Science.gov

Sample records for malaria vector larvae

  1. Habitat Hydrology and Geomorphology Control the Distribution of Malaria Vector Larvae in Rural Africa

    PubMed Central

    Hardy, Andrew J.; Gamarra, Javier G. P.; Cross, Dónall E.; Macklin, Mark G.; Smith, Mark W.; Kihonda, Japhet; Killeen, Gerry F.; Ling’ala, George N.; Thomas, Chris J.

    2013-01-01

    Background Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. Methods We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Results Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Conclusion Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools. PMID:24312606

  2. Toxicity of essential oil from Indian borage on the larvae of the African malaria vector mosquito, Anopheles gambiae

    PubMed Central

    2012-01-01

    Background Essential oils are currently studied for the control of different disease vectors, because of their efficacy on targeted organisms. In the present investigation, the larvicidal potential of essential oil extracted from Indian borage (Plectranthus amboinicus) was studied against the African anthropophagic malaria vector mosquito, Anopheles gambiae. The larvae of An. gambiae s.s laboratory colony and An. gambiae s.l of wild populations were assayed and the larval mortality was observed at 12, 24 and 48 h after exposure period with the concentrations of 3.125, 6.25, 12.5, 25, 50 and 100 ppm. Findings Larval mortality rates of the essential oil was entirely time and dose dependent. The LC50 values of the laboratory colony were 98.56 (after 12h) 55.20 (after 24 h) and 32.41 ppm (after 48 h) and the LC90 values were 147.40 (after 12h), 99.09 (after 24 h) and 98.84 ppm (after 48 h). The LC50 and LC90 values of the wild population were 119.52, 179.85 (after 12h) 67.53, 107.60 (after 24 h) and 25.51, 111.17 ppm (after 48 h) respectively. The oil showed good larvicidal potential after 48 h of exposure period against An. gambiae. The essential oil of Indian borage is a renowned natural source of larvicides for the control of the African malaria vector mosquito, An. gambiae. Conclusion The larvicidal efficacy shown by plant extracts against An. gambiae should be tested in semi field and small scale trials for effective compounds to supplement the existing larval control tools. PMID:23206364

  3. Vector control after malaria eradication

    PubMed Central

    Micks, D. W.

    1963-01-01

    In considerable areas now in or near the consolidation phase of malaria eradication, other vector-borne diseases present serious public health problems, even though not susceptible to control on the same world-wide scale as malaria. Several of these areas are already making plans for converting their malaria eradication services to vector control services. While it is possible to use essentially the same personnel and equipment, the methods must be adapted to the biology and habits of the vector. For a smooth and rapid transition, considerable advance planning is therefore needed—preferably well ahead of the consolidation phase. The author gives several examples of the need for flexibility in effecting the changeover and of the problems likely to arise after the completion of malaria eradication programmes. He recommends that epidemiological studies should be extended to vector-borne diseases other than malaria while eradication programmes are still in progress and that vector control programmes should be integrated into the basic health services of the country as soon as possible. He also underlines the importance of water management and other aspects of environmental sanitation in vector control programmes. PMID:20604169

  4. Study on Fungal Flora in the Midgut of the Larva and Adult of the Different Populations of the Malaria Vector Anopheles stephensi

    PubMed Central

    Tajedin, L; Hashemi, J; Abaei, MR; Hosseinpour, L; Rafei, F; Basseri, HR

    2009-01-01

    Background Many microorganisms in midgut of mosquito challenge with their host and also other pathogens present in midgut. The aim of this study was presence of non-pathogens microorganisms like fungal flora which may be crucial on interaction between vectors and pathogens. Methods: Different populations of Anopheles stephensi were reared in insectary and objected to determine fungal flora in their midguts. The midgut paunch of mosquito adults and larvae as well as breading water and larval food samples transferred on Subaru-dextrose agar, in order to detect the environment fungus. Results: Although four fungi, Aspergillus, Rhizopus, Geotrichum and Sacharomyces were found in the food and water, but only Aspiragilus observed in the midgut of larvae. No fungus was found in the midgut of adults. This is the first report on fungal flora in the midgut of the adults and larvae of An. stephensi and possible stadial transmission of fungi from immature stages to adults. Conclusion: The midgut environment of adults is not compatible for survivorship of fungi but the larval midgut may contain few fungi as a host or even pathogen. PMID:22808370

  5. [Research progress on malaria vector control].

    PubMed

    Zhu, Guo-Ding; Cao, Jun; Zhou, Hua-Yun; Gao, Qi

    2013-06-01

    Vector control plays a crucial role in the stages of malaria control and elimination. Currently, it mainly relies on the chemical control methods for adult mosquitoes in malaria endemic areas, however, it is undergoing the serious threat by insecticide resistance. In recent years, the transgenic technologies of malaria vectors have made a great progress in the laboratory. This paper reviews the challenges of the traditional methods and the rapid developed genetic modified technology in the application of vector control.

  6. SIT for African malaria vectors: Epilogue

    PubMed Central

    Townson, Harold

    2009-01-01

    As a result of increased support and the diligent application of new and conventional anti-malaria tools, significant reductions in malaria transmission are being accomplished. Historical and current evolutionary responses of vectors and parasites to malaria interventions demonstrate that it is unwise to assume that a limited suite of tools will remain effective indefinitely, thus efforts to develop new interventions should continue. This collection of manuscripts surveys the prospects and technical challenges for applying a novel tool, the sterile insect technique (SIT), against mosquitoes that transmit malaria. The method has been very successful against many agricultural pest insects in area-wide programs, but demonstrations against malaria vectors have not been sufficient to determine its potential relative to current alternatives, much of which will hinge ultimately upon cost. These manuscripts provide an overview of current efforts to develop SIT and identify key research issues that remain. PMID:19917071

  7. Malaria vector control: from past to future.

    PubMed

    Raghavendra, Kamaraju; Barik, Tapan K; Reddy, B P Niranjan; Sharma, Poonam; Dash, Aditya P

    2011-04-01

    Malaria is one of the most common vector-borne diseases widespread in the tropical and subtropical regions. Despite considerable success of malaria control programs in the past, malaria still continues as a major public health problem in several countries. Vector control is an essential part for reducing malaria transmission and became less effective in recent years, due to many technical and administrative reasons, including poor or no adoption of alternative tools. Of the different strategies available for vector control, the most successful are indoor residual spraying and insecticide-treated nets (ITNs), including long-lasting ITNs and materials. Earlier DDT spray has shown spectacular success in decimating disease vectors but resulted in development of insecticide resistance, and to control the resistant mosquitoes, organophosphates, carbamates, and synthetic pyrethroids were introduced in indoor residual spraying with needed success but subsequently resulted in the development of widespread multiple insecticide resistance in vectors. Vector control in many countries still use insecticides in the absence of viable alternatives. Few developments for vector control, using ovitraps, space spray, biological control agents, etc., were encouraging when used in limited scale. Likewise, recent introduction of safer vector control agents, such as insect growth regulators, biocontrol agents, and natural plant products have yet to gain the needed scale of utility for vector control. Bacterial pesticides are promising and are effective in many countries. Environmental management has shown sufficient promise for vector control and disease management but still needs advocacy for inter-sectoral coordination and sometimes are very work-intensive. The more recent genetic manipulation and sterile insect techniques are under development and consideration for use in routine vector control and for these, standardized procedures and methods are available but need thorough

  8. The Biological Control of the Malaria Vector

    PubMed Central

    Kamareddine, Layla

    2012-01-01

    The call for malaria control, over the last century, marked a new epoch in the history of this disease. Many control strategies targeting either the Plasmodium parasite or the Anopheles vector were shown to be effective. Yet, the emergence of drug resistant parasites and insecticide resistant mosquito strains, along with numerous health, environmental, and ecological side effects of many chemical agents, highlighted the need to develop alternative tools that either complement or substitute conventional malaria control approaches. The use of biological means is considered a fundamental part of the recently launched malaria eradication program and has so far shown promising results, although this approach is still in its infancy. This review presents an overview of the most promising biological control tools for malaria eradication, namely fungi, bacteria, larvivorous fish, parasites, viruses and nematodes. PMID:23105979

  9. Malaria vector species in Colombia - A review

    PubMed Central

    Montoya-Lerma, James; Solarte, Yezid A; Giraldo-Calderón, Gloria Isabel; Quiñones, Martha L; Ruiz-López, Freddy; Wilkerson, Richard C; González, Ranulfo

    2016-01-01

    Here we present a comprehensive review of the literature on the vectorial importance of the major Anopheles malaria vectors in Colombia. We provide basic information on the geographical distribution, altitudinal range, immature habitats, adult behaviour, feeding preferences and anthropophily, endophily and infectivity rates. We additionally review information on the life cycle, longevity and population fluctuation of Colombian Anopheles species. Emphasis was placed on the primary vectors that have been epidemiologically incriminated in malaria transmission: Anopheles darlingi, Anopheles albimanus and Anopheles nuneztovari. The role of a selection of local, regional or secondary vectors (e.g., Anopheles pseudopunctipennis and Anopheles neivai) is also discussed. We highlight the importance of combining biological, morphological and molecular data for the correct taxonomical determination of a given species, particularly for members of the species complexes. We likewise emphasise the importance of studying the bionomics of primary and secondary vectors along with an examination of the local conditions affecting the transmission of malaria. The presence and spread of the major vectors and the emergence of secondary species capable of transmitting human Plasmodia are of great interest. When selecting control measures, the anopheline diversity in the region must be considered. Variation in macroclimate conditions over a species’ geographical range must be well understood and targeted to plan effective control measures based on the population dynamics of the local Anopheles species. PMID:21881778

  10. Linking Deforestation to Malaria in the Amazon: Characterization of the Breeding Habitat of the Principal Malaria Vector, Anopheles darlingi

    PubMed Central

    Vittor, Amy Y.; Pan, William; Gilman, Robert H.; Tielsch, James; Glass, Gregory; Shields, Tim; Sánchez-Lozano, Wagner; Pinedo, Viviana V.; Salas-Cobos, Erit; Flores, Silvia; Patz, Jonathan A.

    2009-01-01

    This study examined the larval breeding habitat of a major South American malaria vector, Anopheles darlingi, in areas with varying degrees of ecologic alteration in the Peruvian Amazon. Water bodies were repeatedly sampled across 112 km of transects along the Iquitos-Nauta road in ecologically varied areas. Field data and satellite imagery were used to determine the landscape composition surrounding each site. Seventeen species of Anopheles larvae were collected. Anopheles darlingi larvae were present in 87 of 844 sites (10.3%). Sites with A. darlingi larvae had an average of 24.1% forest cover, compared with 41.0% for sites without A. darlingi (P < 0.0001). Multivariate analysis identified seasonality, algae, water body size, presence of human populations, and the amount of forest and secondary growth as significant determinants of A. darlingi presence. We conclude that deforestation and associated ecologic alterations are conducive to A. darlingi larval presence, and thereby increase malaria risk. PMID:19556558

  11. Viral paratransgenesis in the malaria vector Anopheles gambiae.

    PubMed

    Ren, Xiaoxia; Hoiczyk, Egbert; Rasgon, Jason L

    2008-08-22

    Paratransgenesis, the genetic manipulation of insect symbiotic microorganisms, is being considered as a potential method to control vector-borne diseases such as malaria. The feasibility of paratransgenic malaria control has been hampered by the lack of candidate symbiotic microorganisms for the major vector Anopheles gambiae. In other systems, densonucleosis viruses (DNVs) are attractive agents for viral paratransgenesis because they infect important vector insects, can be genetically manipulated and are transmitted to subsequent generations. However, An. gambiae has been shown to be refractory to DNV dissemination. We discovered, cloned and characterized the first known DNV (AgDNV) capable of infection and dissemination in An. gambiae. We developed a flexible AgDNV-based expression vector to express any gene of interest in An. gambiae using a two-plasmid helper-transducer system. To demonstrate proof-of-concept of the viral paratransgenesis strategy, we used this system to transduce expression of an exogenous gene (enhanced green fluorescent protein; EGFP) in An. gambiae mosquitoes. Wild-type and EGFP-transducing AgDNV virions were highly infectious to An. gambiae larvae, disseminated to and expressed EGFP in epidemiologically relevant adult tissues such as midgut, fat body and ovaries and were transmitted to subsequent mosquito generations. These proof-of-principle data suggest that AgDNV could be used as part of a paratransgenic malaria control strategy by transduction of anti-Plasmodium peptides or insect-specific toxins in Anopheles mosquitoes. AgDNV will also be extremely valuable as an effective and easy-to-use laboratory tool for transient gene expression or RNAi in An. gambiae.

  12. Topographic models for predicting malaria vector breeding habitats: potential tools for vector control managers

    PubMed Central

    2013-01-01

    Background Identification of malaria vector breeding sites can enhance control activities. Although associations between malaria vector breeding sites and topography are well recognized, practical models that predict breeding sites from topographic information are lacking. We used topographic variables derived from remotely sensed Digital Elevation Models (DEMs) to model the breeding sites of malaria vectors. We further compared the predictive strength of two different DEMs and evaluated the predictability of various habitat types inhabited by Anopheles larvae. Methods Using GIS techniques, topographic variables were extracted from two DEMs: 1) Shuttle Radar Topography Mission 3 (SRTM3, 90-m resolution) and 2) the Advanced Spaceborne Thermal Emission Reflection Radiometer Global DEM (ASTER, 30-m resolution). We used data on breeding sites from an extensive field survey conducted on an island in western Kenya in 2006. Topographic variables were extracted for 826 breeding sites and for 4520 negative points that were randomly assigned. Logistic regression modelling was applied to characterize topographic features of the malaria vector breeding sites and predict their locations. Model accuracy was evaluated using the area under the receiver operating characteristics curve (AUC). Results All topographic variables derived from both DEMs were significantly correlated with breeding habitats except for the aspect of SRTM. The magnitude and direction of correlation for each variable were similar in the two DEMs. Multivariate models for SRTM and ASTER showed similar levels of fit indicated by Akaike information criterion (3959.3 and 3972.7, respectively), though the former was slightly better than the latter. The accuracy of prediction indicated by AUC was also similar in SRTM (0.758) and ASTER (0.755) in the training site. In the testing site, both SRTM and ASTER models showed higher AUC in the testing sites than in the training site (0.829 and 0.799, respectively). The

  13. Malaria vectors in Lake Victoria and adjacent habitats in western Kenya.

    PubMed

    Minakawa, Noboru; Dida, Gabriel O; Sonye, George O; Futami, Kyoko; Njenga, Sammy M

    2012-01-01

    The prevalence of malaria among the residents of the Lake Victoria basin remains high. The environment associated with the lake may maintain a high number of malaria vectors. Lake habitats including water hyacinths have been suspected to be the source of vectors. This study investigated whether malaria vectors breed in the lake habitats and adjacent backwater pools. Anopheline larvae were collected within the littoral zone of the lake and adjacent pools located along approximately 24.3 km of the lakeshore in western Kenya, and their breeding sites characterized. Three primary vector species, Anopheles arabiensis, Anopheles gambiae s.s. and Anopheles funestus s.s., and three potential vectors, were found in the lake habitats. Unexpectedly, An. arabiensis was the most dominant vector species in the lake sampling sites. Its habitats were uncovered or covered with short grass. A potential secondary malaria vector, Anopheles rivulorum, dominated the water hyacinths in the lake. Most breeding sites in the lake were limited to areas that were surrounded by tall emergent plants, including trees, and those not exposed to waves. Nearly half of adjacent habitats were lagoons that were separated from the lake by sand bars. Lagoons contained a variety of microhabitats. Anopheles arabiensis dominated open habitats, whereas An. funestus s.s. was found mainly in vegetated habitats in lagoons. The current study confirmed that several breeding sites are associated with Lake Victoria. Given that Lake Victoria is the second largest lake in the world, the lake related habitats must be extensive; therefore, making targeted vector control difficult. Further exploration is necessary to estimate the effects of lake associated habitats on malaria transmission so as to inform a rational decision-making process for vector control.

  14. Anopheles (Anopheles) Calderoni n.sp., A Malaria Vector of the Arribalzagia Series from Peru (Diptera: Culicidae)

    DTIC Science & Technology

    1991-08-01

    ountered only at elevations below 250 m. The larvae are found in small streams, small ir- rigation canals and swamps, mostly in dense emergent...tions. REFERENCES CITED Calderon, G., A. Curaca, J. Llancari, M. Napan and F. Sipan. 1974. Distribucion geografica de los vectores de malaria en el

  15. Species Composition and Seasonal Activities of Malaria Vectors in an Area at Reintroduction Prevention Stage, Khuzestan, South-Western Iran

    PubMed Central

    Maghsoodi, Naimatallah; Ladonni, Hossin; Basseri, Hamid Reza

    2015-01-01

    Background: The most part of Iran become malaria-free region and fall in prevention of re-introduction stage. These regions however are struggling with imported of malaria cases where malaria vectors exist. Therefore, understanding the situation of mosquito vectors is crucial. This study was carried out to find out the present situation of malaria vectors and malaria transmission potential in a malaria-free area. Methods: The study was conducted in a malaria free area, Izeh County, Khuzestan Province during 12 months in 2011–2012. Five villages, including 2 in highlands and 3 in plain area, were selected randomly. The mosquito sampling methods were conducted using spray sheet and hand catch collection methods from indoor/outdoors, window trap and larvae collections. Results: In total, 3352 female Anopheles were captured, 1826 mosquito from highland and 1526 from plain areas. Five species, An. stephensi, An. fluviatilis s.l., An. dthali, An. superpictus and An. pulcherrimus were identified. The seasonal activities were started from April to March. The abdominal conditions of collected mosquitoes from indoor/outdoor places pointed to exophilic propensity of An. fluviatilis.l. s.l. and endophilic behaviour for rest of the vectors. The results of window trap also confirmed these behaviors. The larval habitats of four species were widely dispersed and included spring, margin of rivers, irrigation channels, stagnant water and rice filed. Conclusion: Understanding the present situation of malaria vectors in free-malaria area is crucial particularly where is struggling with imported cases. The results of present study can be expanded to other area of northern Khuzestan for malaria vector control planning in reintroduction prevention stage. PMID:26114144

  16. Larval nutritional stress affects vector life history traits and human malaria transmission

    PubMed Central

    Vantaux, Amélie; Lefèvre, Thierry; Cohuet, Anna; Dabiré, Kounbobr Roch; Roche, Benjamin; Roux, Olivier

    2016-01-01

    Exposure to stress during an insect’s larval development can have carry-over effects on adult life history traits and susceptibility to pathogens. We investigated the effects of larval nutritional stress for the first time using field mosquito vectors and malaria parasites. In contrast to previous studies, we show that larval nutritional stress may affect human to mosquito transmission antagonistically: nutritionally deprived larvae showed lower parasite prevalence for only one gametocyte carrier; they also had lower fecundity. However, they had greater survival rates that were even higher when infected. When combining these opposing effects into epidemiological models, we show that larval nutritional stress induced a decrease in malaria transmission at low mosquito densities and an increase in transmission at high mosquito densities, whereas transmission by mosquitoes from well-fed larvae was stable. Our work underscores the importance of including environmental stressors towards understanding host–parasite dynamics to improve disease transmission models and control. PMID:27827429

  17. Larval nutritional stress affects vector life history traits and human malaria transmission.

    PubMed

    Vantaux, Amélie; Lefèvre, Thierry; Cohuet, Anna; Dabiré, Kounbobr Roch; Roche, Benjamin; Roux, Olivier

    2016-11-09

    Exposure to stress during an insect's larval development can have carry-over effects on adult life history traits and susceptibility to pathogens. We investigated the effects of larval nutritional stress for the first time using field mosquito vectors and malaria parasites. In contrast to previous studies, we show that larval nutritional stress may affect human to mosquito transmission antagonistically: nutritionally deprived larvae showed lower parasite prevalence for only one gametocyte carrier; they also had lower fecundity. However, they had greater survival rates that were even higher when infected. When combining these opposing effects into epidemiological models, we show that larval nutritional stress induced a decrease in malaria transmission at low mosquito densities and an increase in transmission at high mosquito densities, whereas transmission by mosquitoes from well-fed larvae was stable. Our work underscores the importance of including environmental stressors towards understanding host-parasite dynamics to improve disease transmission models and control.

  18. Addressing malaria vector control challenges in South Sudan: proposed recommendations.

    PubMed

    Chanda, Emmanuel; Doggale, Constantino; Pasquale, Harriet; Azairwe, Robert; Baba, Samson; Mnzava, Abraham

    2013-02-08

    Upon the signing of the Comprehensive Peace Agreement in 2005, the Republic of South Sudan (RSS) has faced a lot of challenges, such as a lack of infrastructure, human resources and an enormous burden of vector borne diseases including malaria. While a national malaria strategic plan 2006-2011 was developed, the vector control component has remained relatively weak. The strategy endorses the distribution of long-lasting insecticidal nets (LLINs) as the frontline intervention with other interventions recommended only when technical and institutional capacity is available. In 2006, a draft integrated vector management (IVM) strategic plan 2007-2012 was developed but never implemented, resulting in minimal coordination, implementation and coverage of malaria vector control tools including their inherent impact. To address this challenge, the vector control team of the National Malaria Control Programme (NMCP) is being strengthened. With the objective of building national capacity and technical collaboration for effective implementation of the IVM strategy, a national malaria vector control conference was held from 15-17th October 2012 in Juba. A range of NMCP partners, state ministries, acadaemia, private sector, national and international non-governmental organizations, including regional and global policymakers attended the meeting. The conference represented a major milestone and made recommendations revolving around the five key elements of the IVM approach. The meeting endorsed that vector control efforts in RSS be augmented with other interventions within the confines of the IVM strategy as a national approach, with strong adherence to its key elements.

  19. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination.

    PubMed

    Ren, Zhoupeng; Wang, Duoquan; Ma, Aimin; Hwang, Jimee; Bennett, Adam; Sturrock, Hugh J W; Fan, Junfu; Zhang, Wenjie; Yang, Dian; Feng, Xinyu; Xia, Zhigui; Zhou, Xiao-Nong; Wang, Jinfeng

    2016-02-12

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity.

  20. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination

    NASA Astrophysics Data System (ADS)

    Ren, Zhoupeng; Wang, Duoquan; Ma, Aimin; Hwang, Jimee; Bennett, Adam; Sturrock, Hugh J. W.; Fan, Junfu; Zhang, Wenjie; Yang, Dian; Feng, Xinyu; Xia, Zhigui; Zhou, Xiao-Nong; Wang, Jinfeng

    2016-02-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity.

  1. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination

    PubMed Central

    Ren, Zhoupeng; Wang, Duoquan; Ma, Aimin; Hwang, Jimee; Bennett, Adam; Sturrock, Hugh J. W.; Fan, Junfu; Zhang, Wenjie; Yang, Dian; Feng, Xinyu; Xia, Zhigui; Zhou, Xiao-Nong; Wang, Jinfeng

    2016-01-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity. PMID:26868185

  2. The genome of Anopheles darlingi, the main neotropical malaria vector.

    PubMed

    Marinotti, Osvaldo; Cerqueira, Gustavo C; de Almeida, Luiz Gonzaga Paula; Ferro, Maria Inês Tiraboschi; Loreto, Elgion Lucio da Silva; Zaha, Arnaldo; Teixeira, Santuza M R; Wespiser, Adam R; Almeida E Silva, Alexandre; Schlindwein, Aline Daiane; Pacheco, Ana Carolina Landim; Silva, Artur Luiz da Costa da; Graveley, Brenton R; Walenz, Brian P; Lima, Bruna de Araujo; Ribeiro, Carlos Alexandre Gomes; Nunes-Silva, Carlos Gustavo; de Carvalho, Carlos Roberto; Soares, Célia Maria de Almeida; de Menezes, Claudia Beatriz Afonso; Matiolli, Cleverson; Caffrey, Daniel; Araújo, Demetrius Antonio M; de Oliveira, Diana Magalhães; Golenbock, Douglas; Grisard, Edmundo Carlos; Fantinatti-Garboggini, Fabiana; de Carvalho, Fabíola Marques; Barcellos, Fernando Gomes; Prosdocimi, Francisco; May, Gemma; Azevedo Junior, Gilson Martins de; Guimarães, Giselle Moura; Goldman, Gustavo Henrique; Padilha, Itácio Q M; Batista, Jacqueline da Silva; Ferro, Jesus Aparecido; Ribeiro, José M C; Fietto, Juliana Lopes Rangel; Dabbas, Karina Maia; Cerdeira, Louise; Agnez-Lima, Lucymara Fassarella; Brocchi, Marcelo; de Carvalho, Marcos Oliveira; Teixeira, Marcus de Melo; Diniz Maia, Maria de Mascena; Goldman, Maria Helena S; Cruz Schneider, Maria Paula; Felipe, Maria Sueli Soares; Hungria, Mariangela; Nicolás, Marisa Fabiana; Pereira, Maristela; Montes, Martín Alejandro; Cantão, Maurício E; Vincentz, Michel; Rafael, Miriam Silva; Silverman, Neal; Stoco, Patrícia Hermes; Souza, Rangel Celso; Vicentini, Renato; Gazzinelli, Ricardo Tostes; Neves, Rogério de Oliveira; Silva, Rosane; Astolfi-Filho, Spartaco; Maciel, Talles Eduardo Ferreira; Urményi, Turán P; Tadei, Wanderli Pedro; Camargo, Erney Plessmann; de Vasconcelos, Ana Tereza Ribeiro

    2013-08-01

    Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector-human and vector-parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi.

  3. Increasing the potential for malaria elimination by targeting zoophilic vectors

    PubMed Central

    Waite, Jessica L.; Swain, Sunita; Lynch, Penelope A.; Sharma, S. K.; Haque, Mohammed Asrarul; Montgomery, Jacqui; Thomas, Matthew B.

    2017-01-01

    Countries in the Asia Pacific region aim to eliminate malaria by 2030. A cornerstone of malaria elimination is the effective management of Anopheles mosquito vectors. Current control tools such as insecticide treated nets or indoor residual sprays target mosquitoes in human dwellings. We find in a high transmission region in India, malaria vector populations show a high propensity to feed on livestock (cattle) and rest in outdoor structures such as cattle shelters. We also find evidence for a shift in vector species complex towards increased zoophilic behavior in recent years. Using a malaria transmission model we demonstrate that in such regions dominated by zoophilic vectors, existing vector control tactics will be insufficient to achieve elimination, even if maximized. However, by increasing mortality in the zoophilic cycle, the elimination threshold can be reached. Current national vector control policy in India restricts use of residual insecticide sprays to domestic dwellings. Our study suggests substantial benefits of extending the approach to treatment of cattle sheds, or deploying other tactics that target zoophilic behavior. Optimizing use of existing tools will be essential to achieving the ambitious 2030 elimination target. PMID:28091570

  4. Vector movement underlies avian malaria at upper elevation in Hawaii: implications for transmission of human malaria.

    PubMed

    Freed, Leonard A; Cann, Rebecca L

    2013-11-01

    With climate warming, malaria in humans and birds at upper elevations is an emerging infectious disease because development of the parasite in the mosquito vector and vector life history are both temperature dependent. An enhanced-mosquito-movement model from climate warming predicts increased transmission of malaria at upper elevation sites that are too cool for parasite development in the mosquito vector. We evaluate this model with avian malaria (Plasmodium relictum) at 1,900-m elevation on the Island of Hawaii, with air temperatures too low for sporogony in the vector (Culex quinquefasciatus). On a well-defined site over a 14-year period, 10 of 14 species of native and introduced birds became infected, several epizootics occurred, and the increase in prevalence was driven more by resident species than by mobile species that could have acquired their infections at lower elevations. Greater movement of infectious mosquitoes from lower elevations now permits avian malaria to spread at 1,900 m in Hawaii, in advance of climate warming at that elevation. The increase in malaria at upper elevations due to dispersal of infectious mosquitoes is a real alternative to temperature for the increased incidence of human malaria in tropical highlands.

  5. Chitosan/interfering RNA nanoparticle mediated gene silencing in disease vector mosquito larvae

    PubMed Central

    Zhang, Xin; Mysore, Keshava; Flannery, Ellen; Michel, Kristin; Severson, David W.; Zhu, Kun Yan

    2015-01-01

    SHORT ABSTRACT Here we describe a procedure for inhibiting gene function in disease vector mosquitoes through the use of chitosan/interfering RNA nanoparticles that are ingested by larvae. LONG ABSTRACT Vector mosquitoes inflict more human suffering than any other organism—and kill more than one million people each year. The mosquito genome projects facilitated research in new facets of mosquito biology, including functional genetic studies in the primary African malaria vector Anopheles gambiae and the dengue and yellow fever vector Aedes aegypti. RNA interference- (RNAi-) mediated gene silencing has been used to target genes of interest in both of these disease vector mosquito species. Here, we describe a procedure for preparation of chitosan/interfering RNA nanoparticles that are combined with food and ingested by larvae. This technically straightforward, high-throughput, and relatively inexpensive methodology, which is compatible with long double stranded RNA (dsRNA) or small interfering RNA (siRNA) molecules, has been used for the successful knockdown of a number of different genes in A. gambiae and A. aegypti larvae. Following larval feedings, knockdown, which is verified through qRT-PCR or in situ hybridization, can persist at least through the late pupal stage. This methodology may be applicable to a wide variety of mosquito and other insect species, including agricultural pests, as well as other non-model organisms. In addition to its utility in the research laboratory, in the future, chitosan, an inexpensive, non-toxic and biodegradable polymer, could potentially be utilized in the field. PMID:25867635

  6. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    PubMed Central

    Smith, Ryan C; Vega-Rodríguez, Joel; Jacobs-Lorena, Marcelo

    2014-01-01

    Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission. PMID:25185005

  7. Association of cyclopoid copepods with the habitat of the malaria vector Anopheles aquasalis in the peninsula of Paria, Venezuela.

    PubMed

    Zoppi de Roa, Evelyn; Gordon, Elizabeth; Montiel, Edie; Delgado, Laura; Berti, Jesús; Ramos, Santiago

    2002-03-01

    The southern region of the Paria Peninsula shows a high malaria incidence. This work relates the abundances of cyclopoid species and the malaria vector Anopheles aquasalis to certain abiotic parameters and vegetation features. Samples were collected over a 4-month period in several habitats, including marsh, irrigation channel, lagoon, and mangrove swamp during the wet season and the wet-dry transition. Dominant plant species in the marsh were Typha dominguensis and Eleocharis mutata. Mesocyclops meridianus also was dominant in the marsh. Highest densities of An. aquasalis larvae, as well as lowest pH values and highest sulfate concentrations, were found in habitats containing E. mutata. Statistical correlation analysis showed that abundances of M. longisetus longisetus and An. aquasalis larvae were positively and significantly correlated in the irrigation channel, and abundances of M. meridianus and An. aquasalis larvae were negatively and significantly correlated in the E. mutata marsh.

  8. Microbial control of malaria: biological warfare against the parasite and its vector.

    PubMed

    Abdul-Ghani, Rashad; Al-Mekhlafi, Abdulsalam M; Alabsi, Mogeeb S

    2012-02-01

    Microbial applications in malaria transmission control have drawn global attention. Mosquito midgut microbiota can modulate vector immunity and block Plasmodium development. Paratransgenic manipulation of bacterial symbionts and Wolbachia can affect reproductive characteristics of mosquitoes. Bacillus-based biolarvicides can control mosquito larvae in different breeding habitats, but their effectiveness differs according to the type of formulation applied, and the physical and ecological conditions of the environment. Entomopathogenic fungi show promise as effective and evolution-proof agents against adult mosquitoes. In addition, transgenic fungi can express anti-plasmodial effector molecules that can target the parasite inside its vector. Despite showing effectiveness in domestic environments as well as against insecticide-resistant mosquitoes, claims towards their deployability in the field and their possible use in integrated vector management programmes have yet to be investigated. Viral pathogens show efficacy in the interruption of sporogonic development of the parasite, and protozoal pathogens exert direct pathogenic potential on larvae and adults with substantial effects on mosquito longevity and fecundity. However, the technology required for their isolation and maintenance impedes their field application. Many agents show promising findings; however, the question remains about the epidemiologic reality of these approaches because even those that have been tried under field conditions still have certain limitations. This review addresses aspects of the microbial control of malaria between proof-of-concept and epidemiologic reality.

  9. The Genome of Anopheles darlingi, the main neotropical malaria vector

    PubMed Central

    Marinotti, Osvaldo; Cerqueira, Gustavo C.; de Almeida, Luiz Gonzaga Paula; Ferro, Maria Inês Tiraboschi; Loreto, Elgion Lucio da Silva; Zaha, Arnaldo; Teixeira, Santuza M. R.; Wespiser, Adam R.; Almeida e Silva, Alexandre; Schlindwein, Aline Daiane; Pacheco, Ana Carolina Landim; da Silva, Artur Luiz da Costa; Graveley, Brenton R.; Walenz, Brian P.; Lima, Bruna de Araujo; Ribeiro, Carlos Alexandre Gomes; Nunes-Silva, Carlos Gustavo; de Carvalho, Carlos Roberto; Soares, Célia Maria de Almeida; de Menezes, Claudia Beatriz Afonso; Matiolli, Cleverson; Caffrey, Daniel; Araújo, Demetrius Antonio M.; de Oliveira, Diana Magalhães; Golenbock, Douglas; Grisard, Edmundo Carlos; Fantinatti-Garboggini, Fabiana; de Carvalho, Fabíola Marques; Barcellos, Fernando Gomes; Prosdocimi, Francisco; May, Gemma; de Azevedo Junior, Gilson Martins; Guimarães, Giselle Moura; Goldman, Gustavo Henrique; Padilha, Itácio Q. M.; Batista, Jacqueline da Silva; Ferro, Jesus Aparecido; Ribeiro, José M. C.; Fietto, Juliana Lopes Rangel; Dabbas, Karina Maia; Cerdeira, Louise; Agnez-Lima, Lucymara Fassarella; Brocchi, Marcelo; de Carvalho, Marcos Oliveira; Teixeira, Marcus de Melo; Diniz Maia, Maria de Mascena; Goldman, Maria Helena S.; Cruz Schneider, Maria Paula; Felipe, Maria Sueli Soares; Hungria, Mariangela; Nicolás, Marisa Fabiana; Pereira, Maristela; Montes, Martín Alejandro; Cantão, Maurício E.; Vincentz, Michel; Rafael, Miriam Silva; Silverman, Neal; Stoco, Patrícia Hermes; Souza, Rangel Celso; Vicentini, Renato; Gazzinelli, Ricardo Tostes; Neves, Rogério de Oliveira; Silva, Rosane; Astolfi-Filho, Spartaco; Maciel, Talles Eduardo Ferreira; Ürményi, Turán P.; Tadei, Wanderli Pedro; Camargo, Erney Plessmann; de Vasconcelos, Ana Tereza Ribeiro

    2013-01-01

    Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector–human and vector–parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi. PMID:23761445

  10. Mosquito Vectors and the Globalization of Plasmodium falciparum Malaria.

    PubMed

    Molina-Cruz, Alvaro; Zilversmit, Martine M; Neafsey, Daniel E; Hartl, Daniel L; Barillas-Mury, Carolina

    2016-11-23

    Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P. falciparum Pfs47 gene allows the parasite to evade mosquito immune detection. Here, we review the origin and globalization of P. falciparum and integrate this history with analysis of the biology, evolution, and dispersal of the main mosquito vectors. This new perspective broadens our understanding of P. falciparum population structure and the dispersal of important parasite genetic traits.

  11. Implicating Cryptic and Novel Anophelines as Malaria Vectors in Africa

    PubMed Central

    Stevenson, Jennifer C.; Norris, Douglas E.

    2016-01-01

    Entomological indices and bionomic descriptions of malaria vectors are essential to accurately describe and understand malaria transmission and for the design and evaluation of appropriate control interventions. In order to correctly assign spatio-temporal distributions, behaviors and responses to interventions to particular anopheline species, identification of mosquitoes must be accurately made. This paper reviews the current methods and their limitations in correctly identifying anopheline mosquitoes in sub-Saharan Africa, and highlights the importance of molecular methods to discriminate cryptic species and identify lesser known anophelines. The increasing number of reports of Plasmodium infections in assumed “minor”, non-vector, and cryptic and novel species is reviewed. Their importance in terms of evading current control and elimination strategies and therefore maintaining malaria transmission is emphasized. PMID:28025486

  12. Seasonal genetic partitioning in the neotropical malaria vector, Anopheles darlingi

    PubMed Central

    2014-01-01

    Background Anopheles darlingi is the main malaria mosquito vector in the Amazonia region. In spite of being considered a riverine, forest-dwelling species, this mosquito is becoming more abundant in peri-urban areas, increasing malaria risk. This has been associated with human-driven environmental changes such as deforestation. Methods Microsatellites were used to characterize A. darlingi from seven localities along the Madeira River, Rondônia (Brazil), collected in the early and late periods of the rainy season. Results Two genetically distinct subpopulations were detected: one (subpopulation A) was associated with the late rainfall period and seems to be ecologically closer to the typical forest A. darlingi; the other (subpopulation B) was associated with the early rainfall period and is probably more adapted to drier conditions by exploiting permanent anthropogenic breeding sites. Results suggest also a pattern of asymmetric introgression, with more subpopulation A alleles introgressed into subpopulation B. Both subpopulations (and admixed mosquitoes) presented similar malaria infection rates, highlighting the potential for perennial malaria transmission in the region. Conclusions The co-occurrence of two genetically distinct subpopulations of A. darlingi adapted to different periods of rainfall may promote a more perennial transmission of malaria throughout the year. These findings, in a context of strong environmental impact due to deforestation and dam construction, have serious implications for malaria epidemiology and control in the Amazonian region. PMID:24885508

  13. Spatial association between malaria vector species richness and malaria in Colombia.

    PubMed

    Fuller, Douglas O; Alimi, Temitope; Herrera, Socrates; Beier, John C; Quiñones, Martha L

    2016-06-01

    Malaria transmission in Colombia is highly variable in space and time. Using a species distribution model, we mapped potential distribution of five vector species including Anopheles albimanus, Anopheles calderoni, Anopheles darlingi, Anopheles neivai, and Anopheles nuneztovari in five Departments of Colombia where malaria transmission remains problematic. We overlaid the range maps of the five species to reveal areas of sympatry and related per-pixel species richness to mean annual parasite index (API) for 2011-2014 mapped by municipality (n = 287). The relationship between mean number of vector species per municipality and API was evaluated using a Poisson regression, which revealed a highly significant relationship between species richness and API (p = 0 for Wald Chi-Square statistic). The results suggest that areas of relatively high transmission in Colombia typically contain higher number of vector species than areas with unstable transmission and that future elimination strategies should account for vector species richness.

  14. Egg hatching, larval movement and larval survival of the malaria vector Anopheles gambiae in desiccating habitats

    PubMed Central

    Koenraadt, Constantianus JM; Paaijmans, Krijn P; Githeko, Andrew K; Knols, Bart GJ; Takken, Willem

    2003-01-01

    Background Although the effects of rainfall on the population dynamics of the malaria vector Anopheles gambiae have been studied in great detail, the effects of dry periods on its survival remain less clear. Methods The effects of drying conditions were simulated by creating desiccated habitats, which consisted of trays filled with damp soil. Experiments were performed in these trays to (i) test the ability of An. gambiae sensu stricto eggs to hatch on damp soil and for larvae to reach an artificial breeding site at different distances of the site of hatching and (ii) to record survival of the four larval stages of An. gambiae s.s. when placed on damp soil. Results Eggs of An. gambiae s.s. hatched on damp soil and emerging larvae were capable of covering a distance of up to 10 cm to reach surface water enabling further development. However, proportions of larvae reaching the site decreased rapidly with increasing distance. First, second and third-instar larvae survived on damp soil for an estimated period of 64, 65 and 69 hrs, respectively. Fourth-instar larvae survived significantly longer and we estimated that the maximum survival time was 113 hrs. Conclusion Short-term survival of aquatic stages of An. gambiae on wet soil may be important and adaptive when considering the transient nature of breeding sites of this species in sub-Saharan Africa. In addition, the results suggest that, for larval vector control methods to be effective, habitats should remain drained for at least 5 days to kill all larvae (e.g. in rice fields) and habitats that recently dried up should be treated as well, if larvicidal agents are applied. PMID:12919636

  15. Phylogenetic inference of Indian malaria vectors from multilocus DNA sequences.

    PubMed

    Dixit, Jyotsana; Srivastava, Hemlata; Sharma, Meenu; Das, Manoj K; Singh, O P; Raghavendra, K; Nanda, Nutan; Dash, Aditya P; Saksena, D N; Das, Aparup

    2010-08-01

    Inferences on the taxonomic positions, phylogenetic interrelationships and divergence time among closely related species of medical importance is essential to understand evolutionary patterns among species, and based on which, disease control measures could be devised. To this respect, malaria is one of the important mosquito borne diseases of tropical and sub-tropical parts of the globe. Taxonomic status of malaria vectors has been so far documented based on morphological, cytological and few molecular genetic features. However, utilization of multilocus DNA sequences in phylogenetic inferences are still in dearth. India contains one of the richest resources of mosquito species diversity but little molecular taxonomic information is available in Indian malaria vectors. We herewith utilized the whole genome sequence information of An. gambiae to amplify and sequence three orthologous nuclear genetic regions in six Indian malaria vector species (An. culicifacies, An. minimus, An. sundaicus, An. fluviatilis, An. annularis and An. stephensi). Further, we utilized the previously published DNA sequence information on the COII and ITS2 genes in all the six species, making the total number of loci to five. Multilocus molecular phylogenetic study of Indian anophelines and An. gambiae was conducted at each individual genetic region using Neighbour Joining (NJ), Maximum Likelihood (ML), Maximum Parsimony (MP) and Bayesian approaches. Although tree topologies with COII, and ITS2 genes were similar, for no other three genetic regions similar tree topologies were observed. In general, the reconstructed phylogenetic status of Indian malaria vectors follows the pattern based on morphological and cytological classifications that was reconfirmed with COII and ITS2 genetic regions. Further, divergence times based on COII gene sequences were estimated among the seven Anopheles species which corroborate the earlier hypothesis on the radiation of different species of the Anopheles

  16. Efficacy of local neem extracts for sustainable malaria vector control in an African village

    PubMed Central

    Gianotti, Rebecca L; Bomblies, Arne; Dafalla, Mustafa; Issa-Arzika, Ibrahim; Duchemin, Jean-Bernard; Eltahir, Elfatih AB

    2008-01-01

    Background Larval control of malaria vectors has been historically successful in reducing malaria transmission, but largely fell out of favour with the introduction of synthetic insecticides and bed nets. However, an integrated approach to malaria control, including larval control methods, continues to be the best chance for success, in view of insecticide resistance, the behavioural adaptation of the vectors to changing environments and the difficulties of reaching the poorest populations most at risk,. Laboratory studies investigating the effects of neem seed (Azadirachta indica) extracts on Anopheles larvae have shown high rates of larval mortality and reductions in adult longevity, as well as low potential for resistance development. Methods This paper describes a method whereby seeds of the neem tree can be used to reduce adult Anopheles gambiae s.l. abundance in a way that is low cost and can be implemented by residents of rural villages in western Niger. The study was conducted in Banizoumbou village, western Niger. Neem seeds were collected from around the village. Dried seeds were ground into a coarse powder, which was then sprinkled onto known Anopheles larvae breeding habitats twice weekly during the rainy season 2007. Adult mosquitoes were captured on a weekly basis in the village and captures compared to those from 2005 and 2006 over the same period. Adult mosquitoes were also captured in a nearby village, Zindarou, as a control data set and compared to those from Banizoumbou. Results It was found that twice-weekly applications of the powder to known breeding habitats of Anopheles larvae in 2007 resulted in 49% fewer adult female Anopheles gambiae s.l. mosquitoes in Banizoumbou, compared with previous captures under similar environmental conditions and with similar habitat characteristics in 2005 and 2006. The productivity of the system in 2007 was found to be suppressed compared to the mean behaviour of 2005 and 2006 in Banizoumbou, whereas no change

  17. Population control of the malaria vector Anopheles pseudopunctipennis by habitat manipulation.

    PubMed Central

    Bond, J. Guillermo; Rojas, Julio C.; Arredondo-Jiménez, Juan I.; Quiroz-Martínez, Humberto; Valle, Javier; Williams, Trevor

    2004-01-01

    Insect vector-borne diseases continue to present a major challenge to human health. Understanding the factors that regulate the size of mosquito populations is considered fundamental to the ability to predict disease transmission rates and for vector population control. The mosquito, Anopheles pseudopunctipennis, a vector of Plasmodium spp., breeds in riverside pools containing filamentous algae in Mesoamerica. Breeding pools along 3 km sections of the River Coatan, Chiapas, Mexico were subjected to algal extraction or left as controls in a cross-over trial extending over 2 years. Initial densities of An. pseudopunctipennis larvae were directly proportional to the prevalence of filamentous algae in each breeding site. The extraction of algae brought about a striking decline in the density of An. pseudopunctipennis larvae sustained for about six weeks, and a concurrent reduction in the adult population in both years of the study. Mark-release experiments indicated that dispersal from adjacent untreated areas was unlikely to exert an important influence on the magnitude of mosquito control that we observed. Habitat manipulation by extraction of filamentous algae offers a unique opportunity for sustainable control of this malaria vector. This technique may represent a valuable intervention, complimenting insecticide spraying of households, to minimize Plasmodium transmission rates in Mesoamerica. PMID:15475337

  18. Targeting male mosquito swarms to control malaria vector density

    PubMed Central

    Sawadogo, Simon Peguedwinde; Niang, Abdoulaye; Bilgo, Etienne; Millogo, Azize; Maïga, Hamidou; Dabire, Roch K.; Tripet, Frederic; Diabaté, Abdoulaye

    2017-01-01

    Malaria control programs are being jeopardized by the spread of insecticide resistance in mosquito vector populations. It has been estimated that the spread of resistance could lead to an additional 120000 deaths per year, and interfere with the prospects for sustained control or the feasibility of achieving malaria elimination. Another complication for the development of resistance management strategies is that, in addition to insecticide resistance, mosquito behavior evolves in a manner that diminishes the impact of LLINs and IRS. Mosquitoes may circumvent LLIN and IRS control through preferential feeding and resting outside human houses and/or being active earlier in the evening before people go to sleep. Recent developments in our understanding of mosquito swarming suggest that new tools targeting mosquito swarms can be designed to cut down the high reproductive rate of malaria vectors. Targeting swarms of major malaria vectors may provide an effective control method to counteract behavioral resistance developed by mosquitoes. Here, we evaluated the impact of systematic spraying of swarms of Anopheles gambiae s.l. using a mixed carbamate and pyrethroid aerosol. The impact of this intervention on vector density, female insemination rates and the age structure of males was measured. We showed that the resulting mass killing of swarming males and some mate-seeking females resulted in a dramatic 80% decrease in population size compared to a control population. A significant decrease in female insemination rate and a significant shift in the age structure of the male population towards younger males incapable of mating were observed. This paradigm-shift study therefore demonstrates that targeting primarily males rather than females, can have a drastic impact on mosquito population. PMID:28278212

  19. Phytoextract-induced developmental deformities in malaria vector.

    PubMed

    Sharma, Preeti; Mohan, Lalit; Srivastava, C N

    2006-09-01

    Larvicidal potential of petroleum ether (Pee), carbon tetrachloride (Cte) and methanol extract (Mee) of Artemisia annua, Chenopodium album and Sonchus oleraceus was observed against malaria vector, Anopheles stephensi Liston. The Pee of A. annua with LC50 16.85 ppm after 24 h and 11.45 ppm after 48 h of treatment was found most effective, followed by Cte of A. annua and Ch. album, Pee of Ch. album and Mee of A. annua. However, no significant larvicidal activity was observed in Mee of Ch. album and all the three extracts of S. oleraceous. The Pee of A. annua was further investigated for its effect on the metamorphosis and the development of the malaria vector. It influenced the early life cycle of An. stephensi by reducing the percentage of hatching, larval, pupal and adult emergence and also lengthening the larval and pupal periods. The growth index was also reduced significantly. As the extract has remarkable effect on the metamorphosis and high larvicidal potential, it could, therefore, be used as an effective biocontrol agent against the highly nuisant malaria vector.

  20. [Malaria vectors: from the field to genetics. Research in Africa].

    PubMed

    Fontenille, D; Cohuet, A; Awono-Ambene, P; Kengne, P; Antonio-Nkondjio, C; Wondji, C; Simard, F

    2005-06-01

    Only about 60 Anopheline species transmit malaria among more than 3,000 mosquito species recorded in the world. In Africa, the major vectors are Anopheles gambiae,An. arabiensis, An. funestus, An. nili and An. moucheti. They all belong to species complexes or groups of closely related species that are very difficult to set apart on morphological grounds, but which may have highly variable behaviours and vectorial capacities. Understanding this complexity is of major importance in vector control programs or for implementing any public health intervention program such as drugs or vaccine trials. Among the seven species of the complex,Anopheles gambiaes.s. shows a huge chromosomal polymorphism related to adaptation to specific natural or anthropic environments, from equatorial forested Africa to dry sahelian areas. Recent studies conducted in West and Central Africa suggest an incipient speciation into 2 molecular forms provisionally called M and S. A similar evolutionary phenomenon is observed in An. funestus, in which sympatric populations carrying specific chromosomal paracentric inversions showed restricted gene flow. Distribution of species from An. nili group and An. moucheti complex is restricted to more humid regions of Africa. However in some areas these species play the major role in malaria transmission. Comprehensive knowledge of transmission cycles and of behavioural and underlying genetic heterogeneities that exist within and among natural vector populations will thus benefit the whole area of malaria control and epidemiology. Molecular and genetic studies, as well as in depth monitoring of vector biology, have been recently facilitated by advances in functional and comparative genomics, including recent publication of the nearly complete genome sequence of An. gambiae. Challenge for the next years is to answer to the very simple question: why is an insect a vector?

  1. Gut microbes influence fitness and malaria transmission potential of Asian malaria vector Anopheles stephensi.

    PubMed

    Sharma, Anil; Dhayal, Devender; Singh, O P; Adak, T; Bhatnagar, Raj K

    2013-10-01

    The midgut of parasite transmitting vector, Anopheles stephensi is a physiologically dynamic ecological niche of resident microbes. The gut resident microbes of anisomorphic and physiologically variable male and female A. stephensi mosquitoes were different (Rani et al., 2009). To understand the possible interaction of gut microbes and mosquito host, we examined the contribution of the microbe community on the fitness of the adult mosquitoes and their ability to permit development of the malaria parasite. A. stephensi mosquitoes were fed with antibiotic to sterilize their gut to study longevity, blood meal digestion, egg laying and maturation capacity, and consequently ability to support malaria parasite development. The sterilization of gut imparted reduction in longevity by a median of 5 days in male and 2 days in female mosquitoes. Similarly, the sterilization also diminished the reproductive potential probably due to increased rate of the resorption of follicles in ovaries coupled with abated blood meal digestion in gut-sterilized females. Additionally, gut sterilization also led to increased susceptibility to oocyst development upon feeding on malaria infected blood. The susceptibility to malaria parasite introduced upon gut sterilization of A. stephensi was restored completely upon re-colonization of gut by native microbes. The information provided in the study provides insights into the role of the gut-resident microbial community in various life events of the mosquito that may be used to develop alternate malaria control strategies, such as paratransgenesis.

  2. Habitat characterization and mapping of Anopheles maculatus (Theobald) mosquito larvae in malaria endemic areas in Kuala Lipis, Pahang, Malaysia.

    PubMed

    Rohani, A; Wan Najdah, W M A; Zamree, I; Azahari, A H; Mohd Noor, I; Rahimi, H; Lee, H L

    2010-07-01

    In Peninsular Malaysia, a large proportion of malaria cases occur in the central mountainous and forested parts of the country. As part of a study to assess remote sensing data as a tool for vector mapping, we conducted entomological surveys to determine the type of mosquitoes, their characteristics and the abundance of habitats of the vector Anopheles maculatus in malaria endemic areas in Pos Senderot. An. maculatus mosquitoes were collected from 49 breeding sites in Pos Senderot. An. maculatus preferred to breed in water pockets formed on the bank of rivers and waterfalls. The most common larval habitats were shallow pools 5.0-15.0 cm deep with clear water, mud substrate and plants or floatage. The mosquito also preferred open or partially shaded habitats. Breeding habitats were generally located at 100-400 m from the nearest human settlement. Changes in breeding characteristics were also observed. Instead of breeding in slow flowing streams, most larvae bred in small water pockets along the river margin.

  3. Population genetic structure of malaria vector Anopheles stephensi Liston (Diptera: Culicidae).

    PubMed

    Gakhar, S K; Sharma, Richa; Sharma, Arvind

    2013-04-01

    Malaria is a complex disease that afflicts human today. Malaria epidemiology is associated with drug resistance in parasite and differential distribution and insecticide resistance in vector. Efforts are being made to eradicate malaria but burden of malaria is still increasing. Vector control is essential for malaria prevention strategies. Knowledge of population genetic structure is pre-requisite for determining prevention strategies particularly using transgenic mosquitoes. Population genetic study can predict level of gene flow between different populations. Anopheles stephensi Liston is urban vector of malaria in Indo-Pakistan subcontinent. About 12% of malaria cases of malaria in India are contributed by A. stephensi. Studies conducted on population genetics of A. stephensi using various markers in different parts of the world are discussed in this communication.

  4. Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors.

    PubMed

    Rajakumar, G; Abdul Rahuman, A

    2011-06-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. Use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of synthesized natural products for vector control have been a priority in this area. In this study, larvicidal activity of synthesized silver nanoparticles (AgNPs) utilizing aqueous extract from Eclipta prostrata, a member of the Asteraceae was investigated against fourth instar larvae of filariasis vector, Culex quinquefasciatus say and malaria vector, Anopheles subpictus Grassi (Diptera: Culicidae). The synthesized AgNPs characterized by UV-vis spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and X-ray diffraction (XRD). SEM analyses of the synthesized AgNPs were clearly distinguishable measured 35-60 nm in size. Larvae were exposed to varying concentrations of aqueous extract of synthesized AgNPs for 24h. The maximum efficacy was observed in crude aqueous, and synthesized AgNPs against C. quinquefasciatus (LC(50)=27.49 and 4.56 mg/L; LC(90)=70.38 and 13.14 mg/L), and against A. subpictus (LC(50)=27.85 and 5.14 mg/L; LC(90)=71.45 and 25.68 mg/L) respectively. The chi-square value were significant at p<0.05 level. These results suggest that the synthesized AgNPs have the potential to be used as an ideal eco-friendly approach for the control of the Culex tritaeniorhynchus and A. subpictus. This method is considered as a new approach to control vectors. Therefore, this study provides first report on the mosquito larvicidal activity of synthesized AgNPs against vectors.

  5. Biology and dynamics of potential malaria vectors in Southern France

    PubMed Central

    Ponçon, Nicolas; Toty, Céline; L'Ambert, Grégory; Le Goff, Gilbert; Brengues, Cécile; Schaffner, Francis; Fontenille, Didier

    2007-01-01

    Background Malaria is a former endemic problem in the Camargue, South East France, an area from where very few recent data concerning Anopheles are available. A study was undertaken in 2005 to establish potential malaria vector biology and dynamics and evaluate the risk of malaria re-emergence. Methods Mosquitoes were collected in two study areas, from March to October 2005, one week every two weeks, using light traps+CO2, horse bait traps, human bait catch, and by collecting females in resting sites. Results Anopheles hyrcanus was the most abundant Anopheles species. Anopheles melanoon was less abundant, and Anopheles atroparvus and Anopheles algeriensis were rare. Anopheles hyrcanus and An. melanoon were present in summer, whereas An. atroparvus was present in autumn and winter. A large number of An. hyrcanus females was collected on humans, whereas almost exclusively animals attracted An. melanoon. Based on an enzyme-linked immunosorbent assay, almost 90% of An. melanoon blood meals analysed had been taken on horse or bovine. Anopheles hyrcanus and An. melanoon parity rates showed huge variations according to the date and the trapping method. Conclusion Anopheles hyrcanus seems to be the only Culicidae likely to play a role in malaria transmission in the Camargue, as it is abundant and anthropophilic. PMID:17313664

  6. A Research Agenda for Malaria Eradication: Vector Control

    PubMed Central

    2011-01-01

    Different challenges are presented by the variety of malaria transmission environments present in the world today. In each setting, improved control for reduction of morbidity is a necessary first step towards the long-range goal of malaria eradication and a priority for regions where the disease burden is high. For many geographic areas where transmission rates are low to moderate, sustained and well-managed application of currently available tools may be sufficient to achieve local elimination. The research needs for these areas will be to sustain and perhaps improve the effectiveness of currently available tools. For other low-to-moderate transmission regions, notably areas where the vectors exhibit behaviours such as outdoor feeding and resting that are not well targeted by current strategies, new interventions that target predictable features of the biology/ecologies of the local vectors will be required. To achieve elimination in areas where high levels of transmission are sustained by very efficient vector species, radically new interventions that significantly reduce the vectorial capacity of wild populations will be needed. Ideally, such interventions should be implemented with a one-time application with a long-lasting impact, such as genetic modification of the vectorial capacity of the wild vector population. PMID:21311587

  7. A new malaria vector mosquito in South Africa

    PubMed Central

    Burke, Ashley; Dandalo, Leonard; Munhenga, Givemore; Dahan-Moss, Yael; Mbokazi, Frans; Ngxongo, Sifiso; Coetzee, Maureen; Koekemoer, Lizette; Brooke, Basil

    2017-01-01

    South Africa aims to eliminate malaria within its borders by 2018. Despite well-coordinated provincial vector control programmes that are based on indoor residual insecticide spraying, low-level residual malaria transmission continues in the low-altitude border regions of the north-eastern sector of the country. In order to identify the underlying causes of residual transmission, an enhanced vector surveillance system has been implemented at selected sites in the Mpumalanga and KwaZulu-Natal (KZN) provinces. The collection periods for the data presented are March 2015 to April 2016 for Mpumalanga and January 2014 to December 2015 for KZN. The mosquito collection methods used included indoor and outdoor traps based on the use of traditional ceramic pots, modified plastic buckets and exit window traps (KZN only). All Anopheles funestus species group mosquitoes collected were identified to species and all females were screened for the presence of Plasmodium falciparum sporozoites. Two An. vaneedeni females, one from each surveillance site, tested positive for P. falciparum sporozoites. These are the first records of natural populations of An. vaneedeni being infective with P. falciparum. As both specimens were collected from outdoor-placed ceramic pots, these data show that An. vaneedeni likely contributes to residual malaria transmission in South Africa. PMID:28262811

  8. Aristolochia indica green-synthesized silver nanoparticles: A sustainable control tool against the malaria vector Anopheles stephensi?

    PubMed

    Murugan, Kadarkarai; Labeeba, Mohammed Aamina; Panneerselvam, Chellasamy; Dinesh, Devakumar; Suresh, Udaiyan; Subramaniam, Jayapal; Madhiyazhagan, Pari; Hwang, Jiang-Shiou; Wang, Lan; Nicoletti, Marcello; Benelli, Giovanni

    2015-10-01

    Malaria is a life-threatening disease caused by parasites transmitted to people and animals through the bites of infected mosquitoes. We biosynthesized silver nanoparticles (AgNP) using Aristolochia indica extract as reducing and stabilizing agent. AgNP were characterized by UV-vis spectroscopy, FTIR, SEM, EDX and XRD. In laboratory, LC50 of A. indica extract against Anopheles stephensi ranged from 262.66 (larvae I) to 565.02 ppm (pupae). LC50 of AgNP against A. stephensi ranged from 3.94 (larvae I) to 15.65 ppm (pupae). In the field, the application of A. indica extract and AgNP (10 × LC50) leads to 100% larval reduction after 72 h. In laboratory, 24-h predation efficiency of Diplonychus indicus against A. stephensi larvae was 33% (larvae II) and 57% (larvae III). In AgNP-contaminated environment (1 ppm), it was 45.5% (larvae II) and 71.75% (larvae III). Overall, A. indica-synthesized AgNP may be considered as newer and safer control tools against Anopheles vectors.

  9. Distribution of the main malaria vectors in Kenya

    PubMed Central

    2010-01-01

    Background A detailed knowledge of the distribution of the main Anopheles malaria vectors in Kenya should guide national vector control strategies. However, contemporary spatial distributions of the locally dominant Anopheles vectors including Anopheles gambiae, Anopheles arabiensis, Anopheles merus, Anopheles funestus, Anopheles pharoensis and Anopheles nili are lacking. The methods and approaches used to assemble contemporary available data on the present distribution of the dominant malaria vectors in Kenya are presented here. Method Primary empirical data from published and unpublished sources were identified for the period 1990 to 2009. Details recorded for each source included the first author, year of publication, report type, survey location name, month and year of survey, the main Anopheles species reported as present and the sampling and identification methods used. Survey locations were geo-positioned using national digital place name archives and on-line geo-referencing resources. The geo-located species-presence data were displayed and described administratively, using first-level administrative units (province), and biologically, based on the predicted spatial margins of Plasmodium falciparum transmission intensity in Kenya for the year 2009. Each geo-located survey site was assigned an urban or rural classification and attributed an altitude value. Results A total of 498 spatially unique descriptions of Anopheles vector species across Kenya sampled between 1990 and 2009 were identified, 53% were obtained from published sources and further communications with authors. More than half (54%) of the sites surveyed were investigated since 2005. A total of 174 sites reported the presence of An. gambiae complex without identification of sibling species. Anopheles arabiensis and An. funestus were the most widely reported at 244 and 265 spatially unique sites respectively with the former showing the most ubiquitous distribution nationally. Anopheles gambiae

  10. Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection

    PubMed Central

    Boissière, Anne; Tchioffo, Majoline T.; Bachar, Dipankar; Abate, Luc; Marie, Alexandra; Nsango, Sandrine E.; Shahbazkia, Hamid R.; Awono-Ambene, Parfait H.; Levashina, Elena A.; Christen, Richard; Morlais, Isabelle

    2012-01-01

    The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission. PMID:22693451

  11. Molecular Characterization of Larval Peripheral Thermosensory Responses of the Malaria Vector Mosquito Anopheles gambiae

    PubMed Central

    Liu, Chao; Zwiebel, Laurence J.

    2013-01-01

    Thermosensation provides vital inputs for the malaria vector mosquito, Anopheles gambiae which utilizes heat-sensitivity within a broad spectrum of behaviors, most notably, the localization of human hosts for blood feeding. In this study, we examine thermosensory behaviors in larval-stage An. gambiae, which as a result of their obligate aquatic habitats and importance for vectorial capacity, represents an opportunistic target for vector control as part of the global campaign to eliminate malaria. As is the case for adults, immature mosquitoes respond differentially to a diverse array of external heat stimuli. In addition, larvae exhibit a striking phenotypic plasticity in thermal-driven behaviors that are established by temperature at which embryonic development occurs. Within this spectrum, RNAi-directed gene-silencing studies provide evidence for the essential role of the Transient Receptor Potential sub-family A1 (TRPA1) channel in mediating larval thermal-induced locomotion and thermal preference within a discrete upper range of ambient temperatures. PMID:23940815

  12. Larvicidal Activity of Essential Oils of Apiaceae Plants against Malaria Vector, Anopheles stephensi

    PubMed Central

    Sedaghat, MM; Dehkordi, A Sanei; Abai, MR; Khanavi, M; Mohtarami, F; Abadi, Y Salim; Rafi, F; Vatandoost, H

    2011-01-01

    Background: Plant extracts and oils may act as alternatives to conventional pesticides for malaria vector control. The aim of this study was to evaluate the larvicidal activity of essential oils of three plants of Apiaceae family against Anopheles stephensi, the main malaria vector in Iran. Methods: Essential oils from Heracleum persicum, Foeniculum vulgare and Coriandrum sativum seeds were hydro distillated, then their larvicidal activity were evaluated against laboratory-reared larvae of An. stephensi according to standard method of WHO. After susceptibility test, results were analysis using Probit program. Results: Essential oils were separated from H. persicum, F. vulgare and C. sativum plants and their larvicidal activities were tested. Result of this study showed that F. vulgare oil was the most effective against An. stephensi with LC50 and LC90 values of 20.10 and 44.51 ppm, respectively. Conclusion: All three plants essential oil can serve as a natural larvicide against An. stephensi. F. vulgare oil exhibited more larvicidal properties. PMID:22808418

  13. Biosynthesized silver nanoparticles using floral extract of Chrysanthemum indicum L.--potential for malaria vector control.

    PubMed

    Arokiyaraj, Selvaraj; Dinesh Kumar, Vannam; Elakya, Vijay; Kamala, Tamilselvan; Park, Sung Kwon; Ragam, Muthiah; Saravanan, Muthupandian; Bououdina, Mohomad; Arasu, Mariadhas Valan; Kovendan, Kalimuthu; Vincent, Savariar

    2015-07-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. The use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides synthesized of natural products for vector control have been a priority in this area. In the present study, silver nanoparticles (Ag NPs) were green-synthesized using a floral extract of Chrysanthemum indicum screened for larvicidal and pupicidal activity against the first to fourth instar larvae and pupae of the malaria vector Anopheles stephensi mosquitoes. The synthesized Ag NPs were characterized by using UV-vis absorption, X-ray diffraction, transmission electron microscopy, and energy-dispersive X-ray spectroscopy techniques. The textures of the yielded Ag NPs were found to be spherical and polydispersed with a mean size in the range of 25-59 nm. Larvae and pupae were exposed to various concentrations of aqueous extract of C. indicum and synthesized Ag NPs for 24 h, and the maximum mortality was observed from the synthesized Ag NPs against the vector A. stephensi (LC50 = 5.07, 10.35, 14.19, 22.81, and 35.05 ppm; LC90 = 29.18, 47.15, 65.53, 87.96, and 115.05 ppm). These results suggest that the synthesized Ag NPs have the potential to be used as an ideal eco-friendly approach for the control of A. stephensi. Additionally, this study provides the larvicidal and pupicidal properties of green-synthesized Ag NPs with the floral extract of C. indicum against vector mosquito species from the geographical location of India.

