current repertoire of antimalarial compounds for which PfATP4 is implicated in their mechanism of action, and provide an outlook on translation from target identification in the laboratory to patient treatment in the field.

  5. Prediction of mitochondrial proteins of malaria parasite using split amino acid composition and PSSM profile.

    PubMed

    Verma, Ruchi; Varshney, Grish C; Raghava, G P S

    2010-06-01

    The rate of human death due to malaria is increasing day-by-day. Thus the malaria causing parasite Plasmodium falciparum (PF) remains the cause of concern. With the wealth of data now available, it is imperative to understand protein localization in order to gain deeper insight into their functional roles. In this manuscript, an attempt has been made to develop prediction method for the localization of mitochondrial proteins. In this study, we describe a method for predicting mitochondrial proteins of malaria parasite using machine-learning technique. All models were trained and tested on 175 proteins (40 mitochondrial and 135 non-mitochondrial proteins) and evaluated using five-fold cross validation. We developed a Support Vector Machine (SVM) model for predicting mitochondrial proteins of P. falciparum, using amino acids and dipeptides composition and achieved maximum MCC 0.38 and 0.51, respectively. In this study, split amino acid composition (SAAC) is used where composition of N-termini, C-termini, and rest of protein is computed separately. The performance of SVM model improved significantly from MCC 0.38 to 0.73 when SAAC instead of simple amino acid composition was used as input. In addition, SVM model has been developed using composition of PSSM profile with MCC 0.75 and accuracy 91.38%. We achieved maximum MCC 0.81 with accuracy 92% using a hybrid model, which combines PSSM profile and SAAC. When evaluated on an independent dataset our method performs better than existing methods. A web server PFMpred has been developed for predicting mitochondrial proteins of malaria parasites ( http://www.imtech.res.in/raghava/pfmpred/).

  6. Reduced Parasite Burden in Children with Falciparum Malaria and Bacteremia Coinfections: Role of Mediators of Inflammation

    DOE PAGES

    Davenport, Gregory C.; Hittner, James B.; Otieno, Vincent; ...

    2016-01-01

    Bmore » acteremia and malaria coinfection is a common and life-threatening condition in children residing in sub-Saharan Africa. We previously showed that coinfection with Gram negative (G[−]) entericacilli and Plasmodium falciparum ( Pf [+]) was associated with reduced high-density parasitemia (HDP, >10,000 parasites/ μ L), enhanced respiratory distress, and severe anemia. Since inflammatory mediators are largely unexplored in such coinfections, circulating cytokines were determined in four groups of children ( n = 206 , aged <3 yrs): healthy; Pf [+] alone; G[−] coinfected; and G[+] coinfected. Staphylococcus aureus and non-Typhi Salmonella were the most frequently isolated G[+] and G[−] organisms, respectively. Coinfected children, particularly those with G[−] pathogens, had lower parasite burden (peripheral and geometric mean parasitemia and HDP). In addition, both coinfected groups had increased IL-4, IL-5, IL-7, IL-12, IL-15, IL-17, IFN- γ , and IFN- α and decreased TNF- α relative to malaria alone. Children with G[−] coinfection had higher IL-1 β and IL-1Ra and lower IL-10 than the Pf [+] group and higher IFN- γ than the G[+] group. To determine how the immune response to malaria regulates parasitemia, cytokine production was investigated with a multiple mediation model. Cytokines with the greatest mediational impact on parasitemia were IL-4, IL-10, IL-12, and IFN- γ . Results here suggest that enhanced immune activation, especially in G[−] coinfected children, acts to reduce malaria parasite burden.« less

  7. Reduced Parasite Burden in Children with Falciparum Malaria and Bacteremia Coinfections: Role of Mediators of Inflammation

    PubMed Central

    Davenport, Gregory C.; Mukundan, Harshini; Fenimore, Paul W.; Hengartner, Nicolas W.; McMahon, Benjamin H.; Ong'echa, John M.

    2016-01-01

    Bacteremia and malaria coinfection is a common and life-threatening condition in children residing in sub-Saharan Africa. We previously showed that coinfection with Gram negative (G[−]) enteric Bacilli and Plasmodium falciparum (Pf[+]) was associated with reduced high-density parasitemia (HDP, >10,000 parasites/μL), enhanced respiratory distress, and severe anemia. Since inflammatory mediators are largely unexplored in such coinfections, circulating cytokines were determined in four groups of children (n = 206, aged <3 yrs): healthy; Pf[+] alone; G[−] coinfected; and G[+] coinfected. Staphylococcus aureus and non-Typhi Salmonella were the most frequently isolated G[+] and G[−] organisms, respectively. Coinfected children, particularly those with G[−] pathogens, had lower parasite burden (peripheral and geometric mean parasitemia and HDP). In addition, both coinfected groups had increased IL-4, IL-5, IL-7, IL-12, IL-15, IL-17, IFN-γ, and IFN-α and decreased TNF-α relative to malaria alone. Children with G[−] coinfection had higher IL-1β and IL-1Ra and lower IL-10 than the Pf[+] group and higher IFN-γ than the G[+] group. To determine how the immune response to malaria regulates parasitemia, cytokine production was investigated with a multiple mediation model. Cytokines with the greatest mediational impact on parasitemia were IL-4, IL-10, IL-12, and IFN-γ. Results here suggest that enhanced immune activation, especially in G[−] coinfected children, acts to reduce malaria parasite burden. PMID:27418744

  8. Microbial hara-kiri: Exploiting lysosomal cell death in malaria parasites

    PubMed Central

    Ch’ng, Jun-Hong; Ursing, Johan; Tan, Kevin Shyong-Wei

    2015-01-01

    The antimalarial drug chloroquine (CQ) has been sidelined in the fight against falciparum malaria due to wide-spread CQ resistance. Replacement drugs like sulfadoxine, pyrimethamine and mefloquine have also since been surpassed with the evolution of multi-drug resistant parasites. Even the currently recommended artemisinin-based combination therapies show signs of compromise due to the recent spread of artemisinin delayed-clearance parasites. Though there have been promising breakthroughs in the pursuit of new effective antimalarials, the development and strategic deployment of such novel chemical entities takes time. We therefore argue that there is a crucial need to re-examine the usefulness of ‘outdated’ drugs like chloroquine, and explore if they might be effective alternative therapies in the interim. We suggest that a novel parasite cell death (pCD) pathway may be exploited through the reformulation of CQ to address this need.

  9. The Strategy to Survive Primary Malaria Infection: An Experimental Study on Behavioural Changes in Parasitized Birds

    PubMed Central

    Mukhin, Andrey; Palinauskas, Vaidas; Platonova, Elena; Kobylkov, Dmitry; Vakoliuk, Irina; Valkiūnas, Gediminas

    2016-01-01

    Avian malaria parasites (Haemosporida, Plasmodium) are of cosmopolitan distribution, and they have a significant impact on vertebrate host fitness. Experimental studies show that high parasitemia often develops during primary malaria infections. However, field studies only occasionally reveal high parasitemia in free-living birds sampled using the traditional methods of mist-netting or trapping, and light chronic infections predominate. The reason for this discrepancy between field observation and experimental data remains insufficiently understood. Since mist-netting is a passive capture method, two main parameters determine its success in sampling infected birds in wildlife, i. e. the presence of parasitized birds at a study site and their mobility. In other words, the trapping probability depends on the survival rate of birds and their locomotor activity during infection. Here we test (1) the mortality rate of wild birds infected with Plasmodium relictum (the lineage pSGS1), (2) the changes in their behaviour during presence of an aerial predator, and (3) the changes in their locomotor activity at the stage of high primary parasitemia.We show that some behavioural features which might affect a bird's survival during a predator attack (time of reaction, speed of flush flight and take off angle) did not change significantly during primary infection. However, the locomotor activity of infected birds was almost halved compared to control (non-infected) birds during the peak of parasitemia. We report (1) the markedly reduced mobility and (2) the 20% mortality rate caused by P. relictum and conclude that these factors are responsible for the underrepresentation of birds in mist nets and traps during the stage of high primary parasitemia in wildlife. This study indicates that the widespread parasite, P. relictum (pSGS1) influences the behaviour of birds during primary parasitemia. Experimental studies combined with field observations are needed to better understand the

  10. Plasmodium falciparum-like parasites infecting wild apes in southern Cameroon do not represent a recurrent source of human malaria.

    PubMed

    Sundararaman, Sesh A; Liu, Weimin; Keele, Brandon F; Learn, Gerald H; Bittinger, Kyle; Mouacha, Fatima; Ahuka-Mundeke, Steve; Manske, Magnus; Sherrill-Mix, Scott; Li, Yingying; Malenke, Jordan A; Delaporte, Eric; Laurent, Christian; Mpoudi Ngole, Eitel; Kwiatkowski, Dominic P; Shaw, George M; Rayner, Julian C; Peeters, Martine; Sharp, Paul M; Bushman, Frederic D; Hahn, Beatrice H

    2013-04-23

    Wild-living chimpanzees and gorillas harbor a multitude of Plasmodium species, including six of the subgenus Laverania, one of which served as the progenitor of Plasmodium falciparum. Despite the magnitude of this reservoir, it is unknown whether apes represent a source of human infections. Here, we used Plasmodium species-specific PCR, single-genome amplification, and 454 sequencing to screen humans from remote areas of southern Cameroon for ape Laverania infections. Among 1,402 blood samples, we found 1,000 to be Plasmodium mitochondrial DNA (mtDNA) positive, all of which contained human parasites as determined by sequencing and/or restriction enzyme digestion. To exclude low-abundance infections, we subjected 514 of these samples to 454 sequencing, targeting a region of the mtDNA genome that distinguishes ape from human Laverania species. Using algorithms specifically developed to differentiate rare Plasmodium variants from 454-sequencing error, we identified single and mixed-species infections with P. falciparum, Plasmodium malariae, and/or Plasmodium ovale. However, none of the human samples contained ape Laverania parasites, including the gorilla precursor of P. falciparum. To characterize further the diversity of P. falciparum in Cameroon, we used single-genome amplification to amplify 3.4-kb mtDNA fragments from 229 infected humans. Phylogenetic analysis identified 62 new variants, all of which clustered with extant P. falciparum, providing further evidence that P. falciparum emerged following a single gorilla-to-human transmission. Thus, unlike Plasmodium knowlesi-infected macaques in southeast Asia, African apes harboring Laverania parasites do not seem to serve as a recurrent source of human malaria, a finding of import to ongoing control and eradication measures.

  11. Phenylalanine metabolism regulates reproduction and parasite melanization in the malaria mosquito.

    PubMed

    Fuchs, Silke; Behrends, Volker; Bundy, Jacob G; Crisanti, Andrea; Nolan, Tony

    2014-01-01

    The blood meal of the female malaria mosquito is a pre-requisite to egg production and also represents the transmission route for the malaria parasite. The proper and rapid assimilation of proteins and nutrients in the blood meal creates a significant metabolic challenge for the mosquito. To better understand this process we generated a global profile of metabolite changes in response to blood meal of Anopheles gambiae, using Gas Chromatography-Mass Spectrometry (GC-MS). To disrupt a key pathway of amino acid metabolism we silenced the gene phenylalanine hydroxylase (PAH) involved in the conversion of the amino acid phenylalanine into tyrosine. We observed increased levels of phenylalanine and the potentially toxic metabolites phenylpyruvate and phenyllactate as well as a reduction in the amount of tyrosine available for melanin synthesis. This in turn resulted in a significant impairment of the melanotic encapsulation response against the rodent malaria parasite Plasmodium berghei. Furthermore silencing of PAH resulted in a significant impairment of mosquito fertility associated with reduction of laid eggs, retarded vitellogenesis and impaired melanisation of the chorion. Carbidopa, an inhibitor of the downstream enzyme DOPA decarboxylase that coverts DOPA into dopamine, produced similar effects on egg melanization and hatching rate suggesting that egg chorion maturation is mainly regulated via dopamine. This study sheds new light on the role of amino acid metabolism in regulating reproduction and immunity.

  12. Proteomic analysis of Plasmodium falciparum parasites from patients with cerebral and uncomplicated malaria

    PubMed Central

    Bertin, Gwladys I.; Sabbagh, Audrey; Argy, Nicolas; Salnot, Virginie; Ezinmegnon, Sem; Agbota, Gino; Ladipo, Yélé; Alao, Jules M.; Sagbo, Gratien; Guillonneau, François; Deloron, Philippe

    2016-01-01

    Plasmodium falciparum is responsible of severe malaria, including cerebral malaria (CM). During its intra-erythrocytic maturation, parasite-derived proteins are expressed, exported and presented at the infected erythrocyte membrane. To identify new CM-specific parasite membrane proteins, we conducted a mass spectrometry-based proteomic study and compared the protein expression profiles between 9 CM and 10 uncomplicated malaria (UM) samples. Among the 1097 Plasmodium proteins identified, we focused on the 499 membrane-associated and hypothetical proteins for comparative analysis. Filter-based feature selection methods combined with supervised data analysis identified a subset of 29 proteins distinguishing CM and UM samples with high classification accuracy. A hierarchical clustering analysis of these 29 proteins based on the similarity of their expression profiles revealed two clusters of 15 and 14 proteins, respectively under- and over-expressed in CM. Among the over-expressed proteins, the MESA protein is expressed at the erythrocyte membrane, involved in proteins trafficking and in the export of variant surface antigens (VSAs), but without antigenic function. Antigen 332 protein is exported at the erythrocyte, also involved in protein trafficking and in VSAs export, and exposed to the immune system. Our proteomics data demonstrate an association of selected proteins in the pathophysiology of CM. PMID:27245217

  13. Within-host competition and drug resistance in the human malaria parasite Plasmodium falciparum.

    PubMed

    Bushman, Mary; Morton, Lindsay; Duah, Nancy; Quashie, Neils; Abuaku, Benjamin; Koram, Kwadwo A; Dimbu, Pedro Rafael; Plucinski, Mateusz; Gutman, Julie; Lyaruu, Peter; Kachur, S Patrick; de Roode, Jacobus C; Udhayakumar, Venkatachalam

    2016-03-16

    Infections with the malaria parasite Plasmodium falciparum typically comprise multiple strains, especially in high-transmission areas where infectious mosquito bites occur frequently. However, little is known about the dynamics of mixed-strain infections, particularly whether strains sharing a host compete or grow independently. Competition between drug-sensitive and drug-resistant strains, if it occurs, could be a crucial determinant of the spread of resistance. We analysed 1341 P. falciparum infections in children from Angola, Ghana and Tanzania and found compelling evidence for competition in mixed-strain infections: overall parasite density did not increase with additional strains, and densities of individual chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains were reduced in the presence of competitors. We also found that CQR strains exhibited low densities compared with CQS strains (in the absence of chloroquine), which may underlie observed declines of chloroquine resistance in many countries following retirement of chloroquine as a first-line therapy. Our observations support a key role for within-host competition in the evolution of drug-resistant malaria. Malaria control and resistance-management efforts in high-transmission regions may be significantly aided or hindered by the effects of competition in mixed-strain infections. Consideration of within-host dynamics may spur development of novel strategies to minimize resistance while maximizing the benefits of control measures.

  14. Phenylalanine Metabolism Regulates Reproduction and Parasite Melanization in the Malaria Mosquito

    PubMed Central

    Fuchs, Silke; Behrends, Volker; Bundy, Jacob G.; Crisanti, Andrea; Nolan, Tony

    2014-01-01

    The blood meal of the female malaria mosquito is a pre-requisite to egg production and also represents the transmission route for the malaria parasite. The proper and rapid assimilation of proteins and nutrients in the blood meal creates a significant metabolic challenge for the mosquito. To better understand this process we generated a global profile of metabolite changes in response to blood meal of Anopheles gambiae, using Gas Chromatography-Mass Spectrometry (GC-MS). To disrupt a key pathway of amino acid metabolism we silenced the gene phenylalanine hydroxylase (PAH) involved in the conversion of the amino acid phenylalanine into tyrosine. We observed increased levels of phenylalanine and the potentially toxic metabolites phenylpyruvate and phenyllactate as well as a reduction in the amount of tyrosine available for melanin synthesis. This in turn resulted in a significant impairment of the melanotic encapsulation response against the rodent malaria parasite Plasmodium berghei. Furthermore silencing of PAH resulted in a significant impairment of mosquito fertility associated with reduction of laid eggs, retarded vitellogenesis and impaired melanisation of the chorion. Carbidopa, an inhibitor of the downstream enzyme DOPA decarboxylase that coverts DOPA into dopamine, produced similar effects on egg melanization and hatching rate suggesting that egg chorion maturation is mainly regulated via dopamine. This study sheds new light on the role of amino acid metabolism in regulating reproduction and immunity. PMID:24409310

  15. Generation of rodent malaria parasites with a high mutation rate by destructing proofreading activity of DNA polymerase δ.

    PubMed

    Honma, Hajime; Hirai, Makoto; Nakamura, Shota; Hakimi, Hassan; Kawazu, Shin-Ichiro; Palacpac, Nirianne M Q; Hisaeda, Hajime; Matsuoka, Hiroyuki; Kawai, Satoru; Endo, Hiroyoshi; Yasunaga, Teruo; Ohashi, Jun; Mita, Toshihiro; Horii, Toshihiro; Furusawa, Mitsuru; Tanabe, Kazuyuki

    2014-08-01

    Plasmodium falciparum malaria imposes a serious public health concern throughout the tropics. Although genetic tools are principally important to fully investigate malaria parasites, currently available forward and reverse tools are fairly limited. It is expected that parasites with a high mutation rate can readily acquire novel phenotypes/traits; however, they remain an untapped tool for malaria biology. Here, we generated a mutator malaria parasite (hereinafter called a 'malaria mutator'), using site-directed mutagenesis and gene transfection techniques. A mutator Plasmodium berghei line with a defective proofreading 3' → 5' exonuclease activity in DNA polymerase δ (referred to as PbMut) and a control P. berghei line with wild-type DNA polymerase δ (referred to as PbCtl) were maintained by weekly passage in ddY mice for 122 weeks. High-throughput genome sequencing analysis revealed that two PbMut lines had 175-178 mutations and a 86- to 90-fold higher mutation rate than that of a PbCtl line. PbMut, PbCtl, and their parent strain, PbWT, showed similar course of infection. Interestingly, PbMut lost the ability to form gametocytes during serial passages. We believe that the malaria mutator system could provide a novel and useful tool to investigate malaria biology.

  16. Severe malaria is associated with parasite binding to endothelial protein C receptor

    PubMed Central

    Turner, Louise; Lavstsen, Thomas; Berger, Sanne S.; Wang, Christian W.; Petersen, Jens E.V.; Avril, Marion; Brazier, Andrew J.; Freeth, Jim; Jespersen, Jakob S.; Nielsen, Morten A.; Magistrado, Pamela; Lusingu, John; Smith, Joseph D.; Higgins, Matthew K.; Theander, Thor G.

    2013-01-01

    Sequestration of Plasmodium falciparum-infected erythrocytes in host blood vessels is a key triggering event in the pathogenesis of severe childhood malaria, which is responsible for about one million deaths every year1. Sequestration is mediated by specific interactions between members of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family and receptors on the endothelial lining2. Severe malaria is associated with expression of specific PfEMP1 subtypes containing domain cassettes (DC) 8 and 133, but the endothelial receptor for parasites expressing these proteins was unknown4,5. Here, we identify endothelial protein C receptor (EPCR), which mediates cytoprotective effects of activated protein C6, as the endothelial receptor for DC8 and DC13 PfEMP1. We show that EPCR binding is mediated through the N-terminal cysteine-rich interdomain region (CIDRα1) of DC8 and group A PfEMP1 subfamilies and that CIDRα1 interferes with protein C binding to EPCR. This PfEMP1 adhesive property links P. falciparum cytoadhesion to a host receptor involved in anticoagulation and endothelial cytoprotective pathways and has implications for understanding malaria pathology and the development of new malaria interventions. PMID:23739325

  17. Insecticide exposure impacts vector–parasite interactions in insecticide-resistant malaria vectors

    PubMed Central

    Alout, Haoues; Djègbè, Innocent; Chandre, Fabrice; Djogbénou, Luc Salako; Dabiré, Roch Kounbobr; Corbel, Vincent; Cohuet, Anna

    2014-01-01

    Currently, there is a strong trend towards increasing insecticide-based vector control coverage in malaria endemic countries. The ecological consequence of insecticide applications has been mainly studied regarding the selection of resistance mechanisms; however, little is known about their impact on vector competence in mosquitoes responsible for malaria transmission. As they have limited toxicity to mosquitoes owing to the selection of resistance mechanisms, insecticides may also interact with pathogens developing in mosquitoes. In this study, we explored the impact of insecticide exposure on Plasmodium falciparum development in insecticide-resistant colonies of Anopheles gambiae s.s., homozygous for the ace-1 G119S mutation (Acerkis) or the kdr L1014F mutation (Kdrkis). Exposure to bendiocarb insecticide reduced the prevalence and intensity of P. falciparum oocysts developing in the infected midgut of the Acerkis strain, whereas exposure to dichlorodiphenyltrichloroethane reduced only the prevalence of P. falciparum infection in the Kdrkis strain. Thus, insecticide resistance leads to a selective pressure of insecticides on Plasmodium parasites, providing, to our knowledge, the first evidence of genotype by environment interactions on vector competence in a natural Anopheles–Plasmodium combination. Insecticide applications would affect the transmission of malaria in spite of resistance and would reduce to some degree the impact of insecticide resistance on malaria control interventions. PMID:24850924

  18. Malaria Parasite Proteins and Their Role in Alteration of the Structure and Function of Red Blood Cells.

    PubMed

    Proellocks, Nicholas I; Coppel, Ross L; Mohandas, Narla; Cooke, Brian M

    2016-01-01

    Malaria, caused by Plasmodium spp., continues to be a major threat to human health and a significant cause of socioeconomic hardship in many countries. Almost half of the world's population live in malaria-endemic regions and many of them suffer one or more, often life-threatening episodes of malaria every year, the symptoms of which are attributable to replication of the parasite within red blood cells (RBCs). In the case of Plasmodium falciparum, the species responsible for most malaria-related deaths, parasite replication within RBCs is accompanied by striking alterations to the morphological, biochemical and biophysical properties of the host cell that are essential for the parasites' survival. To achieve this, the parasite establishes a unique and extensive protein export network in the infected RBC, dedicating at least 6% of its genome to the process. Understanding the full gamut of proteins involved in this process and the mechanisms by which P. falciparum alters the structure and function of RBCs is important both for a more complete understanding of the pathogenesis of malaria and for development of new therapeutic strategies to prevent or treat this devastating disease. This review focuses on what is currently known about exported parasite proteins, their interactions with the RBC and their likely pathophysiological consequences.

  19. Rapid Optimization of a Peptide Inhibitor of Malaria Parasite Invasion by Comprehensive N-Methyl Scanning*S⃞

    PubMed Central

    Harris, Karen S.; Casey, Joanne L.; Coley, Andrew M.; Karas, John A.; Sabo, Jennifer K.; Tan, Yen Yee; Dolezal, Olan; Norton, Raymond S.; Hughes, Andrew B.; Scanlon, Denis; Foley, Michael

    2009-01-01

    Apical membrane antigen 1 (AMA1) of the malaria parasite Plasmodium falciparum has been implicated in the invasion of host erythrocytes and is an important vaccine candidate. We have previously described a 20-residue peptide, R1, that binds to AMA1 and subsequently blocks parasite invasion. Because this peptide appears to target a site critical for AMA1 function, it represents an important lead compound for anti-malarial drug development. However, the effectiveness of this peptide inhibitor was limited to a subset of parasite isolates, indicating a requirement for broader strain specificity. Furthermore, a barrier to the utility of any peptide as a potential therapeutic is its susceptibility to rapid proteolytic degradation. In this study, we sought to improve the proteolytic stability and AMA1 binding properties of the R1 peptide by systematic methylation of backbone amides (N-methylation). The inclusion of a single N-methyl group in the R1 peptide backbone dramatically increased AMA1 affinity, bioactivity, and proteolytic stability without introducing global structural alterations. In addition, N-methylation of multiple R1 residues further improved these properties. Therefore, we have shown that modifications to a biologically active peptide can dramatically enhance activity. This approach could be applied to many lead peptides or peptide therapeutics to simultaneously optimize a number of parameters. PMID:19164290

  20. A CLAG3 mutation in an amphipathic transmembrane domain alters malaria parasite nutrient channels and confers leupeptin resistance.

    PubMed

    Sharma, Paresh; Rayavara, Kempaiah; Ito, Daisuke; Basore, Katherine; Desai, Sanjay A

    2015-06-01

    Erythrocytes infected with malaria parasites have increased permeability to ions and nutrients, as mediated by the plasmodial surface anion channel (PSAC) and recently linked to parasite clag3 genes. Although the encoded protein is integral to the host membrane, its precise contribution to solute transport remains unclear because it lacks conventional transmembrane domains and does not have homology to ion channel proteins in other organisms. Here, we identified a probable CLAG3 transmembrane domain adjacent to a variant extracellular motif. Helical-wheel analysis revealed strict segregation of polar and hydrophobic residues to opposite faces of a predicted α-helical transmembrane domain, suggesting that the domain lines a water-filled pore. A single CLAG3 mutation (A1210T) in a leupeptin-resistant PSAC mutant falls within this transmembrane domain and may affect pore structure. Allelic-exchange transfection and site-directed mutagenesis revealed that this mutation alters solute selectivity in the channel. The A1210T mutation also reduces the blocking affinity of PSAC inhibitors that bind on opposite channel faces, consistent with global changes in channel structure. Transfected parasites carrying this mutation survived a leupeptin challenge significantly better than a transfection control did. Thus, the A1210T mutation contributes directly to both altered PSAC activity and leupeptin resistance. These findings reveal the molecular basis of a novel antimalarial drug resistance mechanism, provide a framework for determining the channel's composition and structure, and should guide the development of therapies targeting the PSAC.

  1. Does Magnetic Field Affect Malaria Parasite Replication in Human Red Blood Cells?

    NASA Technical Reports Server (NTRS)

    Chanturiya, Alexandr N.; Glushakova, Svetlana; Yin, Dan; Zimmerberg, Joshua

    2004-01-01

    Digestion of red blood cell (RBC) hemoglobin by the malaria parasite results in the formation of paramagnetic hemazoin crystals inside the parasite body. A number of reports suggest that magnetic field interaction with hamazoin crystals significantly reduces the number of infected cells in culture, and thus magnetic field can be used to combat malaria. We studies the effects of magnetic filed on the Plasmodium falciparum asexual life cycle inside RBCs under various experimental conditions. No effect was found during prolonged exposure of infected RBCs to constant magnetic fields up to 6000 Gauss. Infected RBCs were also exposed, under temperature-controlled conditions, to oscillating magnetic fields with frequencies in the range of 500-20000 kHz, and field strength 30-600 Gauss. This exposure often changed the proportion of different parasite stages in treated culture compared to controls. However, no significant effect on parasitemia was observed in treated cultures. This result indicates that the magnetic field effect on Plasmodium falciparum is negligible, or that hypothetical negative and positive effects on different stages within one 48-hour compensate each other.

  2. How malaria parasites reduce the deformability of infected red blood cells.

    PubMed

    Hosseini, S Majid; Feng, James J

    2012-07-03

    The pathogenesis of malaria is largely due to stiffening of the infected red blood cells (RBCs). Contemporary understanding ascribes the loss of RBC deformability to a 10-fold increase in membrane stiffness caused by extra cross-linking in the spectrin network. Local measurements by micropipette aspiration, however, have reported only an increase of ∼3-fold in the shear modulus. We believe the discrepancy stems from the rigid parasite particles inside infected cells, and have carried out numerical simulations to demonstrate this mechanism. The cell membrane is represented by a set of discrete particles connected by linearly elastic springs. The cytosol is modeled as a homogeneous Newtonian fluid, and discretized by particles as in standard smoothed particle hydrodynamics. The malaria parasite is modeled as an aggregate of particles constrained to rigid-body motion. We simulate RBC stretching tests by optical tweezers in three dimensions. The results demonstrate that the presence of a sizeable parasite greatly reduces the ability of RBCs to deform under stretching. With the solid inclusion, the observed loss of deformability can be predicted quantitatively using the local membrane elasticity measured by micropipettes.

  3. Leukocyte profiles for western fence lizards, Sceloporus occidentalis, naturally infected by the malaria parasite Plasmodium mexicanum.

    PubMed

    Motz, Victoria L; Lewis, William D; Vardo-Zalik, Anne M

    2014-10-01

    Plasmodium mexicanum is a malaria parasite that naturally infects the western fence lizard, Sceloporus occidentalis , in northern California. We set out to determine whether lizards naturally infected with this malaria parasite have different leukocyte profiles, indicating an immune response to infection. We used 29 naturally infected western fence lizards paired with uninfected lizards based on sex, snout-to-vent length, tail status, and the presence-absence of ectoparasites such as ticks and mites, as well as the presence-absence of another hemoparasite, Schellackia occidentalis. Complete white blood cell (WBC) counts were conducted on blood smears stained with Giemsa, and the proportion of granulocytes per microliter of blood was estimated using the Avian Leukopet method. The abundance of each WBC class (lymphocytes, monocytes, heterophils, eosinophils, and basophils) in infected and uninfected lizards was compared to determine whether leukocyte densities varied with infection status. We found that the numbers of WBCs and lymphocytes per microliter of blood significantly differed (P < 0.05) between the 2 groups for females but not for males, whereas parasitemia was significantly correlated with lymphocyte counts for males, but not for females. This study supports the theory that infection with P. mexicanum stimulates the lizard's immune response to increase the levels of circulating WBCs, but what effect this has on the biology of the parasite remains unclear.

  4. Species concepts and malaria parasites: detecting a cryptic species of Plasmodium.

    PubMed Central

    Perkins, S L

    2000-01-01

    Species of malaria parasite (phylum Apicomplexa: genus Plasmodium) have traditionally been described using the similarity species concept (based primarily on differences in morphological or life-history characteristics). The biological species concept (reproductive isolation) and phylogenetic species concept (based on monophyly) have not been used before in defining species of Plasmodium. Plasmodium azurophilum, described from Anolis lizards in the eastern Caribbean, is actually a two-species cryptic complex. The parasites were studied from eight islands, from Puerto Rico in the north to Grenada in the south. Morphology of the two species is very similar (differences are indistinguishable to the eye), but one infects only erythrocytes and the other only white blood cells. Molecular data for the cytochrome b gene reveal that the two forms are reproductively isolated; distinct haplotypes are present on each island and are never shared between the erythrocyte-infecting and leucocyte-infecting species. Each forms a monophyletic lineage indicating that they diverged before becoming established in the anoles of the eastern Caribbean. This comparison of the similarity, biological and phylogenetic species concepts for malaria parasites reveals the limited value of using only similarity measures in defining protozoan species. PMID:11413654

  5. Establishment of exotic parasites: the origins and characteristics of an avian malaria community in an isolated island avifauna.

    PubMed

    Ewen, John G; Bensch, Staffan; Blackburn, Tim M; Bonneaud, Camille; Brown, Ruth; Cassey, Phillip; Clarke, Rohan H; Pérez-Tris, Javier

    2012-10-01

    Knowledge of the processes favouring the establishment of exotic parasites is poor. Herein, we test the characteristics of successful exotic parasites that have co-established in the remote island archipelago of New Zealand, due to the introduction of numerous avian host species. Our results show that avian malaria parasites (AM; parasites of the genus Plasmodium) that successfully invaded are more globally generalist (both geographically widespread and with a broad taxonomic range of hosts) than AM parasites not co-introduced to New Zealand. Furthermore, the successful AM parasites are presently more prevalent in their native range than AM parasites found in the same native range but not co-introduced to New Zealand. This has resulted in an increased number and greater taxonomic diversity of AM parasites now in New Zealand.

  6. A genomic glimpse of aminoacyl-tRNA synthetases in malaria parasite Plasmodium falciparum

    PubMed Central

    2009-01-01

    Background Plasmodium parasites are causative agents of malaria which affects >500 million people and claims ~2 million lives annually. The completion of Plasmodium genome sequencing and availability of PlasmoDB database has provided a platform for systematic study of parasite genome. Aminoacyl-tRNA synthetases (aaRSs) are pivotal enzymes for protein translation and other vital cellular processes. We report an extensive analysis of the Plasmodium falciparum genome to identify and classify aaRSs in this organism. Results Using various computational and bioinformatics tools, we have identified 37 aaRSs in P. falciparum. Our key observations are: (i) fraction of proteome dedicated to aaRSs in P. falciparum is very high compared to many other organisms; (ii) 23 out of 37 Pf-aaRS sequences contain signal peptides possibly directing them to different cellular organelles; (iii) expression profiles of Pf-aaRSs vary considerably at various life cycle stages of the parasite; (iv) several PfaaRSs posses very unusual domain architectures; (v) phylogenetic analyses reveal evolutionary relatedness of several parasite aaRSs to bacterial and plants aaRSs; (vi) three dimensional structural modelling has provided insights which could be exploited in inhibitor discovery against parasite aaRSs. Conclusion We have identified 37 Pf-aaRSs based on our bioinformatics analysis. Our data reveal several unique attributes in this protein family. We have annotated all 37 Pf-aaRSs based on predicted localization, phylogenetics, domain architectures and their overall protein expression profiles. The sets of distinct features elaborated in this work will provide a platform for experimental dissection of this family of enzymes, possibly for the discovery of novel drugs against malaria. PMID:20042123

  7. A more appropriate white blood cell count for estimating malaria parasite density in Plasmodium vivax patients in northeastern Myanmar.