  14. Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae

    PubMed Central

    Okumu, Fredros O; Knols, Bart GJ; Fillinger, Ulrike

    2007-01-01

    Background Larviciding is a key strategy used in many vector control programmes around the world. Costs could be reduced if larvicides could be manufactured locally. The potential of natural products as larvicides against the main African malaria vector, Anopheles gambiae s.s was evaluated. Methods To assess the larvicidal efficacy of a neem (Azadirachta indica) oil formulation (azadirachtin content of 0.03% w/v) on An. gambiae s.s., larvae were exposed as third and fourth instars to a normal diet supplemented with the neem oil formulations in different concentrations. A control group of larvae was exposed to a corn oil formulation in similar concentrations. Results Neem oil had an LC50 value of 11 ppm after 8 days, which was nearly five times more toxic than the corn oil formulation. Adult emergence was inhibited by 50% at a concentration of 6 ppm. Significant reductions on growth indices and pupation, besides prolonged larval periods, were observed at neem oil concentrations above 8 ppm. The corn oil formulation, in contrast, produced no growth disruption within the tested range of concentrations. Conclusion Neem oil has good larvicidal properties for An. gambiae s.s. and suppresses successful adult emergence at very low concentrations. Considering the wide distribution and availability of this tree and its products along the East African coast, this may prove a readily available and cheap alternative to conventional larvicides. PMID:17519000

  15. Genetic approaches to interfere with malaria transmission by vector mosquitoes

    PubMed Central

    Wang, Sibao; Jacobs-Lorena, Marcelo

    2013-01-01

    Malaria remains one of the world’s most devastating diseases, causing over one million deaths every year. The most vulnerable stages of Plasmodium development in the vector mosquito occur in the midgut lumen, making the midgut a prime target for intervention. Mosquito transgenesis and paratransgenesis are two novel strategies that aim at rendering the vector incapable of sustaining Plasmodium development. Mosquito transgenesis involves direct genetic engineering of the mosquito itself for delivery of anti-Plasmodium effector molecules. Conversely, paratransgenesis involves the genetic modification of mosquito symbionts for expression of anti-pathogen effector molecules. Here we consider both genetic manipulation strategies for rendering mosquitoes refractory to Plasmodium infection, and discuss challenges for the translation of laboratory findings to field applications. PMID:23395485

  16. Genetic approaches to interfere with malaria transmission by vector mosquitoes.

    PubMed

    Wang, Sibao; Jacobs-Lorena, Marcelo

    2013-03-01

    Malaria remains one of the most devastating diseases worldwide, causing over 1 million deaths every year. The most vulnerable stages of Plasmodium development in the vector mosquito occur in the midgut lumen, making the midgut a prime target for intervention. Mosquito transgenesis and paratransgenesis are two novel strategies that aim at rendering the vector incapable of sustaining Plasmodium development. Mosquito transgenesis involves direct genetic engineering of the mosquito itself for delivery of anti-Plasmodium effector molecules. Conversely, paratransgenesis involves the genetic modification of mosquito symbionts for expression of anti-pathogen effector molecules. Here we consider both genetic manipulation strategies for rendering mosquitoes refractory to Plasmodium infection, and discuss challenges for the translation of laboratory findings to field applications.

  17. Health research ethics in malaria vector trials in Africa.

    PubMed

    Kilama, Wen L

    2010-12-13

    Malaria mosquito research in Africa as elsewhere is just over a century old. Early trials for development of mosquito control tools were driven by colonial enterprises and war efforts; they were, therefore, tested in military or colonial settings. The failure of those tools and environmental concerns, coupled with the desperate need for integrated malaria control strategies, has necessitated the development of new malaria mosquito control tools, which are to be tested on humans, their environment and mosquito habitats. Ethical concerns start with phase 2 trials, which pose limited ethical dilemmas. Phase 3 trials, which are undertaken on vulnerable civilian populations, pose ethical dilemmas ranging from individual to community concerns. It is argued that such trials must abide by established ethical principles especially safety, which is mainly enshrined in the principle of non-maleficence. As there is total lack of experience with many of the promising candidate tools (eg genetically modified mosquitoes, entomopathogenic fungi, and biocontrol agents), great caution must be exercised before they are introduced in the field. Since malaria vector trials, especially phase 3 are intrusive and in large populations, individual and community respect is mandatory, and must give great priority to community engagement. It is concluded that new tools must be safe, beneficial, efficacious, effective, and acceptable to large populations in the short and long-term, and that research benefits should be equitably distributed to all who bear the brunt of the research burdens. It is further concluded that individual and institutional capacity strengthening should be provided, in order to undertake essential research, carry out scientific and ethical review, and establish competent regulatory frameworks.

  18. Single concentration tests show synergism among Bacillus thuringiensis subsp. israelensis toxins against the malaria vector mosquito Anopheles albimanus.

    PubMed

    Fernández-Luna, María Teresa; Tabashnik, Bruce E; Lanz-Mendoza, Humberto; Bravo, Alejandra; Soberón, Mario; Miranda-Ríos, Juan

    2010-07-01

    Bioassays of insecticidal proteins from Bacillus thuringiensis subsp. israelensis with larvae of the malaria vector mosquito Anopheles albimanus showed that the cytolytic protein Cyt1Aa was not toxic alone, but it increased the toxicity of the crystalline proteins Cry4Ba and Cry11Aa. Synergism also occurred between Cry4Ba and Cry11Aa toxins. Whereas many previous analyses of synergism have been based on a series of toxin concentrations leading to comparisons between expected and observed values for the concentration killing 50% of insects tested (LC(50)), we describe and apply a method here that enables testing for synergism based on single concentrations of toxins.

  19. Larval density dependence in Anopheles gambiae s.s., the major African vector of malaria.

    PubMed

    Muriu, Simon M; Coulson, Tim; Mbogo, Charles M; Godfray, H Charles J

    2013-01-01

    Anopheles gambiae sensu stricto is the most important vector of malaria in Africa although relatively little is known about the density-dependent processes determining its population size. Mosquito larval density was manipulated under semi-natural conditions using artificial larval breeding sites placed in the field in coastal Kenya; two experiments were conducted: one manipulating the density of a single cohort of larvae across a range of densities and the other employing fewer densities but with the treatments crossed with four treatments manipulating predator access. In the first experiment, larval survival, development rate and the size of the adult mosquito all decreased with larval density (controlling for block effects between 23% and 31% of the variance in the data could be explained by density). In the second experiment, the effects of predator manipulation were not significant, but again we observed strong density dependence in larval survival (explaining 30% of the variance). The results are compared with laboratory studies of A. gambiae larval competition and the few other studies conducted in the field, and the consequences for malaria control are discussed.

  20. Larval density dependence in Anopheles gambiae s.s., the major African vector of malaria

    PubMed Central

    Muriu, Simon M.; Coulson, Tim; Mbogo, Charles M.; Godfray, H. Charles J.

    2017-01-01

    Summary Anopheles gambiae sensu stricto is the most important vector of malaria in Africa although relatively little is known about the density-dependent processes determining its population size.Mosquito larval density was manipulated under semi-natural conditions using artificial larval breeding sites placed in the field in coastal Kenya; two experiments were conducted: one manipulating the density of a single cohort of larvae across a range of densities and the other employing fewer densities but with the treatments crossed with four treatments manipulating predator access.In the first experiment, larval survival, development rate and the size of the adult mosquito all decreased with larval density (controlling for block effects between 23% and 31% of the variance in the data could be explained by density).In the second experiment, the effects of predator manipulation were not significant, but again we observed strong density dependence in larval survival (explaining 30% of the variance).The results are compared with laboratory studies of A. gambiae larval competition and the few other studies conducted in the field, and the consequences for malaria control are discussed PMID:23163565

  1. MALARIA VECTORS IN SAN JOSÉDEL GUAVIARE, ORINOQUIA, COLOMBIA

    PubMed Central

    JIMÉNEZ, IRENE P.; CONN, JAN E.; BROCHERO, HELENA

    2015-01-01

    This study was conducted to determine Anopheles species composition and their natural infectivity by human Plasmodium in 2 localities with the highest malaria transmission in San Jose del Guaviare, Guaviare, Colombia. A total of 1,009 Anopheles mosquitoes were collected using human landing catches during 8 months in 2010. Anopheles darlingi was the most abundant (83.2%) followed by An. albitarsis s.l. (8.6%), Anopheles braziliensis (3.8%), An. oswaldoi s.l. (1%), and An. rangeli (0.3%). Anopheles darlingi showed the highest human biting rate, and it was found naturally infected with Plasmodium vivax VK210 (0.119%) using enzyme-linked immunosorbent assays. All species were collected biting both indoors and outdoors. Anopheles darlingi showed biting activity overnight with an indoor peak between 1200–0100 h. Therefore, we recommend that malaria prevention strategies focus on 1) insecticide-treated nets to reduce human–vector contact when people are most exposed and unprotected; 2) accurate diagnoses; 3) adequate treatment for patients; 4) more timely epidemiological notification; and 5) improved entomological surveillance. PMID:25102591

  2. Oviposition preference and egg eclosion in different salt concentrations in the coastal malaria vector Anopheles aquasalis Curry.

    PubMed

    Osborn, Frances R; Díaz, Sandra; Gómez, Cruz J; Moreno, Milagros; Hernández, Gilma

    2006-03-01

    Anopheles aquasalis is the main malaria vector in Sucre State, Venezuela. The larvae of this species are saltwater tolerant. The effects of different concentrations of salt on oviposition preference and egg survival were studied under laboratory conditions. Choice experiments with salt concentrations of 0, 10, 20, 30, and 40% in bottled water were set up for individual adult females and the number of eggs laid in each salt concentration was noted. Egg survival, as inferred by the number of hatched larvae also was determined for each salt concentration. Females preferred to oviposit in freshwater and rejected water salt concentrations of 40%, but they were neither attracted nor repelled by water with 10-30% of salt. Eggs hatched more quickly in the lower salt concentrations, but egg survival was not affected by salt concentrations of up to 20%. Thus, female oviposition preference in An. aquasalis determines egg survival.

  3. Optimal control strategy of malaria vector using genetically modified mosquitoes.

    PubMed

    Rafikov, M; Bevilacqua, L; Wyse, A P P

    2009-06-07

    The development of transgenic mosquitoes that are resistant to diseases may provide a new and effective weapon of diseases control. Such an approach relies on transgenic mosquitoes being able to survive and compete with wild-type populations. These transgenic mosquitoes carry a specific code that inhibits the plasmodium evolution in its organism. It is said that this characteristic is hereditary and consequently the disease fades away after some time. Once transgenic mosquitoes are released, interactions between the two populations and inter-specific mating between the two types of mosquitoes take place. We present a mathematical model that considers the generation overlapping and variable environment factors. Based on this continuous model, the malaria vector control is formulated and solved as an optimal control problem, indicating how genetically modified mosquitoes should be introduced in the environment. Numerical simulations show the effectiveness of the proposed control.

  4. Women's knowledge and perceptions of malaria and use of malaria vector control interventions in Kersa, eastern Ethiopia.

    PubMed

    Gobena, Tesfaye; Berhane, Yemane; Worku, Alemayehu

    2013-01-01

    Background Ethiopia has a long history of controlling malaria using vector control tools. Community knowledge and perceptions of malaria and use of malaria vector control interventions vary. Objective The aim of this study was to determine malaria-related knowledge and perceptions among women and to determine the use of malaria vector control interventions, mainly indoor residual spraying (IRS) and insecticide-treated nets (ITNs), among households in Kersa, Eastern Ethiopia. Design A cross-sectional survey was conducted in Kersa Demographic Surveillance and Health Research Center (KDS-HRC) site from October to November 2010. A total of 2,867 households were involved in the study. The data was collected via face-to-face interviews with the women of the household using a pre-tested questionnaire. The questionnaire contained closed, semiclosed, and open-ended questions to explore the reasons for non-use of the interventions. Each knowledge, perception, and practice question was analyzed separately. Results Of the total women, 2,463 (85.9%) had heard of malaria. Of them, 1,413 (57.4%) mentioned malaria as a communicable disease. But, only 793 (56.1%) of them associated mosquito bites with malaria transmission. Seven hundred and ninety-eight of the respondents (27.8%) had IRS coverage, and of these, 59 (7.4%) had re-plastered their interior walls following the application of insecticides. Of net-owning households, 33.5% had used at least one long-lasting insecticide-treated net (LLIN) the night before the survey. Societal reasons such as holy days and dislike of the insecticide mainly due to fear of its effects on their livestock, were the main reasons for re-spondents replastering their walls. Conclusions A substantial number of women had heard about malaria, but there was a knowledge gap regarding the route of malaria transmission. Less than one-third of the surveyed household houses were sprayed with insecticides, and a low proportion of net-owning households

  5. Malaria vector productivity in relation to the highland environment in Kenya.

    PubMed

    Minakawa, Noboru; Omukunda, Elizabeth; Zhou, Guofa; Githeko, Andrew; Yan, Guiyun

    2006-09-01

    The reasons for the resurgence of malaria in the African highlands have been subject of debate. Because vector abundance is important for malaria transmission, gaining a better understanding of vector biology is a key to understanding the mechanisms of highland malaria. We studied vector productivity in relation to the highland environment and compared productivity between lowland and highland sites. We found lower vector productivity in the highland and in wetlands where the temperature was lower. Immature stage development time was significantly longer in the highland site. Development time was significantly shorter in aquatic habitats in cultivated areas than in wetlands, and survival rate was significantly higher in cultivated areas. Fecundity was significantly lower in the highland site. These findings suggest that changes in local temperature and land use contribute to an increase of malaria vectors in the highland.

  6. Melanotic Pathology and Vertical Transmission of the Gut Commensal Elizabethkingia meningoseptica in the Major Malaria Vector Anopheles gambiae

    PubMed Central

    Christophides, Georges K.

    2013-01-01

    Background The resident gut flora is known to have significant impacts on the life history of the host organism. Endosymbiotic bacterial species in the Anopheles mosquito gut are potent modulators of sexual development of the malaria parasite, Plasmodium, and thus proposed as potential control agents of malaria transmission. Results Here we report a melanotic pathology in the major African malaria vector Anopheles gambiae, caused by the dominant mosquito endosymbiont Elizabethkingiameningoseptica. Transfer of melanised tissues into the haemolymph of healthy adult mosquitoes or direct haemolymph inoculation with isolated E. meningoseptica bacteria were the only means for transmission and de novo formation of melanotic lesions, specifically in the fat body tissues of recipient individuals. We show that E. meningoseptica can be vertically transmitted from eggs to larvae and that E. meningoseptica-mono-associated mosquitoes display significant mortality, which is further enhanced upon Plasmodium infection, suggesting a synergistic impact of E. meningoseptica and Plasmodium on mosquito survival. Conclusion The high pathogenicity and permanent association of E. meningoseptica with An. Gambiae through vertical transmission constitute attractive characteristics towards the potential design of novel mosquito/malaria biocontrol strategies. PMID:24098592

  7. The Importance of Drains for the Larval Development of Lymphatic Filariasis and Malaria Vectors in Dar es Salaam, United Republic of Tanzania

    PubMed Central

    Castro, Marcia C.; Kanamori, Shogo; Kannady, Khadija; Mkude, Sigsbert; Killeen, Gerry F.; Fillinger, Ulrike

    2010-01-01

    Background Dar es Salaam has an extensive drain network, mostly with inadequate water flow, blocked by waste, causing flooding after rainfall. The presence of Anopheles and Culex larvae is common, which is likely to impact the transmission of lymphatic filariasis and malaria by the resulting adult mosquito populations. However, the importance of drains as larval habitats remains unknown. Methodology Data on mosquito larval habitats routinely collected by the Urban Malaria Control Program (UMCP) and a special drain survey conducted in 2006 were used to obtain a typology of habitats. Focusing on drains, logistic regression was used to evaluate potential factors impacting the presence of mosquito larvae. Spatial variation in the proportion of habitats that contained larvae was assessed through the local Moran's I indicator of spatial association. Principal Findings More than 70% of larval habitats in Dar es Salaam were human-made. Aquatic habitats associated with agriculture had the highest proportion of Anopheles larvae presence and the second highest of Culex larvae presence. However, the majority of aquatic habitats were drains (42%), and therefore, 43% (1,364/3,149) of all culicine and 33% (320/976) of all anopheline positive habitats were drains. Compared with drains where water was flowing at normal velocity, the odds of finding Anopheles and Culex larvae were 8.8 and 6.3 (p<0.001) times larger, respectively, in drains with stagnant water. There was a positive association between vegetation and the presence of mosquito larvae (p<0.001). The proportion of habitats with mosquito larvae was spatially correlated. Conclusion Restoring and maintaining drains in Dar es Salaam has the potential to eliminate more than 40% of all potential mosquito larval habitats that are currently treated with larvicides by the UMCP. The importance of human-made larval habitats for both lymphatic filariasis and malaria vectors underscores the need for a synergy between on-going control

  8. Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi.

    PubMed

    Murugan, Kadarkarai; Dinesh, Devakumar; Kumar, Prabhu Jenil; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Madhiyazhagan, Pari; Suresh, Udaiyan; Nicoletti, Marcello; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Mehlhorn, Heinz; Benelli, Giovanni

    2015-12-01

    Malaria is a life-threatening disease caused by parasites transmitted to people and animals through the bites of infected mosquitoes. The employ of synthetic insecticides to control Anopheles populations leads to high operational costs, non-target effects, and induced resistance. Recently, plant-borne compounds have been proposed for efficient and rapid extracellular synthesis of mosquitocidal nanoparticles. However, their impact against predators of mosquito larvae has been poorly studied. In this study, we synthesized silver nanoparticles (AgNPs) using the Datura metel leaf extract as reducing and stabilizing agent. The biosynthesis of AgNPs was confirmed analyzing the excitation of surface plasmon resonance using ultraviolet-visible (UV-vis) spectroscopy. Scanning electron microscopy (SEM) showed the clustered and irregular shapes of AgNPs, with a mean size of 40-60 nm. The presence of silver was determined by energy-dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy analysis investigated the identity of secondary metabolites, which may be acting as AgNP capping agents. In laboratory, LC50 of D. metel extract against Anopheles stephensi ranged from 34.693 ppm (I instar larvae) to 81.500 ppm (pupae). LC50 of AgNP ranged from 2.969 ppm (I instar larvae) to 6.755 ppm (pupae). Under standard laboratory conditions, the predation efficiency of Anax immaculifrons nymphs after 24 h was 75.5 % (II instar larvae) and 53.5 % (III instar larvae). In AgNP-contaminated environment, predation rates were boosted to 95.5 and 78 %, respectively. Our results documented that D. metel-synthesized AgNP might be employed at rather low doses to reduce larval populations of malaria vectors, without detrimental effects on behavioral traits of young instars of the dragonfly Anax immaculifrons.

  9. Studies on Anopheles sinensis, the vector species of vivax malaria in Korea

    PubMed Central

    2005-01-01

    Extensive previous studies on taxonomy, behavior/bionomics and control of Anopheles sinensis are reviewed and summarized. Recent molecular identification revealed that the population of An. sinensis complex includes An. sinensis, An. pullus, An. lesteri and at least two new species, and An. yatsushiroensis is synonmy of An. pullus. An. sinensis is the main vector specie of vivax malaria in Korea. Larvae of An. sinensis breed in wide range of habitats which are naturally-made clean water, stagnant or flowing; main habitats include rice fields, ditches, streams, irrigation cannals, marshes, ponds, ground pools, etc. Their host preferences are highly zoophilic. Human blood rate is very low (0.7-1.7%); nevertheless An. sinensis readily feeds on man when domestic animals are not found near by. They feed on hosts throughout the night from dusk to dawn with a peak period of 02:00-04:00 hours; they are slightly more exophagic (biting outdoors); much larger numbers come into the room when light is on. Main resting places are outdoors such as grasses, vegetable fields and rice fields. A mark-release-recapture study resulted that 37.1% was recaptured within 1 km, 29.4% at 1-3 km, 21.1% at 3-6 km, 10.3% at 6-9 km and 2.1% at 9-12 km distance. An. sinensis hibernate outdoors (mostly under part of dense grasses) during October-March. At the end of the hibernation period (March-April) they feed on cows at daytime. Until today any single measure to effectively control An. sinensis population has not been found. Indoor residual spray with a long-lasting insecticide can not reduce vector population densities, but shorten their life spans in some degree, so contributes to malaria control. PMID:16192749

  10. Evaluation of habitat management strategies for the reduction of malaria vectors in northern Belize.

    PubMed

    Grieco, John P; Vogtsberger, Roy C; Achee, Nicole L; Vanzie, Errol; Andre, Richard G; Roberts, Donald R; Rejmankova, Eliska

    2005-12-01

    Mowing and burning of emergent vegetation were evaluated as potential management strategies for the control of the malaria vector, Anopheles vestitipennis, in northern Belize, Central America. The primary aim was reduction of tall dense macrophytes (dominated by Typha domingensis) as preferred larval habitat for An. vestitipennis. Nine experimental plots were established in a Typha marsh in Orange Walk District, Belize. Three plots were burned, three were treated by subaquatic mowing, and three were unaltered controls. After treatment, Typha height was most dramatically affected by the mow treatment. Plant heights at 21 and 95 days post-treatment reflected an 89% and 48% decrease, respectively, compared to pretreatment conditions. The Typha height in the burn plots was not as severely affected. Heights at 21 days post-treatment were 39% lower than those of pre-treatment vegetation, with a return to near pre-test heights by 95 days post-treatment. Both treatments resulted in a significant reduction in the number of An. vestitipennis larvae collected as compared to control plots. Conversely, the treatments resulted in increased larval densities of several other vector and pest mosquito species. Larval population densities ofAn. albimanus, Ochlerotatus taeniorhynchus, and Culex coronator were significantly higher in burn plots. In mow plots, there were significant increases in An. albimanus and Oc. taeniorhynchus larval populations. Non-target invertebrate species affected by the treatments were adult Tropisternus collaris, larval Corythrella, and adult Parapleapuella.

  11. Re-Emerging Malaria Vectors in Rural Sahel (nouna, Burkina Faso): the Paluclim Project

    NASA Astrophysics Data System (ADS)

    Vignolles, Cécile; Sauerborn, Rainer; Dambach, Peter; Viel, Christian; Soubeyroux, Jean-Michel; Sié, Ali; Rogier, Christophe; Tourre, Yves M.

    2016-06-01

    The Paluclim project applied the tele-epidemiology approach, linking climate, environment and public health (CNES, 2008), to rural malaria in Nouna (Burkina Faso). It was to analyze the climate impact on vectorial risks, and its consequences on entomological risks forecast. The objectives were to: 1) produce entomological risks maps in the Nouna region, 2) produce dynamic maps on larvae sites and their productivity, 3) study the climate impact on malaria risks, and 4) evaluate the feasibility of strategic larviciding approach.

  12. Review of genetic diversity in malaria vectors (Culicidae: Anophelinae).

    PubMed

    Loaiza, J R; Bermingham, E; Sanjur, O I; Scott, M E; Bickersmith, S A; Conn, J E

    2012-01-01

    We review previous studies on the genetic diversity of malaria vectors to highlight the major trends in population structure and demographic history. In doing so, we outline key information about molecular markers, sampling strategies and approaches to investigate the causes of genetic structure in Anopheles mosquitoes. Restricted gene flow due to isolation by distance and physical barriers to dispersal may explain the spatial pattern of current genetic diversity in some Anopheles species. Nonetheless, there is noteworthy disagreement among studies, perhaps due to variation in sampling methodologies, choice of molecular markers, and/or analytical approaches. More refined genealogical methods of population analysis allowing for the inclusion of the temporal component of genetic diversity facilitated the evaluation of the contribution of historical demographic processes to genetic structure. A common pattern of past unstable demography (i.e., historical fluctuation in the effective population size) by several Anopheles species, regardless of methodology (DNA markers), mosquito ecology (anthropophilic vs zoophilic), vector status (primary vs secondary) and geographical distribution, suggests that Pleistocene environmental changes were major drivers of divergence at population and species levels worldwide.

  13. The role of research in molecular entomology in the fight against malaria vectors.

    PubMed

    della Torre, A; Arca, B; Favia, G; Petrarca, V; Coluzzi, M

    2008-06-01

    The text summarizes the principal current fields of investigation and the recent achievements of the research groups presently contributing to the Molecular Entomology Cluster of the Italian Malaria Network. Particular emphasis is given to the researches with a more direct impact on the fight against malaria vectors.

  14. Mapping of Malaria Vectors at District Level in India: Changing Scenario and Identified Gaps.

    PubMed

    Singh, Poonam; Lingala, Mercy Aparna L; Sarkar, Soma; Dhiman, Ramesh C

    2017-02-01

    Malaria is one of the six major vector-borne diseases in India, the endemicity of which changes with changes in ecological, climatic, and sociodevelopmental conditions. The anopheline vectors are greatly affected by ecological conditions such as deforestation, urbanization, climate and lifestyle. Despite the advent of tools such as Geographic Information System (GIS), the updated information on the distribution of anopheline vectors of malaria is not available. In India, the plan for vector control is organized at subcentral level but information about vectors is unavailable even at the district level. Therefore, a systematic presentation of vector distribution has been made to provide maps in respect of major vector species. A search of the literature for major vector species, that is, Anopheles culicifacies, Anopheles fluviatilis, Anopheles stephensi, Anopheles minimus, and Anopheles dirus sensu lato, since 1927 till 2015 was carried out. Data have been presented as present, absent, and no information about vector species during pre-eradication (1927-1958), posteradication (1959-1999), and current scenario (2000-2015). Vectors' distribution and malaria endemicity were mapped using Arc GIS. Of 630 districts of India, major vectors An. culicifacies, An. fluviatilis, and An. stephensi were present in 420, 241, and 243 districts, respectively. In 183 districts, there is no information on any major malaria vector species although 27 of them from the states of Arunachal Pradesh, Jharkhand, Manipur, and Mizoram are highly endemic for malaria, having incidences of 2-40 cases/1000/year. The identified gaps in vector distribution, particularly in malaria endemic areas, necessitate further surveys so as to generate the missing information.

  15. Avoidance behavior to essential oils by Anopheles minimus, a malaria vector in Thailand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excito-repellency tests were used to characterize behavioral responses of laboratory colonized Anopheles minimus, a malaria vector in Thailand, using four essential oils, citronella (Cymbopogom nadus), hairy basil (Ocimum americanum), sweet basil (Ocimum basilicum), vetiver (Vetiveria zizanioides), ...

  16. Malaria vector control practices in an irrigated rice agro-ecosystem in central Kenya and implications for malaria control

    PubMed Central

    Ng'ang'a, Peter N; Shililu, Josephat; Jayasinghe, Gayathri; Kimani, Violet; Kabutha, Charity; Kabuage, Lucy; Kabiru, Ephantus; Githure, John; Mutero, Clifford

    2008-01-01

    Background Malaria transmission in most agricultural ecosystems is complex and hence the need for developing a holistic malaria control strategy with adequate consideration of socio-economic factors driving transmission at community level. A cross-sectional household survey was conducted in an irrigated ecosystem with the aim of investigating vector control practices applied and factors affecting their application both at household and community level. Methods Four villages representing the socio-economic, demographic and geographical diversity within the study area were purposefully selected. A total of 400 households were randomly sampled from the four study villages. Both semi-structured questionnaires and focus group discussions were used to gather both qualitative and quantitative data. Results The results showed that malaria was perceived to be a major public health problem in the area and the role of the vector Anopheles mosquitoes in malaria transmission was generally recognized. More than 80% of respondents were aware of the major breeding sites of the vector. Reported personal protection methods applied to prevent mosquito bites included; use of treated bed nets (57%), untreated bed nets (35%), insecticide coils (21%), traditional methods such as burning of cow dung (8%), insecticide sprays (6%), and use of skin repellents (2%). However, 39% of respondents could not apply some of the known vector control methods due to unaffordability (50.5%), side effects (19.9%), perceived lack of effectiveness (16%), and lack of time to apply (2.6%). Lack of time was the main reason (56.3%) reported for non-application of environmental management practices, such as draining of stagnant water (77%) and clearing of vegetations along water canals (67%). Conclusion The study provides relevant information necessary for the management, prevention and control of malaria in irrigated agro-ecosystems, where vectors of malaria are abundant and disease transmission is stable

  17. Bionomics of the Primary Malaria Vector, Anopheles pseudopunctipennis, in the Tapachula Foothill Area of Southern Mexico

    DTIC Science & Technology

    1992-02-04

    of Preventive Medicine and Biometrics. and Mario Henry Rodriguez, Adjunct Associate Professor Malaria, the more important vector-borne disease in...and guidance provided by Dr. Mario Henry Rodriguez. I am very grateful for the opportunity to have worked with him in TapachuIa, Mexico. The...Mexico ( Vargas and Martinez-Palacios, 1955). Included in the list of actual and potential malaria vectors is Anopheles albimanus Wiedemann, An

  18. Workbook on the Identification of Anopheles Larvae. Preliminary Issue.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; Stojanovich, Chester J.

    This self-instructional booklet is designed to enable malarial control workers to identify the larvae of "Anopheles" species that are important malaria vectors. The morphological features of the larvae are illustrated in a programed booklet, which also contains an illustrated taxonomic key to 25 species of anopheline larvae. A glossary and a short…

  19. Amaranthus oleracea and Euphorbia hirta: natural potential larvicidal agents against the urban Indian malaria vector, Anopheles stephensi Liston (Diptera: Culicidae).

    PubMed

    Sharma, Preeti; Mohan, Lalit; Srivastava, C N

    2009-12-01

    Malaria control in developing countries is based largely on vector eradication by the use of mosquito larvicides which is an ideal method for controlling mosquito and the related epidemics. On account of ecohazardous nature, nontarget specificity of chemical insecticides and evidences of developing resistance against them in the exposed species, currently, importance of secondary plant metabolites has been acknowledged. Insecticides of plant origin are environmentally safe, degradable, and target specific. In view of this fact, the present work highlights the larvicidal property of extracts of Amaranthus oleracea and Euphorbia hirta against the third instar larvae of Anopheles stephensi, the urban malaria vector. LC(50) values for the carbon tetrachloride fraction of A. oleracea against larvae are 17,768.00 and 13,780.00 ppm after 24 and 48 h of exposure accordingly. For the methanol extract of the same, LC(50) values are 15,541.00 and 10,174.00 ppm after 24 and 48 h of exposure. In the case of petroleum ether extract, LC(50) values after 24 and 48 h of exposure are 848.75 and 311.50 ppm. LC(50) values for carbon tetrachloride extracts of E. hirta against the larvae are 11,063.00 and 10,922.00 ppm after 24 and 48 h of exposure, respectively. For methanol extract of the same extract, the LC(50) values are 19,280.00 and 18,476.00 ppm after 24 and 48 h of exposure. In the case of petroleum ether extract, LC(50) values after a 24- and 48-h exposure period are 9,693.90 and 7,752.80 ppm. The results obtained for petroleum extracts of A. oleracea are encouraging and there are probabilities that the active principle contained in this extract may be more effective than its crude form and may serve as ecofriendly mosquito larvicide.

  20. Anopheles ziemanni a locally important malaria vector in Ndop health district, north west region of Cameroon

    PubMed Central

    2014-01-01

    Background Malaria transmission in Cameroon is mediated by a plethora of vectors that are heterogeneously distributed across the country depending on the biotope. To effectively guide malaria control operations, regular update on the role of local Anopheles species is essential. Therefore, an entomological survey was conducted between August 2010 and May 2011 to evaluate the role of the local anopheline population in malaria transmission in three villages of the Ndop health district in the northwest region of Cameroon where malaria is holoendemic, as a means to acquiring evidence based data for improved vector intervention. Methods Mosquitoes were sampled both indoor and outdoor for four consecutive nights in each locality during each month of survey. Sampling was done by the human landing catch method on volunteers. Anopheles species were identified morphologically and their ovaries randomly dissected for parity determination. Infection with Plasmodium falciparum was detected by Circumsporozoite protein ELISA. Members of An. gambiae complex were further identified to molecular level by PCR and RFLP PCR. Results An. ziemanni was the main malaria vector and whether outdoor or indoor. The man biting rate for the vectors ranged from 6.75 to 8.29 bites per person per night (b/p/n). The entomological inoculation rate for this vector species was 0.0278 infectious bites per person per night (ib/p/n) in Mbapishi, 0.034 ib/p/n in Mbafuh, and 0.063 ib/p/n in Backyit. These were by far greater than that for An. gambiae. No difference was observed in the parity rate of these two vectors. PCR analysis revealed the presence of only An. colluzzi (M- form). Conclusions An. ziemanni is an important local malaria vector in Ndop health district. The findings provide useful baseline information on the anopheles species composition, their distribution and role in malaria transmission that would guide the implementation of integrated vector management strategies in the locality. PMID

  1. Investigations leading to the identification of members of the Anopheles umbrosus group as the probable vectors of mouse deer malaria

    PubMed Central

    Wharton, R. H.; Eyles, Don E.; Warren, M.; Moorhouse, D. E.; Sandosham, A. A.

    1963-01-01

    Although mosquitos of the Anopheles umbrosus group have long been recognized as important vectors of human malaria in Malaya, there have been doubts about the origin of some of the malaria infections found, especially in A. umbrosus and A. letifer. Investigations have accordingly been carried out in the Malayan swamp-forest, in conjunction with laboratory studies, into the nature of malaria infections in wild-caught mosquitos, the biting behaviour of anophelines and the presence of malaria infection in man and animals. The authors conclude from the results reported in this paper that A. umbrosus is a vector of mouse deer malaria and rarely, if ever, transmits primate malaria; that A. letifer transmits both human and mouse deer malaria; and that A. baezai and A. roperi are probably vectors of mouse deer malaria. ImagesFIG. 3FIG. 4FIG. 5FIG. 6 PMID:14058228

  2. Use of Bacillus thuringiensis var israelensis as a viable option in an Integrated Malaria Vector Control Programme in the Kumasi Metropolis, Ghana

    PubMed Central

    2013-01-01

    Background Integrated Vector Control (IVC) remains the approach for managing the malaria-causing vector. The study investigated the contribution of Bacillus thuringiensis israelensis (Bti) in the control of malaria by targeting the larvae and also mapped and documented major breeding sites in the Kumasi metropolis, Ghana. Methods Using a hand held GPS receiver unit, major breeding sites within the metropolis were mapped out during the larval survey. Mosquito larvae were then collected from the breeding sites and reared in an insectary to obtain an F1 generation for laboratory bioassays. The minimum effective dosage of Bti Water Dispersible Granular (WDG) formulation was determined by a series of bioassays. Based on the results obtained in the laboratory, the optimum effective dosage of Bti formulations against naturally occurring larvae of the indigenous mosquito species was determined through open field trials. Results A total of 33 breeding sites were identified and geo-referenced during the larval surveys with the majority of the breeding sites located in the Asokwa sub-metropolis, Kumasi, Ghana. A Bti (3,000 International Toxic Unit (ITU)/mg) concentration of 0.026 mg/l resulted in 50% mortality whilst a concentration of 0.136 mg/l resulted in 95% mortality. Results from the open field trials with Bti showed that a dosage of 0.2 kg/ha is as effective as 0.4 kg/ha in suppressing late instars and resulting pupae. Conclusion This study reveals that Bti at a very low dosage of 0.2 kg/ha is highly effective against Anopheles larvae and therefore offers viable options for the management of vector mosquitoes. Further research is needed to extend this to the field in order to determine its ability to reduce malaria incidence. PMID:23607376

  3. Draft Genomes of Anopheles cracens and Anopheles maculatus: Comparison of Simian Malaria and Human Malaria Vectors in Peninsular Malaysia.

    PubMed

    Lau, Yee-Ling; Lee, Wenn-Chyau; Chen, Junhui; Zhong, Zhen; Jian, Jianbo; Amir, Amirah; Cheong, Fei-Wen; Sum, Jia-Siang; Fong, Mun-Yik

    2016-01-01

    Anopheles cracens has been incriminated as the vector of human knowlesi malaria in peninsular Malaysia. Besides, it is a good laboratory vector of Plasmodium falciparum and P. vivax. The distribution of An. cracens overlaps with that of An. maculatus, the human malaria vector in peninsular Malaysia that seems to be refractory to P. knowlesi infection in natural settings. Whole genome sequencing was performed on An. cracens and An. maculatus collected here. The draft genome of An. cracens was 395 Mb in size whereas the size of An. maculatus draft genome was 499 Mb. Comparison with the published Malaysian An. maculatus genome suggested the An. maculatus specimen used in this study as a different geographical race. Comparative analyses highlighted the similarities and differences between An. cracens and An. maculatus, providing new insights into their biological behavior and characteristics.

  4. Draft Genomes of Anopheles cracens and Anopheles maculatus: Comparison of Simian Malaria and Human Malaria Vectors in Peninsular Malaysia

    PubMed Central

    Chen, Junhui; Zhong, Zhen; Jian, Jianbo; Amir, Amirah; Cheong, Fei-Wen; Sum, Jia-Siang; Fong, Mun-Yik

    2016-01-01

    Anopheles cracens has been incriminated as the vector of human knowlesi malaria in peninsular Malaysia. Besides, it is a good laboratory vector of Plasmodium falciparum and P. vivax. The distribution of An. cracens overlaps with that of An. maculatus, the human malaria vector in peninsular Malaysia that seems to be refractory to P. knowlesi infection in natural settings. Whole genome sequencing was performed on An. cracens and An. maculatus collected here. The draft genome of An. cracens was 395 Mb in size whereas the size of An. maculatus draft genome was 499 Mb. Comparison with the published Malaysian An. maculatus genome suggested the An. maculatus specimen used in this study as a different geographical race. Comparative analyses highlighted the similarities and differences between An. cracens and An. maculatus, providing new insights into their biological behavior and characteristics. PMID:27347683

  5. Participatory Risk Mapping of Malaria Vector Exposure in Northern South America using Environmental and Population Data.

    PubMed

    Fuller, D O; Troyo, A; Alimi, T O; Beier, J C

    2014-03-01

    Malaria elimination remains a major public health challenge in many tropical regions, including large areas of northern South America. In this study, we present a new high spatial resolution (90 × 90 m) risk map for Colombia and surrounding areas based on environmental and human population data. The map was created through a participatory multi-criteria decision analysis in which expert opinion was solicited to determine key environmental and population risk factors, different fuzzy functions to standardize risk factor inputs, and variable factor weights to combine risk factors in a geographic information system. The new risk map was compared to a map of malaria cases in which cases were aggregated to the municipio (municipality) level. The relationship between mean municipio risk scores and total cases by muncípio showed a weak correlation. However, the relationship between pixel-level risk scores and vector occurrence points for two dominant vector species, Anopheles albimanus and An. darlingi, was significantly different (p < 0.05) from a random point distribution, as was a pooled point distribution for these two vector species and An. nuneztovari. Thus, we conclude that the new risk map derived based on expert opinion provides an accurate spatial representation of risk of potential vector exposure rather than malaria transmission as shown by the pattern of malaria cases, and therefore it may be used to inform public health authorities as to where vector control measures should be prioritized to limit human-vector contact in future malaria outbreaks.

  6. Participatory Risk Mapping of Malaria Vector Exposure in Northern South America using Environmental and Population Data

    PubMed Central

    Fuller, D.O.; Troyo, A.; Alimi, T.O.; Beier, J.C.

    2014-01-01

    Malaria elimination remains a major public health challenge in many tropical regions, including large areas of northern South America. In this study, we present a new high spatial resolution (90 × 90 m) risk map for Colombia and surrounding areas based on environmental and human population data. The map was created through a participatory multi-criteria decision analysis in which expert opinion was solicited to determine key environmental and population risk factors, different fuzzy functions to standardize risk factor inputs, and variable factor weights to combine risk factors in a geographic information system. The new risk map was compared to a map of malaria cases in which cases were aggregated to the municipio (municipality) level. The relationship between mean municipio risk scores and total cases by muncípio showed a weak correlation. However, the relationship between pixel-level risk scores and vector occurrence points for two dominant vector species, Anopheles albimanus and An. darlingi, was significantly different (p < 0.05) from a random point distribution, as was a pooled point distribution for these two vector species and An. nuneztovari. Thus, we conclude that the new risk map derived based on expert opinion provides an accurate spatial representation of risk of potential vector exposure rather than malaria transmission as shown by the pattern of malaria cases, and therefore it may be used to inform public health authorities as to where vector control measures should be prioritized to limit human-vector contact in future malaria outbreaks. PMID:24976656

  7. Green synthesis and characterization of silver nanoparticles fabricated using Anisomeles indica: Mosquitocidal potential against malaria, dengue and Japanese encephalitis vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Veerakumar, Kaliyan; Muthukumaran, Udaiyan; Hoti, S L; Benelli, Giovanni

    2016-02-01

    Mosquitoes (Diptera: Culicidae) represent a key threat for millions of people worldwide, since they act as vectors for devastating parasites and pathogens. In this scenario, eco-friendly control tools against mosquito vectors are a priority. Green synthesis of silver nanoparticles (AgNP) using a cheap, aqueous leaf extract of Anisomeles indica by reduction of Ag(+) ions from silver nitrate solution has been investigated. Bio-reduced AgNP were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction analysis (XRD). The acute toxicity of A. indica leaf extract and biosynthesized AgNP was evaluated against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. Both the A. indica leaf extract and AgNP showed dose dependent larvicidal effect against all tested mosquito species. Compared to the leaf aqueous extract, biosynthesized AgNP showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 values of 31.56, 35.21 and 38.08 μg/mL, respectively. Overall, this study firstly shed light on the mosquitocidal potential of A. indica, a potential bioresource for rapid, cheap and effective AgNP synthesis.

  8. Local Adaptation and Vector-Mediated Population Structure in Plasmodium vivax Malaria

    PubMed Central

    Gonzalez-Ceron, Lilia; Carlton, Jane M.; Gueye, Amy; Fay, Michael; McCutchan, Thomas F.; Su, Xin-zhuan

    2008-01-01

    Plasmodium vivax in southern Mexico exhibits different infectivities to 2 local mosquito vectors, Anopheles pseudopunctipennis and Anopheles albimanus. Previous work has tied these differences in mosquito infectivity to variation in the central repeat motif of the malaria parasite's circumsporozoite (csp) gene, but subsequent studies have questioned this view. Here we present evidence that P. vivax in southern Mexico comprised 3 genetic populations whose distributions largely mirror those of the 2 mosquito vectors. Additionally, laboratory colony feeding experiments indicate that parasite populations are most compatible with sympatric mosquito species. Our results suggest that reciprocal selection between malaria parasites and mosquito vectors has led to local adaptation of the parasite. Adaptation to local vectors may play an important role in generating population structure in Plasmodium. A better understanding of coevolutionary dynamics between sympatric mosquitoes and parasites will facilitate the identification of molecular mechanisms relevant to disease transmission in nature and provide crucial information for malaria control. PMID:18385220

  9. Molecular Characterization Reveals Diverse and Unknown Malaria Vectors in the Western Kenyan Highlands.

    PubMed

    St Laurent, Brandyce; Cooke, Mary; Krishnankutty, Sindhu M; Asih, Puji; Mueller, John D; Kahindi, Samuel; Ayoma, Elizabeth; Oriango, Robin M; Thumloup, Julie; Drakeley, Chris; Cox, Jonathan; Collins, Frank H; Lobo, Neil F; Stevenson, Jennifer C

    2016-02-01

    The success of mosquito-based malaria control is dependent upon susceptible bionomic traits in local malaria vectors. It is crucial to have accurate and reliable methods to determine mosquito species composition in areas subject to malaria. An unexpectedly diverse set of Anopheles species was collected in the western Kenyan highlands, including unidentified and potentially new species carrying the malaria parasite Plasmodium falciparum. This study identified 2,340 anopheline specimens using both ribosomal DNA internal transcribed spacer region 2 and mitochondrial DNA cytochrome oxidase subunit 1 loci. Seventeen distinct sequence groups were identified. Of these, only eight could be molecularly identified through comparison to published and voucher sequences. Of the unidentified species, four were found to carry P. falciparum by circumsporozoite enzyme-linked immunosorbent assay and polymerase chain reaction, the most abundant of which had infection rates comparable to a primary vector in the area, Anopheles funestus. High-quality adult specimens of these unidentified species could not be matched to museum voucher specimens or conclusively identified using multiple keys, suggesting that they may have not been previously described. These unidentified vectors were captured outdoors. Diverse and unknown species have been incriminated in malaria transmission in the western Kenya highlands using molecular identification of unusual morphological variants of field specimens. This study demonstrates the value of using molecular methods to compliment vector identifications and highlights the need for accurate characterization of mosquito species and their associated behaviors for effective malaria control.

  10. The distribution and bionomics of anopheles malaria vector mosquitoes in Indonesia.

    PubMed

    Elyazar, Iqbal R F; Sinka, Marianne E; Gething, Peter W; Tarmidzi, Siti N; Surya, Asik; Kusriastuti, Rita; Winarno; Baird, J Kevin; Hay, Simon I; Bangs, Michael J

    2013-01-01

    Malaria remains one of the greatest human health burdens in Indonesia. Although Indonesia has a long and renowned history in the early research and discoveries of malaria and subsequently in the successful use of environmental control methods to combat the vector, much remains unknown about many of these mosquito species. There are also significant gaps in the existing knowledge on the transmission epidemiology of malaria, most notably in the highly malarious eastern half of the archipelago. These compound the difficulty of developing targeted and effective control measures. The sheer complexity and number of malaria vectors in the country are daunting. The difficult task of summarizing the available information for each species and/or species complex is compounded by the patchiness of the data: while relatively plentiful in one area or region, it can also be completely lacking in others. Compared to many other countries in the Oriental and Australasian biogeographical regions, only scant information on vector bionomics and response to chemical measures is available in Indonesia. That information is often either decades old, geographically patchy or completely lacking. Additionally, a large number of information sources are published in Dutch or Indonesian language and therefore less accessible. This review aims to present an updated overview of the known distribution and bionomics of the 20 confirmed malaria vector species or species complexes regarded as either primary or secondary (incidental) malaria vectors within Indonesia. This chapter is not an exhaustive review of each of these species. No attempt is made to specifically discuss or resolve the taxonomic record of listed species in this document, while recognizing the ever evolving revisions in the systematics of species groups and complexes. A review of past and current status of insecticide susceptibility of eight vector species of malaria is also provided.

  11. Laboratory and field comparisons of pyriproxyfen, polystyrene beads and other larvicidal methods against malaria vectors in Sri Lanka.

    PubMed

    Yapabandara, A M G M; Curtis, C F

    2002-03-01

    Hand-dug gem pits are important breeding sites for larvae of malaria vectors in Sri Lanka. Therefore, studies were carried out to help to select an effective, economic and convenient method that could be used to control malaria vector mosquito breeding in gem pits in a mining area. The effectiveness of four types of floating layers of polystyrene was compared in the laboratory and it was found that 2 mm expanded beads were the most effective for suffocating Anopheles larvae and pupae. The insect growth regulator, pyriproxyfen at dosages of 0.01 and 0.1 mg/l were tested in the laboratory and complete inhibition of emergence was found at both concentrations. A small-scale field trial was carried out for over a year to assess the efficacy of two concentrations of pyriproxyfen, 2 mm diameter expanded polystyrene beads, temephos, used engine oil and filling pits with soil. Pyriproxyfen only required re-application twice a year, whereas temephos or oil require 12 applications per year. Due to re-excavation by gem miners, polystyrene beads and filling of pits were not as permanent solutions as was expected. Calculations based on all available data showed that two annual treatments with pyriproxyfen at 0.01 mg/l would be the most cost-effective method with oil only slightly more expensive. However, the reduced required frequency for visiting every pit made the pyriproxyfen method the one of choice. The same low concentration of pyriproxyfen also effectively inhibited emergence of adults from river-bed pools.

  12. An Assessment of Participatory Integrated Vector Management for Malaria Control in Kenya

    PubMed Central

    Mbogo, Charles; Mwangangi, Joseph; Imbahale, Susan; Kibe, Lydia; Orindi, Benedict; Girma, Melaku; Njui, Annah; Lwande, Wilber; Affognon, Hippolyte; Gichuki, Charity; Mukabana, Wolfgang Richard

    2015-01-01

    Background The World Health Organization (WHO) recommends integrated vector management (IVM) as a strategy to improve and sustain malaria vector control. However, this approach has not been widely adopted. Objectives We comprehensively assessed experiences and findings on IVM in Kenya with a view to sharing lessons that might promote its wider application. Methods The assessment used information from a qualitative external evaluation of two malaria IVM projects implemented between 2006 and 2011 and an analysis of their accumulated entomological and malaria case data. The project sites were Malindi and Nyabondo, located in coastal and western Kenya, respectively. The assessment focused on implementation of five key elements of IVM: integration of vector control methods, evidence-based decision making, intersectoral collaboration, advocacy and social mobilization, and capacity building. Results IVM was more successfully implemented in Malindi than in Nyabondo owing to greater community participation and multistakeholder engagement. There was a significant decline in the proportion of malaria cases among children admitted to Malindi Hospital, from 23.7% in 2006 to 10.47% in 2011 (p < 0.001). However, the projects’ operational research methodology did not allow statistical attribution of the decline in malaria and malaria vectors to specific IVM interventions or other factors. Conclusions Sustaining IVM is likely to require strong participation and support from multiple actors, including community-based groups, non-governmental organizations, international and national research institutes, and various government ministries. A cluster-randomized controlled trial would be essential to quantify the effectiveness and impact of specific IVM interventions, alone or in combination. Citation Mutero CM, Mbogo C, Mwangangi J, Imbahale S, Kibe L, Orindi B, Girma M, Njui A, Lwande W, Affognon H, Gichuki C, Mukabana WR. 2015. An assessment of participatory integrated vector

  13. Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Benelli, Giovanni

    2016-07-01

    Mosquitoes (Diptera: Culicidae) are vectors of important parasites and pathogens causing death, poverty and social disability worldwide, with special reference to tropical and subtropical countries. The overuse of synthetic insecticides to control mosquito vectors lead to resistance, adverse environmental effects and high operational costs. Therefore, the development of eco-friendly control tools is an important public health challenge. In this study, the mosquito larvicidal activity of Pinus kesiya leaf essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy. GC-MS revealed that the P. kesiya EO contained 18 compounds. Major constituents were α-pinene, β-pinene, myrcene and germacrene D. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti and Cx. quinquefasciatus, with LC50 values of 52, 57, and 62µg/ml, respectively. Notably, the EO was safer towards several aquatic non-target organisms Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 values ranging from 4135 to 8390µg/ml. Overall, this research adds basic knowledge to develop newer and safer natural larvicides from Pinaceae plants against malaria, dengue and filariasis mosquito vectors.

  14. Resistance Status of the Malaria Vector Mosquitoes, Anopheles stephensi and Anopheles subpictus Towards Adulticides and Larvicides in Arid and Semi-Arid Areas of India

    PubMed Central

    Tikar, S. N.; Mendki, M.J.; Sharma, A. K.; Sukumaran, D.; Veer, Vijay; Prakash, Shri; Parashar, B. D.

    2011-01-01

    Susceptibility studies of malaria vectors Anopheles stephensi Liston (Diptera: Culicidae) and An. subpictus Grassi collected during 2004–2007 from various locations of Arid and Semi-Arid Zone of India were conducted by adulticide bioassay of DDT, malathion, deltamethrin and larvicide bioassay of fenthion, temephos, chlorpyriphos and malathion using diagnostic doses. Both species from all locations exhibited variable resistance to DDT and malathion from majority of location. Adults of both the species were susceptible to Deltamethrin. Larvae of both the Anopheline species showed some evidence of resistance to chlorpyriphos followed by fenthion whereas susceptible to temephos and malathion. PMID:21870971

  15. Distribution of Brugia malayi larvae and DNA in vector and non-vector mosquitoes: implications for molecular diagnostics

    PubMed Central

    2009-01-01

    Background The purpose of this study was to extend prior studies of molecular detection of Brugia malayi DNA in vector (Aedes aegypti- Liverpool) and non-vector (Culex pipiens) mosquitoes at different times after ingestion of infected blood. Results Parasite DNA was detected over a two week time course in 96% of pooled thoraces of vector mosquitoes. In contrast, parasite DNA was detected in only 24% of thorax pools from non-vectors; parasite DNA was detected in 56% of midgut pools and 47% of abdomen pools from non-vectors. Parasite DNA was detected in vectors in the head immediately after the blood meal and after 14 days. Parasite DNA was also detected in feces and excreta of the vector and non-vector mosquitoes which could potentially confound results obtained with field samples. However, co-housing experiments failed to demonstrate transfer of parasite DNA from infected to non-infected mosquitoes. Parasites were also visualized in mosquito tissues by immunohistololgy using an antibody to the recombinant filarial antigen Bm14. Parasite larvae were detected consistently after mf ingestion in Ae. aegypti- Liverpool. Infectious L3s were seen in the head, thorax and abdomen of vector mosquitoes 14 days after Mf ingestion. In contrast, parasites were only detected by histology shortly after the blood meal in Cx. pipiens, and these were not labeled by the antibody. Conclusion This study provides new information on the distribution of filarial parasites and parasite DNA in vector and non-vector mosquitoes. This information should be useful for those involved in designing and interpreting molecular xenomonitoring studies. PMID:19922607

  16. Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors.

    PubMed

    Velu, Kuppan; Elumalai, Devan; Hemalatha, Periaswamy; Janaki, Arumugam; Babu, Muthu; Hemavathi, Maduraiveeran; Kaleena, Patheri Kunyil

    2015-11-01

    Silver nanoparticles (AgNPs) were successfully synthesised from aqueous silver nitrate using the extracts of Arachis hypogaea peels. The synthesised SNPs were characterized by Fourier transform-infrared spectroscopy analysis, X-ray diffraction, transmission electron microscopy analysis and high-resonance scanning electron microscopy, and energy dispersive X-ray spectroscopy. AgNPs were well defined and measured 20 to 50 nm in size. The nanoparticles were crystallized with a face-centered cubic structure. Larvicidal activity of synthesised AgNPs from A. hypogaea peels was tested for their larvicidal activity against the fourth instar larvae of Aedes aegypti (Yellow fever), Anopheles stephensi (Human malaria). The results suggest that the synthesised AgNPs have the potential to be used as an ideal eco-friendly resource for the control of A. aegypti and A. stephensi. This study provides the first report on the mosquito larvicidal activity of synthesised AgNPs from A. hypogaea peels against vectors of malaria and dengue.

  17. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes.

    PubMed

    Wang, Sibao; Ghosh, Anil K; Bongio, Nicholas; Stebbings, Kevin A; Lampe, David J; Jacobs-Lorena, Marcelo

    2012-07-31

    The most vulnerable stages of Plasmodium development occur in the lumen of the mosquito midgut, a compartment shared with symbiotic bacteria. Here, we describe a strategy that uses symbiotic bacteria to deliver antimalaria effector molecules to the midgut lumen, thus rendering host mosquitoes refractory to malaria infection. The Escherichia coli hemolysin A secretion system was used to promote the secretion of a variety of anti-Plasmodium effector proteins by Pantoea agglomerans, a common mosquito symbiotic bacterium. These engineered P. agglomerans strains inhibited development of the human malaria parasite Plasmodium falciparum and rodent malaria parasite Plasmodium berghei by up to 98%. Significantly, the proportion of mosquitoes carrying parasites (prevalence) decreased by up to 84% for two of the effector molecules, scorpine, a potent antiplasmodial peptide and (EPIP)(4), four copies of Plasmodium enolase-plasminogen interaction peptide that prevents plasminogen binding to the ookinete surface. We demonstrate the use of an engineered symbiotic bacterium to interfere with the development of P. falciparum in the mosquito. These findings provide the foundation for the use of genetically modified symbiotic bacteria as a powerful tool to combat malaria.

  18. Population genetic structure of urban malaria vector Anopheles stephensi in India.

    PubMed

    Sharma, Richa; Sharma, Arvind; Kumar, Ashwani; Dube, Madhulika; Gakhar, S K

    2016-04-01

    Malaria is a major public health problem in India because climatic condition and geography of India provide an ideal environment for development of malaria vector. Anopheles stephensi is a major urban malaria vector in India and its control has been hampered by insecticide resistance. In present study population genetic structure of A. stephensi is analyzed at macro geographic level using 13 microsatellite markers. Significantly high genetic differentiation was found in all studied populations with differentiation values (FST) ranging from 0.0398 to 0.1808. The geographic distance was found to be playing a major role in genetic differentiation between different populations. Overall three genetic pools were observed and population of central India was found to be coexisting in two genetic pools. High effective population size (Ne) was found in all the studied populations.

  19. Hydrologic modeling to screen potential environmental management methods for malaria vector control in Niger

    NASA Astrophysics Data System (ADS)

    Gianotti, Rebecca L.; Bomblies, Arne; Eltahir, Elfatih A. B.

    2009-08-01

    This paper describes the first use of Hydrology-Entomology and Malaria Transmission Simulator (HYDREMATS), a physically based distributed hydrology model, to investigate environmental management methods for malaria vector control in the Sahelian village of Banizoumbou, Niger. The investigation showed that leveling of topographic depressions where temporary breeding habitats form during the rainy season, by altering pool basin microtopography, could reduce the pool persistence time to less than the time needed for establishment of mosquito breeding, approximately 7 days. Undertaking soil surface plowing can also reduce pool persistence time by increasing the infiltration rate through an existing pool basin. Reduction of the pool persistence time to less than the rainfall interstorm period increases the frequency of pool drying events, removing habitat for subadult mosquitoes. Both management approaches could potentially be considered within a given context. This investigation demonstrates that management methods that modify the hydrologic environment have significant potential to contribute to malaria vector control in water-limited, Sahelian Africa.

  20. Microsatellite primers for Culex pipiens quinquefasciatus, the vector of avian malaria in Hawaii

    USGS Publications Warehouse

    Fonseca, Dina M.; Atkinson, Carter T.; Fleischer, Robert C.

    1998-01-01

    The southern house mosquito, Culex pipiens quinquefasciatus (Diptera: Culicidae), was introduced accidentally to Hawaii in 1826 (van Riper et al. 1986). There it eventually became the vector of avian malaria, Plasmodium relictum, a disease that severely limits the size and distribution of endemic forest bird populations in Hawaii (Atkinson et al. 1995). Cx.p. quinquefasciatus has a circumtropical distribution and is also the vector for human diseases such as lymphatic filariasis and several encephalitis.

  1. Bottlenecks and Multiple Introductions: Population Genetics of the Vector of Avian Malaria in Hawaii

    DTIC Science & Technology

    2000-01-01

    Avian malaria has had a profound impact on the demographics and behaviour of Hawaiian forest birds since its vector, CuZex quinquefasciatus the southern...evolution of vector-mediated parasite-host interactions in general we studied the population genetics of Cx. quinquefasciatus in the Hawaiian ...quite distinct from the populations in the main Hawaiian Islands. Howevel; we also found that in general mosquito populations are relatively

  2. Using remote sensing to map larval and adult populations of Anopheles hyrcanus (Diptera: Culicidae) a potential malaria vector in Southern France

    PubMed Central

    Tran, Annelise; Ponçon, Nicolas; Toty, Céline; Linard, Catherine; Guis, Hélène; Ferré, Jean-Baptiste; Lo Seen, Danny; Roger, François; de la Rocque, Stéphane; Fontenille, Didier; Baldet, Thierry

    2008-01-01

    Background Although malaria disappeared from southern France more than 60 years ago, suspicions of recent autochthonous transmission in the French Mediterranean coast support the idea that the area could still be subject to malaria transmission. The main potential vector of malaria in the Camargue area, the largest river delta in southern France, is the mosquito Anopheles hyrcanus (Diptera: Culicidae). In the context of recent climatic and landscape changes, the evaluation of the risk of emergence or re-emergence of such a major disease is of great importance in Europe. When assessing the risk of emergence of vector-borne diseases, it is crucial to be able to characterize the arthropod vector's spatial distribution. Given that remote sensing techniques can describe some of the environmental parameters which drive this distribution, satellite imagery or aerial photographs could be used for vector mapping. Results In this study, we propose a method to map larval and adult populations of An. hyrcanus based on environmental indices derived from high spatial resolution imagery. The analysis of the link between entomological field data on An. hyrcanus larvae and environmental indices (biotopes, distance to the nearest main productive breeding sites of this species i.e., rice fields) led to the definition of a larval index, defined as the probability of observing An. hyrcanus larvae in a given site at least once over a year. Independent accuracy assessments showed a good agreement between observed and predicted values (sensitivity and specificity of the logistic regression model being 0.76 and 0.78, respectively). An adult index was derived from the larval index by averaging the larval index within a buffer around the trap location. This index was highly correlated with observed adult abundance values (Pearson r = 0.97, p < 0.05). This allowed us to generate predictive maps of An. hyrcanus larval and adult populations from the landscape indices. Conclusion This work shows

  3. Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe

    PubMed Central

    2011-01-01

    Background There is a growing concern that global climate change will affect the potential for pathogen transmission by insect species that are vectors of human diseases. One of these species is the former European malaria vector, Anopheles atroparvus. Levels of population differentiation of An. atroparvus from southern Europe were characterized as a first attempt to elucidate patterns of population structure of this former malaria vector. Results are discussed in light of a hypothetical situation of re-establishment of malaria transmission. Methods Genetic and phenotypic variation was analysed in nine mosquito samples collected from five European countries, using eight microsatellite loci and geometric morphometrics on 21 wing landmarks. Results Levels of genetic diversity were comparable to those reported for tropical malaria vectors. Low levels of genetic (0.004

  4. Behavioural response of the malaria vector Anopheles gambiae to host plant volatiles and synthetic blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar feeding is critical for survival of malaria vectors and, although discriminative plant feeding previously has been shown to occur in Anopheles gambiae s.s., little is known about the cues mediating attraction to these plants. In this study, we investigated the role of olfaction in An. gambiae ...

  5. Malaria in Greece: historical and current reflections on a re-emerging vector borne disease.

    PubMed

    Danis, Kostas; Lenglet, Annick; Tseroni, Maria; Baka, Agoritsa; Tsiodras, Sotiris; Bonovas, Stefanos

    2013-01-01

    Between 2009 and September 2012, locally acquired cases of P. vivax infection were reported in Greece, mostly from the agricultural area of Evrotas, Lakonia (n = 48), but also sporadically from five other regions (n = 14), suggesting that conditions in these areas are favourable for local transmission of malaria. The risk of re-establishment of malaria in Greece will depend on whether the receptivity for disease transmission (presence of the mosquito vector and adequate ecological and climatic factors) and the vulnerability (importation of the parasite in human reservoirs or presence of infected mosquito vectors) continue to be present in the country. The continuous implementation of the integrated preparedness and response plan for malaria that covers all aspects from surveillance and laboratory diagnosis to vector control and the reorganization of public health infrastructures are necessary to prevent transmission and control the disease in the long term. However, the impact of the severe economic crisis on current health-care, public health infrastructures and vector control constitute a great challenge for the future. The current threat of renewed sustained local malaria transmission in Greece (and thus in continental Europe) merits an international response, including financial and technical support, from European and international stakeholders.

  6. Intron Retention Identifies a Malaria Vector within the Anopheles (Nyssorhynchus) Albitaris Complex (Diptera: Culicidae)

    DTIC Science & Technology

    2005-03-09

    example, Anophe- les (Nyssorhynchus) marajoara Galvg, o and Damasceno (Linthicum, 1988) is the principal malaria vector in northeastern Amazonia ... Amazonia , from other members of the An. albitarsis complex. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the

  7. Malaria vector control at a crossroads: public health entomology and the drive to elimination.

    PubMed

    Mnzava, Abraham P; Macdonald, Michael B; Knox, Tessa B; Temu, Emmanuel A; Shiff, Clive J

    2014-09-01

    Vector control has been at the core of successful malaria control. However, a dearth of field-oriented vector biologists threatens to undermine global reductions in malaria burden. Skilled cadres are needed to manage insecticide resistance, to maintain coverage with current interventions, to develop new paradigms for tackling 'residual' transmission and to target interventions as transmission becomes increasingly heterogeneous. Recognising this human resource crisis, in September 2013, WHO Global Malaria Programme issued guidance for capacity building in entomology and vector control, including recommendations for countries and implementing partners. Ministries were urged to develop long-range strategic plans for building human resources for public health entomology and vector control (including skills in epidemiology, geographic information systems, operational research and programme management) and to set in place the requisite professional posts and career opportunities. Capacity building and national ownership in all partner projects and a clear exit strategy to sustain human and technical resources after project completion were emphasised. Implementing partners were urged to support global and regional efforts to enhance public health entomology capacity. While the challenges inherent in such capacity building are great, so too are the opportunities to establish the next generation of public health entomologists that will enable programmes to continue on the path to malaria elimination.

  8. Polymerase chain reaction detection of human host preference and Plasmodium parasite infections in field collected potential malaria vectors.

    PubMed

    Dhiman, Sunil; Bhola, Rakesh Kumar; Goswami, Diganta; Rabha, Bipul; Kumar, Dinesh; Baruah, Indra; Singh, Lokendra

    2012-07-01

    This study was carried out to determine the human host preference and presence of Plasmodium parasite in field collected Anopheles mosquitoes among four villages around a military cantonment located in malaria endemic Sonitpur district of Assam, India. Encountered malaria vector mosquitoes were identified and tested for host preference and Plasmodium presence using PCR method. Human host preference was detected using simple PCR, whereas vectorial status for Plasmodium parasite was confirmed using first round PCR with genus specific primers and thereafter nested PCR with three Plasmodium species specific primers. Out of 1874 blood fed vector mosquitoes collected, 187 (10%) were processed for PCR, which revealed that 40·6% had fed on human blood; 9·2% of human blood fed mosquito were harbouring Plasmodium parasites, 71·4% of which were confirmed to Plasmodium falciparum. In addition to An. minimus, An. annularis and An. culicifacies were also found positive for malaria parasites. The present study exhibits the human feeding tendency of Anopheles vectors highlighting their malaria parasite transmission potential. The present study may serve as a model for understanding the human host preference of malaria vectors and detection of malaria parasite inside the anopheline vector mosquitoes in order to update their vectorial status for estimating the possible role of these mosquitoes in malaria transmission. The study has used PCR method and suggests that PCR-based method should be used in this entire malarious region to correctly report the vectorial position of different malaria vectors.

  9. Seasonal Abundance and Host-Feeding Patterns of Anopheline Vectors in Malaria Endemic Area of Iran

    PubMed Central

    Basseri, Hamidreza; Raeisi, Ahmad; Ranjbar Khakha, Mansoor; Pakarai, Abaas; Abdolghafar, Hassanzehi

    2010-01-01

    Seasonal abundance and tendency to feed on humans are important parameters to measure for effective control of malaria vectors. The objective of this study was to describe relation between feeding pattern, abundance, and resting behavior of four malaria vectors in southern Iran. This study was conducted in ten indicator villages (based on malaria incidence and entomological indices) in mountainous/hilly and plain regions situated south and southeastern Iran. Mosquito vectors were collected from indoor as well as outdoor shelters and the blood meals were examined by ELISA test. Over all 7654 female Anopheles spp. were captured, the most common species were Anopheles stephensi, An. culicifacies, An. fluviatilis, and An. d'thali. The overall human blood index was 37.50%, 19.83%, 16.4%, and 30.1% for An. fluviatilis, An. stephensi, An. culicifacies, and An. d'thali, respectively. In addition, An. fluviatilis fed on human blood during the entire year but the feeding behavior of An. stephensi and An. culicifacies varied according to seasons. Overall, the abundance of the female mosquito positive to human blood was 4.25% per human shelter versus 17.5% per animal shelter. This result indicates that the vectors had tendency to rest in animal shelters after feeding on human. Therefore, vector control measure should be planned based on such as feeding pattern, abundance, and resting behavior of these vectors in the area. PMID:21559055

  10. Exploiting the behaviour of wild malaria vectors to achieve high infection with fungal biocontrol agents

    PubMed Central

    2012-01-01

    Background Control of mosquitoes that transmit malaria has been the mainstay in the fight against the disease, but alternative methods are required in view of emerging insecticide resistance. Entomopathogenic fungi are candidate alternatives, but to date, few trials have translated the use of these agents to field-based evaluations of their actual impact on mosquito survival and malaria risk. Mineral oil-formulations of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were applied using five different techniques that each exploited the behaviour of malaria mosquitoes when entering, host-seeking or resting in experimental huts in a malaria endemic area of rural Tanzania. Results Survival of mosquitoes was reduced by 39-57% relative to controls after forcing upward house-entry of mosquitoes through fungus treated baffles attached to the eaves or after application of fungus-treated surfaces around an occupied bed net (bed net strip design). Moreover, 68 to 76% of the treatment mosquitoes showed fungal growth and thus had sufficient contact with fungus treated surfaces. A population dynamic model of malaria-mosquito interactions shows that these infection rates reduce malaria transmission by 75-80% due to the effect of fungal infection on adult mortality alone. The model also demonstrated that even if a high proportion of the mosquitoes exhibits outdoor biting behaviour, malaria transmission was still significantly reduced. Conclusions Entomopathogenic fungi strongly affect mosquito survival and have a high predicted impact on malaria transmission. These entomopathogens represent a viable alternative for malaria control, especially if they are used as part of an integrated vector management strategy. PMID:22449130

  11. Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Benelli, Giovanni

    2016-11-01

    Mosquitoes (Diptera: Culicidae) are a key threat for millions of people and animals worldwide, since they act as vectors for devastating pathogens and parasites, including malaria, dengue, Japanese encephalitis, filiariasis and Zika virus. Mosquito young instars are usually targeted using organophosphates, insect growth regulators and microbial agents. Indoor residual spraying and insecticide-treated bed nets are also employed. However, these chemicals have negative effects on human health and the environment and induce resistance in a number of vectors. In this scenario, newer and safer tools have been recently implemented to enhance mosquito control. The concrete potential of screening plant species as sources of metabolites for entomological and parasitological purposes is worthy of attention, as recently elucidated by the Y. Tu's example. Here we investigated the toxicity of Heracleum sprengelianum (Apiaceae) leaf essential oil and its major compounds toward third instar larvae of the malaria vector Anopheles subpictus, the arbovirus vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. GC-MS analysis showed that EO major components were lavandulyl acetate (17.8%) and bicyclogermacrene (12.9%). The EO was toxic to A. subpictus, A. albopictus, and C. tritaeniorhynchus, with LC50 of 33.4, 37.5 and 40.9µg/ml, respectively. Lavandulyl acetate was more toxic to mosquito larvae if compared to bicyclogermacrene. Their LC50 were 4.17 and 10.3µg/ml for A. subpictus, 4.60 and 11.1µg/ml for A. albopictus, 5.11 and 12.5µg/ml for C. tritaeniorhynchus. Notably, the EO and its major compounds were safer to three non-target mosquito predators, Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 ranging from 206 to 4219µg/ml. Overall, this study highlights that H. sprengelianum EO is a promising source of eco-friendly larvicides against three important mosquito vectors with moderate toxicity against non-target aquatic

  12. Effects of Local Anthropogenic Changes on Potential Malaria Vector Anopheles hyrcanus and West Nile Virus Vector Culex modestus, Camargue, France

    PubMed Central

    Ponçon, Nicolas; Balenghien, Thomas; Toty, Céline; Ferré, Jean Baptiste; Thomas, Cyrille; Dervieux, Alain; L’Ambert, Grégory; Schaffner, Francis; Bardin, Olivier

    2007-01-01

    Using historical data, we highlight the consequences of anthropogenic ecosystem modifications on the abundance of mosquitoes implicated as the current most important potential malaria vector, Anopheles hyrcanus, and the most important West Nile virus (WNV) vector, Culex modestus, in the Camargue region, France. From World War II to 1971, populations of these species increased as rice cultivation expanded in the region in a political context that supported agriculture. They then fell, likely because of decreased cultivation and increased pesticide use to control a rice pest. The species increased again after 2000 with the advent of more targeted pest-management strategies, mainly the results of European regulations decisions. An intertwined influence of political context, environmental constraints, technical improvements, and social factors led to changes in mosquito abundance that had potential consequences on malaria and WNV transmission. These findings suggest that anthropogenic changes should not be underestimated in vectorborne disease recrudescence. PMID:18258028

  13. Distribution and larval habitat characterization of Anopheles moucheti, Anopheles nili, and other malaria vectors in river networks of southern Cameroon.

    PubMed

    Antonio-Nkondjio, Christophe; Ndo, Cyrille; Costantini, Carlo; Awono-Ambene, Parfait; Fontenille, Didier; Simard, Frédéric

    2009-12-01

    Despite their importance as malaria vectors, little is known of the bionomic of Anopheles nili and Anopheles moucheti. Larval collections from 24 sites situated along the dense hydrographic network of south Cameroon were examined to assess key ecological factors associated with these mosquitoes distribution in river networks. Morphological identification of the III and IV instar larvae by the use of microscopy revealed that 47.6% of the larvae belong to An. nili and 22.6% to An. moucheti. Five variables were significantly involved with species distribution, the pace of flow of the river (lotic, or lentic), the light exposure (sunny or shady), vegetation (presence or absence of vegetation) the temperature and the presence or absence of debris. Using canonical correspondence analysis, it appeared that lotic rivers, exposed to light, with vegetation or debris were the best predictors of An. nili larval abundance. Whereas, An. moucheti and An. ovengensis were highly associated with lentic rivers, low temperature, having Pistia. An. nili and An. moucheti distribution along river systems across south Cameroon was highly correlated with environmental variables. The distribution of An. nili conforms to that of a generalist species which is adapted to exploiting a variety of environmental conditions, Whereas, An. moucheti, Anopheles ovengensis and Anopheles carnevalei appeared as specialist forest mosquitoes.

  14. Toxicity of six plant extracts and two pyridone alkaloids from Ricinus communis against the malaria vector Anopheles gambiae

    PubMed Central

    2014-01-01

    Background The African malaria vector, Anopheles gambiae s.s., is known to feed selectively on certain plants for sugar sources. However, the adaptive significance of this behaviour especially on how the extracts of such plants impact on the fitness of this vector has not been explored. This study determined the toxicity and larvicidal activity on this vector of extracts from six selected plants found in Kenya and two compounds identified from Ricinus communis: 3-carbonitrile-4-methoxy-N-methyl-2-pyridone (ricinine), and its carboxylic acid derivative 3-carboxy-4-methoxy-N-methyl-2-pyridone, the latter compound being reported for the first time from this plant. Methods Feeding assays tested for toxic effects of extracts from the plants Artemisia afra Jacq. ex Willd, Bidens pilosa L., Parthenium hysterophorus L., Ricinus coummunis L., Senna didymobotrya Fresen. and Tithonia diversifolia Hemsl. on adult females and larvicidal activity was tested against third-instar larvae of Anopheles gambiae s.s. Mortality of larvae and adult females was monitored for three and eight days, respectively; Probit analysis was used to calculate LC50. Survival was analysed with Kaplan-Meier Model. LC-MS was used to identify the pure compounds. Results Of the six plants screened, extracts from T. diversifolia and R. communis were the most toxic against adult female mosquitoes after 7 days of feeding, with LC50 of 1.52 and 2.56 mg/mL respectively. Larvicidal activity of all the extracts increased with the exposure time with the highest mortality recorded for the extract from R. communis after 72 h of exposure (LC50 0.18 mg/mL). Mosquitoes fed on solutions of the pure compounds, 3-carboxy-4-methoxy-N-methyl-2-pyridone and ricinine survived almost as long as those fed on the R. communis extract with mean survival of 4.93 ± 0.07, 4.85 ± 0.07 and 4.50 ± 0.05 days respectively. Conclusions Overall, these findings demonstrate that extracts from the six plant species exhibit

  15. The Effective Population Size of Malaria Mosquitoes: Large Impact of Vector Control

    PubMed Central

    Athrey, Giridhar; Hodges, Theresa K.; Reddy, Michael R.; Overgaard, Hans J.; Matias, Abrahan; Ridl, Frances C.; Kleinschmidt, Immo; Caccone, Adalgisa; Slotman, Michel A.

    2012-01-01

    Malaria vectors in sub-Saharan Africa have proven themselves very difficult adversaries in the global struggle against malaria. Decades of anti-vector interventions have yielded mixed results—with successful reductions in transmission in some areas and limited impacts in others. These varying successes can be ascribed to a lack of universally effective vector control tools, as well as the development of insecticide resistance in mosquito populations. Understanding the impact of vector control on mosquito populations is crucial for planning new interventions and evaluating existing ones. However, estimates of population size changes in response to control efforts are often inaccurate because of limitations and biases in collection methods. Attempts to evaluate the impact of vector control on mosquito effective population size (Ne) have produced inconclusive results thus far. Therefore, we obtained data for 13–15 microsatellite markers for more than 1,500 mosquitoes representing multiple time points for seven populations of three important vector species—Anopheles gambiae, An. melas, and An. moucheti—in Equatorial Guinea. These populations were exposed to indoor residual spraying or long-lasting insecticidal nets in recent years. For comparison, we also analyzed data from two populations that have no history of organized vector control. We used Approximate Bayesian Computation to reconstruct their demographic history, allowing us to evaluate the impact of these interventions on the effective population size. In six of the seven study populations, vector control had a dramatic impact on the effective population size, reducing Ne between 55%–87%, the exception being a single An. melas population. In contrast, the two negative control populations did not experience a reduction in effective population size. This study is the first to conclusively link anti-vector intervention programs in Africa to sharply reduced effective population sizes of malaria vectors

  16. Scientists and public involvement: a consultation on the relation between malaria, vector control and transgenic mosquitoes.

    PubMed

    Boëte, Christophe

    2011-12-01

    Among the hopes for vector-based malaria control, the use of transgenic mosquitoes able to kill malaria parasites is seen as a potential way to interrupt malaria transmission. While this potential solution is gaining some support, the ethical and social aspects related to this high-tech method remain largely unexplored and underestimated. Related to those latter points, the aim of the present survey is to determine how scientists working on malaria and its vector mosquitoes perceive public opinion and how they evaluate public consultations on their research. This study has been performed through a questionnaire addressing questions related to the type of research, the location, the nationality and the perception of the public involvement by scientists. The results suggest that even if malaria researchers agree to interact with a non-scientific audience, they (especially the ones from the global North) remain quite reluctant to have their research project submitted in a jargon-free version to the evaluation and the prior-agreement by a group of non-specialists. The study, by interrogating the links between the scientific community and the public from the perspective of the scientists, reveals the importance of fostering structures and processes that could lead to a better involvement of a non specialist public in the actual debates linking scientific, technological and public health issues in Africa.

  17. An overview of malaria transmission from the perspective of Amazon Anopheles vectors

    PubMed Central

    Pimenta, Paulo FP; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana PM; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe AC; Oliveira, Giselle A; Campos, Keillen MM; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José BP; Barbosa, Maria GV; Lacerda, Marcus VG; Tadei, Wanderli P; Secundino, Nágila FC

    2015-01-01

    In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence. PMID:25742262

  18. Intraspecific nucleotide variation in Anopheles gambiae: new insights into the biology of malaria vectors.

    PubMed

    Morlais, Isabelle; Ponçon, Nicolas; Simard, Frédéric; Cohuet, Anna; Fontenille, Didier

    2004-12-01

    The Anopheles gambiae genome sequence, together with the recent development of molecular tools for genome-wide analysis, promises new insights into the biology of the malaria vector. These insights should help define the best possible breakdown point for interrupting transmission in the mosquito vector. A survey of the intraspecific nucleotide diversity in coding regions of three different mosquito strains showed an average of one single nucleotide polymorphism (SNP) every 125 coding base pairs. High levels of nucleotide polymorphism were observed in mosquito immune-related genes and pathogen recognition receptors harbored higher replacement substitutions. Genotyping at SNP loci in natural populations of An. gambiae from three malaria foci showed contrasting patterns. The distribution of mutation Y443H in the thioester-containing protein 3 (TEP3) gene suggested this mutational event has occurred under selective constraints. Our results show that SNP-based studies will be valuable in identifying the sequence variation associated with phenotypic traits shaping vector competence.

  19. Malaria transmission after five years of vector control on Bioko Island, Equatorial Guinea

    PubMed Central

    2012-01-01

    extensive malaria control and a generalized reduction in the force of transmission, parasite prevalence and child mortality, foci of very high transmission persist on Bioko Island, particularly in the northwestern Punta Europa area. This area is favorable for anopheline mosquito breeding; human biting rates are high, and the EIRs are among the highest ever recorded. Both vector species collected in the study have a propensity to bite outdoors more frequently than indoors. Despite current vector control efforts mosquito densities remain high in such foci of high malaria transmission. To further reduce transmission, indoor residual spraying (IRS) needs to be supplemented with additional vector control interventions. PMID:23146423

  20. [Introduction of Bacillus sphaericus strain-2362 (GRISELESF) for biological control of malaria vectors in Guatemala].

    PubMed

    Blanco Castro, S D; Martínez Arias, A; Cano Velásquez, O R; Tello Granados, R; Mendoza, I

    2000-01-01

    Malaria continues to be an important health problem in a number of countries of Central and South America where it is considered as a highly prevent endemic disease. The objective of this paper is to assess the entomo-epidemiological impact of a pilot program for the biological control of malaria-transmitting vectors, which was implemented in 1998 in Escuintla, Republic of Guatemala. This program was based on the use of 20,000 L of biolarvicide Bacillus sphaericus- strain-2362 (GRISELESF) which was applied in the 46 localities of highest epidemiological risk at a rate of 10 mL/m2 of effective area of breeding. The entomologic effectiveness of this biolarvicide was monitored from the first 72 hours to 4 months after the application. There was a total larval reduction of 94.57 in the maturity stage of the water phase of Anopheles albimanus vector. The epidemiological analysis was carried out by comparing the rate of malaria prevalence (per 1000 pop) during 1997 and 1998. The five treated municipalities showed a statistically significant reduction of 50% (p 0.01). The results obtained in this paper coincided with those reported by comparable studies, so, this allowed us to recommend the use of the biolarvicide Bacillus sphaericus (strain-2362) as part of a comprehensive program of malaria-transmitting vector control in the Republic of Guatemala and other countries of the region.

  1. Insecticide exposure impacts vector–parasite interactions in insecticide-resistant malaria vectors

    PubMed Central

    Alout, Haoues; Djègbè, Innocent; Chandre, Fabrice; Djogbénou, Luc Salako; Dabiré, Roch Kounbobr; Corbel, Vincent; Cohuet, Anna

    2014-01-01

    Currently, there is a strong trend towards increasing insecticide-based vector control coverage in malaria endemic countries. The ecological consequence of insecticide applications has been mainly studied regarding the selection of resistance mechanisms; however, little is known about their impact on vector competence in mosquitoes responsible for malaria transmission. As they have limited toxicity to mosquitoes owing to the selection of resistance mechanisms, insecticides may also interact with pathogens developing in mosquitoes. In this study, we explored the impact of insecticide exposure on Plasmodium falciparum development in insecticide-resistant colonies of Anopheles gambiae s.s., homozygous for the ace-1 G119S mutation (Acerkis) or the kdr L1014F mutation (Kdrkis). Exposure to bendiocarb insecticide reduced the prevalence and intensity of P. falciparum oocysts developing in the infected midgut of the Acerkis strain, whereas exposure to dichlorodiphenyltrichloroethane reduced only the prevalence of P. falciparum infection in the Kdrkis strain. Thus, insecticide resistance leads to a selective pressure of insecticides on Plasmodium parasites, providing, to our knowledge, the first evidence of genotype by environment interactions on vector competence in a natural Anopheles–Plasmodium combination. Insecticide applications would affect the transmission of malaria in spite of resistance and would reduce to some degree the impact of insecticide resistance on malaria control interventions. PMID:24850924

  2. Modest additive effects of integrated vector control measures on malaria prevalence and transmission in western Kenya

    PubMed Central

    2013-01-01

    Background The effect of integrating vector larval intervention on malaria transmission is unknown when insecticide-treated bed-net (ITN) coverage is very high, and the optimal indicator for intervention evaluation needs to be determined when transmission is low. Methods A post hoc assignment of intervention-control cluster design was used to assess the added effect of both indoor residual spraying (IRS) and Bacillus-based larvicides (Bti) in addition to ITN in the western Kenyan highlands in 2010 and 2011. Cross-sectional, mass parasite screenings, adult vector populations, and cohort of active case surveillance (ACS) were conducted before and after the intervention in three study sites with two- to three-paired intervention-control clusters at each site each year. The effect of larviciding, IRS, ITNs and other determinants of malaria risk was assessed by means of mixed estimating methods. Results Average ITN coverage increased from 41% in 2010 to 92% in 2011 in the study sites. IRS intervention had significant added impact on reducing vector density in 2010 but the impact was modest in 2011. The effect of IRS on reducing parasite prevalence was significant in 2011 but was seasonal specific in 2010. ITN was significantly associated with parasite densities in 2010 but IRS application was significantly correlated with reduced gametocyte density in 2011. IRS application reduced about half of the clinical malaria cases in 2010 and about one-third in 2011 compare to non-intervention areas. Conclusion Compared with a similar study conducted in 2005, the efficacy of the current integrated vector control with ITN, IRS, and Bti reduced three- to five-fold despite high ITN coverage, reflecting a modest added impact on malaria transmission. Additional strategies need to be developed to further reduce malaria transmission. PMID:23870708

  3. Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes.

    PubMed

    Muthukumaran, Udaiyan; Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L

    2015-05-01

    Mosquitoes are blood-feeding insects and serve as the most important vectors for spreading human diseases such as malaria, yellow fever, dengue fever, and filariasis. The continued use of synthetic insecticides has resulted in resistance in mosquitoes. Synthetic insecticides are toxic and affect the environment by contaminating soil, water, and air, and then natural products may be an alternative to synthetic insecticides because they are effective, biodegradable, eco-friendly, and safe to environment. Botanical origin may serve as suitable alternative biocontrol techniques in the future. The present study was carried out to establish the larvicidal potential of leaf extracts of Gmelina asiatica and synthesized silver nanoparticles using aqueous leaf extract against late third instar larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the larvae of An. stephensi (lethal dose (LC₅₀) = 22.44 μg/mL; LC₉₀ 40.65 μg/mL), Ae. aegypti (LC₅₀ = 25.77 μg/mL; LC₉₀ 45.98 μg/mL), and C. quinquefasciatus (LC₅₀ = 27.83 μg/mL; LC₉₀ 48.92 μg/mL), respectively. No mortality was observed in the control. This is the first report on mosquito larvicidal activity of plant-synthesized nanoparticles. Thus, the use of G. asiatica to synthesize silver nanoparticles is a rapid, eco-friendly, and a single-step approach and the AgNps formed can be potential mosquito larvicidal agents.

  4. Patterns of irrigated rice growth and malaria vector breeding in Mali using multi-temporal ERS-2 synthetic aperture radar.

    PubMed

    Diuk-Wasser, M A; Dolo, G; Bagayoko, M; Sogoba, N; Toure, M B; Moghaddam, M; Manoukis, N; Rian, S; Traore, S F; Taylor, C E

    2006-02-01

    We explored the use of the European Remote Sensing Satellite 2 Synthetic Aperture Radar (ERS-2 SAR) to trace the development of rice plants in an irrigated area near Niono, Mali and relate that to the density of anopheline mosquitoes, especially An. gambiae. This is important because such mosquitoes are the major vectors of malaria in sub-Saharan Africa, and their development is often coupled to the cycle of rice development. We collected larval samples, mapped rice fields using GPS and recorded rice growth stages simultaneously with eight ERS-2 SAR acquisitions. We were able to discriminate among rice growth stages using ERS-2 SAR backscatter data, especially among the early stages of rice growth, which produce the largest numbers of larvae. We could also distinguish between basins that produced high and low numbers of anophelines within the stage of peak production. After the peak, larval numbers dropped as rice plants grew taller and thicker, reducing the amount of light reaching the water surface. ERS-2 SAR backscatter increased concomitantly. Our data support the belief that ERS-2 SAR data may be helpful for mapping the spatial patterns of rice growth, distinguishing different agricultural practices, and monitoring the abundance of vectors in nearby villages.

  5. Patterns of irrigated rice growth and malaria vector breeding in Mali using multi-temporal ERS-2 synthetic aperture radar

    PubMed Central

    Diuk-Wasser, M. A.; Dolo, G.; Bagayoko, M.; Sogoba, N.; Toure, M. B.; Moghaddam, M.; Manoukis, N.; Rian, S.; Traore, S. F.; Taylor, C. E.

    2007-01-01

    We explored the use of the European Remote Sensing Satellite 2 Synthetic Aperture Radar (ERS-2 SAR) to trace the development of rice plants in an irrigated area near Niono, Mali and relate that to the density of anopheline mosquitoes, especially An. gambiae. This is important because such mosquitoes are the major vectors of malaria in sub-Saharan Africa, and their development is often coupled to the cycle of rice development. We collected larval samples, mapped rice fields using GPS and recorded rice growth stages simultaneously with eight ERS-2 SAR acquisitions. We were able to discriminate among rice growth stages using ERS-2 SAR backscatter data, especially among the early stages of rice growth, which produce the largest numbers of larvae. We could also distinguish between basins that produced high and low numbers of anophelines within the stage of peak production. After the peak, larval numbers dropped as rice plants grew taller and thicker, reducing the amount of light reaching the water surface. ERS-2 SAR backscatter increased concomitantly. Our data support the belief that ERS-2 SAR data may be helpful for mapping the spatial patterns of rice growth, distinguishing different agricultural practices, and monitoring the abundance of vectors in nearby villages. PMID:17710188

  6. Larvicidal efficacy of Ethiopian ethnomedicinal plant Juniperus procera essential oil against Afrotropical malaria vector Anopheles arabiensis (Diptera: Culicidae)

    PubMed Central

    Karunamoorthi, Kaliyaperumal; Girmay, Askual; Fekadu, Samuel

    2014-01-01

    Objective To screen the essential oil of Juniperus procera (J. procera) (Cupressaceae) for larvicidal activity against late third instar larvae of Anopheles arabiensis (An. arabiensis) Patton, the principle malaria vector in Ethiopia. Methods The essential oil of J. procera was evaluated against the larvae of An. arabiensis under the laboratory and semi-field conditions by adopting the World Health Organization standard protocols. The larval mortality was observed for 24 h of post exposure. Results The essential oil of J. procera has demonstrated varying degrees of larvicidal activity against An. arabiensis. The LC50 and LC90 values of J. procera were 14.42 and 24.65 mg/L, respectively under the laboratory conditions, and from this data, a Chi-square value 6.662 was observed to be significant at the P=0.05 level. However, under the semi-field conditions the LC50 and LC90 values of J. procera were 24.51 and 34.21 mg/L, respectively and a Chi-square value 4.615 was significant at the P=0.05 level. The observations clearly showed that larval mortality rate is completely time and dose-dependent as compared with the control. Conclusions This investigation indicates that J. procera could serve as a potential larvicidal agent against insect vector of diseases, particularly An. arabiensis. However further studies are strongly recommended for the identification of the chemical constituents and the mode of action towards the rational design of alternative promising insecticidal agents in the near future. PMID:25183156

  7. Impact of long-lasting, insecticidal nets on anaemia and prevalence of Plasmodium falciparum among children under five years in areas with highly resistant malaria vectors

    PubMed Central

    2014-01-01

    Background The widespread use of insecticide-treated nets (LLINs) leads to the development of vector resistance to insecticide. This resistance can reduce the effectiveness of LLIN-based interventions and perhaps reverse progress in reducing malaria morbidity. To prevent such difficulty, it is important to know the real impact of resistance in the effectiveness of mosquito nets. Therefore, an assessment of LLIN efficacy was conducted in malaria prevention among children in high and low resistance areas. Methods The study was conducted in four rural districts and included 32 villages categorized as low or high resistance areas in Plateau Department, south-western Benin. Larvae collection was conducted to measure vector susceptibility to deltamethrin and knockdown resistance (kdr) frequency. In each resistance area, around 500 children were selected to measure the prevalence of malaria infection as well as the prevalence of anaemia associated with the use of LLINs. Results Observed mortalities of Anopheles gambiae s.s population exposed to deltamethrin ranged from 19 to 96%. Knockdown resistance frequency was between 38 and 84%. The prevalence of malaria infection in children under five years was 22.4% (19.9-25.1). This prevalence was 17.3% (14.2-20.9) in areas of high resistance and 27.1% (23.5-31.1) in areas of low resistance (p = 0.04). Eight on ten children that were aged six - 30 months against seven on ten of those aged 31–59 months were anaemic. The anaemia observed in the six to 30-month old children was significantly higher than in the 31–59 month old children (p = 0.00) but no difference associated with resistance areas was observed (p = 0.35). The net use rate was 71%. The risk of having malaria was significantly reduced (p < 0.05) with LLIN use in both low and high resistance areas. The preventive effect of LLINs in high resistance areas was 60% (95% CI: 40–70), and was significantly higher than that observed in low resistance

  8. Coquillettidia (Culicidae, Diptera) mosquitoes are natural vectors of avian malaria in Africa

    PubMed Central

    2009-01-01

    Background The mosquito vectors of Plasmodium spp. have largely been overlooked in studies of ecology and evolution of avian malaria and other vertebrates in wildlife. Methods Plasmodium DNA from wild-caught Coquillettidia spp. collected from lowland forests in Cameroon was isolated and sequenced using nested PCR. Female Coquillettidia aurites were also dissected and salivary glands were isolated and microscopically examined for the presence of sporozoites. Results In total, 33% (85/256) of mosquito pools tested positive for avian Plasmodium spp., harbouring at least eight distinct parasite lineages. Sporozoites of Plasmodium spp. were recorded in salivary glands of C. aurites supporting the PCR data that the parasites complete development in these mosquitoes. Results suggest C. aurites, Coquillettidia pseudoconopas and Coquillettidia metallica as new and important vectors of avian malaria in Africa. All parasite lineages recovered clustered with parasites formerly identified from several bird species and suggest the vectors capability of infecting birds from different families. Conclusion Identifying the major vectors of avian Plasmodium spp. will assist in understanding the epizootiology of avian malaria, including differences in this disease distribution between pristine and disturbed landscapes. PMID:19664282

  9. Passive vectoring of entomopathogenic fungus Beauveria bassiana among the wax moth Galleria mellonella larvae by the ectoparasitoid Habrobracon hebetor females.

    PubMed

    Kryukov, Vadim Yu; Kryukova, Natalia A; Tyurin, Maksim V; Yaroslavtseva, Olga N; Glupov, Viktor V

    2017-03-15

    Females of the ectoparasitoid Habrobracon hebetor attack and envenomate numerous host individuals during oviposition. The vectoring of the entomopathogenic fungus Beauveria bassiana during the adhesion stage by ectoparasitoid females among the wax moth larvae Galleria mellonella was explored under laboratory conditions. Vectoring occurred both from infected parasitoids to wax moth larvae and from infected to healthy wax moth larvae by parasitoids. The efficacy of vectoring in both cases was dose dependent. Parasitoid females were unable to recognize infected larvae in a labyrinth test. In addition, the presence of H. hebetor females significantly (1.5-13 fold) increased the mycoses level in clusters of G. mellonella, with 40 % of the larvae infected with fungal conidia. Envenomation by H. hebetor increased conidia germination on the cuticles of the wax moth larvae by 4.4-fold. An enhanced germination rate (2-fold) was registered in the n-hexane epicuticular extract of envenomated larvae compared to that of healthy larvae. Both envenomation and mycoses enhanced the phenoloxidase (PO) activity in the integument of G. mellonella and, in contrast, decreased the encapsulation rate in hemolymphs. We hypothesize that changes in the integument property and inhibition of cellular immunity provide the highest infection efficacy of entomopathogenic fungi with H. hebetor. This article is protected by copyright. All rights reserved.

  10. Malaria infection and disease in an area with pyrethroid-resistant vectors in southern Benin

    PubMed Central

    2010-01-01

    Background This study aimed to investigate baseline data on malaria before the evaluation of new vector control strategies in an area of pyrethroid-resistance of vectors. The burden of malaria was estimated in terms of infection (prevalence and parasite density) and of clinical episodes. Methods Between December 2007 and December 2008 in the health district of Ouidah - Kpomassè - Tori Bossito (southern Benin), a descriptive epidemiological survey of malaria was conducted. From 28 selected villages, seven were randomized from which a total of 440 children aged 0 to 5 years were randomly selected. Clinical and parasitological information was obtained by active case detection of malaria episodes carried out during eight periods of six consecutive days scheduled at six weekly intervals and by cross-sectional surveys of asymptomatic infection. Entomological information was also collected. The ownership, the use and the correct use of long-lasting insecticide-treated nets (LLINs) were checked over weekly-survey by unannounced visits at home in the late evening. Results Mean parasite density in asymptomatic children was 586 P. falciparum asexual forms per μL of blood (95%CI 504-680). Pyrogenic parasite cut-off was estimated 2,000 P. falciparum asexual blood forms per μL. The clinical incidence of malaria was 1.5 episodes per child per year (95%CI 1.2-1.9). Parasitological and clinical variables did not vary with season. Anopheles gambiae s.l. was the principal vector closely followed by Anopheles funestus. Entomological inoculation rate was 5.3 (95%CI 1.1-25.9) infective bites per human per year. Frequency of the L1014F kdr (West) allele was around 50%. Annual prevalence rate of Plasmodium falciparum asymptomatic infection was 21.8% (95%CI 19.1-24.4) and increased according to age. Mean rates of ownership and use of LLINs were 92% and 70% respectively. The only correct use of LLINs (63%) conferred 26% individual protection against only infection (OR = 0.74 (95%IC 0

  11. Automated innovative diagnostic, data management and communication tool, for improving malaria vector control in endemic settings.

    PubMed

    Vontas, John; Mitsakakis, Konstantinos; Zengerle, Roland; Yewhalaw, Delenasaw; Sikaala, Chadwick Haadezu; Etang, Josiane; Fallani, Matteo; Carman, Bill; Müller, Pie; Chouaïbou, Mouhamadou; Coleman, Marlize; Coleman, Michael

    2016-01-01

    Malaria is a life-threatening disease that caused more than 400,000 deaths in sub-Saharan Africa in 2015. Mass prevention of the disease is best achieved by vector control which heavily relies on the use of insecticides. Monitoring mosquito vector populations is an integral component of control programs and a prerequisite for effective interventions. Several individual methods are used for this task; however, there are obstacles to their uptake, as well as challenges in organizing, interpreting and communicating vector population data. The Horizon 2020 project "DMC-MALVEC" consortium will develop a fully integrated and automated multiplex vector-diagnostic platform (LabDisk) for characterizing mosquito populations in terms of species composition, Plasmodium infections and biochemical insecticide resistance markers. The LabDisk will be interfaced with a Disease Data Management System (DDMS), a custom made data management software which will collate and manage data from routine entomological monitoring activities providing information in a timely fashion based on user needs and in a standardized way. The ResistanceSim, a serious game, a modern ICT platform that uses interactive ways of communicating guidelines and exemplifying good practices of optimal use of interventions in the health sector will also be a key element. The use of the tool will teach operational end users the value of quality data (relevant, timely and accurate) to make informed decisions. The integrated system (LabDisk, DDMS & ResistanceSim) will be evaluated in four malaria endemic countries, representative of the vector control challenges in sub-Saharan Africa, (Cameroon, Ivory Coast, Ethiopia and Zambia), highly representative of malaria settings with different levels of endemicity and vector control challenges, to support informed decision-making in vector control and disease management.

  12. A Nonintegrative Lentiviral Vector-Based Vaccine Provides Long-Term Sterile Protection against Malaria

    PubMed Central

    Coutant, Frédéric; Sanchez David, Raul Yusef; Félix, Tristan; Boulay, Aude; Caleechurn, Laxmee; Souque, Philippe; Thouvenot, Catherine; Bourgouin, Catherine

    2012-01-01

    Trials testing the RTS,S candidate malaria vaccine and radiation-attenuated sporozoites (RAS) have shown that protective immunity against malaria can be induced and that an effective vaccine is not out of reach. However, longer-term protection and higher protection rates are required to eradicate malaria from the endemic regions. It implies that there is still a need to explore new vaccine strategies. Lentiviral vectors are very potent at inducing strong immunological memory. However their integrative status challenges their safety profile. Eliminating the integration step obviates the risk of insertional oncogenesis. Providing they confer sterile immunity, nonintegrative lentiviral vectors (NILV) hold promise as mass pediatric vaccine by meeting high safety standards. In this study, we have assessed the protective efficacy of NILV against malaria in a robust pre-clinical model. Mice were immunized with NILV encoding Plasmodium yoelii Circumsporozoite Protein (Py CSP) and challenged with sporozoites one month later. In two independent protective efficacy studies, 50% (37.5–62.5) of the animals were fully protected (p = 0.0072 and p = 0.0008 respectively when compared to naive mice). The remaining mice with detectable parasitized red blood cells exhibited a prolonged patency and reduced parasitemia. Moreover, protection was long-lasting with 42.8% sterile protection six months after the last immunization (p = 0.0042). Post-challenge CD8+ T cells to CSP, in contrast to anti-CSP antibodies, were associated with protection (r = −0.6615 and p = 0.0004 between the frequency of IFN-g secreting specific T cells in spleen and parasitemia). However, while NILV and RAS immunizations elicited comparable immunity to CSP, only RAS conferred 100% of sterile protection. Given that a better protection can be anticipated from a multi-antigen vaccine and an optimized vector design, NILV appear as a promising malaria vaccine. PMID:23133649

  13. The role of vector control in stopping the transmission of malaria: threats and opportunities.

    PubMed

    Hemingway, Janet

    2014-01-01

    Malaria control, and that of other insect borne diseases such as dengue, is heavily dependent on our ability to control the mosquito populations that transmit these diseases. The major push over the last decade to reduce the global burden of malaria has been driven by the distribution of pyrethroid insecticide-treated bednets and an increase in coverage of indoor residual spraying (IRS). This has reduced malaria deaths by a third. Progress towards the goal of reducing this further is threatened by lack of funding and the selection of drug and insecticide resistance. When malaria control was initially scaled up, there was little pyrethroid resistance in the major vectors, today there is no country in Africa where the vectors remain fully susceptible to pyrethroids. The first pyrethroid resistance mechanisms to be selected produced low-level resistance which had little or no operational significance. More recently, metabolically based resistance has been selected, primarily in West Africa, which in some mosquito populations produces more than 1000-fold resistance. As this spreads the effectiveness of pyrethroid-based bednets and IRS will be compromised. New public health insecticides are not readily available. The pipeline of agrochemical insecticides that can be re-purposed for public health dried up 30 years ago when the target product profile for agricultural insecticides shifted from broad spectrum, stable, contact-acting insecticides to narrow spectrum stomach poisons that could be delivered through the plant. A public-private partnership, the Innovative Vector Control Consortium, was established in 2005 to stimulate the development of new public health pesticides. Nine potential new classes of chemistry are in the pipeline, with the intention of developing three into new insecticides. While this has been successfully achieved, it will still take 6-9 years for new insecticides to reach the market. Careful management of the resistance situation in the interim

  14. Mosquito genomics. Extensive introgression in a malaria vector species complex revealed by phylogenomics.

    PubMed

    Fontaine, Michael C; Pease, James B; Steele, Aaron; Waterhouse, Robert M; Neafsey, Daniel E; Sharakhov, Igor V; Jiang, Xiaofang; Hall, Andrew B; Catteruccia, Flaminia; Kakani, Evdoxia; Mitchell, Sara N; Wu, Yi-Chieh; Smith, Hilary A; Love, R Rebecca; Lawniczak, Mara K; Slotman, Michel A; Emrich, Scott J; Hahn, Matthew W; Besansky, Nora J

    2015-01-02

    Introgressive hybridization is now recognized as a widespread phenomenon, but its role in evolution remains contested. Here, we use newly available reference genome assemblies to investigate phylogenetic relationships and introgression in a medically important group of Afrotropical mosquito sibling species. We have identified the correct species branching order to resolve a contentious phylogeny and show that lineages leading to the principal vectors of human malaria were among the first to split. Pervasive autosomal introgression between these malaria vectors means that only a small fraction of the genome, mainly on the X chromosome, has not crossed species boundaries. Our results suggest that traits enhancing vectorial capacity may be gained through interspecific gene flow, including between nonsister species.

  15. Advances in the study of Anopheles funestus, a major vector of malaria in Africa.

    PubMed

    Coetzee, M; Fontenille, D

    2004-07-01

    The recent literature on cytogenetic and molecular studies of Anopheles funestus, a major vector of malaria in Africa, is reviewed. Molecular data from West and Central Africa suggest a new species in the group closely allied to Anopheles rivulorum. Cytogenetic and molecular studies of populations from West, Central, East and southern Africa indicate considerable genetic structuring within An. funestus itself, which may well restrict the spread of pyrethroid resistance that has been demonstrated in southern Africa.

  16. A model for the control of malaria using genetically modified vectors.

    PubMed

    Diaz, H; Ramirez, A A; Olarte, A; Clavijo, C

    2011-05-07

    Recent works have considered the problem of using transgenic mosquitoes to control a malaria epidemic. These insects have been genetically engineered to reduce their capacity to infect humans with malaria parasites. We analyze a model of the mosquito population dynamics when genetically modified individuals are introduced into a wild type population so that the effect of their introduction can be assessed. The model describes the dynamics of gene selection under sexual reproduction in a closed vector population. Our results show that the fitness of the resulting heterozygous population is the key parameter for the success of the invasion, independently of the fitness of homozygous vectors. The vector population dynamics model is then combined with an epidemiological model to study the feasibility of controlling a malaria epidemic. Basic reproductive numbers are calculated for both models, and conditions are obtained for preventing reappearance of the epidemic. Simulations on this model show that it may be possible to reduce or even eradicate the epidemic only if the heterozygous population is better adapted than the wild type. They also show that this can be achieved without completely eliminating the wild type mosquitoes.

  17. Mosquitoes as Potential Bridge Vectors of Malaria Parasites from Non-Human Primates to Humans

    PubMed Central

    Verhulst, Niels O.; Smallegange, Renate C.; Takken, Willem

    2012-01-01

    Malaria is caused by Plasmodium parasites which are transmitted by mosquitoes. Until recently, human malaria was considered to be caused by human-specific Plasmodium species. Studies on Plasmodium parasites in non-human primates (NHPs), however, have identified parasite species in gorillas and chimpanzees that are closely related to human Plasmodium species. Moreover, P. knowlesi, long known as a parasite of monkeys, frequently infects humans. The requirements for such a cross-species exchange and especially the role of mosquitoes in this process are discussed, as the latter may act as bridge vectors of Plasmodium species between different primates. Little is known about the mosquito species that would bite both humans and NHPs and if so, whether humans and NHPs share the same Plasmodium vectors. To understand the vector-host interactions that can lead to an increased Plasmodium transmission between species, studies are required that reveal the nature of these interactions. Studying the potential role of NHPs as a Plasmodium reservoir for humans will contribute to the ongoing efforts of human malaria elimination, and will help to focus on critical areas that should be considered in achieving this goal. PMID:22701434

  18. Larval habitat for the avian malaria vector culex quinquefasciatus (Diptera: Culicidae) in altered mid-elevation mesic-dry forests in Hawai'i

    USGS Publications Warehouse

    Reiter, M.E.; Lapointe, D.A.

    2009-01-01

    Effective management of avian malaria (Plasmodium relictum) in Hawai'i's endemic honeycreepers (Drepanidinae) requires the identification and subsequent reduction or treatment of larval habitat for the mosquito vector, Culex quinquefasciatus (Diptera: Culicidae). We conducted ground surveys, treehole surveys, and helicopter aerial surveys from 20012003 to identify all potential larval mosquito habitat within two 100+ ha mesic-dry forest study sites in Hawai'i Volcanoes National Park, Hawai'i; 'Ainahou Ranch and Mauna Loa Strip Road. At 'Ainahou Ranch, anthropogenic sites (43%) were more likely to contain mosquitoes than naturally occurring (8%) sites. Larvae of Cx. quinquefasciatus were predominately found in anthropogenic sites while Aedes albopictus larvae occurred less frequently in both anthropogenic sites and naturally-occurring sites. Additionally, moderate-size (???20-22,000 liters) anthropogenic potential larval habitat had >50% probability of mosquito presence compared to larger- and smaller-volume habitat (<50%). Less than 20% of trees surveyed at ' Ainahou Ranch had treeholes and few mosquito larvae were detected. Aerial surveys at 'Ainahou Ranch detected 56% (95% CI: 42-68%) of the potential larval habitat identified in ground surveys. At Mauna Loa Strip Road, Cx. quinquefasciatus larvae were only found in the rock holes of small intermittent stream drainages that made up 20% (5 of 25) of the total potential larval habitat. The volume of the potential larval habitat did not influence the probability of mosquito occurrence at Mauna Loa Strip Road. Our results suggest that Cx. quinquefasciatus abundance, and subsequently avian malaria, may be controlled by larval habitat reduction in the mesic-dry landscapes of Hawai'i where anthropogenic sources predominate.

  19. Larval habitat for the avian malaria vector Culex quinquefasciatus (Diptera: Culicidae) in altered mid-elevation mesic-dry forests in Hawai'i.

    PubMed

    Reiter, Matthew E; Lapointe, Dennis A

    2009-12-01

    Effective management of avian malaria (Plasmodium relictum) in Hawai'i's endemic honeycreepers (Drepanidinae) requires the identification and subsequent reduction or treatment of larval habitat for the mosquito vector, Culex quinquefasciatus (Diptera: Culicidae). We conducted ground surveys, treehole surveys, and helicopter aerial surveys from 2001-2003 to identify all potential larval mosquito habitat within two 100+ ha mesic-dry forest study sites in Hawai'i Volcanoes National Park, Hawai'i; 'Ainahou Ranch and Mauna Loa Strip Road. At 'Ainahou Ranch, anthropogenic sites (43%) were more likely to contain mosquitoes than naturally occurring (8%) sites. Larvae of Cx. quinquefasciatus were predominately found in anthropogenic sites while Aedes albopictus larvae occurred less frequently in both anthropogenic sites and naturally-occurring sites. Additionally, moderate-size (~ 20-22,000 liters) anthropogenic potential larval habitat had >50% probability of mosquito presence compared to larger- and smaller-volume habitat (<50%). Less than 20% of trees surveyed at 'Ainahou Ranch had treeholes and few mosquito larvae were detected. Aerial surveys at 'Ainahou Ranch detected 56% (95% CI: 42-68%) of the potential larval habitat identified in ground surveys. At Mauna Loa Strip Road, Cx. quinquefasciatus larvae were only found in the rock holes of small intermittent stream drainages that made up 20% (5 of 25) of the total potential larval habitat. The volume of the potential larval habitat did not influence the probability of mosquito occurrence at Mauna Loa Strip Road. Our results suggest that Cx. quinquefasciatus abundance, and subsequently avian malaria, may be controlled by larval habitat reduction in the mesic-dry landscapes of Hawai'i where anthropogenic sources predominate.

  20. Agro-ecosystems impact malaria prevalence: large-scale irrigation drives vector population in western Ethiopia

    PubMed Central

    2013-01-01

    Background Development strategies in Ethiopia have largely focused on the expansion of irrigated agriculture in the last decade to reduce poverty and promote economic growth. However, such irrigation schemes can worsen the socio-economic state by aggravating the problem of mosquito-borne diseases. In this study, the effect of agro-ecosystem practices on malaria prevalence and the risk of malaria transmission by the primary vector mosquito, Anopheles arabiensis, in Ethiopia were investigated. Methods In three villages in western Ethiopia practising large-scale sugarcane irrigation, traditional smallholder irrigation and non-irrigated farming, cross-sectional parasitological surveys were conducted during the short rains, after the long rains and during the dry season. Entomological surveys were undertaken monthly (February 2010-January 2011) in each village using light traps, pyrethrum spray collections and artificial pit shelters. Results Malaria prevalence and the risk of transmission by An. arabiensis assessed by the average human biting rate, mean sporozoite rate and estimated annual entomological inoculation rate were significantly higher in the irrigated sugarcane agro-ecosystem compared to the traditionally irrigated and non-irrigated agro-ecosystems. The average human biting rate was significantly elevated by two-fold, while the mean sporozoite rate was 2.5-fold higher, and the annual entomological inoculation rate was 4.6 to 5.7-fold higher in the irrigated sugarcane compared to the traditional and non-irrigated agro-ecosystems. Active irrigation clearly affected malaria prevalence by increasing the abundance of host seeking Anopheles mosquitoes year-round and thus increasing the risk of infective bites. The year-round presence of sporozoite-infected vectors due to irrigation practices was found to strengthen the coupling between rainfall and risk of malaria transmission, both on- and off-season. Conclusion This study demonstrates the negative impact of

  1. Progress with viral vectored malaria vaccines: A multi-stage approach involving "unnatural immunity".

    PubMed

    Ewer, Katie J; Sierra-Davidson, Kailan; Salman, Ahmed M; Illingworth, Joseph J; Draper, Simon J; Biswas, Sumi; Hill, Adrian V S

    2015-12-22

    Viral vectors used in heterologous prime-boost regimens are one of very few vaccination approaches that have yielded significant protection against controlled human malaria infections. Recently, protection induced by chimpanzee adenovirus priming and modified vaccinia Ankara boosting using the ME-TRAP insert has been correlated with the induction of potent CD8(+) T cell responses. This regimen has progressed to field studies where efficacy against infection has now been reported. The same vectors have been used pre-clinically to identify preferred protective antigens for use in vaccines against the pre-erythrocytic, blood-stage and mosquito stages of malaria and this work is reviewed here for the first time. Such antigen screening has led to the prioritization of the PfRH5 blood-stage antigen, which showed efficacy against heterologous strain challenge in non-human primates, and vectors encoding this antigen are in clinical trials. This, along with the high transmission-blocking activity of some sexual-stage antigens, illustrates well the capacity of such vectors to induce high titre protective antibodies in addition to potent T cell responses. All of the protective responses induced by these vectors exceed the levels of the same immune responses induced by natural exposure supporting the view that, for subunit vaccines to achieve even partial efficacy in humans, "unnatural immunity" comprising immune responses of very high magnitude will need to be induced.

  2. Impact of urban agriculture on malaria vectors in Accra, Ghana.

    PubMed

    Klinkenberg, Eveline; McCall, Pj; Wilson, Michael D; Amerasinghe, Felix P; Donnelly, Martin J

    2008-08-04

    To investigate the impact of urban agriculture on malaria transmission risk in urban Accra larval and adult stage mosquito surveys, were performed. Local transmission was implicated as Anopheles spp. were found breeding and infected Anopheles mosquitoes were found resting in houses in the study sites. The predominant Anopheles species was Anopheles gambiae s.s.. The relative proportion of molecular forms within a subset of specimens was 86% S-form and 14% M-form. Anopheles spp. and Culex quinquefasciatus outdoor biting rates were respectively three and four times higher in areas around agricultural sites (UA) than in areas far from agriculture (U). The annual Entomological Inoculation Rate (EIR), the number of infectious bites received per individual per year, was 19.2 and 6.6 in UA and U sites, respectively. Breeding sites were highly transitory in nature, which poses a challenge for larval control in this setting. The data also suggest that the epidemiological importance of urban agricultural areas may be the provision of resting sites for adults rather than an increased number of larval habitats. Host-seeking activity peaked between 2-3 am, indicating that insecticide-treated bednets should be an effective control method.

  3. Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: an eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors?

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Arivoli, Subramanian; Tennyson, Samuel; Benelli, Giovanni

    2016-05-01

    Mosquitoes (Diptera: Culicidae) are important vectors of terms of public health relevance, especially in tropical and sub-tropical regions. The continuous and indiscriminate use of conventional pesticides for the control of mosquito vectors has resulted in the development of resistance and negative impacts on non-target organisms and the environment. Therefore, there is a need for development of effective mosquito control tools. In this study, the larvicidal and repellent activity of Zingiber nimmonii rhizome essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti, and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy (GC-MS). GC-MS revealed that the Z. nimmonii EO contained at least 33 compounds. Major constituents were myrcene, β-caryophyllene, α-humulene, and α-cadinol. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus, with LC50 values of 41.19, 44.46, and 48.26 μg/ml, respectively. Repellency bioassays at 1.0, 2.0, and 5.0 mg/cm(2) of Z. nimmonii EO gave 100 % protection up to 120, 150, and 180 min. against An. stephensi, followed by Ae. aegypti (90, 120, and 150 min) and Cx. quinquefasciatus (60, 90, and 120 min). Furthermore, the EO was safer towards two non-target aquatic organisms, Diplonychus indicus and Gambusia affinis, with LC50 values of 3241.53 and 9250.12 μg/ml, respectively. Overall, this research adds basic knowledge to develop newer and safer natural larvicides and repellent from Zingiberaceae plants against malaria, dengue, and filariasis mosquito vectors.

  4. Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: A potent eco-friendly tool against malaria and arbovirus vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Muthukumaran, Udaiyan; Hoti, S L; Khater, Hanem F; Benelli, Giovanni

    2016-08-01

    Mosquitoes (Diptera: Culicidae) are vectors of important pathogens and parasites, including malaria, dengue, chikungunya, Japanese encephalitis, lymphatic filariasis and Zika virus. The application of synthetic insecticides causes development of resistance, biological magnification of toxic substances through the food chain, and adverse effects on the environment and human health. In this scenario, eco-friendly control tools of mosquito vectors are a priority. Here single-step fabrication of silver nanoparticles (AgNP) using a cheap aqueous leaf extract of Zornia diphylla as reducing and capping agent pf Ag(+) ions has been carried out. Biosynthesized AgNP were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction analysis (XRD). The acute toxicity of Z. diphylla leaf extract and biosynthesized AgNP was evaluated against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. Both the Z. diphylla leaf extract and Ag NP showed dose dependent larvicidal effect against all tested mosquito species. Compared to the leaf aqueous extract, biosynthesized Ag NP showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 values of 12.53, 13.42 and 14.61μg/ml, respectively. Biosynthesized Ag NP were found safer to non-target organisms Chironomus circumdatus, Anisops bouvieri and Gambusia affinis, with the respective LC50 values ranging from 613.11 to 6903.93μg/ml, if compared to target mosquitoes. Overall, our results highlight that Z. diphylla-fabricated Ag NP are a promising and eco-friendly tool against larval populations of mosquito vectors of medical and veterinary importance, with negligible toxicity against other non-target organisms.

  5. The Value of Information in Decision-Analytic Modeling for Malaria Vector Control in East Africa.

    PubMed

    Kim, Dohyeong; Brown, Zachary; Anderson, Richard; Mutero, Clifford; Miranda, Marie Lynn; Wiener, Jonathan; Kramer, Randall

    2016-03-23

    Decision analysis tools and mathematical modeling are increasingly emphasized in malaria control programs worldwide to improve resource allocation and address ongoing challenges with sustainability. However, such tools require substantial scientific evidence, which is costly to acquire. The value of information (VOI) has been proposed as a metric for gauging the value of reduced model uncertainty. We apply this concept to an evidenced-based Malaria Decision Analysis Support Tool (MDAST) designed for application in East Africa. In developing MDAST, substantial gaps in the scientific evidence base were identified regarding insecticide resistance in malaria vector control and the effectiveness of alternative mosquito control approaches, including larviciding. We identify four entomological parameters in the model (two for insecticide resistance and two for larviciding) that involve high levels of uncertainty and to which outputs in MDAST are sensitive. We estimate and compare a VOI for combinations of these parameters in evaluating three policy alternatives relative to a status quo policy. We find having perfect information on the uncertain parameters could improve program net benefits by up to 5-21%, with the highest VOI associated with jointly eliminating uncertainty about reproductive speed of malaria-transmitting mosquitoes and initial efficacy of larviciding at reducing the emergence of new adult mosquitoes. Future research on parameter uncertainty in decision analysis of malaria control policy should investigate the VOI with respect to other aspects of malaria transmission (such as antimalarial resistance), the costs of reducing uncertainty in these parameters, and the extent to which imperfect information about these parameters can improve payoffs.

  6. Larvicidal Activity of Nerium oleander against Larvae West Nile Vector Mosquito Culex pipiens (Diptera: Culicidae)

    PubMed Central

    El-Akhal, Fouad; Guemmouh, Raja; Ez Zoubi, Yassine; El Ouali Lalami, Abdelhakim

    2015-01-01

    Background. Outbreaks of the West Nile virus infection were reported in Morocco in 1996, 2003, and 2010. Culex pipiens was strongly suspected as the vector responsible for transmission. In the North center of Morocco, this species has developed resistance to synthetic insecticides. There is an urgent need to find alternatives to the insecticides as natural biocides. Objective. In this work, the insecticidal activity of the extract of the local plant Nerium oleander, which has never been tested before in the North center of Morocco, was studied on larval stages 3 and 4 of Culex pipiens. Methods. Biological tests were realized according to a methodology inspired from standard World Health Organization protocol. The mortality values were determined after 24 h of exposure and LC50 and LC90 values were calculated. Results. The extract had toxic effects on the larvae of culicid mosquitoes. The ethanolic extract of Nerium oleander applied against the larvae of Culex pipiens has given the lethal concentrations LC50 and LC90 in the order of 57.57 mg/mL and 166.35 mg/mL, respectively. Conclusion. This investigation indicates that N. oleander could serve as a potential larvicidal, effective natural biocide against mosquito larvae, particularly Culex pipiens. PMID:26640701

  7. Multiple Insecticide Resistance: An Impediment to Insecticide-Based Malaria Vector Control Program

    PubMed Central

    Steurbaut, Walter; Spanoghe, Pieter; Van Bortel, Wim; Denis, Leen; Tessema, Dejene A.; Getachew, Yehenew; Coosemans, Marc; Duchateau, Luc; Speybroeck, Niko

    2011-01-01

    Background Indoor Residual Spraying (IRS), insecticide-treated nets (ITNs) and long-lasting insecticidal nets (LLINs) are key components in malaria prevention and control strategy. However, the development of resistance by mosquitoes to insecticides recommended for IRS and/or ITNs/LLINs would affect insecticide-based malaria vector control. We assessed the susceptibility levels of Anopheles arabiensis to insecticides used in malaria control, characterized basic mechanisms underlying resistance, and evaluated the role of public health use of insecticides in resistance selection. Methodology/Principal findings Susceptibility status of An. arabiensis was assessed using WHO bioassay tests to DDT, permethrin, deltamethrin, malathion and propoxur in Ethiopia from August to September 2009. Mosquito specimens were screened for knockdown resistance (kdr) and insensitive acetylcholinesterase (ace-1R) mutations using AS-PCR and PCR-RFLP, respectively. DDT residues level in soil from human dwellings and the surrounding environment were determined by Gas Chromatography with Electron Capture Detector. An. arabiensis was resistant to DDT, permethrin, deltamethrin and malathion, but susceptible to propoxur. The West African kdr allele was found in 280 specimens out of 284 with a frequency ranged from 95% to 100%. Ace-1R mutation was not detected in all specimens scored for the allele. Moreover, DDT residues were found in soil samples from human dwellings but not in the surrounding environment. Conclusion The observed multiple-resistance coupled with the occurrence of high kdr frequency in populations of An. arabiensis could profoundly affect the malaria vector control programme in Ethiopia. This needs an urgent call for implementing rational resistance management strategies and integrated vector control intervention. PMID:21264325

  8. Malaria

    MedlinePlus

    ... common?Malaria is a health problem in many tropical and subtropical countries, including portions of Central and ... these countries. If you are traveling to a tropical area or to a country where malaria is ...

  9. Malaria Capacity Building in Liberia: The US Navy Joins Forces to Defeat a Deadly Foe

    DTIC Science & Technology

    2014-01-01

    mosquito larvae. Malaria ranks among the top three important vector-borne diseases for the US military. In response, over the past five years, the Armed...gambiae, the primary malaria vector in Liberia. During the final two days of the course, students conducted an indoor residual spray operation (IRS...for barracks housing AFL soldiers. Large-scale IRS has remained the cornerstone of the World Health Or- ganization (WHO) malaria control plan

  10. High effective coverage of vector control interventions in children after achieving low malaria transmission in Zanzibar, Tanzania

    PubMed Central

    2013-01-01

    Background Formerly a high malaria transmission area, Zanzibar is now targeting malaria elimination. A major challenge is to avoid resurgence of malaria, the success of which includes maintaining high effective coverage of vector control interventions such as bed nets and indoor residual spraying (IRS). In this study, caretakers' continued use of preventive measures for their children is evaluated, following a sharp reduction in malaria transmission. Methods A cross-sectional community-based survey was conducted in June 2009 in North A and Micheweni districts in Zanzibar. Households were randomly selected using two-stage cluster sampling. Interviews were conducted with 560 caretakers of under-five-year old children, who were asked about perceptions on the malaria situation, vector control, household assets, and intention for continued use of vector control as malaria burden further decreases. Results Effective coverage of vector control interventions for under-five children remains high, although most caretakers (65%; 363/560) did not perceive malaria as presently being a major health issue. Seventy percent (447/643) of the under-five children slept under a long-lasting insecticidal net (LLIN) and 94% (607/643) were living in houses targeted with IRS. In total, 98% (628/643) of the children were covered by at least one of the vector control interventions. Seasonal bed-net use for children was reported by 25% (125/508) of caretakers of children who used bed nets. A high proportion of caretakers (95%; 500/524) stated that they intended to continue using preventive measures for their under-five children as malaria burden further reduces. Malaria risk perceptions and different perceptions of vector control were not found to be significantly associated with LLIN effective coverage. Conclusions While the majority of caretakers felt that malaria had been reduced in Zanzibar, effective coverage of vector control interventions remained high. Caretakers appreciated the

  11. Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L; Bhattacharyya, Atanu; Benelli, Giovanni

    2016-02-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. Eco-friendly mosquitocides are a priority. In Ayurvedic medicine, Plectranthus species have been used to treat heart disease, convulsions, spasmodic pain and painful urination. In this research, we evaluated the acute toxicity of essential oil from Plectranthus barbatus and its major constituents, against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. The chemical composition of P. barbatus essential oil was analyzed by gas chromatography-mass spectroscopy. Nineteen components were identified. Major constituents were eugenol (31.12%), α-pinene (19.38%) and β-caryophyllene (18.42%). Acute toxicity against early third-instar larvae of An. subpictus, Ae. albopictus and Cx. tritaeniorhynchus was investigated. The essential oil had a significant toxic effect against larvae of An. subpictus, Ae. albopictus and Cx. tritaeniorhynchus, with 50% lethal concentration (LC50) values of 84.20, 87.25 and 94.34 μg/ml and 90% lethal concentration (LC90) values of 165.25, 170.56 and 179.58 μg/ml, respectively. Concerning major constituents, eugenol, α-pinene and β-caryophyllene appeared to be most effective against An. subpictus (LC50 = 25.45, 32.09 and 41.66 μg/ml, respectively), followed by Ae. albopictus (LC50 = 28.14, 34.09 and 44.77 μg/ml, respectively) and Cx. tritaeniorhynchus (LC50 = 30.80, 36.75 and 48.17 μg/ml, respectively). Overall, the chance to use metabolites from P. barbatus essential oil against mosquito vectors seems promising, since they are effective at low doses and could be an advantageous alternative to build newer and safer mosquito control tools.

  12. Malaria.

    ERIC Educational Resources Information Center

    Dupasquier, Isabelle

    1989-01-01

    Malaria, the greatest pandemia in the world, claims an estimated one million lives each year in Africa alone. While it may still be said that for the most part malaria is found in what is known as the world's poverty belt, cases are now frequently diagnosed in western countries. Due to resistant strains of malaria which have developed because of…

  13. Detection of 1014F kdr mutation in four major Anopheline malaria vectors in Indonesia

    PubMed Central

    2010-01-01

    Background Malaria is a serious public health problem in Indonesia, particularly in areas outside Java and Bali. The spread of resistance to the currently available anti-malarial drugs or insecticides used for mosquito control would cause an increase in malaria transmission. To better understand patterns of transmission and resistance in Indonesia, an integrated mosquito survey was conducted in three areas with different malaria endemicities, Purworejo in Central Java, South Lampung District in Sumatera and South Halmahera District in North Mollucca. Methods Mosquitoes were collected from the three areas through indoor and outdoor human landing catches (HLC) and indoor restinging catches. Specimens were identified morphologically by species and kept individually in 1.5 ml Eppendorf microtube. A fragment of the VGSC gene from 95 mosquito samples was sequenced and kdr allelic variation determined. Results The molecular analysis of these anopheline mosquitoes revealed the existence of the 1014F allele in 4 major malaria vectors from South Lampung. These species include, Anopheles sundaicus, Anopheles aconitus, Anopheles subpictus and Anopheles vagus. The 1014F allele was not found in the other areas. Conclusion The finding documents the presence of this mutant allele in Indonesia, and implies that selection pressure on the Anopheles population in this area has occurred. Further studies to determine the impact of the resistance allele on the efficacy of pyrethroids in control programmes are needed. PMID:21054903

  14. Comparative efficacy of Solanum xanthocarpum extracts alone and in combination with a synthetic pyrethroid, cypermethrin, against malaria vector, Anopheles stephensi.

    PubMed

    Mohan, Lalit; Sharma, Preeti; Srivastava, C N

    2007-03-01

    With a goal of minimal application of environmentally hazardous chemical insecticides, the larvicidal activity of cypermethrin was studied alone and in combination with the root extract of Solanum xanthocarpum against anopheline larvae. Petroleum ether extract was observed to be the most toxic, with LC,, of 1.41 and 0.93 ppm and LC90 of 16.94 and 8.48 ppm at 24 and 48 hours after application, respectively, followed by carbon tetrachloride and methanol extracts. The values for cypermethrin were an LC50 of 0.0369 ppm after 24 hours and 0.0096 ppm after 48 hours and LC90 of 0.0142 and 0.0091 ppm after 24 and 48 hours, respectively. The ratios of cypermethrin and petroleum ether extracts tested were 1:1, 1:2 and 1:4. Of the various ratios tested, the cypermethrin and petroleum ether extract ratio of 1:1 was observed to be more efficient than the other combinations. From the individual efficacy of each constituent, synergism was noted. This is an ideal ecofriendly approach for the control of malaria vector, Anopheles stephensi.

  15. Larvicidal activity of Cymbopogon citratus (DC) Stapf. and Croton macrostachyus Del. against Anopheles arabiensis Patton, a potent malaria vector.