    PubMed

    Liu, Huaie; Feng, Guohua; Zeng, Weilin; Li, Xiaomei; Bai, Yao; Deng, Shuang; Ruan, Yonghua; Morris, James; Li, Siman; Yang, Zhaoqing; Cui, Liwang

    2016-04-01

    The conventional method of estimating parasite densities employ an assumption of 8000 white blood cells (WBCs)/μl. However, due to leucopenia in malaria patients, this number appears to overestimate parasite densities. In this study, we assessed the accuracy of parasite density estimated using this assumed WBC count in eastern Myanmar, where Plasmodium vivax has become increasingly prevalent. From 256 patients with uncomplicated P. vivax malaria, we estimated parasite density and counted WBCs by using an automated blood cell counter. It was found that WBC counts were not significantly different between patients of different gender, axillary temperature, and body mass index levels, whereas they were significantly different between age groups of patients and the time points of measurement. The median parasite densities calculated with the actual WBC counts (1903/μl) and the assumed WBC count of 8000/μl (2570/μl) were significantly different. We demonstrated that using the assumed WBC count of 8000 cells/μl to estimate parasite densities of P. vivax malaria patients in this area would lead to an overestimation. For P. vivax patients aged five years and older, an assumed WBC count of 5500/μl best estimated parasite densities. This study provides more realistic assumed WBC counts for estimating parasite densities in P. vivax patients from low-endemicity areas of Southeast Asia.

  8. Reciprocal specialization in multihost malaria parasite communities of birds: a temperate-tropical comparison.

    PubMed

    Svensson-Coelho, Maria; Ellis, Vincenzo A; Loiselle, Bette A; Blake, John G; Ricklefs, Robert E

    2014-11-01

    How specialization of consumers with respect to resources varies with respect to latitude is poorly understood. Coexistence of many species in the tropics might be possible only if specialization also increases. Alternatively, lower average abundance of more diverse biotic resources in the tropics might force consumers to become more generalized foragers. We examine levels of reciprocal specialization in an antagonistic system-avian malaria-to determine whether the number of host species used and/or parasite lineages harbored differ between a temperate and a tropical assemblage. We evaluate the results of network analysis, which can incorporate both bird and parasite perspectives on specialization in one quantitative index, in comparison to null models. Specialization was significantly greater in both sample sites than predicted from null models. We found evidence for lower per-host species parasite diversity in temperate compared to tropical birds. However, specialization did not differ between the tropical and temperate sites from the parasite perspective. We supplemented the network analysis with estimates of specialization that incorporate phylogenetic relationships of associates and found no differences between sites. Thus, our analyses indicate that specialization within an antagonistic host-parasite (resource-consumer) system varies little between tropical and temperate localities.

  9. Effect of Plasmodium falciparum malaria parasites on haematological parameters in Ghanaian children.

    PubMed

    Squire, D S; Asmah, R H; Brown, C A; Adjei, D N; Obeng-Nkrumah, N; Ayeh-Kumi, P F

    2016-06-01

    Malaria is hyper-endemic in Ghana. Haematological alterations in the disease pathology may offer complimentary criteria to improve clinical and microscopy diagnosis. Our primary outcome was to evaluate haematological parameters in children with Plasmodium falciparum infections and report their predictive risk and diagnostic performance for malaria infections in Ghana. Haematological data, including thin and thick blood films were examined for children less than 12 years of age in a multicenter-based active case finding approach. Haematological changes were common in P. falciparum infected children and more pronounced in severe malaria cases. More so, a unit increase in parasiteamia increased the odds for severe malaria infection by 93 % [OR, 95 % CI: 1.93 (1.28-2.91); P value = 0.02]. In multivariate regression, low haemoglobin was a significant haematological change in predicting P. falciparum infections [OR, 95 % CI: 3.20 (1.26-7.09); P value = 0.001]. Low haemoglobin levels <11 g/dl was the most reliable indicator for P. falciparum infections [with a sensitivity of (64 %), specificity (71 %), positive predictive value (83 %) and likelihood ratio (2.2)]-even when evaluated in combination with leucocytosis, lymphocytopaenia and high neutrophil counts >7,500 µL. In malaria endemic settings, low haemoglobin concentration (<11 g/dl) in children with febrile illness should prompt a more diligent search for the malarial parasite to limit the misuse and abuse of anti-malarial drugs.

  10. Development of transgenic fungi that kill human malaria parasites in mosquitoes.

    PubMed

    Fang, Weiguo; Vega-Rodríguez, Joel; Ghosh, Anil K; Jacobs-Lorena, Marcelo; Kang, Angray; St Leger, Raymond J

    2011-02-25

    Metarhizium anisopliae infects mosquitoes through the cuticle and proliferates in the hemolymph. To allow M. anisopliae to combat malaria in mosquitoes with advanced malaria infections, we produced recombinant strains expressing molecules that target sporozoites as they travel through the hemolymph to the salivary glands. Eleven days after a Plasmodium-infected blood meal, mosquitoes were treated with M. anisopliae expressing salivary gland and midgut peptide 1 (SM1), which blocks attachment of sporozoites to salivary glands; a single-chain antibody that agglutinates sporozoites; or scorpine, which is an antimicrobial toxin. These reduced sporozoite counts by 71%, 85%, and 90%, respectively. M. anisopliae expressing scorpine and an [SM1](8):scorpine fusion protein reduced sporozoite counts by 98%, suggesting that Metarhizium-mediated inhibition of Plasmodium development could be a powerful weapon for combating malaria.

  11. Evidence of a Mild Mutator Phenotype in Cambodian Plasmodium falciparum Malaria Parasites.

    PubMed

    Lee, Andrew H; Fidock, David A

    2016-01-01

    Malaria control efforts have been continuously stymied by drug-resistant strains of Plasmodium falciparum, which typically originate in Southeast Asia prior to spreading into high-transmission settings in Africa. One earlier proposed explanation for Southeast Asia being a hotbed of resistance has been the hypermutability or "Accelerated Resistance to Multiple Drugs" (ARMD) phenotype, whereby multidrug-resistant Southeast Asian parasites were reported to exhibit 1,000-fold higher rates of resistance to unrelated antimalarial agents when compared to drug-sensitive parasites. However, three recent studies do not recapitulate this hypermutability phenotype. Intriguingly, genome sequencing of recently derived multidrug-resistant Cambodian isolates has identified a high proportion of DNA repair gene mutations in multidrug-resistant parasites, suggesting their potential role in shaping local parasite evolution. By adapting fluctuation assays for use in P. falciparum, we have examined the in vitro mutation rates of five recent Cambodian isolates and three reference laboratory strains. For these studies we also generated a knockout parasite line lacking the DNA repair factor Exonuclease I. In these assays, parasites were typed for their ability to acquire resistance to KAE609, currently in advanced clinical trials, yielding 13 novel mutations in the Na+/H+-ATPase PfATP4, the primary resistance determinant. We observed no evidence of hypermutability. Instead, we found evidence of a mild mutator (up to a 3.4-fold increase in mutation rate) phenotype in two artemisinin-resistant Cambodian isolates, which carry DNA repair gene mutations. We observed that one such mutation in the Mismatch Repair protein Mlh1 contributes to the mild mutator phenotype when modeled in yeast (scmlh1-P157S). Compared to basal rates of mutation, a mild mutator phenotype may provide a greater overall benefit for parasites in Southeast Asia in terms of generating drug resistance without incurring

  12. Nuclear receptors: emerging drug targets for parasitic diseases.

    PubMed

    Wang, Zhu; Schaffer, Nathaniel E; Kliewer, Steven A; Mangelsdorf, David J

    2017-02-06

    Parasitic worms infect billions of people worldwide. Current treatments rely on a small group of drugs that have been used for decades. A shortcoming of these drugs is their inability to target the intractable infectious stage of the parasite. As well-known therapeutic targets in mammals, nuclear receptors have begun to be studied in parasitic worms, where they are widely distributed and play key roles in governing metabolic and developmental transcriptional networks. One such nuclear receptor is DAF-12, which is required for normal nematode development, including the all-important infectious stage. Here we review the emerging literature that implicates DAF-12 and potentially other nuclear receptors as novel anthelmintic targets.

  13. Targeting male mosquito swarms to control malaria vector density

    PubMed Central

    Sawadogo, Simon Peguedwinde; Niang, Abdoulaye; Bilgo, Etienne; Millogo, Azize; Maïga, Hamidou; Dabire, Roch K.; Tripet, Frederic; Diabaté, Abdoulaye

    2017-01-01

    Malaria control programs are being jeopardized by the spread of insecticide resistance in mosquito vector populations. It has been estimated that the spread of resistance could lead to an additional 120000 deaths per year, and interfere with the prospects for sustained control or the feasibility of achieving malaria elimination. Another complication for the development of resistance management strategies is that, in addition to insecticide resistance, mosquito behavior evolves in a manner that diminishes the impact of LLINs and IRS. Mosquitoes may circumvent LLIN and IRS control through preferential feeding and resting outside human houses and/or being active earlier in the evening before people go to sleep. Recent developments in our understanding of mosquito swarming suggest that new tools targeting mosquito swarms can be designed to cut down the high reproductive rate of malaria vectors. Targeting swarms of major malaria vectors may provide an effective control method to counteract behavioral resistance developed by mosquitoes. Here, we evaluated the impact of systematic spraying of swarms of Anopheles gambiae s.l. using a mixed carbamate and pyrethroid aerosol. The impact of this intervention on vector density, female insemination rates and the age structure of males was measured. We showed that the resulting mass killing of swarming males and some mate-seeking females resulted in a dramatic 80% decrease in population size compared to a control population. A significant decrease in female insemination rate and a significant shift in the age structure of the male population towards younger males incapable of mating were observed. This paradigm-shift study therefore demonstrates that targeting primarily males rather than females, can have a drastic impact on mosquito population. PMID:28278212

  14. Landscape and Dynamics of Transcription Initiation in the Malaria Parasite Plasmodium falciparum.

    PubMed

    Adjalley, Sophie H; Chabbert, Christophe D; Klaus, Bernd; Pelechano, Vicent; Steinmetz, Lars M

    2016-03-15

    A comprehensive map of transcription start sites (TSSs) across the highly AT-rich genome of P. falciparum would aid progress toward deciphering the molecular mechanisms that underlie the timely regulation of gene expression in this malaria parasite. Using high-throughput sequencing technologies, we generated a comprehensive atlas of transcription initiation events at single-nucleotide resolution during the parasite intra-erythrocytic developmental cycle. This detailed analysis of TSS usage enabled us to define architectural features of plasmodial promoters. We demonstrate that TSS selection and strength are constrained by local nucleotide composition. Furthermore, we provide evidence for coordinate and stage-specific TSS usage from distinct sites within the same transcription unit, thereby producing transcript isoforms, a subset of which are developmentally regulated. This work offers a framework for further investigations into the interactions between genomic sequences and regulatory factors governing the complex transcriptional program of this major human pathogen.

  15. Crystallization and preliminary structural characterization of the two actin isoforms of the malaria parasite

    PubMed Central

    Bhargav, Saligram Prabhakar; Vahokoski, Juha; Kumpula, Esa-Pekka; Kursula, Inari

    2013-01-01

    Malaria is a devastating disease caused by apicomplexan parasites of the genus Plasmodium that use a divergent actin-powered molecular motor for motility and invasion. Plasmodium actin differs from canonical actins in sequence, structure and function. Here, the purification, crystallization and secondary-structure analysis of the two Plasmodium actin isoforms are presented. The recombinant parasite actins were folded and could be purified to homogeneity. Plasmodium actins I and II were crystallized in complex with the gelsolin G1 domain; the crystals diffracted to resolutions of 1.19 and 2.2 Å and belonged to space groups P212121 and P21, respectively, each with one complex in the asymmetric unit. PMID:24100575

  16. Drug target identification in intracellular and extracellular protozoan parasites.

    PubMed

    Müller, Joachim; Hemphill, Andrew

    2011-01-01

    The increasing demand for novel anti-parasitic drugs due to resistance formation to well-established chemotherapeutically important compounds has increased the demands for a better understanding of the mechanism(s) of action of existing drugs and of drugs in development. While different approaches have been developed to identify the targets and thus mode of action of anti-parasitic compounds, it has become clear that many drugs act not only on one, but possibly several parasite molecules or even pathways. Ideally, these targets are not present in any cells of the host. In the case of apicomplexan parasites, the unique apicoplast, provides a suitable target for compounds binding to DNA or ribosomal RNA of prokaryotic origin. In the case of intracellular pathogens, a given drug might not only affect the pathogen by directly acting on parasite-associated targets, but also indirectly, by altering the host cell physiology. This in turn could affect the parasite development and lead to parasite death. In this review, we provide an overview of strategies for target identification, and present examples of selected drug targets, ranging from proteins to nucleic acids to intermediary metabolism.

  17. Individual genetic diversity and probability of infection by avian malaria parasites in blue tits (Cyanistes caeruleus).

    PubMed

    Ferrer, E S; García-Navas, V; Sanz, J J; Ortego, J

    2014-11-01

    Understanding the importance of host genetic diversity for coping with parasites and infectious diseases is a long-standing goal in evolutionary biology. Here, we study the association between probability of infection by avian malaria (Plasmodium relictum) and individual genetic diversity in three blue tit (Cyanistes caeruleus) populations that strongly differ in prevalence of this parasite. For this purpose, we screened avian malaria infections and genotyped 789 blue tits across 26 microsatellite markers. We used two different arrays of markers: 14 loci classified as neutral and 12 loci classified as putatively functional. We found a significant relationship between probability of infection and host genetic diversity estimated at the subset of neutral markers that was not explained by strong local effects and did not differ among the studied populations. This relationship was not linear, and probability of infection increased up to values of homozygosity by locus (HL) around 0.15, reached a plateau at values of HL from 0.15 to 0.40 and finally declined among a small proportion of highly homozygous individuals (HL > 0.4). We did not find evidence for significant identity disequilibrium, which may have resulted from a low variance of inbreeding in the study populations and/or the small power of our set of markers to detect it. A combination of subtle positive and negative local effects and/or a saturation threshold in the association between probability of infection and host genetic diversity in combination with increased resistance to parasites in highly homozygous individuals may explain the observed negative quadratic relationship. Overall, our study highlights that parasites play an important role in shaping host genetic variation and suggests that the use of large sets of neutral markers may be more appropriate for the study of heterozygosity-fitness correlations.

  18. Infectivity of Plasmodium falciparum in Malaria-Naive Individuals Is Related to Knob Expression and Cytoadherence of the Parasite

    PubMed Central

    Stanisic, Danielle I.; Gerrard, John; Fink, James; Griffin, Paul M.; Liu, Xue Q.; Sundac, Lana; Sekuloski, Silvana; Rodriguez, Ingrid B.; Pingnet, Jolien; Yang, Yuedong; Zhou, Yaoqi; Trenholme, Katharine R.; Wang, Claire Y. T.; Hackett, Hazel; Chan, Jo-Anne A.; Langer, Christine; Hanssen, Eric; Hoffman, Stephen L.; Beeson, James G.; McCarthy, James S.

    2016-01-01

    Plasmodium falciparum is the most virulent human malaria parasite because of its ability to cytoadhere in the microvasculature. Nonhuman primate studies demonstrated relationships among knob expression, cytoadherence, and infectivity. This has not been examined in humans. Cultured clinical-grade P. falciparum parasites (NF54, 7G8, and 3D7B) and ex vivo-derived cell banks were characterized. Knob and knob-associated histidine-rich protein expression, CD36 adhesion, and antibody recognition of parasitized erythrocytes (PEs) were evaluated. Parasites from the cell banks were administered to malaria-naive human volunteers to explore infectivity. For the NF54 and 3D7B cell banks, blood was collected from the study participants for in vitro characterization. All parasites were infective in vivo. However, infectivity of NF54 was dramatically reduced. In vitro characterization revealed that unlike other cell bank parasites, NF54 PEs lacked knobs and did not cytoadhere. Recognition of NF54 PEs by immune sera was observed, suggesting P. falciparum erythrocyte membrane protein 1 expression. Subsequent recovery of knob expression and CD36-mediated adhesion were observed in PEs derived from participants infected with NF54. Knobless cell bank parasites have a dramatic reduction in infectivity and the ability to adhere to CD36. Subsequent infection of malaria-naive volunteers restored knob expression and CD36-mediated cytoadherence, thereby showing that the human environment can modulate virulence. PMID:27382019

  19. Parasite sources and sinks in a patched Ross-Macdonald malaria model with human and mosquito movement: Implications for control.

    PubMed

    Ruktanonchai, Nick W; Smith, David L; De Leenheer, Patrick

    2016-09-01

    We consider the dynamics of a mosquito-transmitted pathogen in a multi-patch Ross-Macdonald malaria model with mobile human hosts, mobile vectors, and a heterogeneous environment. We show the existence of a globally stable steady state, and a threshold that determines whether a pathogen is either absent from all patches, or endemic and present at some level in all patches. Each patch is characterized by a local basic reproduction number, whose value predicts whether the disease is cleared or not when the patch is isolated: patches are known as "demographic sinks" if they have a local basic reproduction number less than one, and hence would clear the disease if isolated; patches with a basic reproduction number above one would sustain endemic infection in isolation, and become "demographic sources" of parasites when connected to other patches. Sources are also considered focal areas of transmission for the larger landscape, as they export excess parasites to other areas and can sustain parasite populations. We show how to determine the various basic reproduction numbers from steady state estimates in the patched network and knowledge of additional model parameters, hereby identifying parasite sources in the process. This is useful in the context of control of the infection on natural landscapes, because a commonly suggested strategy is to target focal areas, in order to make their corresponding basic reproduction numbers less than one, effectively turning them into sinks. We show that this is indeed a successful control strategy-albeit a conservative and possibly expensive one-in case either the human host, or the vector does not move. However, we also show that when both humans and vectors move, this strategy may fail, depending on the specific movement patterns exhibited by hosts and vectors.

  20. Pooled sequencing and rare variant association tests for identifying the determinants of emerging drug resistance in malaria parasites.

    PubMed

    Cheeseman, Ian H; McDew-White, Marina; Phyo, Aung Pyae; Sriprawat, Kanlaya; Nosten, François; Anderson, Timothy J C

    2015-04-01

    We explored the potential of pooled sequencing to swiftly and economically identify selective sweeps due to emerging artemisinin (ART) resistance in a South-East Asian malaria parasite population. ART resistance is defined by slow parasite clearance from the blood of ART-treated patients and mutations in the kelch gene (chr. 13) have been strongly implicated to play a role. We constructed triplicate pools of 70 slow-clearing (resistant) and 70 fast-clearing (sensitive) infections collected from the Thai-Myanmar border and sequenced these to high (∼ 150-fold) read depth. Allele frequency estimates from pools showed almost perfect correlation (Lin's concordance = 0.98) with allele frequencies at 93 single nucleotide polymorphisms measured directly from individual infections, giving us confidence in the accuracy of this approach. By mapping genome-wide divergence (FST) between pools of drug-resistant and drug-sensitive parasites, we identified two large (>150 kb) regions (on chrs. 13 and 14) and 17 smaller candidate genome regions. To identify individual genes within these genome regions, we resequenced an additional 38 parasite genomes (16 slow and 22 fast-clearing) and performed rare variant association tests. These confirmed kelch as a major molecular marker for ART resistance (P = 6.03 × 10(-6)). This two-tier approach is powerful because pooled sequencing rapidly narrows down genome regions of interest, while targeted rare variant association testing within these regions can pinpoint the genetic basis of resistance. We show that our approach is robust to recurrent mutation and the generation of soft selective sweeps, which are predicted to be common in pathogen populations with large effective population sizes, and may confound more traditional gene mapping approaches.

  1. Novel acetylcholinesterase target site for malaria mosquito control.

    PubMed

    Pang, Yuan-Ping

    2006-12-20

    Current anticholinesterase pesticides were developed during World War II and are toxic to mammals because they target a catalytic serine residue of acetylcholinesterases (AChEs) in insects and in mammals. A sequence analysis of AChEs from 73 species and a three-dimensional model of a malaria-carrying mosquito (Anopheles gambiae) AChE (AgAChE) reported here show that C286 and R339 of AgAChE are conserved at the opening of the active site of AChEs in 17 invertebrate and four insect species, respectively. Both residues are absent in the active site of AChEs of human, monkey, dog, cat, cattle, rabbit, rat, and mouse. The 17 invertebrates include house mosquito, Japanese encephalitis mosquito, African malaria mosquito, German cockroach, Florida lancelet, rice leaf beetle, African bollworm, beet armyworm, codling moth, diamondback moth, domestic silkworm, honey bee, oat or wheat aphid, the greenbug, melon or cotton aphid, green peach aphid, and English grain aphid. The four insects are house mosquito, Japanese encephalitis mosquito, African malaria mosquito, and German cockroach. The discovery of the two invertebrate-specific residues enables the development of effective and safer pesticides that target the residues present only in mosquito AChEs rather than the ubiquitous serine residue, thus potentially offering an effective control of mosquito-borne malaria. Anti-AgAChE pesticides can be designed to interact with R339 and subsequently covalently bond to C286. Such pesticides would be toxic to mosquitoes but not to mammals.

  2. The role of palmitoylation for protein recruitment to the inner membrane complex of the malaria parasite.

    PubMed

    Wetzel, Johanna; Herrmann, Susann; Swapna, Lakshmipuram Seshadri; Prusty, Dhaneswar; John Peter, Arun T; Kono, Maya; Saini, Sidharth; Nellimarla, Srinivas; Wong, Tatianna Wai Ying; Wilcke, Louisa; Ramsay, Olivia; Cabrera, Ana; Biller, Laura; Heincke, Dorothee; Mossman, Karen; Spielmann, Tobias; Ungermann, Christian; Parkinson, John; Gilberger, Tim W

    2015-01-16

    To survive and persist within its human host, the malaria parasite Plasmodium falciparum utilizes a battery of lineage-specific innovations to invade and multiply in human erythrocytes. With central roles in invasion and cytokinesis, the inner membrane complex, a Golgi-derived double membrane structure underlying the plasma membrane of the parasite, represents a unique and unifying structure characteristic to all organisms belonging to a large phylogenetic group called Alveolata. More than 30 structurally and phylogenetically distinct proteins are embedded in the IMC, where a portion of these proteins displays N-terminal acylation motifs. Although N-terminal myristoylation is catalyzed co-translationally within the cytoplasm of the parasite, palmitoylation takes place at membranes and is mediated by palmitoyl acyltransferases (PATs). Here, we identify a PAT (PfDHHC1) that is exclusively localized to the IMC. Systematic phylogenetic analysis of the alveolate PAT family reveals PfDHHC1 to be a member of a highly conserved, apicomplexan-specific clade of PATs. We show that during schizogony this enzyme has an identical distribution like two dual-acylated, IMC-localized proteins (PfISP1 and PfISP3). We used these proteins to probe into specific sequence requirements for IMC-specific membrane recruitment and their interaction with differentially localized PATs of the parasite.

  3. Sensitive and accurate quantification of human malaria parasites using droplet digital PCR (ddPCR)

    PubMed Central

    Koepfli, Cristian; Nguitragool, Wang; Hofmann, Natalie E.; Robinson, Leanne J.; Ome-Kaius, Maria; Sattabongkot, Jetsumon; Felger, Ingrid; Mueller, Ivo

    2016-01-01

    Accurate quantification of parasite density in the human host is essential for understanding the biology and pathology of malaria. Semi-quantitative molecular methods are widely applied, but the need for an external standard curve makes it difficult to compare parasite density estimates across studies. Droplet digital PCR (ddPCR) allows direct quantification without the need for a standard curve. ddPCR was used to diagnose and quantify P. falciparum and P. vivax in clinical patients as well as in asymptomatic samples. ddPCR yielded highly reproducible measurements across the range of parasite densities observed in humans, and showed higher sensitivity than qPCR to diagnose P. falciparum, and equal sensitivity for P. vivax. Correspondence in quantification was very high (>0.95) between qPCR and ddPCR. Quantification between technical replicates by ddPCR differed 1.5–1.7-fold, compared to 2.4–6.2-fold by qPCR. ddPCR facilitates parasite quantification for studies where absolute densities are required, and will increase comparability of results reported from different laboratories. PMID:27982132

  4. Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium.

    PubMed

    Rao, Pavitra N; Santos, Jorge M; Pain, Arnab; Templeton, Thomas J; Mair, Gunnar R

    2016-10-01

    The technical challenges of working with the sexual stages of the malaria parasite Plasmodium have hindered the characterization of sexual stage antigens in the quest for a successful malaria transmission-blocking vaccine. One such predicted and largely uncharacterized group of sexual stage candidate antigens is the CPW-WPC family of proteins. CPW-WPC proteins are named for a characteristic domain that contains two conserved motifs, CPxxW and WPC. Conserved across Apicomplexa, this family is also present earlier in the Alveolata in the free-living, non-parasitophorous, photosynthetic chromerids, Chromera and Vitrella. In Plasmodium falciparum and Plasmodium berghei blood stage parasites, the transcripts of all nine cpw-wpc genes have been detected in gametocytes. RNA immunoprecipitation followed by reverse transcriptase-PCR reveals all P. berghei cpw-wpc transcripts to be bound by the translational repressors DOZI and CITH, and thus are likely under translational control prior to transmission from the rodent host to the mosquito vector in P. berghei. The GFP tagging of two endogenous P. berghei genes confirmed translational silencing in the gametocyte and translation in ookinetes. By establishing a luciferase transgene assay, we show that the 3' untranslated region of PF3D7_1331400 controls protein expression of this reporter in P. falciparum gametocytes. Our analyses suggest that cpw-wpc genes are translationally silenced in gametocytes across Plasmodium spp. and activated during ookinete formation and thus may have a role in transmission to the mosquito.

  5. cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission

    PubMed Central

    Thompson, Eloise; Breil, Florence; Lorthiois, Audrey; Dupuy, Florian; Cummings, Ross; Duffier, Yoann; Corbett, Yolanda; Mercereau-Puijalon, Odile; Vernick, Kenneth; Taramelli, Donatella; Baker, David A.; Langsley, Gordon; Lavazec, Catherine

    2015-01-01

    Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE) that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites. PMID:25951195

  6. Invasion of mosquito salivary glands by malaria parasites: Prerequisites and defense strategies

    PubMed Central

    Mueller, Ann-Kristin; Kohlhepp, Florian; Hammerschmidt, Christiane; Michel, Kristin

    2010-01-01

    The interplay between vector and pathogen is essential for vector-borne disease transmission. Dissecting the molecular basis of refractoriness of some vectors may pave the way to novel disease control mechanisms. A pathogen often needs to overcome several physical barriers, such as the peritrophic matrix, midgut epithelium and salivary glands. Additionally, the arthropod vector elicites immune responses that can severely limit transmission success. One important step in the transmission of most vector-borne diseases is the entry of the disease agent into the salivary glands of its arthropod vector. The salivary glands of blood-feeding arthropods produce a complex mixture of molecules that facilitate blood feeding by inhibition of the host haemostasis, inflammation and immune reactions. Pathogen entry into salivary glands is a receptor-mediated process, which requires molecules on the surface of the pathogen and salivary gland. In most cases, the nature of these molecules remains unknown. Recent advances in our understanding of malaria parasite entry into mosquito salivary glands strongly suggests that specific carbohydrate molecules on the salivary gland surface function as docking receptors for malaria parasites. PMID:20621627

  7. Target Malaria Has a Killer in Its Sights: Eliminating the world?s deadliest disease has been a priority for decades, and, thanks to innovative gene-drive technology, Target Malaria is getting closer to achieving that goal.

    PubMed

    Banks, Jim

    2016-01-01

    The mosquito is the deadliest animal in the world (Figure 1). It is the main carrier of parasites that cause malaria, which is a bigger killer than any other disease in history; in fact, some blame malaria for the deaths of half the humans who have ever lived. Today, malaria continues to have a devastating effect on the health of millions of people.

  8. On the Diversity of Malaria Parasites in African Apes and the Origin of Plasmodium falciparum from Bonobos

    PubMed Central

    Pacheco, M. Andreina; Mugisha, Lawrence; André, Claudine; Halbwax, Michel; Fischer, Anne; Krief, Jean-Michel; Kasenene, John M.; Crandfield, Mike; Cornejo, Omar E.; Chavatte, Jean-Marc; Lin, Clara; Letourneur, Franck; Grüner, Anne Charlotte; McCutchan, Thomas F.; Rénia, Laurent; Snounou, Georges

    2010-01-01

    The origin of Plasmodium falciparum, the etiological agent of the most dangerous forms of human malaria, remains controversial. Although investigations of homologous parasites in African Apes are crucial to resolve this issue, studies have been restricted to a chimpanzee parasite related to P. falciparum, P. reichenowi, for which a single isolate was available until very recently. Using PCR amplification, we detected Plasmodium parasites in blood samples from 18 of 91 individuals of the genus Pan, including six chimpanzees (three Pan troglodytes troglodytes, three Pan t. schweinfurthii) and twelve bonobos (Pan paniscus). We obtained sequences of the parasites' mitochondrial genomes and/or from two nuclear genes from 14 samples. In addition to P. reichenowi, three other hitherto unknown lineages were found in the chimpanzees. One is related to P. vivax and two to P. falciparum that are likely to belong to distinct species. In the bonobos we found P. falciparum parasites whose mitochondrial genomes indicated that they were distinct from those present in humans, and another parasite lineage related to P. malariae. Phylogenetic analyses based on this diverse set of Plasmodium parasites in African Apes shed new light on the evolutionary history of P. falciparum. The data suggested that P. falciparum did not originate from P. reichenowi of chimpanzees (Pan troglodytes), but rather evolved in bonobos (Pan paniscus), from which it subsequently colonized humans by a host-switch. Finally, our data and that of others indicated that chimpanzees and bonobos maintain malaria parasites, to which humans are susceptible, a factor of some relevance to the renewed efforts to eradicate malaria. PMID:20169187

  9. Non-specific Patterns of Vector, Host, and Avian Malaria Parasite Associations in a Central African Rainforest

    PubMed Central

    Njabo, Kevin Y; Cornel, Anthony J.; Bonneaud, Camille; Toffelmier, Erin; Sehgal, R.N.M.; Valkiūnas, Gediminas; Russell, Andrew F.; Smith, Thomas B.

    2010-01-01

    Malaria parasites use vertebrate hosts for asexual multiplication and Culicidae mosquitoes for sexual and asexual development, yet the literature on avian malaria remains biased towards examining the asexual stages of the life cycle in birds. To fully understand parasite evolution and mechanism of malaria transmission, knowledge of all three components of the vector-host-parasite system is essential. Little is known about avian parasite-vector associations in African rainforests where numerous species of birds are infected with avian haemosporidians of the genera Plasmodium and Haemoproteus. Here we applied high resolution melt qPCR-based techniques and nested PCR to examine the occurrence and diversity of mitochondrial cytochrome b gene sequences of haemosporidian parasites in wild-caught mosquitoes sampled across 12 sites in Cameroon. In all, 3134 mosquitoes representing 27 species were screened. Mosquitoes belonging to four genera (Aedes, Coquillettidia, Culex, and Mansonia) were infected with twenty-two parasite lineages (18 Plasmodium spp. and 4 Haemoproteus spp.). Presence of Plasmodium sporozoites in salivary glands of Coquillettidia aurites further established these mosquitoes as likely vectors. Occurrence of parasite lineages differed significantly among genera, as well as their probability of being infected with malaria across species and sites. Approximately one-third of these lineages were previously detected in other avian host species from the region, indicating that vertebrate host sharing is a common feature and that avian Plasmodium spp. vector breadth does not always accompany vertebrate-host breadth. This study suggests extensive invertebrate host shifts in mosquito-parasite interactions and that avian Plasmodium species are most likely not tightly coevolved with vector species. PMID:21134011

  10. The Impact of Hotspot-Targeted Interventions on Malaria Transmission in Rachuonyo South District in the Western Kenyan Highlands: A Cluster-Randomized Controlled Trial

    PubMed Central

    Bradley, John; Knight, Philip; Stone, William; Osoti, Victor; Makori, Euniah; Owaga, Chrispin; Odongo, Wycliffe; China, Pauline; Shagari, Shehu; Doumbo, Ogobara K.; Sauerwein, Robert W.; Kariuki, Simon; Drakeley, Chris; Stevenson, Jennifer; Cox, Jonathan

    2016-01-01

    Background Malaria transmission is highly heterogeneous, generating malaria hotspots that can fuel malaria transmission across a wider area. Targeting hotspots may represent an efficacious strategy for reducing malaria transmission. We determined the impact of interventions targeted to serologically defined malaria hotspots on malaria transmission both inside hotspots and in surrounding communities. Methods and Findings Twenty-seven serologically defined malaria hotspots were detected in a survey conducted from 24 June to 31 July 2011 that included 17,503 individuals from 3,213 compounds in a 100-km2 area in Rachuonyo South District, Kenya. In a cluster-randomized trial from 22 March to 15 April 2012, we randomly allocated five clusters to hotspot-targeted interventions with larviciding, distribution of long-lasting insecticide-treated nets, indoor residual spraying, and focal mass drug administration (2,082 individuals in 432 compounds); five control clusters received malaria control following Kenyan national policy (2,468 individuals in 512 compounds). Our primary outcome measure was parasite prevalence in evaluation zones up to 500 m outside hotspots, determined by nested PCR (nPCR) at baseline and 8 wk (16 June–6 July 2012) and 16 wk (21 August–10 September 2012) post-intervention by technicians blinded to the intervention arm. Secondary outcome measures were parasite prevalence inside hotpots, parasite prevalence in the evaluation zone as a function of distance from the hotspot boundary, Anopheles mosquito density, mosquito breeding site productivity, malaria incidence by passive case detection, and the safety and acceptability of the interventions. Intervention coverage exceeded 87% for all interventions. Hotspot-targeted interventions did not result in a change in nPCR parasite prevalence outside hotspot boundaries (p ≥ 0.187). We observed an average reduction in nPCR parasite prevalence of 10.2% (95% CI −1.3 to 21.7%) inside hotspots 8 wk post

  11. Hematin−Hematin Self-Association States Involved in the Formation and Reactivity of the Malaria Parasite Pigment, Hemozoin

    SciTech Connect

    Klonis, Nectarios; Dilanian, Ruben; Hanssen, Eric; Darmanin, Connie; Streltsov, Victor; Deed, Samantha; Quiney, Harry; Tilley, Leann

    2010-10-22

    The malaria parasite pigment, hemozoin, is a crystal of ferriprotoporphyrin IX (FP-Fe(III)), a product of hemoglobin digestion. Hemozoin formation is essential for FP-Fe(III) detoxification in the parasite; it is the main target of quinoline antimalarials and can modulate immune and inflammation responses. To gain further insight into the likely mechanisms of crystal formation and hemozoin reactivity, we have reanalyzed the crystal structure data for {beta}-hematin and solved the crystal structure of Plasmodium falciparum hemozoin. The analysis reveals that the structures are very similar and highlights two previously unexplored modes of FP-Fe(III) self-association involving {pi}-{pi} interactions that may initiate crystal formation and help to stabilize the extended structure. Hemozoin can be considered to be a crystal composed of {pi}-{pi} dimers stabilized by iron-carboxylate linkages. As a result, it is predicted that two surfaces of the crystal would consist of {pi}-{pi} dimers with Fe(III) partly exposed to solvent and capable of undergoing redox reactions. Accordingly, we demonstrate that the crystal possesses both general peroxidase activity and the ability to cause lipid oxidation.