    PubMed

    Karunamoorthi, K; Ilango, K

    2010-01-01

    Methanol leaf extracts of two Ethiopian traditional medicinal plants viz., Lomisar [vernacular name (local native language, Amharic); Cymbopogon citratus (DC) Stapf. (Poaceae)] and Bisana [vernacular name (local native language, Amharic); Croton macrostachyus Del. (Euphorbiaceae)] were screened for larvicidal activity against late third instar larvae of Anopheles arabiensis Patton, a potent malaria vector in Ethiopia. The larval mortality was observed 24 h of post treatment. Both plant extracts demonstrated varying degrees of larvicidal activity against Anopheles arabiensis. Cymbopogon citratus extract has exhibited potent larvicidal activity than Croton macrostachyus at lower concentrations. The LC50 and LC90 values of Cymbopogon citratus were 74.02 and 158.20 ppm, respectively. From this data, a chi-square value 2.760 is significant at the P < 0.05 level. While, the LC50 and LC90 values of Croton macrostachyus were 89.25 and 224.98 ppm, respectively and the chi-square value 1.035 is significant at the P < 0.05 level. The present investigation establishes that these plant extracts could serve as potent mosquito larvicidal agents against Anopheles arabiensis. However, their mode of actions and larvicidal efficiency under the field conditions should be scrutinized and determined in the near future.

  16. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination

    PubMed Central

    Brady, Oliver J.; Godfray, H. Charles J.; Tatem, Andrew J.; Gething, Peter W.; Cohen, Justin M.; McKenzie, F. Ellis; Perkins, T. Alex; Reiner, Robert C.; Tusting, Lucy S.; Sinka, Marianne E.; Moyes, Catherine L.; Eckhoff, Philip A.; Scott, Thomas W.; Lindsay, Steven W.; Hay, Simon I.; Smith, David L.

    2016-01-01

    Background Major gains have been made in reducing malaria transmission in many parts of the world, principally by scaling-up coverage with long-lasting insecticidal nets and indoor residual spraying. Historically, choice of vector control intervention has been largely guided by a parameter sensitivity analysis of George Macdonald's theory of vectorial capacity that suggested prioritizing methods that kill adult mosquitoes. While this advice has been highly successful for transmission suppression, there is a need to revisit these arguments as policymakers in certain areas consider which combinations of interventions are required to eliminate malaria. Methods and Results Using analytical solutions to updated equations for vectorial capacity we build on previous work to show that, while adult killing methods can be highly effective under many circumstances, other vector control methods are frequently required to fill effective coverage gaps. These can arise due to pre-existing or developing mosquito physiological and behavioral refractoriness but also due to additive changes in the relative importance of different vector species for transmission. Furthermore, the optimal combination of interventions will depend on the operational constraints and costs associated with reaching high coverage levels with each intervention. Conclusions Reaching specific policy goals, such as elimination, in defined contexts requires increasingly non-generic advice from modelling. Our results emphasize the importance of measuring baseline epidemiology, intervention coverage, vector ecology and program operational constraints in predicting expected outcomes with different combinations of interventions. PMID:26822603

  17. Predictions of malaria vector distribution in Belize based on multispectral satellite data

    NASA Technical Reports Server (NTRS)

    Roberts, D. R.; Paris, J. F.; Manguin, S.; Harbach, R. E.; Woodruff, R.; Rejmankova, E.; Polanco, J.; Wullschleger, B.; Legters, L. J.

    1996-01-01

    Use of multispectral satellite data to predict arthropod-borne disease trouble spots is dependent on clear understandings of environmental factors that determine the presence of disease vectors. A blind test of remote sensing-based predictions for the spatial distribution of a malaria vector, Anopheles pseudopunctipennis, was conducted as a follow-up to two years of studies on vector-environmental relationships in Belize. Four of eight sites that were predicted to be high probability locations for presence of An. pseudopunctipennis were positive and all low probability sites (0 of 12) were negative. The absence of An. pseudopunctipennis at four high probability locations probably reflects the low densities that seem to characterize field populations of this species, i.e., the population densities were below the threshold of our sampling effort. Another important malaria vector, An. darlingi, was also present at all high probability sites and absent at all low probability sites. Anopheles darlingi, like An. pseudopunctipennis, is a riverine species. Prior to these collections at ecologically defined locations, this species was last detected in Belize in 1946.

  18. Lethal and Pre-Lethal Effects of a Fungal Biopesticide Contribute to Substantial and Rapid Control of Malaria Vectors

    PubMed Central

    Blanford, Simon; Shi, Wangpeng; Christian, Riann; Marden, James H.; Koekemoer, Lizette L.; Brooke, Basil D.; Coetzee, Maureen; Read, Andrew F.; Thomas, Matthew B.

    2011-01-01

    Rapidly emerging insecticide resistance is creating an urgent need for new active ingredients to control the adult mosquitoes that vector malaria. Biopesticides based on the spores of entomopathogenic fungi have shown considerable promise by causing very substantial mortality within 7–14 days of exposure. This mortality will generate excellent malaria control if there is a high likelihood that mosquitoes contact fungi early in their adult lives. However, where contact rates are lower, as might result from poor pesticide coverage, some mosquitoes will contact fungi one or more feeding cycles after they acquire malaria, and so risk transmitting malaria before the fungus kills them. Critics have argued that ‘slow acting’ fungal biopesticides are, therefore, incapable of delivering malaria control in real-world contexts. Here, utilizing standard WHO laboratory protocols, we demonstrate effective action of a biopesticide much faster than previously reported. Specifically, we show that transient exposure to clay tiles sprayed with a candidate biopesticide comprising spores of a natural isolate of Beauveria bassiana, could reduce malaria transmission potential to zero within a feeding cycle. The effect resulted from a combination of high mortality and rapid fungal-induced reduction in feeding and flight capacity. Additionally, multiple insecticide-resistant lines from three key African malaria vector species were completely susceptible to fungus. Thus, fungal biopesticides can block transmission on a par with chemical insecticides, and can achieve this where chemical insecticides have little impact. These results support broadening the current vector control paradigm beyond fast-acting chemical toxins. PMID:21897846

  19. Modeling the role of environmental variables on the population dynamics of the malaria vector Anopheles gambiae sensu stricto

    PubMed Central

    2012-01-01

    Background The impact of weather and climate on malaria transmission has attracted considerable attention in recent years, yet uncertainties around future disease trends under climate change remain. Mathematical models provide powerful tools for addressing such questions and understanding the implications for interventions and eradication strategies, but these require realistic modeling of the vector population dynamics and its response to environmental variables. Methods Published and unpublished field and experimental data are used to develop new formulations for modeling the relationships between key aspects of vector ecology and environmental variables. These relationships are integrated within a validated deterministic model of Anopheles gambiae s.s. population dynamics to provide a valuable tool for understanding vector response to biotic and abiotic variables. Results A novel, parsimonious framework for assessing the effects of rainfall, cloudiness, wind speed, desiccation, temperature, relative humidity and density-dependence on vector abundance is developed, allowing ease of construction, analysis, and integration into malaria transmission models. Model validation shows good agreement with longitudinal vector abundance data from Tanzania, suggesting that recent malaria reductions in certain areas of Africa could be due to changing environmental conditions affecting vector populations. Conclusions Mathematical models provide a powerful, explanatory means of understanding the role of environmental variables on mosquito populations and hence for predicting future malaria transmission under global change. The framework developed provides a valuable advance in this respect, but also highlights key research gaps that need to be resolved if we are to better understand future malaria risk in vulnerable communities. PMID:22877154

  20. Toxicity of six plant extracts and two pyridine alkaloids from Ricinus communis against the malaria vector Anopheles gambiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The African malaria vector, Anopheles gambiae s.s., is known to feed selectively on certain plants for sugar sources. However, the adaptive significance of this behavior especially on how the extracts of such plants impact on the fitness of this vector has not been explored. This study determined th...

  1. Global analysis of a delayed vector-bias model for malaria transmission with incubation period in mosquitoes.

    PubMed

    Vargas-De-León, Cruz

    2012-01-01

    A delayed vector-bias model for malaria transmission with incubation period in mosquitoes is studied. The delay t corresponds to the time necessary for a latently infected vector to become an infectious vector. We prove that the global stability is completely determined by the threshold parameter, R₀(τ). If R₀(τ) ≥ 1, the disease-free equilibrium is globally asymptotically stable. If R₀(τ) > 1 a unique endemic equilibrium exists and is globally asymptotically stable. We apply our results to Ross-MacDonald malaria models with an incubation period (extrinsic or intrinsic).

  2. Malaria

    PubMed Central

    Suh, Kathryn N.; Kain, Kevin C.; Keystone, Jay S.

    2004-01-01

    Malaria is a parasitic infection of global importance. Although relatively uncommon in developed countries, where the disease occurs mainly in travellers who have returned from endemic regions, it remains one of the most prevalent infections of humans worldwide. In endemic regions, malaria is a significant cause of morbidity and mortality and creates enormous social and economic burdens. Current efforts to control malaria focus on reducing attributable morbidity and mortality. Targeted chemoprophylaxis and use of insecticide-treated bed nets have been successful in some endemic areas. For travellers to malaria-endemic regions, personal protective measures and appropriate chemoprophylaxis can significantly reduce the risk of infection. Prompt evaluation of the febrile traveller, a high degree of suspicion of malaria, rapid and accurate diagnosis, and appropriate antimalarial therapy are essential in order to optimize clinical outcomes of infected patients. Additional approaches to malaria control, including genetic manipulation of mosquitoes and malaria vaccines, are areas of ongoing research. PMID:15159369

  3. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, Horn of Africa.

    PubMed

    Faulde, Michael K; Rueda, Leopoldo M; Khaireh, Bouh A

    2014-11-01

    Anopheles stephensi is an important vector of urban malaria in India and the Persian Gulf area. Its previously known geographical range includes southern Asia and the Arab Peninsula. For the first time, we report A. stephensi from the African continent, based on collections made in Djibouti, on the Horn of Africa, where this species' occurrence was linked to an unusual urban outbreak of Plasmodium falciparum malaria, with 1228 cases reported from February to May 2013, and a second, more severe epidemic that emerged in November 2013 and resulted in 2017 reported malaria cases between January and February 2014. Anopheles stephensi was initially identified using morphological identification keys, followed by sequencing of the Barcode cytochrome c-oxidase I (COI) gene and the rDNA second internal transcribed spacer (ITS2). Positive tests for P. falciparum circumsporozoite antigen in two of six female A. stephensi trapped in homes of malaria patients in March 2013 are evidence that autochthonous urban malaria transmission by A. stephensi has occurred. Concurrent with the second malaria outbreak, P. falciparum-positive A. stephensi females were detected in Djibouti City starting in November 2013. In sub-Saharan Africa, newly present A. stephensi may pose a significant future health threat because of this species' high susceptibility to P. falciparum infection and its tolerance of urban habitats. This may lead to increased malaria outbreaks in African cities. Rapid interruption of the urban malaria transmission cycle, based on integrated vector surveillance and control programs aimed at the complete eradication of A. stephensi from the African continent, is strongly recommended.

  4. Species Composition and Diversity of Malaria Vector Breeding Habitats in Trincomalee District of Sri Lanka

    PubMed Central

    Gunathilaka, Nayana; Abeyewickreme, Wimaladharma; Hapugoda, Menaka; Wickremasinghe, Rajitha

    2015-01-01

    Introduction. Mosquito larval ecology is important in determining larval densities and species assemblage. This in turn influences malaria transmission in an area. Therefore, understanding larval habitat ecology is important in designing malaria control programs. Method. Larval surveys were conducted in 20 localities under five sentinel sites (Padavisiripura, Gomarankadawala, Thoppur, Mollipothana, and Ichchallampaththu) in Trincomalee District, Eastern Province of Sri Lanka, between June 2010 and July 2013. The relationship between seven abiotic variables (temperature, pH, conductivity, Total Dissolved Solid (TDS), turbidity, Dissolved Oxygen (DO), and salinity) was measured. Results. A total of 21,347 anophelines were recorded representing 15 species. Anopheles subpictus 24.72% (5,278/21,347) was the predominant species, followed by 24.67% (5,267/21,347) of An. nigerrimus and 14.56% (3,109/21,347) of An. peditaeniatus. A total of 9,430 breeding habitats under twenty-one categories were identified. An. culcicifacies was noted to be highest from built wells (20.5%) with high salinity (1102.3 ± 81.8 mg/L), followed by waste water collections (20.2%) having low DO levels (2.85 ± 0.03 mg/L) and high TDS (1,654 ± 140 mg/L). Conclusion. This study opens an avenue to explore new breeding habitats of malaria vectors in the country and reemphasizes the requirement of conducting entomological surveillance to detect potential transmission of malaria in Sri Lanka under the current malaria elimination programme. PMID:26583136

  5. Zoom in at African country level: potential climate induced changes in areas of suitability for survival of malaria vectors

    PubMed Central

    2014-01-01

    Background Predicting anopheles vectors’ population densities and boundary shifts is crucial in preparing for malaria risks and unanticipated outbreaks. Although shifts in the distribution and boundaries of the major malaria vectors (Anopheles gambiae s.s. and An. arabiensis) across Africa have been predicted, quantified areas of absolute change in zone of suitability for their survival have not been defined. In this study, we have quantified areas of absolute change conducive for the establishment and survival of these vectors, per African country, under two climate change scenarios and based on our findings, highlight practical measures for effective malaria control in the face of changing climatic patterns. Methods We developed a model using CLIMEX simulation platform to estimate the potential geographical distribution and seasonal abundance of these malaria vectors in relation to climatic factors (temperature, rainfall and relative humidity). The model yielded an eco-climatic index (EI) describing the total favourable geographical locations for the species. The EI values were classified and exported to a GIS package. Using ArcGIS, the EI shape points were clipped to the extent of Africa and then converted to a raster layer using Inverse Distance Weighted (IDW) interpolation method. Generated maps were then transformed into polygon-based geo-referenced data set and their areas computed and expressed in square kilometers (km2). Results Five classes of EI were derived indicating the level of survivorship of these malaria vectors. The proportion of areas increasing or decreasing in level of survival of these malaria vectors will be more pronounced in eastern and southern African countries than those in western Africa. Angola, Ethiopia, Kenya, Mozambique, Tanzania, South Africa and Zambia appear most likely to be affected in terms of absolute change of malaria vectors suitability zones under the selected climate change scenarios. Conclusion The potential shifts of

  6. Bottlenecks and multiple introductions: Population genetics of the vector of avian malaria in Hawaii

    USGS Publications Warehouse

    Fonseca, Dina M.; LaPointe, Dennis A.; Fleischer, Robert C.

    2000-01-01

    Avian malaria has had a profound impact on the demographics and behaviour of Hawaiian forest birds since its vector, Culex quinquefasciatusthe southern house mosquito, was first introduced to Hawaii around 1830. In order to understand the dynamics of the disease in Hawaii and gain insights into the evolution of vector-mediated parasite–host interactions in general we studied the population genetics of Cx. quinquefasciatus in the Hawaiian Islands. We used both microsatellite and mitochondrial loci. Not surprisingly we found that mosquitoes in Midway, a small island in the Western group, are quite distinct from the populations in the main Hawaiian Islands. However, we also found that in general mosquito populations are relatively isolated even among the main islands, in particular between Hawaii (the Big Island) and the remaining Hawaiian Islands. We found evidence of bottlenecks among populations within the Big Island and an excess of alleles in Maui, the site of the original introduction. The mitochondrial diversity was typically low but higher than expected. The current distribution of mitochondrial haplotypes combined with the microsatellite information lead us to conclude that there have been several introductions and to speculate on some processes that may be responsible for the current population genetics of vectors of avian malaria in Hawaii.

  7. Apparent vector-mediated parent-to-offspring transmission in an avian malaria-like parasite.

    PubMed

    Chakarov, Nayden; Linke, Burkhard; Boerner, Martina; Goesmann, Alexander; Krüger, Oliver; Hoffman, Joseph I

    2015-03-01

    Parasite transmission strategies strongly impact host-parasite co-evolution and virulence. However, studies of vector-borne parasites such as avian malaria have neglected the potential effects of host relatedness on the exchange of parasites. To test whether extended parental care in the presence of vectors increases the probability of transmission from parents to offspring, we used high-throughput sequencing to develop microsatellites for malaria-like Leucocytozoon parasites of a wild raptor population. We show that host siblings carry genetically more similar parasites than unrelated chicks both within and across years. Moreover, chicks of mothers of the same plumage morph carried more similar parasites than nestlings whose mothers were of different morphs, consistent with matrilineal transmission of morph-specific parasite strains. Ours is the first evidence of an association between host relatedness and parasite genetic similarity, consistent with vector-mediated parent-to-offspring transmission. The conditions for such 'quasi-vertical' transmission may be common and could suppress the evolution of pathogen virulence.

  8. Malaria Vectors in Ecologically Heterogeneous Localities of the Colombian Pacific Region

    PubMed Central

    Naranjo-Díaz, Nelson; Altamiranda, Mariano; Luckhart, Shirley; Conn, Jan E.; Correa, Margarita M.

    2014-01-01

    The Colombian Pacific region is second nationally in number of malaria cases reported. This zone presents great ecological heterogeneity and Anopheles species diversity. However, little is known about the current spatial and temporal distribution of vector species. This study, conducted in three ecologically different localities of the Pacific region, aimed to evaluate the composition and distribution of Anopheles species and characterize transmission intensity. A total of 4,016 Anopheles mosquitoes were collected representing seven species. The composition and dominant species differed in each locality. Three species were infected with malaria parasites: Anopheles darlingi and An. calderoni were infected with Plasmodium falciparum and An. nuneztovari with Plasmodium vivax VK210 and VK247. Annual EIRs varied from 3.5–7.2 infective bites per year. These results confirm the importance of the primary vector An. nuneztovari in areas disturbed by human interventions, of An. darlingi in deforested margins of humid tropical rainforest and An. albimanus and the suspected vector An. calderoni in areas impacted by urbanization and large-scale palm oil agriculture close to the coast. This constitutes the first report in the Colombia Pacific region of naturally infected An. darlingi, and in Colombia of naturally infected An. calderoni. Further studies should evaluate the epidemiological importance of An. calderoni in the Pacific region. PMID:25090233

  9. Monitoring malaria vector control interventions: effectiveness of five different adult mosquito sampling methods.

    PubMed

    Onyango, Shirley A; Kitron, Uriel; Mungai, Peter; Muchiri, Eric M; Kokwaro, Elizabeth; King, Charles H; Mutuku, Francis M

    2013-09-01

    Long-term success of ongoing malaria control efforts based on mosquito bed nets (long-lasting insecticidal net) and indoor residual spraying is dependent on continuous monitoring of mosquito vectors, and thus on effective mosquito sampling tools. The objective of our study was to identify the most efficient mosquito sampling tool(s) for routine vector surveillance for malaria and lymphatic filariasis transmission in coastal Kenya. We evaluated relative efficacy of five collection methods--light traps associated with a person sleeping under a net, pyrethrum spray catches, Prokopack aspirator, clay pots, and urine-baited traps--in four villages representing three ecological settings along the south coast of Kenya. Of the five methods, light traps were the most efficient for collecting female Anopheles gambiae s.l. (Giles) (Diptera: Culicidae) and Anopheles funestus (Giles) (Diptera: Culicidae) mosquitoes, whereas the Prokopack aspirator was most efficient in collecting Culex quinquefasciatus (Say) (Diptera: Culicidae) and other culicines. With the low vector densities here, and across much of sub-Saharan Africa, wherever malaria interventions, long-lasting insecticidal nets, and/or indoor residual spraying are in place, the use of a single mosquito collection method will not be sufficient to achieve a representative sample of mosquito population structure. Light traps will remain a relevant tool for host-seeking mosquitoes, especially in the absence of human landing catches. For a fair representation of the indoor mosquito population, light traps will have to be supplemented with aspirator use, which has potential for routine monitoring of indoor resting mosquitoes, and can substitute the more labor-intensive and intrusive pyrethrum spray catches. There are still no sufficiently efficient mosquito collection methods for sampling outdoor mosquitoes, particularly those that are bloodfed.

  10. Monitoring Malaria Vector Control Interventions: Effectiveness of Five Different Adult Mosquito Sampling Methods

    PubMed Central

    Onyango, Shirley A.; Kitron, Uriel; Mungai, Peter; Muchiri, Eric M.; Kokwaro, Elizabeth; King, Charles H.; Mutuku, Francis M.

    2014-01-01

    Long-term success of ongoing malaria control efforts based on mosquito bed nets (long-lasting insecticidal net) and indoor residual spraying is dependent on continuous monitoring of mosquito vectors, and thus on effective mosquito sampling tools. The objective of our study was to identify the most efficient mosquito sampling tool(s) for routine vector surveillance for malaria and lymphatic filariasis transmission in coastal Kenya. We evaluated relative efficacy of five collection methods—light traps associated with a person sleeping under a net, pyrethrum spray catches, Prokopack aspirator, clay pots, and urine-baited traps—in four villages representing three ecological settings along the south coast of Kenya. Of the five methods, light traps were the most efficient for collecting female Anopheles gambiae s.l. (Giles) (Diptera: Culicidae) and Anopheles funestus (Giles) (Diptera: Culicidae) mosquitoes, whereas the Prokopack aspirator was most efficient in collecting Culex quinquefasciatus (Say) (Diptera: Culicidae) and other culicines. With the low vector densities here, and across much of sub-Saharan Africa, wherever malaria interventions, long-lasting insecticidal nets, and/or indoor residual spraying are in place, the use of a single mosquito collection method will not be sufficient to achieve a representative sample of mosquito population structure. Light traps will remain a relevant tool for host-seeking mosquitoes, especially in the absence of human landing catches. For a fair representation of the indoor mosquito population, light traps will have to be supplemented with aspirator use, which has potential for routine monitoring of indoor resting mosquitoes, and can substitute the more labor-intensive and intrusive pyrethrum spray catches. There are still no sufficiently efficient mosquito collection methods for sampling outdoor mosquitoes, particularly those that are bloodfed. PMID:24180120

  11. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years

    PubMed Central

    2013-01-01

    Background Over the past 20 years, numerous studies have investigated the ecology and behaviour of malaria vectors and Plasmodium falciparum malaria transmission on the coast of Kenya. Substantial progress has been made to control vector populations and reduce high malaria prevalence and severe disease. The goal of this paper was to examine trends over the past 20 years in Anopheles species composition, density, blood-feeding behaviour, and P. falciparum sporozoite transmission along the coast of Kenya. Methods Using data collected from 1990 to 2010, vector density, species composition, blood-feeding patterns, and malaria transmission intensity was examined along the Kenyan coast. Mosquitoes were identified to species, based on morphological characteristics and DNA extracted from Anopheles gambiae for amplification. Using negative binomial generalized estimating equations, mosquito abundance over the period were modelled while adjusting for season. A multiple logistic regression model was used to analyse the sporozoite rates. Results Results show that in some areas along the Kenyan coast, Anopheles arabiensis and Anopheles merus have replaced An. gambiae sensu stricto (s.s.) and Anopheles funestus as the major mosquito species. Further, there has been a shift from human to animal feeding for both An. gambiae sensu lato (s.l.) (99% to 16%) and An. funestus (100% to 3%), and P. falciparum sporozoite rates have significantly declined over the last 20 years, with the lowest sporozoite rates being observed in 2007 (0.19%) and 2008 (0.34%). There has been, on average, a significant reduction in the abundance of An. gambiae s.l. over the years (IRR = 0.94, 95% CI 0.90–0.98), with the density standing at low levels of an average 0.006 mosquitoes/house in the year 2010. Conclusion Reductions in the densities of the major malaria vectors and a shift from human to animal feeding have contributed to the decreased burden of malaria along the Kenyan coast. Vector species

  12. Neem cake as a promising larvicide and adulticide against the rural malaria vector Anopheles culicifacies (Diptera: Culicidae): a HPTLC fingerprinting approach.

    PubMed

    Benelli, Giovanni; Chandramohan, Balamurugan; Murugan, Kadarkarai; Madhiyazhagan, Pari; Kovendan, Kalimuthu; Panneerselvam, Chellasamy; Dinesh, Devakumar; Govindarajan, Marimuthu; Higuchi, Akon; Toniolo, Chiara; Canale, Angelo; Nicoletti, Marcello

    2017-05-01

    Mosquitoes are insects of huge public health importance, since they act as vectors for important pathogens and parasites. Here, we focused on the possibility of using the neem cake in the fight against mosquito vectors. The neem cake chemical composition significantly changes among producers, as evidenced by our HPTLC (High performance thin layer chromatography) analyses of different marketed products. Neem cake extracts were tested to evaluate the ovicidal, larvicidal and adulticidal activity against the rural malaria vector Anopheles culicifacies. Ovicidal activity of both types of extracts was statistically significant, and 150 ppm completely inhibited egg hatching. LC50 values were extremely low against fourth instar larvae, ranging from 1.321 (NM1) to 1.818 ppm (NA2). Adulticidal activity was also high, with LC50 ranging from 3.015 (NM1) to 3.637 ppm (NM2). This study pointed out the utility of neem cake as a source of eco-friendly mosquitocides in Anopheline vector control programmes.

  13. Fitness consequences of larval exposure to Beauveria bassiana on adults of the malaria vector Anopheles stephensi.

    PubMed

    Vogels, Chantal B F; Bukhari, Tullu; Koenraadt, Constantianus J M

    2014-06-01

    Entomopathogenic fungi have shown to be effective in biological control of both larval and adult stages of malaria mosquitoes. However, a small fraction of mosquitoes is still able to emerge after treatment with fungus during the larval stage. It remains unclear whether fitness of these adults is affected by the treatment during the larval stage and whether they are still susceptible for another treatment during the adult stage. Therefore, we tested the effects of larval exposure to the entomopathogenic fungus Beauveria bassiana on fitness of surviving Anopheles stephensi females. Furthermore, we tested whether larval exposed females were still susceptible to re-exposure to the fungus during the adult stage. Sex ratio, survival and reproductive success were compared between non-exposed and larval exposed A. stephensi. Comparisons were also made between survival of non-exposed and larval exposed females that were re-exposed to B. bassiana during the adult stage. Larval treatment did not affect sex ratio of emerging mosquitoes. Larval exposed females that were infected died significantly faster and laid equal numbers of eggs from which equal numbers of larvae hatched, compared to non-exposed females. Larval exposed females that were uninfected had equal survival, but laid a significantly larger number of eggs from which a significantly higher number of larvae hatched, compared to non-exposed females. Larval exposed females which were re-exposed to B. bassiana during the adult stage had equal survival as females exposed only during the adult stage. Our results suggest that individual consequences for fitness of larval exposed females depended on whether a fungal infection was acquired during the larval stage. Larval exposed females remained susceptible to re-exposure with B. bassiana during the adult stage, indicating that larval and adult control of malaria mosquitoes with EF are compatible.

  14. Eave Screening and Push-Pull Tactics to Reduce House Entry by Vectors of Malaria

    PubMed Central

    Menger, David J.; Omusula, Philemon; Wouters, Karlijn; Oketch, Charles; Carreira, Ana S.; Durka, Maxime; Derycke, Jean-Luc; Loy, Dorothy E.; Hahn, Beatrice H.; Mukabana, Wolfgang R.; Mweresa, Collins K.; van Loon, Joop J. A.; Takken, Willem; Hiscox, Alexandra

    2016-01-01

    Long-lasting insecticidal nets and indoor residual spraying have contributed to a decline in malaria over the last decade, but progress is threatened by the development of physiological and behavioral resistance of mosquitoes against insecticides. Acknowledging the need for alternative vector control tools, we quantified the effects of eave screening in combination with a push-pull system based on the simultaneous use of a repellent (push) and attractant-baited traps (pull). Field experiments in western Kenya showed that eave screening, whether used in combination with an attractant-baited trap or not, was highly effective in reducing house entry by malaria mosquitoes. The magnitude of the effect varied for different mosquito species and between two experiments, but the reduction in house entry was always considerable (between 61% and 99%). The use of outdoor, attractant-baited traps alone did not have a significant impact on mosquito house entry but the high number of mosquitoes trapped outdoors indicates that attractant-baited traps could be used for removal trapping, which would enhance outdoor as well as indoor protection against mosquito bites. As eave screening was effective by itself, addition of a repellent was of limited value. Nevertheless, repellents may play a role in reducing outdoor malaria transmission in the peridomestic area. PMID:26834195

  15. Visual and olfactory associative learning in the malaria vector Anopheles gambiae sensu stricto

    PubMed Central

    2012-01-01

    Background Memory and learning are critical aspects of the ecology of insect vectors of human pathogens because of their potential effects on contacts between vectors and their hosts. Despite this epidemiological importance, there have been only a limited number of studies investigating associative learning in insect vector species and none on Anopheline mosquitoes. Methods A simple behavioural assays was developed to study visual and olfactory associative learning in Anopheles gambiae, the main vector of malaria in Africa. Two contrasted membrane qualities or levels of blood palatability were used as reinforcing stimuli for bi-directional conditioning during blood feeding. Results Under such experimental conditions An. gambiae females learned very rapidly to associate visual (chequered and white patterns) and olfactory cues (presence and absence of cheese or Citronella smell) with the reinforcing stimuli (bloodmeal quality) and remembered the association for up to three days. Associative learning significantly increased with the strength of the conditioning stimuli used. Importantly, learning sometimes occurred faster when a positive reinforcing stimulus (palatable blood) was associated with an innately preferred cue (such as a darker visual pattern). However, the use of too attractive a cue (e.g. Shropshire cheese smell) was counter-productive and decreased learning success. Conclusions The results address an important knowledge gap in mosquito ecology and emphasize the role of associative memory for An. gambiae's host finding and blood-feeding behaviour with important potential implications for vector control. PMID:22284012

  16. Vectors and malaria transmission in deforested, rural communities in north-central Vietnam

    PubMed Central

    2010-01-01

    Background Malaria is still prevalent in rural communities of central Vietnam even though, due to deforestation, the primary vector Anopheles dirus is uncommon. In these situations little is known about the secondary vectors which are responsible for maintaining transmission. Basic information on the identification of the species in these rural communities is required so that transmission parameters, such as ecology, behaviour and vectorial status can be assigned to the appropriate species. Methods In two rural villages - Khe Ngang and Hang Chuon - in Truong Xuan Commune, Quang Binh Province, north central Vietnam, a series of longitudinal entomological surveys were conducted during the wet and dry seasons from 2003 - 2007. In these surveys anopheline mosquitoes were collected in human landing catches, paired human and animal bait collections, and from larval surveys. Specimens belonging to species complexes were identified by PCR and sequence analysis, incrimination of vectors was by detection of circumsporozoite protein using an enzyme-linked immunosorbent assay. Results Over 80% of the anopheline fauna was made up of Anopheles sinensis, Anopheles aconitus, Anopheles harrisoni, Anopheles maculatus, Anopheles sawadwongporni, and Anopheles philippinensis. PCR and sequence analysis resolved identification issues in the Funestus Group, Maculatus Group, Hyrcanus Group and Dirus Complex. Most species were zoophilic and while all species could be collected biting humans significantly higher densities were attracted to cattle and buffalo. Anopheles dirus was the most anthropophilic species but was uncommon making up only 1.24% of all anophelines collected. Anopheles sinensis, An. aconitus, An. harrisoni, An. maculatus, An. sawadwongporni, Anopheles peditaeniatus and An. philippinensis were all found positive for circumsporozoite protein. Heterogeneity in oviposition site preference between species enabled vector densities to be high in both the wet and dry seasons

  17. Design of a Two-level Adaptive Multi-Agent System for Malaria Vectors driven by an ontology

    PubMed Central

    Koum, Guillaume; Yekel, Augustin; Ndifon, Bengyella; Etang, Josiane; Simard, Frédéric

    2007-01-01

    Background The understanding of heterogeneities in disease transmission dynamics as far as malaria vectors are concerned is a big challenge. Many studies while tackling this problem don't find exact models to explain the malaria vectors propagation. Methods To solve the problem we define an Adaptive Multi-Agent System (AMAS) which has the property to be elastic and is a two-level system as well. This AMAS is a dynamic system where the two levels are linked by an Ontology which allows it to function as a reduced system and as an extended system. In a primary level, the AMAS comprises organization agents and in a secondary level, it is constituted of analysis agents. Its entry point, a User Interface Agent, can reproduce itself because it is given a minimum of background knowledge and it learns appropriate "behavior" from the user in the presence of ambiguous queries and from other agents of the AMAS in other situations. Results Some of the outputs of our system present a series of tables, diagrams showing some factors like Entomological parameters of malaria transmission, Percentages of malaria transmission per malaria vectors, Entomological inoculation rate. Many others parameters can be produced by the system depending on the inputted data. Conclusion Our approach is an intelligent one which differs from statistical approaches that are sometimes used in the field. This intelligent approach aligns itself with the distributed artificial intelligence. In terms of fight against malaria disease our system offers opportunities of reducing efforts of human resources who are not obliged to cover the entire territory while conducting surveys. Secondly the AMAS can determine the presence or the absence of malaria vectors even when specific data have not been collected in the geographical area. In the difference of a statistical technique, in our case the projection of the results in the field can sometimes appeared to be more general. PMID:17605778

  18. Is the current decline in malaria burden in sub-Saharan Africa due to a decrease in vector population?

    PubMed Central

    2011-01-01

    Background In sub-Saharan Africa (SSA), malaria caused by Plasmodium falciparum has historically been a major contributor to morbidity and mortality. Recent reports indicate a pronounced decline in infection and disease rates which are commonly ascribed to large-scale bed net programmes and improved case management. However, the decline has also occurred in areas with limited or no intervention. The present study assessed temporal changes in Anopheline populations in two highly malaria-endemic communities of NE Tanzania during the period 1998-2009. Methods Between 1998 and 2001 (1st period) and between 2003 and 2009 (2nd period), mosquitoes were collected weekly in 50 households using CDC light traps. Data on rainfall were obtained from the nearby climate station and were used to analyze the association between monthly rainfall and malaria mosquito populations. Results The average number of Anopheles gambiae and Anopheles funestus per trap decreased by 76.8% and 55.3%, respectively over the 1st period, and by 99.7% and 99.8% over the 2nd period. During the last year of sampling (2009), the use of 2368 traps produced a total of only 14 Anopheline mosquitoes. With the exception of the decline in An. gambiae during the 1st period, the results did not reveal any statistical association between mean trend in monthly rainfall and declining malaria vector populations. Conclusion A longitudinal decline in the density of malaria mosquito vectors was seen during both study periods despite the absence of organized vector control. Part of the decline could be associated with changes in the pattern of monthly rainfall, but other factors may also contribute to the dramatic downward trend. A similar decline in malaria vector densities could contribute to the decrease in levels of malaria infection reported from many parts of SSA. PMID:21752273

  19. Modeling larval malaria vector habitat locations using landscape features and cumulative precipitation measures

    PubMed Central

    2014-01-01

    Background Predictive models of malaria vector larval habitat locations may provide a basis for understanding the spatial determinants of malaria transmission. Methods We used four landscape variables (topographic wetness index [TWI], soil type, land use-land cover, and distance to stream) and accumulated precipitation to model larval habitat locations in a region of western Kenya through two methods: logistic regression and random forest. Additionally, we used two separate data sets to account for variation in habitat locations across space and over time. Results Larval habitats were more likely to be present in locations with a lower slope to contributing area ratio (i.e. TWI), closer to streams, with agricultural land use relative to nonagricultural land use, and in friable clay/sandy clay loam soil and firm, silty clay/clay soil relative to friable clay soil. The probability of larval habitat presence increased with increasing accumulated precipitation. The random forest models were more accurate than the logistic regression models, especially when accumulated precipitation was included to account for seasonal differences in precipitation. The most accurate models for the two data sets had area under the curve (AUC) values of 0.864 and 0.871, respectively. TWI, distance to the nearest stream, and precipitation had the greatest mean decrease in Gini impurity criteria in these models. Conclusions This study demonstrates the usefulness of random forest models for larval malaria vector habitat modeling. TWI and distance to the nearest stream were the two most important landscape variables in these models. Including accumulated precipitation in our models improved the accuracy of larval habitat location predictions by accounting for seasonal variation in the precipitation. Finally, the sampling strategy employed here for model parameterization could serve as a framework for creating predictive larval habitat models to assist in larval control efforts. PMID:24903736

  20. Stable chromosomal inversion polymorphisms and insecticide resistance in the malaria vector mosquito Anopheles gambiae (Diptera: Culicidae).

    PubMed

    Brooke, B D; Hunt, R H; Chandre, F; Carnevale, P; Coetzee, M

    2002-07-01

    Anopheles gambiae Giles has been implicated as a major vector of malaria in Africa. A number of paracentric chromosomal inversions have been observed as polymorphisms in wild and laboratory populations of this species. These polymorphisms have been used to demonstrate the existence of five reproductive units in West African populations that are currently described as incipient species. They have also been correlated with various behavioral characteristics such as adaptation to aridity and feeding preference and have been associated with insecticide resistance. Two paracentric inversions namely 2La and 2Rb are highly ubiquitous in the wild and laboratory populations sampled. Both inversions are easily conserved during laboratory colonization of wild material and one shows significant positive heterosis with respect to Hardy-Weinberg proportions. Inversion 2La has previously been associated with dieldrin resistance and inversion 2Rb shows an association with DDT resistance based on this study. The stability and maintenance of these inversions as polymorphisms provides an explanation for the transmission and continued presence of DDT and dieldrin resistance in a laboratory strain of An. gambiae in the absence of insecticide selection pressure. This effect may also be operational in wild populations. Stable inversion polymorphism also provides a possible mechanism for the continual inheritance of suitable genetic factors that otherwise compromise the fitness of genetically modified malaria vector mosquitoes.

  1. On the efficacy of malaria DNA vaccination with magnetic gene vectors.

    PubMed

    Nawwab Al-Deen, Fatin; Ma, Charles; Xiang, Sue D; Selomulya, Cordelia; Plebanski, Magdalena; Coppel, Ross L

    2013-05-28

    We investigated the efficacy and types of immune responses from plasmid malaria DNA vaccine encoding VR1020-PyMSP119 condensed on the surface of polyethyleneimine (PEI)-coated SPIONs. In vivo mouse studies were done firstly to determine the optimum magnetic vector composition, and then to observe immune responses elicited when magnetic vectors were introduced via different administration routes. Higher serum antibody titers against PyMSP119 were observed with intraperitoneal and intramuscular injections than subcutaneous and intradermal injections. Robust IgG2a and IgG1 responses were observed for intraperitoneal administration, which could be due to the physiology of peritoneum as a major reservoir of macrophages and dendritic cells. Heterologous DNA prime followed by single protein boost vaccination regime also enhanced IgG2a, IgG1, and IgG2b responses, indicating the induction of appropriate memory immunity that can be elicited by protein on recall. These outcomes support the possibility to design superparamagnetic nanoparticle-based DNA vaccines to optimally evoke desired antibody responses, useful for a variety of diseases including malaria.

  2. Investigations on the role of a lysozyme from the malaria vector Anopheles dirus during malaria parasite development.

    PubMed

    Lapcharoen, Parichat; Komalamisra, Narumon; Rongsriyam, Yupha; Wangsuphachart, Voranuch; Dekumyoy, Paron; Prachumsri, Jetsumon; Kajla, Mayur K; Paskewitz, Susan M

    2012-01-01

    A cDNA encoding a lysozyme was obtained by rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR) from females of the malaria vector Anopheles dirus A (Diptera: Culicidae). The 623 bp lysozyme (AdLys c-1) cDNA encodes the 120 amino acid mature protein with a predicted molecular mass of 13.4 kDa and theoretical pI of 8.45. Six cysteine residues and a potential calcium binding motif that are present in AdLys c-1 are highly conserved relative to those of c-type lysozymes found in other insects. RT-PCR analysis of the AdLys c-1 transcript revealed its presence at high levels in the salivary glands both in larval and adult stages and in the larval caecum. dsRNA mediated gene knockdown experiments were conducted to examine the potential role of this lysozyme during Plasmodium berghei infection. Silencing of AdLys c-1 resulted in a significant reduction in the number of oocysts as compared to control dsGFP injected mosquitoes.

  3. Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators.

    PubMed

    Subramaniam, Jayapal; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Kovendan, Kalimuthu; Madhiyazhagan, Pari; Dinesh, Devakumar; Kumar, Palanisamy Mahesh; Chandramohan, Balamurugan; Suresh, Udaiyan; Rajaganesh, Rajapandian; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Canale, Angelo; Benelli, Giovanni

    2016-04-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. According to recent estimates, about 3.2 billion people, almost half of the world's population, are at risk of malaria. Malaria control is particularly challenging due to a growing number of chloroquine-resistant Plasmodium and pesticide-resistant Anopheles vectors. Newer and safer control tools are required. In this research, gold nanoparticles (AuNPs) were biosynthesized using a cheap flower extract of Couroupita guianensis as reducing and stabilizing agent. The biofabrication of AuNP was confirmed by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), zeta potential, and particle size analysis. AuNP showed different shapes including spheres, ovals, and triangles. AuNPs were crystalline in nature with face-centered cubic geometry; mean size was 29.2-43.8 nm. In laboratory conditions, AuNPs were toxic against Anopheles stephensi larvae, pupae, and adults. LC50 was 17.36 ppm (larva I), 19.79 ppm (larva II), 21.69 ppm (larva III), 24.57 ppm (larva IV), 28.78 ppm (pupa), and 11.23 ppm (adult). In the field, a single treatment with C. guianensis flower extract and AuNP (10 × LC50) led to complete larval mortality after 72 h. In standard laboratory conditions, the predation efficiency of golden wonder killifish, Aplocheilus lineatus, against A. stephensi IV instar larvae was 56.38 %, while in an aquatic environment treated with sub-lethal doses of the flower extract or AuNP, predation efficiency was boosted to 83.98 and 98.04 %, respectively. Lastly, the antiplasmodial activity of C. guianensis flower extract and AuNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of C. guianensis flower extract was 43.21 μg/ml (CQ-s) and 51.16 μg/ml (CQ-r). AuNP IC50 was 69.47 μg/ml (CQ-s) and 76

  4. High malaria transmission in a forested malaria focus in French Guiana: How can exophagic Anopheles darlingi thwart vector control and prevention measures?

    PubMed Central

    Vezenegho, Samuel B; Adde, Antoine; de Santi, Vincent Pommier; Issaly, Jean; Carinci, Romuald; Gaborit, Pascal; Dusfour, Isabelle; Girod, Romain; Briolant, Sébastien

    2016-01-01

    In French Guiana, malaria vector control and prevention relies on indoor residual spraying and distribution of long lasting insecticidal nets. These measures are based on solid epidemiological evidence but reveal a poor understanding of the vector. The current study investigated the behaviour of both vectors and humans in relation to the ongoing prevention strategies. In 2012 and 2013, Anopheles mosquitoes were sampled outdoors at different seasons and in various time slots. The collected mosquitoes were identified and screened for Plasmodium infection. Data on human behaviour and malaria episodes were obtained from an interview. A total of 3,135 Anopheles mosquitoes were collected, of which Anopheles darlingi was the predominant species (96.2%). For the December 2012-February 2013 period, the Plasmodium vivax infection rate for An. darlingi was 7.8%, and the entomological inoculation rate was 35.7 infective bites per person per three-month span. In spite of high bednet usage (95.7%) in 2012 and 2013, 52.2% and 37.0% of the participants, respectively, had at least one malaria episode. An. darlingi displayed heterogeneous biting behaviour that peaked between 20:30 and 22:30; however, 27.6% of the inhabitants were not yet protected by bednets by 21:30. The use of additional individual and collective protective measures is required to limit exposure to infective mosquito bites and reduce vector densities. PMID:27653361

  5. Chlorfenapyr: a new insecticide with novel mode of action can control pyrethroid resistant malaria vectors

    PubMed Central

    2011-01-01

    Background Malaria vectors have acquired widespread resistance to many of the currently used insecticides, including synthetic pyrethroids. Hence, there is an urgent need to develop alternative insecticides for effective management of insecticide resistance in malaria vectors. In the present study, chlorfenapyr was evaluated against Anopheles culicifacies and Anopheles stephensi for its possible use in vector control. Methods Efficacy of chlorfenapyr against An. culicifacies and An. stephensi was assessed using adult bioassay tests. In the laboratory, determination of diagnostic dose, assessment of residual activity on different substrates, cross-resistance pattern with different insecticides and potentiation studies using piperonyl butoxide were undertaken by following standard procedures. Potential cross-resistance patterns were assessed on field populations of An. culicifacies. Results A dose of 5.0% chlorfenapyr was determined as the diagnostic concentration for assessing susceptibility applying the WHO tube test method in anopheline mosquitoes with 2 h exposure and 48 h holding period. The DDT-resistant/malathion-deltamethrin-susceptible strain of An. culicifacies species C showed higher LD50 and LD99 (0.67 and 2.39% respectively) values than the DDT-malathion-deltamethrin susceptible An. culicifacies species A (0.41 and 2.0% respectively) and An. stephensi strains (0.43 and 2.13% respectively) and there was no statistically significant difference in mortalities among the three mosquito species tested (p > 0.05). Residual activity of chlorfenapyr a.i. of 400 mg/m2 on five fabricated substrates, namely wood, mud, mud+lime, cement and cement + distemper was found to be effective up to 24 weeks against An. culicifacies and up to 34 weeks against An. stephensi. No cross-resistance to DDT, malathion, bendiocarb and deltamethrin was observed with chlorfenapyr in laboratory-reared strains of An. stephensi and field-caught An. culicifacies. Potentiation studies

  6. Developing an evidence-based decision support system for rational insecticide choice in the control of African malaria vectors.

    PubMed

    Coleman, Michael; Sharp, Brian; Seocharan, Ishen; Hemingway, Janet

    2006-07-01

    The emergence of Anopheles species resistant to insecticides widely used in vector control has the potential to impact directly on the control of malaria. This may have a particularly dramatic effect in Africa, where pyrethroids impregnated onto bed-nets are the dominant insecticides used for vector control. Because the same insecticides are used for crop pests, the extensive use and misuse of insecticides for agriculture has contributed to the resistance problem in some vectors. The potential for resistance to develop in African vectors has been apparent since the 1950s, but the scale of the problem has been poorly documented. A geographical information system-based decision support system for malaria control has recently been established in Africa and used operationally in Mozambique. The system incorporates climate data and disease transmission rates, but to date it has not incorporated spatial or temporal data on vector abundance or insecticide resistance. As a first step in incorporating this information, available published data on insecticide resistance in Africa has now been collated and incorporated into this decision support system. Data also are incorporated onto the openly available Mapping Malaria Risk in Africa (MARA) Web site (http://www.mara.org.za). New data, from a range of vector population-monitoring initiatives, can now be incorporated into this open access database to allow a spatial understanding of resistance distribution and its potential impact on disease transmission to benefit vector control programs.

  7. Malaria in the WHO Southeast Asia region.

    PubMed

    Kondrashin, A V

    1992-09-01

    Malaria endemic countries in the southeast Asia region include Bangladesh, Bhutan, India, Indonesia, Maldives, Myanmar, Nepal, Sri Lanka, and Thailand. Population movement and rapid urbanization, both largely caused by unemployment, and environmental deterioration change the malaria pattern. They also increase the incidence of drug-resistant malaria, especially resistance to 4-aminoquinolines. In India, Plasmodium falciparum is linked to the density and distribution of tribals, and, in southern Thailand, rubber tappers have the highest malaria incidence rate (46.29%). Since the population is young and the young are highly sensitive to malaria infection, the region has low community immunity. High malaria priority areas are forests, forested hills, forest fringe areas, developmental project sites, and border areas. High risk groups include infants, young children, pregnant women, and mobile population groups. Malaria incidence is between 2.5-2.8 million cases, and the slide positivity rate is about 3%. P. falciparum constitutes 40% for all malaria cases. In 1988 in India, there were 222 malaria deaths. Malaria is the 7th most common cause of death in Thailand. 3 of the 19 Anopheline species are resistant to at least 1 insecticide, particularly DDT. Posteradication epidemics surfaced in the mid-1970s. Malaria control programs tend to use the primary health care and integration approach to malaria control. Antiparasite measures range from a single-dose of an antimalarial to mass drug administration. Residual spraying continues to be the main strategy of vector control. Some other vector control measures are fish feeding on mosquito larvae, insecticide impregnated mosquito nets, and repellents. Control programs also have health education activities. India allocates the highest percentage of its total health budget to malaria control (21.54%). Few malariology training programs exist in the region. Slowly processed surveillance data limit the countries' ability to

  8. Resting behaviour, ecology and genetics of malaria vectors in large scale agricultural areas of Western Kenya.

    PubMed

    Githeko, A K; Service, M W; Mbogo, C M; Atieli, F K

    1996-12-01

    In Kenya indoor and outdoor resting densities of Anopheles arabiensis and Anopheles funestus at the Ahero rice irrigation scheme, and Anopheles gambiae s.s., An. arabiensis and An. funestus at the Miwani sugar belt were assessed for 13 months by pyrethrum spray collections in houses and granaries. The vector's house leaving behaviour was evaluated with exit traps and it was noted that early exophily (i.e., deliberate) was not detected in any of the vectors. Assortative indoor/outdoor resting behaviour was studied by a capture-mark-release-recapture method and showed that in An. arabiensis both indoor and outdoor resting traits were present in the same individuals. Samples of half-gravid female An. gambiae s.l. were chromosomally identified either as Anopheles gambiae s.s. or An. arabiensis and in a subsample chromosomal inversions were read. Anopheles gambiae s.s. and An. arabiensis had the 2Rb inversion but in addition the 2La inversion was found in An. gambiae s.s. and this is an indication of low chromosomal variation. At Ahero An. arabiensis was most abundant when the rice crop was immature and An. funestus when the crop was mature. This succession of vectors facilitated the transmission of malaria throughout the year. At Miwani, An. gambiae s.l. population peaked during the long rains but the proportion of An. arabiensis was highest during the dry season. The indoor resting density of males of the three vector species was less than half of the females.

  9. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control.

    PubMed

    Benelli, Giovanni; Mehlhorn, Heinz

    2016-05-01

    The fight against mosquito-borne diseases is a challenge of huge public health importance. To our mind, 2015 was an extraordinary year for malaria control, due to three hot news: the Nobel Prize to Youyou Tu for the discovery of artemisinin, the development of the first vaccine against Plasmodium falciparum malaria [i.e. RTS,S/AS01 (RTS,S)], and the fall of malaria infection rates worldwide, with special reference to sub-Saharan Africa. However, there are major challenges that still deserve attention, in order to boost malaria prevention and control. Indeed, parasite strains resistant to artemisinin have been detected, and RTS,S vaccine does not offer protection against Plasmodium vivax malaria, which predominates in many countries outside of Africa. Furthermore, the recent outbreaks of Zika virus infections, occurring in South America, Central America and the Caribbean, represent the most recent of four arrivals of important arboviruses in the Western Hemisphere, over the last 20 years. Zika virus follows dengue (which slyly arrived in the hemisphere over decades and became more aggressive in the 1990s), West Nile virus (emerged in 1999) and chikungunya (emerged in 2013). Notably, there are no specific treatments for these arboviruses. The emerging scenario highlights that the effective and eco-friendly control of mosquito vectors, with special reference to highly invasive species such as Aedes aegypti and Aedes albopictus, is crucial. The concrete potential of screening plant species as sources of metabolites for parasitological purposes is worthy of attention, as elucidated by the Y. Tu's example. Notably, plant-borne molecules are often effective at few parts per million against Aedes, Ochlerotatus, Anopheles and Culex young instars, can be used for the rapid synthesis of mosquitocidal nanoformulations and even employed to prepare cheap repellents with low human toxicity. In addition, behaviour-based control tools relying to the employ of sound traps and the

  10. Malaria vectors and transmission dynamics in Goulmoun, a rural city in south-western Chad

    PubMed Central

    2009-01-01

    Background Knowledge of some baseline entomological data such as Entomological Inoculation Rates (EIR) is crucially needed to assess the epidemiological impact of malaria control activities directed either against parasites or vectors. In Chad, most published surveys date back to the 1960's. In this study, anopheline species composition and their relation to malaria transmission were investigated in a dry Sudanian savannas area of Chad. Methods A 12-month longitudinal survey was conducted in the irrigated rice-fields area of Goulmoun in south western Chad. Human landing catches were performed each month from July 2006 to June 2007 in three compounds (indoors and outdoors) and pyrethrum spray collections were conducted in July, August and October 2006 in 10 randomly selected rooms. Mosquitoes belonging to the Anopheles gambiae complex and to the An. funestus group were identified by molecular diagnostic tools. Plasmodium falciparum infection and blood meal sources were detected by ELISA. Results Nine anopheline species were collected by the two sampling methods. The most aggressive species were An. arabiensis (51 bites/human/night), An. pharoensis (12.5 b/h/n), An. funestus (1.5 b/h/n) and An. ziemanni (1.3 b/h/n). The circumsporozoite protein rate was 1.4% for An. arabiensis, 1.4% for An. funestus, 0.8% for An. pharoensis and 0.5% for An. ziemanni. Malaria transmission is seasonal, lasting from April to December. However, more than 80% of the total EIR was concentrated in the period from August to October. The overall annual EIR was estimated at 311 bites of infected anophelines/human/year, contributed mostly by An. arabiensis (84.5%) and An. pharoensis (12.2%). Anopheles funestus and An. ziemanni played a minor role. Parasite inoculation occurred mostly after 22:00 hours but around 20% of bites of infected anophelines were distributed earlier in the evening. Conclusion The present study revealed the implication of An. pharoensis in malaria transmission in the

  11. Malaria

    MedlinePlus

    ... a parasite. You get it when an infected mosquito bites you. Malaria is a major cause of ... insect repellent with DEET Cover up Sleep under mosquito netting Centers for Disease Control and Prevention

  12. Malaria

    MedlinePlus

    ... Malaria can be carried by mosquitoes in temperate climates, but the parasite disappears over the winter. The ... a major disease hazard for travelers to warm climates. In some areas of the world, mosquitoes that ...

  13. Monitoring of Plasmodium infection in humans and potential vectors of malaria in a newly emerged focus in southern Iran.

    PubMed

    Kalantari, Mohsen; Soltani, Zahra; Ebrahimi, Mostafa; Yousefi, Masoud; Amin, Masoumeh; Shafiei, Ayda; Azizi, Kourosh

    2017-02-01

    Despite control programs, which aim to eliminate malaria from Iran by 2025, transmission of malaria has not been removed from the country. This study aimed to monitor malaria from asymptomatic parasitaemia and clinical cases from about one year of active case surveillance and potential vectors of malaria in the newly emerged focus of Mamasani and Rostam, southern Iran during 2014-2015. Samples were collected and their DNAs were extracted for Polymerase Chain Reaction (PCR) assay using specific primers for detection of Plasmodium species. The Annual Parasite Incidence rate (API) was three cases per 1,000 population from 2,000 individuals in three villages. Parasites species were detected in 9 out of the 4,000 blood smear samples among which, 6 cases were indigenous and had no history of travels to endemic areas of malaria. Also, the prevalence rate of asymptomatic parasites was about 0.3%. Overall, 1073 Anopheles spp. were caught from 9 villages. Totally, 512 female samples were checked by PCR, which indicated that none of them was infected with Plasmodium. Despite new malaria local transmission in humans in Mamasani and Rostam districts, no infection with Plasmodium was observed in Anopheles species. Because of neighboring of the studied area to the re-emerged focus in Fars province (Kazerun) and important endemic foci of malaria in other southern provinces, such as Hormozgan and Kerman, monitoring of the vectors and reservoir hosts of Plasmodium species would be unavoidable. Application of molecular methods, such as PCR, can simplify access to the highest level of accuracy in malaria researches.

  14. Malaria

    DTIC Science & Technology

    2011-06-01

    established, the infection is classi- fied as cryptic malaria. A large majority of infections are transmitted by the bite of an infected female ... female anopheline mosquitoes. Plasmodium sp infecting humans include Plasmodium vivax, Plasmodium falci- parum, Plasmodium malariae, and Plasmodium ovale...paled and pigment formed within them. Later he observed male gametes form by exflagellation and described the male and female gam- etes, the

  15. Field evaluation of picaridin repellents reveals differences in repellent sensitivity between Southeast Asian vectors of malaria and arboviruses.

    PubMed

    Van Roey, Karel; Sokny, Mao; Denis, Leen; Van den Broeck, Nick; Heng, Somony; Siv, Sovannaroth; Sluydts, Vincent; Sochantha, Tho; Coosemans, Marc; Durnez, Lies

    2014-12-01

    Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, including arbovirus and malaria vectors, was evaluated in a field study in Cambodia. Over a period of two years, human landing collections were performed on repellent treated persons, with rotation to account for the effect of collection place, time and individual collector. Based on a total of 4996 mosquitoes collected on negative control persons, the overall five hour protection rate was 97.4% [95%CI: 97.1-97.8%], not decreasing over time. Picaridin 20% performed equally well as DEET 20% and better than picaridin 10%. Repellents performed better against Mansonia and Culex spp. as compared to aedines and anophelines. A lower performance was observed against Aedes albopictus as compared to Aedes aegypti, and against Anopheles barbirostris as compared to several vector species. Parity rates were higher in vectors collected on repellent treated person as compared to control persons. As such, field evaluation shows that repellents can provide additional personal protection against early and outdoor biting malaria and arbovirus vectors, with excellent protection up to five hours after application. The heterogeneity in repellent sensitivity between mosquito genera and vector species could however impact the efficacy of repellents in public health programs. Considering its excellent performance and potential to protect against early and outdoor biting vectors, as well as its higher acceptability as compared to DEET, picaridin is an appropriate product to evaluate the epidemiological

  16. Field Evaluation of Picaridin Repellents Reveals Differences in Repellent Sensitivity between Southeast Asian Vectors of Malaria and Arboviruses

    PubMed Central

    Denis, Leen; Van den Broeck, Nick; Heng, Somony; Siv, Sovannaroth; Sluydts, Vincent; Sochantha, Tho; Coosemans, Marc; Durnez, Lies

    2014-01-01

    Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, including arbovirus and malaria vectors, was evaluated in a field study in Cambodia. Over a period of two years, human landing collections were performed on repellent treated persons, with rotation to account for the effect of collection place, time and individual collector. Based on a total of 4996 mosquitoes collected on negative control persons, the overall five hour protection rate was 97.4% [95%CI: 97.1–97.8%], not decreasing over time. Picaridin 20% performed equally well as DEET 20% and better than picaridin 10%. Repellents performed better against Mansonia and Culex spp. as compared to aedines and anophelines. A lower performance was observed against Aedes albopictus as compared to Aedes aegypti, and against Anopheles barbirostris as compared to several vector species. Parity rates were higher in vectors collected on repellent treated person as compared to control persons. As such, field evaluation shows that repellents can provide additional personal protection against early and outdoor biting malaria and arbovirus vectors, with excellent protection up to five hours after application. The heterogeneity in repellent sensitivity between mosquito genera and vector species could however impact the efficacy of repellents in public health programs. Considering its excellent performance and potential to protect against early and outdoor biting vectors, as well as its higher acceptability as compared to DEET, picaridin is an appropriate product to evaluate the epidemiological

  17. Low and seasonal malaria transmission in the middle Senegal River basin: identification and characteristics of Anopheles vectors

    PubMed Central

    2012-01-01

    Background During the last decades two dams were constructed along the Senegal River. These intensified the practice of agriculture along the river valley basin. We conducted a study to assess malaria vector diversity, dynamics and malaria transmission in the area. Methods A cross-sectional entomological study was performed in September 2008 in 20 villages of the middle Senegal River valley to evaluate the variations of Anopheles density according to local environment. A longitudinal study was performed, from October 2008 to January 2010, in 5 selected villages, to study seasonal variations of malaria transmission. Results Among malaria vectors, 72.34% of specimens collected were An. arabiensis, 5.28% An. gambiae of the S molecular form, 3.26% M form, 12.90% An. pharoensis, 4.70% An. ziemanni, 1.48% An. funestus and 0.04% An. wellcomei. Anopheles density varied according to village location. It ranged from 0 to 21.4 Anopheles/room/day and was significantly correlated with the distance to the nearest ditch water but not to the river. Seasonal variations of Anopheles density and variety were observed with higher human biting rates during the rainy season (8.28 and 7.55 Anopheles bite/man/night in October 2008 and 2009 respectively). Transmission was low and limited to the rainy season (0.05 and 0.06 infected bite/man/night in October 2008 and 2009 respectively). During the rainy season, the endophagous rate was lower, the anthropophagic rate higher and L1014F kdr frequency higher. Conclusions Malaria vectors are present at low-moderate density in the middle Senegal River basin with An. arabiensis as the predominant species. Other potential vectors are An. gambiae M and S form and An. funestus. Nonetheless, malaria transmission was extremely low and seasonal. PMID:22269038

  18. Development and assessment of plant-based synthetic odor baits for surveillance and control of Malaria vectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent malaria vector control measures have considerably reduced indoor biting mosquito populations. However, reducing the outdoor biting populations remains a challenge because of the unavailability of appropriate lures to achieve this. This study sought to test the efficacy of plant-based syntheti...

  19. Habitat suitability of Anopheles vector species and association with human malaria in the Atlantic Forest in south-eastern Brazil.

    PubMed

    Laporta, Gabriel Zorello; Ramos, Daniel Garkauskas; Ribeiro, Milton Cezar; Sallum, Maria Anice Mureb

    2011-08-01

    Every year, autochthonous cases of Plasmodium vivax malaria occur in low-endemicity areas of Vale do Ribeira in the south-eastern part of the Atlantic Forest, state of São Paulo, where Anopheles cruzii and Anopheles bellator are considered the primary vectors. However, other species in the subgenus Nyssorhynchus of Anopheles (e.g., Anopheles marajoara) are abundant and may participate in the dynamics of malarial transmission in that region. The objectives of the present study were to assess the spatial distribution of An. cruzii, An. bellator and An. marajoara and to associate the presence of these species with malaria cases in the municipalities of the Vale do Ribeira. Potential habitat suitability modelling was applied to determine both the spatial distribution of An. cruzii, An. bellator and An. marajoara and to establish the density of each species. Poisson regression was utilized to associate malaria cases with estimated vector densities. As a result, An. cruzii was correlated with the forested slopes of the Serra do Mar, An. bellator with the coastal plain and An. marajoara with the deforested areas. Moreover, both An. marajoara and An. cruzii were positively associated with malaria cases. Considering that An. marajoara was demonstrated to be a primary vector of human Plasmodium in the rural areas of the state of Amapá, more attention should be given to the species in the deforested areas of the Atlantic Forest, where it might be a secondary vector.

  20. Larvicidal and repellent activity of Vetiveria zizaniodes (Poaceae) essential oil against the malaria vector Anopheles stephensi (Liston) (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Essential oil extracted by steam distillation of Vetiveria zizanioides (L.) Nash (Poaceae) was evaluated for larvicidal and adult repellent activity against the malaria vector Anopheles stephensi (Liston). Median lethal concentrations (LC50) at 24 h post treatment for instars 1-4 were, respectively,...

  1. The use of digital spaceborne SAR data for the delineation of surface features indicative of malaria vector breeding habitats

    NASA Technical Reports Server (NTRS)

    Imhoff, M. L.; Vermillion, C. H.; Khan, F. A.

    1984-01-01

    An investigation to examine the utility of spaceborne radar image data to malaria vector control programs is described. Specific tasks involve an analysis of radar illumination geometry vs information content, the synergy of radar and multispectral data mergers, and automated information extraction techniques.

  2. Gene flow between chromosomal forms of the malaria vector Anopheles funestus in Cameroon, Central Africa, and its relevance in malaria fighting.

    PubMed

    Cohuet, Anna; Dia, Ibrahima; Simard, Frédéric; Raymond, Michel; Rousset, François; Antonio-Nkondjio, Christophe; Awono-Ambene, Parfait H; Wondji, Charles S; Fontenille, Didier

    2005-01-01

    Knowledge of population structure in a major vector species is fundamental to an understanding of malaria epidemiology and becomes crucial in the context of genetic control strategies that are being developed. Despite its epidemiological importance, the major African malaria vector Anopheles funestus has received far less attention than members of the Anopheles gambiae complex. Previous chromosomal data have shown a high degree of structuring within populations from West Africa and have led to the characterization of two chromosomal forms, "Kiribina" and "Folonzo." In Central Africa, few data were available. We thus undertook assessment of genetic structure of An. funestus populations from Cameroon using chromosomal inversions and microsatellite markers. Microsatellite markers revealed no particular departure from panmixia within each local population and a genetic structure consistent with isolation by distance. However, cytogenetic studies demonstrated high levels of chromosomal heterogeneity, both within and between populations. Distribution of chromosomal inversions was not random and a cline of frequency was observed, according to ecotypic conditions. Strong deficiency of heterokaryotypes was found in certain localities in the transition area, indicating a subdivision of An. funestus in chromosomal forms. An. funestus microsatellite genetic markers located within the breakpoints of inversions are not differentiated in populations, whereas in An. gambiae inversions can affect gene flow at marker loci. These results are relevant to strategies for control of malaria by introduction of transgenes into populations of vectors.

  3. The Anopheles superpictus complex: introduction of a new malaria vector complex in Iran.

    PubMed

    Oshaghi, M A; Yaghobi-Ershadi, M R; Shemshad, K; Pedram, M; Amani, H

    2008-12-01

    Anopheles superpictus Grassi is one of the most widespread malaria vectors in Iran. Two morphologically independent forms of this mosquito, both at larval and adult stage as well as a great diversity in its mtDNA loci have been previously described in Iran. Because of existence of mtDNA haplotypes, co-occurrence of two forms in diverse climates as well as different roles of populations played in malaria transmission, we hypothesized the possibility of emerging species (or sub-species) within the taxon. We surveyed the molecular variation in sympatric and allopatric populations of the two forms, using sequences from the ribosomal-DNA spacer region (ITS2). This analysis revealed a high degree of polymorphism (32.3%) as well as a length polymorphism (357 vs. 378 bp) in the ITS2 region among the populations but not so among morphological forms. Further examination identified three different ITS2 sequences, designated as genotypes X, Y and Z within species. Interestingly, while the sympatric Y and Z genotypes appear to be exclusive to the populations from the southeastern part of the country, genotype X is geographically separated and present in the North, the West, the South and the Central territories. The degree of divergence in ITS2 is much more than an intra-specific variation seen within the anopheline mosquitoes, and it points out the possibility of cryptic species within the taxon. Further studies are necessary to identify the species composition of the An. superpictus and their role played in the transmission of malaria in its geographical range.

  4. Variant Ionotropic Receptors in the Malaria Vector Mosquito Anopheles gambiae Tuned to Amines and Carboxylic Acids

    PubMed Central

    Pitts, R. Jason; Derryberry, Stephen L.; Zhang, Zhiwei; Zwiebel, Laurence J.

    2017-01-01

    The principal Afrotropical human malaria vector mosquito, Anopheles gambiae, remains a significant threat to global health. A critical component in the transmission of malaria is the ability of An. gambiae females to detect and respond to human-derived chemical kairomones in their search for blood meal hosts. The basis for host odor responses resides in olfactory receptor neurons (ORNs) that express chemoreceptors encoded by large gene families, including the odorant receptors (ORs) and the variant ionotropic receptors (IRs). While ORs have been the focus of extensive investigation, functional IR complexes and the chemical compounds that activate them have not been identified in An. gambiae. Here we report the transcriptional profiles and functional characterization of three An. gambiae IR (AgIr) complexes that specifically respond to amines or carboxylic acids - two classes of semiochemicals that have been implicated in mediating host-seeking by adult females but are not known to activate An. gambiae ORs (AgOrs). Our results suggest that AgIrs play critical roles in the detection and behavioral responses to important classes of host odors that are underrepresented in the AgOr chemical space. PMID:28067294

  5. A Wickerhamomyces anomalus Killer Strain in the Malaria Vector Anopheles stephensi

    PubMed Central

    Valzano, Matteo; Damiani, Claudia; Epis, Sara; Gabrielli, Maria Gabriella; Conti, Stefania; Polonelli, Luciano; Bandi, Claudio; Favia, Guido; Ricci, Irene

    2014-01-01

    The yeast Wickerhamomyces anomalus has been investigated for several years for its wide biotechnological potential, especially for applications in the food industry. Specifically, the antimicrobial activity of this yeast, associated with the production of Killer Toxins (KTs), has attracted a great deal of attention. The strains of W. anomalus able to produce KTs, called “killer” yeasts, have been shown to be highly competitive in the environment. Different W. anomalus strains have been isolated from diverse habitats and recently even from insects. In the malaria mosquito vector Anopheles stephensi these yeasts have been detected in the midgut and gonads. Here we show that the strain of W. anomalus isolated from An. stephensi, namely WaF17.12, is a killer yeast able to produce a KT in a cell-free medium (in vitro) as well as in the mosquito body (in vivo). We showed a constant production of WaF17.12-KT over time, after stimulation of toxin secretion in yeast cultures and reintroduction of the activated cells into the mosquito through the diet. Furthermore, the antimicrobial activity of WaF17.12-KT has been demonstrated in vitro against sensitive microbes, showing that strain WaF17.12 releases a functional toxin. The mosquito-associated yeast WaF17.12 thus possesses an antimicrobial activity, which makes this yeast worthy of further investigations, in view of its potential as an agent for the symbiotic control of malaria. PMID:24788884

  6. High-Resolution Cytogenetic Map for the African Malaria Vector Anopheles gambiae

    PubMed Central

    George, Phillip; Sharakhova, Maria V.; Sharakhov, Igor V.

    2010-01-01

    Cytogenetic and physical maps are indispensible for precise assembly of genome sequences, functional characterization of chromosomal regions, and population genetic and taxonomic studies. We have created a new cytogenetic map for Anopheles gambiae by using a high-pressure squash technique that increases overall band clarity. To link chromosomal regions to the genome sequence, we attached genome coordinates, based on 302 markers of BAC, cDNA clones, and PCR-amplified gene fragments, to the chromosomal bands and interbands at approximately a 0.5-1 Mb interval. In addition, we placed the breakpoints of seven common polymorphic inversions on the map and described the chromosomal landmarks for the arm and inversion identification. The map's improved resolution can be used to further enhance physical mapping, improve genome assembly, and stimulate epigenomic studies of malaria vectors. PMID:20609021

  7. “Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes”

    PubMed Central

    Neafsey, Daniel E.; Waterhouse, Robert M.; Abai, Mohammad R.; Aganezov, Sergey S.; Alekseyev, Max A.; Allen, James E.; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A.; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W.; Blandin, Stephanie A.; Brockman, Andrew I.; Burkot, Thomas R.; Burt, Austin; Chan, Clara S.; Chauve, Cedric; Chiu, Joanna C.; Christensen, Mikkel; Costantini, Carlo; Davidson, Victoria L.M.; Deligianni, Elena; Dottorini, Tania; Dritsou, Vicky; Gabriel, Stacey B.; Guelbeogo, Wamdaogo M.; Hall, Andrew B.; Han, Mira V.; Hlaing, Thaung; Hughes, Daniel S.T.; Jenkins, Adam M.; Jiang, Xiaofang; Jungreis, Irwin; Kakani, Evdoxia G.; Kamali, Maryam; Kemppainen, Petri; Kennedy, Ryan C.; Kirmitzoglou, Ioannis K.; Koekemoer, Lizette L.; Laban, Njoroge; Langridge, Nicholas; Lawniczak, Mara K.N.; Lirakis, Manolis; Lobo, Neil F.; Lowy, Ernesto; MacCallum, Robert M.; Mao, Chunhong; Maslen, Gareth; Mbogo, Charles; McCarthy, Jenny; Michel, Kristin; Mitchell, Sara N.; Moore, Wendy; Murphy, Katherine A.; Naumenko, Anastasia N.; Nolan, Tony; Novoa, Eva M.; O'Loughlin, Samantha; Oringanje, Chioma; Oshaghi, Mohammad A.; Pakpour, Nazzy; Papathanos, Philippos A.; Peery, Ashley N.; Povelones, Michael; Prakash, Anil; Price, David P.; Rajaraman, Ashok; Reimer, Lisa J.; Rinker, David C.; Rokas, Antonis; Russell, Tanya L.; Sagnon, N'Fale; Sharakhova, Maria V.; Shea, Terrance; Simão, Felipe A.; Simard, Frederic; Slotman, Michel A.; Somboon, Pradya; Stegniy, Vladimir; Struchiner, Claudio J.; Thomas, Gregg W.C.; Tojo, Marta; Topalis, Pantelis; Tubio, José M.C.; Unger, Maria F.; Vontas, John; Walton, Catherine; Wilding, Craig S.; Willis, Judith H.; Wu, Yi-Chieh; Yan, Guiyun; Zdobnov, Evgeny M.; Zhou, Xiaofan; Catteruccia, Flaminia; Christophides, George K.; Collins, Frank H.; Cornman, Robert S.; Crisanti, Andrea; Donnelly, Martin J.; Emrich, Scott J.; Fontaine, Michael C.; Gelbart, William; Hahn, Matthew W.; Hansen, Immo A.; Howell, Paul I.; Kafatos, Fotis C.; Kellis, Manolis; Lawson, Daniel; Louis, Christos; Luckhart, Shirley; Muskavitch, Marc A.T.; Ribeiro, José M.; Riehle, Michael A.; Sharakhov, Igor V.; Tu, Zhijian; Zwiebel, Laurence J.; Besansky, Nora J.

    2015-01-01

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover, but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts. PMID:25554792

  8. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes.

    PubMed

    Neafsey, Daniel E; Waterhouse, Robert M; Abai, Mohammad R; Aganezov, Sergey S; Alekseyev, Max A; Allen, James E; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W; Blandin, Stephanie A; Brockman, Andrew I; Burkot, Thomas R; Burt, Austin; Chan, Clara S; Chauve, Cedric; Chiu, Joanna C; Christensen, Mikkel; Costantini, Carlo; Davidson, Victoria L M; Deligianni, Elena; Dottorini, Tania; Dritsou, Vicky; Gabriel, Stacey B; Guelbeogo, Wamdaogo M; Hall, Andrew B; Han, Mira V; Hlaing, Thaung; Hughes, Daniel S T; Jenkins, Adam M; Jiang, Xiaofang; Jungreis, Irwin; Kakani, Evdoxia G; Kamali, Maryam; Kemppainen, Petri; Kennedy, Ryan C; Kirmitzoglou, Ioannis K; Koekemoer, Lizette L; Laban, Njoroge; Langridge, Nicholas; Lawniczak, Mara K N; Lirakis, Manolis; Lobo, Neil F; Lowy, Ernesto; MacCallum, Robert M; Mao, Chunhong; Maslen, Gareth; Mbogo, Charles; McCarthy, Jenny; Michel, Kristin; Mitchell, Sara N; Moore, Wendy; Murphy, Katherine A; Naumenko, Anastasia N; Nolan, Tony; Novoa, Eva M; O'Loughlin, Samantha; Oringanje, Chioma; Oshaghi, Mohammad A; Pakpour, Nazzy; Papathanos, Philippos A; Peery, Ashley N; Povelones, Michael; Prakash, Anil; Price, David P; Rajaraman, Ashok; Reimer, Lisa J; Rinker, David C; Rokas, Antonis; Russell, Tanya L; Sagnon, N'Fale; Sharakhova, Maria V; Shea, Terrance; Simão, Felipe A; Simard, Frederic; Slotman, Michel A; Somboon, Pradya; Stegniy, Vladimir; Struchiner, Claudio J; Thomas, Gregg W C; Tojo, Marta; Topalis, Pantelis; Tubio, José M C; Unger, Maria F; Vontas, John; Walton, Catherine; Wilding, Craig S; Willis, Judith H; Wu, Yi-Chieh; Yan, Guiyun; Zdobnov, Evgeny M; Zhou, Xiaofan; Catteruccia, Flaminia; Christophides, George K; Collins, Frank H; Cornman, Robert S; Crisanti, Andrea; Donnelly, Martin J; Emrich, Scott J; Fontaine, Michael C; Gelbart, William; Hahn, Matthew W; Hansen, Immo A; Howell, Paul I; Kafatos, Fotis C; Kellis, Manolis; Lawson, Daniel; Louis, Christos; Luckhart, Shirley; Muskavitch, Marc A T; Ribeiro, José M; Riehle, Michael A; Sharakhov, Igor V; Tu, Zhijian; Zwiebel, Laurence J; Besansky, Nora J

    2015-01-02

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts.

  9. Population genetic structure of the malaria vector Anopheles moucheti in south Cameroon forest region.

    PubMed

    Antonio-Nkondjio, Christophe; Ndo, Cyrille; Awono-Ambene, Parfait; Ngassam, Pierre; Fontenille, Didier; Simard, Frédéric

    2007-01-01

    We used recently developed microsatellite DNA markers to explore the population genetic structure of the malaria vector, Anopheles moucheti. Polymorphism at 10 loci was examined to assess level of genetic differentiation between four A. moucheti populations from South Cameroon situated 65-400 km apart. All microsatellite loci were highly polymorphic with a number of distinct alleles per locus ranging from 9 to 17. Fst estimates ranging from 0.0094 to 0.0275 (P < 0.001) were recorded. These results suggest a very low level of genetic differentiation between A. moucheti populations. The recently available microsatellite loci revealed useful markers to assess genetic differentiation between geographical populations of A. moucheti in Cameroon.

  10. Development of a Gravid Trap for Collecting Live Malaria Vectors Anopheles gambiae s.l.

    PubMed Central

    Dugassa, Sisay; Lindh, Jenny M.; Oyieke, Florence; Mukabana, Wolfgang R.; Lindsay, Steven W.; Fillinger, Ulrike

    2013-01-01

    Background Effective malaria vector control targeting indoor host-seeking mosquitoes has resulted in fewer vectors entering houses in many areas of sub-Saharan Africa, with the proportion of vectors outdoors becoming more important in the transmission of this disease. This study aimed to develop a gravid trap for the outdoor collection of the malaria vector Anopheles gambiae s.l. based on evaluation and modification of commercially available gravid traps. Methods Experiments were implemented in an 80 m2 semi-field system where 200 gravid Anopheles gambiae s.s. were released nightly. The efficacy of the Box, CDC and Frommer updraft gravid traps was compared. The Box gravid trap was tested to determine if the presence of the trap over water and the trap’s sound affected catch size. Mosquitoes approaching the treatment were evaluated using electrocuting nets or detergents added to the water in the trap. Based on the results, a new gravid trap (OviART trap) that provided an open, unobstructed oviposition site was developed and evaluated. Results Box and CDC gravid traps collected similar numbers (relative rate (RR) 0.8, 95% confidence interval (CI) 0.6–1.2; p = 0.284), whereas the Frommer trap caught 70% fewer mosquitoes (RR 0.3, 95% CI 0.2–0.5; p < 0.001). The number of mosquitoes approaching the Box trap was significantly reduced when the trap was positioned over a water-filled basin compared to an open pond (RR 0.7 95% CI 0.6–0.7; p < 0.001). This effect was not due to the sound of the trap. Catch size increased by 60% (RR 1.6, 1.2–2.2; p = 0.001) with the new OviART trap. Conclusion Gravid An. Gambiae s.s. females were visually deterred by the presence of the trapping device directly over the oviposition medium. Based on these investigations, an effective gravid trap was developed that provides open landing space for egg-laying Anopheles. PMID:23861952

  11. Insecticide-treated plastic tarpaulins for control of malaria vectors in refugee camps.

    PubMed

    Graham, K; Mohammad, N; Rehman, H; Nazari, A; Ahmad, M; Kamal, M; Skovmand, O; Guillet, P; Allan, R; Zaim, M; Yates, A; Lines, J; Rowland, M

    2002-12-01

    Spraying of canvas tents with residual pyrethroid insecticide is an established method of malaria vector control in tented refugee camps. In recent years, plastic sheeting (polythene tarpaulins) has replaced canvas as the utilitarian shelter material for displaced populations in complex emergencies. Advances in technology enable polythene sheeting to be impregnated with pyrethroid during manufacture. The efficacy of such material against mosquitoes when erected as shelters under typical refugee camp conditions is unknown. Tests were undertaken with free-flying mosquitoes on entomological study platforms in an Afghan refugee camp to compare the insecticidal efficacy of plastic tarpaulin sprayed with deltamethrin on its inner surface (target dose 30 mg/m2), tarpaulin impregnated with deltamethrin (initially > or = 30 mg/m2) during manufacture, and a tent made from the factory impregnated tarpaulin material. Preliminary tests done in the laboratory with Anopheles stephensi Liston (Diptera: Culicidae) showed that 1-min exposure to factory-impregnated tarpaulins would give 100% mortality even after outdoor weathering in a temperate climate for 12 weeks. Outdoor platform tests with the erected materials (baited with human subjects) produced mosquito mortality rates between 86-100% for sprayed or factory-impregnated tarpaulins and tents (average approximately 40 anophelines and approximately 200 culicines/per platform/night), whereas control mortality (with untreated tarpaulin) was no more than 5%. Fewer than 20% of mosquitoes blood-fed on human subjects under either insecticide-treated or non-treated shelters. The tarpaulin shelter was a poor barrier to host-seeking mosquitoes and treatment with insecticide did not reduce the proportion blood-feeding. Even so, the deployment of insecticide-impregnated tarpaulins in refugee camps, if used by the majority of refugees, has the potential to control malaria by killing high proportions of mosquitoes and so reducing the average

  12. Malaria.

    PubMed

    Heck, J E

    1991-03-01

    Human malaria is caused by four species of the genus plasmodium. The sexual stage of the parasite occurs in the mosquito and asexual reproduction occurs in man. Symptoms of fever, chills, headache, and myalgia result from the invasion and rupture of erythrocytes. Merozoites are released from erythrocytes and invade other cells, thus propagating the infection. The most vulnerable hosts are nonimmune travelers, young children living in the tropics, and pregnant women. P. falciparum causes the most severe infections because it infects RBCs of all ages and has the propensity to develop resistance to antimalarials. Rapid diagnosis can be made with a malarial smear, and treatment should be initiated promptly. In some regions (Mexico, Central America except Panama, and North Africa) chloroquine phosphate is effective therapy. In subsaharan Africa, South America, and Southeast Asia, chloroquine resistance has become widespread, and other antimalarials are necessary. The primary care physician should have a high index of suspicion for malaria in the traveler returning from the tropics. Malaria should also be suspected in the febrile transfusion recipient and newborns of mothers with malaria.

  13. A Predator from East Africa that Chooses Malaria Vectors as Preferred Prey

    PubMed Central

    Nelson, Ximena J.; Jackson, Robert R.

    2006-01-01

    Background All vectors of human malaria, a disease responsible for more than one million deaths per year, are female mosquitoes from the genus Anopheles. Evarcha culicivora is an East African jumping spider (Salticidae) that feeds indirectly on vertebrate blood by selecting blood-carrying female mosquitoes as preferred prey. Methodology/Principal Findings By testing with motionless lures made from mounting dead insects in lifelike posture on cork discs, we show that E. culicivora selects Anopheles mosquitoes in preference to other mosquitoes and that this predator can identify Anopheles by static appearance alone. Tests using active (grooming) virtual mosquitoes rendered in 3-D animation show that Anopheles' characteristic resting posture is an important prey-choice cue for E. culicivora. Expression of the spider's preference for Anopheles varies with the spider's size, varies with its prior feeding condition and is independent of the spider gaining a blood meal. Conclusions/Significance This is the first experimental study to show that a predator of any type actively chooses Anopheles as preferred prey, suggesting that specialized predators having a role in the biological control of disease vectors is a realistic possibility. PMID:17205136

  14. Non-specific Patterns of Vector, Host, and Avian Malaria Parasite Associations in a Central African Rainforest

    PubMed Central

    Njabo, Kevin Y; Cornel, Anthony J.; Bonneaud, Camille; Toffelmier, Erin; Sehgal, R.N.M.; Valkiūnas, Gediminas; Russell, Andrew F.; Smith, Thomas B.

    2010-01-01

    Malaria parasites use vertebrate hosts for asexual multiplication and Culicidae mosquitoes for sexual and asexual development, yet the literature on avian malaria remains biased towards examining the asexual stages of the life cycle in birds. To fully understand parasite evolution and mechanism of malaria transmission, knowledge of all three components of the vector-host-parasite system is essential. Little is known about avian parasite-vector associations in African rainforests where numerous species of birds are infected with avian haemosporidians of the genera Plasmodium and Haemoproteus. Here we applied high resolution melt qPCR-based techniques and nested PCR to examine the occurrence and diversity of mitochondrial cytochrome b gene sequences of haemosporidian parasites in wild-caught mosquitoes sampled across 12 sites in Cameroon. In all, 3134 mosquitoes representing 27 species were screened. Mosquitoes belonging to four genera (Aedes, Coquillettidia, Culex, and Mansonia) were infected with twenty-two parasite lineages (18 Plasmodium spp. and 4 Haemoproteus spp.). Presence of Plasmodium sporozoites in salivary glands of Coquillettidia aurites further established these mosquitoes as likely vectors. Occurrence of parasite lineages differed significantly among genera, as well as their probability of being infected with malaria across species and sites. Approximately one-third of these lineages were previously detected in other avian host species from the region, indicating that vertebrate host sharing is a common feature and that avian Plasmodium spp. vector breadth does not always accompany vertebrate-host breadth. This study suggests extensive invertebrate host shifts in mosquito-parasite interactions and that avian Plasmodium species are most likely not tightly coevolved with vector species. PMID:21134011

  15. Spatio-temporal analysis of abundances of three malaria vector species in southern Benin using zero-truncated models

    PubMed Central

    2014-01-01

    Background A better understanding of the ecology and spatial-temporal distribution of malaria vectors is essential to design more effective and sustainable strategies for malaria control and elimination. In a previous study, we analyzed presence-absence data of An. funestus, An. coluzzii, and An. gambiae s.s. in an area of southern Benin with high coverage of vector control measures. Here, we further extend the work by analysing the positive values of the dataset to assess the determinants of the abundance of these three vectors and to produce predictive maps of vector abundance. Methods Positive counts of the three vectors were assessed using negative-binomial zero-truncated (NBZT) mixed-effect models according to vector control measures and environmental covariates derived from field and remote sensing data. After 8-fold cross-validation of the models, predictive maps of abundance of the sympatric An. funestus, An. coluzzii, and An. gambiae s.s. were produced. Results Cross-validation of the NBZT models showed a satisfactory predictive accuracy. Almost all changes in abundance between two surveys in the same village were well predicted by the models but abundances for An. gambiae s.s. were slightly underestimated. During the dry season, predictive maps showed that abundance greater than 1 bite per person per night were observed only for An. funestus and An. coluzzii. During the rainy season, we observed both increase and decrease in abundance of An. funestus, which are dependent on the ecological setting. Abundances of both An. coluzzii and An. gambiae s.s. increased during the rainy season but not in the same areas. Conclusions Our models helped characterize the ecological preferences of three major African malaria vectors. This works highlighted the importance to study independently the binomial and the zero-truncated count processes when evaluating vector control strategies. The study of the bio-ecology of malaria vector species in time and space is critical

  16. National malaria vector control policy: an analysis of the decision to scale-up larviciding in Nigeria

    PubMed Central

    Tesfazghi, Kemi; Hill, Jenny; Jones, Caroline; Ranson, Hilary; Worrall, Eve

    2016-01-01

    Background: New vector control tools are needed to combat insecticide resistance and reduce malaria transmission. The World Health Organization (WHO) endorses larviciding as a supplementary vector control intervention using larvicides recommended by the WHO Pesticides Evaluation Scheme (WHOPES). The decision to scale-up larviciding in Nigeria provided an opportunity to investigate the factors influencing policy adoption and assess the role that actors and evidence play in the policymaking process, in order to draw lessons that help accelerate the uptake of new methods for vector control. Methods: A retrospective policy analysis was carried out using in-depth interviews with national level policy stakeholders to establish normative national vector control policy or strategy decision-making processes and compare these with the process that led to the decision to scale-up larviciding. The interviews were transcribed, then coded and analyzed using NVivo10. Data were coded according to pre-defined themes from an analytical policy framework developed a priori. Results: Stakeholders reported that the larviciding decision-making process deviated from the normative vector control decision-making process. National malaria policy is normally strongly influenced by WHO recommendations, but the potential of larviciding to contribute to national economic development objectives through larvicide production in Nigeria was cited as a key factor shaping the decision. The larviciding decision involved a restricted range of policy actors, and notably excluded actors that usually play advisory, consultative and evidence generation roles. Powerful actors limited the access of some actors to the policy processes and content. This may have limited the influence of scientific evidence in this policy decision. Conclusions: This study demonstrates that national vector control policy change can be facilitated by linking malaria control objectives to wider socioeconomic considerations and

  17. Policy development in malaria vector management in Mozambique, South Africa and Zimbabwe

    PubMed Central

    Cliff, Julie; Lewin, Simon; Woelk, Godfrey; Fernandes, Benedita; Mariano, Alda; Sevene, Esperança; Daniels, Karen; Matinhure, Sheillah; Oxman, Andrew; Lavis, John

    2010-01-01

    Introduction Indoor residual spraying (IRS) and insecticide-treated nets (ITNs), two principal malaria control strategies, are similar in cost and efficacy. We aimed to describe recent policy development regarding their use in Mozambique, South Africa and Zimbabwe. Methods Using a qualitative case study methodology, we undertook semi-structured interviews of key informants from May 2004 to March 2005, carried out document reviews and developed timelines of key events. We used an analytical framework that distinguished three broad categories: interests, ideas and events. Results A disparate mix of interests and ideas slowed the uptake of ITNs in Mozambique and Zimbabwe and prevented uptake in South Africa. Most respondents strongly favoured one strategy over the other. In all three countries, national policy makers favoured IRS, and only in Mozambique did national researchers support ITNs. Outside interests in favour of IRS included manufacturers who supplied the insecticides and groups opposing environmental regulation. International research networks, multilateral organizations, bilateral donors and international NGOs supported ITNs. Research evidence, local conditions, logistic feasibility, past experience, reaction to outside ideas, community acceptability, the role of government and NGOs, and harm from insecticides used in spraying influenced the choice of strategy. The end of apartheid permitted a strongly pro-IRS South Africa to influence the region, and in Mozambique and Zimbabwe, floods provided conditions conducive to ITN distribution. Conclusions Both IRS and ITNs have a place in integrated malaria vector management, but pro-IRS interests and ideas slowed or prevented the uptake of ITNs. Policy makers needed more than evidence from trials to change from the time-honoured IRS strategy that they perceived was working. Those intending to promote new policies such as ITNs should examine the interests and ideas motivating key stakeholders and their own

  18. Ovicidal, repellent, adulticidal and field evaluations of plant extract against dengue, malaria and filarial vectors.

    PubMed

    Kovendan, Kalimuthu; Murugan, Kadarkarai; Mahesh Kumar, Palanisamy; Thiyagarajan, Perumal; John William, Samuel

    2013-03-01

    Mosquitoes are insect vectors responsible for the transmission of parasitic and viral infections to millions of people worldwide, with substantial morbidity and mortality. Infections transmitted by mosquitoes include malaria, yellow fever, chikungunya, filariasis and other arboviruses. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. The adulticidal activities of crude hexane, benzene, ethyl acetate, acetone and methanol leaf extracts of Acalypha alnifolia were assayed for their toxicity against three important vector mosquitoes, viz., Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. The adult mortality was observed after 24 h of exposure. All extracts showed moderate adulticide effects; however, the highest adult mortality was found in methanol extract were observed. The LC(50) values of A. alnifolia leaf extracts against adulticidal activity of (hexane, benzene, ethyl acetate, acetone and methanol) A. aegypti, A. stephensi and C. quinquefasciatus were the following: A. aegypti values were 371.87, 342.97, 320.17, 300.86 and 279.75 ppm; A. stephensi values were 358.35, 336.64, 306.10, 293.01 and 274.76 ppm; C. quinquefasciatus values were 383.59, 354.13, 327.74, 314.33 and 291.71 ppm. The results of the repellent activity of hexane, benzene, ethyl acetate, acetone and methanol extract of A. alnifolia plant at three different concentrations of 1.0, 3.0, and 5.0 mg/cm(2) were applied on skin of forearm in man and exposed against adult female mosquitoes. In this observation, this plant crude extracts gave protection against mosquito bites without any allergic reaction to the test person, and also, the repellent activity is dependent on the strength of the plant extracts. Mean percent hatchability of the ovicidal activity was observed 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Mortality of 100

  19. Nightly biting cycles of malaria vectors in a heterogeneous transmission area of eastern Amazonian Brazil

    PubMed Central

    2013-01-01

    Background The biting cycle of anopheline mosquitoes is an important component in the transmission of malaria. Inter- and intraspecific biting patterns of anophelines have been investigated using the number of mosquitoes caught over time to compare general tendencies in host-seeking activity and cumulative catch. In this study, all-night biting catch data from 32 consecutive months of collections in three riverine villages were used to compare biting cycles of the five most abundant vector species using common statistics to quantify variability and deviations of nightly catches from a normal distribution. Methods Three communities were selected for study. All-night human landing catches of mosquitoes were made each month in the peridomestic environment of four houses (sites) for nine consecutive days from April 2003 to November 2005. Host-seeking activities of the five most abundant species that were previously captured infected with Plasmodium falciparum, Plasmodium malariae or Plasmodium vivax, were analysed and compared by measuring the amount of variation in numbers biting per unit time (co-efficient of variation, V), the degree to which the numbers of individuals per unit time were asymmetrical (skewness = g1) and the relative peakedness or flatness of the distribution (kurtosis = g2). To analyse variation in V, g1, and g2 within species and villages, we used mixed model nested ANOVAs (PROC GLM in SAS) with independent variables (sources of variation): year, month (year), night (year X month) and collection site (year X month). Results The biting cycles of the most abundant species, Anopheles darlingi, had the least pronounced biting peaks, the lowest mean V values, and typically non-significant departures from normality in g1 and g2. By contrast, the species with the most sharply defined crepuscular biting peaks, Anopheles marajoara, Anopheles nuneztovari and Anopheles triannulatus, showed high to moderate mean V values and, most commonly, significantly

  20. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi?

    PubMed

    Dinesh, Devakumar; Murugan, Kadarkarai; Madhiyazhagan, Pari; Panneerselvam, Chellasamy; Kumar, Palanisamy Mahesh; Nicoletti, Marcello; Jiang, Wei; Benelli, Giovanni; Chandramohan, Balamurugan; Suresh, Udaiyan

    2015-04-01

    Mosquitoes represent an important threat for lives of millions of people worldwide, acting as vectors for devastating pathogens, such as malaria, yellow fever, dengue, and West Nile. In addition, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. Here, we investigated the mosquitocidal and antibacterial properties of Aloe vera leaf extract and silver nanoparticles synthesized using A. vera extract. Mosquitocidal properties were assessed in laboratory against larvae (I-IV instar) and pupae of the malaria vector Anopheles stephensi. Green-synthesized silver nanoparticles were tested against An. stephensi also in field conditions. Antibacterial properties of nanoparticles were evaluated against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. The synthesized silver nanoparticles were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In laboratory conditions, the A. vera extract was toxic against An. stephensi larvae and pupae, even at low dosages. LC50 were 48.79 ppm (I instar), 59.09 ppm (II instar), 70.88 ppm (III instar), 83.58 ppm (IV instar), and 152.55 ppm (pupae). Green-synthesized silver nanoparticles were highly toxic against An. stephensi. LC50 were 3.825 ppm (I instar), 4.119 ppm (II instar), 4.982 ppm (III instar), 5.711 ppm (IV instar), and 6.113 ppm (pupae). In field conditions, the application of A. vera-synthesized silver nanoparticles (10 × LC50) leads to An. stephensi larval reduction of 74.5, 86.6, and 97.7%, after 24, 48, and 72 h, respectively. Nanoparticles also showed antibacterial properties, and the maximum concentration tested (150 mg/L) evoked an inhibition zone wider than 80 mm in all tested bacterium species. This study adds knowledge about the use of green synthesis of nanoparticles in

  1. Community-owned resource persons for malaria vector control: enabling factors and challenges in an operational programme in Dar es Salaam, United Republic of Tanzania

    PubMed Central

    2011-01-01

    Background Community participation in vector control and health services in general is of great interest to public health practitioners in developing countries, but remains complex and poorly understood. The Urban Malaria Control Program (UMCP) in Dar es Salaam, United Republic of Tanzania, implements larval control of malaria vector mosquitoes. The UMCP delegates responsibility for routine mosquito control and surveillance to community-owned resource persons (CORPs), recruited from within local communities via the elected local government. Methods A mixed method, cross-sectional survey assessed the ability of CORPs to detect mosquito breeding sites and larvae, and investigated demographic characteristics of the CORPs, their reasons for participating in the UMCP, and their work performance. Detection coverage was estimated as the proportion of wet habitats found by the investigator which had been reported by CORP. Detection sensitivity was estimated as the proportion of wet habitats found by the CORPS which the investigator found to contain Anopheles larvae that were also reported to be occupied by the CORP. Results The CORPs themselves perceived their role as professional rather than voluntary, with participation being a de facto form of employment. Habitat detection coverage was lower among CORPs that were recruited through the program administrative staff, compared to CORPs recruited by local government officials or health committees (Odds Ratio = 0.660, 95% confidence interval = [0.438, 0.995], P = 0.047). Staff living within their areas of responsibility had > 70% higher detection sensitivity for both Anopheline (P = 0.016) and Culicine (P = 0.012): positive habitats compared to those living outside those same areas. Discussion and conclusions Improved employment conditions as well as involving the local health committees in recruiting individual program staff, communication and community engagement skills are required to optimize achieving effective community

  2. Establishment of a self-propagating population of the African malaria vector Anopheles arabiensis under semi-field conditions

    PubMed Central

    2010-01-01

    Background The successful control of insect disease vectors relies on a thorough understanding of their ecology and behaviour. However, knowledge of the ecology of many human disease vectors lags behind that of agricultural pests. This is partially due to the paucity of experimental tools for investigating their ecology under natural conditions without risk of exposure to disease. Assessment of vector life-history and demographic traits under natural conditions has also been hindered by the inherent difficulty of sampling these seasonally and temporally varying populations with the limited range of currently available tools. Consequently much of our knowledge of vector biology comes from studies of laboratory colonies, which may not accurately represent the genetic and behavioural diversity of natural populations. Contained semi-field systems (SFS) have been proposed as more appropriate tools for the study of vector ecology. SFS are relatively large, netting-enclosed, mesocosms in which vectors can fly freely, feed on natural plant and vertebrate host sources, and access realistic resting and oviposition sites. Methods A self-replicating population of the malaria vector Anopheles arabiensis was established within a large field cage (21 × 9.1 × 7.1 m) at the Ifakara Health Institute, Tanzania that mimics the natural habitat features of the rural village environments where these vectors naturally occur. Offspring from wild females were used to establish this population whose life-history, behaviour and demography under semi-field conditions was monitored over 24 generations. Results This study reports the first successful establishment and maintenance of an African malaria vector population under SFS conditions for multiple generations (> 24). The host-seeking behaviour, time from blood feeding to oviposition, larval development, adult resting and swarming behaviour exhibited by An. arabiensis under SFS conditions were similar to those seen in nature. Conclusions

  3. Behavioural response of the malaria vector Anopheles gambiae to host plant volatiles and synthetic blends

    PubMed Central

    2012-01-01

    Background Sugar feeding is critical for survival of malaria vectors and, although discriminative plant feeding previously has been shown to occur in Anopheles gambiae s.s., little is known about the cues mediating attraction to these plants. In this study, we investigated the role of olfaction in An. gambiae discriminative feeding behaviour. Methods Dual choice olfactometer assays were used to study odour discrimination by An. gambiae to three suspected host plants: Parthenium hysterophorus (Asteraceae), Bidens pilosa (Asteraceae) and Ricinus communis (Euphorbiaceae). Sugar content of the three plant species was determined by analysis of their trimethylsilyl derivatives by coupled gas chromatography–mass spectrometry (GC-MS) and confirmed with authentic standards. Volatiles from intact plants of the three species were collected on Super Q and analyzed by coupled GC-electroantennographic detection (GC-EAD) and GC-MS to identify electrophysiologically-active components whose identities were also confirmed with authentic standards. Active compounds and blends were formulated using dose–response olfactory bioassays. Responses of females were converted into preference indices and analyzed by chi-square tests. The amounts of common behaviourally-active components released by the three host plants were compared with one-way ANOVA. Results Overall, the sugar contents were similar in the two Asteraceae plants, P. hysterophorus and B. pilosa, but richer in R. communis. Odours released by P. hysterophorus were the most attractive, with those from B. pilosa being the least attractive to females in the olfactometer assays. Six EAD-active components identified were consistently detected by the antennae of adult females. The amounts of common antennally-active components released varied with the host plant, with the highest amounts released by P. hysterophorus. In dose–response assays, single compounds and blends of these components were attractive to females but to

  4. Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control

    PubMed Central

    Ndula, Miranda; Irving, Helen; Mzihalowa, Themba

    2017-01-01

    Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the ‘resistance curve’ and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistance-associated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised. PMID:28151952

  5. Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control.

    PubMed

    Barnes, Kayla G; Weedall, Gareth D; Ndula, Miranda; Irving, Helen; Mzihalowa, Themba; Hemingway, Janet; Wondji, Charles S

    2017-02-01

    Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the 'resistance curve' and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistance-associated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised.

  6. Insecticidal activity of the essential oil from fruits and seeds of Schinus terebinthifolia Raddi against African malaria vectors

    PubMed Central

    2011-01-01

    Background Alternative insecticides for the control of malaria and filarial vectors are of paramount need as resistance is increasing among classes of insecticides currently in use in the public health sector. In this study, mosquitocidal activity of Schinus terebinthifolia essential oil against Anopheles gambiae s.s., An. arabiensis and Culex quinquefasciatus was assessed in laboratory, semi- field and full- field conditions Method Twenty third instar larvae of both Anopheles gambiae s.s. and Cx. quinquefasciatus were exposed to different dosages of plant extract in both laboratory and semi- field environments. Observation of the mortality response was assessed at intervals of 12, 24, 48 and 72 hours. Adult semi- gravid female mosquitoes were exposed to papers treated with S. terebinthifolia and compared with WHO standard paper treated with alphacypermethrin (0.05%). Results Gas chromatography, coupled to mass spectrometry, identified 15 compounds from S. terebinthifolia extracts, the most abundant identified compound was δ-3-carene (55.36%) and the least was γ-elemene (0.41%). The density of the oil was found to be 0.8086 g/ml. The effective dosages in the insectary ranged from 202.15 to 2625.20 ppm and were further evaluated in the semi- field situation. In the laboratory, the mortality of Cx. quinquefasciatus ranged from 0.5 to 96.75% while for An. gambiae s.s it was from 13.75 to 97.91%. In the semi- field experiments, the mortality rates observed varied for both species with time and concentrations. The LC50 and LC95 value in the laboratory was similar for both species while in the semi- field they were different for each. In wild, adult mosquitoes, the KT50 for S. terebinthifolia was 11.29 minutes while for alphacypermethrin was 19.34 minutes. The 24 hour mortality was found to be 100.0% for S. terebinthifolia and 75.0% for alphacypermethrin which was statistically significant (P < 0.001). Conclusion The efficacy shown by essential oils of fruits and seeds

  7. Preliminary Biological Studies on Larvae and Adult Anopheles Mosquitoes (Diptera: Culicidae) in Miraflores, a Malaria Endemic Locality in Guaviare Department, Amazonian Colombia

    PubMed Central

    JIMÉNEZ, IRENE P.; CONN, JAN E.; BROCHERO, HELENA

    2015-01-01

    In the malaria endemic municipality of Miraflores in southeastern Amazonian Colombia, several aspects of the biology of local Anopheles species were investigated to supplement the limited entomological surveillance information available and to provide baseline data for malaria prevention and vector control. Anopheles darlingi Root, 1926 was the most abundant species (95.6%), followed by Anopheles braziliensis (Chagas) (3.6%) and Anopheles oswaldoi s.l. (Peryassu) (0.7%). During the dry season, exophagic activity was prevalent only between 1800–2100 hours; after this (2100–0600 hours) only endophagy was encountered. In contrast, during the rainy season, both endophagy and exophagy occurred throughout the collection period. The human biting rate for An. darlingi was 8.6. This species was positive for Plasmodium vivax VK210 with a sporozoite rate = 0.13 (1/788). Breeding sites corresponded to stream (n = 7), flooded excavations (n = 4), flooded forest (n = 1), wetlands (n = 2), and an abandoned water reservoir (n = 1). An. darlingi predominated in these sites in both seasons. Based on these data, An. darlingi is the main local malaria vector, and we recommend that local prevention and control efforts focus on strengthening entomological surveillance to determine potential changes of species biting behavior and time to reduce human–vector interactions. PMID:25276930

  8. Landscape Movements of Anopheles gambiae Malaria Vector Mosquitoes in Rural Gambia

    PubMed Central

    Thomas, Christopher J.; Cross, Dónall E.; Bøgh, Claus

    2013-01-01

    Background For malaria control in Africa it is crucial to characterise the dispersal of its most efficient vector, Anopheles gambiae, in order to target interventions and assess their impact spatially. Our study is, we believe, the first to present a statistical model of dispersal probability against distance from breeding habitat to human settlements for this important disease vector. Methods/Principal Findings We undertook post-hoc analyses of mosquito catches made in The Gambia to derive statistical dispersal functions for An. gambiae sensu lato collected in 48 villages at varying distances to alluvial larval habitat along the River Gambia. The proportion dispersing declined exponentially with distance, and we estimated that 90% of movements were within 1.7 km. Although a ‘heavy-tailed’ distribution is considered biologically more plausible due to active dispersal by mosquitoes seeking blood meals, there was no statistical basis for choosing it over a negative exponential distribution. Using a simple random walk model with daily survival and movements previously recorded in Burkina Faso, we were able to reproduce the dispersal probabilities observed in The Gambia. Conclusions/Significance Our results provide an important quantification of the probability of An. gambiae s.l. dispersal in a rural African setting typical of many parts of the continent. However, dispersal will be landscape specific and in order to generalise to other spatial configurations of habitat and hosts it will be necessary to produce tractable models of mosquito movements for operational use. We show that simple random walk models have potential. Consequently, there is a pressing need for new empirical studies of An. gambiae survival and movements in different settings to drive this development. PMID:23874719

  9. Suboptimal Larval Habitats Modulate Oviposition of the Malaria Vector Mosquito Anopheles coluzzii

    PubMed Central

    Suh, Eunho; Choe, Dong-Hwan; Saveer, Ahmed M.; Zwiebel, Laurence J.

    2016-01-01

    Selection of oviposition sites by gravid females is a critical behavioral step in the reproductive cycle of Anopheles coluzzii, which is one of the principal Afrotropical malaria vector mosquitoes. Several studies suggest this decision is mediated by semiochemicals associated with potential oviposition sites. To better understand the chemosensory basis of this behavior and identify compounds that can modulate oviposition, we examined the generally held hypothesis that suboptimal larval habitats give rise to semiochemicals that negatively influence the oviposition preference of gravid females. Dual-choice bioassays indicated that oviposition sites conditioned in this manner do indeed foster significant and concentration dependent aversive effects on the oviposition site selection of gravid females. Headspace analyses derived from aversive habitats consistently noted the presence of dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS) and 6-methyl-5-hepten-2-one (sulcatone) each of which unitarily affected An. coluzzii oviposition preference. Electrophysiological assays across the antennae, maxillary palp, and labellum of gravid An. coluzzii revealed differential responses to these semiochemicals. Taken together, these findings validate the hypothesis in question and suggest that suboptimal environments for An. coluzzii larval development results in the release of DMDS, DMTS and sulcatone that impact the response valence of gravid females. PMID:26900947

  10. Comparative Genomic Analysis of Malaria Mosquito Vector-Associated Novel Pathogen Elizabethkingia anophelis

    PubMed Central

    Teo, Jeanette; Tan, Sean Yang-Yi; Liu, Yang; Tay, Martin; Ding, Yichen; Li, Yingying; Kjelleberg, Staffan; Givskov, Michael; Lin, Raymond T.P.; Yang, Liang

    2014-01-01

    Acquisition of Elizabethkingia infections in intensive care units (ICUs) has risen in the past decade. Treatment of Elizabethkingia infections is challenging due to the lack of effective therapeutic regimens, leading to a high mortality rate. Elizabethkingia infections have long been attributed to Elizabethkingia meningoseptica. Recently, we used whole-genome sequencing to reveal that E. anophelis is the pathogenic agent for an Elizabethkingia outbreak at two ICUs. We performed comparative genomic analysis of seven hospital-isolated E. anophelis strains with five available Elizabethkingia spp. genomes deposited in the National Center for Biotechnology Information Database. A pan-genomic approach was applied to identify the core- and pan-genome for the Elizabethkingia genus. We showed that unlike the hospital-isolated pathogen E. meningoseptica ATCC 12535 strain, the hospital-isolated E. anophelis strains have genome content and organization similar to the E. anophelis Ag1 and R26 strains isolated from the midgut microbiota of the malaria mosquito vector Anopheles gambiae. Both the core- and accessory genomes of Elizabethkingia spp. possess genes conferring antibiotic resistance and virulence. Our study highlights that E. anophelis is an emerging bacterial pathogen for hospital environments. PMID:24803570

  11. Comparative genomic analysis of malaria mosquito vector-associated novel pathogen Elizabethkingia anophelis.

    PubMed

    Teo, Jeanette; Tan, Sean Yang-Yi; Liu, Yang; Tay, Martin; Ding, Yichen; Li, Yingying; Kjelleberg, Staffan; Givskov, Michael; Lin, Raymond T P; Yang, Liang

    2014-05-06

    Acquisition of Elizabethkingia infections in intensive care units (ICUs) has risen in the past decade. Treatment of Elizabethkingia infections is challenging due to the lack of effective therapeutic regimens, leading to a high mortality rate. Elizabethkingia infections have long been attributed to Elizabethkingia meningoseptica. Recently, we used whole-genome sequencing to reveal that E. anophelis is the pathogenic agent for an Elizabethkingia outbreak at two ICUs. We performed comparative genomic analysis of seven hospital-isolated E. anophelis strains with five available Elizabethkingia spp. genomes deposited in the National Center for Biotechnology Information Database. A pan-genomic approach was applied to identify the core- and pan-genome for the Elizabethkingia genus. We showed that unlike the hospital-isolated pathogen E. meningoseptica ATCC 12535 strain, the hospital-isolated E. anophelis strains have genome content and organization similar to the E. anophelis Ag1 and R26 strains isolated from the midgut microbiota of the malaria mosquito vector Anopheles gambiae. Both the core- and accessory genomes of Elizabethkingia spp. possess genes conferring antibiotic resistance and virulence. Our study highlights that E. anophelis is an emerging bacterial pathogen for hospital environments.

  12. Insights from the Genome Annotation of Elizabethkingia anophelis from the Malaria Vector Anopheles gambiae

    PubMed Central

    Pei, Dong; Rayl, Melanie; Yu, Wanqin; Steritz, Matthew; Faye, Ingrid; Xu, Jiannong

    2014-01-01

    Elizabethkingia anophelis is a dominant bacterial species in the gut ecosystem of the malaria vector mosquito Anopheles gambiae. We recently sequenced the genomes of two strains of E. anophelis, R26T and Ag1, isolated from different strains of A. gambiae. The two bacterial strains are identical with a few exceptions. Phylogenetically, Elizabethkingia is closer to Chryseobacterium and Riemerella than to Flavobacterium. In line with other Bacteroidetes known to utilize various polymers in their ecological niches, the E. anophelis genome contains numerous TonB dependent transporters with various substrate specificities. In addition, several genes belonging to the polysaccharide utilization system and the glycoside hydrolase family were identified that could potentially be of benefit for the mosquito carbohydrate metabolism. In agreement with previous reports of broad antibiotic resistance in E. anophelis, a large number of genes encoding efflux pumps and β-lactamases are present in the genome. The component genes of resistance-nodulation-division type efflux pumps were found to be syntenic and conserved in different taxa of Bacteroidetes. The bacterium also displays hemolytic activity and encodes several hemolysins that may participate in the digestion of erythrocytes in the mosquito gut. At the same time, the OxyR regulon and antioxidant genes could provide defense against the oxidative stress that is associated with blood digestion. The genome annotation and comparative genomic analysis revealed functional characteristics associated with the symbiotic relationship with the mosquito host. PMID:24842809

  13. Insights from the genome annotation of Elizabethkingia anophelis from the malaria vector Anopheles gambiae.

    PubMed

    Kukutla, Phanidhar; Lindberg, Bo G; Pei, Dong; Rayl, Melanie; Yu, Wanqin; Steritz, Matthew; Faye, Ingrid; Xu, Jiannong

    2014-01-01

    Elizabethkingia anophelis is a dominant bacterial species in the gut ecosystem of the malaria vector mosquito Anopheles gambiae. We recently sequenced the genomes of two strains of E. anophelis, R26T and Ag1, isolated from different strains of A. gambiae. The two bacterial strains are identical with a few exceptions. Phylogenetically, Elizabethkingia is closer to Chryseobacterium and Riemerella than to Flavobacterium. In line with other Bacteroidetes known to utilize various polymers in their ecological niches, the E. anophelis genome contains numerous TonB dependent transporters with various substrate specificities. In addition, several genes belonging to the polysaccharide utilization system and the glycoside hydrolase family were identified that could potentially be of benefit for the mosquito carbohydrate metabolism. In agreement with previous reports of broad antibiotic resistance in E. anophelis, a large number of genes encoding efflux pumps and β-lactamases are present in the genome. The component genes of resistance-nodulation-division type efflux pumps were found to be syntenic and conserved in different taxa of Bacteroidetes. The bacterium also displays hemolytic activity and encodes several hemolysins that may participate in the digestion of erythrocytes in the mosquito gut. At the same time, the OxyR regulon and antioxidant genes could provide defense against the oxidative stress that is associated with blood digestion. The genome annotation and comparative genomic analysis revealed functional characteristics associated with the symbiotic relationship with the mosquito host.

  14. Suboptimal Larval Habitats Modulate Oviposition of the Malaria Vector Mosquito Anopheles coluzzii.

    PubMed

    Suh, Eunho; Choe, Dong-Hwan; Saveer, Ahmed M; Zwiebel, Laurence J

    2016-01-01

    Selection of oviposition sites by gravid females is a critical behavioral step in the reproductive cycle of Anopheles coluzzii, which is one of the principal Afrotropical malaria vector mosquitoes. Several studies suggest this decision is mediated by semiochemicals associated with potential oviposition sites. To better understand the chemosensory basis of this behavior and identify compounds that can modulate oviposition, we examined the generally held hypothesis that suboptimal larval habitats give rise to semiochemicals that negatively influence the oviposition preference of gravid females. Dual-choice bioassays indicated that oviposition sites conditioned in this manner do indeed foster significant and concentration dependent aversive effects on the oviposition site selection of gravid females. Headspace analyses derived from aversive habitats consistently noted the presence of dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS) and 6-methyl-5-hepten-2-one (sulcatone) each of which unitarily affected An. coluzzii oviposition preference. Electrophysiological assays across the antennae, maxillary palp, and labellum of gravid An. coluzzii revealed differential responses to these semiochemicals. Taken together, these findings validate the hypothesis in question and suggest that suboptimal environments for An. coluzzii larval development results in the release of DMDS, DMTS and sulcatone that impact the response valence of gravid females.

  15. Genome-Wide Divergence in the West-African Malaria Vector Anopheles melas.

    PubMed

    Deitz, Kevin C; Athrey, Giridhar A; Jawara, Musa; Overgaard, Hans J; Matias, Abrahan; Slotman, Michel A

    2016-09-08

    Anopheles melas is a member of the recently diverged An. gambiae species complex, a model for speciation studies, and is a locally important malaria vector along the West-African coast where it breeds in brackish water. A recent population genetic study of An. melas revealed species-level genetic differentiation between three population clusters. An. melas West extends from The Gambia to the village of Tiko, Cameroon. The other mainland cluster, An. melas South, extends from the southern Cameroonian village of Ipono to Angola. Bioko Island, Equatorial Guinea An. melas populations are genetically isolated from mainland populations. To examine how genetic differentiation between these An. melas forms is distributed across their genomes, we conducted a genome-wide analysis of genetic differentiation and selection using whole genome sequencing data of pooled individuals (Pool-seq) from a representative population of each cluster. The An. melas forms exhibit high levels of genetic differentiation throughout their genomes, including the presence of numerous fixed differences between clusters. Although the level of divergence between the clusters is on a par with that of other species within the An. gambiae complex, patterns of genome-wide divergence and diversity do not provide evidence for the presence of pre- and/or postmating isolating mechanisms in the form of speciation islands. These results are consistent with an allopatric divergence process with little or no introgression.

  16. Genome-Wide Divergence in the West-African Malaria Vector Anopheles melas

    PubMed Central

    Deitz, Kevin C.; Athrey, Giridhar A.; Jawara, Musa; Overgaard, Hans J.; Matias, Abrahan; Slotman, Michel A.

    2016-01-01

    Anopheles melas is a member of the recently diverged An. gambiae species complex, a model for speciation studies, and is a locally important malaria vector along the West-African coast where it breeds in brackish water. A recent population genetic study of An. melas revealed species-level genetic differentiation between three population clusters. An. melas West extends from The Gambia to the village of Tiko, Cameroon. The other mainland cluster, An. melas South, extends from the southern Cameroonian village of Ipono to Angola. Bioko Island, Equatorial Guinea An. melas populations are genetically isolated from mainland populations. To examine how genetic differentiation between these An. melas forms is distributed across their genomes, we conducted a genome-wide analysis of genetic differentiation and selection using whole genome sequencing data of pooled individuals (Pool-seq) from a representative population of each cluster. The An. melas forms exhibit high levels of genetic differentiation throughout their genomes, including the presence of numerous fixed differences between clusters. Although the level of divergence between the clusters is on a par with that of other species within the An. gambiae complex, patterns of genome-wide divergence and diversity do not provide evidence for the presence of pre- and/or postmating isolating mechanisms in the form of speciation islands. These results are consistent with an allopatric divergence process with little or no introgression. PMID:27466271

  17. Lethal Effects of Aspergillus niger against Mosquitoes Vector of Filaria, Malaria, and Dengue: A Liquid Mycoadulticide

    PubMed Central

    Singh, Gavendra; Prakash, Soam

    2012-01-01

    Aspergillus niger is a fungus of the genus Aspergillus. It has caused a disease called black mold on certain fruits and vegetables. The culture filtrates released from the A. niger ATCC 66566 were grown in Czapek dox broth (CDB) then filtered with flash chromatograph and were used for the bioassay after a growth of thirty days. The result demonstrated these mortalities with LC50, LC90, and LC99 values of Culex quinquefasciatus 0.76, 3.06, and 4.75, Anopheles stephensi 1.43, 3.2, and 3.86, and Aedes aegypti 1.43, 2.2, and 4.1 μl/cm2, after exposure of seven hours. We have calculated significant LT90 values of Cx. quinquefasciatus 4.5, An. stephensi 3.54, and Ae. aegypti 6.0 hrs, respectively. This liquid spray of fungal culture isolate of A. niger can reduce malaria, dengue, and filarial transmission. These results significantly support broadening the current vector control paradigm beyond chemical adulticides. PMID:22629156

  18. Artificial activation of mature unfertilized eggs in the malaria vector mosquito, Anopheles stephensi (Diptera, Culicidae).

    PubMed

    Yamamoto, Daisuke S; Hatakeyama, Masatsugu; Matsuoka, Hiroyuki

    2013-08-01

    In the past decade, many transgenic lines of mosquitoes have been generated and analyzed, whereas the maintenance of a large number of transgenic lines requires a great deal of effort and cost. In vitro fertilization by an injection of cryopreserved sperm into eggs has been proven to be effective for the maintenance of strains in mammals. The technique of artificial egg activation is a prerequisite for the establishment of in vitro fertilization by sperm injection. We demonstrated that artificial egg activation is feasible in the malaria vector mosquito, Anopheles stephensi (Diptera, Culicidae). Nearly 100% of eggs dissected from virgin females immersed in distilled water darkened, similar to normally oviposited fertilized eggs. It was revealed by the cytological examination of chromosomes that meiotic arrest was relieved in these eggs approximately 20 min after incubation in water. Biochemical examinations revealed that MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-regulated protein kinase) and MEK (MAPK/ERK kinase) were dephosphorylated similar to that in fertilized eggs. These results indicate that dissected unfertilized eggs were activated in distilled water and started development. Injection of distilled water into body cavity of the virgin blood-fed females also induced activation of a portion of eggs in the ovaries. The technique of artificial egg activation is expected to contribute to the success of in vitro fertilization in A. stephensi.

  19. Population genetics of the malaria vector Anopheles aconitus in China and Southeast Asia

    PubMed Central

    Chen, Bin; Harbach, Ralph E.; Walton, Catherine; He, Zhengbo; Zhong, Daibin; Yan, Guiyun; Butlin, Roger K.

    2012-01-01

    Anopheles aconitus is a well-known vector of malaria and is broadly distributed in the Oriental Region, yet there is no information on its population genetic characteristics. In this study, the genetic differentiation among populations was examined using 140 mtDNA COII sequences from 21 sites throughout southern China, Myanmar, Vietnam, Thailand, Laos and Sri Lanka. The population in Sri Lanka has characteristic rDNA D3 and ITS2, mtDNA COII and ND5 haplotypes, and may be considered a distinct subspecies. Clear genetic structure was observed with highly significant genetic variation present among population groups in Southeast Asia. The greatest genetic diversity exists in Yunnan and Myanmar population groups. All population groups are significantly different from one another in pairwise Fst values, except northern Thailand with central Thailand. Mismatch distributions and extremely significant Fs values suggest that the populations passed through a recent demographic expansion. These patterns are discussed in relation to the likely biogeographic history of the region and compared to other Anopheles species. PMID:22982161

  20. Can anything be done to maintain the effectiveness of pyrethroid-impregnated bednets against malaria vectors?

    PubMed Central

    Curtis, C F; Miller, J E; Hodjati, M H; Kolaczinski, J H; Kasumba, I

    1998-01-01

    Pyrethroid-treated bednets are the most promising available method of controlling malaria in the tropical world. Every effort should be made to find methods of responding to, or preventing, the emergence of pyrethroid resistance in the Anopheles vectors. Some cases of such resistance are known, notably in An. gambiae in West Africa where the kdr type of resistance has been selected, probably because of the use of pyrethroids on cotton. Because pyrethroids are irritant to mosquitoes, laboratory studies on the impact of, and selection for, resistance need to be conducted with free-flying mosquitoes in conditions that are as realistic as possible. Such studies are beginning to suggest that, although there is cross-resistance to all pyrethroids, some treatments are less likely to select for resistance than others are. Organophosphate, carbamate and phenyl pyrazole insecticides have been tested as alternative treatments for nets or curtains. Attempts have been made to mix an insect growth regulator and a pyrethroid on netting to sterilize pyrethroid-resistant mosquitoes that are not killed after contact with the netting. There seems to be no easy solution to the problem of pyrethroid resistance management, but further research is urgently needed. PMID:10021774

  1. Relative Abundance and Plasmodium Infection Rates of Malaria Vectors in and around Jabalpur, a Malaria Endemic Region in Madhya Pradesh State, Central India

    PubMed Central

    Singh, Neeru; Mishra, Ashok K.; Chand, Sunil K.; Bharti, Praveen K.; Singh, Mrigendra P.; Nanda, Nutan; Singh, Om P.; Sodagiri, Kranti; Udhyakumar, Venkatachalam

    2015-01-01

    Background This study was undertaken in two Primary Health Centers (PHCs) of malaria endemic district Jabalpur in Madhya Pradesh (Central India). Methods In this study we had investigated the relative frequencies of the different anopheline species collected within the study areas by using indoor resting catches, CDC light trap and human landing methods. Sibling species of malaria vectors were identified by cytogenetic and molecular techniques. The role of each vector and its sibling species in the transmission of the different Plasmodium species was ascertained by using sporozoite ELISA. Results A total of 52,857 specimens comprising of 17 anopheline species were collected by three different methods (39,964 by indoor resting collections, 1059 by human landing and 11,834 by CDC light trap). Anopheles culicifacies was most predominant species in all collections (55, 71 and 32% in indoor resting, human landing and light trap collections respectively) followed by An. subpictus and An. annularis. All five sibling species of An. culicifacies viz. species A, B, C, D and E were found while only species T and S of An. fluviatilis were collected. The overall sporozoite rate in An. culicifacies and An. fluviatilis were 0.42% (0.25% for P. falciparum and 0.17% for P. vivax) and 0.90% (0.45% for P. falciparum and 0.45% for P. vivax) respectively. An. culicifacies and An. fluviatilis were found harbouring both P. vivax variants VK-210 and VK-247, and P. falciparum. An. culicifacies sibling species C and D were incriminated as vectors during most part of the year while sibling species T of An. fluviatilis was identified as potential vector in monsoon and post monsoon season. Conclusions An. culicifacies species C (59%) was the most abundant species followed by An. culicifacies D (24%), B (8.7%), E (6.7%) and A (1.5%). Among An. fluviatilis sibling species, species T was common (99%) and only few specimens of S were found. Our study provides crucial information on the prevalence

  2. Assessment of immune interference, antagonism, and diversion following human immunization with biallelic blood-stage malaria viral-vectored vaccines and controlled malaria infection.

    PubMed

    Elias, Sean C; Collins, Katharine A; Halstead, Fenella D; Choudhary, Prateek; Bliss, Carly M; Ewer, Katie J; Sheehy, Susanne H; Duncan, Christopher J A; Biswas, Sumi; Hill, Adrian V S; Draper, Simon J

    2013-02-01

    Overcoming antigenic variation is one of the major challenges in the development of an effective vaccine against Plasmodium falciparum, a causative agent of human malaria. Inclusion of multiple Ag variants in subunit vaccine candidates is one strategy that has aimed to overcome this problem for the leading blood-stage malaria vaccine targets, that is, merozoite surface protein 1 (MSP1) and apical membrane Ag 1 (AMA1). However, previous studies, utilizing malaria Ags, have concluded that inclusion of multiple allelic variants, encoding altered peptide ligands, in such a vaccine may be detrimental to both the priming and in vivo restimulation of Ag-experienced T cells. In this study, we analyze the T cell responses to two alleles of MSP1 and AMA1 induced by vaccination of malaria-naive adult volunteers with bivalent viral-vectored vaccine candidates. We show a significant bias to the 3D7/MAD20 allele compared with the Wellcome allele for the 33 kDa region of MSP1, but not for the 19 kDa fragment or the AMA1 Ag. Although this bias could be caused by "immune interference" at priming, the data do not support a significant role for "immune antagonism" during memory T cell restimulation, despite observation of the latter at a minimal epitope level in vitro. A lack of class I HLA epitopes in the Wellcome allele that are recognized by vaccinated volunteers may in fact contribute to the observed bias. We also show that controlled infection with 3D7 strain P. falciparum parasites neither boosts existing 3D7-specific T cell responses nor appears to "immune divert" cellular responses toward the Wellcome allele.

  3. Stable and fluctuating temperature effects on the development rate and survival of two malaria vectors, Anopheles arabiensis and Anopheles funestus

    PubMed Central

    2013-01-01

    Background Understanding the biology of malaria vector mosquitoes is crucial to understanding many aspects of the disease, including control and future outcomes. The development rates and survival of two Afrotropical malaria vectors, Anopheles arabiensis and Anopheles funestus, are investigated here under conditions of constant and fluctuating temperatures. These data can provide a good starting point for modelling population level consequences of temperature change associated with climate change. For comparative purposes, these data were considered explicitly in the context of those available for the third African malaria vector, Anopheles gambiae. Methods Twenty five replicates of 20–30 eggs were placed at nine constant and two fluctuating temperatures for development rate experiments and survival estimates. Various developmental parameters were estimated from the data, using standard approaches. Results Lower development threshold (LDT) for both species was estimated at 13-14°C. Anopheles arabiensis developed consistently faster than An. funestus. Optimum temperature (Topt) and development rate at this temperature (μmax) differed significantly between species for overall development and larval development. However, Topt and μmax for pupal development did not differ significantly between species. Development rate and survival of An. funestus was negatively influenced by fluctuating temperatures. By contrast, development rate of An. arabiensis at fluctuating temperatures either did not differ from constant temperatures or was significantly faster. Survival of this species declined by c. 10% at the 15°C to 35°C fluctuating temperature regime, but was not significantly different between the constant 25°C and the fluctuating 20°C to 30°C treatment. By comparison, previous data for An. gambiae indicated fastest development at a constant temperature of 28°C and highest survival at 24°C. Conclusions The three most important African malaria vectors all differ

  4. Fascioliasis Control: In Vivo and In Vitro Phytotherapy of Vector Snail to Kill Fasciola Larva

    PubMed Central

    Sunita, Kumari; Singh, D. K.

    2011-01-01

    Snail is one of the important components of an aquatic ecosystem, it acts as intermediate host of Fasciola species. Control of snail population below a certain threshold level is one of the important methods in the campaign to reduce the incidence of fascioliasis. Life cycle of the parasite can be interrupted by killing the snail or Fasciola larva redia and cercaria in the snail body. In vivo and in vitro toxicity of the plant products and their active component such as citral, ferulic acid, umbelliferone, azadirachtin, and allicin against larva of Fasciola in infected snail Lymnaea acuminata were tested. Mortality of larvae were observed at 2 h, 4 h, 6 h, and 8 h, of treatment. In in vivo treatment, azadirachtin caused highest mortality in redia and cercaria larva (8 h, LC50 0.11, and 0.05 mg/L) whereas in in vitro condition allicin was highly toxic against redia and cercaria (8 h, LC50 0.01, and 0.009 mg/L). Toxicity of citral was lowest against redia and cercaria larva. PMID:22132306

  5. Distribution of the Habitat Suitability of the Main Malaria Vector in French Guiana Using Maximum Entropy Modeling.

    PubMed

    Moua, Yi; Roux, Emmanuel; Girod, Romain; Dusfour, Isabelle; de Thoisy, Benoit; Seyler, Frédérique; Briolant, Sébastien

    2016-12-22

    Malaria is an important health issue in French Guiana. Its principal mosquito vector in this region is Anopheles darlingi Root. Knowledge of the spatial distribution of this species is still very incomplete due to the extent of French Guiana and the difficulty to access most of the territory. Species distribution modeling based on the maximal entropy procedure was used to predict the spatial distribution of An. darlingi using 39 presence sites. The resulting model provided significantly high prediction performances (mean 10-fold cross-validated partial area under the curve and continuous Boyce index equal to, respectively, 1.11-with a level of omission error of 20%-and 0.42). The model also provided a habitat suitability map and environmental response curves in accordance with the known entomological situation. Several environmental characteristics that had a positive correlation with the presence of An. darlingi were highlighted: nonpermanent anthropogenic changes of the natural environment, the presence of roads and tracks, and opening of the forest. Some geomorphological landforms and high altitude landscapes appear to be unsuitable for An. darlingi The species distribution modeling was able to reliably predict the distribution of suitable habitats for An. darlingi in French Guiana. Results allowed completion of the knowledge of the spatial distribution of the principal malaria vector in this Amazonian region, and identification of the main factors that favor its presence. They should contribute to the definition of a necessary targeted vector control strategy in a malaria pre-elimination stage, and allow extrapolation of the acquired knowledge to other Amazonian or malaria-endemic contexts.