  12. The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome

    PubMed Central

    Escalante, Ananias A.; Freeland, Denise E.; Collins, William E.; Lal, Altaf A.

    1998-01-01

    We report a phylogenetic analysis of primate malaria parasites based on the gene encoding the cytochrome b protein from the mitochondrial genome. We have studied 17 species of Plasmodium, including 14 parasitic in primates. In our analysis, four species were used for rooting the Plasmodium phylogenetic tree: two from closely related genera (Hepatocystis sp. and Haemoproteus columbae) and two other Apicomplexa (Toxoplasma gondii and Theileria parva). We found that primate malaria parasites form a monophyletic group, with the only exception being the Plasmodium falciparum–Plasmodium reichenowi lineage. Phylogenetic analyses that include two species of non-Plasmodium Haemosporina suggest that the genus Plasmodium is polyphyletic. We conclude that the biologic traits, such as periodicity and the capacity to relapse, have limited value for assessing the phylogenetic relationships among Plasmodium species. For instance, we found no evidence that would link virulence with the age of the host–parasite association. Our studies also reveal that the primate malaria parasites originated in Africa, which contradicts the presently held opinion of Southeast Asia as their center of origin. We propose that the radiation of Asian monkey parasites is a recent event where several life history traits, like differences in periodicity, appeared de novo. PMID:9653151

  13. Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development.

    PubMed

    Yoshida, Shigeto; Shimada, Yohei; Kondoh, Daisuke; Kouzuma, Yoshiaki; Ghosh, Anil K; Jacobs-Lorena, Marcelo; Sinden, Robert E

    2007-12-01

    The midgut environment of anopheline mosquitoes plays an important role in the development of the malaria parasite. Using genetic manipulation of anopheline mosquitoes to change the environment in the mosquito midgut may inhibit development of the malaria parasite, thus blocking malaria transmission. Here we generate transgenic Anopheles stephensi mosquitoes that express the C-type lectin CEL-III from the sea cucumber, Cucumaria echinata, in a midgut-specific manner. CEL-III has strong and rapid hemolytic activity toward human and rat erythrocytes in the presence of serum. Importantly, CEL-III binds to ookinetes, leading to strong inhibition of ookinete formation in vitro with an IC(50) of 15 nM. Thus, CEL-III exhibits not only hemolytic activity but also cytotoxicity toward ookinetes. In these transgenic mosquitoes, sporogonic development of Plasmodium berghei is severely impaired. Moderate, but significant inhibition was found against Plasmodium falciparum. To our knowledge, this is the first demonstration of stably engineered anophelines that affect the Plasmodium transmission dynamics of human malaria. Although our laboratory-based research does not have immediate applications to block natural malaria transmission, these findings have significant implications for the generation of refractory mosquitoes to all species of human Plasmodium and elucidation of mosquito-parasite interactions.

  14. Population genomic structure and adaptation in the zoonotic malaria parasite Plasmodium knowlesi.

    PubMed

    Assefa, Samuel; Lim, Caeul; Preston, Mark D; Duffy, Craig W; Nair, Mridul B; Adroub, Sabir A; Kadir, Khamisah A; Goldberg, Jonathan M; Neafsey, Daniel E; Divis, Paul; Clark, Taane G; Duraisingh, Manoj T; Conway, David J; Pain, Arnab; Singh, Balbir

    2015-10-20

    Malaria cases caused by the zoonotic parasite Plasmodium knowlesi are being increasingly reported throughout Southeast Asia and in travelers returning from the region. To test for evidence of signatures of selection or unusual population structure in this parasite, we surveyed genome sequence diversity in 48 clinical isolates recently sampled from Malaysian Borneo and in five lines maintained in laboratory rhesus macaques after isolation in the 1960s from Peninsular Malaysia and the Philippines. Overall genomewide nucleotide diversity (π = 6.03 × 10(-3)) was much higher than has been seen in worldwide samples of either of the major endemic malaria parasite species Plasmodium falciparum and Plasmodium vivax. A remarkable substructure is revealed within P. knowlesi, consisting of two major sympatric clusters of the clinical isolates and a third cluster comprising the laboratory isolates. There was deep differentiation between the two clusters of clinical isolates [mean genomewide fixation index (FST) = 0.21, with 9,293 SNPs having fixed differences of FST = 1.0]. This differentiation showed marked heterogeneity across the genome, with mean FST values of different chromosomes ranging from 0.08 to 0.34 and with further significant variation across regions within several chromosomes. Analysis of the largest cluster (cluster 1, 38 isolates) indicated long-term population growth, with negatively skewed allele frequency distributions (genomewide average Tajima's D = -1.35). Against this background there was evidence of balancing selection on particular genes, including the circumsporozoite protein (csp) gene, which had the top Tajima's D value (1.57), and scans of haplotype homozygosity implicate several genomic regions as being under recent positive selection.

  15. A rapid and robust selection procedure for generating drug-selectable marker-free recombinant malaria parasites

    PubMed Central

    Manzoni, Giulia; Briquet, Sylvie; Risco-Castillo, Veronica; Gaultier, Charlotte; Topçu, Selma; Ivănescu, Maria Larisa; Franetich, Jean-François; Hoareau-Coudert, Bénédicte; Mazier, Dominique; Silvie, Olivier

    2014-01-01

    Experimental genetics have been widely used to explore the biology of the malaria parasites. The rodent parasites Plasmodium berghei and less frequently P. yoelii are commonly utilised, as their complete life cycle can be reproduced in the laboratory and because they are genetically tractable via homologous recombination. However, due to the limited number of drug-selectable markers, multiple modifications of the parasite genome are difficult to achieve and require large numbers of mice. Here we describe a novel strategy that combines positive-negative drug selection and flow cytometry-assisted sorting of fluorescent parasites for the rapid generation of drug-selectable marker-free P. berghei and P. yoelii mutant parasites expressing a GFP or a GFP-luciferase cassette, using minimal numbers of mice. We further illustrate how this new strategy facilitates phenotypic analysis of genetically modified parasites by fluorescence and bioluminescence imaging of P. berghei mutants arrested during liver stage development. PMID:24755823

  16. A rapid and robust selection procedure for generating drug-selectable marker-free recombinant malaria parasites.

    PubMed

    Manzoni, Giulia; Briquet, Sylvie; Risco-Castillo, Veronica; Gaultier, Charlotte; Topçu, Selma; Ivănescu, Maria Larisa; Franetich, Jean-François; Hoareau-Coudert, Bénédicte; Mazier, Dominique; Silvie, Olivier

    2014-04-23

    Experimental genetics have been widely used to explore the biology of the malaria parasites. The rodent parasites Plasmodium berghei and less frequently P. yoelii are commonly utilised, as their complete life cycle can be reproduced in the laboratory and because they are genetically tractable via homologous recombination. However, due to the limited number of drug-selectable markers, multiple modifications of the parasite genome are difficult to achieve and require large numbers of mice. Here we describe a novel strategy that combines positive-negative drug selection and flow cytometry-assisted sorting of fluorescent parasites for the rapid generation of drug-selectable marker-free P. berghei and P. yoelii mutant parasites expressing a GFP or a GFP-luciferase cassette, using minimal numbers of mice. We further illustrate how this new strategy facilitates phenotypic analysis of genetically modified parasites by fluorescence and bioluminescence imaging of P. berghei mutants arrested during liver stage development.

  17. Green Synthesis of Silver Nanoparticles from Botanical Sources and Their Use for Control of Medical Insects and Malaria Parasites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of "green" processes for the synthesis of nanoparticles is a new branch of nanotechnology. However, knowledge of the bioactivity of nanoparticles against mosquitoes and malaria parasites is limited. We tested silver nanoparticles (average size 450 nm) bio-reduced in 5% Cassia occidentalis ...

  18. Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum

    PubMed Central

    Aingaran, Mythili; Zhang, Rou; Law, Sue KaYee; Peng, Zhangli; Undisz, Andreas; Meyer, Evan; Diez-Silva, Monica; Burke, Thomas A.; Spielmann, Tobias; Lim, Chwee Teck; Suresh, Subra; Dao, Ming; Marti, Matthias

    2012-01-01

    SUMMARY Gametocyte maturation in Plasmodium falciparum is a critical step in the transmission of malaria. While the majority of parasites proliferate asexually in red blood cells, a small fraction of parasites undergo sexual conversion and mature over two weeks to become competent for transmission to a mosquito vector. Immature gametocytes sequester in deep tissues while mature stages must be able to circulate, pass the spleen and present themselves to the mosquito vector in order to complete transmission. Sequestration of asexual red blood cell stage parasites has been investigated in great detail. These studies have demonstrated that induction of cytoadherence properties through specific receptor-ligand interactions coincides with a significant increase in host cell stiffness. In contrast, the adherence and biophysical properties of gametocyte-infected red blood cells have not been studied systematically. Utilizing a transgenic line for 3D live imaging, in vitro capillary assays and 3D finite element whole cell modeling, we studied the role of cellular deformability in determining the circulatory characteristics of gametocytes. Our analysis shows that the red blood cell deformability of immature gametocytes displays an overall decrease followed by rapid restoration in mature gametocytes. Intriguingly, simulations suggest that along with deformability variations, the morphological changes of the parasite may play an important role in tissue distribution in vivo. Taken together we present a model, which suggests that mature but not immature gametocytes circulate in the peripheral blood for uptake in the mosquito blood meal and transmission to another human host thus ensuring long term survival of the parasite. PMID:22417683

  19. Proteomic analysis of zygote and ookinete stages of the avian malaria parasite Plasmodium gallinaceum delineates the homologous proteomes of the lethal human malaria parasite Plasmodium falciparum.

    PubMed

    Patra, Kailash P; Johnson, Jeff R; Cantin, Greg T; Yates, John R; Vinetz, Joseph M

    2008-06-01

    Delineation of the complement of proteins comprising the zygote and ookinete, the early developmental stages of Plasmodium within the mosquito midgut, is fundamental to understand initial molecular parasite-vector interactions. The published proteome of Plasmodium falciparum does not include analysis of the zygote/ookinete stages, nor does that of P. berghei include the zygote stage or secreted proteins. P. gallinaceum zygote, ookinete, and ookinete-secreted/released protein samples were prepared and subjected to Multidimensional protein identification technology (MudPIT). Peptides of P. gallinaceum zygote, ookinete, and ookinete-secreted proteins were identified by MS/MS, mapped to ORFs (> 50 amino acids) in the extent P. gallinaceum whole genome sequence, and then matched to homologous ORFs in P. falciparum. A total of 966 P. falciparum ORFs encoding orthologous proteins were identified; just over 40% of these predicted proteins were found to be hypothetical. A majority of putative proteins with predicted secretory signal peptides or transmembrane domains were hypothetical proteins. This analysis provides a more comprehensive view of the hitherto unknown proteome of the early mosquito midgut stages of P. falciparum. The results underpin more robust study of Plasmodium-mosquito midgut interactions, fundamental to the development of novel strategies of blocking malaria transmission.

  20. Local mate competition and transmission bottlenecks: a new model for understanding malaria parasite and other sex ratios.

    PubMed

    Neal, Allison T; Taylor, Peter D

    2014-12-21

    The local mate competition model from sex ratio theory predicts female-biased sex ratios in populations that are highly subdivided during mating, and is thought to accord well with the population structure of malaria parasites. However, the selective advantage of female-biased sex ratios comes from the resulting increase in total reproductive output, an advantage the transmission biology of malaria parasite likely reduces. We develop a mathematical model to determine how bottlenecks in transmission that cause diminishing fitness returns from female production affect sex ratio evolution. We develop four variations of this model that incorporate whether or not parasite clones have the ability to detect others that occupy the same host and whether or not the number of clones affects the total mating population size. Our model indicates that transmission bottlenecks favor less female-biased sex ratios than those predicted under LMC. This effect is particularly pronounced if clones have no information about the presence of coexisting clones and the number of mating individuals per patch is fixed. The model could extend our understanding of malaria parasite sex ratios in three main ways. First, it identifies inconsistencies between the theoretical predictions and the data presented in a previous study, and proposes revised predictions that are more consistent with underlying biology of the parasite. Second, it may account for the positive association between parasite density and sex ratio observed within and between some species. Third, it predicts a relationship between mortality rates in the vector and sex ratios, which appears to be supported by the little existing data we have. While the inspiration for this model came from malaria parasites, it should apply to any system in which per capita dispersal success diminishes with increasing numbers of females in a patch.

  1. Protein-DNA complex is the exclusive malaria parasite component that activates dendritic cells and triggers innate immune responses.

    PubMed

    Wu, Xianzhu; Gowda, Nagaraj M; Kumar, Sanjeev; Gowda, D Channe

    2010-04-15

    Dendritic cells (DCs) play a crucial role in the development of protective immunity to malaria. However, it remains unclear how malaria parasites trigger immune responses in DCs. In this study, we purified merozoites, food vacuoles, and parasite membrane fragments released during the Plasmodium falciparum schizont burst to homogeneity and tested for the activation of bone marrow-derived DCs from wild-type and TLR2(-/-), TLR4(-/-), TLR9(-/-), and MyD88(-/-) C57BL/6J mice. The results demonstrate that a protein-DNA complex is the exclusive parasite component that activates DCs by a TLR9-dependent pathway to produce inflammatory cytokines. Complex formation with proteins is essential for the entry of parasite DNA into DCs for TLR9 recognition and, thus, proteins convert inactive DNA into a potent immunostimulatory molecule. Exogenous cationic polymers, polylysine and chitosan, can impart stimulatory activity to parasite DNA, indicating that complex formation involves ionic interactions. Merozoites and DNA-protein complex could also induce inflammatory cytokine responses in human blood DCs. Hemozoin is neither a TLR9 ligand for DCs nor functions as a carrier of DNA into cells. Additionally, although TLR9 is critical for DCs to induce the production of IFN-gamma by NK cells, this receptor is not required for NK cells to secret IFN-gamma, and cell-cell contact among myeloid DCs, plasmacytoid DCs, and NK cells is required for IFN-gamma production. Together, these results contribute substantially toward the understanding of malaria parasite-recognition mechanisms. More importantly, our finding that proteins and carbohydrate polymers are able to confer stimulatory activity to an otherwise inactive parasite DNA have important implications for the development of a vaccine against malaria.

  2. Targeting a dynamic protein-protein interaction: fragment screening against the malaria myosin A motor complex.

    PubMed

    Douse, Christopher H; Vrielink, Nina; Wenlin, Zhang; Cota, Ernesto; Tate, Edward W

    2015-01-01

    Motility is a vital feature of the complex life cycle of Plasmodium falciparum, the apicomplexan parasite that causes human malaria. Processes such as host cell invasion are thought to be powered by a conserved actomyosin motor (containing myosin A or myoA), correct localization of which is dependent on a tight interaction with myosin A tail domain interacting protein (MTIP) at the inner membrane of the parasite. Although disruption of this protein-protein interaction represents an attractive means to investigate the putative roles of myoA-based motility and to inhibit the parasitic life cycle, no small molecules have been identified that bind to MTIP. Furthermore, it has not been possible to obtain a crystal structure of the free protein, which is highly dynamic and unstable in the absence of its natural myoA tail partner. Herein we report the de novo identification of the first molecules that bind to and stabilize MTIP via a fragment-based, integrated biophysical approach and structural investigations to examine the binding modes of hit compounds. The challenges of targeting such a dynamic system with traditional fragment screening workflows are addressed throughout.

  3. Endoplasmic Reticulum PI(3)P lipid binding targets malaria proteins to the host cell

    PubMed Central

    Bhattacharjee, Souvik; Stahelin, Robert V.; Speicher, Kaye D.; Speicher, David W.; Haldar, Kasturi

    2011-01-01

    SUMMARY Hundreds of effector proteins of the human malaria parasite Plasmodium falciparum constitute a `secretome', carrying a host-targeting (HT) signal, which predicts their export from the intracellular pathogen into the surrounding erythrocyte. Cleavage of the HT signal by a parasite endoplasmic reticulum (ER) protease, plasmepsin V, is the proposed export mechanism. Here we show that the HT signal exports by recognition of the lipid phosphatidylinositol-3-phosphate (PI(3)P) in the ER, prior to and independent of protease action. Secretome HT signals, including those of major virulence determinants bind PI(3)P with nanomolar affinity and amino acid specificities displayed by HT-mediated export. PI(3)P-enriched regions are detected within the parasite's ER, co-localize with endogenous HT signal on ER precursors, which also display high affinity binding to PI(3)P. A related, pathogenic oomycete's HT signal export is dependent on PI(3)P binding, without cleavage by plasmepsin V. Thus PI(3)P in the ER functions in mechanisms of secretion and pathogenesis. PMID:22265412

  4. Malaria parasite mutants with altered erythrocyte permeability: a new drug resistance mechanism and important molecular tool

    PubMed Central

    Hill, David A; Desai, Sanjay A

    2010-01-01

    Erythrocytes infected with plasmodia, including those that cause human malaria, have increased permeability to a diverse collection of organic and inorganic solutes. While these increases have been known for decades, their mechanistic basis was unclear until electrophysiological studies revealed flux through one or more ion channels on the infected erythrocyte membrane. Current debates have centered on the number of distinct ion channels, which channels mediate the transport of each solute and whether the channels represent parasite-encoded proteins or human channels activated after infection. This article reviews the identification of the plasmodial surface anion channel and other proposed channels with an emphasis on two distinct channel mutants generated through in vitro selection. These mutants implicate parasite genetic elements in the parasite-induced permeability, reveal an important new antimalarial drug resistance mechanism and provide tools for molecular studies. We also critically examine the technical issues relevant to the detection of ion channels by electrophysiological methods; these technical considerations have general applicability for interpreting studies of various ion channels proposed for the infected erythrocyte membrane. PMID:20020831

  5. Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite.

    PubMed

    Dankwa, Selasi; Lim, Caeul; Bei, Amy K; Jiang, Rays H Y; Abshire, James R; Patel, Saurabh D; Goldberg, Jonathan M; Moreno, Yovany; Kono, Maya; Niles, Jacquin C; Duraisingh, Manoj T

    2016-04-04

    Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPβ and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways.

  6. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    SciTech Connect

    Bakkouri, Majida El; Pow, Andre; Mulichak, Anne; Cheung, Kevin L.Y.; Artz, Jennifer D.; Amani, Mehrnaz; Fell, Stuart; de Koning-Ward, Tania F.; Goodman, C. Dean; McFadden, Geoffrey I.; Ortega, Joaquin; Hui, Raymond; Houry, Walid A.

    2015-02-09

    The Clp chaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clp chaperones and proteases in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clp chaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

  7. Molecular cloning and biochemical characterization of iron superoxide dismutase from the rodent malaria parasite Plasmodium vinckei.

    PubMed

    Prakash, Kirtika; Goyal, Manish; Soni, Awakash; Siddiqui, Arif Jamal; Bhardwaj, Jyoti; Puri, Sunil K

    2014-12-01

    Plasmodium parasite utilizes superoxide dismutase family proteins to limit the toxicity of reactive oxygen species, such as produced through hemoglobin degradation. These proteins play an important role in parasite survival during intra-erythrocytic phase. We have identified, and biochemically characterized a putative iron dependent superoxide dismutase from rodent malaria parasite Plasmodium vinckei (PvSOD1). The recombinant PvSOD1 protein was purified to homogeneity through a combination of affinity and gel filtration chromatography. Crosslinking, Native-PAGE and FPLC gel filtration analyses documented that PvSOD1 exists as a dimer in solution, a common feature shared by other Fe-SODs. PvSOD1 is cytosolic in localization and its expression is comparatively higher during trophozoite as compared to that of ring and schizont stages. Enzymatic activity of recombinant PvSOD1 was validated using conventional zymogram analyses and xanthine-xanthine oxidase system. Under optimal conditions, PvSOD1 was highly active and catalyzed the dismutation of superoxide radicals. Furthermore, PvSOD1 showed activity over a broad range of pH and temperature. Inhibition studies suggested that PvSOD1 was inactivated by hydrogen peroxide, and peroxynitrite, but not by cyanide and azide. Since, PvSOD1 plays a central role in oxidative defense mechanism, therefore, characterization of PvSOD1 will be exploited in the screening of new superoxide dismutase inhibitors for their antimalarial activity.

  8. Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite

    PubMed Central

    Dankwa, Selasi; Lim, Caeul; Bei, Amy K.; Jiang, Rays H. Y.; Abshire, James R.; Patel, Saurabh D.; Goldberg, Jonathan M.; Moreno, Yovany; Kono, Maya; Niles, Jacquin C.; Duraisingh, Manoj T.

    2016-01-01

    Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPβ and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways. PMID:27041489

  9. Targeting protozoan parasite metabolism: glycolytic enzymes in the therapeutic crosshairs.

    PubMed

    Harris, M T; Mitchell, W G; Morris, J C

    2014-01-01

    Glycolysis is an important metabolic pathway for most organisms, including protozoan parasites. Many of these primitive eukaryotes have streamlined their metabolism, favoring glycolysis for generating ATP in the glucose-rich environments in which they reside. Therefore, the enzymes involved in hexose metabolism could prove to be attractive targets for therapeutic development. This hypothesis is supported by a number of chemical and genetic validation studies. Additionally, the peculiar biochemistry of many of the components, along with limited protein sequence identity emphasizes the likelihood of developing compounds that selectively inhibit the parasite enzymes. In this review, we examine the status of target validation at the genetic and/or chemical levels from the protozoan parasites. While the proteins from some species have been interrogated to the point that well-defined lead compounds have been identified with activities against both enzyme and parasite growth, progress in other systems has to date been limited.

  10. Towards a noninvasive approach to malaria diagnosis: detection of parasite DNA in body secretions and surface mucosa.

    PubMed

    A-Elgayoum, Salwa M E; El-Rayah, El-Amin; Giha, Hayder A

    2010-01-01

    Invasive procedures for diagnostic or therapeutic purposes bear a relative risk of transmission of serious blood-borne infectious disease. In this study, a noninvasive approach to malaria diagnosis using polymerase chain reaction (PCR) for the detection of parasite DNA in saliva, buccal mucosa and urine (alternative samples) was examined. Saliva, buccal mucosa and urine samples were collected simultaneously with blood samples from 93 patients with microscopically confirmed Plasmodium falciparum infection. Species-specific primers detected the parasite DNA only in blood samples. However, when the PCR analysis was repeated using MSP1 and MSP2 primers in a subgroup of 21 complete sets of samples, the parasite DNA was detected in all except 3 samples, which were found to be negative with the MSP2 primers. Parasite density, body temperature or patient age did not influence the PCR results. In conclusion, P. falciparum parasite DNA was detected equally in saliva, buccal mucosa and urine of malaria patients, regardless of their ages, body temperatures or parasite density. Surprisingly, the parasite DNA was not amplified by species-specific primers in the alternative samples whereas it was in the blood samples.

  11. Human Monoclonal Antibodies to Pf 155, a Major Antigen of Malaria Parasite Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Udomsangpetch, Rachanee; Lundgren, Katarina; Berzins, Klavs; Wahlin, Birgitta; Perlmann, Hedvig; Troye-Blomberg, Marita; Carlsson, Jan; Wahlgren, Mats; Perlmann, Peter; Bjorkman, Anders

    1986-01-01

    Pf 155, a protein of the human malaria parasite Plasmodium falciparum, is strongly immunogenic in humans and is believed to be a prime candidate for the preparation of a vaccine. Human monoclonal antibodies to Pf 155 were obtained by cloning B cells that had been prepared from an immune donor and transformed with Epstein-Barr virus. When examined by indirect immunofluorescence, these antibodies stained the surface of infected erythrocytes, free merozoites, segmented schizonts, and gametocytes. They bound to a major polypeptide with a relative molecular weight of 155K and to two minor ones (135K and 120K), all having high affinity for human glycophorin. The antibodies strongly inhibited merozoite reinvasion in vitro, suggesting that they might be appropriate reagents for therapeutic administration in vivo.

  12. Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum.

    PubMed

    Jones, Michael W M; Dearnley, Megan K; van Riessen, Grant A; Abbey, Brian; Putkunz, Corey T; Junker, Mark D; Vine, David J; McNulty, Ian; Nugent, Keith A; Peele, Andrew G; Tilley, Leann

    2014-08-01

    Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application.

  13. Real-Time Imaging of the Intracellular Glutathione Redox Potential in the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Kasozi, Denis; Mohring, Franziska; Rahlfs, Stefan; Meyer, Andreas J.; Becker, Katja

    2013-01-01

    In the malaria parasite Plasmodium falciparum, the cellular redox potential influences signaling events, antioxidant defense, and mechanisms of drug action and resistance. Until now, the real-time determination of the redox potential in malaria parasites has been limited because conventional approaches disrupt sub-cellular integrity. Using a glutathione biosensor comprising human glutaredoxin-1 linked to a redox-sensitive green fluorescent protein (hGrx1-roGFP2), we systematically characterized basal values and drug-induced changes in the cytosolic glutathione-dependent redox potential (EGSH) of drug-sensitive (3D7) and resistant (Dd2) P. falciparum parasites. Via confocal microscopy, we demonstrated that hGrx1-roGFP2 rapidly detects EGSH changes induced by oxidative and nitrosative stress. The cytosolic basal EGSH of 3D7 and Dd2 were estimated to be −314.2±3.1 mV and −313.9±3.4 mV, respectively, which is indicative of a highly reducing compartment. We furthermore monitored short-, medium-, and long-term changes in EGSH after incubation with various redox-active compounds and antimalarial drugs. Interestingly, the redox cyclers methylene blue and pyocyanin rapidly changed the fluorescence ratio of hGrx1-roGFP2 in the cytosol of P. falciparum, which can, however, partially be explained by a direct interaction with the probe. In contrast, quinoline and artemisinin-based antimalarial drugs showed strong effects on the parasites' EGSH after longer incubation times (24 h). As tested for various conditions, these effects were accompanied by a drop in total glutathione concentrations determined in parallel with alternative methods. Notably, the effects were generally more pronounced in the chloroquine-sensitive 3D7 strain than in the resistant Dd2 strain. Based on these results hGrx1-roGFP2 can be recommended as a reliable and specific biosensor for real-time spatiotemporal monitoring of the intracellular EGSH in P. falciparum. Applying this technique in further

  14. Malaria

    MedlinePlus

    ... common?Malaria is a health problem in many tropical and subtropical countries, including portions of Central and ... these countries. If you are traveling to a tropical area or to a country where malaria is ...

  15. Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite

    PubMed Central

    Lehane, Adele M; Saliba, Kevin J

    2008-01-01

    Background Flavonoids are abundant plant phenolic compounds. More than 6000 have been identified to date, and some have been shown to possess antiparasitic activity. Here we investigate the effects of a range of common dietary flavonoids on the growth of two strains of the human malaria parasite Plasmodium falciparum. Findings A chloroquine-sensitive (3D7) and a chloroquine-resistant (7G8) strain of P. falciparum were tested for in vitro susceptibility to a range of individual dietary flavonoids and flavonoid combinations. Parasite susceptibility was measured in 96-well plates over 96 h using a previously described [3H]hypoxanthine incorporation assay. Of the eleven flavonoids tested, eight showed antiplasmodial activity against the 3D7 strain (with IC50 values between 11 and 66 μM), and all showed activity against the 7G8 strain (with IC50 values between 12 and 76 μM). The most active compound against both strains was luteolin, with IC50 values of 11 ± 1 μM and 12 ± 1 μM for 3D7 and 7G8, respectively. Luteolin was found to prevent the progression of parasite growth beyond the young trophozoite stage, and did not affect parasite susceptibility to the antimalarial drugs chloroquine or artemisinin. Combining low concentrations of flavonoids was found to produce an apparent additive antiplasmodial effect. Conclusion Certain common dietary flavonoids inhibit the intraerythrocytic growth of the 3D7 and 7G8 strains of P. falciparum. Flavonoid combinations warrant further investigation as antiplasmodial agents. PMID:18710482

  16. The Malaria Parasite Progressively Dismantles the Host Erythrocyte Cytoskeleton for Efficient Egress*

    PubMed Central

    Millholland, Melanie G.; Chandramohanadas, Rajesh; Pizzarro, Angel; Wehr, Angela; Shi, Hui; Darling, Claire; Lim, Chwee Teck; Greenbaum, Doron C.

    2011-01-01

    Plasmodium falciparum is an obligate intracellular pathogen responsible for worldwide morbidity and mortality. This parasite establishes a parasitophorous vacuole within infected red blood cells wherein it differentiates into multiple daughter cells that must rupture their host cells to continue another infectious cycle. Using atomic force microscopy, we establish that progressive macrostructural changes occur to the host cell cytoskeleton during the last 15 h of the erythrocytic life cycle. We used a comparative proteomics approach to determine changes in the membrane proteome of infected red blood cells during the final steps of parasite development that lead to egress. Mass spectrometry-based analysis comparing the red blood cell membrane proteome in uninfected red blood cells to that of infected red blood cells and postrupture vesicles highlighted two temporally distinct events; (Hay, S. I., et al. (2009). A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med. 6, e1000048) the striking loss of cytoskeletal adaptor proteins that are part of the junctional complex, including α/β-adducin and tropomyosin, correlating temporally with the emergence of large holes in the cytoskeleton seen by AFM as early ∼35 h postinvasion, and (Maier, A. G., et al. (2008) Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell 134, 48–61) large-scale proteolysis of the cytoskeleton during rupture ∼48 h postinvasion, mediated by host calpain-1. We thus propose a sequential mechanism whereby parasites first remove a selected set of cytoskeletal adaptor proteins to weaken the host membrane and then use host calpain-1 to dismantle the remaining cytoskeleton, leading to red blood cell membrane collapse and parasite release. PMID:21903871

  17. Sequence and diversity of DRB genes of Aotus nancymaae, a primate model for human malaria parasites.

    PubMed

    Nino-Vasquez, J J; Vogel, D; Rodriguez, R; Moreno, A; Patarroyo, M E; Pluschke, G; Daubenberger, C A

    2000-03-01

    The New World primate Aotus nancymaae is susceptible to infection with the human malaria parasite Plasmodium falciparum and Plasmodium vivax and has therefore been recommended by the World Health Organization as a model for evaluation of malaria vaccine candidates. We present here a first step in the molecular characterization of the major histocompatibility complex (MHC) class II DRB genes of Aotus nancymaae (owl monkey or night monkey) by nucleotide sequence analysis of the polymorphic exon 2 segments. In a group of 15 nonrelated animals captivated in the wild, 34 MHC DRB alleles could be identified. Six allelic lineages were detected, two of them having human counterparts, while two other lineages have not been described in any other New World monkey species studied. As in the common marmoset, the diversity of DRB alleles appears to have arisen largely by point mutations in the beta-pleated sheets and by frequent exchange of fixed sequence motifs in the alpha-helical portion. Pairs of alleles differing only at amino acid position b86 by an exchange of valine to glycine are present in Aotus, as in humans. Essential amino acid residues contributing to MHC DR peptide binding pockets number 1 and 4 are conserved or semiconserved between HLA-DR and Aona-DRB molecules, indicating a capacity to bind similar peptide repertoires. These results support fully our using Aotus monkeys as an animal model for evaluation of future subunit vaccine candidates.