  6. Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach?

    PubMed

    Subramaniam, Jayapal; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Kovendan, Kalimuthu; Madhiyazhagan, Pari; Kumar, Palanisamy Mahesh; Dinesh, Devakumar; Chandramohan, Balamurugan; Suresh, Udaiyan; Nicoletti, Marcello; Higuchi, Akon; Hwang, Jiang-Shiou; Kumar, Suresh; Alarfaj, Abdullah A; Munusamy, Murugan A; Messing, Russell H; Benelli, Giovanni

    2015-12-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. However, the use of synthetic insecticides to control Culicidae may lead to high operational costs and adverse non-target effects. Plant-borne compounds have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles. Their impact against biological control agents of mosquito larval populations has been poorly studied. We synthesized silver nanoparticles (AgNP) using the aqueous leaf extract of Mimusops elengi as a reducing and stabilizing agent. The formation of AgNP was studied using different biophysical methods, including UV-vis spectrophotometry, TEM, XRD, EDX and FTIR. Low doses of AgNP showed larvicidal and pupicidal toxicity against the malaria vector Anopheles stephensi and the arbovirus vector Aedes albopictus. AgNP LC50 against A. stephensi ranged from 12.53 (I instar larvae) to 23.55 ppm (pupae); LC50 against A. albopictus ranged from 11.72 ppm (I) to 21.46 ppm (pupae). In the field, the application of M. elengi extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. In adulticidal experiments, AgNP showed LC50 of 13.7 ppm for A. stephensi and 14.7 ppm for A. albopictus. The predation efficiency of Gambusia affinis against A. stephensi and A. albopictus III instar larvae was 86.2 and 81.7 %, respectively. In AgNP-contaminated environments, predation was 93.7 and 88.6 %, respectively. This research demonstrates that M. elengi-synthesized AgNP may be employed at ultra-low doses to reduce larval populations of malaria and arbovirus vectors, without detrimental effects on predation rates of mosquito natural enemies, such as larvivorous fishes.

  7. Evaluation of alternative mosquito sampling methods for malaria vectors in Lowland South - East Zambia

    PubMed Central

    2013-01-01

    Background Sampling malaria vectors and measuring their biting density is of paramount importance for entomological surveys of malaria transmission. Human landing catch (HLC) has been traditionally regarded as a gold standard method for surveying human exposure to mosquito bites. However, due to the risk of human participant exposure to mosquito-borne parasites and viruses, a variety of alternative, exposure-free trapping methods were compared in lowland, south-east Zambia. Methods Centres for Disease Control and Prevention miniature light trap (CDC-LT), Ifakara Tent Trap model C (ITT-C), resting boxes (RB) and window exit traps (WET) were all compared with HLC using a 3 × 3 Latin Squares design replicated in 4 blocks of 3 houses with long lasting insecticidal nets, half of which were also sprayed with a residual deltamethrin formulation, which was repeated for 10 rounds of 3 nights of rotation each during both the dry and wet seasons. Results The mean catches of HLC indoor, HLC outdoor, CDC-LT, ITT-C, WET, RB indoor and RB outdoor, were 1.687, 1.004, 3.267, 0.088, 0.004, 0.000 and 0.008 for Anopheles quadriannulatus Theobald respectively, and 7.287, 6.784, 10.958, 5.875, 0.296, 0.158 and 0.458, for An. funestus Giles, respectively. Indoor CDC-LT was more efficient in sampling An. quadriannulatus and An. funestus than HLC indoor (Relative rate [95% Confidence Interval] = 1.873 [1.653, 2.122] and 1.532 [1.441, 1.628], respectively, P < 0.001 for both). ITT-C was the only other alternative which had comparable sensitivity (RR = 0.821 [0.765, 0.881], P < 0.001), relative to HLC indoor other than CDC-LT for sampling An. funestus. Conclusions While the two most sensitive exposure-free techniques primarily capture host-seeking mosquitoes, both have substantial disadvantages for routine community-based surveillance applications: the CDC-LT requires regular recharging of batteries while the bulkiness of ITT-C makes it difficult to move between sampling

  8. Evaluation of Endod (Phytolacca dodecandra: Phytolaccaceae) as a Larvicide Against Anopheles arabiensis, the Principal Vector of Malaria in Ethiopia.

    PubMed

    Getachew, Dejene; Balkew, Meshesha; Gebre-Michael, Teshome

    2016-06-01

    Malaria control methods rely mostly on adult mosquito control using insecticide-treated nets and indoor residual spraying with insecticides. Plants such as endod (Phytolacca dodecandra) can potentially be used for the control of mosquito larvae as a supplement to adult control methods. Following the discovery of endod, a molluscicide plant, more than 5 decades ago in Ethiopia, subsequent studies have shown that its potency can further be increased by simple procedures such as aging endod berry powder in water. This study was conducted to evaluate the killing effect of fresh and aged endod solution against 4th-stage larvae of Anopheles arabiensis. Laboratory-reared An. arabiensis larvae exposed to different concentrations of endod preparation using distilled or spring water had 50% lethal concentration (LC(50))  =  49.6 ppm and 90% lethal concentration (LC(90))  =  234 ppm for fresh and LC(50)  =  36.4 ppm and LC(90)  =  115.7 ppm for the aged endod solution in distilled water against the laboratory population. Against field-collected larvae of the same species, aged preparations in habitat water resulted in higher LC(50) (472.7 ppm) and LC(90) (691 ppm) values, with only a slight improvement over fresh preparations in habitat water (LC(50)  =  456.2 ppm; LC(90)  =  896.1 ppm). In general, although aged preparations of endod required lower concentrations than fresh to kill at least 90% of the larvae, these concentrations were much higher (12-70×) than that required for schistosome-transmitting snails.

  9. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s.

    PubMed

    Martinez-Torres, D; Chandre, F; Williamson, M S; Darriet, F; Bergé, J B; Devonshire, A L; Guillet, P; Pasteur, N; Pauron, D

    1998-05-01

    Pyrethroid-impregnated bednets are playing an increasing role for combating malaria, especially in stable malaria areas. More than 90% of the current annual malaria incidence (c. 500 million clinical cases with up to 2 million deaths) is in Africa where the major vector is Anopheles gambiae s.s. As pyrethroid resistance has been reported in this mosquito, reliable and simple techniques are urgently needed to characterize and monitor this resistance in the field. In insects, an important mechanism of pyrethroid resistance is due to a modification of the voltage-gated sodium channel protein recently shown to be associated with mutations of the para-type sodium channel gene. We demonstrate here that one of these mutations is present in certain strains of pyrethroid resistant A. gambiae s.s. and describe a PCR-based diagnostic test allowing its detection in the genome of single mosquitoes. Using this test, we found this mutation in six out of seven field samples from West Africa, its frequency being closely correlated with survival to pyrethroid exposure. This diagnostic test should bring major improvement for field monitoring of pyrethroid resistance, within the framework of malaria control programmes.

  10. Ecological transition from natural forest to tea plantations: effect on the dynamics of malaria vectors in the highlands of Cameroon.

    PubMed

    Tanga, M C; Ngundu, W I

    2010-10-01

    From October 2002 to September 2003, an entomological survey was carried out in a rural forested fringed village in the highlands of Mount Cameroon region to determine the temporal dynamics of the anopheline population and the intensity of malaria transmission. A total of 2387 Anopheles spp. were collected, with A. funestus predominating (59.9%), followed by A. hancocki (24.4%) and A. gambiae s.l. (15.7%). Considerable differences were observed in the nocturnal biting cycles of parous mosquitoes, with peak activity in the latter part of the night. PCR revealed that all specimens of the A. funestus group were A. funestus s.s. and all specimens from the A. gambiae complex were A. gambiae s.s. of the S molecular form. Plasmodium falciparum sporozoite rates of 17.3% and 8.5% were recorded for A. funestus and A. hancocki, respectively, with an anthropophilic rate of 96.3%. A strong positive correlation (r=0.996) was found between the human-biting rate and the entomological inoculation rate (EIR). Malaria transmission was very high and perennial, with an estimated annual EIR of 460.1 infective bites per person per year. These results confirm that in high agricultural activity areas, A. funestus can be by far the major malaria vector responsible for malaria transmission.

  11. Potential use of neem leaf slurry as a sustainable dry season management strategy to control the malaria vector Anopheles gambiae (DIPTERA: CULICIDAE) in west African villages.

    PubMed

    Luong, Kyphuong; Dunkel, Florence V; Coulibaly, Keriba; Beckage, Nancy E

    2012-11-01

    Larval management of the malaria vector, Anopheles gambiae Giles s.s., has been successful in reducing disease transmission. However, pesticides are not affordable to farmers in remote villages in Mali, and in other material resource poor countries. Insect resistance to insecticides and nontarget toxicity pose additional problems. Neem (Azadirachta indica A. Juss) is a tree with many beneficial, insect bioactive compounds, such as azadirachtin. We tested the hypothesis that neem leaf slurry is a sustainable, natural product, anopheline larvicide. A field study conducted in Sanambele (Mali) in 2010 demonstrated neem leaf slurry can work with only the available tools and resources in the village. Laboratory bioassays were conducted with third instar An. gambiae and village methods were used to prepare the leaf slurry. Experimental concentration ranges were 1,061-21,224 mg/L pulverized neem leaves in distilled water. The 50 and 90% lethal concentrations at 72 h were 8,825 mg/L and 15,212 mg/L, respectively. LC concentrations were higher than for other parts of the neem tree when compared with previous published studies because leaf slurry preparation was simplified by omitting removal of fibrous plant tissue. Using storytelling as a medium of knowledge transfer, villagers combined available resources to manage anopheline larvae. Preparation of neem leaf slurries is a sustainable approach which allows villagers to proactively reduce mosquito larval density within their community as part of an integrated management system.

  12. Spatial clustering and longitudinal variation of Anopheles darlingi (Diptera: Culicidae) larvae in a river of the Amazon: the importance of the forest fringe and of obstructions to flow in frontier malaria.

    PubMed

    Barros, F S M; Arruda, M E; Gurgel, H C; Honório, N A

    2011-12-01

    Deforestation has been linked to a rise in malaria prevalence. In this paper, we studied longitudinally 20 spots, including forested and deforested portions of a temporary river in a malarigenous frontier zone. Larval habitat parameters influencing distribution of Anopheles darlingi (Diptera: Culicidae) larvae were studied. We observed that larvae were clustered in forested-deforested transitions. For the first time in the literature, it was verified that parameters determining larval distribution varied from deforested to forested areas. The proximity to human dwellings was also a significant factor determining distribution, but larvae was most importantly associated with a previously undescribed parameter, the presence of small obstructions to river flow, such as tree trunks within the river channel, which caused pooling of water during the dry season ('microdams'). In deforested areas, the most important factor determining distribution of larvae was shade (reduced luminance). Larvae were absent in the entire studied area during the wet season and present in most sites during the dry season. During the wet-dry transition, larvae were found sooner in areas with microdams, than in other areas, suggesting that flow obstruction prolongs the breeding season of An. darlingi. Adult mosquito densities and malaria incidence were higher during the dry season. Our data correlate well with the published literature, including the distribution of malaria cases near the forest fringes, and has permitted the creation of a model of An. darlingi breeding, where preference for sites with reduced luminance, human presence and microdams would interact to determine larval distribution.

  13. Larvivorous fish in wells target the malaria vector sibling species of the Anopheles culicifacies complex in villages in Karnataka, India.

    PubMed

    Ghosh, S K; Tiwari, S N; Sathyanarayan, T S; Sampath, T R R; Sharma, V P; Nanda, Nutan; Joshi, Hema; Adak, T; Subbarao, S K

    2005-02-01

    Malaria was a major problem in a sericulture area of Karnataka, south India, where Anopheles culicifacies s.l. and A. fluviatilis s.l. were considered to be the main vectors. Sibling species complexes of these two species were analysed in three ecologically different villages. Among A. culicifacies, only sibling species A and B were found. In Puram, a village with 22 wells, species A predominated; species B predominated in a village with four wells and a stream, and in a village with a stream and no wells. Poecilia reticulata fish were introduced into all wells and streams in the villages, and after one year no vectors were found in Puram, and all, or nearly all, A. culicifacies were species B in the other two villages. All A. fluviatilis belonged to the sibling species T. Blood meal analysis indicated that a few of the A. culicifacies collected had fed on humans while all the A. fluviatilis had fed on bovines. Before the introduction of fish, the annual parasite incidence for malaria was high in Puram, but much lower in the other two villages. From 1998 (over one year after release of fish) until 2003, no malaria cases were detected in the three villages.

  14. A Regional Model for Malaria Vector Developmental Habitats Evaluated Using Explicit, Pond-Resolving Surface Hydrology Simulations.

    PubMed

    Asare, Ernest Ohene; Tompkins, Adrian Mark; Bomblies, Arne

    2016-01-01

    Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture.

  15. A Regional Model for Malaria Vector Developmental Habitats Evaluated Using Explicit, Pond-Resolving Surface Hydrology Simulations

    PubMed Central

    Asare, Ernest Ohene; Tompkins, Adrian Mark; Bomblies, Arne

    2016-01-01

    Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture. PMID:27003834

  16. Development and Assessment of Plant-Based Synthetic Odor Baits for Surveillance and Control of Malaria Vectors

    PubMed Central

    Nyasembe, Vincent O.; Tchouassi, David P.; Kirwa, Hillary K.; Foster, Woodbridge A.; Teal, Peter E. A.; Borgemeister, Christian; Torto, Baldwyn

    2014-01-01

    Background Recent malaria vector control measures have considerably reduced indoor biting mosquito populations. However, reducing the outdoor biting populations remains a challenge because of the unavailability of appropriate lures to achieve this. This study sought to test the efficacy of plant-based synthetic odor baits in trapping outdoor populations of malaria vectors. Methodology and Principal Finding Three plant-based lures ((E)-linalool oxide [LO], (E)-linalool oxide and (E)-β-ocimene [LO + OC], and a six-component blend comprising (E)-linalool oxide, (E)-β-ocimene, hexanal, β-pinene, limonene, and (E)-β-farnesene [Blend C]), were tested alongside an animal/human-based synthetic lure (comprising heptanal, octanal, nonanal, and decanal [Blend F]) and worn socks in a malaria endemic zone in the western part of Kenya. Mosquito Magnet-X (MM-X) and lightless Centre for Disease Control (CDC) light traps were used. Odor-baited traps were compared with traps baited with either solvent alone or solvent + carbon dioxide (controls) for 18 days in a series of randomized incomplete-block designs of days × sites × treatments. The interactive effect of plant and animal/human odor was also tested by combining LO with either Blend F or worn socks. Our results show that irrespective of trap type, traps baited with synthetic plant odors compared favorably to the same traps baited with synthetic animal odors and worn socks in trapping malaria vectors, relative to the controls. Combining LO and worn socks enhanced trap captures of Anopheles species while LO + Blend F recorded reduced trap capture. Carbon dioxide enhanced total trap capture of both plant- and animal/human-derived odors. However, significantly higher proportions of male and engorged female Anopheles gambiae s.l. were caught when the odor treatments did not include carbon dioxide. Conclusion and Significance The results highlight the potential of plant-based odors and specifically linalool oxide, with or

  17. Control of malaria and other vector-borne protozoan diseases in the tropics: enduring challenges despite considerable progress and achievements

    PubMed Central

    2014-01-01

    Vector-borne protozoan diseases represent a serious public health challenge, especially in the tropics where poverty together with vector-favorable climates are the aggravating factors. Each of the various strategies currently employed to face these scourges is seriously inadequate. Despite enormous efforts, vaccines—which represent the ideal weapon against these parasitic diseases—are yet to be sufficiently developed and implemented. Chemotherapy and vector control are therefore the sole effective attempts to minimize the disease burden. Nowadays, both strategies are also highly challenged by the phenomenon of drug and insecticide resistance, which affects virtually all interventions currently used. The recently growing support from international organizations and governments of some endemic countries is warmly welcome, and should be optimally exploited in the various approaches to drug and insecticide research and development to overcome the burden of these prevalent diseases, especially malaria, leishmaniasis, Human African Trypanosomiasis (HAT), and Chagas disease. PMID:24401663

  18. Genomic Analyses of Three Malaria Vectors Reveals Extensive Shared Polymorphism but Contrasting Population Histories

    PubMed Central

    O’Loughlin, Samantha M.; Magesa, Stephen; Mbogo, Charles; Mosha, Franklin; Midega, Janet; Lomas, Susan; Burt, Austin

    2014-01-01

    Anopheles gambiae s.l. are important malaria vectors, but little is known about their genomic variation in the wild. Here, we present inter- and intraspecies analysis of genome-wide RADseq data, in three Anopheles gambiae s.l. species collected from East Africa. The mosquitoes fall into three genotypic clusters representing described species (A. gambiae, A. arabiensis, and A. merus) with no evidence of cryptic breeding units. Anopheles merus is the most divergent of the three species, supporting a recent new phylogeny based on chromosomal inversions. Even though the species clusters are well separated, there is extensive shared polymorphism, particularly between A. gambiae and A. arabiensis. Divergence between A. gambiae and A. arabiensis does not vary across the autosomes but is higher in X-linked inversions than elsewhere on X or on the autosomes, consistent with the suggestion that this inversion (or a gene within it) is important in reproductive isolation between the species. The 2La/2L+a inversion shows no more evidence of introgression between A. gambiae and A. arabiensis than the rest of the autosomes. Population differentiation within A. gambiae and A. arabiensis is weak over approximately 190–270 km, implying no strong barriers to dispersal. Analysis of Tajima’s D and the allele frequency spectrum is consistent with modest population increases in A. arabiensis and A. merus, but a more complex demographic history of expansion followed by contraction in A. gambiae. Although they are less than 200 km apart, the two A. gambiae populations show evidence of different demographic histories. PMID:24408911

  19. Establishment of a large semi-field system for experimental study of African malaria vector ecology and control in Tanzania

    PubMed Central

    Ferguson, Heather M; Ng'habi, Kija R; Walder, Thomas; Kadungula, Demetrius; Moore, Sarah J; Lyimo, Issa; Russell, Tanya L; Urassa, Honorathy; Mshinda, Hassan; Killeen, Gerry F; Knols, Bart GJ

    2008-01-01

    Background Medical entomologists increasingly recognize that the ability to make inferences between laboratory experiments of vector biology and epidemiological trends observed in the field is hindered by a conceptual and methodological gap occurring between these approaches which prevents hypothesis-driven empirical research from being conducted on relatively large and environmentally realistic scales. The development of Semi-Field Systems (SFS) has been proposed as the best mechanism for bridging this gap. Semi-field systems are defined as enclosed environments, ideally situated within the natural ecosystem of a target disease vector and exposed to ambient environmental conditions, in which all features necessary for its life cycle completion are present. Although the value of SFS as a research tool for malaria vector biology is gaining recognition, only a few such facilities exist worldwide and are relatively small in size (< 100 m2). Methods The establishment of a 625 m2 state-of-the-art SFS for large-scale experimentation on anopheline mosquito ecology and control within a rural area of southern Tanzania, where malaria transmission intensities are amongst the highest ever recorded, is described. Results A greenhouse frame with walls of mosquito netting and a polyethylene roof was mounted on a raised concrete platform at the Ifakara Health Institute. The interior of the SFS was divided into four separate work areas that have been set up for a variety of research activities including mass-rearing for African malaria vectors under natural conditions, high throughput evaluation of novel mosquito control and trapping techniques, short-term assays of host-seeking behaviour and olfaction, and longer-term experimental investigation of anopheline population dynamics and gene flow within a contained environment that simulates a local village domestic setting. Conclusion The SFS at Ifakara was completed and ready for use in under two years. Preliminary observations

  20. Seasonal prevalence of malaria vectors and entomological inoculation rates in the rubber cultivated area of Niete, South Region of Cameroon

    PubMed Central

    2012-01-01

    Background Development of large scale agro-industries are subject to serious environmental modifications. In malaria endemic areas this would greatly impact on the transmission paradigm. Two cross-sectional entomological surveys to characterize the Anopheles fauna and their entomological inoculation rates were conducted during May 2010 (peak rainy season) and December 2010 (peak dry season) in the intense rubber cultivated area of Niete in southern forested Cameroon. Methods Mosquitoes were sampled by night collections on human volunteers, identified morphologically and members of the Anopheles gambiae complex further identified to species and molecular form. Parity status was determined following the dissection of the ovaries. Plasmodium falciparum circumsporozoite antigen indices were estimated after the identification of CS antigen by ELISA and the average entomological inoculation rates determined. Results A total of 1187 Anopheles was collected, 419 (35.3%) in the rainy season and 768 (64.7%) in the dry season. Species found were the M molecular form of An. gambiae s.s (66.8%), An. ziemanni (28.3%), An. paludis (4.7%), An. smithii (0.2%). An. gambiae M-form was the principal species in the dry (56.2%) and wet (86.2%) seasons. Average overall entomological inoculation rate for the malaria vectors varied between the dry season (1.09 ib/p/n) and the rainy season (2.30 ib/p/n). Conclusions Malaria transmission in Niete occurs both in the dry and rainy season with the intensities peaking in the dry season. This is unlike previous studies in other areas of southern forested Cameroon where transmission generally peaks in the rainy season. Environmental modifications due to agro-industrial activities might have influenced vector distribution and the dynamics of malaria transmission in this area. This necessitates the possible implementation of control strategies that are related to the eco-geography of the area. PMID:22963986

  1. Host population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian malaria

    USGS Publications Warehouse

    Woodworth, B.L.; Atkinson, C.T.; Lapointe, D.A.; Hart, P.J.; Spiegel, C.S.; Tweed, E.J.; Henneman, C.; LeBrun, J.; Denette, T.; DeMots, R.; Kozar, K.L.; Triglia, D.; Lease, D.; Gregor, A.; Smith, T.; Duffy, D.

    2005-01-01

    The past quarter century has seen an unprecedented increase in the number of new and emerging infectious diseases throughout the world, with serious implications for human and wildlife populations. We examined host persistence in the face of introduced vector-borne diseases in Hawaii, where introduced avian malaria and introduced vectors have had a negative impact on most populations of Hawaiian forest birds for nearly a century. We studied birds, parasites, and vectors in nine study areas from 0 to 1,800 m on Mauna Loa Volcano, Hawaii from January to October, 2002. Contrary to predictions of prior work, we found that Hawaii amakihi (Hemignathus virens), a native species susceptible to malaria, comprised from 24.5% to 51.9% of the avian community at three low-elevation forests (55-270 m). Amakihi were more abundant at low elevations than at disease-free high elevations, and were resident and breeding there. Infection rates were 24-40% by microscopy and 55-83% by serology, with most infected individuals experiencing low-intensity, chronic infections. Mosquito trapping and diagnostics provided strong evidence for year-round local transmission. Moreover, we present evidence that Hawaii amakihi have increased in low elevation habitats on south-eastern Hawaii Island over the past decade. The recent emergent phenomenon of recovering amakihi populations at low elevations, despite extremely high prevalence of avian malaria, suggests that ecological or evolutionary processes acting on hosts or parasites have allowed this species to recolonize low-elevation habitats. A better understanding of the mechanisms allowing coexistence of hosts and parasites may ultimately lead to tools for mitigating disease impacts on wildlife and human populations.

  2. Cryptic Genetic Diversity within the Anopheles nili group of Malaria Vectors in the Equatorial Forest Area of Cameroon (Central Africa)

    PubMed Central

    Ndo, Cyrille; Simard, Frédéric; Kengne, Pierre; Awono-Ambene, Parfait; Morlais, Isabelle; Sharakhov, Igor; Fontenille, Didier; Antonio-Nkondjio, Christophe

    2013-01-01

    Background The Anopheles nili group of mosquitoes includes important vectors of human malaria in equatorial forest and humid savannah regions of sub-Saharan Africa. However, it remains largely understudied, and data on its populations’ bionomics and genetic structure are crucially lacking. Here, we used a combination of nuclear (i.e. microsatellite and ribosomal DNA) and mitochondrial DNA markers to explore and compare the level of genetic polymorphism and divergence among populations and species of the group in the savannah and forested areas of Cameroon, Central Africa. Principal Findings All the markers provided support for the current classification within the An. nili group. However, they revealed high genetic heterogeneity within An. nili s.s. in deep equatorial forest environment. Nuclear markers showed the species to be composed of five highly divergent genetic lineages that differed by 1.8 to 12.9% of their Internal Transcribed Spacer 2 (ITS2) sequences, implying approximate divergence time of 0.82 to 5.86 million years. However, mitochondrial data only detected three major subdivisions, suggesting different evolutionary histories of the markers. Conclusions/Significance This study enlightened additional cryptic genetic diversity within An. nili s.s. in the deep equatorial forest environment of South Cameroon, reflecting a complex demographic history for this major vector of malaria in this environment. These preliminary results should be complemented by further studies which will shed light on the distribution, epidemiological importance and evolutionary history of this species group in the African rainforest, providing opportunities for in-depth comparative studies of local adaptation and speciation in major African malaria vectors. PMID:23516565

  3. Aquaporin water channel AgAQP1 in the malaria vector mosquito Anopheles gambiae during blood feeding and humidity adaptation

    PubMed Central

    Liu, Kun; Tsujimoto, Hitoshi; Cha, Sung-Jae; Agre, Peter; Rasgon, Jason L.

    2011-01-01

    Altered patterns of malaria endemicity reflect, in part, changes in feeding behavior and climate adaptation of mosquito vectors. Aquaporin (AQP) water channels are found throughout nature and confer high-capacity water flow through cell membranes. The genome of the major malaria vector mosquito Anopheles gambiae contains at least seven putative AQP sequences. Anticipating that transmembrane water movements are important during the life cycle of A. gambiae, we identified and characterized the A. gambiae aquaporin 1 (AgAQP1) protein that is homologous to AQPs known in humans, Drosophila, and sap-sucking insects. When expressed in Xenopus laevis oocytes, AgAQP1 transports water but not glycerol. Similar to mammalian AQPs, water permeation of AgAQP1 is inhibited by HgCl2 and tetraethylammonium, with Tyr185 conferring tetraethylammonium sensitivity. AgAQP1 is more highly expressed in adult female A. gambiae mosquitoes than in males. Expression is high in gut, ovaries, and Malpighian tubules where immunofluorescence microscopy reveals that AgAQP1 resides in stellate cells but not principal cells. AgAQP1 expression is up-regulated in fat body and ovary by blood feeding but not by sugar feeding, and it is reduced by exposure to a dehydrating environment (42% relative humidity). RNA interference reduces AgAQP1 mRNA and protein levels. In a desiccating environment (<20% relative humidity), mosquitoes with reduced AgAQP1 protein survive significantly longer than controls. These studies support a role for AgAQP1 in water homeostasis during blood feeding and humidity adaptation of A. gambiae, a major mosquito vector of human malaria in sub-Saharan Africa. PMID:21444767

  4. Aquaporin water channel AgAQP1 in the malaria vector mosquito Anopheles gambiae during blood feeding and humidity adaptation.

    PubMed

    Liu, Kun; Tsujimoto, Hitoshi; Cha, Sung-Jae; Agre, Peter; Rasgon, Jason L

    2011-04-12

    Altered patterns of malaria endemicity reflect, in part, changes in feeding behavior and climate adaptation of mosquito vectors. Aquaporin (AQP) water channels are found throughout nature and confer high-capacity water flow through cell membranes. The genome of the major malaria vector mosquito Anopheles gambiae contains at least seven putative AQP sequences. Anticipating that transmembrane water movements are important during the life cycle of A. gambiae, we identified and characterized the A. gambiae aquaporin 1 (AgAQP1) protein that is homologous to AQPs known in humans, Drosophila, and sap-sucking insects. When expressed in Xenopus laevis oocytes, AgAQP1 transports water but not glycerol. Similar to mammalian AQPs, water permeation of AgAQP1 is inhibited by HgCl(2) and tetraethylammonium, with Tyr185 conferring tetraethylammonium sensitivity. AgAQP1 is more highly expressed in adult female A. gambiae mosquitoes than in males. Expression is high in gut, ovaries, and Malpighian tubules where immunofluorescence microscopy reveals that AgAQP1 resides in stellate cells but not principal cells. AgAQP1 expression is up-regulated in fat body and ovary by blood feeding but not by sugar feeding, and it is reduced by exposure to a dehydrating environment (42% relative humidity). RNA interference reduces AgAQP1 mRNA and protein levels. In a desiccating environment (<20% relative humidity), mosquitoes with reduced AgAQP1 protein survive significantly longer than controls. These studies support a role for AgAQP1 in water homeostasis during blood feeding and humidity adaptation of A. gambiae, a major mosquito vector of human malaria in sub-Saharan Africa.

  5. Host population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian malaria.

    PubMed

    Woodworth, Bethany L; Atkinson, Carter T; Lapointe, Dennis A; Hart, Patrick J; Spiegel, Caleb S; Tweed, Erik J; Henneman, Carlene; Lebrun, Jaymi; Denette, Tami; Demots, Rachel; Kozar, Kelly L; Triglia, Dennis; Lease, Dan; Gregor, Aaron; Smith, Tom; Duffy, David

    2005-02-01

    The past quarter century has seen an unprecedented increase in the number of new and emerging infectious diseases throughout the world, with serious implications for human and wildlife populations. We examined host persistence in the face of introduced vector-borne diseases in Hawaii, where introduced avian malaria and introduced vectors have had a negative impact on most populations of Hawaiian forest birds for nearly a century. We studied birds, parasites, and vectors in nine study areas from 0 to 1,800 m on Mauna Loa Volcano, Hawaii from January to October, 2002. Contrary to predictions of prior work, we found that Hawaii amakihi (Hemignathus virens), a native species susceptible to malaria, comprised from 24.5% to 51.9% of the avian community at three low-elevation forests (55-270 m). Amakihi were more abundant at low elevations than at disease-free high elevations, and were resident and breeding there. Infection rates were 24-40% by microscopy and 55-83% by serology, with most infected individuals experiencing low-intensity, chronic infections. Mosquito trapping and diagnostics provided strong evidence for year-round local transmission. Moreover, we present evidence that Hawaii amakihi have increased in low elevation habitats on southeastern Hawaii Island over the past decade. The recent emergent phenomenon of recovering amakihi populations at low elevations, despite extremely high prevalence of avian malaria, suggests that ecological or evolutionary processes acting on hosts or parasites have allowed this species to recolonize low-elevation habitats. A better understanding of the mechanisms allowing coexistence of hosts and parasites may ultimately lead to tools for mitigating disease impacts on wildlife and human populations.

  6. Host population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian malaria

    PubMed Central

    Woodworth, Bethany L.; Atkinson, Carter T.; LaPointe, Dennis A.; Hart, Patrick J.; Spiegel, Caleb S.; Tweed, Erik J.; Henneman, Carlene; LeBrun, Jaymi; Denette, Tami; DeMots, Rachel; Kozar, Kelly L.; Triglia, Dennis; Lease, Dan; Gregor, Aaron; Smith, Tom; Duffy, David

    2005-01-01

    The past quarter century has seen an unprecedented increase in the number of new and emerging infectious diseases throughout the world, with serious implications for human and wildlife populations. We examined host persistence in the face of introduced vector-borne diseases in Hawaii, where introduced avian malaria and introduced vectors have had a negative impact on most populations of Hawaiian forest birds for nearly a century. We studied birds, parasites, and vectors in nine study areas from 0 to 1,800 m on Mauna Loa Volcano, Hawaii from January to October, 2002. Contrary to predictions of prior work, we found that Hawaii amakihi (Hemignathus virens), a native species susceptible to malaria, comprised from 24.5% to 51.9% of the avian community at three low-elevation forests (55–270 m). Amakihi were more abundant at low elevations than at disease-free high elevations, and were resident and breeding there. Infection rates were 24–40% by microscopy and 55–83% by serology, with most infected individuals experiencing low-intensity, chronic infections. Mosquito trapping and diagnostics provided strong evidence for year-round local transmission. Moreover, we present evidence that Hawaii amakihi have increased in low elevation habitats on southeastern Hawaii Island over the past decade. The recent emergent phenomenon of recovering amakihi populations at low elevations, despite extremely high prevalence of avian malaria, suggests that ecological or evolutionary processes acting on hosts or parasites have allowed this species to recolonize low-elevation habitats. A better understanding of the mechanisms allowing coexistence of hosts and parasites may ultimately lead to tools for mitigating disease impacts on wildlife and human populations. PMID:15668377

  7. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector

    PubMed Central

    2009-01-01

    Background Mosquitoes are intermediate hosts for numerous disease causing organisms. Vector control is one of the most investigated strategy for the suppression of mosquito-borne diseases. Anopheles stephensi is one of the vectors of malaria parasite Plasmodium vivax. The parasite undergoes major developmental and maturation steps within the mosquito midgut and little is known about Anopheles-associated midgut microbiota. Identification and characterization of the mosquito midgut flora is likely to contribute towards better understanding of mosquito biology including longevity, reproduction and mosquito-pathogen interactions that are important to evolve strategies for vector control mechanisms. Results Lab-reared and field-collected A. stephensi male, female and larvae were screened by "culture-dependent and culture-independent" methods. Five 16S rRNA gene library were constructed form lab and field-caught A. stephensi mosquitoes and a total of 115 culturable isolates from both samples were analyzed further. Altogether, 68 genera were identified from midgut of adult and larval A. stephensi, 53 from field-caught and 15 from lab-reared mosquitoes. A total of 171 and 44 distinct phylotypes having 85 to 99% similarity with the closest database matches were detected among field and lab-reared A. stephensi midgut, respectively. These OTUs had a Shannon diversity index value of 1.74–2.14 for lab-reared and in the range of 2.75–3.49 for field-caught A. stephensi mosquitoes. The high species evenness values of 0.93 to 0.99 in field-collected adult and larvae midgut flora indicated the vastness of microbial diversity retrieved by these approaches. The dominant bacteria in field-caught adult male A. stephensi were uncultured Paenibacillaceae while in female and in larvae it was Serratia marcescens, on the other hand in lab-reared mosquitoes, Serratia marcescens and Cryseobacterium meninqosepticum bacteria were found to be abundant. Conclusion More than fifty percent of

  8. Remote sensing of anophelines in rice-cropping villages in Mali: Patterns of vector abundance and malaria transmission

    NASA Astrophysics Data System (ADS)

    Diuk Wasser, Maria Ana

    The explosive population growth and widespread urbanization in Africa requires a significant increase in food production. Crop irrigation is therefore expected to increase in the future, although it is often blamed for aggravating the health risk of local communities---by providing habitats suitable for mosquitoes vectors of malaria (Anopheles gambiae s.l. and An. funestus in our study area) and other diseases. An epidemiological paradox sometimes occurs, however, when an increase in vector numbers is accompanied by a reduction of the risk of infection, due to a reduction in mosquito longevity and of their tendency to bite human (vs. animals). The objective of this dissertation was to determine how agricultural patterns mapped using satellite data affected vector densities and malaria transmission parameters in 18 rice-cropping villages in Mali. I used a combination of optical (Landsat ETM+) and synthetic aperture radar (ERS-2 SAR). Using Landsat data, rice was distinguished from other land uses with 98% accuracy and rice cohorts were discriminated with 84% accuracy (three classes) or 94% (two classes). ERS-2 SAR backscatter was correlated with the height and biomass of rice plants and was therefore useful to distinguish among rice growth stages. As in previous studies, the early vegetative stage was associated with higher larval production. SAR was further able to distinguish between agronomic practices linked to high and low-production within those early stages. The landcover maps were integrated with archived data on adult and larval anopheline densities and malaria transmission parameters. The area of several landcovers explained up to 89% of the variability in mosquito numbers. The maximum correlation was obtained when landcover was measured in a 1-km buffer area. Vector density was negatively associated to parity and anthropophilic rates. An. gambiae showed higher vectorial capacity (VC) than An. funestus , with seasonal variations. Peak VC for both species

  9. Utilization of combined remote sensing techniques to detect environmental variables influencing malaria vector densities in rural West Africa

    PubMed Central

    2012-01-01

    Introduction The use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping. Methods A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the image's spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI) other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM), precipitation (Tropical Rainfall Measurement Mission = TRMM), land surface temperatures (LST). Results The DEM derived altitude as well as indices calculations combining the satellite's spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index) turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI) within the 500 m buffer zone around capture points. Conclusions Remotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines densities. This modeling

  10. A randomized longitudinal factorial design to assess malaria vector control and disease management interventions in rural Tanzania.

    PubMed

    Kramer, Randall A; Mboera, Leonard E G; Senkoro, Kesheni; Lesser, Adriane; Shayo, Elizabeth H; Paul, Christopher J; Miranda, Marie Lynn

    2014-05-16

    The optimization of malaria control strategies is complicated by constraints posed by local health systems, infrastructure, limited resources, and the complex interactions between infection, disease, and treatment. The purpose of this paper is to describe the protocol of a randomized factorial study designed to address this research gap. This project will evaluate two malaria control interventions in Mvomero District, Tanzania: (1) a disease management strategy involving early detection and treatment by community health workers using rapid diagnostic technology; and (2) vector control through community-supported larviciding. Six study villages were assigned to each of four groups (control, early detection and treatment, larviciding, and early detection and treatment plus larviciding). The primary endpoint of interest was change in malaria infection prevalence across the intervention groups measured during annual longitudinal cross-sectional surveys. Recurring entomological surveying, household surveying, and focus group discussions will provide additional valuable insights. At baseline, 962 households across all 24 villages participated in a household survey; 2,884 members from 720 of these households participated in subsequent malariometric surveying. The study design will allow us to estimate the effect sizes of different intervention mixtures. Careful documentation of our study protocol may also serve other researchers designing field-based intervention trials.

  11. Operational efficiency and sustainability of vector control of malaria and dengue: descriptive case studies from the Philippines

    PubMed Central

    2012-01-01

    Background Analysis is lacking on the management of vector control systems in disease-endemic countries with respect to the efficiency and sustainability of operations. Methods Three locations were selected, at the scale of province, municipality and barangay (i.e. village). Data on disease incidence, programme activities, and programme management were collected on-site through meetings and focus group discussions. Results Adaptation of disease control strategies to the epidemiological situation per barangay, through micro-stratification, brings gains in efficiency, but should be accompanied by further capacity building on local situational analysis for better selection and targeting of vector control interventions within the barangay. An integrated approach to vector control, aiming to improve the rational use of resources, was evident with a multi-disease strategy for detection and response, and by the use of combinations of vector control methods. Collaboration within the health sector was apparent from the involvement of barangay health workers, re-orientation of job descriptions and the creation of a disease surveillance unit. The engagement of barangay leaders and use of existing community structures helped mobilize local resources and voluntary services for vector control. In one location, local authorities and the community were involved in the planning, implementation and evaluation of malaria control, which triggered local programme ownership. Conclusions Strategies that contributed to an improved efficiency and sustainability of vector control operations were: micro-stratification, integration of vector control within the health sector, a multi-disease approach, involvement of local authorities, and empowerment of communities. Capacity building on situational analysis and vector surveillance should be addressed through national policy and guidelines. PMID:22873707

  12. Efficacy of indigenous plant extracts on the malaria vector Anopheles subpictus Grassi (Diptera: Culicidae)

    PubMed Central

    Elango, G.; Zahir, A. Abduz; Bagavan, A.; Kamaraj, C.; Rajakumar, G.; Santhoshkumar, T.; Marimuthu, S.; Rahuman, A. Abdul

    2011-01-01

    Background & objectives: Mosquito control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of plant origin may serve as suitable alternative biocontrol techniques in the future. The purpose of the present study was to assess the ethyl acetate, acetone and methanol extracts of Andrographis paniculata, Eclipta prostrata and Tagetes erecta leaves tested for oviposition-deterrent, ovicidal and repellent activities against malaria vector, Anopheles subpictus Grassi (Diptera: Culicidae). Methods: The dried leaves of the three plants were powdered mechanically and extracted with ethyl acetate, acetone and methanol. One gram of crude extract was first dissolved in 100 ml of acetone (stock solution). From the stock solution, test solution concentrations of 31.21- 499.42 mg/l for oviposition- deterrence assay and repellency and 15.60 - 998.85 mg/l were used in ovicidal assay. The percentage oviposition- deterrence, hatching rate of eggs and protection time were calculated. One-way analysis of variance was used for the multiple concentration tests and for per cent mortality to determine significant treatment differences. Results: The percentage of effective oviposition repellency was highest at 499.42 mg/l and the lowest at 31.21 mg/l in ethyl acetate, acetone and methanol extracts of A. paniculata, E. prostrata and T. erecta. The oviposition activity index (OAI) value of ethyl acetate, acetone and methanol extracts of A. paniculata, E. prostrata and T. erecta at 499.42 mg/l were -0.91, -0.93, -0.84, -0.84, -0.87, -0.82, -0.87, -0.89 and -0.87, respectively. Mortality (no egg hatchability) was 100 per cent with ethyl acetate and methanol extracts of A. paniculata, E. prostrata and T. erecta at 998.85 mg/l. The maximum adult repellent activity was observed at 499.42 mg/l in ethyl acetate extracts of A. paniculata, E. prostrata and methanol extracts of T. erecta, and the mean complete protection time ranged from 120 to 150 min with

  13. Water vapour is a pre-oviposition attractant for the malaria vector Anopheles gambiae sensu stricto

    PubMed Central

    2013-01-01

    Background To date no semiochemicals affecting the pre-oviposition behaviour of the malaria vector Anopheles gambiae sensu lato have been described. Water vapour must be the major chemical signal emanating from a potential larval habitat, and although one might expect that gravid An. gambiae s.l. detect and respond to water vapour in their search for an aquatic habitat, this has never been experimentally confirmed for this species. This study aimed to investigate the role of relative humidity or water vapour as a general cue for inducing gravid An. gambiae sensu stricto to make orientated movements towards the source. Methods Three experiments were carried out with insectary-reared An. gambiae s.s. One with unfed females and two with gravid females during their peak oviposition time in the early evening. First, unfed females and gravid females were tested separately in still air where a humidity difference was established between opposite ends of a WHO bioassay tube and mosquitoes released individually in the centre of the tube. Movement of mosquitoes to either low or high humidity was recorded. Additionally, gravid mosquitoes were released into a larger air-flow olfactometer and responses measured towards collection chambers that contained cups filled with water or empty cups. Results Unfed females equally dispersed in the small bioassay tubes to areas of high and low humidity (mean 50% (95% confidence interval (CI) 38-62%). In contrast, gravid females were 2.4 times (95% CI 1.3-4.7) more likely to move towards high humidity than unfed females. The results were even more pronounced in the airflow olfactometer. Gravid females were 10.6 times (95% CI 5.4-20.8) more likely to enter the chamber with water than a dry chamber. Conclusions Water vapour is a strong pre-oviposition attractant to gravid An. gambiae s.s. in still and moving air and is likely to be a general cue used by mosquitoes for locating aquatic habitats. PMID:24120083

  14. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis

    PubMed Central

    2010-01-01

    Background An increasing knowledge of the global risk of malaria shows that the nations of the Americas have the lowest levels of Plasmodium falciparum and P. vivax endemicity worldwide, sustained, in part, by substantive integrated vector control. To help maintain and better target these efforts, knowledge of the contemporary distribution of each of the dominant vector species (DVS) of human malaria is needed, alongside a comprehensive understanding of the ecology and behaviour of each species. Results A database of contemporary occurrence data for 41 of the DVS of human malaria was compiled from intensive searches of the formal and informal literature. The results for the nine DVS of the Americas are described in detail here. Nearly 6000 occurrence records were gathered from 25 countries in the region and were complemented by a synthesis of published expert opinion range maps, refined further by a technical advisory group of medical entomologists. A suite of environmental and climate variables of suspected relevance to anopheline ecology were also compiled from open access sources. These three sets of data were then combined to produce predictive species range maps using the Boosted Regression Tree method. The predicted geographic extent for each of the following species (or species complex*) are provided: Anopheles (Nyssorhynchus) albimanus Wiedemann, 1820, An. (Nys.) albitarsis*, An. (Nys.) aquasalis Curry, 1932, An. (Nys.) darlingi Root, 1926, An. (Anopheles) freeborni Aitken, 1939, An. (Nys.) marajoara Galvão & Damasceno, 1942, An. (Nys.) nuneztovari*, An. (Ano.) pseudopunctipennis* and An. (Ano.) quadrimaculatus Say, 1824. A bionomics review summarising ecology and behaviour relevant to the control of each of these species was also compiled. Conclusions The distribution maps and bionomics review should both be considered as a starting point in an ongoing process of (i) describing the distributions of these DVS (since the opportunistic sample of occurrence

  15. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi.

    PubMed

    Gantz, Valentino M; Jasinskiene, Nijole; Tatarenkova, Olga; Fazekas, Aniko; Macias, Vanessa M; Bier, Ethan; James, Anthony A

    2015-12-08

    Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼ 17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼ 99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda.

  16. Spatial and Temporal Trends in Insecticide Resistance among Malaria Vectors in Chad Highlight the Importance of Continual Monitoring

    PubMed Central

    Foster, Geraldine Marie; Coleman, Michael; Thomsen, Edward; Ranson, Hilary; Yangalbé-Kalnone, Elise; Moundai, Tchomfienet; Demba Kodindo, Israel; Nakebang, Amen; Mahamat, Adoum; Peka, Mallaye; Kerah-Hinzoumbé, Clement

    2016-01-01

    Background A longitudinal Anopheles gambiae s.l. insecticide resistance monitoring programme was established in four sentinel sites in Chad 2008–2010. When this programme ended, only sporadic bioassays were performed in a small number of sites. Methods WHO diagnostic dose assays were used to measure the prevalence of insecticide resistance to 0.1% bendiocarb, 4% DDT, 0.05% deltamethrin, 1% fenitrothion, and 0.75% permethrin in the main malaria vectors at the beginning and end of the malaria transmission season for three years 2008–2010, with subsequent collections in 2011 and 2014. Species and molecular identification of An. gambiae M and S forms and kdr genotyping was performed using PCR-RLFP; circumsporozoite status was assessed using ELISA. Results Between 2008 and 2010, significant changes in insecticide resistance profiles to deltamethrin and permethrin were seen in 2 of the sites. No significant changes were seen in resistance to DDT in any site during the study period. Testing performed after the period of routine monitoring had ended showed dramatic increases to DDT and pyrethroid resistance in 3 sites. No resistance to organophosphate or carbamate insecticides was detected. An. arabiensis was the predominate member of the An. gambiae complex in all 4 sites; adult collections showed temporal variation in species composition in only 1 site. Kdr analysis identified both 1014F and 1014S alleles in An. gambiae S only. Circumsporozoite analysis showed the highest vector infection rates were present in Donia, a site with extensive use of agricultural insecticides. Conclusions During the monitoring gap of four years, significant changes occurred in resistance prevalence in 3 of the 4 sites (p = <0.001), endangering the efficacy of currently implemented malaria control interventions. Significant changes in insecticide resistance profiles and a lack of kdr resistance alleles in adult populations highlight the urgent need for comprehensive entomological

  17. Chromosomal and environmental determinants of morphometric variation in natural populations of the malaria vector Anopheles funestus in Cameroon

    PubMed Central

    Ayala, Diego; Caro-Riaño, Harling; Dujardin, Jean-Pierre; Rahola, Nil; Simard, Frederic; Fontenille, Didier

    2013-01-01

    Anopheles funestus is one of the most proficient malaria vectors in the world, mainly because of its remarkable ability to populate a wide range of ecological settings across Africa. Its formidable environmental plasticity has been primarily associated to high amounts of genetic and inversion polymorphisms. However, very little is known about the morphological changes that this ecological adaptation entails. Here, we report on wing morphometric variations in karyotyped specimens of this species collected throughout a wide range of eco-geographical conditions in Cameroon (Central Africa). Our results revealed strong selection on mosquito wing traits. Variation of wing size was dependent on temperature and elevation (p<0.001), while wing shape did not exhibit a specific environmental pattern. On the other hand, we observed a significant correlation of wing shape variation (p<0.001), but not size (p>0.05), with regard to karyotype. This pattern was maintained across different environmental conditions. In conclusion, our findings cast strong evidence that change in morphometric traits are under natural selection and contribute to local adaptation in Anopheles funestus populations. Furthermore, the robust relation between chromosome polymorphisms and wing shape suggests new evolutionary hypotheses about the effect of chromosomal inversions on phenotypic variation in this malaria vector. PMID:21414420

  18. Microgeographic genetic variation of the malaria vector Anopheles darlingi root (Diptera: Culicidae) from Cordoba and Antioquia, Colombia.

    PubMed

    Gutiérrez, Lina A; Gómez, Giovan F; González, John J; Castro, Martha I; Luckhart, Shirley; Conn, Jan E; Correa, Margarita M

    2010-07-01

    Anopheles darlingi is an important vector of Plasmodium spp. in several malaria-endemic regions of Colombia. This study was conducted to test genetic variation of An. darlingi at a microgeographic scale (approximately 100 km) from localities in Córdoba and Antioquia states, in western Colombia, to better understand the potential contribution of population genetics to local malaria control programs. Microsatellite loci: nuclear white and cytochrome oxidase subunit I (COI) gene sequences were analyzed. The northern white gene lineage was exclusively distributed in Córdoba and Antioquia and shared COI haplotypes were highly represented in mosquitoes from both states. COI analyses showed these An. darlingi are genetically closer to Central American populations than southern South American populations. Overall microsatellites and COI analysis showed low to moderate genetic differentiation among populations in northwestern Colombia. Given the existence of high gene flow between An. darlingi populations of Córdoba and Antioquia, integrated vector control strategies could be developed in this region of Colombia.

  19. Interspecific competition during transmission of two sympatric malaria parasite species to the mosquito vector.

    PubMed Central

    Paul, Rick E L; Nu, Van Anh Ton; Krettli, Antoniana U; Brey, Paul T

    2002-01-01

    The role of species interactions in structuring parasite communities remains controversial. Here, we show that interspecific competition between two avian malaria parasite species, Plasmodium gallinaceum and P. juxtanucleare, occurs as a result of interference during parasite fertilization within the bloodmeal of the mosquito. The significant reduction in the transmission success of P. gallinaceum to mosquitoes, due to the co-infecting P. juxtanucleare, is predicted to have compromised its colonization of regions occupied by P. juxtanucleare and, thus, may have contributed to the restricted global distribution of P. gallinaceum. Such interspecies interactions may occur between human malaria parasites and, thus, impact upon parasite species epidemiology, especially in regions of seasonal transmission. PMID:12573069

  20. Trends in Malaria in Odisha, India—An Analysis of the 2003–2013 Time-Series Data from the National Vector Borne Disease Control Program

    PubMed Central

    Pradhan, Madan Mohan; AK, Kavitha; Kar, Priyanka; Sahoo, Krushna Chandra; Panigrahi, Pinaki; Dutta, Ambarish

    2016-01-01

    Background Although Odisha is the largest contributor to the malaria burden in India, no systematic study has examined its malaria trends. Hence, the spatio-temporal trends in malaria in Odisha were assessed against the backdrop of the various anti-malaria strategies implemented in the state. Methods Using the district-wise malaria incidence and blood examination data (2003–2013) from the National Vector Borne Disease Control Program, blood examination-adjusted time-trends in malaria incidence were estimated and predicted for 2003–2013 and 2014–2016, respectively. An interrupted time series analysis using segmented regression was conducted to compare the disease trends between the pre (2003–2007) and post-intensification (2009–2013) periods. Key-informant interviews of state stakeholders were used to collect the information on the various anti-malaria strategies adopted in the state. Results The state annual malaria incidence declined from 10.82/1000 to 5.28/1000 during 2003–2013 (adjusted annual decline: -0.54/1000, 95% CI: -0.78 to -0.30). However, the annual blood examination rate remained almost unchanged from 11.25% to 11.77%. The keyinformants revealed that intensification of anti-malaria activities in 2008 led to a more rapid decline in malaria incidence during 2009–2013 as compared to that in 2003–2007 [adjusted decline: -0.83 (-1.30 to -0.37) and -0.27 (-0.41 to -0.13), respectively]. There was a significant difference in the two temporal slopes, i.e., -0.054 (-0.10 to -0.002, p = 0.04) per 1000 population per month, between these two periods, indicating almost a 200% greater decline in the post-intensification period. Although, the seven southern high-burden districts registered the highest decline, they continued to remain in that zone, thereby, making the achievement of malaria elimination (incidence <1/1000) unlikely by 2017. Conclusion The anti-malaria strategies in Odisha, especially their intensification since 2008, have helped

  1. Effects of Microclimate Condition Changes Due to Land Use and Land Cover Changes on the Survivorship of Malaria Vectors in China-Myanmar Border Region

    PubMed Central

    Zhong, Daibin; Wang, Xiaoming; Xu, Tielong; Zhou, Guofa; Wang, Ying; Lee, Ming-Chieh; Hartsel, Joshua A.; Cui, Liwang; Zheng, Bin; Yan, Guiyun

    2016-01-01

    In the past decade, developing countries have been experiencing rapid land use and land cover changes, including deforestation and cultivation of previously forested land. However, little is known about the impact of deforestation and land-use changes on the life history of malaria vectors and their effects on malaria transmission. This study examined the effects of deforestation and crop cultivation on the adult survivorship of major malaria mosquitoes, Anopheles sinensis and An. minimus in the China-Myanmar border region. We examined three conditions: indoor, forested, and banana plantation. Mean survival time of An. sinensis in banana plantation environment was significantly longer than those in forested environment, and mosquitoes exhibited the longest longevity in the indoor environment. This pattern held for both males and females, and also for An. minimus. To further test the effect of temperature on mosquito survival, we used two study sites with different elevation and ambient temperatures. Significantly higher survivorship of both species was found in sites with lower elevation and higher ambient temperature. Increased vector survival in the deforested area could have an important impact on malaria transmission in Southeast Asia. Understanding how deforestation impacts vector survivorship can help combat malaria transmission. PMID:27171475

  2. Effects of Microclimate Condition Changes Due to Land Use and Land Cover Changes on the Survivorship of Malaria Vectors in China-Myanmar Border Region.

    PubMed

    Zhong, Daibin; Wang, Xiaoming; Xu, Tielong; Zhou, Guofa; Wang, Ying; Lee, Ming-Chieh; Hartsel, Joshua A; Cui, Liwang; Zheng, Bin; Yan, Guiyun

    2016-01-01

    In the past decade, developing countries have been experiencing rapid land use and land cover changes, including deforestation and cultivation of previously forested land. However, little is known about the impact of deforestation and land-use changes on the life history of malaria vectors and their effects on malaria transmission. This study examined the effects of deforestation and crop cultivation on the adult survivorship of major malaria mosquitoes, Anopheles sinensis and An. minimus in the China-Myanmar border region. We examined three conditions: indoor, forested, and banana plantation. Mean survival time of An. sinensis in banana plantation environment was significantly longer than those in forested environment, and mosquitoes exhibited the longest longevity in the indoor environment. This pattern held for both males and females, and also for An. minimus. To further test the effect of temperature on mosquito survival, we used two study sites with different elevation and ambient temperatures. Significantly higher survivorship of both species was found in sites with lower elevation and higher ambient temperature. Increased vector survival in the deforested area could have an important impact on malaria transmission in Southeast Asia. Understanding how deforestation impacts vector survivorship can help combat malaria transmission.

  3. Prevalence and distribution of pox-like lesions, avian malaria, and mosquito vectors in Kipahulu valley, Haleakala National Park, Hawai'i, USA

    USGS Publications Warehouse

    Aruch, Samuel; Atkinson, Carter T.; Savage, Amy F.; LaPointe, Dennis

    2007-01-01

    We determined prevalence and altitudinal distribution of introduced avian malarial infections (Plasmodium relictum) and pox-like lesions (Avipoxvirus) in forest birds from Kīpahulu Valley, Haleakalā National Park, on the island of Maui, and we identified primary larval habitat for the mosquito vector of this disease. This intensively managed wilderness area and scientific reserve is one of the most pristine areas of native forest remaining in the state of Hawai‘i, and it will become increasingly important as a site for restoration and recovery of endangered forest birds. Overall prevalence of malarial infections in the valley was 8% (11/133) in native species and 4% (4/101) in nonnative passerines; prevalence was lower than reported for comparable elevations and habitats elsewhere in the state. Infections occurred primarily in ‘Apapane (Himatione sanguinea) and Hawai‘i ‘Amakihi (Hemignathus virens) at elevations below 1,400 m. Pox-like lesions were detected in only two Hawai‘i ‘Amakihi (2%; 2/94) at elevations below 950 m. We did not detect malaria or pox in birds caught at 1,400 m in upper reaches of the valley. Adult mosquitoes (Culex quinquefasciatus) were captured at four sites at elevations of 640, 760, 915, and 975 m, respectively. Culex quinquefasciatus larvae were found only in rock holes along intermittent tributaries of the two largest streams in the valley, but not in standing surface water, pig wallows, ground pools, tree cavities, and tree fern cavities. Mosquito populations in the valley are low, and they are probably influenced by periods of high rainfall that flush stream systems.

  4. The Cry4B toxin of Bacillus thuringiensis subsp. israelensis kills Permethrin-resistant Anopheles gambiae, the principal vector of malaria.

    PubMed

    Ibrahim, Mohamed A; Griko, Natalya B; Bulla, Lee A

    2013-04-01

    Resurgence of malaria has been attributed, in part, to the development of resistance by Anopheles gambiae, a principal vector of the disease, to various insecticidal compounds such as Permethrin. Permethrin, a neurotoxicant, is widely used to impregnate mosquito nets. An alternative strategy to control mosquitoes is the use of Bacillus thuringiensis subsp. israelensis (Bti) because there is no observable resistance in the field to the bacterium. Bti kills mosquitoes by targeting cadherin molecules residing in the midgut epithelium of larvae of the insect. Cry proteins (Cry4A, Cry4B, Cry10A and Cry11A) produced by the bacterium during the sporulation phase of its life cycle bind to the cadherin molecules, which serve as receptors for the proteins. These Cry proteins have variable specificity to a variety of mosquitoes, including Culex and Aedes as well as Anopheles. Importantly, selective mosquitocidal action is occasioned by binding of the respective Cry toxins to cadherins distinctive to individual mosquito species. Differential fractionation of the four Cry proteins from a novel Bti isolate (M1) and cloning and expression of their genes in Escherichia coli revealed that Cry4B is the only Cry protein that exerts insecticidal action against An. gambiae. Indeed, it does so against a Permethrin-resistant strain of the mosquito. The other three Cry proteins are ineffective. Multiple sequence alignments of the four Cry proteins revealed a divergent sequence motif in the Cry4B toxin, which most likely determines binding of the toxin to its cognate receptor, BT-R3, in An. gambiae and to its specific toxicity. A model showing Cry4B toxin binding to BT-R3 is presented.

  5. The Brazilian Malaria Vector Anopheles (Kerteszia) Cruzii: Life Stages and Biology (Diptera: Culicidae)

    DTIC Science & Technology

    1991-11-01

    of the humans in Casa Grande, Sao Paulo State, as well as in many domestic and wild animals . Three other viruses, whose relation to human disease...Publishing, Inc., Marlton, NJ. Comportamento das especies vetoras de Harbach, R.E. and K.L. Knight. 1982. Correc- malaria. Rev. Brasil. Malariol. Doenw

  6. Control of vectors and incidence of malaria in an irrigated settlement scheme in Sri Lanka by using the insect growth regulator pyriproxyfen.

    PubMed

    Yapabandara, A M G M; Curtis, C F

    2004-12-01

    An evaluation of pyriproxyfen as a larval control agent with the aim of reducing malaria vector populations and incidence of malaria was conducted in 12 villages in an irrigated settlement scheme in the dry zone of central Sri Lanka. In these villages, there are many pools in the beds of rivers, streams, and irrigation ditches during the dry season of the year. These are the major breeding places of the malaria vectors Anopheles culicifacies and An. subpictus. Collections of adult mosquitoes were carried out by using standard methods and parasitological data were collected by daily malaria clinics set up for the project and through the 2 government hospitals. All villages in the study area were under residual house spraying with lambdacyhalothrin water-dispersible powder. Using the 1st year's baseline data collection, the villages were stratified into 6 villages with high malaria incidence and 6 villages with low incidence. Within each group, 3 villages were randomly assigned for larval control by treating all the pools in the beds of rivers, streams, and irrigation ditches and agricultural wells with a granular formulation of the insect growth regulator pyriproxyfen at the rate of 0.01 mg active ingredient/liter. The field bioassays indicated that a single treatment of pyriproxyfen effectively inhibited the emergence of adult mosquitoes in the riverbed pools for a period of 190 days. The treatment caused significant reduction of the adult populations of An. culicifacies (78%) and An. subpictus (72%). Similarly, incidence of malaria was reduced in the treatment villages by about 70% (95% confidence interval 58-78%) compared with the controls. The conclusion is made that pyriproxyfen can be a very effective means of malaria control if all possible vector breeding places in the area can be located.

  7. Ecological succession and its impact on malaria vectors and their predators in borrow pits in western Ethiopia.

    PubMed

    Kiszewski, Anthony E; Teffera, Zelalem; Wondafrash, Melaku; Ravesi, Michael; Pollack, Richard J

    2014-12-01

    Soil pits excavated for home construction are important larval habitats for malaria vectors in certain parts of Africa. Borrow pits in diverse stages of ecological succession in a maize-farming region of Western Ethiopia were surveyed to assess the relationships between stage of succession and the structure and composition of invertebrate and plant communities, with particular attention to Anopheles gambiae s.l. and An. coustani, the primary local malaria vectors. An array of 82 borrow pits was identified in a multi-lobed drainage basin in the community of Woktola. Each pit was evaluated on its physical features and by faunal and floral surveys during August, 2011, at the height of the longer rainy season (kiremt). Anopheles gambiae s.l. and An. coustani were the sole immature anophelines collected, often coexisting with Culex spp. Sedges were the most common plants within these pits, and included Cyperus elegantulus, C. flavescens, C. erectus and C. assimilis. The legume Smithia abyssinica, Nile grass (Acroceras macrum), cutgrass (Leersia hexandra), clover (Trifolium spp.), and the edible herb Centella asiatica, were also common in these habitats. No plant species in particular was strongly and consistently predictive of the presence or absence of mosquito immatures, particularly with regard to An. coustani. The presence of An.gambiae s.l. immatures in borrow pit habitats was negatively correlated with the presence of backswimmers (Notonectidae) (Z = -2.34, P = 0.019). Young (freshly excavated) borrow pits more likely contained immature An. gambiae s.l. (Z =-2.86, P=0.004). Ecological succession was apparent in older pits, and as they aged, they became less likely to serve as habitats for An. gambiae s.l. (Z=0.26, P=0.796), and more likely to support An. coustani (Z=0.728, P=0.007). As borrow pits age they become less suitable for An. gambiae s.l. breeding and more likely to harbor An. coustani. The abundance of notonectids in habitats was a negative indicator for

  8. First report of the infection of insecticide-resistant malaria vector mosquitoes with an entomopathogenic fungus under field conditions

    PubMed Central

    2011-01-01

    Background Insecticide-resistant mosquitoes are compromising the ability of current mosquito control tools to control malaria vectors. A proposed new approach for mosquito control is to use entomopathogenic fungi. These fungi have been shown to be lethal to both insecticide-susceptible and insecticide-resistant mosquitoes under laboratory conditions. The goal of this study was to see whether entomopathogenic fungi could be used to infect insecticide-resistant malaria vectors under field conditions, and to see whether the virulence and viability of the fungal conidia decreased after exposure to ambient African field conditions. Methods This study used the fungus Beauveria bassiana to infect the insecticide-resistant malaria vector Anopheles gambiae s.s (Diptera: Culicidae) VKPER laboratory colony strain. Fungal conidia were applied to polyester netting and kept under West African field conditions for varying periods of time. The virulence of the fungal-treated netting was tested 1, 3 and 5 days after net application by exposing An. gambiae s.s. VKPER mosquitoes in WHO cone bioassays carried out under field conditions. In addition, the viability of B. bassiana conidia was measured after up to 20 days exposure to field conditions. Results The results show that B. bassiana infection caused significantly increased mortality with the daily risk of dying being increased by 2.5× for the fungus-exposed mosquitoes compared to the control mosquitoes. However, the virulence of the B. bassiana conidia decreased with increasing time spent exposed to the field conditions, the older the treatment on the net, the lower the fungus-induced mortality rate. This is likely to be due to the climate because laboratory trials found no such decline within the same trial time period. Conidial viability also decreased with increasing exposure to the net and natural abiotic environmental conditions. After 20 days field exposure the conidial viability was 30%, but the viability of control

  9. Dose–response tests and semi-field evaluation of lethal and sub-lethal effects of slow release pyriproxyfen granules (Sumilarv®0.5G) for the control of the malaria vectors Anopheles gambiae sensu lato

    PubMed Central

    2013-01-01

    Background Recently research has shown that larviciding can be an effective tool for integrated malaria vector control. Nevertheless, the uptake of this intervention has been hampered by the need to re-apply larvicides frequently. There is a need to explore persistent, environmentally friendly larvicides for malaria vector control to reduce intervention efforts and costs by reducing the frequency of application. In this study, the efficacy of a 0.5% pyriproxyfen granule (Surmilarv®0.5G, Sumitomo Chemicals) was assessed for the control of Anopheles gambiae sensu stricto and Anopheles arabiensis, the major malaria vectors in sub-Saharan Africa. Methods Dose–response and standardized field tests were implemented following standard procedures of the World Health Organization’s Pesticide Evaluation Scheme to determine: (i) the susceptibility of vectors to this formulation; (ii) the residual activity and appropriate retreatment schedule for field application; and, (iii) sub-lethal impacts on the number and viability of eggs laid by adults after exposure to Sumilarv®0.5G during larval development. Results Anopheles gambiae s.s. and An. arabiensis were highly susceptible to Sumilarv®0.5G. Estimated emergence inhibition (EI) values were very low and similar for both species. The minimum dosage that completely inhibited adult emergence was between 0.01-0.03 parts per million (ppm) active ingredient (ai). Compared to the untreated control, an application of 0.018 ppm ai prevented 85% (95% confidence interval (CI) 82%-88%) of adult emergence over six weeks under standardized field conditions. A fivefold increase in dosage of 0.09 ppm ai prevented 97% (95% CI 94%-98%) emergence. Significant sub-lethal effects were observed in the standardized field tests. Female An. gambiae s.s. that were exposed to 0.018 ppm ai as larvae laid 47% less eggs, and females exposed to 0.09 ppm ai laid 74% less eggs than females that were unexposed to the treatment. Furthermore, 77

  10. A possible alternative method for collecting mosquito larvae in rice fields

    PubMed Central

    Robert, Vincent; Goff, Gilbert Le; Ariey, Frédéric; Duchemin, Jean-Bernard

    2002-01-01

    Background Rice fields are efficient breeding places for malaria vectors in Madagascar. In order to establish as easily as possible if a rice field is an effective larval site for anophelines, we compared classical dipping versus a net as methods of collecting larvae. Results Using similar collecting procedures, we found that the total number of anopheline larvae collected with the net was exactly double (174/87) that collected by dipping. The number of anopheline species collected was also greater with a net. Conclusions The net is an effective means of collecting anopheline larvae and can be used for qualitative ecological studies and to rapidly determine which rice fields are containing malaria vectors. PMID:12057018

  11. Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L.

    PubMed

    Sundaravadivelan, Chandran; Padmanabhan, Madanagopal Nalini

    2014-03-01

    Mosquitoes transmit dreadful diseases, causing millions of deaths every year. Therefore, screening for larvicidal and pupicidal activity of microbial extracts attributes could lead to development of new and improved mosquito control methods that are economical and safe for nontarget organisms and are ecofriendly. Synthetic chemical insecticides occupy predominant position in control strategies. These hazardous chemicals exert unwarranted toxicity and lethal effects on nontarget organisms, develop physiological resistance in target, and cause adverse environmental effect. For vector control, fungal-mediated natural products have been a priority in this area at present. In the current study, effective larvicidal and pupicidal effect of mycosynthesized silver nanoparticles (Ag NPs) using an entomopathogenic fungi Trichoderma harzianum against developmental stages of the dengue vector Aedes aegypti was investigated. An attractive possibility of green nanotechnology is to use microorganisms in the synthesis of nanosilver especially Ag NPs. The mycosynthesized Ag NPs were characterized to find their unique properties through UV-visible spectrophotometer, X-ray diffraction analysis, Fourier transform infrared, and surface characteristics by scanning electron microscopy. To analyze the bioefficacy, different test concentrations for extracellular filtrate (0.2, 0.4, 0.6, 0.8, and 1.0 %) and Ag NPs (0.05, 0.10, 0.15, 0.20, and 0.25 %) were prepared to a final volume of 200 mL using deionized water; 20 larvae of each instars (I-IV) and pupa were exposed to each test concentration separately which included a set of control (distilled water) group with five replicates. Characterization of the synthesized Ag NPs were about 10-20 nm without aggregation. Susceptibility of larval instars to synthesized Ag NPs was higher than the extracellular filtrate of T. harzianum alone after 24-h exposure, where the highest mortality was recorded as 92 and 96 % for first and second instars and

  12. Identification of salivary gland proteins depleted after blood feeding in the malaria vector Anopheles campestris-like mosquitoes (Diptera: Culicidae).

    PubMed

    Sor-suwan, Sriwatapron; Jariyapan, Narissara; Roytrakul, Sittiruk; Paemanee, Atchara; Phumee, Atchara; Phattanawiboon, Benjarat; Intakhan, Nuchpicha; Chanmol, Wetpisit; Bates, Paul A; Saeung, Atiporn; Choochote, Wej

    2014-01-01

    Malaria sporozoites must invade the salivary glands of mosquitoes for maturation before transmission to vertebrate hosts. The duration of the sporogonic cycle within the mosquitoes ranges from 10 to 21 days depending on the parasite species and temperature. During blood feeding salivary gland proteins are injected into the vertebrate host, along with malaria sporozoites in the case of an infected mosquito. To identify salivary gland proteins depleted after blood feeding of female Anopheles campestris-like, a potential malaria vector of Plasmodium vivax in Thailand, two-dimensional gel electrophoresis and nano-liquid chromatography-mass spectrometry techniques were used. Results showed that 19 major proteins were significantly depleted in three to four day-old mosquitoes fed on a first blood meal. For the mosquitoes fed the second blood meal on day 14 after the first blood meal, 14 major proteins were significantly decreased in amount. The significantly depleted proteins in both groups included apyrase, 5'-nucleotidase/apyrase, D7, D7-related 1, short form D7r1, gSG6, anti-platelet protein, serine/threonine-protein kinase rio3, putative sil1, cyclophilin A, hypothetical protein Phum_PHUM512530, AGAP007618-PA, and two non-significant hit proteins. To our knowledge, this study presents for the first time the salivary gland proteins that are involved in the second blood feeding on the day corresponding to the transmission period of the sporozoites to new mammalian hosts. This information serves as a basis for future work concerning the possible role of these proteins in the parasite transmission and the physiological processes that occur during the blood feeding.

  13. [Current malaria situation in Turkmenistan].

    PubMed

    Amangel'diev, K A

    2001-01-01

    administrative areas in ways of improving senior staff's skills in the laboratory diagnosis of malaria. The laboratory equipment which the country has received makes it possible to train high-level specialists and to equip its main malaria diagnosis centers with microscopes and reagents. The received insecticides and sprayers enable mosquitoes to be eliminated in an area of 960,000 sq. km (240 foci of infection): for this, our sincere thanks and gratitude are due to Dr. Guido Sabatinelli. Specialists teams have been created in each region by a decree of the Ministry of Health and Medical Industry to conduct mosquito elimination activities, with personal responsibility for their progress. Three-day vector control seminars have been held for disinfectors in all regions. We should stress that 5 extra posts have been created in the parasitology department of the Central Laboratory of Hygiene and Epidemiology, State Epidemiological Surveillance Service in order to strengthen preventive malaria control activities in Turkmenistan (organizational and methodological support for health facilities, staff training, etc.). To prevent the emergence of new breeding grounds for malaria vectors, the state system of health surveillance over the hygiene and technical status of water facilities and the rules governing their work have been reinforced. Local executive authorities do every effort to eliminate small, economically unprofitable water areas by draining, filling in or cleaning them. All existing and potential mosquito breeding grounds within a three-kilometer radius of any community were identified. These water areas were certified and their previous certifications analyzed, taking into account any changes and additional information which has become available about the area. Seasonal variations in the number of larvae and imagoes were monitored in the specimen areas of water and daytime resting sites. The existing vector species were identified and a list of the main species in all areas

  14. Organ-Specific Splice Variants of Aquaporin Water Channel AgAQP1 in the Malaria Vector Anopheles gambiae

    PubMed Central

    Tsujimoto, Hitoshi; Liu, Kun; Linser, Paul J.; Agre, Peter; Rasgon, Jason L.

    2013-01-01

    Background Aquaporin (AQP) water channels are important for water homeostasis in all organisms. Malaria transmission is dependent on Anopheles mosquitoes. Water balance is a major factor influencing mosquito survival, which may indirectly affect pathogen transmission. Methodology/Principal Findings We obtained full-length mRNA sequences for Anopheles gambiae aquaporin 1 (AgAQP1) and identified two splice variants for the gene. In vitro expression analysis showed that both variants transported water and were inhibited by Hg2+. One splice variant (AgAQP1A) was exclusively expressed in adult female ovaries indicating a function in mosquito reproduction. The other splice variant (AgAQP1B) was expressed in the midgut, malpighian tubules and the head in adult mosquitoes. Immunolabeling showed that in malpighian tubules, AgAQP1 is expressed in principal cells in the proximal portion and in stellate cells in the distal portion. Moreover, AgAQP1 is expressed in Johnston’s organ (the “ear”), which is important for courtship behavior. Conclusions And Significance These results suggest that AgAQP1 may play roles associated with mating (courtship) and reproduction in addition to water homeostasis in this important African malaria vector. PMID:24066188

  15. Reemergence, Persistence, and Surveillance of Vivax Malaria and Its Vectors in the Republic of Korea

    DTIC Science & Technology

    2008-01-01

    chemoprophylaxis policy in 1997,.placing approximately 16,000 soldiers on hydroxychloroquine sulfate (400 mg) and terminal primaquine prophylaxis (Figure n...As malaria increased. more soldiers were placed on chemoprophylaxis and by 2000; approximately 90.000 soldiers were placed on hydroxychloroquine ...it is unknown whether these breakthroughs are due to non-compliance, hydroxychloroquine failure, or both. From 1993 through 2007 there were a total

  16. Using nylon strips to dispense mosquito attractants for sampling the malaria vector Anopheles gambiae s.s.

    PubMed

    Okumu, F; Biswaro, L; Mbeleyela, E; Killeen, G F; Mukabana, R; Moore, S J

    2010-03-01

    Synthetic versions of human derived kairomones can be used as baits when trapping host seeking mosquitoes. The effectiveness of these lures depends not only on their attractiveness to the mosquitoes but also on the medium from which they are dispensed. We report on the development and evaluation of nylon strips as a method of dispensing odorants attractive to the malaria vector, Anopheles gambiae s.s. (Giles). When a synthetic blend of attractants was dispensed using this method, significantly more mosquitoes were trapped than when two previous methods, open glass vials or low density polyethylene sachets were used. We conclude that the nylon strips are suitable for dispensing odorants in mosquito trapping operations and can be adopted for use in rural and remote areas. The nylon material required is cheap and widely available and the strips can be prepared without specialized equipment or electricity.

  17. A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector

    PubMed Central

    2014-01-01

    Background Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis, crucial for successful resistance management, remains poorly characterized. Results Here, we demonstrate that the single amino acid change L119F in an upregulated glutathione S-transferase gene, GSTe2, confers high levels of metabolic resistance to DDT in the malaria vector Anopheles funestus. Genome-wide transcription analysis revealed that GSTe2 was the most over-expressed detoxification gene in DDT and permethrin-resistant mosquitoes from Benin. Transgenic expression of GSTe2 in Drosophila melanogaster demonstrated that over-transcription of this gene alone confers DDT resistance and cross-resistance to pyrethroids. Analysis of GSTe2 polymorphism established that the point mutation is tightly associated with metabolic resistance to DDT and its geographical distribution strongly correlates with DDT resistance patterns across Africa. Functional characterization of recombinant GSTe2 further supports the role of the L119F mutation, with the resistant allele being more efficient at metabolizing DDT than the susceptible one. Importantly, we also show that GSTe2 directly metabolizes the pyrethroid permethrin. Structural analysis reveals that the mutation confers resistance by enlarging the GSTe2 DDT-binding cavity, leading to increased DDT access and metabolism. Furthermore, we show that GSTe2 is under strong directional selection in resistant populations, and a restriction of gene flow is observed between African regions, enabling the prediction of the future spread of this resistance. Conclusions This first DNA-based metabolic resistance marker in mosquitoes provides an essential tool to track the evolution of resistance and to design suitable resistance management strategies. PMID:24565444

  18. Ovicidal, larvicidal and adulticidal properties of Asparagus racemosus (Willd.) (Family: Asparagaceae) root extracts against filariasis (Culex quinquefasciatus), dengue (Aedes aegypti) and malaria (Anopheles stephensi) vector mosquitoes (Diptera: Culicidae).

    PubMed

    Govindarajan, Marimuthu; Sivakumar, Rajamohan

    2014-04-01

    Several diseases are associated to the mosquito-human interaction. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. The present investigation was undertaken to study the ovicidal, larvicidal and adulticidal activities of crude hexane, ethyl acetate, benzene, chloroform and methanol extracts of root of Asparagus racemosus were assayed for their toxicity against three important vector mosquitoes, viz., Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). The mean percent hatchability of the eggs was observed after 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. All the five solvent extracts showed moderate ovicidal activity; however, the methanol extract showed the highest ovicidal activity. The methanol extract of Asparagus racemosus against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi exerted 100% mortality (zero hatchability) at 375, 300 and 225 ppm, respectively. Control eggs showed 99-100% hatchability. The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in methanol extract of root of Asparagus racemosus against the larvae of Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi with the LC50 and LC90 values were 115.13, 97.71 and 90.97 ppm and 210.96, 179.92, and 168.82 ppm, respectively. The adult mortality was observed after 24 h recovery period. The plant crude extracts showed dose-dependent mortality. At higher concentrations, the adult showed restless movement for some times with abnormal wagging and then died. Among the extracts tested, the highest adulticidal activity was observed in

  19. Other vector-borne parasitic diseases: animal helminthiases, bovine besnoitiosis and malaria.

    PubMed

    Duvallet, G; Boireau, P

    2015-08-01

    The parasitic diseases discussed elsewhere in this issue of the Scientific and Technical Review are not the only ones to make use of biological vectors (such as mosquitoes or ticks) or mechanical vectors (such as horse flies or Stomoxys flies). The authors discuss two major groups of vector-borne parasitic diseases: firstly, helminthiasis, along with animal filariasis and onchocerciasis, which are parasitic diseases that often take a heavytoll on artiodactylsthroughoutthe world; secondly, parasitic diseases caused by vector-borne protists, foremost of which is bovine besnoitiosis (or anasarca of cattle), which has recently spread through Europe by a dual mode of transmission (direct and by vector). Other protists, such as Plasmodium and Hepatozoon, are also described briefly.

  20. Identification, validation and application of molecular diagnostics for insecticide resistance in malaria vectors

    PubMed Central

    Donnelly, Martin J.; Isaacs, Alison T.; Weetman, David

    2016-01-01

    Insecticide resistance is a major obstacle to control of Anopheles malaria mosquitoes in sub-Saharan Africa and requires an improved understanding of the underlying mechanisms. Efforts to discover resistance genes and DNA markers have been dominated by candidate gene and quantitative trait locus studies of laboratory strains, but with greater availability of genome sequences a shift toward field-based agnostic discovery is anticipated. Mechanisms evolve continually to produce elevated resistance yielding multiplicative diagnostic markers, co-screening of which can give high predictive value. With a shift toward prospective analyses, identification and screening of resistance marker panels will boost monitoring and programmatic decision making. PMID:26750864

  1. Biolarvicidal compound gymnemagenol isolated from leaf extract of miracle fruit plant, Gymnema sylvestre (Retz) Schult against malaria and filariasis vectors.

    PubMed

    Khanna, Venkatesan Gopiesh; Kannabiran, Krishnan; Rajakumar, Govindasamy; Rahuman, Abdul Abdul; Santhoshkumar, Thirunavukkarasu

    2011-11-01

    Owing to the fact that the application of synthetic larvicide has envenomed the surroundings as well as non-target organisms, natural products of plant origin with insecticidal properties have been tried as an indigenous method for the control of a variety of insect pests and vectors in the recent past. Insecticides of plant origin have been extensively used on agricultural pests and, to a very limited extent, against insect vectors of public health importance, which deserve careful and thorough screening. The use of plant extracts for insect control has several appealing features as these are generally more biodegradable, less hazardous and a rich storehouse of chemicals of diverse biological activities. Moreover, herbal sources give a lead for discovering new insecticides. Therefore, biologically active plant materials have attracted considerable interest in mosquito control study in recent times. The crude leaf extracts of Gymnema sylvestre (Retz) Schult (Asclepiadaceae) and purified gymnemagenol compound were studied against the early fourth-instar larvae of Anopheles subpictus Grassi and Culex quinquefasciatus Say (Diptera: Culicidae). In the present study, bioassay-guided fractionation of petroleum ether leaf extract of G. sylvestre led to the separation and identification of gymnemagenol as a potential new antiparasitic compound. Phytochemical analysis of G. sylvestre leaves revealed the presence of active constituents such as carbohydrates, saponins, phytosterols, phenols, flavonoids and tannins. However, cardiac glycosides and phlobatannins are absent in the plant extracts. Quantitative analysis results suggested that saponin (5%) was present in a high concentration followed by tannins (1.0%). The 50 g powder was loaded on silica gel column and eluted with chloroform-methanol-water as eluents. From that, 16 mg pure saponin compound was isolated and analysed by thin layer chromatography using chloroform and methanol as the solvent systems. The structure of

  2. Repellent, Irritant and Toxic Effects of 20 Plant Extracts on Adults of the Malaria Vector Anopheles gambiae Mosquito

    PubMed Central

    Deletre, Emilie; Martin, Thibaud; Campagne, Pascal; Bourguet, Denis; Cadin, Andy; Menut, Chantal; Bonafos, Romain; Chandre, Fabrice

    2013-01-01

    Pyrethroid insecticides induce an excito-repellent effect that reduces contact between humans and mosquitoes. Insecticide use is expected to lower the risk of pathogen transmission, particularly when impregnated on long-lasting treated bednets. When applied at low doses, pyrethroids have a toxic effect, however the development of pyrethroid resistance in several mosquito species may jeopardize these beneficial effects. The need to find additional compounds, either to kill disease-carrying mosquitoes or to prevent mosquito contact with humans, therefore arises. In laboratory conditions, the effects (i.e., repellent, irritant and toxic) of 20 plant extracts, mainly essential oils, were assessed on adults of Anopheles gambiae, a primary vector of malaria. Their effects were compared to those of DEET and permethrin, used as positive controls. Most plant extracts had irritant, repellent and/or toxic effects on An. gambiae adults. The most promising extracts, i.e. those combining the three types of effects, were from Cymbopogon winterianus, Cinnamomum zeylanicum and Thymus vulgaris. The irritant, repellent and toxic effects occurred apparently independently of each other, and the behavioural response of adult An. gambiae was significantly influenced by the concentration of the plant extracts. Mechanisms underlying repellency might, therefore, differ from those underlying irritancy and toxicity. The utility of the efficient plant extracts for vector control as an alternative to pyrethroids may thus be envisaged. PMID:24376515

  3. Managing insecticide resistance in malaria vectors by combining carbamate-treated plastic wall sheeting and pyrethroid-treated bed nets

    PubMed Central

    Djènontin, Armel; Chabi, Joseph; Baldet, Thierry; Irish, Seth; Pennetier, Cédric; Hougard, Jean-Marc; Corbel, Vincent; Akogbéto, Martin; Chandre, Fabrice

    2009-01-01

    Background Pyrethroid resistance is now widespread in Anopheles gambiae, the major vector for malaria in sub-Saharan Africa. This resistance may compromise malaria vector control strategies that are currently in use in endemic areas. In this context, a new tool for management of resistant mosquitoes based on the combination of a pyrethroid-treated bed net and carbamate-treated plastic sheeting was developed. Methods In the laboratory, the insecticidal activity and wash resistance of four carbamate-treated materials: a cotton/polyester blend, a polyvinyl chloride tarpaulin, a cotton/polyester blend covered on one side with polyurethane, and a mesh of polypropylene fibres was tested. These materials were treated with bendiocarb at 100 mg/m2 and 200 mg/m2 with and without a binding resin to find the best combination for field studies. Secondly, experimental hut trials were performed in southern Benin to test the efficacy of the combined use of a pyrethroid-treated bed net and the carbamate-treated material that was the most wash-resistant against wild populations of pyrethroid-resistant An. gambiae and Culex quinquefasciatus. Results Material made of polypropylene mesh (PPW) provided the best wash resistance (up to 10 washes), regardless of the insecticide dose, the type of washing, or the presence or absence of the binding resin. The experimental hut trial showed that the combination of carbamate-treated PPW and a pyrethroid-treated bed net was extremely effective in terms of mortality and inhibition of blood feeding of pyrethroid-resistant An. gambiae. This efficacy was found to be proportional to the total surface of the walls. This combination showed a moderate effect against wild populations of Cx. quinquefasciatus, which were strongly resistant to pyrethroid. Conclusion These preliminary results should be confirmed, including evaluation of entomological, parasitological, and clinical parameters. Selective pressure on resistance mechanisms within the vector

  4. Efficacy of Olyset® Plus, a new long-lasting insecticidal net incorporating permethrin and piperonyl-butoxide against multi-resistant malaria vectors [corrected].

    PubMed

    Pennetier, Cédric; Bouraima, Aziz; Chandre, Fabrice; Piameu, Michael; Etang, Josiane; Rossignol, Marie; Sidick, Ibrahim; Zogo, Barnabas; Lacroix, Marie-Noëlle; Yadav, Rajpal; Pigeon, Olivier; Corbel, Vincent

    2013-01-01

    Due to the rapid extension of pyrethroid resistance in malaria vectors worldwide, manufacturers are developing new vector control tools including insecticide mixtures containing at least two active ingredients with different mode of action as part of insecticide resistance management. Olyset® Plus is a new long-lasting insecticidal net (LLIN) incorporating permethrin and a synergist, piperonyl butoxide (PBO), into its fibres in order to counteract metabolic-based pyrethroid resistance of mosquitoes. In this study, we evaluated the efficacy of Olyset® Plus both in laboratory and field against susceptible and multi-resistant malaria vectors and compared with Olyset Net, which is a permethrin incorporated into polyethylene net. In laboratory, Olyset® Plus performed better than Olyset® Net against susceptible Anopheles gambiae strain with a 2-day regeneration time owing to an improved permethrin bleeding rate with the new incorporation technology. It also performed better than Olyset® Net against multiple resistant populations of An. gambiae in experimental hut trials in West Africa. Moreover, the present study showed evidence for a benefit of incorporating a synergist, PBO, with a pyrethroid insecticide into mosquito netting. These results need to be further validated in a large-scale field trial to assess the durability and acceptability of this new tool for malaria vector control.

  5. Insecticide resistance in Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) and Anopheles gambiae Giles (Diptera: Culicidae) could compromise the sustainability of malaria vector control strategies in West Africa.

    PubMed

    Gnankiné, Olivier; Bassolé, Imael H N; Chandre, Fabrice; Glitho, Isabelle; Akogbeto, Martin; Dabiré, Roch K; Martin, Thibaud

    2013-10-01

    Insecticides from the organophosphate (OP) and pyrethroid (PY) chemical families, have respectively, been in use for 50 and 30 years in West Africa, mainly against agricultural pests, but also against vectors of human disease. The selection pressure, with practically the same molecules year after year (mainly on cotton), has caused insecticide resistance in pest populations such as Bemisia tabaci, vector of harmful phytoviruses on vegetables. The evolution toward insecticide resistance in malaria vectors such as Anopheles gambiae sensus lato (s.l.) is probably related to the current use of these insecticides in agriculture. Thus, successful pest and vector control in West Africa requires an investigation of insect susceptibility, in relation to the identification of species and sub species, such as molecular forms or biotypes. Identification of knock down resistance (kdr) and acetylcholinesterase gene (Ace1) mutations modifying insecticide targets in individual insects and measure of enzymes activity typically involved in insecticide metabolism (oxidase, esterase and glutathion-S-transferase) are indispensable in understanding the mechanisms of resistance. Insecticide resistance is a good example in which genotype-phenotype links have been made successfully. Insecticides used in agriculture continue to select new resistant populations of B. tabaci that could be from different biotype vectors of plant viruses. As well, the evolution of insecticide resistance in An. gambiae threatens the management of malaria vectors in West Africa. It raises the question of priority in the use of insecticides in health and/or agriculture, and more generally, the question of sustainability of crop protection and vector control strategies in the region. Here, we review the susceptibility tests, biochemical and molecular assays data for B. tabaci, a major pest in cotton and vegetable crops, and An. gambiae, main vector of malaria. The data reviewed was collected in Benin and Burkina

  6. Improving the population genetics toolbox for the study of the African malaria vector Anopheles nili: microsatellite mapping to chromosomes

    PubMed Central

    2011-01-01

    Background Anopheles nili is a major vector of malaria in the humid savannas and forested areas of sub-Saharan Africa. Understanding the population genetic structure and evolutionary dynamics of this species is important for the development of an adequate and targeted malaria control strategy in Africa. Chromosomal inversions and microsatellite markers are commonly used for studying the population structure of malaria mosquitoes. Physical mapping of these markers onto the chromosomes further improves the toolbox, and allows inference on the demographic and evolutionary history of the target species. Results Availability of polytene chromosomes allowed us to develop a map of microsatellite markers and to study polymorphism of chromosomal inversions. Nine microsatellite markers were mapped to unique locations on all five chromosomal arms of An. nili using fluorescent in situ hybridization (FISH). Probes were obtained from 300-483 bp-long inserts of plasmid clones and from 506-559 bp-long fragments amplified with primers designed using the An. nili genome assembly generated on an Illumina platform. Two additional loci were assigned to specific chromosome arms of An. nili based on in silico sequence similarity and chromosome synteny with Anopheles gambiae. Three microsatellites were mapped inside or in the vicinity of the polymorphic chromosomal inversions 2Rb and 2Rc. A statistically significant departure from Hardy-Weinberg equilibrium, due to a deficit in heterozygotes at the 2Rb inversion, and highly significant linkage disequilibrium between the two inversions, were detected in natural An. nili populations collected from Burkina Faso. Conclusions Our study demonstrated that next-generation sequencing can be used to improve FISH for microsatellite mapping in species with no reference genome sequence. Physical mapping of microsatellite markers in An. nili showed that their cytological locations spanned the entire five-arm complement, allowing genome-wide inferences

  7. Predicting the potential distribution of main malaria vectors Anopheles stephensi, An. culicifacies s.l. and An. fluviatilis s.l. in Iran based on maximum entropy model.

    PubMed

    Pakdad, Kamran; Hanafi-Bojd, Ahmad Ali; Vatandoost, Hassan; Sedaghat, Mohammad Mehdi; Raeisi, Ahmad; Moghaddam, Abdolreza Salahi; Foroushani, Abbas Rahimi

    2017-05-01

    Malaria is considered as a major public health problem in southern areas of Iran. The goal of this study was to predict best ecological niches of three main malaria vectors of Iran: Anopheles stephensi, Anopheles culicifacies s.l. and Anopheles fluviatilis s.l. A databank was created which included all published data about Anopheles species of Iran from 1961 to 2015. The suitable environmental niches for the three above mentioned Anopheles species were predicted using maximum entropy model (MaxEnt). AUC (area under Roc curve) values were 0.943, 0.974 and 0.956 for An. stephensi, An. culicifacies s.l. and An. fluviatilis s.l respectively, which are considered as high potential power of model in the prediction of species niches. The biggest bioclimatic contributor for An. stephensi and An. fluviatilis s.l. was bio 15 (precipitation seasonality), 25.5% and 36.1% respectively, followed by bio 1 (annual mean temperature), 20.8% for An. stephensi and bio 4 (temperature seasonality) with 49.4% contribution for An. culicifacies s.l. This is the first step in the mapping of the country's malaria vectors. Hence, future weather situation can change the dispersal maps of Anopheles. Iran is under elimination phase of malaria, so that such spatio-temporal studies are essential and could provide guideline for decision makers for IVM strategies in problematic areas.

  8. Efficacy of the Olyset Duo net against insecticide-resistant mosquito vectors of malaria.

    PubMed

    Ngufor, Corine; N'Guessan, Raphael; Fagbohoun, Josias; Todjinou, Damien; Odjo, Abibath; Malone, David; Ismail, Hanafy; Akogbeto, Martin; Rowland, Mark

    2016-09-14

    Olyset Duo is a new long-lasting insecticidal net treated with permethrin (a pyrethroid) and pyriproxyfen, an insect growth regulator that disrupts the maturation of oocytes in mosquitoes exposed to the net. We tested the Olyset Duo net against pyrethroid-resistant Anopheles gambiae mosquitoes, which transmit malaria parasites, in laboratory bioassays and in a trial in Benin using experimental huts that closely resemble local habitations. Host-seeking mosquitoes that entered to feed were free to contact the occupied nets and were collected the next morning from exit traps. Surviving blood-fed mosquitoes were observed for effects on reproduction. Control nets were treated with pyrethroid only or pyriproxyfen only, and nets were tested unwashed and after 20 standardized washes. The Olyset Duo net showed improved efficacy and wash resistance relative to the pyrethroid-treated net in terms of mosquito mortality and prevention of blood feeding. The production of offspring among surviving blood-fed A. gambiae in the hut trial was reduced by the pyriproxyfen-treated net and the Olyset Duo net both before washing (90 and 71% reduction, respectively) and after washing (38 and 43% reduction, respectively). The degree of reproductive suppression in the hut trial was predicted by laboratory tunnel tests but not by cone bioassays. The overall reduction in reproductive rate of A. gambiae with the Olyset Duo net in the trial was 94% with no washing and 78% after 20 washes. The Olyset Duo net has the potential to provide community control of mosquito populations and reduce malaria transmission in areas of high insecticide resistance.

  9. Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue.

    PubMed

    Arjunan, Naresh Kumar; Murugan, Kadarkarai; Rejeeth, Chandrababu; Madhiyazhagan, Pari; Barnard, Donald R

    2012-03-01

    A biological method was used to synthesize stable silver nanoparticles that were tested as mosquito larvicides against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Annona squamosa leaf broth (5%) reduced aqueous 1 mM AgNO₃ to stable silver nanoparticles with an average size of 450 nm. The structure and percentage of synthesized nanoparticles was characterized by using ultraviolet spectrophotometry, X-Ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy methods. The median lethal concentrations (LC₅₀) of silver nanoparticles that killed fourth instars of Ae. aegypti, Cx. quinquefasciatus, and An. stephensi were 0.30, 0.41, and 2.12 ppm, respectively. Adult longevity (days) in male and female mosquitoes exposed as larvae to 0.1 ppm silver nanoparticles was reduced by ~30% (p<0.05), whereas the number of eggs laid by females exposed as larvae to 0.1 ppm silver nanoparticles decreased by 36% (p<0.05).

  10. Malaria, Leishmaniasis and Shistosomiasis Vector Ecology, Transmission, Immunology and Prophylaxis in Kenya

    DTIC Science & Technology

    1994-01-27

    may be important in the diagnosis or control of the disease. In particular, the isolation of two species of leishmania with differing drug...sensu lato Isolated From A Giant Rat ..... ........ 16 Concurrent Infection with Leishmania donovani and Leishmania major .............. 17-18...schemes and find ways for elimination of the vector with environmentally safe insecticides. Concurrent Infection with Leishmania donovani and

  11. Linking individual phenotype to density-dependent population growth: the influence of body size on the population dynamics of malaria vectors.

    PubMed

    Russell, Tanya L; Lwetoijera, Dickson W; Knols, Bart G J; Takken, Willem; Killeen, Gerry F; Ferguson, Heather M

    2011-10-22

    Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low- or high-density insect populations. We assessed whether variation in phenotypic traits predict the dynamics of Anopheles gambiae sensu lato mosquitoes, the most important vectors of human malaria. Anopheles gambiae dynamics were monitored over a six-month period of seasonal growth and decline. The population exhibited density-dependent feedback, with the carrying capacity being modified by rainfall (97% wAIC(c) support). The individual phenotypic expression of the maternal (p = 0.0001) and current (p = 0.040) body size positively influenced population growth. Our field-based evidence uniquely demonstrates that individual fitness can have population-level impacts and, furthermore, can mitigate the impact of exogenous drivers (e.g. rainfall) in species whose reproduction depends upon it. Once frontline interventions have suppressed mosquito densities, attempts to eliminate malaria with supplementary vector control tools may be attenuated by increased population growth and individual fitness.

  12. Linking individual phenotype to density-dependent population growth: the influence of body size on the population dynamics of malaria vectors

    PubMed Central

    Russell, Tanya L.; Lwetoijera, Dickson W.; Knols, Bart G. J.; Takken, Willem; Killeen, Gerry F.; Ferguson, Heather M.

    2011-01-01

    Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low- or high-density insect populations. We assessed whether variation in phenotypic traits predict the dynamics of Anopheles gambiae sensu lato mosquitoes, the most important vectors of human malaria. Anopheles gambiae dynamics were monitored over a six-month period of seasonal growth and decline. The population exhibited density-dependent feedback, with the carrying capacity being modified by rainfall (97% wAICc support). The individual phenotypic expression of the maternal (p = 0.0001) and current (p = 0.040) body size positively influenced population growth. Our field-based evidence uniquely demonstrates that individual fitness can have population-level impacts and, furthermore, can mitigate the impact of exogenous drivers (e.g. rainfall) in species whose reproduction depends upon it. Once frontline interventions have suppressed mosquito densities, attempts to eliminate malaria with supplementary vector control tools may be attenuated by increased population growth and individual fitness. PMID:21389034

  13. Reduced susceptibility to pyrethroid insecticide treated nets by the malaria vector Anopheles gambiae s.l. in western Uganda

    PubMed Central

    John, Rubaihayo; Ephraim, Tukesiga; Andrew, Abaasa

    2008-01-01

    Background Pyrethroid insecticide-treated mosquito nets are massively being scaled-up for malaria prevention particularly in children under five years of age and pregnant mothers in sub-Saharan Africa. However, there is serious concern of the likely evolution of widespread pyrethroid resistance in the malaria vector Anopheles gambiae s.l. due to the extensive use of pyrethroid insecticide-treated mosquito nets. The purpose of this study was to ascertain the status of pyrethroid resistance in An. gambiae s.l. in western Uganda. Methods Wild mosquitoes (1–2 days old) were exposed in 10 replicates to new nets impregnated with K-othrine (Deltamethrin 25 mg/m2), Solfac EW50 (Cyfluthrin 50 mg/m2) and Fendona 6SC (Cypermethrin 50 mg/m2) and observed under normal room temperature and humidity (Temperature 24.8°C–27.4°C, Humidity 65.9–45.7). A similar set of mosquitoes collected from the control area 80 km away were exposed to a deltamethrin 25 mg/m2 impregnated net at the same time and under the same conditions. The 10-year mean KDT50 and mortality rates for each of the three pyrethroid insecticides were compared using the Student t-test. Results A significant increase in the mean knockdown time (KDT50) and mean mortality rate were observed in almost all cases an indication of reduced susceptibility. The overall results showed a four-fold increase in the mean knockdown time (KDT50) and 1.5-fold decrease in mortality rate across the three pyrethroid insecticides. There was a significant difference in the 10-year mean KDT50 between deltamethrin and cyfluthrin; deltamethrin and cypermethrin, but no significant difference between cyfluthrin and cypermethrin. The 10-year mean difference in KDT50 for mosquitoes exposed to deltamethrin from the control site was significantly different from that of mosquitoes from the intervention site (p<0.05, t=3.979, 9df). The 10-year mean difference in mortality rate between deltamethrin (84.64%); cyfluthrin (74.18%); cypermethrin (72

  14. The Genetic Basis of Host Preference and Resting Behavior in the Major African Malaria Vector, Anopheles arabiensis

    PubMed Central

    Main, Bradley J; Lee, Yoosook; Ferguson, Heather M.; Kreppel, Katharina S.; Kihonda, Anicet; Govella, Nicodem J.; Collier, Travis C.; Cornel, Anthony J.; Eskin, Eleazar; Kang, Eun Yong; Nieman, Catelyn C.; Weakley, Allison M.; Lanzaro, Gregory C.

    2016-01-01

    Malaria transmission is dependent on the propensity of Anopheles mosquitoes to bite humans (anthropophily) instead of other dead end hosts. Recent increases in the usage of Long Lasting Insecticide Treated Nets (LLINs) in Africa have been associated with reductions in highly anthropophilic and endophilic vectors such as Anopheles gambiae s.s., leaving species with a broader host range, such as Anopheles arabiensis, as the most prominent remaining source of transmission in many settings. An. arabiensis appears to be more of a generalist in terms of its host choice and resting behavior, which may be due to phenotypic plasticity and/or segregating allelic variation. To investigate the genetic basis of host choice and resting behavior in An. arabiensis we sequenced the genomes of 23 human-fed and 25 cattle-fed mosquitoes collected both in-doors and out-doors in the Kilombero Valley, Tanzania. We identified a total of 4,820,851 SNPs, which were used to conduct the first genome-wide estimates of “SNP heritability” for host choice and resting behavior in this species. A genetic component was detected for host choice (human vs cow fed; permuted P = 0.002), but there was no evidence of a genetic component for resting behavior (indoors versus outside; permuted P = 0.465). A principal component analysis (PCA) segregated individuals based on genomic variation into three groups which were characterized by differences at the 2Rb and/or 3Ra paracentromeric chromosome inversions. There was a non-random distribution of cattle-fed mosquitoes between the PCA clusters, suggesting that alleles linked to the 2Rb and/or 3Ra inversions may influence host choice. Using a novel inversion genotyping assay, we detected a significant enrichment of the standard arrangement (non-inverted) of 3Ra among cattle-fed mosquitoes (N = 129) versus all non-cattle-fed individuals (N = 234; χ2, p = 0.007). Thus, tracking the frequency of the 3Ra in An. arabiensis populations may be of use to infer

  15. Potential causes and consequences of behavioural resilience and resistance in malaria vector populations: a mathematical modelling analysis

    PubMed Central

    2014-01-01

    Background The ability of mosquitoes to evade fatal exposure to insecticidal nets and sprays represents the primary obstacle to eliminating malaria. However, it remains unclear which behaviours are most important for buffering mosquito and parasite populations against vector control. Methods Simulated life histories were used to compare the impact of alternative feeding behaviour strategies upon overall lifetime feeding success, and upon temporal distributions of successful feeds and biting rates experienced by unprotected humans, in the presence and absence of insecticidal nets. Strictly nocturnal preferred feeding times were contrasted with 1) a wider preference window extending to dawn and dusk, and 2) crepuscular preferences wherein foraging is suppressed when humans sleep and can use nets but is maximal immediately before and after. Simulations with diversion and mortality parameters typical of endophagic, endophilic African vectors, such as Anopheles gambiae and Anopheles funestus, were compared with those for endophagic but exophilic species, such as Anopheles arabiensis, that also enter houses but leave earlier before lethal exposure to insecticide-treated surfaces occurs. Results Insecticidal nets were predicted to redistribute successful feeding events to dawn and dusk where these were included in the profile of innately preferred feeding times. However, predicted distributions of biting unprotected humans were unaffected because extended host-seeking activity was redistributed to innately preferred feeding times. Recently observed alterations of biting activity distributions therefore reflect processes not captured in this model, such as evolutionary selection of heritably modified feeding time preferences or phenotypically plastic expression of feeding time preference caused by associative learning. Surprisingly, endophagy combined with exophily, among mosquitoes that enter houses but then feed and/or rest briefly before rapidly exiting, consistently

  16. Pilot study on the combination of an organophosphate-based insecticide paint and pyrethroid-treated long lasting nets against pyrethroid resistant malaria vectors in Burkina Faso.

    PubMed

    Mosqueira, Beatriz; Soma, Dieudonné D; Namountougou, Moussa; Poda, Serge; Diabaté, Abdoulaye; Ali, Ouari; Fournet, Florence; Baldet, Thierry; Carnevale, Pierre; Dabiré, Roch K; Mas-Coma, Santiago

    2015-08-01

    A pilot study to test the efficacy of combining an organophosphate-based insecticide paint and pyrethroid-treated Long Lasting Insecticide Treated Nets (LLINs) against pyrethroid-resistant malaria vector mosquitoes was performed in a real village setting in Burkina Faso. Paint Inesfly 5A IGR™, comprised of two organophosphates (OPs) and an Insect Growth Regulator (IGR), was tested in combination with pyrethroid-treated LLINs. Efficacy was assessed in terms of mortality for 12 months using Early Morning Collections of malaria vectors and 30-minute WHO bioassays. Resistance to pyrethroids and OPs was assessed by detecting the frequency of L1014F and L1014S kdr mutations and Ace-1(R)G119S mutation, respectively. Blood meal origin was identified using a direct enzyme-linked immunosorbent assay (ELISA). The combination of Inesfly 5A IGR™ and LLINs was effective in killing 99.9-100% of malaria vector populations for 6 months regardless of the dose and volume treated. After 12 months, mortality rates decreased to 69.5-82.2%. The highest mortality rates observed in houses treated with 2 layers of insecticide paint and a larger volume. WHO bioassays supported these results: mortalities were 98.8-100% for 6 months and decreased after 12 months to 81.7-97.0%. Mortality rates in control houses with LLINs were low. Collected malaria vectors consisted exclusively of Anopheles coluzzii and were resistant to pyrethroids, with a L1014 kdr mutation frequency ranging from 60 to 98% through the study. About 58% of An. coluzzii collected inside houses had bloodfed on non-human animals. Combining Inesfly 5A IGR™ and LLINs yielded a one year killing efficacy against An. coluzzii highly resistant to pyrethroids but susceptible to OPs that exhibited an anthropo-zoophilic behaviour in the study area. The results obtained in a real setting supported previous work performed in experimental huts and underscore the need to study the impact that this novel strategy may have on clinical

  17. Use of DNA barcoding to distinguish the malaria vector Anopheles neivai in Colombia.

    PubMed

    López-Rubio, Andrés; Suaza-Vasco, Juan; Marcet, Paula L; Ruíz-Molina, Natalia; Cáceres, Lorenzo; Porter, Charles; Uribe, Sandra

    2016-10-17

    A reference 535 bp barcode sequence from a fragment of the mitochondrial gene cytochrome oxidase I (COI), acquired from specimens of An. neivai Howard, Dyar & Knab, 1913 from its type locality in Panama, was used as a tool for distinguishing this species from others in the subgenus Kerteszia. Comparisons with corresponding regions of COI between An. neivai and other species in the subgenus (An. bellator Dyar & Knab 1906, An. homunculus Komp 1937, An cruzii Dyar & Knab, 1908 and An. laneanus Corrêa & Cerqueira, 1944) produced K2P genetic distances of 8.3-12.6%, values well above those associated with intraspecific variation. In contrast, genetic distances among 55 specimens from five municipalities in the Colombian Pacific coastal state of Chocó were all within the range of 0-2.5%, with an optimized barcode threshold of 1.3%, the limit for unambiguous differentiation of An. neivai. Among specimens from the Chocó region, 18 haplotypes were detected, two of which were widely distributed over the municipalities sampled. The barcode sequence permits discrimination of An. neivai from sympatric species and indicates genetic variability within the species; aspects key to malaria surveillance and control as well as defining geographic distribution and dispersion patterns.

  18. Use of DNA barcoding to distinguish the malaria vector Anopheles neivai in Colombia

    PubMed Central

    LÓPEZ-RUBIO, ANDRÉS; SUAZA-VASCO, JUAN; MARCET, PAULA L; RUÍZ-MOLINA, NATALIA; CÁCERES, LORENZO; PORTER, CHARLES; URIBE, SANDRA

    2016-01-01

    A reference 535 bp barcode sequence from a fragment of the mitochondrial gene cytochrome oxidase I (COI), acquired from specimens of An. neivai Howard, Dyar & Knab, 1913 from its type locality in Panama, was used as a tool for distinguishing this species from others in the subgenus Kerteszia. Comparisons with corresponding regions of COI between An. neivai and other species in the subgenus (An. bellator Dyar & Knab 1906, An. homunculus Komp 1937, An cruzii Dyar & Knab, 1908 and An. laneanus Corrêa & Cerqueira, 1944) produced K2P genetic distances of 8.3–12.6%, values well above those associated with intraspecific variation. In contrast, genetic distances among 55 specimens from five municipalities in the Colombian Pacific coastal state of Chocó were all within the range of 0–2.5%, with an optimized barcode threshold of 1.3%, the limit for unambiguous differentiation of An. neivai. Among specimens from the Chocó region, 18 haplotypes were detected, two of which were widely distributed over the municipalities sampled. The barcode sequence permits discrimination of An. neivai from sympatric species and indicates genetic variability within the species; aspects key to malaria surveillance and control as well as defining geographic distribution and dispersion patterns. PMID:27811749

  19. Preliminary observations on cross-mating of the malaria vector, Anopheles sergentii from two Egyptian oases.

    PubMed

    Kenawy, M A; Sowilem, M M; Abdel-Hamid, Y M; Wahba, M M

    2000-12-01

    Intra- and inter-strain crosses were made between randomly collected adults Anopheles sergentii originated from Tersa village (El-Faiyum Governorate) and Siwa oasis (Matruh Governorate). The success of such crosses and their effects on fecundity and fertility of the parental females and on survival and development velocities of the F1 immatures were examined. No overall heterosis effects on such attributes were detected suggesting absence of genetic differences between the vector populations in these two malarious areas.

  20. Interactive cost of Plasmodium infection and insecticide resistance in the malaria vector Anopheles gambiae

    PubMed Central

    Alout, Haoues; Dabiré, Roch K.; Djogbénou, Luc S.; Abate, Luc; Corbel, Vincent; Chandre, Fabrice; Cohuet, Anna

    2016-01-01

    Insecticide resistance raises concerns for the control of vector-borne diseases. However, its impact on parasite transmission could be diverse when considering the ecological interactions between vector and parasite. Thus we investigated the fitness cost associated with insecticide resistance and Plasmodium falciparum infection as well as their interactive cost on Anopheles gambiae survival and fecundity. In absence of infection, we observed a cost on fecundity associated with insecticide resistance. However, survival was higher for mosquito bearing the kdr mutation and equal for those with the ace-1R mutation compared to their insecticide susceptible counterparts. Interestingly, Plasmodium infection reduced survival only in the insecticide resistant strains but not in the susceptible one and infection was associated with an increase in fecundity independently of the strain considered. This study provides evidence for a survival cost associated with infection by Plasmodium parasite only in mosquito selected for insecticide resistance. This suggests that the selection of insecticide resistance mutation may have disturbed the interaction between parasites and vectors, resulting in increased cost of infection. Considering the fitness cost as well as other ecological aspects of this natural mosquito-parasite combination is important to predict the epidemiological impact of insecticide resistance. PMID:27432257

  1. Interactive cost of Plasmodium infection and insecticide resistance in the malaria vector Anopheles gambiae.

    PubMed

    Alout, Haoues; Dabiré, Roch K; Djogbénou, Luc S; Abate, Luc; Corbel, Vincent; Chandre, Fabrice; Cohuet, Anna

    2016-07-19

    Insecticide resistance raises concerns for the control of vector-borne diseases. However, its impact on parasite transmission could be diverse when considering the ecological interactions between vector and parasite. Thus we investigated the fitness cost associated with insecticide resistance and Plasmodium falciparum infection as well as their interactive cost on Anopheles gambiae survival and fecundity. In absence of infection, we observed a cost on fecundity associated with insecticide resistance. However, survival was higher for mosquito bearing the kdr mutation and equal for those with the ace-1(R) mutation compared to their insecticide susceptible counterparts. Interestingly, Plasmodium infection reduced survival only in the insecticide resistant strains but not in the susceptible one and infection was associated with an increase in fecundity independently of the strain considered. This study provides evidence for a survival cost associated with infection by Plasmodium parasite only in mosquito selected for insecticide resistance. This suggests that the selection of insecticide resistance mutation may have disturbed the interaction between parasites and vectors, resulting in increased cost of infection. Considering the fitness cost as well as other ecological aspects of this natural mosquito-parasite combination is important to predict the epidemiological impact of insecticide resistance.

  2. A comparison of two commercial mosquito traps for the capture of malaria vectors in northern belize, central america.

    PubMed

    Wagman, Joseph; Grieco, John P; Bautista, Kim; Polanco, Jorge; Briceño, Ireneo; King, Russell; Achee, Nicole L

    2014-09-01

    To achieve maximum success from any vector control intervention, it is critical to identify the most efficacious tools available. The principal aim of this study was to evaluate the efficacy of 2 commercially available adult mosquito traps for capturing Anopheles albimanus and An. vestitipennis, 2 important malaria vectors in northern Belize, Central America. Additionally, the impact of outdoor baited traps on mosquito entry into experimental huts was assessed. When operated outside of human-occupied experimental huts, the Centers for Disease Control and Prevention (CDC) miniature light trap, baited with human foot odors, captured significantly greater numbers of female An. albimanus per night (5.1 ± 1.9) than the Biogents Sentinel™ trap baited with BG-Lure™ (1.0 ± 0.2). The 2 trap types captured equivalent numbers of female An. vestitipennis per night, 134.3 ± 45.6 in the CDC trap and 129.6 ± 25.4 in the Sentinel trap. When compared to a matched control hut using no intervention, the use of baited CDC light traps outside an experimental hut did not impact the entry of An. vestitipennis into window interception traps, 17.1 ± 1.3 females per hour in experimental huts vs. 17.2 ± 1.4 females per hour in control huts. However, the use of outdoor baited CDC traps did significantly decrease the entry of An. albimanus into window interception traps from 3.5 ± 0.5 females per hour to 1.9 ± 0.2 females per hour. These results support existing knowledge that the underlying ecological and behavioral tendencies of different Anopheles species can influence trap efficacy. Furthermore, these findings will be used to guide trap selection for future push-pull experiments to be conducted at the study site.

  3. 1.45 Å resolution structure of SRPN18 from the malaria vector Anopheles gambiae

    SciTech Connect

    Meekins, David A.; Zhang, Xin; Battaile, Kevin P.; Lovell, Scott; Michel, Kristin

    2016-11-19

    Serine protease inhibitors (serpins) in insects function within development, wound healing and immunity. The genome of the African malaria vector,Anopheles gambiae, encodes 23 distinct serpin proteins, several of which are implicated in disease-relevant physiological responses.A. gambiaeserpin 18 (SRPN18) was previously categorized as non-inhibitory based on the sequence of its reactive-center loop (RCL), a region responsible for targeting and initiating protease inhibition. The crystal structure ofA. gambiaeSRPN18 was determined to a resolution of 1.45 Å, including nearly the entire RCL in one of the two molecules in the asymmetric unit. The structure reveals that the SRPN18 RCL is extremely short and constricted, a feature associated with noncanonical inhibitors or non-inhibitory serpin superfamily members. Furthermore, the SRPN18 RCL does not contain a suitable protease target site and contains a large number of prolines. The SRPN18 structure therefore reveals a unique RCL architecture among the highly conserved serpin fold.

  4. Morphological variability in the malaria vector, Anopheles moucheti, is not indicative of speciation: evidences from sympatric south Cameroon populations.

    PubMed

    Antonio-Nkondjio, Christophe; Simard, Frédéric; Cohuet, Anna; Fontenille, Didier

    2002-10-01

    Anopheles moucheti is a major human malaria vector in the vicinity of slow moving rivers in the tropical forests of Central Africa. Morphological variations in natural populations of A. moucheti led to the designation of three morphological forms named A. moucheti moucheti, A. moucheti nigeriensis and A. moucheti bervoetsi. Using allozyme markers, we investigated to which extent morphological and/or geographical populations of A. moucheti were genetically differentiated. Mosquitoes were collected from four villages 20-200 km distant apart in south Cameroon, where specimens from each morphological form were found in sympatry. All populations appeared highly homogenous across both morphological type and geographic location. Significant genetic differentiation was only observed between two locations 150 km apart (F(st)=0.029; P=0.006), while no pairwise F(st) estimate between morphological forms reached statistical significance. Further evidence against any taxonomic value of this morphological classification was provided by direct observation of morphological variation within the progeny of field-collected females from all three types. Single female offspring always belonged to at least two morphologically recognised types and most often, a mixture of all three forms was observed. Our results therefore demonstrate that morphological variability within A. moucheti natural populations is not indicative of speciation. With this respect, restricted migration of individuals across river systems may be a more important factor in shaping population genetic structure of A. moucheti.

  5. SEASONAL DISTRIBUTION OF MALARIA VECTORS (DIPTERA: CULICIDAE) IN RURAL LOCALITIES OF PORTO VELHO, RONDÔNIA, BRAZILIAN AMAZON

    PubMed Central

    GIL, Luiz Herman Soares; RODRIGUES, Moreno de Souza; de LIMA, Alzemar Alves; KATSURAGAWA, Tony Hiroshi

    2015-01-01

    We conducted a survey of the malaria vectors in an area where a power line had been constructed, between the municipalities of Porto Velho and Rio Branco, in the states of Rondônia and Acre, respectively. The present paper relates to the results of the survey of Anopheles fauna conducted in the state of Rondônia. Mosquito field collections were performed in six villages along the federal highway BR 364 in the municipality of Porto Velho, namely Porto Velho, Jaci Paraná, Mutum Paraná, Vila Abunã, Vista Alegre do Abunã, and Extrema. Mosquito captures were performed at three distinct sites in each locality during the months of February, July, and October 2011 using a protected human-landing catch method; outdoor and indoor captures were conducted simultaneously at each site for six hours. In the six sampled areas, we captured 2,185 mosquitoes belonging to seven Anopheles species. Of these specimens, 95.1% consisted of Anopheles darlingi, 1.8% An. triannulatus l.s., 1.7% An. deaneorum, 0.8% An. konderi l.s., 0.4 An. braziliensis, 0.1% An. albitarsis l.s., and 0.1% An. benarrochi. An. darlingi was the only species found in all localities; the remaining species occurred in sites with specific characteristics. PMID:26200969

  6. Climate influences on the cost-effectiveness of vector-based interventions against malaria in elimination scenarios

    PubMed Central

    Parham, Paul E.; Hughes, Dyfrig A.

    2015-01-01

    Despite the dependence of mosquito population dynamics on environmental conditions, the associated impact of climate and climate change on present and future malaria remains an area of ongoing debate and uncertainty. Here, we develop a novel integration of mosquito, transmission and economic modelling to assess whether the cost-effectiveness of indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) against Plasmodium falciparum transmission by Anopheles gambiae s.s. mosquitoes depends on climatic conditions in low endemicity scenarios. We find that although temperature and rainfall affect the cost-effectiveness of IRS and/or LLIN scale-up, whether this is sufficient to influence policy depends on local endemicity, existing interventions, host immune response to infection and the emergence rate of insecticide resistance. For the scenarios considered, IRS is found to be more cost-effective than LLINs for the same level of scale-up, and both are more cost-effective at lower mean precipitation and higher variability in precipitation and temperature. We also find that the dependence of peak transmission on mean temperature translates into optimal temperatures for vector-based intervention cost-effectiveness. Further cost-effectiveness analysis that accounts for country-specific epidemiological and environmental heterogeneities is required to assess optimal intervention scale-up for elimination and better understand future transmission trends under climate change. PMID:25688017

  7. Distinct malaria parasite sporozoites reveal transcriptional changes that cause differential tissue infection competence in the mosquito vector and mammalian host.

    PubMed

    Mikolajczak, Sebastian A; Silva-Rivera, Hilda; Peng, Xinxia; Tarun, Alice S; Camargo, Nelly; Jacobs-Lorena, Vanessa; Daly, Thomas M; Bergman, Lawrence W; de la Vega, Patricia; Williams, Jack; Aly, Ahmed S I; Kappe, Stefan H I

    2008-10-01

    The malaria parasite sporozoite transmission stage develops and differentiates within parasite oocysts on the Anopheles mosquito midgut. Successful inoculation of the parasite into a mammalian host is critically dependent on the sporozoite's ability to first infect the mosquito salivary glands. Remarkable changes in tissue infection competence are observed as the sporozoites transit from the midgut oocysts to the salivary glands. Our microarray analysis shows that compared to oocyst sporozoites, salivary gland sporozoites upregulate expression of at least 124 unique genes. Conversely, oocyst sporozoites show upregulation of at least 47 genes (upregulated in oocyst sporozoites [UOS genes]) before they infect the salivary glands. Targeted gene deletion of UOS3, encoding a putative transmembrane protein with a thrombospondin repeat that localizes to the sporozoite secretory organelles, rendered oocyst sporozoites unable to infect the mosquito salivary glands but maintained the parasites' liver infection competence. This phenotype demonstrates the significance of differential UOS expression. Thus, the UIS-UOS gene classification provides a framework to elucidate the infectivity and transmission success of Plasmodium sporozoites on a whole-genome scale. Genes identified herein might represent targets for vector-based transmission blocking strategies (UOS genes), as well as strategies that prevent mammalian host infection (UIS genes).

  8. Assessing the Fauna of Aquatic Insects for Possible Use for Malaria Vector Control in Large River, Central Iran.

    PubMed

    Shayeghi, Mansoureh; Nejati, Jalil; Shirani-Bidabadi, Leila; Koosha, Mona; Badakhshan, Mehdi; Mohammadi Bavani, Mulood; Arzamani, Kourosh; Choubdar, Nayyereh; Bagheri, Fatemeh; Saghafipour, Abedin; Veysi, Arshad; Karimian, Fateh; Akhavan, Amir Ahamd; Vatandoost, Hassan

    2015-01-01

    Insects with over 30,000 aquatic species are known as very successful arthropods in freshwater habitats. Some of them are applied as biological indicators for water quality control, as well as the main food supply for fishes and amphibians. The faunistic studies are the basic step in entomological researches; the current study was carried out emphasizing on the fauna of aquatic insects in Karaj River, northern Iran. A field study was carried out in six various sampling site of Karaj River during spring 2013. The aquatic insects were collected using several methods such as D-frame nets, dipping and direct search on river floor stones. Specimens were collected and preserved in Ethanol and identified by standard identification keys. Totally, 211 samples were collected belonging to three orders; Plecoptera, Trichoptera and Ephemeroptera. Seven genuses (Perla, Isoperla, Hydropsyche, Cheumatopsyche, Baetis, Heptagenia and Maccafferium) from five families (Perlidae, Perlodidae, Hydropsychidae, Batidae, Heptagenidae) were identified. The most predominant order was Plecoptera followed by Trichoptera. Karaj River is a main and important river, which provides almost all of water of Karaj dam. So, identification of aquatic species which exist in this river is vital and further studies about systematic and ecological investigations should be performed. Also, monitoring of aquatic biota by trained health personnel can be a critical step to describe water quality in this river. Understanding the fauna of aquatic insects will provide a clue for possible biological control of medically important aquatic insects such as Anopheles as the malaria vectors.

  9. Insecticidal activities of bark, leaf and seed extracts of Zanthoxylum heitzii against the African malaria vector Anopheles gambiae.

    PubMed

    Overgaard, Hans J; Sirisopa, Patcharawan; Mikolo, Bertin; Malterud, Karl E; Wangensteen, Helle; Zou, Yuan-Feng; Paulsen, Berit S; Massamba, Daniel; Duchon, Stephane; Corbel, Vincent; Chandre, Fabrice

    2014-12-17

    The olon tree, Zanthoxylum heitzii (syn. Fagara heitzii) is commonly found in the central-west African forests. In the Republic of Congo (Congo-Brazzaville) its bark is anecdotally reported to provide human protection against fleas. Here we assess the insecticidal activities of Z. heitzii stem bark, seed and leaf extracts against Anopheles gambiae s.s, the main malaria vector in Africa. Extracts were obtained by Accelerated Solvent Extraction (ASE) using solvents of different polarity and by classical Soxhlet extraction using hexane as solvent. The insecticidal effects of the crude extracts were evaluated using topical applications of insecticides on mosquitoes of a susceptible reference strain (Kisumu [Kis]), a strain homozygous for the L1014F kdr mutation (kdrKis), and a strain homozygous for the G119S Ace1R allele (AcerKis). The insecticidal activities were measured using LD50 and LD95 and active extracts were characterized by NMR spectroscopy and HPLC chromatography. Results show that the ASE hexane stem bark extract was the most effective compound against An. gambiae (LD50 = 102 ng/mg female), but was not as effective as common synthetic insecticides. Overall, there was no significant difference between the responses of the three mosquito strains to Z. heitzii extracts, indicating no cross resistance with conventional pesticides.

  10. Humoral response to the Anopheles gambiae salivary protein gSG6: a serological indicator of exposure to Afrotropical malaria vectors.

    PubMed

    Rizzo, Cinzia; Ronca, Raffaele; Fiorentino, Gabriella; Verra, Federica; Mangano, Valentina; Poinsignon, Anne; Sirima, Sodiomon Bienvenu; Nèbiè, Issa; Lombardo, Fabrizio; Remoue, Franck; Coluzzi, Mario; Petrarca, Vincenzo; Modiano, David; Arcà, Bruno

    2011-03-17

    Salivary proteins injected by blood feeding arthropods into their hosts evoke a saliva-specific humoral response which can be useful to evaluate exposure to bites of disease vectors. However, saliva of hematophagous arthropods is a complex cocktail of bioactive factors and its use in immunoassays can be misleading because of potential cross-reactivity to other antigens. Toward the development of a serological marker of exposure to Afrotropical malaria vectors we expressed the Anopheles gambiae gSG6, a small anopheline-specific salivary protein, and we measured the anti-gSG6 IgG response in individuals from a malaria hyperendemic area of Burkina Faso, West Africa. The gSG6 protein was immunogenic and anti-gSG6 IgG levels and/or prevalence increased in exposed individuals during the malaria transmission/rainy season. Moreover, this response dropped during the intervening low transmission/dry season, suggesting it is sensitive enough to detect variation in vector density. Members of the Fulani ethnic group showed higher anti-gSG6 IgG response as compared to Mossi, a result consistent with the stronger immune reactivity reported in this group. Remarkably, anti-gSG6 IgG levels among responders were high in children and gradually declined with age. This unusual pattern, opposite to the one observed with Plasmodium antigens, is compatible with a progressive desensitization to mosquito saliva and may be linked to the continued exposure to bites of anopheline mosquitoes. Overall, the humoral anti-gSG6 IgG response appears a reliable serological indicator of exposure to bites of the main African malaria vectors (An. gambiae, Anopheles arabiensis and, possibly, Anopheles funestus) and it may be exploited for malaria epidemiological studies, development of risk maps and evaluation of anti-vector measures. In addition, the gSG6 protein may represent a powerful model system to get a deeper understanding of molecular and cellular mechanisms underlying the immune tolerance and

  11. Transcription Regulation of Sex-Biased Genes during Ontogeny in the Malaria Vector Anopheles gambiae

    PubMed Central

    Windbichler, Nikolai; Papathanos, Philippos-Aris; Nolan, Tony; Dottorini, Tania; Rizzi, Ermanno; Christophides, George K.; Crisanti, Andrea

    2011-01-01

    In Anopheles gambiae, sex-regulated genes are responsible for controlling gender dimorphism and are therefore crucial in determining the ability of female mosquitoes to transmit human malaria. The identification and functional characterization of these genes will shed light on the sexual development and maturation of mosquitoes and provide useful targets for genetic control measures aimed at reducing mosquito fertility and/or distorting the sex ratio. We conducted a genome wide transcriptional analysis of sex-regulated genes from early developmental stages through adulthood combined with functional screening of novel gonadal genes. Our results demonstrate that the male-biased genes undergo a major transcription turnover starting from larval stages to adulthood. The male biased genes at the adult stage include a significant high number of unique sequences compared to the rest of the genome. This is in contrast to female-biased genes that are much more conserved and are mainly activated during late developmental stages. The high frequency of unique sequences would indicate that male-biased genes evolve more rapidly than the rest of the genome. This finding is particularly intriguing because A. gambiae is a strictly female monogamous species suggesting that driving forces in addition to sperm competition must account for the rapid evolution of male-biased genes. We have also identified and functionally characterized a number of previously unknown A. gambiae testis- and ovary-specific genes. Two of these genes, zero population growth and a suppressor of defective silencing 3 domain of the histone deacetylase co-repressor complex, were shown to play a key role in gonad development. PMID:21738713

  12. Anopheles (Diptera: Culicidae) malaria vectors in the municipality of Puerto Carreno, Vichada, Colombia

    PubMed Central

    Jiménez, Pilar; Conn, Jan E.; Wirtz, Robert; Brochero, Helena

    2013-01-01

    Introduction The study of the biological aspects of Anopheles spp., strengthens the entomological surveillance. Objective To determine biological aspects and behavior of adult Anopheles mosquitoes in the urban area of Puerto Carreño municipality, Vichada, Colombia. Materials and methods Wild anophelines were collected landing on humans both indoors and outdoors between 18:00h and 06:00h for 50 min/h during two consecutive nights/month for eight months in the urban area of Puerto Carreño. The biting rate activity, the natural infection by Plasmodium falciparum and P. vivax VK247 and VK210 using ELISA, and the annual entomological inoculation rate were determined for each species. The members of the Albitarsis complex were determined by amplificacion of the white gene by polymerase chain reaction. Results In order of abundance the species found were An. darlingi (n=1,166), An. marajoara sensu stricto (n=152), An. braziliensis (n=59), An. albitarsis F (n=25), An. albitarsis sensu lato (n=16), An. argyritarsis (n=3) and An. oswaldoi sensu lato (n=2). An. darlingi showed two activity peaks between 21:00 to 22:00 and 05:00 to 06:00 hours outdoors and between 21:00 to 22:00 and 04:00 to 05:00 indoors. Natural infection of this species was found with P. vivax VK210 and its annual entomological inoculation rate was 2. Natural infection of An marajoara sensu stricto with P. falciparum was found, with an annual entomological inoculation rate of 5 and a peak biting activity between 18:00 to 19:00 hrs both indoors and outdoors. Conclusion Transmission of malaria in the urban area of Puerto Carreño, Vichada, can occur by An. darlingi and An. marajoara s. s. PMID:23235809

  13. Microdistribution of the resistance of malaria vectors to deltamethrin in the region of Plateau (southeastern Benin) in preparation for an assessment of the impact of resistance on the effectiveness of Long Lasting Insecticidal Nets (LLINs)

    PubMed Central

    2014-01-01

    Background This study aims to research two areas, one with a resistant and the other with a susceptible profile of An. gambiae to deltamethrin in the region of Plateau (southern Benin). In each area, eight localities were sought. Both areas were needed for the assessment of the impact of malaria vector resistance to pyrethroids on the effectiveness of Long Lasting Insecticidal Nets (LLINs). The susceptible area of An. gambiae to deltamethrin was used as a control. Methods In total, 119 localities in the region of Plateau were screened by sampling An. gambiae s.l larvae. Female mosquitoes resulting from these larvae were exposed to 0.05% deltamethrin following WHO standards. PCR was used to identify species and molecular forms of the dead and alive mosquitoes. Finally, we identified kdr mutations (1014 F and1014S) using the HOLA technique. Results Fifty-six out of 119 prospected localities tested positive for Anopheles gambae s.l breeding sites. The results showed that An. gambiae was resistant to deltamethrin in 39 localities and susceptible in only 2 localities; resistance to deltamethrin was suspected in 15 localities. The HOLA technique confirmed the presence of kdr 1014 F mutation and the absence of kdr 1014S mutation. The kdr 1014 F mutation was found in both M and S molecular forms at relatively high frequencies therefore confirming the susceptibility tests. Conclusion We were unable to identify the eight susceptible areas due to the overall resistance of An. gambiae to deltamethrin in the region of Plateau. To implement the study, we kept two areas, one with high resistance (R+++) and the other with low resistance (R+) of An. gambiae to deltamethrin. PMID:24564260

  14. Risk of Plasmodium vivax malaria reintroduction in Uzbekistan: genetic characterization of parasites and status of potential malaria vectors in the Surkhandarya region.