  18. Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites

    PubMed Central

    Dong, Yuemei; Manfredini, Fabio; Dimopoulos, George

    2009-01-01

    Malaria-transmitting mosquitoes are continuously exposed to microbes, including their midgut microbiota. This naturally acquired microbial flora can modulate the mosquito's vectorial capacity by inhibiting the development of Plasmodium and other human pathogens through an unknown mechanism. We have undertaken a comprehensive functional genomic approach to elucidate the molecular interplay between the bacterial co-infection and the development of the human malaria parasite Plasmodium falciparum in its natural vector Anopheles gambiae. Global transcription profiling of septic and aseptic mosquitoes identified a significant subset of immune genes that were mostly up-regulated by the mosquito's microbial flora, including several anti-Plasmodium factors. Microbe-free aseptic mosquitoes displayed an increased susceptibility to Plasmodium infection while co-feeding mosquitoes with bacteria and P. falciparum gametocytes resulted in lower than normal infection levels. Infection analyses suggest the bacteria-mediated anti-Plasmodium effect is mediated by the mosquitoes' antimicrobial immune responses, plausibly through activation of basal immunity. We show that the microbiota can modulate the anti-Plasmodium effects of some immune genes. In sum, the microbiota plays an essential role in modulating the mosquito's capacity to sustain Plasmodium infection. PMID:19424427

  19. Genomic sequencing of Plasmodium falciparum malaria parasites from Senegal reveals the demographic history of the population.

    PubMed

    Chang, Hsiao-Han; Park, Daniel J; Galinsky, Kevin J; Schaffner, Stephen F; Ndiaye, Daouda; Ndir, Omar; Mboup, Souleymane; Wiegand, Roger C; Volkman, Sarah K; Sabeti, Pardis C; Wirth, Dyann F; Neafsey, Daniel E; Hartl, Daniel L

    2012-11-01

    Malaria is a deadly disease that causes nearly one million deaths each year. To develop methods to control and eradicate malaria, it is important to understand the genetic basis of Plasmodium falciparum adaptations to antimalarial treatments and the human immune system while taking into account its demographic history. To study the demographic history and identify genes under selection more efficiently, we sequenced the complete genomes of 25 culture-adapted P. falciparum isolates from three sites in Senegal. We show that there is no significant population structure among these Senegal sampling sites. By fitting demographic models to the synonymous allele-frequency spectrum, we also estimated a major 60-fold population expansion of this parasite population ∼20,000-40,000 years ago. Using inferred demographic history as a null model for coalescent simulation, we identified candidate genes under selection, including genes identified before, such as pfcrt and PfAMA1, as well as new candidate genes. Interestingly, we also found selection against G/C to A/T changes that offsets the large mutational bias toward A/T, and two unusual patterns: similar synonymous and nonsynonymous allele-frequency spectra, and 18% of genes having a nonsynonymous-to-synonymous polymorphism ratio >1.

  20. Heavy path mining of protein-protein associations in the malaria parasite.

    PubMed

    Yu, Xinran; Korkmaz, Turgay; Lilburn, Timothy G; Cai, Hong; Gu, Jianying; Wang, Yufeng

    2015-07-15

    Annotating and understanding the function of proteins and other elements in a genome can be difficult in the absence of a well-studied and evolutionarily close relative. The causative agent of malaria, one of the oldest and most deadly global infectious diseases, is a good example of this problem. The burden of malaria is huge and there is a pressing need for new, more effective antimalarial strategies. However, techniques such as homology-dependent annotation transfer are severely impaired in this parasite because there are no well-understood close relatives. To circumvent this approach we developed a network-based method that uses a heavy path network-mining algorithm. We uncovered the protein-protein associations that are implicated in important cellular processes including genome integrity, DNA repair, transcriptional regulation, invasion, and pathogenesis, thus demonstrating the utility of this method. The URL of the source code for super-sequence mining method is http://www.cs.utsa.edu/~korkmaz/research/heavy-path-mining/.

  1. Inhibition of malaria parasite invasion of human erythrocytes by a lymphocyte membrane polypeptide.

    PubMed

    Benzaquen-Geffin, R; Milner, Y; Ginsburg, H

    1987-02-01

    Extraction by boiling of the buffy coat of human blood yields a protein solution which inhibits the propagation of the human malaria parasite Plasmodium falciparum in culture with a 50% inhibitory dose of 105 micrograms of protein per ml. The inhibitory activity is associated exclusively with the lymphocytes and affects solely the invasion of erythrocytes by free merozoites. Boiled extracts of isolated lymphocytes had a 50% inhibitory dose of 22 micrograms/ml. Fractionation of surface-labeled or pronase-treated lymphocytes revealed that the antimalarial lymphocyte factor is associated with the intracellular aspect of the membrane fraction and is probably not involved in the host defense system against malaria. Further purification by salt extraction, ion-exchange chromatography, molecular gel filtration, and electroelution from lithium dodecyl sulfate-polyacrylamide gels resulted in 300- to 550-fold purification, i.e., a 50% inhibitory dose of 40 to 70 ng/ml. All inhibitory fractions contained a 48-kilodalton polypeptide which eluted from a gel filtration column as a 400-kilodalton species, implying multimeric association. Some 6,000 molecules of the 48-kilodalton polypeptide bind with high affinity to one merozoite, the free form of the parasite. The Kd of 0.1 to 0.5 nM for the binding of the 48-kilodalton polypeptide correlated well with the 50% inhibitory dose of 0.3 to 0.4 nM obtained with purified active antimalarial lymphocyte factor. We therefore suggest that the 48-kilodalton polypeptide partially purified from lymphocyte membranes is the antimalarial lymphocyte factor and that it exerts its inhibitory activity by binding to merozoites, thereby preventing their invasion into erythrocytes. The antimalarial lymphocyte factor or a polypeptide sequence thereof could serve for further probing of invasion at the molecular level.

  2. Inhibition of malaria parasite invasion of human erythrocytes by a lymphocyte membrane polypeptide.

    PubMed Central

    Benzaquen-Geffin, R; Milner, Y; Ginsburg, H

    1987-01-01

    Extraction by boiling of the buffy coat of human blood yields a protein solution which inhibits the propagation of the human malaria parasite Plasmodium falciparum in culture with a 50% inhibitory dose of 105 micrograms of protein per ml. The inhibitory activity is associated exclusively with the lymphocytes and affects solely the invasion of erythrocytes by free merozoites. Boiled extracts of isolated lymphocytes had a 50% inhibitory dose of 22 micrograms/ml. Fractionation of surface-labeled or pronase-treated lymphocytes revealed that the antimalarial lymphocyte factor is associated with the intracellular aspect of the membrane fraction and is probably not involved in the host defense system against malaria. Further purification by salt extraction, ion-exchange chromatography, molecular gel filtration, and electroelution from lithium dodecyl sulfate-polyacrylamide gels resulted in 300- to 550-fold purification, i.e., a 50% inhibitory dose of 40 to 70 ng/ml. All inhibitory fractions contained a 48-kilodalton polypeptide which eluted from a gel filtration column as a 400-kilodalton species, implying multimeric association. Some 6,000 molecules of the 48-kilodalton polypeptide bind with high affinity to one merozoite, the free form of the parasite. The Kd of 0.1 to 0.5 nM for the binding of the 48-kilodalton polypeptide correlated well with the 50% inhibitory dose of 0.3 to 0.4 nM obtained with purified active antimalarial lymphocyte factor. We therefore suggest that the 48-kilodalton polypeptide partially purified from lymphocyte membranes is the antimalarial lymphocyte factor and that it exerts its inhibitory activity by binding to merozoites, thereby preventing their invasion into erythrocytes. The antimalarial lymphocyte factor or a polypeptide sequence thereof could serve for further probing of invasion at the molecular level. Images PMID:3542831

  3. Evolutionary implications for the determination of gametocyte sex ratios under fecundity variation for the malaria parasite.

    PubMed

    Teboh-Ewungkem, Miranda I; Yuster, Thomas

    2016-11-07

    We investigate sex ratio determination strategies for the Malaria parasite based on putative changes in its male fecundity over the lifetime of an infection, and how such strategies might have evolved. We model fitness using the incomplete fertilization limit developed in Teboh-Ewungkem and Yuster (2010). We divide the infection lifetime of a strain into two periods, assume each human is infected by two different strains, and assume that there are two different strategies present among the many strains in the general malaria parasite population. A unique parameter dependent ESS exists for all parameter values in both of our main models, with many such strategies unbeatable. These strategies produce both male and female biased population sex ratios with female bias predominating over most of the parameter space. The first model (SKM) suggests that strains without the ability to detect characteristics of other strains present could still have evolved strategies to vary sex ratio over their lifetimes, and the second model (DKM) suggests strains with detection abilities might have evolved after that. Our analysis suggests that once the ability to detect the population sizes and fecundities of other strains has developed, detection of their sex ratio choices confers no additional selective advantage in that a DKM ESS is still an ESS among sex ratio detecting strategies. The sex ratio choices for each DKM ESS are given by the equilibrium values of the parameter equivalent sex ratio detecting strategy described in Teboh-Ewungkem and Wang (2012), in the case where two strains employing that strategy encounter each other.

  4. Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells.

    PubMed

    Baldwin, Michael R; Li, Xuerong; Hanada, Toshihiko; Liu, Shih-Chun; Chishti, Athar H

    2015-04-23

    Plasmodium falciparum invasion of human red blood cells (RBCs) is an intricate process requiring a number of distinct ligand-receptor interactions at the merozoite-erythrocyte interface. Merozoite surface protein 1 (MSP1), a highly abundant ligand coating the merozoite surface in all species of malaria parasites, is essential for RBC invasion and considered a leading candidate for inclusion in a multiple-subunit vaccine against malaria. Our previous studies identified an interaction between the carboxyl-terminus of MSP1 and RBC band 3. Here, by employing phage display technology, we report a novel interaction between the amino-terminus of MSP1 and RBC glycophorin A (GPA). Mapping of the binding domains established a direct interaction between malaria MSP1 and human GPA within a region of MSP1 known to potently inhibit P falciparum invasion of human RBCs. Furthermore, a genetically modified mouse model lacking the GPA- band 3 complex in RBCs is completely resistant to malaria infection in vivo. These findings suggest an essential role of the MSP1-GPA-band 3 complex during the initial adhesion phase of malaria parasite invasion of RBCs.

  5. Review of DoD Malaria Research Programs,

    DTIC Science & Technology

    1992-05-01

    defined. 4. Models for P. fakiparum sporozoite infection of monkeys are expensive and not well substantiated. 5. Production and purification of recombinant...Hoffman SUBJECfl Malaria Vaccine Development OBJECTIVE: To protect against malaria by inducing immune responses that eliminate malaria infected hepatocytes...or kill the parasite within the hepatocyte. STRATEGY: 1. Identify the targets and mechanisms of protective immunity against infected hepatocytes

  6. Malaria.

    ERIC Educational Resources Information Center

    Dupasquier, Isabelle

    1989-01-01

    Malaria, the greatest pandemia in the world, claims an estimated one million lives each year in Africa alone. While it may still be said that for the most part malaria is found in what is known as the world's poverty belt, cases are now frequently diagnosed in western countries. Due to resistant strains of malaria which have developed because of…

  7. Two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites.

    PubMed

    Liu, Qing; Nam, Jeonghun; Kim, Sangho; Lim, Chwee Teck; Park, Mi Kyoung; Shin, Yong

    2016-08-15

    Rapid, early, and accurate diagnosis of malaria is essential for effective disease management and surveillance, and can reduce morbidity and mortality associated with the disease. Although significant advances have been achieved for the diagnosis of malaria, these technologies are still far from ideal, being time consuming, complex and poorly sensitive as well as requiring separate assays for sample processing and detection. Therefore, the development of a fast and sensitive method that can integrate sample processing with detection of malarial infection is desirable. Here, we report a two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites. It combines the Dimethyl adipimidate (DMA)/Thin film Sample processing (DTS) technique as a first stage and the Mach-Zehnder Interferometer-Isothermal solid-phase DNA Amplification (MZI-IDA) sensing technique as a second stage. The system can extract DNA from malarial parasites using DTS technique in a closed system, not only reducing sample loss and contamination, but also facilitating the multiplexed malarial DNA detection using the fast and accurate MZI-IDA technique. Here, we demonstrated that this system can deliver results within 60min (including sample processing, amplification and detection) with high sensitivity (<1 parasite μL(-1)) in a label-free and real-time manner. The developed system would be of great potential for better diagnosis of malaria in low-resource settings.

  8. Vaccines Against Malaria

    PubMed Central

    Ouattara, Amed; Laurens, Matthew B.

    2015-01-01

    Despite global efforts to control malaria, the illness remains a significant public health threat. Currently, there is no licensed vaccine against malaria, but an efficacious vaccine would represent an important public health tool for successful malaria elimination. Malaria vaccine development continues to be hindered by a poor understanding of antimalarial immunity, a lack of an immune correlate of protection, and the genetic diversity of malaria parasites. Current vaccine development efforts largely target Plasmodium falciparum parasites in the pre-erythrocytic and erythrocytic stages, with some research on transmission-blocking vaccines against asexual stages and vaccines against pregnancy-associated malaria. The leading pre-erythrocytic vaccine candidate is RTS,S, and early results of ongoing Phase 3 testing show overall efficacy of 46% against clinical malaria. The next steps for malaria vaccine development will focus on the design of a product that is efficacious against the highly diverse strains of malaria and the identification of a correlate of protection against disease. PMID:25452593

  9. Transcriptional Profiling of Plasmodium falciparum Parasites from Patients with Severe Malaria Identifies Distinct Low vs. High Parasitemic Clusters

    PubMed Central

    Krupka, Malkie; Williams, Chris; Seydel, Karl; Taylor, Terrie E.; Van de Peer, Yves; Regev, Aviv; Wirth, Dyann

    2012-01-01

    Background In the past decade, estimates of malaria infections have dropped from 500 million to 225 million per year; likewise, mortality rates have dropped from 3 million to 791,000 per year. However, approximately 90% of these deaths continue to occur in sub-Saharan Africa, and 85% involve children less than 5 years of age. Malaria mortality in children generally results from one or more of the following clinical syndromes: severe anemia, acidosis, and cerebral malaria. Although much is known about the clinical and pathological manifestations of CM, insights into the biology of the malaria parasite, specifically transcription during this manifestation of severe infection, are lacking. Methods and Findings We collected peripheral blood from children meeting the clinical case definition of cerebral malaria from a cohort in Malawi, examined the patients for the presence or absence of malaria retinopathy, and performed whole genome transcriptional profiling for Plasmodium falciparum using a custom designed Affymetrix array. We identified two distinct physiological states that showed highly significant association with the level of parasitemia. We compared both groups of Malawi expression profiles with our previously acquired ex vivo expression profiles of parasites derived from infected patients with mild disease; a large collection of in vitro Plasmodium falciparum life cycle gene expression profiles; and an extensively annotated compendium of expression data from Saccharomyces cerevisiae. The high parasitemia patient group demonstrated a unique biology with elevated expression of Hrd1, a member of endoplasmic reticulum-associated protein degradation system. Conclusions The presence of a unique high parasitemia state may be indicative of the parasite biology of the clinically recognized hyperparasitemic severe disease syndrome. PMID:22815802

  10. Rapid Response to Selection, Competitive Release and Increased Transmission Potential of Artesunate-Selected Plasmodium chabaudi Malaria Parasites

    PubMed Central

    Pollitt, Laura C.; Huijben, Silvie; Sim, Derek G.; Salathé, Rahel M.; Jones, Matthew J.; Read, Andrew F.

    2014-01-01

    The evolution of drug resistance, a key challenge for our ability to treat and control infections, depends on two processes: de-novo resistance mutations, and the selection for and spread of resistant mutants within a population. Understanding the factors influencing the rates of these two processes is essential for maximizing the useful lifespan of drugs and, therefore, effective disease control. For malaria parasites, artemisinin-based drugs are the frontline weapons in the fight against disease, but reports from the field of slower parasite clearance rates during drug treatment are generating concern that the useful lifespan of these drugs may be limited. Whether slower clearance rates represent true resistance, and how this provides a selective advantage for parasites is uncertain. Here, we show that Plasmodium chabaudi malaria parasites selected for resistance to artesunate (an artemisinin derivative) through a step-wise increase in drug dose evolved slower clearance rates extremely rapidly. In single infections, these slower clearance rates, similar to those seen in the field, provided fitness advantages to the parasite through increased overall density, recrudescence after treatment and increased transmission potential. In mixed infections, removal of susceptible parasites by drug treatment led to substantial increases in the densities and transmission potential of resistant parasites (competitive release). Our results demonstrate the double-edged sword for resistance management: in our initial selection experiments, no parasites survived aggressive chemotherapy, but after selection, the fitness advantage for resistant parasites was greatest at high drug doses. Aggressive treatment of mixed infections resulted in resistant parasites dominating the pool of gametocytes, without providing additional health benefits to hosts. Slower clearance rates can evolve rapidly and can provide a strong fitness advantage during drug treatment in both single and mixed strain

  11. Rapid response to selection, competitive release and increased transmission potential of artesunate-selected Plasmodium chabaudi malaria parasites.

    PubMed

    Pollitt, Laura C; Huijben, Silvie; Sim, Derek G; Salathé, Rahel M; Jones, Matthew J; Read, Andrew F

    2014-04-01

    The evolution of drug resistance, a key challenge for our ability to treat and control infections, depends on two processes: de-novo resistance mutations, and the selection for and spread of resistant mutants within a population. Understanding the factors influencing the rates of these two processes is essential for maximizing the useful lifespan of drugs and, therefore, effective disease control. For malaria parasites, artemisinin-based drugs are the frontline weapons in the fight against disease, but reports from the field of slower parasite clearance rates during drug treatment are generating concern that the useful lifespan of these drugs may be limited. Whether slower clearance rates represent true resistance, and how this provides a selective advantage for parasites is uncertain. Here, we show that Plasmodium chabaudi malaria parasites selected for resistance to artesunate (an artemisinin derivative) through a step-wise increase in drug dose evolved slower clearance rates extremely rapidly. In single infections, these slower clearance rates, similar to those seen in the field, provided fitness advantages to the parasite through increased overall density, recrudescence after treatment and increased transmission potential. In mixed infections, removal of susceptible parasites by drug treatment led to substantial increases in the densities and transmission potential of resistant parasites (competitive release). Our results demonstrate the double-edged sword for resistance management: in our initial selection experiments, no parasites survived aggressive chemotherapy, but after selection, the fitness advantage for resistant parasites was greatest at high drug doses. Aggressive treatment of mixed infections resulted in resistant parasites dominating the pool of gametocytes, without providing additional health benefits to hosts. Slower clearance rates can evolve rapidly and can provide a strong fitness advantage during drug treatment in both single and mixed strain

  12. Comparison of modeling methods to determine liver-to-blood inocula and parasite multiplication rates during controlled human malaria infection.

    PubMed

    Douglas, Alexander D; Edwards, Nick J; Duncan, Christopher J A; Thompson, Fiona M; Sheehy, Susanne H; O'Hara, Geraldine A; Anagnostou, Nicholas; Walther, Michael; Webster, Daniel P; Dunachie, Susanna J; Porter, David W; Andrews, Laura; Gilbert, Sarah C; Draper, Simon J; Hill, Adrian V S; Bejon, Philip

    2013-07-15

    Controlled human malaria infection is used to measure efficacy of candidate malaria vaccines before field studies are undertaken. Mathematical modeling using data from quantitative polymerase chain reaction (qPCR) parasitemia monitoring can discriminate between vaccine effects on the parasite's liver and blood stages. Uncertainty regarding the most appropriate modeling method hinders interpretation of such trials. We used qPCR data from 267 Plasmodium falciparum infections to compare linear, sine-wave, and normal-cumulative-density-function models. We find that the parameters estimated by these models are closely correlated, and their predictive accuracy for omitted data points was similar. We propose that future studies include the linear model.

  13. Multivariable analysis of host amino acids in plasma and liver during infection of malaria parasite Plasmodium yoelii

    PubMed Central

    2013-01-01

    Background Malaria is the most significant human parasitic disease, and yet understanding of the energy metabolism of the principle pathogen, Plasmodium falciparum, remains to be fully elucidated. Amino acids were shown to be essential nutritional requirements since early times and much of the current knowledge of Plasmodium energy metabolism is based on early biochemical work, performed using basic analytical techniques, carried out almost exclusively on human plasma with considerable inter-individual variability. Methods In order to further characterize the fate of amino acid metabolism in malaria parasite, multivariate analysis using statistical modelling of amino acid concentrations (aminogram) of plasma and liver were determined in host infected with rodent malaria parasite, Plasmodium yoelii. Results and conclusion Comprehensive and statistical aminogram analysis revealed that P. yoelii infection caused drastic change of plasma and liver aminogram, and altered intra- and inter-correlation of amino acid concentration in plasma and liver. These findings of the interactions between amino acids and Plasmodium infection may provide insight to reveal the interaction between nutrients and parasites. PMID:23324562

  14. DNA damage regulation and its role in drug-related phenotypes in the malaria parasites

    PubMed Central

    Gupta, Devendra Kumar; Patra, Alok Tanala; Zhu, Lei; Gupta, Archana Patkar; Bozdech, Zbynek

    2016-01-01

    DNA of malaria parasites, Plasmodium falciparum, is subjected to extraordinary high levels of genotoxic insults during its complex life cycle within both the mosquito and human host. Accordingly, most of the components of DNA repair machinery are conserved in the parasite genome. Here, we investigated the genome-wide responses of P. falciparum to DNA damaging agents and provided transcriptional evidence of the existence of the double strand break and excision repair system. We also showed that acetylation at H3K9, H4K8, and H3K56 play a role in the direct and indirect response to DNA damage induced by an alkylating agent, methyl methanesulphonate (MMS). Artemisinin, the first line antimalarial chemotherapeutics elicits a similar response compared to MMS which suggests its activity as a DNA damaging agent. Moreover, in contrast to the wild-type P. falciparum, two strains (Dd2 and W2) previously shown to exhibit a mutator phenotype, fail to induce their DNA repair upon MMS-induced DNA damage. Genome sequencing of the two mutator strains identified point mutations in 18 DNA repair genes which may contribute to this phenomenon. PMID:27033103

  15. Clonal reproduction shapes evolution in the lizard malaria parasite Plasmodium floridense.

    PubMed

    Falk, Bryan G; Glor, Richard E; Perkins, Susan L

    2015-06-01

    The preponderant clonal evolution hypothesis (PCE) predicts that frequent clonal reproduction (sex between two clones) in many pathogens capable of sexual recombination results in strong linkage disequilibrium and the presence of discrete genetic subdivisions characterized by occasional gene flow. We expand on the PCE and predict that higher rates of clonal reproduction will result in: (1) morphologically cryptic species that exhibit (2) low within-species variation and (3) recent between-species divergence. We tested these predictions in the Caribbean lizard malaria parasite Plasmodium floridense using 63 single-infection samples in lizards collected from across the parasite's range, and sequenced them at two mitochondrial, one apicoplast, and five nuclear genes. We identified 11 provisionally cryptic species within P. floridense, each of which exhibits low intraspecific variation and recent divergence times between species (some diverged approximately 110,000 years ago). Our results are consistent with the hypothesis that clonal reproduction can profoundly affect diversification of species capable of sexual recombination, and suggest that clonal reproduction may have led to a large number of unrecognized pathogen species. The factors that may influence the rates of clonal reproduction among pathogens are unclear, and we discuss how prevalence and virulence may relate to clonal reproduction.

  16. Rationale for the Coadministration of Albendazole and Ivermectin to Humans for Malaria Parasite Transmission Control

    DTIC Science & Technology

    2014-07-28

    STHs). Malaria and STHs overlap in distribution, and STH infections are associated with increased risk for malaria. Indeed, there is evidence that...suggests that STH infection may facilitate malaria transmission. Malaria and STH coinfection may exacerbate anemia, especially in pregnant women, leading...are a diverse group of infectious diseases including STH infections , lymphatic filariasis (LF), schistosomiasis, onchocerciasis, and at least 13

  17. Impact of host nutritional status on infection dynamics and parasite virulence in a bird-malaria system.

    PubMed

    Cornet, Stéphane; Bichet, Coraline; Larcombe, Stephen; Faivre, Bruno; Sorci, Gabriele

    2014-01-01

    Host resources can drive the optimal parasite exploitation strategy by offering a good or a poor environment to pathogens. Hosts living in resource-rich habitats might offer a favourable environment to developing parasites because they provide a wealth of resources. However, hosts living in resource-rich habitats might afford a higher investment into costly immune defences providing an effective barrier against infection. Understanding how parasites can adapt to hosts living in habitats of different quality is a major challenge in the light of the current human-driven environmental changes. We studied the role of nutritional resources as a source of phenotypic variation in host exploitation by the avian malaria parasite Plasmodium relictum. We investigated how the nutritional status of birds altered parasite within-host dynamics and virulence, and how the interaction between past and current environments experienced by the parasite accounts for the variation in the infection dynamics. Experimentally infected canaries were allocated to control or supplemented diets. Plasmodium parasites experiencing the two different environments were subsequently transmitted in a full-factorial design to new hosts reared under similar control or supplemented diets. Food supplementation was effective since supplemented hosts gained body mass during a 15-day period that preceded the infection. Host nutrition had strong effects on infection dynamics and parasite virulence. Overall, parasites were more successful in control nonsupplemented birds, reaching larger population sizes and producing more sexual (transmissible) stages. However, supplemented hosts paid a higher cost of infection, and when keeping parasitaemia constant, they had lower haematocrit than control hosts. Parasites grown on control hosts were better able to exploit the subsequent hosts since they reached higher parasitaemia than parasites originating from supplemented hosts. They were also more virulent since they

  18. Aspidosperma (Apocynaceae) plant cytotoxicity and activity towards malaria parasites. Part I: Aspidosperma nitidum (Benth) used as a remedy to treat fever and malaria in the Amazon.

    PubMed

    Coutinho, Julia Penna; Aguiar, Anna Caroline Campos; dos Santos, Pierre Alexandre; Lima, Joaquim Corsino; Rocha, Maria Gabrielle Lima; Zani, Carlos Leomar; Alves, Tânia Maria Almeida; Santana, Antônio Euzébio Goulart; Pereira, Maria de Meneses; Krettli, Antoniana Ursine

    2013-12-01

    Infusions of Aspidosperma nitidum (Apocynaceae) wood bark are used to treat fever and malaria in the Amazon Region. Several species of this family are known to possess indole alkaloids and other classes of secondary metabolites, whereas terpenoids, an inositol and the indole alkaloids harmane-3 acid and braznitidumine have been described in A. nitidum . In the present study, extracts from the wood bark, leaves and branches of this species were prepared for assays against malaria parasites and cytotoxicity testing using human hepatoma and normal monkey kidney cells. The wood bark extracts were active against Plasmodium falciparum and showed a low cytotoxicity in vitro, whereas the leaf and branch extracts and the pure alkaloid braznitidumine were inactive. A crude methanol extract was subjected to acid-base fractionation aimed at obtaining alkaloid-rich fractions, which were active at low concentrations against P. falciparum and in mice infected with and sensitive Plasmodium berghei parasites. Our data validate the antimalarial usefulness of A. nitidum wood bark, a remedy that can most likely help to control malaria. However, the molecules responsible for this antimalarial activity have not yet been identified. Considering their high selectivity index, the alkaloid-rich fractions from the plant bark might be useful in the development of new antimalarials.

  19. Aspidosperma (Apocynaceae) plant cytotoxicity and activity towards malaria parasites. Part I: Aspidosperma nitidum (Benth) used as a remedy to treat fever and malaria in the Amazon

    PubMed Central

    Coutinho, Julia Penna; Aguiar, Anna Caroline Campos; dos Santos, Pierre Alexandre; Lima, Joaquim Corsino; Rocha, Maria Gabrielle Lima; Zani, Carlos Leomar; Alves, Tânia Maria Almeida; Santana, Antônio Euzébio Goulart; Pereira, Maria de Meneses; Krettli, Antoniana Ursine

    2013-01-01

    Infusions of Aspidosperma nitidum (Apocynaceae) wood bark are used to treat fever and malaria in the Amazon Region. Several species of this family are known to possess indole alkaloids and other classes of secondary metabolites, whereas terpenoids, an inositol and the indole alkaloids harmane-3 acid and braznitidumine have been described in A. nitidum . In the present study, extracts from the wood bark, leaves and branches of this species were prepared for assays against malaria parasites and cytotoxicity testing using human hepatoma and normal monkey kidney cells. The wood bark extracts were active against Plasmodium falciparum and showed a low cytotoxicity in vitro, whereas the leaf and branch extracts and the pure alkaloid braznitidumine were inactive. A crude methanol extract was subjected to acid-base fractionation aimed at obtaining alkaloid-rich fractions, which were active at low concentrations against P. falciparum and in mice infected with and sensitive Plasmodium berghei parasites. Our data validate the antimalarial usefulness of A. nitidum wood bark, a remedy that can most likely help to control malaria. However, the molecules responsible for this antimalarial activity have not yet been identified. Considering their high selectivity index, the alkaloid-rich fractions from the plant bark might be useful in the development of new antimalarials. PMID:24402150

  20. Modern geographical reconnaissance of target populations in malaria elimination zones

    PubMed Central

    2010-01-01

    Background Geographical Reconnaissance (GR) operations using Personal Digital Assistants (PDAs) and Global Positioning Systems (GPS) have been conducted in the elimination provinces of Temotu, Solomon Islands and Tafea, Republic of Vanuatu. These operations aimed to examine modern approaches to GR to define the spatial distribution of target populations to support contemporary malaria elimination interventions. Methods Three GR surveys were carried out covering the outer islands of Temotu Province (October - November, 2008); Santa Cruz Island, Temotu Province (February 2009) and Tanna Island, Tafea Province (July - September 2009). Integrated PDA/GPS handheld units were used in the field to rapidly map and enumerate households, and collect associated population and household structure data to support priority elimination interventions, including bed net distribution, indoor residual spraying (IRS) and malaria case surveillance. Data were uploaded and analysed in customized Geographic Information System (GIS) databases to produce household distribution maps and generate relevant summary information pertaining to the GR operations. Following completion of field operations, group discussions were also conducted to review GR approaches and technology implemented. Results 10,459 households were geo-referenced and mapped. A population of 43,497 and 30,663 household structures were recorded during the three GR surveys. The spatial distribution of the population was concentrated in coastal village clusters. Survey operations were completed over a combined total of 77 field days covering a total land mass area of approximately 1103.2 km2. An average of 45 households, 118 structures and a population of 184 people were recorded per handheld device per day. Geo-spatial household distribution maps were also produced immediately following the completion of GR fieldwork. An overall high acceptability of modern GR techniques and technology was observed by both field operations

  1. Evidence that the Malaria Parasite Plasmodium falciparum Putative Rhoptry Protein 2 Localizes to the Golgi Apparatus throughout the Erythrocytic Cycle

    PubMed Central

    Hallée, Stéphanie; Richard, Dave

    2015-01-01

    Invasion of a red blood cell by Plasmodium falciparum merozoites is an essential step in the malaria lifecycle. Several of the proteins involved in this process are stored in the apical complex of the merozoite, a structure containing secretory organelles that are released at specific times during invasion. The molecular players involved in erythrocyte invasion thus represent potential key targets for both therapeutic and vaccine-based strategies to block parasite development. In our quest to identify and characterize new effectors of invasion, we investigated the P. falciparum homologue of a P. berghei protein putatively localized to the rhoptries, the Putative rhoptry protein 2 (PbPRP2). We show that in P. falciparum, the protein colocalizes extensively with the Golgi apparatus across the asexual erythrocytic cycle. Furthermore, imaging of merozoites caught at different times during invasion show that PfPRP2 is not secreted during the process instead staying associated with the Golgi apparatus. Our evidence therefore suggests that PfPRP2 is a Golgi protein and that it is likely not a direct effector in the process of merozoite invasion. PMID:26375591

  2. Evidence that the Malaria Parasite Plasmodium falciparum Putative Rhoptry Protein 2 Localizes to the Golgi Apparatus throughout the Erythrocytic Cycle.

    PubMed

    Hallée, Stéphanie; Richard, Dave

    2015-01-01

    Invasion of a red blood cell by Plasmodium falciparum merozoites is an essential step in the malaria lifecycle. Several of the proteins involved in this process are stored in the apical complex of the merozoite, a structure containing secretory organelles that are released at specific times during invasion. The molecular players involved in erythrocyte invasion thus represent potential key targets for both therapeutic and vaccine-based strategies to block parasite development. In our quest to identify and characterize new effectors of invasion, we investigated the P. falciparum homologue of a P. berghei protein putatively localized to the rhoptries, the Putative rhoptry protein 2 (PbPRP2). We show that in P. falciparum, the protein colocalizes extensively with the Golgi apparatus across the asexual erythrocytic cycle. Furthermore, imaging of merozoites caught at different times during invasion show that PfPRP2 is not secreted during the process instead staying associated with the Golgi apparatus. Our evidence therefore suggests that PfPRP2 is a Golgi protein and that it is likely not a direct effector in the process of merozoite invasion.

  3. Applied genomics: data mining reveals species-specific malaria diagnostic targets more sensitive than 18S rRNA.

    PubMed

    Demas, Allison; Oberstaller, Jenna; DeBarry, Jeremy; Lucchi, Naomi W; Srinivasamoorthy, Ganesh; Sumari, Deborah; Kabanywanyi, Abdunoor M; Villegas, Leopoldo; Escalante, Ananias A; Kachur, S Patrick; Barnwell, John W; Peterson, David S; Udhayakumar, Venkatachalam; Kissinger, Jessica C

    2011-07-01

    Accurate and rapid diagnosis of malaria infections is crucial for implementing species-appropriate treatment and saving lives. Molecular diagnostic tools are the most accurate and sensitive method of detecting Plasmodium, differentiating between Plasmodium species, and detecting subclinical infections. Despite available whole-genome sequence data for Plasmodium falciparum and P. vivax, the majority of PCR-based methods still rely on the 18S rRNA gene targets. Historically, this gene has served as the best target for diagnostic assays. However, it is limited in its ability to detect mixed infections in multiplex assay platforms without the use of nested PCR. New diagnostic targets are needed. Ideal targets will be species specific, highly sensitive, and amenable to both single-step and multiplex PCRs. We have mined the genomes of P. falciparum and P. vivax to identify species-specific, repetitive sequences that serve as new PCR targets for the detection of malaria. We show that these targets (Pvr47 and Pfr364) exist in 14 to 41 copies and are more sensitive than 18S rRNA when utilized in a single-step PCR. Parasites are routinely detected at levels of 1 to 10 parasites/μl. The reaction can be multiplexed to detect both species in a single reaction. We have examined 7 P. falciparum strains and 91 P. falciparum clinical isolates from Tanzania and 10 P. vivax strains and 96 P. vivax clinical isolates from Venezuela, and we have verified a sensitivity and specificity of ∼100% for both targets compared with a nested 18S rRNA approach. We show that bioinformatics approaches can be successfully applied to identify novel diagnostic targets and improve molecular methods for pathogen detection. These novel targets provide a powerful alternative molecular diagnostic method for the detection of P. falciparum and P. vivax in conventional or multiplex PCR platforms.

  4. Isoprenoid precursor biosynthesis offers potential targets for drug discovery against diseases caused by apicomplexan parasites.

    PubMed

    Hunter, William N

    2011-01-01

    Two, simple, C5 compounds, dimethylally diphosphate and isopentenyl diphosphate, are the universal precursors of isoprenoids, a large family of natural products involved in numerous important biological processes. Two distinct biosynthetic pathways have evolved to supply these precursors. Humans use the mevalonate route whilst many species of bacteria including important pathogens, plant chloroplasts and apicomplexan parasites exploit the non-mevalonate pathway. The absence from humans, combined with genetic and chemical validation suggests that the non-mevalonate pathway holds the potential to support new drug discovery programmes targeting Gram-negative bacteria and the apicomplexan parasites responsible for causing serious human diseases, and also infections of veterinary importance. The non-mevalonate pathway relies on eight enzyme-catalyzed stages exploiting a range of cofactors and metal ions. A wealth of structural and mechanistic data, mainly derived from studies of bacterial enzymes, now exists for most components of the pathway and these will be described. Particular attention will be paid to how these data inform on the apicomplexan orthologues concentrating on the enzymes from Plasmodium spp. these cause malaria, one the most important parasitic diseases in the world today.

  5. Parasitic infections and immune function: effect of helminth infections in a malaria endemic area.

    PubMed

    Boef, Anna G C; May, Linda; van Bodegom, David; van Lieshout, Lisette; Verweij, Jaco J; Maier, Andrea B; Westendorp, Rudi G J; Eriksson, Ulrika K

    2013-05-01

    According to the hygiene hypothesis, reduced exposure to infections could explain the rise of atopic diseases in high-income countries. Helminths are hypothesised to alter the host's immune response in order to avoid elimination and, as a consequence, also reduce the host responsiveness to potential allergens. To elucidate the effect of current helminth infections on immune responsiveness in humans, we measured cytokine production in a rural Ghanaian population in an area with multiple endemic parasites including malaria, intestinal helminths and protozoa. Multiplex real-time PCR in stool samples was used for the detection of four gastrointestinal helminths, of which only Necator americanus was commonly present. A similar assay was used to test for Giardia lamblia in stool samples and malaria infection in venous blood samples. Levels of the cytokines interleukin (IL)-10, tumour necrosis factor (TNF)-α, IL-17, IL-6, IL-13, and interferon (IFN)-γ were determined in whole-blood samples ex vivo-stimulated either with lipopolysaccharide (LPS) and zymosan (for innate cytokine production) or the T-cell mitogen phytohaemagglutinin (PHA). There were no significant differences in either innate or PHA-stimulated cytokine production dependent on current N. americanus infection. Plasmodium falciparum malarial infection was associated with a pro-inflammatory response indicated by increased innate production of TNF-α, IL-17 and IL-6. There was no clear pattern in cytokine responses dependent on G. lamblia-infection. In conclusion, in this rural Ghanaian population current N. americanus infections are not associated with altered immune function, while infection with P. falciparum is associated with pro-inflammatory innate immune responses.

  6. ATPase activity of Plasmodium falciparum MLH is inhibited by DNA-interacting ligands and dsRNAs of MLH along with UvrD curtail malaria parasite growth.

    PubMed

    Tarique, Mohammed; Chauhan, Manish; Tuteja, Renu

    2016-09-14

    Malaria caused by Plasmodium falciparum is the major disease burden all over the world. Recently, the situation has deteriorated because the malarial parasites are becoming progressively more resistant to numerous commonly used antimalarial drugs. Thus, there is a critical requirement to find other means to restrict and eliminate malaria. The mismatch repair (MMR) machinery of parasite is quite unique in several ways, and it can be exploited for finding new drug targets. MutL homolog (MLH) is one of the major components of MMR machinery, and along with UvrD, it helps in unwinding the DNA. We have screened several DNA-interacting ligands for their effect on intrinsic ATPase activity of PfMLH protein. This screening suggested that several ligands such as daunorubicin, etoposide, ethidium bromide, netropsin, and nogalamycin are inhibitors of the ATPase activity of PfMLH, and their apparent IC50 values range from 2.1 to 9.35 μM. In the presence of nogalamycin and netropsin, the effect was significant because in their presence, the V max value dropped from 1.024 μM of hydrolyzed ATP/min to 0.596 and 0.643 μM of hydrolyzed ATP/min, respectively. The effect of double-stranded RNAs of PfMLH and PfUvrD on growth of P. falciparum 3D7 strain was studied. The parasite growth was significantly inhibited suggesting that these components belonging to MMR pathway are crucial for the survival of the parasite.

  7. ChAd63-MVA–vectored Blood-stage Malaria Vaccines Targeting MSP1 and AMA1: Assessment of Efficacy Against Mosquito Bite Challenge in Humans

    PubMed Central

    Sheehy, Susanne H; Duncan, Christopher JA; Elias, Sean C; Choudhary, Prateek; Biswas, Sumi; Halstead, Fenella D; Collins, Katharine A; Edwards, Nick J; Douglas, Alexander D; Anagnostou, Nicholas A; Ewer, Katie J; Havelock, Tom; Mahungu, Tabitha; Bliss, Carly M; Miura, Kazutoyo; Poulton, Ian D; Lillie, Patrick J; Antrobus, Richard D; Berrie, Eleanor; Moyle, Sarah; Gantlett, Katherine; Colloca, Stefano; Cortese, Riccardo; Long, Carole A; Sinden, Robert E; Gilbert, Sarah C; Lawrie, Alison M; Doherty, Tom; Faust, Saul N; Nicosia, Alfredo; Hill, Adrian VS; Draper, Simon J

    2012-01-01

    The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1—results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets. PMID:23089736

  8. MHC-I affects infection intensity but not infection status with a frequent avian malaria parasite in blue tits.

    PubMed

    Westerdahl, Helena; Stjernman, Martin; Råberg, Lars; Lannefors, Mimi; Nilsson, Jan-Åke

    2013-01-01

    Host resistance against parasites depends on three aspects: the ability to prevent, control and clear infections. In vertebrates the immune system consists of innate and adaptive immunity. Innate immunity is particularly important for preventing infection and eradicating established infections at an early stage while adaptive immunity is slow, but powerful, and essential for controlling infection intensities and eventually clearing infections. Major Histocompatibility Complex (MHC) molecules are central in adaptive immunity, and studies on parasite resistance and MHC in wild animals have found effects on both infection intensity (parasite load) and infection status (infected or not). It seems MHC can affect both the ability to control infection intensities and the ability to clear infections. However, these two aspects have rarely been considered simultaneously, and their relative importance in natural populations is therefore unclear. Here we investigate if MHC class I genotype affects infection intensity and infection status with a frequent avian malaria infection Haemoproteus majoris in a natural population of blue tits Cyanistes caeruleus. We found a significant negative association between a single MHC allele and infection intensity but no association with infection status. Blue tits that carry a specific MHC allele seem able to suppress H. majoris infection intensity, while we have no evidence that this allele also has an effect on clearance of the H. majoris infection, a result that is in contrast with some previous studies of MHC and avian malaria. A likely explanation could be that the clearance rate of avian malaria parasites differs between avian malaria lineages and/or between avian hosts.

  9. Towards a molecular understanding of the apicomplexan actin motor: on a road to novel targets for malaria remedies?

    PubMed Central

    Kumpula, Esa-Pekka; Kursula, Inari

    2015-01-01

    Apicomplexan parasites are the causative agents of notorious human and animal diseases that give rise to considerable human suffering and economic losses worldwide. The most prominent parasites of this phylum are the malaria-causing Plasmodium species, which are widespread in tropical and subtropical regions, and Toxoplasma gondii, which infects one third of the world’s population. These parasites share a common form of gliding motility which relies on an actin–myosin motor. The components of this motor and the actin-regulatory proteins in Apicomplexa have unique features compared with all other eukaryotes. This, together with the crucial roles of these proteins, makes them attractive targets for structure-based drug design. In recent years, several structures of glideosome components, in particular of actins and actin regulators from apicomplexan parasites, have been determined, which will hopefully soon allow the creation of a complete molecular picture of the parasite actin–myosin motor and its regulatory machinery. Here, current knowledge of the function of this motor is reviewed from a structural perspective. PMID:25945702

  10. Towards a molecular understanding of the apicomplexan actin motor: on a road to novel targets for malaria remedies?

    SciTech Connect

    Kumpula, Esa-Pekka; Kursula, Inari

    2015-04-16

    In this review, current structural understanding of the apicomplexan glideosome and actin regulation is described. Apicomplexan parasites are the causative agents of notorious human and animal diseases that give rise to considerable human suffering and economic losses worldwide. The most prominent parasites of this phylum are the malaria-causing Plasmodium species, which are widespread in tropical and subtropical regions, and Toxoplasma gondii, which infects one third of the world’s population. These parasites share a common form of gliding motility which relies on an actin–myosin motor. The components of this motor and the actin-regulatory proteins in Apicomplexa have unique features compared with all other eukaryotes. This, together with the crucial roles of these proteins, makes them attractive targets for structure-based drug design. In recent years, several structures of glideosome components, in particular of actins and actin regulators from apicomplexan parasites, have been determined, which will hopefully soon allow the creation of a complete molecular picture of the parasite actin–myosin motor and its regulatory machinery. Here, current knowledge of the function of this motor is reviewed from a structural perspective.

  11. Inhibition of Plasmepsin V Activity Demonstrates Its Essential Role in Protein Export, PfEMP1 Display, and Survival of Malaria Parasites

    PubMed Central

    Sleebs, Brad E.; Lopaticki, Sash; Marapana, Danushka S.; O'Neill, Matthew T.; Rajasekaran, Pravin; Gazdik, Michelle; Günther, Svenja; Whitehead, Lachlan W.; Lowes, Kym N.; Barfod, Lea; Hviid, Lars; Shaw, Philip J.; Hodder, Anthony N.; Smith, Brian J.; Cowman, Alan F.; Boddey, Justin A.

    2014-01-01

    The malaria parasite Plasmodium falciparum exports several hundred proteins into the infected erythrocyte that are involved in cellular remodeling and severe virulence. The export mechanism involves the Plasmodium export element (PEXEL), which is a cleavage site for the parasite protease, Plasmepsin V (PMV). The PMV gene is refractory to deletion, suggesting it is essential, but definitive proof is lacking. Here, we generated a PEXEL-mimetic inhibitor that potently blocks the activity of PMV isolated from P. falciparum and Plasmodium vivax. Assessment of PMV activity in P. falciparum revealed PEXEL cleavage occurs cotranslationaly, similar to signal peptidase. Treatment of P. falciparum–infected erythrocytes with the inhibitor caused dose-dependent inhibition of PEXEL processing as well as protein export, including impaired display of the major virulence adhesin, PfEMP1, on the erythrocyte surface, and cytoadherence. The inhibitor killed parasites at the trophozoite stage and knockdown of PMV enhanced sensitivity to the inhibitor, while overexpression of PMV increased resistance. This provides the first direct evidence that PMV activity is essential for protein export in Plasmodium spp. and for parasite survival in human erythrocytes and validates PMV as an antimalarial drug target. PMID:24983235

  12. Determining liver stage parasite burden by real time quantitative PCR as a method for evaluating pre-erythrocytic malaria vaccine efficacy.

    PubMed

    Witney, A A; Doolan, D L; Anthony, R M; Weiss, W R; Hoffman, S L; Carucci, D J

    2001-12-01

    The detection and quantitation of blood stage parasitaemia is typically used as a surrogate endpoint for estimating the efficacy of vaccines targeted against the hepatic stage, as well as the erythrocytic stage, of the parasite. However, this does not provide an adequate means of evaluating the efficacy of vaccines, which may be only partially effective at the liver-stage. This is a particular concern for effective evaluation of immune enhancement strategies for candidate pre-erythrocytic stage vaccines. Here, we have developed and validated a method for detecting and quantitating liver stage parasites, using the TaqMan fluorescent real-time quantitative PCR system (PE Applied Biosystems). This method uses TaqMan primers designed to the Plasmodium yoelii 18S rRNA gene and rodent GAPDH to amplify products from infected mouse liver cDNA. The technique is highly reproducible as demonstrated with plasmid controls and capable of efficiently quantitating liver-stage parasite burden following a range of sporozoite challenge doses in strains of mice, which differ in their susceptibility to sporozoite infection. We have further demonstrated the capacity of this technique to evaluate the efficacy of a range of pre-erythrocytic stage vaccines. Our data establish this quantitative real-time PCR assay to be a fast and reproducible way of accurately assessing liver stage parasite burden and vaccine efficacy in rodent malaria models.

  13. The Exported Protein PbCP1 Localises to Cleft-Like Structures in the Rodent Malaria Parasite Plasmodium berghei

    PubMed Central

    Haase, Silvia; Hanssen, Eric; Matthews, Kathryn; Kalanon, Ming; de Koning-Ward, Tania F.

    2013-01-01

    Protein export into the host red blood cell is one of the key processes in the pathobiology of the malaria parasite Plasmodiumtrl falciparum, which extensively remodels the red blood cell to ensure its virulence and survival. In this study, we aimed to shed further light on the protein export mechanisms in the rodent malaria parasite P. berghei and provide further proof of the conserved nature of host cell remodeling in Plasmodium spp. Based on the presence of an export motif (R/KxLxE/Q/D) termed PEXEL (Plasmodium export element), we have generated transgenic P. berghei parasite lines expressing GFP chimera of putatively exported proteins and analysed one of the newly identified exported proteins in detail. This essential protein, termed PbCP1 (P. berghei Cleft-like Protein 1), harbours an atypical PEXEL motif (RxLxY) and is further characterised by two predicted transmembrane domains (2TMD) in the C-terminal end of the protein. We have functionally validated the unusual PEXEL motif in PbCP1 and analysed the role of the 2TMD region, which is required to recruit PbCP1 to discrete membranous structures in the red blood cell cytosol that have a convoluted, vesico-tubular morphology by electron microscopy. Importantly, this study reveals that rodent malaria species also induce modifications to their host red blood cell. PMID:23658610

  14. High resolution FTIR imaging provides automated discrimination and detection of single malaria parasite infected erythrocytes on glass.

    PubMed

    Perez-Guaita, David; Andrew, Dean; Heraud, Philip; Beeson, James; Anderson, David; Richards, Jack; Wood, Bayden R

    2016-06-23

    New highly sensitive tools for malaria diagnostics are urgently needed to enable the detection of infection in asymptomatic carriers and patients with low parasitemia. In pursuit of a highly sensitive diagnostic tool that can identify parasite infections at the single cell level, we have been exploring Fourier transform infrared (FTIR) microscopy using a Focal Plane Array (FPA) imaging detector. Here we report for the first time the application of a new optic configuration developed by Agilent that incorporates 25× condenser and objective Cassegrain optics with a high numerical aperture (NA = 0.81) along with additional high magnification optics within the microscope to provide 0.66 micron pixel resolution (total IR system magnification of 61×) to diagnose malaria parasites at the single cell level on a conventional glass microscope slide. The high quality images clearly resolve the parasite's digestive vacuole demonstrating sub-cellular resolution using this approach. Moreover, we have developed an algorithm that first detects the cells in the infrared image, and secondly extracts the average spectrum. The average spectrum is then run through a model based on Partial Least Squares-Discriminant Analysis (PLS-DA), which diagnoses unequivocally the infected from normal cells. The high quality images, and the fact this measurement can be achieved without a synchrotron source on a conventional glass slide, shows promise as a potential gold standard for malaria detection at the single cell level.

  15. Novel antigen identification method for discovery of protective malaria antigens by rapid testing of DNA vaccines encoding exons from the parasite genome.

    PubMed

    Haddad, Diana; Bilcikova, Erika; Witney, Adam A; Carlton, Jane M; White, Charles E; Blair, Peter L; Chattopadhyay, Rana; Russell, Joshua; Abot, Esteban; Charoenvit, Yupin; Aguiar, Joao C; Carucci, Daniel J; Weiss, Walter R

    2004-03-01

    We describe a novel approach for identifying target antigens for preerythrocytic malaria vaccines. Our strategy is to rapidly test hundreds of DNA vaccines encoding exons from the Plasmodium yoelii yoelii genomic sequence. In this antigen identification method, we measure reduction in parasite burden in the liver after sporozoite challenge in mice. Orthologs of protective P. y. yoelii genes can then be identified in the genomic databases of Plasmodium falciparum and Plasmodium vivax and investigated as candidate antigens for a human vaccine. A pilot study to develop the antigen identification method approach used 192 P. y. yoelii exons from genes expressed during the sporozoite stage of the life cycle. A total of 182 (94%) exons were successfully cloned into a DNA immunization vector with the Gateway cloning technology. To assess immunization strategies, mice were vaccinated with 19 of the new DNA plasmids in addition to the well-characterized protective plasmid encoding P. y. yoelii circumsporozoite protein. Single plasmid immunization by gene gun identified a novel vaccine target antigen which decreased liver parasite burden by 95% and which has orthologs in P. vivax and P. knowlesi but not P. falciparum. Intramuscular injection of DNA plasmids produced a different pattern of protective responses from those seen with gene gun immunization. Intramuscular immunization with plasmid pools could reduce liver parasite burden in mice despite the fact that none of the plasmids was protective when given individually. We conclude that high-throughput cloning of exons into DNA vaccines and their screening is feasible and can rapidly identify new malaria vaccine candidate antigens.

  16. The evolution and putative function of phosducin-like proteins in the malaria parasite Plasmodium.

    PubMed

    Putonti, Catherine; Quach, Bryan; Kooistra, Rachel L; Kanzok, Stefan M

    2013-01-01

    Ubiquitous to the proteomes of all living species is the presence of proteins containing the thioredoxin (Trx)-domain. The best characterized Trx-domain containing proteins include the enzymes involved in cellular redox metabolism facilitated by their cysteine-containing active site. But not all members of the Trx-fold superfamily exhibit this catalytic motif, e.g., the phosducin-like (PhLP) family of proteins. Genome sequencing efforts have uncovered new Trx-domain containing proteins, and their redox activity and cellular functions have yet to be determined. The genome of the malaria parasite Plasmodium contains multiple thioredoxins and thioredoxin-like proteins which are of considerable interest given their role in the parasite's antioxidant defense. While adaptations within the Trx-domain have been studied, primarily with respect to redox active structures, PhLP proteins have not been examined. Using the uncharacterized phosducin-like protein from Plasmodium berghei PhLP-1, we investigated the evolution of PhLP proteins across all branches of the tree of life. As a result of our analysis, we have discovered the presence of two additional PhLP proteins in Plasmodium, PhLP-2 and PhLP-3. Sequence homology with annotated PhLP proteins in other species confirms that the Plasmodium PhLP-2 and PhLP-3 belong to the PhLP family of proteins. Furthermore, as a result of our analysis we hypothesize that the PhLP-2 thioredoxin was lost over time given its absence from higher-order eukaryotes. Probing deeper into the putative function of these proteins, inspection of the active sites indicate that PbPhLP-1 and PbPhLP-2 may be redox active while PbPhLP-3 is very likely not. The results of this phylogenetic study provide insight into the emergence of this family of Trx-domain containing proteins.

  17. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein.

    PubMed

    Salanti, Ali; Clausen, Thomas M; Agerbæk, Mette Ø; Al Nakouzi, Nader; Dahlbäck, Madeleine; Oo, Htoo Z; Lee, Sherry; Gustavsson, Tobias; Rich, Jamie R; Hedberg, Bradley J; Mao, Yang; Barington, Line; Pereira, Marina A; LoBello, Janine; Endo, Makoto; Fazli, Ladan; Soden, Jo; Wang, Chris K; Sander, Adam F; Dagil, Robert; Thrane, Susan; Holst, Peter J; Meng, Le; Favero, Francesco; Weiss, Glen J; Nielsen, Morten A; Freeth, Jim; Nielsen, Torsten O; Zaia, Joseph; Tran, Nhan L; Trent, Jeff; Babcook, John S; Theander, Thor G; Sorensen, Poul H; Daugaard, Mads

    2015-10-12

    Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can be specifically targeted by recombinant VAR2CSA (rVAR2). In tumors, placental-like CS chains are linked to a limited repertoire of cancer-associated proteoglycans including CD44 and CSPG4. The rVAR2 protein localizes to tumors in vivo and rVAR2 fused to diphtheria toxin or conjugated to hemiasterlin compounds strongly inhibits in vivo tumor cell growth and metastasis. Our data demonstrate how an evolutionarily refined parasite-derived protein can be exploited to target a common, but complex, malignancy-associated glycosaminoglycan modification.

  18. Plasmodium subtilisin-like protease 1 (SUB1): Insights into the active-site structure, specificity and function of a pan-malaria drug target

    PubMed Central

    Withers-Martinez, Chrislaine; Suarez, Catherine; Fulle, Simone; Kher, Samir; Penzo, Maria; Ebejer, Jean-Paul; Koussis, Kostas; Hackett, Fiona; Jirgensons, Aigars; Finn, Paul; Blackman, Michael J.

    2012-01-01

    Release of the malaria merozoite from its host erythrocyte (egress) and invasion of a fresh cell are crucial steps in the life cycle of the malaria pathogen. Subtilisin-like protease 1 (SUB1) is a parasite serine protease implicated in both processes. In the most dangerous human malarial species, Plasmodium falciparum, SUB1 has previously been shown to have several parasite-derived substrates, proteolytic cleavage of which is important both for egress and maturation of the merozoite surface to enable invasion. Here we have used molecular modelling, existing knowledge of SUB1 substrates, and recombinant expression and characterisation of additional Plasmodium SUB1 orthologues, to examine the active site architecture and substrate specificity of P. falciparum SUB1 and its orthologues from the two other major human malaria pathogens Plasmodium vivax and Plasmodium knowlesi, as well as from the rodent malaria species, Plasmodium berghei. Our results reveal a number of unusual features of the SUB1 substrate binding cleft, including a requirement to interact with both prime and non-prime side residues of the substrate recognition motif. Cleavage of conserved parasite substrates is mediated by SUB1 in all parasite species examined, and the importance of this is supported by evidence for species-specific co-evolution of protease and substrates. Two peptidyl alpha-ketoamides based on an authentic PfSUB1 substrate inhibit all SUB1 orthologues examined, with inhibitory potency enhanced by the presence of a carboxyl moiety designed to introduce prime side interactions with the protease. Our findings demonstrate that it should be possible to develop ‘pan-reactive’ drug-like compounds that inhibit SUB1 in all three major human malaria pathogens, enabling production of broad-spectrum antimalarial drugs targeting SUB1. PMID:22543039

  19. Antibodies to the Plasmodium falciparum Proteins MSPDBL1 and MSPDBL2 Opsonize Merozoites, Inhibit Parasite Growth, and Predict Protection From Clinical Malaria.

    PubMed

    Chiu, Chris Y H; Hodder, Anthony N; Lin, Clara S; Hill, Danika L; Li Wai Suen, Connie S N; Schofield, Louis; Siba, Peter M; Mueller, Ivo; Cowman, Alan F; Hansen, Diana S

    2015-08-01

    Increasing evidence suggests that antibodies against merozoite surface proteins (MSPs) play an important role in clinical immunity to malaria. Two unusual members of the MSP-3 family, merozoite surface protein duffy binding-like (MSPDBL)1 and MSPDBL2, have been shown to be extrinsically associated to MSP-1 on the parasite surface. In addition to a secreted polymorphic antigen associated with merozoite (SPAM) domain characteristic of MSP-3 family members, they also contain Duffy binding-like (DBL) domain and were found to bind to erythrocytes, suggesting that they play a role in parasite invasion. Antibody responses to these proteins were investigated in a treatment-reinfection study conducted in an endemic area of Papua New Guinea to determine their contribution to naturally acquired immunity. Antibodies to the SPAM domains of MSPDBL1 and MSPDBL2 as well as the DBL domain of MSPDBL1 were found to be associated with protection from Plasmodium falciparum clinical episodes. Moreover, affinity-purified anti-MSPDBL1 and MSPDBL2 were found to inhibit in vitro parasite growth and had strong merozoite opsonizing capacity, suggesting that protection targeting these antigens results from ≥2 distinct effector mechanisms. Together these results indicate that MSPDBL1 and MSPDBL2 are important targets of naturally acquired immunity and might constitute potential vaccine candidates.

  20. Parasite neuropeptide biology: Seeding rational drug target selection?

    PubMed Central

    McVeigh, Paul; Atkinson, Louise; Marks, Nikki J.; Mousley, Angela; Dalzell, Johnathan J.; Sluder, Ann; Hammerland, Lance; Maule, Aaron G.

    2011-01-01

    The rationale for identifying drug targets within helminth neuromuscular signalling systems is based on the premise that adequate nerve and muscle function is essential for many of the key behavioural determinants of helminth parasitism, including sensory perception/host location, invasion, locomotion/orientation, attachment, feeding and reproduction. This premise is validated by the tendency of current anthelmintics to act on classical neurotransmitter-gated ion channels present on helminth nerve and/or muscle, yielding therapeutic endpoints associated with paralysis and/or death. Supplementary to classical neurotransmitters, helminth nervous systems are peptide-rich and encompass associated biosynthetic and signal transduction components – putative drug targets that remain to be exploited by anthelmintic chemotherapy. At this time, no neuropeptide system-targeting lead compounds have been reported, and given that our basic knowledge of neuropeptide biology in parasitic helminths remains inadequate, the short-term prospects for such drugs remain poor. Here, we review current knowledge of neuropeptide signalling in Nematoda and Platyhelminthes, and highlight a suite of 19 protein families that yield deleterious phenotypes in helminth reverse genetics screens. We suggest that orthologues of some of these peptidergic signalling components represent appealing therapeutic targets in parasitic helminths. PMID:24533265

  1. Modeling the effects of relapse in the transmission dynamics of malaria parasites.

    PubMed

    Aguas, Ricardo; Ferreira, Marcelo U; Gomes, M Gabriela M

    2012-01-01

    Often regarded as "benign," Plasmodium vivax infections lay in the shadows of the much more virulent P. falciparum infections. However, about 1.98 billion people are at risk of both parasites worldwide, stressing the need to understand the epidemiology of Plasmodium vivax, particularly under the scope of decreasing P. falciparum prevalence and ecological interactions between both species. Two epidemiological observations put the dynamics of both species into perspective: (1) ACT campaigns have had a greater impact on P. falciparum prevalence. (2) Complete clinical immunity is attained at younger ages for P. vivax, under similar infection rates. We systematically compared two mathematical models of transmission for both Plasmodium species. Simulations suggest that an ACT therapy combined with a hypnozoite killing drug would eliminate both species. However, P. vivax elimination is predicted to be unstable. Differences in age profiles of clinical malaria can be explained solely by P. vivax's ability to relapse, which accelerates the acquisition of clinical immunity and serves as an immunity boosting mechanism. P. vivax transmission can subsist in areas of low mosquito abundance and is robust to drug administration initiatives due to relapse, making it an inconvenient and cumbersome, yet less lethal alternative to P. falciparum.

  2. Malaria parasites possess a telomere repeat-binding protein that shares ancestry with transcription factor IIIA.

    PubMed

    Bertschi, Nicole L; Toenhake, Christa G; Zou, Angela; Niederwieser, Igor; Henderson, Rob; Moes, Suzette; Jenoe, Paul; Parkinson, John; Bartfai, Richard; Voss, Till S

    2017-03-13

    Telomere repeat-binding factors (TRFs) are essential components of the molecular machinery that regulates telomere function. TRFs are widely conserved across eukaryotes and bind duplex telomere repeats via a characteristic MYB-type domain. Here, we identified the telomere repeat-binding protein PfTRZ in the malaria parasite Plasmodium falciparum, a member of the Alveolate phylum for which TRFs have not been described so far. PfTRZ lacks an MYB domain and binds telomere repeats via a C2H2-type zinc finger domain instead. In vivo, PfTRZ binds with high specificity to the telomeric tract and to interstitial telomere repeats upstream of subtelomeric virulence genes. Conditional depletion experiments revealed that PfTRZ regulates telomere length homeostasis and is required for efficient cell cycle progression. Intriguingly, we found that PfTRZ also binds to and regulates the expression of 5S rDNA genes. Combined with detailed phylogenetic analyses, our findings identified PfTRZ as a remote functional homologue of the basic transcription factor TFIIIA, which acquired a new function in telomere maintenance early in the apicomplexan lineage. Our work sheds unexpected new light on the evolution of telomere repeat-binding proteins and paves the way for dissecting the presumably divergent mechanisms regulating telomere functionality in one of the most deadly human pathogens.

  3. Malaria parasites (Plasmodium spp.) infecting introduced, native and endemic New Zealand birds.

    PubMed

    Howe, Laryssa; Castro, Isabel C; Schoener, Ellen R; Hunter, Stuart; Barraclough, Rosemary K; Alley, Maurice R

    2012-02-01

    Avian malaria is caused by intracellular mosquito-transmitted protist parasites in the order Haemosporida, genus Plasmodium. Although Plasmodium species have been diagnosed as causing death in several threatened species in New Zealand, little is known about their ecology and epidemiology. In this study, we examined the presence, microscopic characterization and sequence homology of Plasmodium spp. isolates collected from a small number of New Zealand introduced, native and endemic bird species. We identified 14 Plasmodium spp. isolates from 90 blood or tissue samples. The host range included four species of passerines (two endemic, one native, one introduced), one species of endemic pigeon and two species of endemic kiwi. The isolates were associated into at least four distinct clusters including Plasmodium (Huffia) elongatum, a subgroup of Plasmodium elongatum, Plasmodium relictum and Plasmodium (Noyvella) spp. The infected birds presented a low level of peripheral parasitemia consistent with chronic infection (11/15 blood smears examined). In addition, we report death due to overwhelming parasitemia in a blackbird, a great spotted kiwi and a hihi. These deaths were attributed to infections with either Plasmodium spp. lineage LINN1 or P. relictum lineage GRW4. To the authors' knowledge, this is the first published report of Plasmodium spp. infection in great spotted and brown kiwi, kereru and kokako. Currently, we are only able to speculate on the origin of these 14 isolates but consideration must be made as to the impact they may have on threatened endemic species, particularly due to the examples of mortality.

  4. High-speed holographic microscopy of malaria parasites reveals ambidextrous flagellar waveforms

    PubMed Central

    Wilson, Laurence G.; Carter, Lucy M.; Reece, Sarah E.

    2013-01-01

    Axonemes form the core of eukaryotic flagella and cilia, performing tasks ranging from transporting fluid in developing embryos to the propulsion of sperm. Despite their abundance across the eukaryotic domain, the mechanisms that regulate the beating action of axonemes remain unknown. The flagellar waveforms are 3D in general, but current understanding of how axoneme components interact stems from 2D data; comprehensive measurements of flagellar shape are beyond conventional microscopy. Moreover, current flagellar model systems (e.g., sea urchin, human sperm) contain accessory structures that impose mechanical constraints on movement, obscuring the “native” axoneme behavior. We address both problems by developing a high-speed holographic imaging scheme and applying it to the (male) microgametes of malaria (Plasmodium) parasites. These isolated flagella are a unique, mathematically tractable model system for the physics of microswimmers. We reveal the 3D flagellar waveforms of these microorganisms and map the differential shear between microtubules in their axonemes. Furthermore, we overturn claims that chirality in the structure of the axoneme governs the beat pattern [Hirokawa N, et al. (2009) Ann Rev Fluid Mech 41:53–72], because microgametes display a left- or right-handed character on alternate beats. This breaks the link between structural chirality in the axoneme and larger scale symmetry breaking (e.g., in developing embryos), leading us to conclude that accessory structures play a critical role in shaping the flagellar beat. PMID:24194551

  5. Reversible host cell remodeling underpins deformability changes in malaria parasite sexual blood stages

    PubMed Central

    Dearnley, Megan; Chu, Trang; Zhang, Yao; Looker, Oliver; Huang, Changjin; Klonis, Nectarios; Yeoman, Jeff; Kenny, Shannon; Arora, Mohit; Osborne, James M.; Chandramohanadas, Rajesh; Zhang, Sulin; Dixon, Matthew W. A.; Tilley, Leann

    2016-01-01

    The sexual blood stage of the human malaria parasite Plasmodium falciparum undergoes remarkable biophysical changes as it prepares for transmission to mosquitoes. During maturation, midstage gametocytes show low deformability and sequester in the bone marrow and spleen cords, thus avoiding clearance during passage through splenic sinuses. Mature gametocytes exhibit increased deformability and reappear in the peripheral circulation, allowing uptake by mosquitoes. Here we define the reversible changes in erythrocyte membrane organization that underpin this biomechanical transformation. Atomic force microscopy reveals that the length of the spectrin cross-members and the size of the skeletal meshwork increase in developing gametocytes, then decrease in mature-stage gametocytes. These changes are accompanied by relocation of actin from the erythrocyte membrane to the Maurer’s clefts. Fluorescence recovery after photobleaching reveals reversible changes in the level of coupling between the membrane skeleton and the plasma membrane. Treatment of midstage gametocytes with cytochalasin D decreases the vertical coupling and increases their filterability. A computationally efficient coarse-grained model of the erythrocyte membrane reveals that restructuring and constraining the spectrin meshwork can fully account for the observed changes in deformability. PMID:27071094

  6. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum.

    PubMed

    Amit-Avraham, Inbar; Pozner, Guy; Eshar, Shiri; Fastman, Yair; Kolevzon, Netanel; Yavin, Eylon; Dzikowski, Ron

    2015-03-03

    The virulence of Plasmodium falciparum, the causative agent of the deadliest form of human malaria, is attributed to its ability to evade human immunity through antigenic variation. These parasites alternate between expression of variable antigens, encoded by members of a multicopy gene family named var. Immune evasion through antigenic variation depends on tight regulation of var gene expression, ensuring that only a single var gene is expressed at a time while the rest of the family is maintained transcriptionally silent. Understanding how a single gene is chosen for activation is critical for understanding mutually exclusive expression but remains a mystery. Here, we show that antisense long noncoding RNAs (lncRNAs) initiating from var introns are associated with the single active var gene at the time in the cell cycle when the single var upstream promoter is active. We demonstrate that these antisense transcripts are incorporated into chromatin, and that expression of these antisense lncRNAs in trans triggers activation of a silent var gene in a sequence- and dose-dependent manner. On the other hand, interference with these lncRNAs using complement peptide nucleic acid molecules down-regulated the active var gene, erased the epigenetic memory, and induced expression switching. Altogether, our data provide evidence that these antisense lncRNAs play a key role in regulating var gene activation and mutually exclusive expression.

  7. Network-based gene prediction for Plasmodium falciparum malaria towards genetics-based drug discovery

    PubMed Central

    2015-01-01

    Background Malaria is the most deadly parasitic infectious disease. Existing drug treatments have limited efficacy in malaria elimination, and the complex pathogenesis of the disease is not fully understood. Detecting novel malaria-associated genes not only contributes in revealing the disease pathogenesis, but also facilitates discovering new targets for anti-malaria drugs. Methods In this study, we developed a network-based approach to predict malaria-associated genes. We constructed a cross-species network to integrate human-human, parasite-parasite and human-parasite protein interactions. Then we extended the random walk algorithm on this network, and used known malaria genes as the seeds to find novel candidate genes for malaria. Results We validated our algorithms using 77 known malaria genes: 14 human genes and 63 parasite genes were ranked averagely within top 2% and top 4%, respectively among human and parasite genomes. We also evaluated our method for predicting novel malaria genes using a set of 27 genes with literature supporting evidence. Our approach ranked 12 genes within top 1% and 24 genes within top 5%. In addition, we demonstrated that top-ranked candied genes were enriched for drug targets, and identified commonalities underlying top-ranked malaria genes through pathway analysis. In summary, the candidate malaria-associated genes predicted by our data-driven approach have the potential to guide genetics-based anti-malaria drug discovery. PMID:26099491

  8. Parasites

    MedlinePlus

    ... Where to Find Further Information on Parasitic Diseases Public Health Image Library Freedom of Information Act (FOIA) Explore Parasites A-Z Index Parasites Glossary Education and Training Healthy Water Travelers Health Laboratory ... Science Parasites About Parasites Animals ...

  9. New malaria parasites of the subgenus Novyella in African rainforest birds, with remarks on their high prevalence, classification and diagnostics.

    PubMed

    Valkiūnas, Gediminas; Iezhova, Tatjana A; Loiseau, Claire; Smith, Thomas B; Sehgal, Ravinder N M

    2009-04-01

    Blood samples from 655 passerine birds were collected in rainforests of Ghana and Cameroon and examined both by microscopy and polymerase chain reaction (PCR)-based techniques. The overall prevalence of Plasmodium spp. was 46.6%, as determined by combining the results of both these diagnostic methods. In comparison to PCR-based diagnostics, microscopic examination of blood films was more sensitive in determining simultaneous infection of Plasmodium spp., but both detection methods showed similar trends of prevalence of malaria parasites in the same study sites. Plasmodium (Novyella) lucens n. sp., Plasmodium (Novyella) multivacuolaris n. sp. and Plasmodium (Novyella) parahexamerium n. sp. were found in the olive sunbird Cyanomitra olivacea (Nectariniidae), yellow-whiskered greenbul Andropadus latirostris (Picnonotidae), and white-tailed alethe Alethe diademata (Turdidae), respectively. These parasites are described based on the morphology of their blood stages and a segment of the mitochondrial cytochrome b (cyt b) gene, which can be used for molecular identification and diagnosis of these species. Illustrations of blood stages of new species are given, and phylogenetic analysis identifies DNA lineages closely related to these parasites. Malaria parasites of the subgenus Novyella with small erythrocytic meronts clearly predominate in African passerines. It is probable that the development of such meronts is a characteristic feature of evolution of Plasmodium spp. in African rainforest birds. Subgeneric taxonomy of avian Plasmodium spp. is discussed based on the recent molecular phylogenies of these parasites. It is concluded that a multi-genome phylogeny is needed before revising the current subgeneric classification of Plasmodium. We supported a hypothesis by Hellgren, Krizanauskiene, Valkiūnas, Bensch (J Parasitol 93:889-896, 2007), according to which, haemosporidian species with a genetic differentiation of over 5% in mitochondrial cyt b gene are expected to be

  10. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model.

    PubMed

    Wargo, Andrew R; Huijben, Silvie; de Roode, Jacobus C; Shepherd, James; Read, Andrew F

    2007-12-11

    Malaria infections frequently consist of mixtures of drug-resistant and drug-sensitive parasites. If crowding occurs, where clonal population densities are suppressed by the presence of coinfecting clones, removal of susceptible clones by drug treatment could allow resistant clones to expand into the newly vacated niche space within a host. Theoretical models show that, if such competitive release occurs, it can be a potent contributor to the strength of selection, greatly accelerating the rate at which resistance spreads in a population. A variety of correlational field data suggest that competitive release could occur in human malaria populations, but direct evidence cannot be ethically obtained from human infections. Here we show competitive release after pyrimethamine curative chemotherapy of acute infections of the rodent malaria Plasmodium chabaudi in laboratory mice. The expansion of resistant parasite numbers after treatment resulted in enhanced transmission-stage densities. After the elimination or near-elimination of sensitive parasites, the number of resistant parasites increased beyond that achieved when a competitor had never been present. Thus, a substantial competitive release occurred, markedly elevating the fitness advantages of drug resistance above those arising from survival alone. This finding may explain the rapid spread of drug resistance and the subsequently brief useful lifespans of some antimalarial drugs. In a second experiment, where subcurative chemotherapy was administered, the resistant clone was only partly released from competitive suppression and experienced a restriction in the size of its expansion after treatment. This finding raises the prospect of harnessing in-host ecology to slow the spread of drug resistance.

  11. Molecular evidence of Plasmodium vivax mono and mixed malaria parasite infections in Duffy-negative native Cameroonians.

    PubMed

    Ngassa Mbenda, Huguette Gaelle; Das, Aparup

    2014-01-01

    The malaria parasite Plasmodium vivax is known to be majorly endemic to Asian and Latin American countries with no or very few reports of Africans infected with this parasite. Since the human Duffy antigens act as receptors for P. vivax to invade human RBCs and Africans are generally Duffy-negative, non-endemicity of P. vivax in Africa has been attributed to this fact. However, recent reports describing P. vivax infections in Duffy-negative Africans from West and Central parts of Africa have been surfaced including a recent report on P. vivax infection in native Cameroonians. In order to know if Cameroonians living in the southern regions are also susceptible to P. vivax infection, we collected finger-prick blood samples from 485 malarial symptomatic patients in five locations and followed PCR diagnostic assays with DNA sequencing of the 18S ribosomal RNA gene. Out of the 201 malaria positive cases detected, 193 were pure P. falciparum, six pure P. vivax and two mixed parasite infections (P. falciparum + P. vivax). The eight P. vivax infected samples (six single + two mixed) were further subjected to DNA sequencing of the P. vivax multidrug resistance 1 (pvmdr1) and the P.vivax circumsporozoite (pvcsp) genes. Alignment of the eight Cameroonian pvmdr1 sequences with the reference sequence showed high sequence similarities, reconfirming P. vivax infection in all the eight patients. DNA sequencing of the pvcsp gene indicated all the eight P. vivax to be of VK247 type. Interestingly, DNA sequencing of a part of the human Duffy gene covering the promoter region in the eight P. vivax-infected Cameroonians to identify the T-33C mutation revealed all these patients as Duffy-negative. The results provide evidence of single P. vivax as well as mixed malaria parasite infection in native Cameroonians and add knowledge to the growing evidences of P. vivax infection in Duffy-negative Africans.

  12. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model

    USGS Publications Warehouse

    Wargo, A.R.; Huijben, S.; De Roode, J. C.; Shepherd, J.; Read, A.F.

    2007-01-01

    Malaria infections frequently consist of mixtures of drug-resistant and drug-sensitive parasites. If crowding occurs, where clonal population densities are suppressed by the presence of coinfecting clones, removal of susceptible clones by drug treatment could allow resistant clones to expand into the newly vacated niche space within a host. Theoretical models show that, if such competitive release occurs, it can be a potent contributor to the strength of selection, greatly accelerating the rate at which resistance spreads in a population. A variety of correlational field data suggest that competitive release could occur in human malaria populations, but direct evidence cannot be ethically obtained from human infections. Here we show competitive release after pyrimethamine curative chemotherapy of acute infections of the rodent malaria Plasmodium chabaudi in laboratory mice. The expansion of resistant parasite numbers after treatment resulted in enhanced transmission-stage densities. After the elimination or near-elimination of sensitive parasites, the number of resistant parasites increased beyond that achieved when a competitor had never been present. Thus, a substantial competitive release occurred, markedly elevating the fitness advantages of drug resistance above those arising from survival alone. This finding may explain the rapid spread of drug resistance and the subsequently brief useful lifespans of some antimalarial drugs. In a second experiment, where subcurative chemotherapy was administered, the resistant clone was only partly released from competitive suppression and experienced a restriction in the size of its expansion after treatment. This finding raises the prospect of harnessing in-host ecology to slow the spread of drug resistance. ?? 2007 by The National Academy of Sciences of the USA.

  13. Emergence of resistance to atovaquone-proguanil in malaria parasites: insights from computational modeling and clinical case reports.

    PubMed

    Cottrell, Gilles; Musset, Lise; Hubert, Véronique; Le Bras, Jacques; Clain, Jérôme

    2014-08-01

    The usefulness of atovaquone-proguanil (AP) as an antimalarial treatment is compromised by the emergence of atovaquone resistance during therapy. However, the origin of the parasite mitochondrial DNA (mtDNA) mutation conferring atovaquone resistance remains elusive. Here, we report a patient-based stochastic model that tracks the intrahost emergence of mutations in the multicopy mtDNA during the first erythrocytic parasite cycles leading to the malaria febrile episode. The effect of mtDNA copy number, mutation rate, mutation cost, and total parasite load on the mutant parasite load per patient was evaluated. Computer simulations showed that almost any infected patient carried, after four to seven erythrocytic cycles, de novo mutant parasites at low frequency, with varied frequencies of parasites carrying varied numbers of mutant mtDNA copies. A large interpatient variability in the size of this mutant reservoir was found; this variability was due to the different parameters tested but also to the relaxed replication and partitioning of mtDNA copies during mitosis. We also report seven clinical cases in which AP-resistant infections were treated by AP. These provided evidence that parasiticidal drug concentrations against AP-resistant parasites were transiently obtained within days after treatment initiation. Altogether, these results suggest that each patient carries new mtDNA mutant parasites that emerge before treatment but are killed by high starting drug concentrations. However, because the size of this mutant reservoir is highly variable from patient to patient, we propose that some patients fail to eliminate all of the mutant parasites, repeatedly producing de novo AP treatment failures.

  14. Emergence of Resistance to Atovaquone-Proguanil in Malaria Parasites: Insights from Computational Modeling and Clinical Case Reports

    PubMed Central

    Musset, Lise; Hubert, Véronique; Le Bras, Jacques

    2014-01-01

    The usefulness of atovaquone-proguanil (AP) as an antimalarial treatment is compromised by the emergence of atovaquone resistance during therapy. However, the origin of the parasite mitochondrial DNA (mtDNA) mutation conferring atovaquone resistance remains elusive. Here, we report a patient-based stochastic model that tracks the intrahost emergence of mutations in the multicopy mtDNA during the first erythrocytic parasite cycles leading to the malaria febrile episode. The effect of mtDNA copy number, mutation rate, mutation cost, and total parasite load on the mutant parasite load per patient was evaluated. Computer simulations showed that almost any infected patient carried, after four to seven erythrocytic cycles, de novo mutant parasites at low frequency, with varied frequencies of parasites carrying varied numbers of mutant mtDNA copies. A large interpatient variability in the size of this mutant reservoir was found; this variability was due to the different parameters tested but also to the relaxed replication and partitioning of mtDNA copies during mitosis. We also report seven clinical cases in which AP-resistant infections were treated by AP. These provided evidence that parasiticidal drug concentrations against AP-resistant parasites were transiently obtained within days after treatment initiation. Altogether, these results suggest that each patient carries new mtDNA mutant parasites that emerge before treatment but are killed by high starting drug concentrations. However, because the size of this mutant reservoir is highly variable from patient to patient, we propose that some patients fail to eliminate all of the mutant parasites, repeatedly producing de novo AP treatment failures. PMID:24867967

  15. Malaria

    DTIC Science & Technology

    2011-06-01

    established, the infection is classi- fied as cryptic malaria. A large majority of infections are transmitted by the bite of an infected female ... female anopheline mosquitoes. Plasmodium sp infecting humans include Plasmodium vivax, Plasmodium falci- parum, Plasmodium malariae, and Plasmodium ovale...paled and pigment formed within them. Later he observed male gametes form by exflagellation and described the male and female gam- etes, the

  16. A novel ENU-induced ankyrin-1 mutation impairs parasite invasion and increases erythrocyte clearance during malaria infection in mice

    PubMed Central

    Huang, Hong Ming; Bauer, Denis C.; Lelliott, Patrick M.; Greth, Andreas; McMorran, Brendan J.; Foote, Simon J.; Burgio, Gaetan

    2016-01-01

    Genetic defects in various red blood cell (RBC) cytoskeletal proteins have been long associated with changes in susceptibility towards malaria infection. In particular, while ankyrin (Ank-1) mutations account for approximately 50% of hereditary spherocytosis (HS) cases, an association with malaria is not well-established, and conflicting evidence has been reported. We describe a novel N-ethyl-N-nitrosourea (ENU)-induced ankyrin mutation MRI61689 that gives rise to two different ankyrin transcripts: one with an introduced splice acceptor site resulting a frameshift, the other with a skipped exon. Ank-1(MRI61689/+) mice exhibit an HS-like phenotype including reduction in mean corpuscular volume (MCV), increased osmotic fragility and reduced RBC deformability. They were also found to be resistant to rodent malaria Plasmodium chabaudi infection. Parasites in Ank-1(MRI61689/+) erythrocytes grew normally, but red cells showed resistance to merozoite invasion. Uninfected Ank-1(MRI61689/+) erythrocytes were also more likely to be cleared from circulation during infection; the “bystander effect”. This increased clearance is a novel resistance mechanism which was not observed in previous ankyrin mouse models. We propose that this bystander effect is due to reduced deformability of Ank-1(MRI61689/+) erythrocytes. This paper highlights the complex roles ankyrin plays in mediating malaria resistance. PMID:27848995

  17. Malaria Pathogenesis

    NASA Astrophysics Data System (ADS)

    Miller, Louis H.; Good, Michael F.; Milon, Genevieve

    1994-06-01

    Malaria is a disease caused by repeated cycles of growth of the parasite Plasmodium in the erythrocyte. Various cellular and molecular strategies allow the parasite to evade the human immune response for many cycles of parasite multiplication. Under certain circumstances Plasmodium infection causes severe anemia or cerebral malaria; the expression of disease is influenced by both parasite and host factors, as exemplified by the exacerbation of disease during pregnancy. This article provides an overview of malaria pathogenesis, synthesizing the recent field, laboratory, and epidemiological data that will lead to the development of strategies to reduce mortality and morbidity.

  18. World Malaria Day 2009: what malaria knows about the immune system that immunologists still do not.

    PubMed

    Pierce, Susan K; Miller, Louis H

    2009-05-01

    Malaria kills >1 million children each year, and there is little doubt that an effective vaccine would play a central role in preventing these deaths. However, the strategies that proved so successful in developing the vaccines we have today may simply not be adequate to confront complex, persistent infectious diseases, including malaria, AIDS, and tuberculosis. We believe that the development of a highly effective vaccine will require a better understanding of several features of the immune response to malaria. At the top of the list is the complex and ancient relationship between the parasite that causes malaria and the immune system that enables the parasite to persist in an otherwise functional immune system. A close second is the antigenic targets in malaria and how to overcome the enormous polymorphism of these targets. Meeting these challenges represents a call to arms of basic immunologists to advance our knowledge of malaria immunity.

  19. Plasmodium vivax Malaria in Cambodia

    PubMed Central

    Siv, Sovannaroth; Roca-Feltrer, Arantxa; Vinjamuri, Seshu Babu; Bouth, Denis Mey; Lek, Dysoley; Rashid, Mohammad Abdur; By, Ngau Peng; Popovici, Jean; Huy, Rekol; Menard, Didier

    2016-01-01

    The Cambodian National Strategic Plan for Elimination of Malaria aims to move step by step toward elimination of malaria across Cambodia with an initial focus on Plasmodium falciparum malaria before achieving elimination of all forms of malaria, including Plasmodium vivax in 2025. The emergence of artemisinin-resistant P. falciparum in western Cambodia over the last decade has drawn global attention to support the ultimate goal of P. falciparum elimination, whereas the control of P. vivax lags much behind, making the 2025 target gradually less achievable unless greater attention is given to P. vivax elimination in the country. The following review presents in detail the past and current situation regarding P. vivax malaria, activities of the National Malaria Control Program, and interventional measures applied. Constraints and obstacles that can jeopardize our efforts to eliminate this parasite species are discussed. PMID:27708187

  20. Relative clonal proportions over time in mixed-genotype infections of the lizard malaria parasite Plasmodium mexicanum.

    PubMed

    Ford, Alice Flynn; Schall, Jos J

    2011-06-01

    Vertebrate hosts of malaria parasites (Plasmodium) often harbour two or more genetically distinct clones of a single species, and interaction among these co-existing clones can play an important role in Plasmodium biology. However, how relative clonal proportions vary over time in a host is still poorly known. Experimental mixed-clone infections of the lizard malaria parasite, Plasmodium mexicanum, were followed in its natural host, the western fence lizard using microsatellite markers to determine the relative proportions of two to five co-existing clones over time (2-3 months). Results for two markers, and two PCR primer pairs for one of those, matched very closely, supporting the efficacy of the method. Of the 54 infections, 67% displayed stable relative clonal proportions, with the others showing a shift in proportions, usually with one clone outpacing the others. Infections with rapidly increasing or slowly increasing parasitemia were stable, showing that all clones within these infections reproduced at the same rapid or slow rate. Replicate infections containing the same clones did not always reveal the same growth rate, final parasitemia or dominant clone; thus there was no clone effect for these life history measures. The rate of increase in parasitemia was not associated with stable versus unstable relative proportions, but infections with four to five clones were more likely to be unstable than those with two to three clones. This rare look into events in genetically complex Plasmodium infections suggests that parasite clones may be interacting in complex and unexpected ways.

  1. A semi-automated luminescence based standard membrane feeding assay identifies novel small molecules that inhibit transmission of malaria parasites by mosquitoes.

    PubMed

    Vos, Martijn W; Stone, Will J R; Koolen, Karin M; van Gemert, Geert-Jan; van Schaijk, Ben; Leroy, Didier; Sauerwein, Robert W; Bousema, Teun; Dechering, Koen J

    2015-12-21

    Current first-line treatments for uncomplicated falciparum malaria rapidly clear the asexual stages of the parasite, but do not fully prevent parasite transmission by mosquitoes. The standard membrane feeding assay (SMFA) is the biological gold standard assessment of transmission reducing activity (TRA), but its throughput is limited by the need to determine mosquito infection status by dissection and microscopy. Here we present a novel dissection-free luminescence based SMFA format using a transgenic Plasmodium falciparum reporter parasite without resistance to known antimalarials and therefore unrestricted in its utility in compound screening. Analyses of sixty-five compounds from the Medicines for Malaria Venture validation and malaria boxes identified 37 compounds with high levels of TRA (>80%); different assay modes allowed discrimination between gametocytocidal and downstream modes of action. Comparison of SMFA data to published assay formats for predicting parasite infectivity indicated that individual in vitro screens show substantial numbers of false negatives. These results highlight the importance of the SMFA in the screening pipeline for transmission reducing compounds and present a rapid and objective method. In addition we present sixteen diverse chemical scaffolds from the malaria box that may serve as a starting point for further discovery and development of malaria transmission blocking drugs.

  2. Development of a Multiplex PCR-Ligase Detection Reaction Assay for Diagnosis of Infection by the Four Parasite Species Causing Malaria in Humans

    PubMed Central

    McNamara, David T.; Thomson, Jodi M.; Kasehagen, Laurin J.; Zimmerman, Peter A.

    2004-01-01

    The diagnosis of infections caused by Plasmodium species is critical for understanding the nature of malarial disease, treatment efficacy, malaria control, and public health. The demands of field-based epidemiological studies of malaria will require faster and more sensitive diagnostic methods as new antimalarial drugs and vaccines are explored. We have developed a multiplex PCR-ligase detection reaction (LDR) assay that allows the simultaneous diagnosis of infection by all four parasite species causing malaria in humans. This assay exhibits sensitivity and specificity equal to those of other PCR-based assays, identifying all four human malaria parasite species at levels of parasitemias equal to 1 parasitized erythrocyte/μl of blood. The multiplex PCR-LDR assay goes beyond other PCR-based assays by reducing technical procedures and by detecting intraindividual differences in species-specific levels of parasitemia. Application of the multiplex PCR-LDR assay will provide the sensitivity and specificity expected of PCR-based diagnostic assays and will contribute new insight regarding relationships between the human malaria parasite species and the human host in future epidemiological studies. PMID:15184411

  3. Development of a multiplex PCR-ligase detection reaction assay for diagnosis of infection by the four parasite species causing malaria in humans.

    PubMed

    McNamara, David T; Thomson, Jodi M; Kasehagen, Laurin J; Zimmerman, Peter A

    2004-06-01

    The diagnosis of infections caused by Plasmodium species is critical for understanding the nature of malarial disease, treatment efficacy, malaria control, and public health. The demands of field-based epidemiological studies of malaria will require faster and more sensitive diagnostic methods as new antimalarial drugs and vaccines are explored. We have developed a multiplex PCR-ligase detection reaction (LDR) assay that allows the simultaneous diagnosis of infection by all four parasite species causing malaria in humans. This assay exhibits sensitivity and specificity equal to those of other PCR-based assays, identifying all four human malaria parasite species at levels of parasitemias equal to 1 parasitized erythrocyte/microl of blood. The multiplex PCR-LDR assay goes beyond other PCR-based assays by reducing technical procedures and by detecting intraindividual differences in species-specific levels of parasitemia. Application of the multiplex PCR-LDR assay will provide the sensitivity and specificity expected of PCR-based diagnostic assays and will contribute new insight regarding relationships between the human malaria parasite species and the human host in future epidemiological studies.

  4. A semi-automated luminescence based standard membrane feeding assay identifies novel small molecules that inhibit transmission of malaria parasites by mosquitoes

    PubMed Central

    Vos, Martijn W.; Stone, Will J. R.; Koolen, Karin M.; van Gemert, Geert-Jan; van Schaijk, Ben; Leroy, Didier; Sauerwein, Robert W.; Bousema, Teun; Dechering, Koen J.

    2015-01-01

    Current first-line treatments for uncomplicated falciparum malaria rapidly clear the asexual stages of the parasite, but do not fully prevent parasite transmission by mosquitoes. The standard membrane feeding assay (SMFA) is the biological gold standard assessment of transmission reducing activity (TRA), but its throughput is limited by the need to determine mosquito infection status by dissection and microscopy. Here we present a novel dissection-free luminescence based SMFA format using a transgenic Plasmodium falciparum reporter parasite without resistance to known antimalarials and therefore unrestricted in its utility in compound screening. Analyses of sixty-five compounds from the Medicines for Malaria Venture validation and malaria boxes identified 37 compounds with high levels of TRA (>80%); different assay modes allowed discrimination between gametocytocidal and downstream modes of action. Comparison of SMFA data to published assay formats for predicting parasite infectivity indicated that individual in vitro screens show substantial numbers of false negatives. These results highlight the importance of the SMFA in the screening pipeline for transmission reducing compounds and present a rapid and objective method. In addition we present sixteen diverse chemical scaffolds from the malaria box that may serve as a starting point for further discovery and development of malaria transmission blocking drugs. PMID:26687564

  5. Evaluation of three parasite lactate dehydrogenase-based rapid diagnostic tests for the diagnosis of falciparum and vivax malaria

    PubMed Central

    Ashley, Elizabeth A; Touabi, Malek; Ahrer, Margareta; Hutagalung, Robert; Htun, Khayae; Luchavez, Jennifer; Dureza, Christine; Proux, Stephane; Leimanis, Mara; Lwin, Myo Min; Koscalova, Alena; Comte, Eric; Hamade, Prudence; Page, Anne-Laure; Nosten, François; Guerin, Philippe J

    2009-01-01

    Background In areas where non-falciparum malaria is common rapid diagnostic tests (RDTs) capable of distinguishing malaria species reliably are needed. Such tests are often based on the detection of parasite lactate dehydrogenase (pLDH). Methods In Dawei, southern Myanmar, three pLDH based RDTs (CareStart™ Malaria pLDH (Pan), CareStart™ Malaria pLDH (Pan, Pf) and OptiMAL-IT®)were evaluated in patients presenting with clinically suspected malaria. Each RDT was read independently by two readers. A subset of patients with microscopically confirmed malaria had their RDTs repeated on days 2, 7 and then weekly until negative. At the end of the study, samples of study batches were sent for heat stability testing. Results Between August and November 2007, 1004 patients aged between 1 and 93 years were enrolled in the study. Slide microscopy (the reference standard) diagnosed 213 Plasmodium vivax (Pv) monoinfections, 98 Plasmodium falciparum (Pf) mono-infections and no malaria in 650 cases. The sensitivities (sens) and specificities (spec), of the RDTs for the detection of malaria were- CareStart Malaria™ pLDH (Pan) test: sens 89.1% [CI95 84.2-92.6], spec 97.6% [CI95 96.5-98.4] OptiMal-IT®: Pf+/- other species detection: sens 95.2% [CI95 87.5-98.2], spec 94.7% [CI95 93.3-95.8]; non-Pf detection alone: sens 89.6% [CI95 83.6-93.6], spec 96.5% [CI95 94.8-97.7] CareStart Malaria™ pLDH (Pan, Pf): Pf+/- other species: sens 93.5% [CI9585.4-97.3], spec 97.4% [95.9-98.3]; non-Pf: sens 78.5% [CI9571.1-84.4], spec 97.8% [CI95 96.3-98.7] Inter-observer agreement was excellent for all tests (kappa > 0.9). The median time for the RDTs to become negative was two days for the CareStart™ Malaria tests and seven days for OptiMAL-IT®. Tests were heat stable up to 90 days except for OptiMAL-IT® (Pf specific pLDH stable to day 20 at 35°C). Conclusion None of the pLDH-based RDTs evaluated was able to detect non-falciparum malaria with high sensitivity, particularly at low

  6. The March Toward Malaria Vaccines

    PubMed Central

    Hoffman, Stephen L.; Vekemans, Johan; Richie, Thomas L.; Duffy, Patrick E.

    2016-01-01

    In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of

  7. The March Toward Malaria Vaccines.

    PubMed

    Hoffman, Stephen L; Vekemans, Johan; Richie, Thomas L; Duffy, Patrick E

    2015-12-01

    In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of

  8. The march toward malaria vaccines.

    PubMed

    Hoffman, Stephen L; Vekemans, Johan; Richie, Thomas L; Duffy, Patrick E

    2015-11-27

    In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of

  9. Mast cells and histamine alter intestinal permeability during malaria parasite infection.

    PubMed

    Potts, Rashaun A; Tiffany, Caitlin M; Pakpour, Nazzy; Lokken, Kristen L; Tiffany, Connor R; Cheung, Kong; Tsolis, Renée M; Luckhart, Shirley

    2016-03-01

    Co-infections with malaria and non-typhoidal Salmonella serotypes (NTS) can present as life-threatening bacteremia, in contrast to self-resolving NTS diarrhea in healthy individuals. In previous work with our mouse model of malaria/NTS co-infection, we showed increased gut mastocytosis and increased ileal and plasma histamine levels that were temporally associated with increased gut permeability and bacterial translocation. Here, we report that gut mastocytosis and elevated plasma histamine are also associated with malaria in an animal model of falciparum malaria, suggesting a broader host distribution of this biology. In support of mast cell function in this phenotype, malaria/NTS co-infection in mast cell-deficient mice was associated with a reduction in gut permeability and bacteremia. Further, antihistamine treatment reduced bacterial translocation and gut permeability in mice with malaria, suggesting a contribution of mast cell-derived histamine to GI pathology and enhanced risk of bacteremia during malaria/NTS co-infection.

  10. The M17 leucine aminopeptidase of the malaria parasite Plasmodium falciparum: importance of active site metal ions in the binding of substrates and inhibitors.

    PubMed

    Maric, Selma; Donnelly, Sheila M; Robinson, Mark W; Skinner-Adams, Tina; Trenholme, Katharine R; Gardiner, Donald L; Dalton, John P; Stack, Colin M; Lowther, Jonathan

    2009-06-16

    The M17 leucine aminopeptidase of the intraerythrocytic stages of the malaria parasite Plasmodium falciparum (PfLAP) plays a role in releasing amino acids from host hemoglobin that are used for parasite protein synthesis, growth, and development. This enzyme represents a target at which new antimalarials could be designed since metalloaminopeptidase inhibitors prevent the growth of the parasites in vitro and in vivo. A study on the metal ion binding characteristics of recombinant P. falciparum M17 leucine aminopeptidase (rPfLAP) shows that the active site of this exopeptidase contains two metal-binding sites, a readily exchangeable site (site 1) and a tight binding site (site 2). The enzyme retains activity when the metal ion is removed from site 1, while removal of metal ions from both sites results in an inactive apoenzyme that cannot be reactivated by the addition of divalent metal cations. The metal ion at site 1 is readily exchangeable with several divalent metal ions and displays a preference in the order of preference Zn(2+) > Mn(2+) > Co(2+) > Mg(2+). While it is likely that native PfLAP contains a Zn(2+) in site 2, the metal ion located in site 1 may be dependent on the type and concentration of metal ions in the cytosolic compartment of the parasite. Importantly, the type of metal ion present at site 1 influences not only the catalytic efficiency of the enzyme for peptide substrates but also the mode of binding by bestatin, a metal-chelating inhibitor of M17 aminopeptidases with antimalarial activity.

  11. Assumed white blood cell count of 8,000 cells/μL overestimates malaria parasite density in the Brazilian Amazon.

    PubMed

    Alves-Junior, Eduardo R; Gomes, Luciano T; Ribatski-Silva, Daniele; Mendes, Clebson Rodrigues J; Leal-Santos, Fabio A; Simões, Luciano R; Mello, Marcia Beatriz C; Fontes, Cor Jesus F

    2014-01-01

    Quantification of parasite density is an important component in the diagnosis of malaria infection. The accuracy of this estimation varies according to the method used. The aim of this study was to assess the agreement between the parasite density values obtained with the assumed value of 8,000 cells/μL and the automated WBC count. Moreover, the same comparative analysis was carried out for other assumed values of WBCs. The study was carried out in Brazil with 403 malaria patients who were infected in different endemic areas of the Brazilian Amazon. The use of a fixed WBC count of 8,000 cells/μL to quantify parasite density in malaria patients led to overestimated parasitemia and resulted in low reliability when compared to the automated WBC count. Assumed values ranging between 5,000 and 6,000 cells/μL, and 5,500 cells/μL in particular, showed higher reliability and more similar values of parasite density when compared between the 2 methods. The findings show that assumed WBC count of 5,500 cells/μL could lead to a more accurate estimation of parasite density for malaria patients in this endemic region.

  12. Role for the Plasmodium sporozoite-specific transmembrane protein S6 in parasite motility and efficient malaria transmission.

    PubMed

    Steinbuechel, Marion; Matuschewski, Kai

    2009-02-01

    Malaria transmission occurs by intradermal deposition of Plasmodium sporozoites during the infectious bite of a female Anopheles mosquito. After formation in midgut-associated oocysts sporozoites actively enter mosquito salivary glands and subsequently invade host hepatocytes where they transform into clinically silent liver stages. To date, two sporozoite-specific transmembrane proteins have been identified that perform vital functions in natural malaria transmission. The sporozoite invasin TRAP drives sporozoite motility and target cell entry whereas the adhesin MAEBL mediates sporozoite recognition of and attachment to salivary glands. Here, we demonstrate that the sporozoite-specific transmembrane protein S6 is required for efficient malaria transmission to the vertebrate host. Targeted deletion of S6 results in severe impairment of sporozoite gliding motility and invasion of mosquito salivary glands. During sporozoite maturation S6 expression is tightly regulated by transcriptional and translational control. We propose that S6 functions together with TRAP/MIC2 family invasins to direct fast, efficient and specific cell entry and, ultimately, life cycle progression of the malaria sporozoite.

  13. Immunological Cross-Reactivity between Malaria Vaccine Target Antigen P48/45 in Plasmodium vivax and P. falciparum and Cross–Boosting of Immune Responses

    PubMed Central

    Cao, Yi; Bansal, Geetha P.; Merino, Kristen; Kumar, Nirbhay

    2016-01-01

    In general, malaria immunity has been suggested to be species specific with very little, if any, known cross-reactivity between Plasmodium vivax and P. falciparum, both of which are responsible for >90% of human malaria, and co-endemic in many countries. It is therefore believed that species-specific immunity may be needed to target different species of Plasmodium. Pfs48/45 and Pvs48/45 are well established targets in the sexual stages of the malaria parasites, and are being pursued for the development of transmission blocking vaccines. Comparison of their sequences reveals 61% and 55% identity at the DNA and protein level, respectively raising the possibility that these two target antigens might share cross-reacting epitopes. Having succeeded in expressing recombinant Pfs48/45 and Pvs48/45 proteins, we hypothesized that these proteins will not only exhibit immunological cross–reactivity but also cross-boost immune responses. Mice were immunized with purified recombinant proteins using CFA, Montanide ISA-51 and alum as adjuvants, and the sera were analyzed by ELISA, Western blotting and indirect fixed and live IFA to address the hypothesis. Our studies revealed that Pvs48/45-immune sera showed strong cross-reactivity to full length Pfs48/45 protein, and the majority of this cross reactivity was in the amino-terminal and carboxyl-terminal sub-fragments of Pfs48/45. In cross-boosting experiments Pfs48/45 and Pvs48/45 antigens were able to cross-boost each other in mouse immunization studies. Additionally we also noticed an effect of adjuvants in the overall magnitude of observed cross-reactivity. These studies may have significant implications for immunity targeting transmission of both the species of malaria parasites. PMID:27438603

  14. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    SciTech Connect

    Krungkrai, Sudaratana R.; Tokuoka, Keiji; Kusakari, Yukiko; Inoue, Tsuyoshi; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Kai, Yasushi; Krungkrai, Jerapan; Horii, Toshihiro

    2006-06-01

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V{sub M} = 2.3 Å{sup 3} Da{sup −1})

  15. Blocking of malaria parasite development in mosquito and fecundity reduction by midgut antibodies in Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Suneja, Amita; Gulia, Monika; Gakhar, S K

    2003-02-01

    Rabbits were immunized three times with extracts of Anopheles stephensi midgut. Immunized rabbits showed a high titer of antibodies when characterized by ELISA. We investigated the effect of anti-mosquito midgut antibodies on mosquito fecundity, longevity, mortality, engorgement, and the development of the malaria parasite in mosquitoes. Fecundity was reduced significantly (38%) and similarly hatchability by about 43.5%. There was no statistically significant effect on mortality, longevity, and engorgement. When the mosquito blood meal contained anti-midgut antibodies, fewer oocysts of Plasmodium vivax developed in the mosquito midgut and the proportion of mosquitoes becoming infected was significantly reduced. We also found that the midgut antibodies inhibit the development and/or translocation of the sporozoites. Antisera raised against midgut of A. stephensi recognized eight polypeptides (110, 92, 70, 45, 38, 29, 15, 13 kDa) by Western blotting. Cross-reactive antigens/epitopes present in other tissues of A. stephensi were also examined both by Western blotting and in vivo ELISA. Together, these observations open an avenue for research toward the development of a vector-based malaria parasite transmission blocking vaccine and/or anti-mosquito vaccine.

  16. Evaluation of a Loop-Mediated Isothermal Amplification Method as a Tool for Diagnosis of Infection by the Zoonotic Simian Malaria Parasite Plasmodium knowlesi▿

    PubMed Central

    Iseki, Hiroshi; Kawai, Satoru; Takahashi, Nobuyuki; Hirai, Makoto; Tanabe, Kazuyuki; Yokoyama, Naoaki; Igarashi, Ikuo

    2010-01-01

    Loop-mediated isothermal amplification (LAMP) is a novel method that rapidly amplifies target DNA with high specificity under isothermal conditions. It has been applied as a diagnostic tool for several infectious diseases, including viral, bacterial, and parasitic diseases. In the present study, we developed a LAMP method for the molecular diagnosis of Plasmodium knowlesi infection (PkLAMP) and evaluated its sensitivity, specificity, and clinical applicability. We designed three sets of PkLAMP primers for the species-specific β-tubulin gene. The primer sets for PkLAMP specifically amplified the autologous DNA extracts of P. knowlesi, and the sensitivity of the test was 100-fold that of single-PCR assay. These results indicate that our PkLAMP method can be used to efficiently distinguish between P. knowlesi and other malaria parasites. To evaluate the feasibility of using in vivo materials, comparisons of PkLAMP and the conventional nested PCR (nPCR) method and microscopic examination were made with blood samples from two experimentally infected monkeys. These studies showed that P. knowlesi infection can be identified much earlier with PkLAMP than with nPCR and microscopy. Moreover, the detection performance of PkLAMP using whole blood as the template was identical to that of PkLAMP when genomic DNA extracts were used. These results suggest that the PkLAMP method is a promising tool for molecular diagnosis of P. knowlesi infection in areas of endemicity. PMID:20444968

  17. Evaluation of a loop-mediated isothermal amplification method as a tool for diagnosis of infection by the zoonotic simian malaria parasite Plasmodium knowlesi.

    PubMed

    Iseki, Hiroshi; Kawai, Satoru; Takahashi, Nobuyuki; Hirai, Makoto; Tanabe, Kazuyuki; Yokoyama, Naoaki; Igarashi, Ikuo

    2010-07-01

    Loop-mediated isothermal amplification (LAMP) is a novel method that rapidly amplifies target DNA with high specificity under isothermal conditions. It has been applied as a diagnostic tool for several infectious diseases, including viral, bacterial, and parasitic diseases. In the present study, we developed a LAMP method for the molecular diagnosis of Plasmodium knowlesi infection (PkLAMP) and evaluated its sensitivity, specificity, and clinical applicability. We designed three sets of PkLAMP primers for the species-specific beta-tubulin gene. The primer sets for PkLAMP specifically amplified the autologous DNA extracts of P. knowlesi, and the sensitivity of the test was 100-fold that of single-PCR assay. These results indicate that our PkLAMP method can be used to efficiently distinguish between P. knowlesi and other malaria parasites. To evaluate the feasibility of using in vivo materials, comparisons of PkLAMP and the conventional nested PCR (nPCR) method and microscopic examination were made with blood samples from two experimentally infected monkeys. These studies showed that P. knowlesi infection can be identified much earlier with PkLAMP than with nPCR and microscopy. Moreover, the detection performance of PkLAMP using whole blood as the template was identical to that of PkLAMP when genomic DNA extracts were used. These results suggest that the PkLAMP method is a promising tool for molecular diagnosis of P. knowlesi infection in areas of endemicity.

  18. Polymorphism in dhfr/dhps genes, parasite density and ex vivo response to pyrimethamine in Plasmodium falciparum malaria parasites in Thies, Senegal.

    PubMed

    Ndiaye, Daouda; Dieye, Baba; Ndiaye, Yaye D; Van Tyne, Daria; Daniels, Rachel; Bei, Amy K; Mbaye, Aminata; Valim, Clarissa; Lukens, Amanda; Mboup, Souleymane; Ndir, Omar; Wirth, Dyann F; Volkman, Sarah

    2013-12-01

    Resistance to sulfadoxine-pyrimethamine (SP) in Plasmodium falciparum malaria parasites is associated with mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes, and these mutations have spread resistance worldwide. SP, used for several years in Senegal, has been recommended for intermittent preventive treatment for malaria in pregnancy (IPTp) and has been widely implemented since 2003 in this country. There is currently limited data on SP resistance from molecular marker genotyping, and no data on pyrimethamine ex vivo sensitivity in Senegal. Molecular markers of SP resistance and pyrimethamine ex vivo sensitivity were investigated in 416 parasite samples collected from the general population, from the Thies region between 2003 and 2011. The prevalence of the N51I/C59R/S108N triple mutation in dhfr increased from 40% in 2003 to 93% in 2011. Furthermore, the prevalence of the dhfr N51I/C59R/S108N and dhps A437G quadruple mutation increased, from 20% to 66% over the same time frame, then down to 44% by 2011. There was a significant increase in the prevalence of the dhfr triple mutation, as well as an association between dhfr genotypes and pyrimethamine response. Conversely, dhps mutations in codons 436 and 437 did not show consistent variation between 2003 and 2011. These findings suggest that regular screening for molecular markers of antifolate resistance and ex vivo drug response monitoring should be incorporated with ongoing in vivo efficacy monitoring in areas where IPTp-SP is implemented and where pyrimethamine and sulfa drugs are still widely administered in the general population.

  19. The mucosal inflammatory response to non-typhoidal Salmonella in the intestine is blunted by IL-10 during concurrent malaria parasite infection.

    PubMed

    Mooney, J P; Butler, B P; Lokken, K L; Xavier, M N; Chau, J Y; Schaltenberg, N; Dandekar, S; George, M D; Santos, R L; Luckhart, S; Tsolis, R M

    2014-11-01

    Coinfection can markedly alter the response to a pathogen, thereby changing its clinical presentation. For example, non-typhoidal Salmonella (NTS) serotypes are associated with gastroenteritis in immunocompetent individuals. In contrast, individuals with severe pediatric malaria can develop bacteremic infections with NTS, during which symptoms of gastroenteritis are commonly absent. Here we report that, in both a ligated ileal loop model and a mouse colitis model, malaria parasites caused a global suppression of gut inflammatory responses and blunted the neutrophil influx that is characteristic of NTS infection. Further, malaria parasite infection led to increased recovery of Salmonella enterica serotype Typhimurium from the draining mesenteric lymph node (MLN) of mice. In the mouse colitis model, blunted intestinal inflammation during NTS infection was independent of anemia but instead required parasite-induced synthesis of interleukin (IL)-10. Blocking of IL-10 in coinfected mice reduced dissemination of S. Typhimurium to the MLN, suggesting that induction of IL-10 contributes to development of disseminated infection. Thus IL-10 produced during the immune response to malaria in this model contributes to suppression of mucosal inflammatory responses to invasive NTS, which may contribute to differences in the clinical presentation of NTS infection in the setting of malaria.

  20. Construction of a human functional single-chain variable fragment (scFv) antibody recognizing the malaria parasite Plasmodium falciparum.

    PubMed

    Wajanarogana, Sumet; Prasomrothanakul, Teerawat; Udomsangpetch, Rachanee; Tungpradabkul, Sumalee

    2006-04-01

    Falciparum malaria is one of the most deadly and profound human health problems around the tropical world. Antimalarial drugs are now considered to be a powerful treatment; however, there are drugs currently being used that are resistant to Plasmodium falciparum parasites spreading in different parts of the world. Although the protective immune response against intraerythrocytic stages of the falciparum malaria parasite is still not fully understood, immune antibodies have been shown to be associated with reduced parasite prevalence. Therefore antibodies of the right specificity present in adequate concentrations and affinity are reasonably effective in providing protection. In the present study, VH (variable domain of heavy chain) and VL (variable domain of light chain) were isolated from human blood lymphocytes of P. falciparum in one person who had high serum titre to RESA (ring-infected erythrocyte surface antigen). Equal amounts of VH and VL were assembled together with universal linker (G4S)3 to generate scFvs (single-chain variable fragments). The scFv antibodies were expressed with a phage system for the selection process. Exclusively, an expressed scFv against asynchronous culture of P. falciparum-infected erythrocytes was selected and characterized. Sequence analysis of selected scFv revealed that this clone could be classified into a VH family-derived germline gene (VH1) and Vkappa family segment (Vkappa1). Using an indirect immunofluorescence assay, we could show that soluble expressed scFv reacted with falciparum-infected erythrocytes. The results encourage the further study of scFvs for development as a potential immunotherapeutic agent.

  1. Characterizing Types of Human Mobility to Inform Differential and Targeted Malaria Elimination Strategies in Northeast Cambodia

    PubMed Central

    Peeters Grietens, Koen; Gryseels, Charlotte; Dierickx, Susan; Bannister-Tyrrell, Melanie; Trienekens, Suzan; Uk, Sambunny; Phoeuk, Pisen; Suon, Sokha; Set, Srun; Gerrets, René; Hoibak, Sarah; Muela Ribera, Joan; Hausmann-Muela, Susanna; Tho, Sochantha; Durnez, Lies; Sluydts, Vincent; d’Alessandro, Umberto; Coosemans, Marc; Erhart, Annette

    2015-01-01

    Human population movements currently challenge malaria elimination in low transmission foci in the Greater Mekong Subregion. Using a mixed-methods design, combining ethnography (n = 410 interviews), malariometric data (n = 4996) and population surveys (n = 824 indigenous populations; n = 704 Khmer migrants) malaria vulnerability among different types of mobile populations was researched in the remote province of Ratanakiri, Cambodia. Different structural types of human mobility were identified, showing differential risk and vulnerability. Among local indigenous populations, access to malaria testing and treatment through the VMW-system and LLIN coverage was high but control strategies failed to account for forest farmers’ prolonged stays at forest farms/fields (61% during rainy season), increasing their exposure (p = 0.002). The Khmer migrants, with low acquired immunity, active on plantations and mines, represented a fundamentally different group not reached by LLIN-distribution campaigns since they were largely unregistered (79%) and unaware of the local VMW-system (95%) due to poor social integration. Khmer migrants therefore require control strategies including active detection, registration and immediate access to malaria prevention and control tools from which they are currently excluded. In conclusion, different types of mobility require different malaria elimination strategies. Targeting mobility without an in-depth understanding of malaria risk in each group challenges further progress towards elimination. PMID:26593245

  2. Functional Analysis of Protein Kinase CK2 of the Human Malaria Parasite Plasmodium falciparum▿ †

    PubMed Central

    Holland, Zoë; Prudent, Renaud; Reiser, Jean-Baptiste; Cochet, Claude; Doerig, Christian

    2009-01-01

    Protein kinase CK2 (casein kinase 2) is a eukaryotic serine/threonine protein kinase with multiple substrates and roles in diverse cellular processes, including differentiation, proliferation, and translation. The mammalian holoenzyme consists of two catalytic alpha or alpha′ subunits and two regulatory beta subunits. We report the identification and characterization of a Plasmodium falciparum CK2α orthologue, PfCK2α, and two PfCK2β orthologues, PfCK2β1 and PfCK2β2. Recombinant PfCK2α possesses protein kinase activity, exhibits similar substrate and cosubstrate preferences to those of CK2α subunits from other organisms, and interacts with both of the PfCK2β subunits in vitro. Gene disruption experiments show that the presence of PfCK2α is crucial to asexual blood stage parasites and thereby validate the enzyme as a possible drug target. PfCK2α is amenable to inhibitor screening, and we report differential susceptibility between the human and P. falciparum CK2α enzymes to a small molecule inhibitor. Taken together, our data identify PfCK2α as a potential target for antimalarial chemotherapeutic intervention. PMID:19114502

  3. Cross-stage immunity for malaria vaccine development.

    PubMed

    Nahrendorf, Wiebke; Scholzen, Anja; Sauerwein, Robert W; Langhorne, Jean

    2015-12-22

    A vaccine against malaria is urgently needed for control and eventual eradication. Different approaches are pursued to induce either sterile immunity directed against pre-erythrocytic parasites or to mimic naturally acquired immunity by controlling blood-stage parasite densities and disease severity. Pre-erythrocytic and blood-stage malaria vaccines are often seen as opposing tactics, but it is likely that they have to be combined into a multi-stage malaria vaccine to be optimally safe and effective. Since many antigenic targets are shared between liver- and blood-stage parasites, malaria vaccines have the potential to elicit cross-stage protection with immune mechanisms against both stages complementing and enhancing each other. Here we discuss evidence from pre-erythrocytic and blood-stage subunit and whole parasite vaccination approaches that show that protection against malaria is not necessarily stage-specific. Parasites arresting at late liver-stages especially, can induce powerful blood-stage immunity, and similarly exposure to blood-stage parasites can afford pre-erythrocytic immunity. The incorporation of a blood-stage component into a multi-stage malaria vaccine would hence not only combat breakthrough infections in the blood should the pre-erythrocytic component fail to induce sterile protection, but would also actively enhance the pre-erythrocytic potency of this vaccine. We therefore advocate that future studies should concentrate on the identification of cross-stage protective malaria antigens, which can empower multi-stage malaria vaccine development.

  4. Western blot diagnosis of vivax malaria with multiple stage-specific antigens of the parasite

    PubMed Central

    Son, Eui-Sun; Kim, Tong Soo

    2001-01-01

    Western blot analysis was performed to diagnose vivax malaria using stage-specific recombinant antigens. Genomic DNA from the whole blood of a malaria patient was used as templates to amplify the coding regions for the antigenic domains of circumsporozoite protein (CSP-1), merozoite surface protein (MSP-1), apical merozoite antigen (AMA-1), serine repeat antigen (SERA), and exported antigen (EXP-1) of Plasmodium vivax. Each amplified DNA fragment was inserted into a pGEX-4T plasmid to induce the expression of GST fusion protein in Escherichia coli by IPTG. The bacterial cell extracts were separated on 10% SDS-PAGE followed by western blot analysis with patient sera which was confirmed by blood smear examination. When applied with patient sera, 147 (91.9%) out of 160 vivax malaria, 12 (92.3%) out of 13 falciparum malaria, and all 9 vivax/falciparum mixed malaria reacted with at least one antigen, while no reactions occurred with 20 normal uninfected sera. In the case of vivax malaria, CSP-1 reacted with 128 (80.0%) sera, MSP-1 with 102 (63.8%), AMA-1 with 128 (80.0%), SERA with 115 (71.9%), and EXP-1 with 89 (55.6%), respectively. We obtained higher detection rates when using 5 antigens (91.9%) rather than using each antigen solely (55.6-80%), a combination of 2 (76.3-87.5%), 3 (85.6-90.6%), or 4 antigens (89.4-91.3%). This method can be applied to serological diagnosis, mass screening in endemic regions, or safety test in transfusion of prevalent vivax malaria. PMID:11441504

  5. Western blot diagnosis of vivax malaria with multiple stage-specific antigens of the parasite.

    PubMed

    Son, E S; Kim, T S; Nam, H W

    2001-06-01

    Western blot analysis was performed to diagnose vivax malaria using stage-specific recombinant antigens. Genomic DNA from the whole blood of a malaria patient was used as templates to amplify the coding regions for the antigenic domains of circumsporozoite protein (CSP-1), merozoite surface protein (MSP-1), apical merozoite antigen (AMA-1), serine repeat antigen (SERA), and exported antigen (EXP-1) of Plasmodium vivax. Each amplified DNA fragment was inserted into a pGEX-4T plasmid to induce the expression of GST fusion protein in Escherichia coli by IPTG. The bacterial cell extracts were separated on 10% SDS-PAGE followed by western blot analysis with patient sera which was confirmed by blood smear examination. When applied with patient sera, 147 (91.9%) out of 160 vivax malaria, 12 (92.3%) out of 13 falciparum malaria, and all 9 vivax/falciparum mixed malaria reacted with at least one antigen, while no reactions occurred with 20 normal uninfected sera. In the case of vivax malaria, CSP-1 reacted with 128 (80.0%) sera, MSP-1 with 102 (63.8%), AMA-1 with 128 (80.0%), SERA with 115 (71.9%), and EXP-1 with 89 (55.6%), respectively. We obtained higher detection rates when using 5 antigens (91.9%) rather than using each antigen solely (55.6-80%), a combination of 2 (76.3-87.5%), 3 (85.6-90.6%), or 4 antigens (89.4-91.3%). This method can be applied to serological diagnosis, mass screening in endemic regions, or safety test in transfusion of prevalent vivax malaria.

  6. Multiple lineages of Avian malaria parasites (Plasmodium) in the Galapagos Islands and evidence for arrival via migratory birds.

    PubMed

    Levin, I I; Zwiers, P; Deem, S L; Geest, E A; Higashiguchi, J M; Iezhova, T A; Jiménez-Uzcátegui, G; Kim, D H; Morton, J P; Perlut, N G; Renfrew, R B; Sari, E H R; Valkiunas, G; Parker, P G

    2013-12-01

    Haemosporidian parasites in the genus Plasmodium were recently detected through molecular screening in the Galapagos Penguin (Spheniscus mendiculus). We summarized results of an archipelago-wide screen of 3726 endemic birds representing 22 species for Plasmodium spp. through a combination of molecular and microscopy techniques. Three additional Plasmodium lineages were present in Galapagos. Lineage A-infected penguins, Yellow Warblers (Setophaga petechia aureola), and one Medium Ground Finch (Geospiza fortis) and was detected at multiple sites in multiple years [corrected]. The other 3 lineages were each detected at one site and at one time; apparently, they were transient infections of parasites not established on the archipelago. No gametocytes were found in blood smears of infected individuals; thus, endemic Galapagos birds may be dead-end hosts for these Plasmodium lineages. Determining when and how parasites and pathogens arrive in Galapagos is key to developing conservation strategies to prevent and mitigate the effects of introduced diseases. To assess the potential for Plasmodium parasites to arrive via migratory birds, we analyzed blood samples from 438 North American breeding Bobolinks (Dolichonyx oryzivorus), the only songbird that regularly migrates through Galapagos. Two of the ephemeral Plasmodium lineages (B and C) found in Galapagos birds matched parasite sequences from Bobolinks. Although this is not confirmation that Bobolinks are responsible for introducing these lineages, evidence points to higher potential arrival rates of avian pathogens than previously thought. Linajes Múltiples de Parásitos de Malaria Aviar (Plasmodium) en las Islas Galápagos y Evidencia de su Arribo por Medio de Aves Migratorias.

  7. A Research Agenda for Malaria Eradication: Vaccines

    PubMed Central

    2011-01-01

    Vaccines could be a crucial component of efforts to eradicate malaria. Current attempts to develop malaria vaccines are primarily focused on Plasmodium falciparum and are directed towards reducing morbidity and mortality. Continued support for these efforts is essential, but if malaria vaccines are to be used as part of a repertoire of tools for elimination or eradication of malaria, they will need to have an impact on malaria transmission. We introduce the concept of “vaccines that interrupt malaria transmission” (VIMT), which includes not only “classical” transmission-blocking vaccines that target the sexual and mosquito stages but also pre-erythrocytic and asexual stage vaccines that have an effect on transmission. VIMT may also include vaccines that target the vector to disrupt parasite development in the mosquito. Importantly, if eradication is to be achieved, malaria vaccine development efforts will need to target other malaria parasite species, especially Plasmodium vivax, where novel therapeutic vaccines against hypnozoites or preventive vaccines with effect against multiple stages could have enormous impact. A target product profile (TPP) for VIMT is proposed and a research agenda to address current knowledge gaps and develop tools necessary for design and development of VIMT is presented. PMID:21311586

  8. A research agenda for malaria eradication: vaccines.

    PubMed

    2011-01-25

    Vaccines could be a crucial component of efforts to eradicate malaria. Current attempts to develop malaria vaccines are primarily focused on Plasmodium falciparum and are directed towards reducing morbidity and mortality. Continued support for these efforts is essential, but if malaria vaccines are to be used as part of a repertoire of tools for elimination or eradication of malaria, they will need to have an impact on malaria transmission. We introduce the concept of "vaccines that interrupt malaria transmission" (VIMT), which includes not only "classical" transmission-blocking vaccines that target the sexual and mosquito stages but also pre-erythrocytic and asexual stage vaccines that have an effect on transmission. VIMT may also include vaccines that target the vector to disrupt parasite development in the mosquito. Importantly, if eradication is to be achieved, malaria vaccine development efforts will need to target other malaria parasite species, especially Plasmodium vivax, where novel therapeutic vaccines against hypnozoites or preventive vaccines with effect against multiple stages could have enormous impact. A target product profile (TPP) for VIMT is proposed and a research agenda to address current knowledge gaps and develop tools necessary for design and development of VIMT is presented.

  9. Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum

    SciTech Connect

    Winograd, E.; Greenan, J.R.T.; Sherman, I.W.

    1987-04-01

    Erythrocytes infected with a knobby variant of Plasmodium falciparum selectively bind IgG autoantibodies in normal human serum. Quantification of membrane-bound IgG, by use of /sup 125/I-labeled protein A, revealed that erythrocytes infected with the knobby variant bound 30 times more protein A than did noninfected erythrocytes; infection with a knobless variant resulted in less than a 2-fold difference compared with noninfected erythrocytes. IgG binding to knobby erythrocytes appeared to be related to parasite development, since binding of /sup 125/I-labeled protein A to cells bearing young trophozoites (less than 20 hr after parasite invasion) was similar to binding to uninfected erythrocytes. By immunoelectron microscopy, the membrane-bound IgG on erythrocytes infected with the knobby variant was found to be preferentially associated with the protuberances (knobs) of the plasma membrane. The removal of aged or senescent erythrocytes from the peripheral circulation is reported to involve the binding of specific antibodies to an antigen (senescent antigen) related to the major erythrocyte membrane protein band 3. Since affinity-purified autoantibodies against band 3 specifically bound to the plasma membrane of erythrocytes infected with the knobby variant of P. falciparum, it is clear that the malaria parasite induces expression of senescent antigen.

  10. Investigations on the role of a lysozyme from the malaria vector Anopheles dirus during malaria parasite development.

    PubMed

    Lapcharoen, Parichat; Komalamisra, Narumon; Rongsriyam, Yupha; Wangsuphachart, Voranuch; Dekumyoy, Paron; Prachumsri, Jetsumon; Kajla, Mayur K; Paskewitz, Susan M

    2012-01-01

    A cDNA encoding a lysozyme was obtained by rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR) from females of the malaria vector Anopheles dirus A (Diptera: Culicidae). The 623 bp lysozyme (AdLys c-1) cDNA encodes the 120 amino acid mature protein with a predicted molecular mass of 13.4 kDa and theoretical pI of 8.45. Six cysteine residues and a potential calcium binding motif that are present in AdLys c-1 are highly conserved relative to those of c-type lysozymes found in other insects. RT-PCR analysis of the AdLys c-1 transcript revealed its presence at high levels in the salivary glands both in larval and adult stages and in the larval caecum. dsRNA mediated gene knockdown experiments were conducted to examine the potential role of this lysozyme during Plasmodium berghei infection. Silencing of AdLys c-1 resulted in a significant reduction in the number of oocysts as compared to control dsGFP injected mosquitoes.

  11. Selection and identification of malaria vaccine target molecule using bioinformatics and DNA vaccination.

    PubMed

    Shuaibu, M N; Kikuchi, M; Cherif, M S; Helegbe, G K; Yanagi, T; Hirayama, K

    2010-10-04

    Following a genome-wide search for a blood stage malaria DNA-based vaccine using web-based bioinformatic tools, 29 genes from the annotated Plasmodium yoelii genome sequence (www.PlasmoDB.org and www.tigr.org) were identified as encoding GPI-anchored proteins. Target genes were those with orthologues in P. falciparum, containing an N-terminal signal sequence containing hydrophobic amino acid stretch and signal P criteria, a transmembrane-like domain and GPI anchor motif. Focusing on the blood stage, we extracted mRNA from pRBCs, PCR-amplified 22 out of the 29 selected genes, and eventually cloned nine of these into a DNA vaccine plasmid, pVAX 200-DEST. Biojector-mediated delivery of the nine DNA vaccines was conducted using ShimaJET to C57BL/6 mice at a dose of 4 μg/mouse three times at an interval of 3 weeks. Two weeks after the second booster, immunized mice were challenged with P. y. yoelii 17XL-parasitized RBCs and the level of parasitaemia, protection and survival was assessed. Immunization with one gene (PY03470) resulted in 2-4 days of delayed onset and level of parasitaemia and was associated with increased survival compared to non-immunized mice. Antibody production was, however, low following DNA vaccination, as determined by immunofluorescence assay. Recombinant protein from this gene, GPI8p transamidase-related protein (rPyTAM) in PBS or emulsified with GERBU adjuvant was also used to immunize another set of C57BL/6 mice with 10-20 μg/mouse three times at 3-week interval. Higher antibody response was obtained as determined by ELISA with similar protective effects as observed after DNA vaccination.

  12. The Biological Control of the Malaria Vector

    PubMed Central

    Kamareddine, Layla

    2012-01-01

    The call for malaria control, over the last century, marked a new epoch in the history of this disease. Many control strategies targeting either the Plasmodium parasite or the Anopheles vector were shown to be effective. Yet, the emergence of drug resistant parasites and insecticide resistant mosquito strains, along with numerous health, environmental, and ecological side effects of many chemical agents, highlighted the need to develop alternative tools that either complement or substitute conventional malaria control approaches. The use of biological means is considered a fundamental part of the recently launched malaria eradication program and has so far shown promising results, although this approach is still in its infancy. This review presents an overview of the most promising biological control tools for malaria eradication, namely fungi, bacteria, larvivorous fish, parasites, viruses and nematodes. PMID:23105979

  13. Parasites and cancers: parasite antigens as possible targets for cancer immunotherapy.

    PubMed

    Darani, Hossein Yousofi; Yousefi, Morteza

    2012-12-01

    An adverse relationship between some parasite infections and cancer in the human population has been reported by different research groups. Anticancer activity of some parasites such as Trypanosoma cruzi, Toxoplasma gondii, Toxocara canis, Acantamoeba castellani and Plasmodium yoelii has been shown in experimental animals. Moreover, it has been shown that cancer-associated mucin-type O-glycan compositions are made by parasites, therefore cancers and parasites have common antigens. In this report anticancer activities of some parasites have been reviewed and the possible mechanisms of these actions have also been discussed.

  14. Targeting male mosquito mating behaviour for malaria control.

    PubMed

    Diabate, Abdoulaye; Tripet, Frédéric

    2015-06-26

    Malaria vector control relies heavily on the use of Long-Lasting Insecticidal Nets (LLINs) and Indoor Residual Spraying (IRS). These, together with the combined drug administration efforts to control malaria, have reduced the death toll to less than 700,000 deaths/year. This progress has engendered real excitement but the emergence and spread of insecticide resistance is challenging our ability to sustain and consolidate the substantial gains that have been made. Research is required to discover novel vector control tools that can supplement and improve the effectiveness of those currently available. Here, we argue that recent and continuing progress in our understanding of male mating biology is instrumental in the implementation of new approaches based on the release of either conventional sterile or genetically engineered males. Importantly, further knowledge of male biology could also lead to the development of new interventions, such as sound traps and male mass killing in swarms, and contribute to new population sampling tools. We review and discuss recent advances in the behavioural ecology of male mating with an emphasis on the potential applications that can be derived from such knowledge. We also highlight those aspects of male mating ecology that urgently require additional study in the future.

  15. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    PubMed Central

    Krungkrai, Sudaratana R.; Tokuoka, Keiji; Kusakari, Yukiko; Inoue, Tsuyoshi; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Kai, Yasushi; Krungkrai, Jerapan; Horii, Toshihiro

    2006-01-01

    Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V M = 2.3 Å3 Da−1). PMID:16754976

  16. Phase-diverse Fresnel coherent diffractive imaging of malaria parasite-infected red blood cells in the water window.

    PubMed

    Jones, M W M; Abbey, B; Gianoncelli, A; Balaur, E; Millet, C; Luu, M B; Coughlan, H D; Carroll, A J; Peele, A G; Tilley, L; van Riessen, G A

    2013-12-30

    Phase-diverse Fresnel coherent diffractive imaging has been shown to reveal the structure and composition of biological specimens with high sensitivity at nanoscale resolution. However, the method has yet to be applied using X-ray illumination with energy in the so-called 'water-window' that lies between the carbon and oxygen K edges. In this range, differences in the strength of the X-ray interaction for protein based biological materials and water is increased. Here we demonstrate a proof-of-principle application of FCDI at an X-ray energy within the water-window to a dehydrated cellular sample composed of red blood cells infected with the trophozoite stage of the malaria parasite, Plasmodium falciparum. Comparison of the results to both optical and electron microscopy shows that the correlative imaging methods that include water-window FCDI will find utility in studying cellular architecture.

  17. Five-minute Giemsa stain for rapid detection of malaria parasites in blood smears.

    PubMed

    Jager, M M; Murk, J L; Piqué, R D; Hekker, T A M; Vandenbroucke-Grauls, C M J E

    2011-01-01

    The Giemsa stain is used as the gold standard for the diagnosis of malaria on blood smears. The classical staining procedure requires between 30 and 45 min. We modified the Giemsa stain and reduced the staining time to 5 min without any loss of quality.

  18. Contrasting Population Structures of the Genes Encoding Ten Leading Vaccine-Candidate Antigens of the Human Malaria Parasite, Plasmodium falciparum

    PubMed Central

    Barry, Alyssa E.; Schultz, Lee; Buckee, Caroline O.; Reeder, John C.

    2009-01-01

    The extensive diversity of Plasmodium falciparum antigens is a major obstacle to a broadly effective malaria vaccine but population genetics has rarely been used to guide vaccine design. We have completed a meta-population genetic analysis of the genes encoding ten leading P. falciparum vaccine antigens, including the pre-erythrocytic antigens csp, trap, lsa1 and glurp; the merozoite antigens eba175, ama1, msp's 1, 3 and 4, and the gametocyte antigen pfs48/45. A total of 4553 antigen sequences were assembled from published data and we estimated the range and distribution of diversity worldwide using traditional population genetics, Bayesian clustering and network analysis. Although a large number of distinct haplotypes were identified for each antigen, they were organized into a limited number of discrete subgroups. While the non-merozoite antigens showed geographically variable levels of diversity and geographic restriction of specific subgroups, the merozoite antigens had high levels of diversity globally, and a worldwide distribution of each subgroup. This shows that the diversity of the non-merozoite antigens is organized by physical or other location-specific barriers to gene flow and that of merozoite antigens by features intrinsic to all populations, one important possibility being the immune response of the human host. We also show that current malaria vaccine formulations are based upon low prevalence haplotypes from a single subgroup and thus may represent only a small proportion of the global parasite population. This study demonstrates significant contrasts in the population structure of P. falciparum vaccine candidates that are consistent with the merozoite antigens being under stronger balancing selection than non-merozoite antigens and suggesting that unique approaches to vaccine design will be required. The results of this study also provide a realistic framework for the diversity of these antigens to be incorporated into the design of next

  19. Polymorphisms in K13, pfcrt, pfmdr1, pfdhfr, and pfdhps in parasites isolated from symptomatic malaria patients in Burkina Faso

    PubMed Central

    Somé, Anyirékun Fabrice; Sorgho, Hermann; Zongo, Issaka; Bazié, Thomas; Nikiéma, Frédéric; Sawadogo, Amadé; Zongo, Moussa; Compaoré, Yves-Daniel; Ouédraogo, Jean-Bosco

    2016-01-01

    Background: The emergence of resistance to artemisinin derivatives in western Cambodia is threatening to revert the recent advances made toward global malaria control and elimination. Known resistance-mediating polymorphisms in the K13, pfcrt, pfmdr1, pfdhfr, and pfdhps genes are of greatest importance for monitoring the spread of antimalarial drug resistance. Methods: Samples for the present study were collected from 244 patients with uncomplicated malaria in health centers of Bobo-Dioulasso, Burkina Faso. Blood sample was collected on filter paper before the subject received any treatment. The parasite DNA was then extracted and amplified by Polymerase Chain Reaction (PCR) to evaluate the prevalence of polymorphism of pfcrtK76T, pfmdr1 (N86Y, Y184F), and pfdhps (A437G, K540E). The K13 gene polymorphism was analyzed by nested PCR followed by sequencing. Results: The overall results showed 2.26% (5/221) of K13 synonymous mutant alleles (two C469C, one Y493Y, one G496G, and one V589V), 24.78%, 19.58%, 68.75%, 60.9%, 53.7%, 63.8%, and 64.28%, respectively, for mutant pfcrt 76T, pfmdr1-86Y, pfmdr1-184F, pfdhfr51I, pfdhfr59R, pfdhfr108N, and pfdhps 437G. We did not report any mutation at codon 540 of pfdhps. Conclusion: These results provide baseline prevalence of known drug resistance polymorphisms and suggest that artemisinin combination therapies may retain good efficacy in the treatment of uncomplicated malaria in Burkina Faso. PMID:28004634

  20. Nanomedicine against malaria.

    PubMed

    Urbán, Patricia; Fernàndez-Busquets, Xavier

    2014-01-01

    Malaria is arguably one of the main medical concerns worldwide because of the numbers of people affected, the severity of the disease and the complexity of the life cycle of its causative agent, the protist Plasmodium sp. The clinical, social and economic burden of malaria has led for the last 100 years to several waves of serious efforts to reach its control and eventual eradication, without success to this day. With the advent of nanoscience, renewed hopes have appeared of finally obtaining the long sought-after magic bullet against malaria in the form of a nanovector for the targeted delivery of antimalarial drugs exclusively to Plasmodium-infected cells. Different types of encapsulating structure, targeting molecule, and antimalarial compound will be discussed for the assembly of Trojan horse nanocapsules capable of targeting with complete specificity diseased cells and of delivering inside them their antimalarial cargo with the objective of eliminating the parasite with a single dose. Nanotechnology can also be applied to the discovery of new antimalarials through single-molecule manipulation approaches for the identification of novel drugs targeting essential molecular components of the parasite. Finally, methods for the diagnosis of malaria can benefit from nanotools applied to the design of microfluidic-based devices for the accurate identification of the parasite's strain, its precise infective load, and the relative content of the different stages of its life cycle, whose knowledge is essential for the administration of adequate therapies. The benefits and drawbacks of these nanosystems will be considered in different possible scenarios, including cost-related issues that might be hampering the development of nanotechnology-based medicines against malaria with the dubious argument that they are too expensive to be used in developing areas.

  1. Assessment of three new parasite lactate dehydrogenase (pan-pLDH) tests for diagnosis of uncomplicated malaria.

    PubMed

    Fogg, Carole; Twesigye, Rogers; Batwala, Vincent; Piola, Patrice; Nabasumba, Carolyn; Kiguli, James; Mutebi, Frederick; Hook, Christa; Guillerm, Martine; Moody, Anthony; Guthmann, Jean-Paul

    2008-01-01

    A study to assess the diagnostic capabilities of three parasite lactate dehydrogenase (pan-pLDH) tests, Vistapan), Carestart and Parabank), was conducted in Uganda. An HRP2 test, Paracheck-Pf), and a Giemsa-stained blood film were performed with the pLDH tests for outpatients with suspected malaria. In total, 460 subjects were recruited: 248 with positive blood films and 212 with negative blood films. Plasmodium falciparum was present in 95% of infections. Sensitivity above 90% was shown by two pLDH tests, Carestart (95.6%) and Vistapan (91.9%), and specificity above 90% by Parabank (94.3%) and Carestart (91.5%). Sensitivity decreased with low parasitaemia (chi(2) trend, P<0.001); however, all tests achieved sensitivity >90% with parasitaemia > or =100/microl. All tests had good inter-reader reliability (kappa>0.95). Two weeks after diagnosis, 4-10% of pLDH tests were still positive compared with 69.7% of the HRP2 tests. All tests had similar ease of use. In conclusion, two pLDH tests performed well in diagnosing P. falciparum malaria, and all pLDH tests became negative after treatment more quickly than the HRP2. Therefore the rapid test of choice for use with artemisinin-combination therapies in this area would be one of these new pLDH tests.

  2. Activities of artemether-lumefantrine and amodiaquine-sulfalene-pyrimethamine against sexual-stage parasites in falciparum malaria in children.

    PubMed

    Sowunmi, Akintunde; Balogun, Tunde; Gbotosho, Grace O; Happi, Christian T; Adedeji, Ahmed A; Bolaji, Olayinka M; Fehintola, Fatai A; Folarin, Onikepe A

    2008-01-01

    The activities of artemether-lumefantrine and amodiaquine-sulfalene-pyrimethamine against sexual-stage parasites were evaluated in 42 of 181 Nigerian children with uncomplicated Plasmodium falciparum malaria who had gametocytaemia before, during or after treatment with the two combination therapies. The children were randomized to the standard dose regimens. Clinical recovery from illness occurred in all children who carried gametocytes. Gametocytaemia was detected in 20 patients (11%) before treatment and in another 22 patients (12.2%) after treatment. Gametocyte carriage rates were similar in both combination treatment groups, but the area under the curve of gametocytaemia plotted against time was 8-fold higher in the amodiaquine-sulfalene-pyrimethamine-treated than in the artemether-lumefantrine-treated children. The pretreatment gametocyte sex ratio was female biased in both treatment groups. During follow-up, there was a short-lived but significant increase in the gametocyte sex ratio in children treated with amodiaquine-sulfalene-pyrimethamine but not in those treated with artemether-lumefantrine. These results indicate that both combination therapies had moderate effects on gametocyte carriage, but artemether-lumefantrine may be more potent at reducing transmissibility in P. falciparum malaria by exerting greater effects on post-treatment gametocyte density and gametocyte sex ratio.

  3. Preservation of Wild Isolates of Human Malaria Parasites in Wet Ice and Adaptation Efficacy to In Vitro Culture

    PubMed Central

    Tantular, Indah S.; Pusarawati, Suhintam; Khin, Lin; Kanbe, Toshio; Kimura, Masatsugu; Kido, Yasutoshi; Kawamoto, Fumihiko

    2012-01-01

    Wild isolates of malaria parasites were preserved in wet ice for 2–12 days and cultivated by a candle jar method. In four isolates of Plasmodium falciparum collected from Myanmar and preserved for 12 days, all failed to grow. In 31 isolates preserved for 5–10 days, nine were transformed to young gametocytes, but 22 isolates grew well. From Ranong, Thailand, nine isolates preserved for 7 days were examined, and six grew well. On the other hand, all of the 59 isolates collected from eastern Indonesian islands failed to establish as culture-adapted isolates, even most of them were preserved only for 2–3 days: 10 isolates stopped to grow, and 49 isolates were transformed to sexual stages by Day 10. These results indicated that a great difference in adaptation to in vitro culture may exist between wild isolates distributed in continental Southeast Asia and in eastern Indonesia and that gametocytogenesis might be easily switched on in Indonesian isolates. In wild isolates of P. vivax, P. malariae and P. ovale preserved for 2–9 days, ring forms or young trophozoites survived, but adaptation to in vitro culture failed. These results indicate that wild isolates can be preserved in wet ice for 9–10 days. PMID:23097618

  4. Kinetics of B cell responses to Plasmodium falciparum erythrocyte membrane protein 1 in Ghanaian women naturally exposed to malaria parasites.

    PubMed

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F; Barfod, Lea; Hviid, Lars

    2014-06-01

    Naturally acquired protective immunity to Plasmodium falciparum malaria takes years to develop. It relies mainly on Abs, particularly IgG specific for Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) proteins on the infected erythrocyte surface. It is only partially understood why acquisition of clinical protection takes years to develop, but it probably involves a range of immune-evasive parasite features, not least of which are PfEMP1 polymorphism and clonal variation. Parasite-induced subversion of immunological memory and expansion of "atypical" memory B cells may also contribute. In this first, to our knowledge, longitudinal study of its kind, we measured B cell subset composition, as well as PfEMP1-specific Ab levels and memory B cell frequencies, in Ghanaian women followed from early pregnancy up to 1 y after delivery. Cell phenotypes and Ag-specific B cell function were assessed three times during and after pregnancy. Levels of IgG specific for pregnancy-restricted, VAR2CSA-type PfEMP1 increased markedly during pregnancy and declined after delivery, whereas IgG levels specific for two PfEMP1 proteins not restricted to pregnancy did not. Changes in VAR2CSA-specific memory B cell frequencies showed typical primary memory induction among primigravidae and recall expansion among multigravidae, followed by contraction postpartum in all. No systematic changes in the frequencies of memory B cells specific for the two other PfEMP1 proteins were identified. The B cell subset analysis confirmed earlier reports of high atypical memory B cell frequencies among residents of P. falciparum-endemic areas, and indicated an additional effect of pregnancy. Our study provides new knowledge regarding immunity to P. falciparum malaria and underpins efforts to develop PfEMP1-based vaccines against this disease.

  5. New developments in probing and targeting protein acylation in malaria, leishmaniasis and African sleeping sickness.

    PubMed

    Ritzefeld, Markus; Wright, Megan H; Tate, Edward W

    2017-03-08

    Infections by protozoan parasites, such as Plasmodium falciparum or Leishmania donovani, have a significant health, social and economic impact and threaten billions of people living in tropical and sub-tropical regions of developing countries worldwide. The increasing range of parasite strains resistant to frontline therapeutics makes the identification of novel drug targets and the development of corresponding inhibitors vital. Post-translational modifications (PTMs) are important modulators of biology and inhibition of protein lipidation has emerged as a promising therapeutic strategy for treatment of parasitic diseases. In this review we summarize the latest insights into protein lipidation in protozoan parasites. We discuss how recent chemical proteomic approaches have delivered the first global overviews of protein lipidation in these organisms, contributing to our understanding of the role of this PTM in critical metabolic and cellular functions. Additionally, we highlight the development of new small molecule inhibitors to target parasite acyl transferases.

  6. Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle.

    PubMed Central

    Dimopoulos, G; Seeley, D; Wolf, A; Kafatos, F C

    1998-01-01

    Six gene markers have been used to map the progress of the innate immune response of the mosquito vector, Anopheles gambiae, upon infection by the malaria parasite, Plasmodium berghei. In addition to four previously reported genes, the set of markers included NOS (a nitric oxide synthase gene fragment) and ICHIT (a gene encoding two putative chitin-binding domains separated by a polythreonine-rich mucin region). In the midgut, a robust response occurs at 24 h post-infection, at a time when malaria ookinetes traverse the midgut epithelium, but subsides at later phases of malaria development. In contrast, the salivary glands show no significant response at 24 h, but are activated in a prolonged late phase when sporozoites are released from the midgut into the haemolymph and invade the glands, between 10 and 25 days after blood feeding. Furthermore, the abdomen of the mosquito minus the midgut shows significant activation of immune markers, with complex kinetics that are distinct from those of both midgut and salivary glands. The parasite evidently elicits immune responses in multiple tissues of the mosquito, two of which are epithelia that the parasite must traverse to complete its development. The mechanisms of these responses and their significance for malaria transmission are discussed. PMID:9799221

  7. Novel Leishmania and Malaria Potassium Channels: Candidate Therapeutic Targets

    DTIC Science & Technology

    2005-08-01

    of Ca 2*-activated and voltage-gated K÷ channels) and verruclogen ( isolated from Penicillium verruculosum and a blocker of high conductance Ca 2...containing plasmid (plus 1/101h the amount of GFP voltage steps between -80 and 80mV. 0 = zero plasmid for identification ) by Lipofectamine 2000 current...assays were used to investigate parasite sensitivity to various K+ channel blocking compounds. The identification of only two putative K+ channels

  8. Designing malaria vaccines to circumvent antigen variability.

    PubMed

    Ouattara, Amed; Barry, Alyssa E; Dutta, Sheetij; Remarque, Edmond J; Beeson, James G; Plowe, Christopher V

    2015-12-22

    Prospects for malaria eradication will be greatly enhanced by an effective vaccine, but parasite genetic diversity poses a major impediment to malaria vaccine efficacy. In recent pre-clinical and field trials, vaccines based on polymorphic Plasmodium falciparum antigens have shown efficacy only against homologous strains, raising the specter of allele-specific immunity such as that which plagues vaccines against influenza and HIV. The most advanced malaria vaccine, RTS,S, targets relatively conserved epitopes on the P. falciparum circumsporozoite protein. After more than 40 years of development and testing, RTS,S, has shown significant but modest efficacy against clinical malaria in phase 2 and 3 trials. Ongoing phase 2 studies of an irradiated sporozoite vaccine will ascertain whether the full protection against homologous experimental malaria challenge conferred by high doses of a whole organism vaccine can provide protection against diverse strains in the field. Here we review and evaluate approaches being taken to design broadly cross-protective malaria vaccines.

  9. Unexpected fold in the circumsporozoite protein target of malaria vaccines

    PubMed Central

    Doud, Michael B.; Koksal, Adem C.; Mi, Li-Zhi; Song, Gaojie; Lu, Chafen; Springer, Timothy A.

    2012-01-01

    Circumsporozoite (CS) protein is the major surface component of Plasmodium falciparum sporozoites and is essential for host cell invasion. A vaccine containing tandem repeats, region III, and thrombospondin type-I repeat (TSR) of CS is efficacious in phase III trials but gives only a 35% reduction in severe malaria in the first year postimmunization. We solved crystal structures showing that region III and TSR fold into a single unit, an “αTSR” domain. The αTSR domain possesses a hydrophobic pocket and core, missing in TSR domains. CS binds heparin, but αTSR does not. Interestingly, polymorphic T-cell epitopes map to specialized αTSR regions. The N and C termini are unexpectedly close, providing clues for sporozoite sheath organization. Elucidation of a unique structure of a domain within CS enables rational design of next-generation subunit vaccines and functional and medicinal chemical investigation of the conserved hydrophobic pocket. PMID:22547819

  10. Unexpected fold in the circumsporozoite protein target of malaria vaccines

    SciTech Connect

    Doud, Michael B.; Koksal, Adem C.; Mi, Li-Zhi; Song, Gaojie; Lu, Chafen; Springer, Timothy A.

    2012-10-09

    Circumsporozoite (CS) protein is the major surface component of Plasmodium falciparum sporozoites and is essential for host cell invasion. A vaccine containing tandem repeats, region III, and thrombospondin type-I repeat (TSR) of CS is efficacious in phase III trials but gives only a 35% reduction in severe malaria in the first year postimmunization. We solved crystal structures showing that region III and TSR fold into a single unit, an '{alpha}TSR' domain. The {alpha}TSR domain possesses a hydrophobic pocket and core, missing in TSR domains. CS binds heparin, but {alpha}TSR does not. Interestingly, polymorphic T-cell epitopes map to specialized {alpha}TSR regions. The N and C termini are unexpectedly close, providing clues for sporozoite sheath organization. Elucidation of a unique structure of a domain within CS enables rational design of next-generation subunit vaccines and functional and medicinal chemical investigation of the conserved hydrophobic pocket.

  11. Malaria (For Parents)

    MedlinePlus

    ... period for malaria is the time between the mosquito bite and the release of parasites from the ... Health authorities try to prevent malaria by using mosquito-control programs aimed at killing mosquitoes that carry ...

  12. A Novel Xenomonitoring Technique Using Mosquito Excreta/Feces for the Detection of Filarial Parasites and Malaria

    PubMed Central

    Pilotte, Nils; Zaky, Weam I.; Abrams, Brian P.; Chadee, Dave D.; Williams, Steven A.

    2016-01-01

    Background Given the continued successes of the world’s lymphatic filariasis (LF) elimination programs and the growing successes of many malaria elimination efforts, the necessity of low cost tools and methodologies applicable to long-term disease surveillance is greater than ever before. As many countries reach the end of their LF mass drug administration programs and a growing number of countries realize unprecedented successes in their malaria intervention efforts, the need for practical molecular xenomonitoring (MX), capable of providing surveillance for disease recrudescence in settings of decreased parasite prevalence is increasingly clear. Current protocols, however, require testing of mosquitoes in pools of 25 or fewer, making high-throughput examination a challenge. The new method we present here screens the excreta/feces from hundreds of mosquitoes per pool and provides proof-of-concept for a practical alternative to traditional methodologies resulting in significant cost and labor savings. Methodology/Principal Findings Excreta/feces of laboratory reared Aedes aegypti or Anopheles stephensi mosquitoes provided with a Brugia malayi microfilaria-positive or Plasmodium vivax-positive blood meal respectively were tested for the presence of parasite DNA using real-time PCR. A titration of samples containing various volumes of B. malayi-negative mosquito feces mixed with positive excreta/feces was also tested to determine sensitivity of detection. Real-time PCR amplification of B. malayi and P. vivax DNA from the excreta/feces of infected mosquitoes was demonstrated, and B. malayi DNA in excreta/feces from one to two mf-positive blood meal-receiving mosquitoes was detected when pooled with volumes of feces from as many as 500 uninfected mosquitoes. Conclusions/Significance While the operationalizing of excreta/feces testing may require the development of new strategies for sample collection, the high-throughput nature of this new methodology has the

  13. Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum.

    PubMed Central

    Escalante, A A; Lal, A A; Ayala, F J

    1998-01-01

    We have studied the genetic polymorphism at 10 Plasmodium falciparum loci that are considered potential targets for specific antimalarial vaccines. The polymorphism is unevenly distributed among the loci; loci encoding proteins expressed on the surface of the sporozoite or the merozoite (AMA-1, CSP, LSA-1, MSP-1, MSP-2, and MSP-3) are more polymorphic than those expressed during the sexual stages or inside the parasite (EBA-175, Pfs25, PF48/45, and RAP-1). Comparison of synonymous and nonsynonymous substitutions indicates that natural selection may account for the polymorphism observed at seven of the 10 loci studied. This inference depends on the assumption that synonymous substitutions are neutral, which we test by analyzing codon bias and G+C content in a set of 92 gene loci. We find evidence for an overall trend towards increasing A+T richness, but no evidence for mutation bias. Although the neutrality of synonymous substitutions is not definitely established, this trend towards an A+T rich genome cannot explain the accumulation of substitutions at least in the case of four genes (AMA-1, CSP, LSA-1, and PF48/45) because the Gleft and right arrow C transversions are more frequent than expected. Moreover, the Tajima test manifests positive natural selection for the MSP-1 and, less strongly, MSP-3 polymorphisms; the McDonald-Kreitman test manifests natural selection at LSA-1 and PF48/45. We conclude that there is definite evidence for positive natural selection in the genes encoding AMA-1, CSP, LSA-1, MSP-1, and Pfs48/45. For four other loci, EBA-175, MSP-2, MSP-3, and RAP-1, the evidence is limited. No evidence for natural selection is found for Pfs25. PMID:9584096

  14. Other vector-borne parasitic diseases: animal helminthiases, bovine besnoitiosis and malaria.

    PubMed

    Duvallet, G; Boireau, P

    2015-08-01

    The parasitic diseases discussed elsewhere in this issue of the Scientific and Technical Review are not the only ones to make use of biological vectors (such as mosquitoes or ticks) or mechanical vectors (such as horse flies or Stomoxys flies). The authors discuss two major groups of vector-borne parasitic diseases: firstly, helminthiasis, along with animal filariasis and onchocerciasis, which are parasitic diseases that often take a heavytoll on artiodactylsthroughoutthe world; secondly, parasitic diseases caused by vector-borne protists, foremost of which is bovine besnoitiosis (or anasarca of cattle), which has recently spread through Europe by a dual mode of transmission (direct and by vector). Other protists, such as Plasmodium and Hepatozoon, are also described briefly.

  15. Tetracycline treatment targeting Wolbachia affects expression of an array of proteins in Brugia malayi parasite.

    PubMed

    Dangi, Anil; Vedi, Satish; Nag, Jeetendra Kumar; Paithankar, Sameer; Singh, Mahendra Pratap; Kar, Santosh Kumar; Dube, Anuradha; Misra-Bhattacharya, Shailja

    2009-09-01

    Wolbachia is an intracellular endosymbiont of Brugia malayi parasite whose presence is essential for the survival of the parasite. Treatment of B. malayi-infected jirds with tetracycline eliminates Wolbachia, which affects parasite survival and fitness. In the present study we have tried to identify parasite proteins that are affected when Wolbachia is targeted by tetracycline. For this Wolbachia depleted parasites (B. malayi) were obtained by tetracycline treatment of infected Mongolian jirds (Meriones unguiculatus) and their protein profile after 2-DE separation was compared with that of untreated parasites harboring Wolbachia. Approximately 100 protein spots could be visualized followed by CBB staining of 2-D gel and included for comparative analysis. Of these, 54 showed differential expressions, while two new protein spots emerged (of 90.3 and 64.4 kDa). These proteins were subjected to further analysis by MALDI-TOF for their identification using Brugia coding sequence database composed of both genomic and EST sequences. Our study unravels two crucial findings: (i) the parasite or Wolbachia proteins, which disappeared/down-regulated appear be essential for parasite survival and may be used as drug targets and (ii) tetracycline treatment interferes with the regulatory machinery vital for parasites cellular integrity and defense and thus could possibly be a molecular mechanism for the killing of filarial parasite. This is the first proteomic study substantiating the wolbachial genome integrity with its nematode host and providing functional genomic data of human lymphatic filarial parasite B. malayi.

  16. Mosquito RUNX4 in the immune regulation of PPO gene expression and its effect on avian malaria parasite infection.

    PubMed

    Zou, Zhen; Shin, Sang Woon; Alvarez, Kanwal S; Bian, Guowu; Kokoza, Vladimir; Raikhel, Alexander S

    2008-11-25

    Prophenoloxidases (PPOs) are key enzymes of the melanization reaction, which is a prominent defense mechanism of arthropods. The mosquito Aedes aegypti has ten PPO genes in the genome, four of which (PPO1, PPO3, PPO5, and PPO8) were expressed in response to microbial infection. Cactus depletion resulted in transcriptional activation of these four genes, suggesting this up-regulation to be under the control of the Toll pathway. The silencing of Cactus also led to developmental arrest and death of the avian malaria parasite, Plasmodium gallinaceum. We discovered that RUNT-related transcription factor 4 (RUNX4), the orthologue of Drosophila Lozenge, bound to the RUNT binding motif in the promoter of mosquito PPO genes and stimulated the expression of Drosophila PPO-A1 and PPO3 in S2 cell line. The immune effects caused by Cactus depletion were eliminated by double knockdown of Cactus/RUNX4. These findings suggest that RUNX4 regulates PPO gene expression under the control of the Toll pathway and plays a critical role in restricting parasite development.

  17. Malaria parasites co-opt human factor H to prevent complement-mediated lysis in the mosquito midgut.

    PubMed

    Simon, Nina; Lasonder, Edwin; Scheuermayer, Matthias; Kuehn, Andrea; Tews, Sabrina; Fischer, Rainer; Zipfel, Peter F; Skerka, Christine; Pradel, Gabriele

    2013-01-16

    Human complement is a first line defense against infection in which circulating proteins initiate an enzyme cascade on the microbial surface that leads to phagocytosis and lysis. Various pathogens evade complement recognition by binding to regulator proteins that protect host cells from complement activation. We show that emerging gametes of the malaria parasite Plasmodium falciparum bind the host complement regulator factor H (FH) following transmission to the mosquito to protect from complement-mediated lysis by the blood meal. Human complement is active in the mosquito midgut for approximately 1 hr postfeeding. During this period, the gamete surface protein PfGAP50 binds to FH and uses surface-bound FH to inactivate the complement protein C3b. Loss of FH-mediated protection, either through neutralization of FH or blockade of PfGAP50, significantly impairs gametogenesis and inhibits parasite transmission to the mosquito. Thus, Plasmodium co-opts the protective host protein FH to evade complement-mediated lysis within the mosquito midgut.

  18. Recombinant plasmepsin 1 from the human malaria parasite Plasmodium falciparum: Enzymatic characterization, active site inhibitor design, and structural analysis

    PubMed Central

    Liu, Peng; Marzahn, Melissa R.; Robbins, Arthur H.; Gutiérrez-de-Terán, Hugo; Rodríguez, David; McClung, Scott; Stevens, Stanley M.; Yowell, Charles A.; Dame, John B.; McKenna, Robert; Dunn, Ben M.

    2009-01-01

    A mutated form of truncated proplasmepsin 1 (proPfPM1) from the human malaria parasite Plasmodium falciparum, proPfPM1 K110pN, was generated and overexpressed in E. coli. The auto-maturation process was carried out at pH 4.0 and 4.5, and the optimal catalytic pH of the resulting mature PfPM1 was determined to be pH 5.5. This mature PfPM1 showed comparable binding affinity to peptide substrates and inhibitors with the naturally-occurring form isolated from parasites. The S3-S3’ subsite preferences of the recombinant mature PfPM1 were explored using combinatorial chemistry based peptide libraries. Based on the results, a peptidomimetic inhibitor (compound 1) was designed and yielded 5-fold selectivity for binding to PfPM1 versus the homologous human cathepsin D (hcatD). The 2.8 Å structure of the PfPMP2-compound 1 complex is reported. Modeling studies were conducted using a series of peptidomimetic inhibitors (compounds 1–6, Table 3) and three plasmepsins: the crystal structure of PfPM2, and homology derived models of PfPM1 and PfPM4. PMID:19271776

  19. Renal cortical necrosis and acute kidney injury associated with Plasmodium vivax: a neglected human malaria parasite.

    PubMed

    Kute, Vivek B; Vanikar, Aruna V; Ghuge, Pramod P; Goswami, Jitendra G; Patel, Mohan P; Patel, Himanshu V; Gumber, Manoj R; Shah, Pankaj R; Trivedi, Hargovind L

    2012-11-01

    Plasmodium vivax is causing increasingly more cases of severe malaria worldwide. There is an urgent need to reexamine the clinical spectrum and burden of P. vivax so that adequate control measures can be implemented against this emerging but neglected disease. Herein, we report a case of renal acute cortical necrosis and acute kidney injury (AKI) associated with P. vivax monoinfection. Her initial serum creatinine was 7.3 mg/dL on admission. Modification of Diet in Renal Disease (MDRD) Study glomerular filtration rate (GFR) value was 7 mL/min/1.73 m(2) (normal kidney function-GFR above 90 mL/min/1.73 m(2) and no proteinuria). On follow-up, 5 months later, her SCr. was 2.43 mg/dl with no proteinuria. MDRD GFR value was 24 mL/min/1.73 m(2) suggesting severe chronic kidney disease (CKD; GFR less than 60 or kidney damage for at least 3 months), stage 4. Our case report highlights the fact that P. vivax malaria is benign by name but not always by nature. AKI associated with P. vivax malaria can lead to CKD. Further studies are needed to determine why P. vivax infections are becoming more severe.

  20. WHO Expert Committee on Malaria. Seventeenth report.

    PubMed

    1979-01-01

    This publication consists of guidelines to assist health administrators and planners in planning, implementing, and evaluating malaria control programs that reflect the reorientation of the World Health Organization malaria control strategy endorsed by the World Health Assembly. The report stresses approaches to malaria control, describing the recent resurgence of malaria and present constraints on malaria control; prerequisites for implementation of the revised antimalaria strategy; objectives of a malaria control program; factors affecting planning of control programs including epidemiological factors related to the environment, man, the vector, and the parasite; socioeconomic factors; and the use of antimalaria measures in 4 different situations for reduction and prevention of mortality due to malaria, reduction and prevention of mortality and morbidity particularly in high risk groups, reduction of prevalence and endemicity of malaria, or countrywide malaria control aimed ultimately at eradication; program implementation, including definition of targets, interrelationship of the malaria services, general health services, and community, and program implementation in relation to each of the 4 tactical variants; and general principles, operational and epidemiological criteria, and socioeconomic indicators for program evaluation. Factors determining malaria epidemics, outbreaks of malaria during eradication or control campaigns, forecasting and detection of malaria epidemics, and control of epidemics are then discussed. Training in malaria control and advances in antimalaria measures including drugs, immunological methods, antimosquito measures, and biological and genetic approaches to vector control and their potential value are assessed. Program coordination between countries and at regional and global levels and data collection and dissemination for international surveillance are discussed. A series of recommendations is offered for various aspects of malaria

  1. Mammalian and malaria parasite cyclase-associated proteins catalyze nucleotide exchange on G-actin through a conserved mechanism.

    PubMed

    Makkonen, Maarit; Bertling, Enni; Chebotareva, Natalia A; Baum, Jake; Lappalainen, Pekka

    2013-01-11

    Cyclase-associated proteins (CAPs) are among the most highly conserved regulators of actin dynamics, being present in organisms from mammals to apicomplexan parasites. Yeast, plant, and mammalian CAPs are large multidomain proteins, which catalyze nucleotide exchange on actin monomers from ADP to ATP and recycle actin monomers from actin-depolymerizing factor (ADF)/cofilin for new rounds of filament assembly. However, the mechanism by which CAPs promote nucleotide exchange is not known. Furthermore, how apicomplexan CAPs, which lack many domains present in yeast and mammalian CAPs, contribute to actin dynamics is not understood. We show that, like yeast Srv2/CAP, mouse CAP1 interacts with ADF/cofilin and ADP-G-actin through its N-terminal α-helical and C-terminal β-strand domains, respectively. However, in the variation to yeast Srv2/CAP, mouse CAP1 has two adjacent profilin-binding sites, and it interacts with ATP-actin monomers with high affinity through its WH2 domain. Importantly, we revealed that the C-terminal β-sheet domain of mouse CAP1 is essential and sufficient for catalyzing nucleotide exchange on actin monomers, although the adjacent WH2 domain is not required for this function. Supporting these data, we show that the malaria parasite Plasmodium falciparum CAP, which is entirely composed of the β-sheet domain, efficiently promotes nucleotide exchange on actin monomers. Collectively, this study provides evidence that catalyzing nucleotide exchange on actin monomers via the β-sheet domain is the most highly conserved function of CAPs from mammals to apicomplexan parasites. Other functions, including interactions with profilin and ADF/cofilin, evolved in more complex organisms to adjust the specific role of CAPs in actin dynamics.

  2. A Key Role for Plasmodium Subtilisin-like SUB1 Protease in Egress of Malaria Parasites from Host Hepatocytes*

    PubMed Central

    Tawk, Lina; Lacroix, Céline; Gueirard, Pascale; Kent, Robyn; Gorgette, Olivier; Thiberge, Sabine; Mercereau-Puijalon, Odile; Ménard, Robert; Barale, Jean-Christophe

    2013-01-01

    In their mammalian host, Plasmodium parasites have two obligatory intracellular development phases, first in hepatocytes and subsequently in erythrocytes. Both involve an orchestrated process of invasion into and egress from host cells. The Plasmodium SUB1 protease plays a dual role at the blood stage by enabling egress of the progeny merozoites from the infected erythrocyte and priming merozoites for subsequent erythrocyte invasion. Here, using conditional mutagenesis in P. berghei, we show that SUB1 plays an essential role at the hepatic stage. Stage-specific sub1 invalidation during prehepatocytic development showed that SUB1-deficient parasites failed to rupture the parasitophorous vacuole membrane and to egress from hepatocytes. Furthermore, mechanically released parasites were not adequately primed and failed to establish a blood stage infection in vivo. The critical involvement of SUB1 in both pre-erythrocytic and erythrocytic developmental phases qualifies SUB1 as an attractive multistage target for prophylactic and therapeutic anti-Plasmodium intervention strategies. PMID:24089525

  3. Malaria: Biology and Disease.

    PubMed