    PubMed

    Severini, Carlo; Menegon, Michela; Di Luca, Marco; Abdullaev, Iso; Majori, Giancarlo; Razakov, Shavkat A; Gradoni, Luigi

    2004-10-01

    Plasmodium vivax malaria was eradicated from Uzbekistan in 1961. Due to resurgence of the disease in neighbouring states and massive population migration, there has been an increase of P. vivax malaria, imported from Tajikistan, resulting in a number of indigenous cases being identified in areas bordering that country. A molecular study using the merozoite surface protein 1 (msp-1) gene as a marker was performed on 24 P. vivax genomic isolates from 12 indigenous and 10 imported malaria cases that occurred in the Surkhandarya region during the summer of 2002. Results have shown a significant difference in the frequency of msp-1 types between indigenous and imported isolates, the latter showing greater genetic heterogeneity. An entomological investigation in the area suggested that three Anopheles species, namely A. superpictus, A. pulcherrimus and A. hyrcanus may have a potential role in the endemic transmission of P. vivax.

  15. Chromobacterium Csp_P Reduces Malaria and Dengue Infection in Vector Mosquitoes and Has Entomopathogenic and In Vitro Anti-pathogen Activities

    PubMed Central

    Bahia, Ana C.; Saraiva, Raul G.; Dong, Yuemei; Kang, Seokyoung; Tripathi, Abhai; Mlambo, Godfree; Dimopoulos, George

    2014-01-01

    Plasmodium and dengue virus, the causative agents of the two most devastating vector-borne diseases, malaria and dengue, are transmitted by the two most important mosquito vectors, Anopheles gambiae and Aedes aegypti, respectively. Insect-bacteria associations have been shown to influence vector competence for human pathogens through multi-faceted actions that include the elicitation of the insect immune system, pathogen sequestration by microbes, and bacteria-produced anti-pathogenic factors. These influences make the mosquito microbiota highly interesting from a disease control perspective. Here we present a bacterium of the genus Chromobacterium (Csp_P), which was isolated from the midgut of field-caught Aedes aegypti. Csp_P can effectively colonize the mosquito midgut when introduced through an artificial nectar meal, and it also inhibits the growth of other members of the midgut microbiota. Csp_P colonization of the midgut tissue activates mosquito immune responses, and Csp_P exposure dramatically reduces the survival of both the larval and adult stages. Ingestion of Csp_P by the mosquito significantly reduces its susceptibility to Plasmodium falciparum and dengue virus infection, thereby compromising the mosquito's vector competence. This bacterium also exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential. The anti-pathogen and entomopathogenic properties of Csp_P render it a potential candidate for the development of malaria and dengue control strategies. PMID:25340821

  16. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    PubMed Central

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  17. Investigation of a Sudden Malaria Outbreak in the Isolated Amazonian Village of Saül, French Guiana, January–April 2009

    PubMed Central

    Berger, Franck; Flamand, Claude; Musset, Lise; Djossou, Félix; Rosine, Jacques; Sanquer, Marie-Anne; Dusfour, Isabelle; Legrand, Eric; Ardillon, Vanessa; Rabarison, Patrick; Grenier, Claire; Girod, Romain

    2012-01-01

    Malaria is endemic in French Guiana. Plasmodium falciparum and Plasmodium vivax are the predominant species responsible and Anopheles darlingi is described as the major vector. In mid-August 2008, an increase in malaria incidence was observed in Saül. A retrospective cohort survey was performed. In vitro susceptibility profiles to antimalarials were determined on P. falciparum isolates. Collections of mosquitoes were organized. The malaria attack rate reached 70.6/100. The risk of malaria increased for people between 40 and 49 years of age, living in a house not subjected to a recent indoor residual insecticide spraying or staying overnight in the surrounding forest. All isolates were susceptible. Anopheles darlingi females and larvae were collected in the village suggesting a local transmission. Our results strongly support a role of illegal mining activities in the emergence of new foci of malaria. Therefore, public health authorities should define policies to fight malaria at a transborder level. PMID:22492141

  18. Electric nets and sticky materials for analysing oviposition behaviour of gravid malaria vectors

    PubMed Central

    2012-01-01

    Background Little is known about how malaria mosquitoes locate oviposition sites in nature. Such knowledge is important to help devise monitoring and control measures that could be used to target gravid females. This study set out to develop a suite of tools that can be used to study the attraction of gravid Anopheles gambiae s.s. towards visual or olfactory cues associated with aquatic habitats. Methods Firstly, the study developed and assessed methods for using electrocuting nets to analyse the orientation of gravid females towards an aquatic habitat. Electric nets (1m high × 0.5m wide) were powered by a 12V battery via a spark box. High and low energy settings were compared for mosquito electrocution and a collection device developed to retain electrocuted mosquitoes when falling to the ground. Secondly, a range of sticky materials and a detergent were tested to quantify if and where gravid females land to lay their eggs, by treating the edge of the ponds and the water surface. A randomized complete block design was used for all experiments with 200 mosquitoes released each day. Experiments were conducted in screened semi-field systems using insectary-reared An. gambiae s.s. Data were analysed by generalized estimating equations. Results An electric net operated at the highest spark box energy of a 400 volt direct current made the net spark, creating a crackling sound, a burst of light and a burning smell. This setting caught 64% less mosquitoes than a net powered by reduced voltage output that could neither be heard nor seen (odds ratio (OR) 0.46; 95% confidence interval (CI) 0.40-0.53, p < 0.001). Three sticky boards (transparent film, glue coated black fly-screen and yellow film) were evaluated as catching devices under electric nets and the transparent and shiny black surfaces were found highly attractive (OR 41.6, 95% CI 19.8 – 87.3, p < 0.001 and OR 28.8, 95% CI 14.5 – 56.8, p < 0.001, respectively) for gravid mosquitoes to land on compared to a

  19. Storage and persistence of a candidate fungal biopesticide for use against adult malaria vectors

    PubMed Central

    2012-01-01

    Background New products aimed at augmenting or replacing chemical insecticides must have operational profiles that include both high efficacy in reducing vector numbers and/or blocking parasite transmission and be long lasting following application. Research aimed at developing fungal spores as a biopesticide for vector control have shown considerable potential yet have not been directly assessed for their viability after long-term storage or following application in the field. Methods Spores from a single production run of the entomopathogenic fungi Beauveria bassiana were dried and then stored under refrigeration at 7°C. After 585 days these spores were sub-sampled and placed at either 22°C, 26°C or 32°C still sealed in packaging (closed storage) or in open beakers and exposed to the 80% relative humidity of the incubator they were kept in. Samples were subsequently taken from these treatments over a further 165 days to assess viability. Spores from the same production run were also used to test their persistence following application to three different substrates, clay, cement and wood, using a hand held sprayer. The experiments were conducted at two different institutes with one using adult female Anopheles stephensi and the other adult female Anopheles gambiae. Mosquitoes were exposed to the treated substrates for one hour before being removed and their survival monitored for the next 14 days. Assays were performed at monthly intervals over a maximum seven months. Results Spore storage under refrigeration resulted in no loss of spore viability over more than two years. Spore viability of those samples kept under open and closed storage was highly dependent on the incubation temperature with higher temperatures decreasing viability more rapidly than cooler temperatures. Mosquito survival following exposure was dependent on substrate type. Spore persistence on the clay substrate was greatest achieving 80% population reduction for four months against An

  20. The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of Falciparum malaria in the Peruvian Amazon.

    PubMed

    Vittor, Amy Yomiko; Gilman, Robert H; Tielsch, James; Glass, Gregory; Shields, Tim; Lozano, Wagner Sánchez; Pinedo-Cancino, Viviana; Patz, Jonathan A

    2006-01-01

    To examine the impact of tropical rain-forest destruction on malaria, we conducted a year-long study of the rates at which the primary malaria vector in the Amazon, Anopheles darlingi, fed on humans in areas with varying degrees of ecological alteration in the Peruvian Amazon. Mosquitoes were collected by human biting catches along the Iquitos-Nauta road at sites selected for type of vegetation and controlled for human presence. Deforested sites had an A. darlingi biting rate that was more than 278 times higher than the rate determined for areas that were predominantly forested. Our results indicate that A. darlingi displays significantly increased human-biting activity in areas that have undergone deforestation and development associated with road development.

  1. The impacts of land use change on malaria vector abundance in a water-limited, highland region of Ethiopia.

    PubMed

    Stryker, Jody J; Bomblies, Arne

    2012-12-01

    Changes in land use and climate are expected to alter the risk of malaria transmission in areas where rainfall limits vector abundance. We use a coupled hydrology-entomology model to investigate the effects of land use change on hydrological processes impacting mosquito abundance in a highland village of Ethiopia. Land use affects partitioning of rainfall into infiltration and runoff that reaches small-scale topographic depressions, which constitute the primary breeding habitat of Anopheles arabiensis mosquitoes. A physically based hydrology model isolates hydrological mechanisms by which land use impacts pool formation and persistence, and an agent-based entomology model evaluates the response of mosquito populations. This approach reproduced observed interannual variability in mosquito abundance between the 2009 and 2010 wet seasons. Several scenarios of land cover were then evaluated using the calibrated, field-validated model. Model results show variation in pool persistence and depth, as well as in mosquito abundance, due to land use changes alone. The model showed particular sensitivity to surface roughness, but also to root zone uptake. Scenarios in which land use was modified from agriculture to forest generally resulted in lowest mosquito abundance predictions; classification of the entire domain as rainforest produced a 34% decrease in abundance compared to 2010 results. This study also showed that in addition to vegetation type, spatial proximity of land use change to habitat locations has an impact on mosquito abundance. This modeling approach can be applied to assess impacts of climate and land use conditions that fall outside of the range of previously observed variability.

  2. A low-cost repellent for malaria vectors in the Americas: results of two field trials in Guatemala and Peru

    PubMed Central

    Moore, Sarah J; Darling, Samuel T; Sihuincha, Moisés; Padilla, Norma; Devine, Gregor J

    2007-01-01

    Background The cost of mosquito repellents in Latin America has discouraged their wider use among the poor. To address this problem, a low-cost repellent was developed that reduces the level of expensive repellent actives by combining them with inexpensive fixatives that appear to slow repellent evaporation. The chosen actives were a mixture of para-menthane-diol (PMD) and lemongrass oil (LG). Methods To test the efficacy of the repellent, field trials were staged in Guatemala and Peru. Repellent efficacy was determined by human-landing catches on volunteers who wore the experimental repellents, control, or 15% DEET. The studies were conducted using a balanced Latin Square design with volunteers, treatments, and locations rotated each night. Results In Guatemala, collections were performed for two hours, commencing three hours after repellent application. The repellent provided >98% protection for five hours after application, with a biting pressure of >100 landings per person/hour. The 15% DEET control provided lower protection at 92% (p < 0.0001). In Peru, collections were performed for four hours, commencing two hours after repellent application. The PMD/LG repellent provided 95% protection for six hours after application with a biting pressure of >46 landings per person/hour. The 20% DEET control provided significantly lower protection at 64% (p < 0.0001). Conclusion In both locations, the PMD/LG repellent provided excellent protection up to six hours after application against a wide range of disease vectors including Anopheles darlingi. The addition of fixatives to the repellent extended its longevity while enhancing efficacy and significantly reducing its cost to malaria-endemic communities. PMID:17678537

  3. The salivary gland transcriptome of the neotropical malaria vector Anopheles darlingi reveals accelerated evolution of genes relevant to hematophagy

    PubMed Central

    Calvo, Eric; Pham, Van M; Marinotti, Osvaldo; Andersen, John F; Ribeiro, José MC

    2009-01-01

    Background Mosquito saliva, consisting of a mixture of dozens of proteins affecting vertebrate hemostasis and having sugar digestive and antimicrobial properties, helps both blood and sugar meal feeding. Culicine and anopheline mosquitoes diverged ~150 MYA, and within the anophelines, the New World species diverged from those of the Old World ~95 MYA. While the sialotranscriptome (from the Greek sialo, saliva) of several species of the Cellia subgenus of Anopheles has been described thoroughly, no detailed analysis of any New World anopheline has been done to date. Here we present and analyze data from a comprehensive salivary gland (SG) transcriptome of the neotropical malaria vector Anopheles darlingi (subgenus Nyssorhynchus). Results A total of 2,371 clones randomly selected from an adult female An. darlingi SG cDNA library were sequenced and used to assemble a database that yielded 966 clusters of related sequences, 739 of which were singletons. Primer extension experiments were performed in selected clones to further extend sequence coverage, allowing for the identification of 183 protein sequences, 114 of which code for putative secreted proteins. Conclusion Comparative analysis of sialotranscriptomes of An. darlingi and An. gambiae reveals significant divergence of salivary proteins. On average, salivary proteins are only 53% identical, while housekeeping proteins are 86% identical between the two species. Furthermore, An. darlingi proteins were found that match culicine but not anopheline proteins, indicating loss or rapid evolution of these proteins in the old world Cellia subgenus. On the other hand, several well represented salivary protein families in old world anophelines are not expressed in An. darlingi. PMID:19178717

  4. The Impacts of Land Use Change on Malaria Vector Abundance in a Water-Limited Highland Region of Ethiopia

    NASA Astrophysics Data System (ADS)

    Stryker, J.; Bomblies, A.

    2012-12-01

    Changes in land use and climate are expected to alter risk of malaria transmission in areas where rainfall limits vector abundance. We use a coupled hydrology-entomology model to investigate the effects of land use change on hydrological processes impacting mosquito abundance in a highland village of Ethiopia. Land use affects partitioning of rainfall into infiltration and runoff that reaches small-scale topographic depressions, which constitute the primary breeding habitat of Anopheles arabiensis mosquitoes. A physically-based hydrology model isolates hydrological mechanisms by which land use impacts pool formation and persistence, and an agent-based entomology model evaluates the response of mosquito populations. This approach reproduced observed interannual variability in mosquito abundance between the 2009 and 2010 wet seasons. Several scenarios of land cover were then evaluated using the calibrated, field-validated model. Model results show variation in pool persistence and depth, as well as in mosquito abundance, due to land use changes alone. The model showed particular sensitivity to surface roughness, but also to root zone uptake. Scenarios in which land use was modified from agriculture to forest generally resulted in lowest mosquito abundance predictions; classification of the entire domain as rainforest produced a 34% decrease in abundance compared to 2010 results. This study also showed that in addition to vegetation type, spatial proximity of land use change to habitat locations has an impact on mosquito abundance. This modeling approach can be applied to assess impacts of climate and land use conditions that fall outside of the range of previously observed variability.

  5. A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae

    PubMed Central

    Pitts, R. Jason; Fox, A. Nicole; Zwiebel, Laurence J.

    2004-01-01

    Anopheles gambiae is a highly anthropophilic mosquito responsible for the majority of malaria transmission in Africa. The biting and host preference behavior of this disease vector is largely influenced by its sense of smell, which is presumably facilitated by G protein-coupled receptor signaling [Takken, W. & Knols, B. (1999) Annu. Rev. Entomol. 44, 131-157]. Because of the importance of host preference to the mosquitoes' ability to transmit disease, we have initiated studies intended to elucidate the molecular mechanisms underlying olfaction in An. gambiae. In the course of these studies, we have identified a number of genes potentially involved in signal transduction, including a family of candidate odorant receptors. One of these receptors, encoded by GPRor7 (hereafter referred to as AgOr7), is remarkably similar to an odorant receptor that is expressed broadly in olfactory tissues and has been identified in Drosophila melanogaster and other insects [Krieger, J., Klink, O., Mohl, C., Raming, K. & Breer, H. (2003) J. Comp. Physiol. A 189, 519-526; Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A. & Axel, R. (1999) Cell 96, 725-736]. We have observed AgOr7 expression in olfactory and gustatory tissues in adult An. gambiae and during several stages of the mosquitoes' development. Within the female adult peripheral chemosensory system, antiserum against the AgOR7 polypeptide labels most sensilla of the antenna and maxillary palp as well as a subset of proboscis sensilla. Furthermore, AgOR7 antiserum labeling is observed within the larval antenna and maxillary palpus. These results are consistent with a role for AgOr7 in both olfaction and gustation in An. gambiae and raise the possibility that AgOr7 orthologs may also be of general importance to both modalities of chemosensation in other insects. PMID:15037749

  6. Determining areas that require indoor insecticide spraying using Multi Criteria Evaluation, a decision-support tool for malaria vector control programmes in the Central Highlands of Madagascar

    PubMed Central

    Rakotomanana, Fanjasoa; Randremanana, Rindra V; Rabarijaona, Léon P; Duchemin, Jean Bernard; Ratovonjato, Jocelyn; Ariey, Frédéric; Rudant, Jean Paul; Jeanne, Isabelle

    2007-01-01

    Background The highlands of Madagascar present an unstable transmission pattern of malaria. The population has no immunity, and the central highlands have been the sites of epidemics with particularly high fatality. The most recent epidemic occurred in the 1980s, and caused about 30,000 deaths. The fight against malaria epidemics in the highlands has been based on indoor insecticide spraying to control malaria vectors. Any preventive programme involving generalised cover in the highlands will require very substantial logistical support. We used multicriteria evaluation, by the method of weighted linear combination, as basis for improved targeting of actions by determining priority zones for intervention. Results Image analysis and field validation showed the accuracy of mapping rice fields to be between 82.3% and 100%, and the Kappa coefficient was 0.86 to 0.99. A significant positive correlation was observed between the abundance of the vector Anopheles funestus and temperature; the correlation coefficient was 0.599 (p < 0.001). A significant negative correlation was observed between vector abundance and human population density: the correlation coefficient was -0.551 (p < 0.003). Factor weights were determined by pair-wise comparison and the consistency ratio was 0.04. Risk maps of the six study zones were obtained according to a gradient of risk. Nine of thirteen results of alert confirmed by the Epidemiological Surveillance Post were in concordance with the risk map. Conclusion This study is particularly valuable for the management of vector control programmes, and particularly the reduction of the vector population with a view to preventing disease. The risk map obtained can be used to identify priority zones for the management of resources, and also help avoid systematic and generalised spraying throughout the highlands: such spraying is particularly difficult and expensive. The accuracy of the mapping, both as concerns time and space, is dependent on the

  7. Phenotypic dissection of a Plasmodium-refractory strain of malaria vector Anopheles stephensi: the reduced susceptibility to P. berghei and P. yoelii.

    PubMed

    Shinzawa, Naoaki; Ishino, Tomoko; Tachibana, Mayumi; Tsuboi, Takafumi; Torii, Motomi

    2013-01-01

    Anopheline mosquitoes are the major vectors of human malaria. Parasite-mosquito interactions are a critical aspect of disease transmission and a potential target for malaria control. Current investigations into parasite-mosquito interactions frequently assume that genetically resistant and susceptible mosquitoes exist in nature. Therefore, comparisons between the Plasmodium susceptibility profiles of different mosquito species may contribute to a better understanding of vectorial capacity. Anopheles stephensi is an important malaria vector in central and southern Asia and is widely used as a laboratory model of parasite transmission due to its high susceptibility to Plasmodium infection. In the present study, we identified a rodent malaria-refractory strain of A. stephensi mysorensis (Ehime) by comparative study of infection susceptibility. A very low number of oocysts develop in Ehime mosquitoes infected with P. berghei and P. yoelii, as determined by evaluation of developed oocysts on the basal lamina. A stage-specific study revealed that this reduced susceptibility was due to the impaired formation of ookinetes of both Plasmodium species in the midgut lumen and incomplete crossing of the midgut epithelium. There were no apparent abnormalities in the exflagellation of male parasites in the ingested blood or the maturation of oocysts after the rounding up of the ookinetes. Overall, these results suggest that invasive-stage parasites are eliminated in both the midgut lumen and epithelium in Ehime mosquitoes by strain-specific factors that remain unknown. The refractory strain newly identified in this report would be an excellent study system for investigations into novel parasite-mosquito interactions in the mosquito midgut.

  8. Microsatellite data suggest significant population structure and differentiation within the malaria vector Anopheles darlingi in Central and South America

    PubMed Central

    Mirabello, Lisa; Vineis, Joseph H; Yanoviak, Stephen P; Scarpassa, Vera M; Póvoa, Marinete M; Padilla, Norma; Achee, Nicole L; Conn, Jan E

    2008-01-01

    Background Anopheles darlingi is the most important malaria vector in the Neotropics. An understanding of A. darlingi's population structure and contemporary gene flow patterns is necessary if vector populations are to be successfully controlled. We assessed population genetic structure and levels of differentiation based on 1,376 samples from 31 localities throughout the Peruvian and Brazilian Amazon and Central America using 5–8 microsatellite loci. Results We found high levels of polymorphism for all of the Amazonian populations (mean RS = 7.62, mean HO = 0.742), and low levels for the Belize and Guatemalan populations (mean RS = 4.3, mean HO = 0.457). The Bayesian clustering analysis revealed five population clusters: northeastern Amazonian Brazil, southeastern and central Amazonian Brazil, western and central Amazonian Brazil, Peruvian Amazon, and the Central American populations. Within Central America there was low non-significant differentiation, except for between the populations separated by the Maya Mountains. Within Amazonia there was a moderate level of significant differentiation attributed to isolation by distance. Within Peru there was no significant population structure and low differentiation, and some evidence of a population expansion. The pairwise estimates of genetic differentiation between Central America and Amazonian populations were all very high and highly significant (FST = 0.1859 – 0.3901, P < 0.05). Both the DA and FST distance-based trees illustrated the main division to be between Central America and Amazonia. Conclusion We detected a large amount of population structure in Amazonia, with three population clusters within Brazil and one including the Peru populations. The considerable differences in Ne among the populations may have contributed to the observed genetic differentiation. All of the data suggest that the primary division within A. darlingi corresponds to two white gene genotypes between Amazonia (genotype 1) and

  9. Insecticidal and repellent activities of pyrethroids to the three major pyrethroid-resistant malaria vectors in western Kenya

    PubMed Central

    2014-01-01

    Background The dramatic success of insecticide treated nets (ITNs) and long-lasting insecticidal nets (LLINs) in African countries has been countered by the rapid development of pyrethroid resistance in vector mosquitoes over the past decade. One advantage of the use of pyrethroids in ITNs is their excito-repellency. Use of the excito-repellency of pyrethroids might be biorational, since such repellency will not induce or delay the development of any physiological resistance. However, little is known about the relationship between the mode of insecticide resistance and excito-repellency in pyrethroid-resistant mosquitoes. Methods Differences in the reactions of 3 major malaria vectors in western Kenya to pyrethroids were compared in laboratory tests. Adult susceptibility tests were performed using World Health Organization (WHO) test tube kits for F1 progenies of field-collected An. gambiae s.s., An. arabiensis, and An. funestus s.s., and laboratory colonies of An. gambiae s.s. and An. arabiensis. The contact repellency to pyrethroids or permethrin-impregnated LLINs (Olyset® Nets) was evaluated with a simple choice test modified by WHO test tubes and with the test modified by the WHO cone bioassay test. Results Field-collected An. gambiae s.s., An. arabiensis, and An. funestus s.s. showed high resistance to both permethrin and deltamethrin. The allelic frequency of the point mutation in the voltage-gated sodium channel (L1014S) in An. gambiae s.s. was 99.3–100%, while no point mutations were detected in the other 2 species. The frequency of takeoffs from the pyrethroid-treated surface and the flying times without contacting the surface increased significantly in pyrethroid-susceptible An. gambiae s.s. and An. arabiensis colonies and wild An. arabiensis and An. funestus s.s. colonies, while there was no significant increase in the frequency of takeoffs or flying time in the An. gambiae s.s. wild colony. Conclusion A different repellent reaction was observed in

  10. Comparative morphology and ultrastructure of the prosomal salivary glands in the unfed larvae Leptotrombidium orientale (Acariformes, Trombiculidae), a possible vector of tsutsugamushi disease agent.

    PubMed

    Shatrov, Andrew B

    2015-07-01

    The prosomal salivary glands of the unfed larvae Leptotrombidium orientale (Schluger) were investigated using transmission electron microscopy. In total, four pairs of the prosomal glands were identified--three pairs, the lateral, the medial and the anterior, belong to the podocephalic system, and one pair, the posterior, is separate having an own excretory duct. All glands are simple alveolar/acinous with prismatic cells arranged around a relatively small intra-alveolar lumen with the duct base. The cells of all glands besides the lateral ones contain practically mature electron-dense secretory granules ready to be discharged from the cells. The secretory granules in the lateral glands undergo formation and maturation due to the Golgi body activity. The cells of all gland types contain a large basally located nucleus and variously expressed rough endoplasmic reticulum. Specialized duct-forming cells filled with numerous freely scattered microtubules are situated in the middle zone of each gland's acinus and form the intra-alveolar lumen and the duct base. Both the acinar (secretory) and the duct-forming cells contact each other via gap junctions and septate desmosomes. Axons of nerve cells come close to the basal extensions of the duct-forming cells where they form the bulb-shaped synaptic terminations. The process of secretion is under the control of the nerve system that provides contraction of the duct-forming cells and discharge of secretion from the secretory cells into the intra-alveolar lumen and further to the exterior. Unfed larvae of L. orientale, the potential vector of tsutsugamushi disease agents, contain the most simply organized salivary secretory granules among known trombiculid larvae, and this secretion, besides the lateral glands, does not undergo significant additional maturation. Thus, the larvae are apparently ready to feed on the appropriate host just nearly after hatching.

  11. Salivary gland proteome of the human malaria vector, Anopheles campestris-like (Diptera: Culicidae).

    PubMed

    Sor-Suwan, Sriwatapron; Jariyapan, Narissara; Roytrakul, Sittiruk; Paemanee, Atchara; Saeung, Atiporn; Thongsahuan, Sorawat; Phattanawiboon, Benjarat; Bates, Paul A; Poovorawan, Yong; Choochote, Wej

    2013-03-01

    Anopheles campestris-like is proven to be a high-potential vector of Plasmodium vivax in Thailand. In this study, A. campestris-like salivary gland proteins were determined and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis, and nano-liquid chromatography-mass spectrometry. The total amount of salivary gland proteins in the mosquitoes aged 3-5 days was approximately 0.1 ± 0.05 μg/male and 1.38 ± 0.01 μg/female. SDS-PAGE analysis revealed at least 12 major proteins found in the female salivary glands and each morphological region of the female glands contained different major proteins. Two-dimensional gel electrophoresis showed approximately 20 major and several minor protein spots displaying relative molecular masses from 10 to 72 kDa with electric points ranging from 3.9 to 10. At least 15 glycoproteins were detected in the female glands. Similar electrophoretic protein profiles were detected comparing the male and proximal-lateral lobes of the female glands, suggesting that these lobes are responsible for sugar feeding. Blood-feeding proteins, i.e., putative 5'-nucleotidase/apyrase, anti-platelet protein, long-form D7 salivary protein, D7-related 1 protein, and gSG6, were detected in the distal-lateral lobes (DL) and/or medial lobes (ML) of the female glands. The major spots related to housekeeping proteins from other arthropod species including Culex quinquefasciatus serine/threonine-protein kinase rio3 expressed in both male and female glands, Ixodes scapularis putative sil1 expressed in DL and ML, and I. scapularis putative cyclophilin A expressed in DL. These results provide information for further study on the salivary gland proteins of A. campestris-like that are involved in hematophagy and disease transmission.

  12. A bioinformatics approach for integrated transcriptomic and proteomic comparative analyses of model and non-sequenced anopheline vectors of human malaria parasites.

    PubMed

    Ubaida Mohien, Ceereena; Colquhoun, David R; Mathias, Derrick K; Gibbons, John G; Armistead, Jennifer S; Rodriguez, Maria C; Rodriguez, Mario Henry; Edwards, Nathan J; Hartler, Jürgen; Thallinger, Gerhard G; Graham, David R; Martinez-Barnetche, Jesus; Rokas, Antonis; Dinglasan, Rhoel R

    2013-01-01

    Malaria morbidity and mortality caused by both Plasmodium falciparum and Plasmodium vivax extend well beyond the African continent, and although P. vivax causes between 80 and 300 million severe cases each year, vivax transmission remains poorly understood. Plasmodium parasites are transmitted by Anopheles mosquitoes, and the critical site of interaction between parasite and host is at the mosquito's luminal midgut brush border. Although the genome of the "model" African P. falciparum vector, Anopheles gambiae, has been sequenced, evolutionary divergence limits its utility as a reference across anophelines, especially non-sequenced P. vivax vectors such as Anopheles albimanus. Clearly, technologies and platforms that bridge this substantial scientific gap are required in order to provide public health scientists with key transcriptomic and proteomic information that could spur the development of novel interventions to combat this disease. To our knowledge, no approaches have been published that address this issue. To bolster our understanding of P. vivax-An. albimanus midgut interactions, we developed an integrated bioinformatic-hybrid RNA-Seq-LC-MS/MS approach involving An. albimanus transcriptome (15,764 contigs) and luminal midgut subproteome (9,445 proteins) assembly, which, when used with our custom Diptera protein database (685,078 sequences), facilitated a comparative proteomic analysis of the midgut brush borders of two important malaria vectors, An. gambiae and An. albimanus.

  13. Multimodal Pyrethroid Resistance in Malaria Vectors, Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. in Western Kenya

    PubMed Central

    Kawada, Hitoshi; Dida, Gabriel O.; Ohashi, Kazunori; Komagata, Osamu; Kasai, Shinji; Tomita, Takashi; Sonye, George; Maekawa, Yoshihide; Mwatele, Cassian; Njenga, Sammy M.; Mwandawiro, Charles; Minakawa, Noboru; Takagi, Masahiro

    2011-01-01

    Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. are the most important species for malaria transmission. Pyrethroid resistance of these vector mosquitoes is one of the main obstacles against effective vector control. The objective of the present study was to monitor the pyrethroid susceptibility in the 3 major malaria vectors in a highly malaria endemic area in western Kenya and to elucidate the mechanisms of pyrethroid resistance in these species. Gembe East and West, Mbita Division, and 4 main western islands in the Suba district of the Nyanza province in western Kenya were used as the study area. Larval and adult collection and bioassay were conducted, as well as the detection of point mutation in the voltage-gated sodium channel (1014L) by using direct DNA sequencing. A high level of pyrethroid resistance caused by the high frequency of point mutations (L1014S) was detected in An. gambiae s.s. In contrast, P450-related pyrethroid resistance seemed to be widespread in both An. arabiensis and An. funestus s.s. Not a single L1014S mutation was detected in these 2 species. A lack of cross-resistance between DDT and permethrin was also found in An. arabiensis and An. funestus s.s., while An. gambiae s.s. was resistant to both insecticides. It is noteworthy that the above species in the same area are found to be resistant to pyrethroids by their unique resistance mechanisms. Furthermore, it is interesting that 2 different resistance mechanisms have developed in the 2 sibling species in the same area individually. The cross resistance between permethrin and DDT in An. gambiae s.s. may be attributed to the high frequency of kdr mutation, which might be selected by the frequent exposure to ITNs. Similarly, the metabolic pyrethroid resistance in An. arabiensis and An. funestus s.s. is thought to develop without strong selection by DDT. PMID:21853038

  14. Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania

    PubMed Central

    2014-01-01

    Background Resistance of mosquitoes to insecticides is a growing concern in Africa. Since only a few insecticides are used for public health and limited development of new molecules is expected in the next decade, maintaining the efficacy of control programmes mostly relies on resistance management strategies. Developing such strategies requires a deep understanding of factors influencing resistance together with characterizing the mechanisms involved. Among factors likely to influence insecticide resistance in mosquitoes, agriculture and urbanization have been implicated but rarely studied in detail. The present study aimed at comparing insecticide resistance levels and associated mechanisms across multiple Anopheles gambiae sensu lato populations from different environments. Methods Nine populations were sampled in three areas of Tanzania showing contrasting agriculture activity, urbanization and usage of insecticides for vector control. Insecticide resistance levels were measured in larvae and adults through bioassays with deltamethrin, DDT and bendiocarb. The distribution of An. gambiae sub-species and pyrethroid target-site mutations (kdr) were investigated using molecular assays. A microarray approach was used for identifying transcription level variations associated to different environments and insecticide resistance. Results Elevated resistance levels to deltamethrin and DDT were identified in agriculture and urban areas as compared to the susceptible strain Kisumu. A significant correlation was found between adult deltamethrin resistance and agriculture activity. The subspecies Anopheles arabiensis was predominant with only few An. gambiae sensu stricto identified in the urban area of Dar es Salaam. The L1014S kdr mutation was detected at elevated frequency in An gambiae s.s. in the urban area but remains sporadic in An. arabiensis specimens. Microarrays identified 416 transcripts differentially expressed in any area versus the susceptible reference

  15. Prevalence of larvae of potential yellow fever vectors in domestic water containers in south-east Nigeria

    PubMed Central

    Bang, Y. H.; Bown, D. N.; Onwubiko, A. O.

    1981-01-01

    The seasonal variation in prevalence of Aedes (Stegomyia) mosquitos breeding in peridomestic water containers was assessed in an urban quarter of Enugu, Nigeria, and in two rural villages located among forest relicts in the neighbouring Udi Hills. A large number of earthenware pots, most of which contained water in the wet season, were present in the compounds around houses. Monthly determinations of the presence or absence of Aedes larvae in these containers were made for 13 consecutive months. The average Breteau index (positive containers per 100 houses) for A. aegypti during the 7-month wet season was 53 in one of the villages and 76 in the other, suggesting a high risk of yellow fever transmission; the dry-season averages were 11 and 23. In the urban quarter the wet-season average was 29; the dry-season average was 4.7, a level at which transmission is unlikely to occur. A. luteocephalus were occasionally found in containers in both the urban and rural localities, and A. africanus larvae occurred in one of the villages. Although Culex larvae were common, mixed infestations of Aedes and Culex were so uncommon that the simplified ”single larva” method of sampling for Aedes gave similar results to the conventional method. The multiplicity of peridomestic containers in this part of Nigeria made the container index inadequate as a measure of larval density. PMID:6973413

  16. Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae).

    PubMed

    Subarani, Selladurai; Sabhanayakam, Selvi; Kamaraj, Chinnaperumal

    2013-02-01

    Biosynthesized nanoparticles have been achieved using environmentally acceptable plant extract and eco-friendly reducing and capping agents. The present study was based on assessments of the larvicidal activities to determine the efficacies of synthesized silver nanoparticles (AgNPs) using aqueous leaf extract of Vinca rosea (L.) (Apocynaceae) against the larvae of malaria vector Anopheles stephensi Liston and filariasis vector Culex quinquefasciatus Say (Diptera: Culicidae). Larvae were exposed to varying concentrations of aqueous extract of V. rosea and synthesized AgNPs for 24, 48, and 72 h. AgNPs were rapidly synthesized using the leaf extract of V. rosea, and the formation of nanoparticles was observed within 15 min. The results recorded from UV-Vis spectrum, Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) support the biosynthesis and characterization of AgNPs. The formation of the AgNPs synthesized from the XRD spectrum compared with the Bragg reflections at 2θ = 29.36, 38.26, 44.51, 63.54, and 77.13° which can be indexed to the (121), (111), (200), (220), and (311) orientations, respectively, confirmed the presence of AgNPs. The FTIR spectra of AgNPs exhibited prominent peaks at the spectra showed sharp and strong absorption band at 3,406.71 to 3,431.90 cm(-1) double in case of NH(2) group of a primary amine (N-H stretch). The presence of the sharp peak at 2,926.54 to 2,925.80 cm(-1) very broad often looks like distorted baseline (O-H carboxylic acids). The band 1,633.26 to 1,625.81 cm(-1) was assigned to C = C alkenes, aromatic ring stretching vibration, respectively. SEM analysis of the synthesized AgNPs clearly showed the clustered and irregular shapes, mostly aggregated and having the size of 120 nm. TEM reveals spherical shape of synthesized AgNPs. Particle size analysis revealed that the size of particles ranges from 25 to 47 nm with average size of 34.61 nm

  17. Cuticular differences associated with aridity acclimation in African malaria vectors carrying alternative arrangements of inversion 2La

    PubMed Central

    2014-01-01

    Background Principal malaria vectors in Africa, An. gambiae and An. coluzzii, share an inversion polymorphism on the left arm of chromosome 2 (2La/2L+a) that is distributed non-randomly in the environment. Genomic sequencing studies support the role of strong natural selection in maintaining steep clines in 2La inversion frequency along environmental gradients of aridity, and physiological studies have directly implicated 2La in heat and desiccation tolerance, but the precise genetic basis and the underlying behavioral and physiological mechanisms remain unknown. As the insect cuticle is the primary barrier to water loss, differences in cuticle thickness and/or epicuticular waterproofing associated with alternative 2La arrangements might help explain differences in desiccation resistance. Methods To test that hypothesis, two subcolonies of both An. gambiae and An. coluzzii were established that were fixed for alternative 2La arrangements (2La or 2L+a) on an otherwise homosequential and shared genetic background. Adult mosquitoes reared under controlled environmental conditions (benign or arid) for eight days post-eclosion were collected and analyzed. Measurements of cuticle thickness were made based on scanning electron microscopy, and cuticular hydrocarbon (CHC) composition was evaluated by gas chromatography–mass spectrometry. Results After removing the allometric effects of body weight, differences in mean cuticle thickness were found between alternative 2La karyotypes, but not between alternative environments. Moreover, the thicker cuticle of the An. coluzzii 2La karyotype was contrary to the known higher rate of water loss of this karyotype relative to 2L+a. On the other hand, quantitative differences in individual CHCs and overall CHC profiles between alternative karyotypes and environmental conditions were consistent with expectation based on previous physiological studies. Conclusions Our results suggest that alternative arrangements of the 2La inversion

  18. Biolarvicidal and pupicidal activity of Acalypha alnifolia Klein ex Willd.(Family:Euphorbiaceae) leaf extract and microbial insecticide, Metarhizium anisopliae(Metsch.)against malaria fever mosquito Anopheles stephensi Liston

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was made to determine the biological activity of Acalypha alnifolia leaf extract and the microbial insecticide Metarizhium anisopliae against larvae and pupae of the malaria vector Anopheles stephensi. Ethanolic A. alnifolia leaf extract tested against 1st through 4th instars and pupae o...

  19. Larvivorous fish for preventing malaria transmission

    PubMed Central

    Walshe, Deirdre P; Garner, Paul; Abdel-Hameed Adeel, Ahmed A; Pyke, Graham H; Burkot, Tom

    2013-01-01

    Background Adult anopheline mosquitoes transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. The Global Fund finances larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policy makers may return to this option. We therefore assessed the evidence base for larvivorous fish programmes in malaria control. Objectives Our main objective was to evaluate whether introducing larvivorous fish to anopheline breeding sites impacts Plasmodium parasite transmission. Our secondary objective was to summarize studies evaluating whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources, to understand whether fish can possibly have an effect. Search methods We attempted to identify all relevant studies regardless of language or publication status (published, unpublished, in press, or ongoing). We searched the following databases: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) until 18 June 2013. We checked the reference lists of all studies identified by the above methods. We also examined references listed in review articles and previously compiled bibliographies to look for eligible studies. Selection criteria Randomized controlled trials and non-randomized controlled trials, including controlled before-and-after studies, controlled time series and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and reported on malaria in

  20. Ecological and genetic relationships of the Forest-M form among chromosomal and molecular forms of the malaria vector Anopheles gambiae sensu stricto

    PubMed Central

    Lee, Yoosook; Cornel, Anthony J; Meneses, Claudio R; Fofana, Abdrahamane; Andrianarivo, Aurélie G; McAbee, Rory D; Fondjo, Etienne; Traoré, Sekou F; Lanzaro, Gregory C

    2009-01-01

    Background Anopheles gambiae sensu stricto, one of the principal vectors of malaria, has been divided into two subspecific groups, known as the M and S molecular forms. Recent studies suggest that the M form found in Cameroon is genetically distinct from the M form found in Mali and elsewhere in West Africa, suggesting further subdivision within that form. Methods Chromosomal, microsatellite and geographic/ecological evidence are synthesized to identify sources of genetic polymorphism among chromosomal and molecular forms of the malaria vector Anopheles gambiae s.s. Results Cytogenetically the Forest M form is characterized as carrying the standard chromosome arrangement for six major chromosomal inversions, namely 2La, 2Rj, 2Rb, 2Rc, 2Rd, and 2Ru. Bayesian clustering analysis based on molecular form and chromosome inversion polymorphisms as well as microsatellites describe the Forest M form as a distinct population relative to the West African M form (Mopti-M form) and the S form. The Forest-M form was the most highly diverged of the An. gambiae s.s. groups based on microsatellite markers. The prevalence of the Forest M form was highly correlated with precipitation, suggesting that this form prefers much wetter environments than the Mopti-M form. Conclusion Chromosome inversions, microsatellite allele frequencies and habitat preference all indicate that the Forest M form of An. gambiae is genetically distinct from the other recognized forms within the taxon Anopheles gambiae sensu stricto. Since this study covers limited regions of Cameroon, the possibility of gene flow between the Forest-M form and Mopti-M form cannot be rejected. However, association studies of important phenotypes, such as insecticide resistance and refractoriness against malaria parasites, should take into consideration this complex population structure. PMID:19383163

  1. Evaluation of the efficacy of bendiocarb in indoor residual spraying against pyrethroid resistant malaria vectors in Benin: results of the third campaign

    PubMed Central

    2012-01-01

    Background Since 2008, the National Malaria Control Program (NMCP) has been engaged in the implementation of indoor residual spraying (IRS) in Benin. The first and second round was a success with a drastic decrease of malaria transmission in areas under IRS. We present here the results of the third round. The purpose of this study was to compare the results of the third round of IRS to those achieved during the first two rounds. A second success of IRS will enable the Government of Benin to extend the strategy to other areas. Methods Mosquito collections were carried out in the department of Ouémé where the homes of four districts were treated with bendiocarb. In these districts, more than 350 000 inhabitants were protected by IRS. A fifth untreated district served as control. In the five districts, mosquito collections were organized to follow the dynamics of malaria transmission and possible changes in the behavior of mosquitoes. Results A significant reduction in human biting rate was recorded after the third round of IRS, specifically in Adjohoun (89.78%), Dangbo (56.8%) and Missérété (93.22%) where an inhabitant received less than 2 bites of An. gambiae per night. During this same time, the entomological inoculation rate (EIR) declined dramatically in all areas under intervention (74.26% reduction). We also noted a significant reduction in longevity, the blood feeding rate of the vectors and an increase in exophily induced by bendiocarb on An. gambiae and Mansonia spp. Conclusion The present study showed, once again, the effectiveness of bendiocarb on anopheles populations resistant to pyrethroids. This product can be recommended in combination with other insecticides for the management of vector resistance to insecticides. PMID:22873930

  2. Impact of Insecticide Resistance on the Effectiveness of Pyrethroid-Based Malaria Vectors Control Tools in Benin: Decreased Toxicity and Repellent Effect

    PubMed Central

    Agossa, Fiacre R.; Gnanguenon, Virgile; Anagonou, Rodrigue; Azondekon, Roseric; Aïzoun, Nazaire; Sovi, Arthur; Oké-Agbo, Frédéric; Sèzonlin, Michel; Akogbéto, Martin C.

    2015-01-01

    Since the first evidence of pyrethroids resistance in 1999 in Benin, mutations have rapidly increased in mosquitoes and it is now difficult to design a study including a control area where malaria vectors are fully susceptible. Few studies have assessed the after effect of resistance on the success of pyrethroid based prevention methods in mosquito populations. We therefore assessed the impact of resistance on the effectiveness of pyrethroids based indoor residual spraying (IRS) in semi-field conditions and long lasting insecticidal nets (LLINs) in laboratory conditions. The results observed showed low repulsion and low toxicity of pyrethroids compounds in the test populations. The toxicity of pyrethroids used in IRS was significantly low with An. gambiae s.l (< 46%) but high for other predominant species such as Mansonia africana (93% to 97%). There were significant differences in terms of the repellent effect expressed as exophily and deterrence compared to the untreated huts (P<0.001). Furthermore, mortality was 23.71% for OlyseNet® and 39.06% for PermaNet®. However, with laboratory susceptible “Kisumu”, mortality was 100% for both nets suggesting a resistance within the wild mosquito populations. Thus treatment with pyrethroids at World Health Organization recommended dose will not be effective at reducing malaria in the coming years. Therefore it is necessary to study how insecticide resistance decreases the efficacy of particular pyrethroids used in pyrethroid-based vector control so that a targeted approach can be adopted. PMID:26674643

  3. Microsatellite and mitochondrial markers reveal strong gene flow barriers for Anopheles farauti in the Solomon Archipelago: implications for malaria vector control.

    PubMed

    Ambrose, Luke; Cooper, Robert D; Russell, Tanya L; Burkot, Thomas R; Lobo, Neil F; Collins, Frank H; Hii, Jeffrey; Beebe, Nigel W

    2014-03-01

    Anopheles farauti is the primary malaria vector throughout the coastal regions of the Southwest Pacific. A shift in peak biting time from late to early in the night occurred following widespread indoor residue spraying of dichlorodiphenyltrichloro-ethane (DDT) and has persisted in some island populations despite the intervention ending decades ago. We used mitochondrial cytochrome oxidase I (COI) sequence data and 12 newly developed microsatellite markers to assess the population genetic structure of this malaria vector in the Solomon Archipelago. With geographically distinct differences in peak A. farauti night biting time observed in the Solomon Archipelago, we tested the hypothesis that strong barriers to gene flow exist in this region. Significant and often large fixation index (FST) values were found between different island populations for the mitochondrial and nuclear markers, suggesting highly restricted gene flow between islands. Some discordance in the location and strength of genetic breaks was observed between the mitochondrial and microsatellite markers. Since early night biting A. farauti individuals occur naturally in all populations, the strong gene flow barriers that we have identified in the Solomon Archipelago lend weight to the hypothesis that the shifts in peak biting time from late to early night have appeared independently in these disconnected island populations. For this reason, we suggest that insecticide impregnated bed nets and indoor residue spraying are unlikely to be effective as control tools against A. farauti occurring elsewhere, and if used, will probably result in peak biting time behavioural shifts similar to that observed in the Solomon Islands.

  4. The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender- and swarm-enriched microbial biomarkers

    PubMed Central

    Segata, Nicola; Baldini, Francesco; Pompon, Julien; Garrett, Wendy S.; Truong, Duy Tin; Dabiré, Roch K.; Diabaté, Abdoulaye; Levashina, Elena A.; Catteruccia, Flaminia

    2016-01-01

    Microbes play key roles in shaping the physiology of insects and can influence behavior, reproduction and susceptibility to pathogens. In Sub-Saharan Africa, two major malaria vectors, Anopheles gambiae and An. coluzzii, breed in distinct larval habitats characterized by different microorganisms that might affect their adult physiology and possibly Plasmodium transmission. We analyzed the reproductive microbiomes of male and female An. gambiae and An. coluzzii couples collected from natural mating swarms in Burkina Faso. 16S rRNA sequencing on dissected tissues revealed that the reproductive tracts harbor a complex microbiome characterized by a large core group of bacteria shared by both species and all reproductive tissues. Interestingly, we detected a significant enrichment of several gender-associated microbial biomarkers in specific tissues, and surprisingly, similar classes of bacteria in males captured from one mating swarm, suggesting that these males originated from the same larval breeding site. Finally, we identified several endosymbiotic bacteria, including Spiroplasma, which have the ability to manipulate insect reproductive success. Our study provides a comprehensive analysis of the reproductive microbiome of important human disease vectors, and identifies a panel of core and endosymbiotic bacteria that can be potentially exploited to interfere with the transmission of malaria parasites by the Anopheles mosquito. PMID:27086581

  5. Effect of anti-mosquito midgut antibodies on development of malaria parasite, Plasmodium vivax and fecundity in vector mosquito Anopheles culicifacies (Diptera: culicidae).

    PubMed

    Chugh, Manoj; Adak, T; Sehrawat, Neelam; Gakhar, S K

    2011-04-01

    The effect of anti-mosquito-midgut antibodies on the development of the malaria parasite, P. vivax was studied by feeding the vector mosquito, An. culicifacies with infected blood supplemented with serum from immunized rabbits. In order to get antisera, rabbits were immunized with midgut proteins of three siblings species of Anopheles culicifacies, reported to exhibit differential vectorial capacity. The mosquitoes that ingested anti-midgut antibodies along with infectious parasites had significantly fewer oocysts compared to the control group of mosquitoes. The immunized rabbits generated high titer of antibodies. Their cross reactivity amongst various tissues of the same species and with other sibling species was also determined. Immunogenic polypeptides expressed in the midgut of glucose or blood fed An. culicifacies sibling species were identified by Western blotting. One immunogenic polypeptide of 62 kDa was exclusively present in the midgut of species A. Similarly, three polypeptides of 97, 94 and 58 kDa and one polypeptide of 23 kDa were present exclusively in species B and C respectively. Immunoelectron microscopy revealed the localization of these antigens on baso-lateral membrane and microvilli. The effects of anti-mosquito midgut antibodies on fecundity, longevity, mortality and engorgement of mosquitoes were studied. Fecundity was also reduced significantly. These observations open an avenue for research toward the development of a vector-based malaria parasite transmission-blocking vaccine.

  6. Habitat characterization and spatial distribution of Anopheles sp. mosquito larvae in Dar es Salaam (Tanzania) during an extended dry period

    PubMed Central

    Sattler, Michael A; Mtasiwa, Deo; Kiama, Michael; Premji, Zul; Tanner, Marcel; Killeen, Gerry F; Lengeler, Christian

    2005-01-01

    Introduction By 2030, more than 50% of the African population will live in urban areas. Controlling malaria reduces the disease burden and further improves economic development. As a complement to treated nets and prompt access to treatment, measures targeted against the larval stage of Anopheles sp. mosquitoes are a promising strategy for urban areas. However, a precise knowledge of the geographic location and potentially of ecological characteristics of breeding sites is of major importance for such interventions. Methods In total 151 km2 of central Dar es Salaam, the biggest city of Tanzania, were systematically searched for open mosquito breeding sites. Ecologic parameters, mosquito larvae density and geographic location were recorded for each site. Logistic regression analysis was used to determine the key ecological factors explaining the different densities of mosquito larvae. Results A total of 405 potential open breeding sites were examined. Large drains, swamps and puddles were associated with no or low Anopheles sp. larvae density. The probability of Anopheles sp. larvae to be present was reduced when water was identified as "turbid". Small breeding sites were more commonly colonized by Anopheles sp. larvae. Further, Anopheles gambiae s.l. larvae were found in highly organically polluted habitats. Conclusions Clear ecological characteristics of the breeding requirements of Anopheles sp. larvae could not be identified in this setting. Hence, every stagnant open water body, including very polluted ones, have to be considered as potential malaria vector breeding sites. PMID:15649333

  7. The toxicity of angiotensin converting enzyme inhibitors to larvae of the disease vectors Aedes aegypti and Anopheles gambiae

    PubMed Central

    Abu Hasan, Zatul-’Iffah; Williams, Helen; Ismail, Nur M.; Othman, Hidayatulfathi; Cozier, Gyles E.; Acharya, K. Ravi; Isaac, R. Elwyn

    2017-01-01

    The control of mosquitoes is threatened by the appearance of insecticide resistance and therefore new control chemicals are urgently required. Here we show that inhibitors of mosquito peptidyl dipeptidase, a peptidase related to mammalian angiotensin-converting enzyme (ACE), are insecticidal to larvae of the mosquitoes, Aedes aegypti and Anopheles gambiae. ACE inhibitors (captopril, fosinopril and fosinoprilat) and two peptides (trypsin-modulating oostatic factor/TMOF and a bradykinin-potentiating peptide, BPP-12b) were all inhibitors of the larval ACE activity of both mosquitoes. Two inhibitors, captopril and fosinopril (a pro-drug ester of fosinoprilat), were tested for larvicidal activity. Within 24 h captopril had killed >90% of the early instars of both species with 3rd instars showing greater resistance. Mortality was also high within 24 h of exposure of 1st, 2nd and 3rd instars of An. gambiae to fosinopril. Fosinopril was also toxic to Ae. aegypti larvae, although the 1st instars appeared to be less susceptible to this pro-drug even after 72 h exposure. Homology models of the larval An. gambiae ACE proteins (AnoACE2 and AnoACE3) reveal structural differences compared to human ACE, suggesting that structure-based drug design offers a fruitful approach to the development of selective inhibitors of mosquito ACE enzymes as novel larvicides. PMID:28345667

  8. The toxicity of angiotensin converting enzyme inhibitors to larvae of the disease vectors Aedes aegypti and Anopheles gambiae.

    PubMed

    Abu Hasan, Zatul-'Iffah; Williams, Helen; Ismail, Nur M; Othman, Hidayatulfathi; Cozier, Gyles E; Acharya, K Ravi; Isaac, R Elwyn

    2017-03-27

    The control of mosquitoes is threatened by the appearance of insecticide resistance and therefore new control chemicals are urgently required. Here we show that inhibitors of mosquito peptidyl dipeptidase, a peptidase related to mammalian angiotensin-converting enzyme (ACE), are insecticidal to larvae of the mosquitoes, Aedes aegypti and Anopheles gambiae. ACE inhibitors (captopril, fosinopril and fosinoprilat) and two peptides (trypsin-modulating oostatic factor/TMOF and a bradykinin-potentiating peptide, BPP-12b) were all inhibitors of the larval ACE activity of both mosquitoes. Two inhibitors, captopril and fosinopril (a pro-drug ester of fosinoprilat), were tested for larvicidal activity. Within 24 h captopril had killed >90% of the early instars of both species with 3(rd) instars showing greater resistance. Mortality was also high within 24 h of exposure of 1(st), 2(nd) and 3(rd) instars of An. gambiae to fosinopril. Fosinopril was also toxic to Ae. aegypti larvae, although the 1(st) instars appeared to be less susceptible to this pro-drug even after 72 h exposure. Homology models of the larval An. gambiae ACE proteins (AnoACE2 and AnoACE3) reveal structural differences compared to human ACE, suggesting that structure-based drug design offers a fruitful approach to the development of selective inhibitors of mosquito ACE enzymes as novel larvicides.

  9. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis

    PubMed Central

    2011-01-01

    Background The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed. Results Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented. Conclusions This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the

  10. Identification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step toward finding suitable paratransgenesis candidates.

    PubMed

    Chavshin, Ali Reza; Oshaghi, Mohammad Ali; Vatandoost, Hasan; Pourmand, Mohammad Reza; Raeisi, Ahmad; Enayati, Ahmad Ali; Mardani, Nadia; Ghoorchian, Sadigheh

    2012-02-01

    To describe the midgut microbial diversity and to find the candidate bacteria for the genetic manipulation for the generation of paratransgenic Anopheline mosquitoes refractory to transmission of malaria, the microbiota of wild larvae and adult Anopheles stephensi mosquito midgut from southern Iran was studied using a conventional cell-free culture technique and analysis of a 16S ribosomal RNA (rRNA) gene sequence library. Forty species in 12 genera including seven Gram-negative Myroides, Chryseobacterium, Aeromonas, Pseudomonas, Klebsiella, Enterobacter and Shewanella and five Gram-positive Exiguobacterium, Enterococcus, Kocuria, Microbacterium and Rhodococcus bacteria were identified in the microbiota of the larvae midgut. Analysis of the adult midgut microbiota revealed presence of 25 Gram-negative species in five genera including Pseudomonas, Alcaligenes, Bordetella, Myroides and Aeromonas. Pseudomonas and Exiguobacterium with a frequency of 51% and 14% at the larval stage and Pseudomonas and Aeromonas with a frequency of 54% and 20% at the adult stage were the most common midgut symbionts. Pseudomonas, Aeromonas and Myroides genera have been isolated from both larvae and adult stages indicating possible trans-stadial transmission from larva to adult stage. Fast growth in cheap media, Gram negative, and being dominantly found in both larvae and adult stages, and presence in other malaria vectors makes Pseudomonas as a proper candidate for paratransgenesis of An. stephensi and other malaria vectors.

  11. Successful field trial of attractive toxic sugar bait (ATSB) plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, West Africa

    PubMed Central

    2010-01-01

    Background Based on highly successful demonstrations in Israel that attractive toxic sugar bait (ATSB) methods can decimate local populations of mosquitoes, this study determined the effectiveness of ATSB methods for malaria vector control in the semi-arid Bandiagara District of Mali, West Africa. Methods Control and treatment sites, selected along a road that connects villages, contained man-made ponds that were the primary larval habitats of Anopheles gambiae and Anopheles arabiensis. Guava and honey melons, two local fruits shown to be attractive to An. gambiae s.l., were used to prepare solutions of Attractive Sugar Bait (ASB) and ATSB that additionally contained boric acid as an oral insecticide. Both included a color dye marker to facilitate determination of mosquitoes feeding on the solutions. The trial was conducted over a 38-day period, using CDC light traps to monitor mosquito populations. On day 8, ASB solution in the control site and ATSB solution in the treatment site were sprayed using a hand-pump on patches of vegetation. Samples of female mosquitoes were age-graded to determine the impact of ATSB treatment on vector longevity. Results Immediately after spraying ATSB in the treatment site, the relative abundance of female and male An. gambiae s.l. declined about 90% from pre-treatment levels and remained low. In the treatment site, most females remaining after ATSB treatment had not completed a single gonotrophic cycle, and only 6% had completed three or more gonotrophic cycles compared with 37% pre-treatment. In the control site sprayed with ASB (without toxin), the proportion of females completing three or more gonotrophic cycles increased from 28.5% pre-treatment to 47.5% post-treatment. In the control site, detection of dye marker in over half of the females and males provided direct evidence that the mosquitoes were feeding on the sprayed solutions. Conclusion This study in Mali shows that even a single application of ATSB can substantially

  12. Malaria in pregnancy.

    PubMed

    Alvarez, Jesus R; Al-Khan, Abdulla; Apuzzio, Joseph J

    2005-12-01

    Recently, there has been a resurgence of malaria in densely populated areas of the United States secondary to human migration from endemic areas where factors such as cessation of vector control, vector resistance to insecticides, disease resistance to drugs, environmental changes, political instability, and indifference, have played a role for malaria becoming an overwhelming infection of these tropical underdeveloped countries. It is important for health care providers of gravida to be alert of the disease and its effects on pregnancy.

  13. Immature development of the malaria vector mosquito, Anopheles gambiae S.L. (Diptera: Culicidae), in relation to soil-substrate organic matter content of larval habitats in northcentral Nigeria.

    PubMed

    Olayemi, I K; Ojo, V O

    2013-02-01

    This study elucidated the relationships between larval habitat soil-substrate Organic Matter Content (OMC) and immature development of the mosquito Anopheles gambiae S.L. Day-old larvae of the mosquito were reared in media substrated with typical soil samples (i.e., sandy, silt, clayey and loamy soils), from established anopheline breeding sites, to provide a gradient in soil-substrate OMC. The OMC of the soil samples were determined by ignition to a constant weight; while the developing A. gambiae mosquitoes in the culture media were monitored daily for survivorship and duration of immature life stages. The results indicated significant (p < 0.05) variation in OMC of the soil types (range = 11.21 +/- 2.91% in sandy to 29.83 +/- 2.96% in loamy soils). However, though Daily Larval Survival Rates (DLSR) were relatively high (range = 95.21 +/- 2.96 to 96.70 +/- 1.44%), as influenced by OMC, such values were not significantly different (p > 0.05) among the soil-substrate types; results contrary to those of Larval Success Rates (LSR) (i.e., range = 52.07 +/- 13.64 to 74.39 +/- 6.60%). Daily Pupation Rate (DPR) of the mosquitoes varied significantly among the soil-substrates, ranging from 13.87 +/- 2.39% in clayey to 25.00 +/- 4.30% in loamy substrates. Soil-substrate OMC significantly extended the Duration of Immature Life Stages (DILS) of the mosquitoes only in the sandy soil type (range = 12.76 +/- 1.74 to 15.81 +/- 2.40 days). On the whole, DILS was inversely related to soil-substrate OMC. Cross-correlational analysis revealed significant positive association among most of the variables tested. The findings of this study should serve as baseline information for the development of effective environmental management strategies for malaria larval-vector control.

  14. An online tool for mapping insecticide resistance in major Anopheles vectors of human malaria parasites and review of resistance status for the Afrotropical region

    PubMed Central

    2014-01-01

    Background Malaria control programmes across Africa and beyond are facing increasing insecticide resistance in the major anopheline vectors. In order to preserve or prolong the effectiveness of the main malaria vector interventions, up-to-date and easily accessible insecticide resistance data that are interpretable at operationally-relevant scales are critical. Herein we introduce and demonstrate the usefulness of an online mapping tool, IR Mapper. Methods A systematic search of published, peer-reviewed literature was performed and Anopheles insecticide susceptibility and resistance mechanisms data were extracted and added to a database after a two-level verification process. IR Mapper ( http://www.irmapper.com) was developed using the ArcGIS for JavaScript Application Programming Interface and ArcGIS Online platform for exploration and projection of these data. Results Literature searches yielded a total of 4,084 susceptibility data points for 1,505 populations, and 2,097 resistance mechanisms data points for 1,000 populations of Anopheles spp. tested via recommended WHO methods from 54 countries between 1954 and 2012. For the Afrotropical region, data were most abundant for populations of An. gambiae, and pyrethroids and DDT were more often used in susceptibility assays (51.1 and 26.8% of all reports, respectively) than carbamates and organophosphates. Between 2001 and 2012, there was a clear increase in prevalence and distribution of confirmed resistance of An. gambiae s.l. to pyrethroids (from 41 to 87% of the mosquito populations tested) and DDT (from 64 to 91%) throughout the Afrotropical region. Metabolic resistance mechanisms were detected in western and eastern African populations and the two kdr mutations (L1014S and L1014F) were widespread. For An. funestus s.l., relatively few populations were tested, although in 2010–2012 resistance was reported in 50% of 10 populations tested. Maps are provided to illustrate the use of IR Mapper and the distribution

  15. Wide cross-reactivity between Anopheles gambiae and Anopheles funestus SG6 salivary proteins supports exploitation of gSG6 as a marker of human exposure to major malaria vectors in tropical Africa

    PubMed Central

    2011-01-01

    Background The Anopheles gambiae gSG6 is an anopheline-specific salivary protein which helps female mosquitoes to efficiently feed on blood. Besides its role in haematophagy, gSG6 is immunogenic and elicits in exposed individuals an IgG response, which may be used as indicator of exposure to the main African malaria vector A. gambiae. However, malaria transmission in tropical Africa is sustained by three main vectors (A. gambiae, Anopheles arabiensis and Anopheles funestus) and a general marker, reflecting exposure to at least these three species, would be especially valuable. The SG6 protein is highly conserved within the A. gambiae species complex whereas the A. funestus homologue, fSG6, is more divergent (80% identity with gSG6). The aim of this study was to evaluate cross-reactivity of human sera to gSG6 and fSG6. Methods The A. funestus SG6 protein was expressed/purified and the humoral response to gSG6, fSG6 and a combination of the two antigens was compared in a population from a malaria hyperendemic area of Burkina Faso where both vectors were present, although with a large A. gambiae prevalence (>75%). Sera collected at the beginning and at the end of the high transmission/rainy season, as well as during the following low transmission/dry season, were analysed. Results According to previous observations, both anti-SG6 IgG level and prevalence decreased during the low transmission/dry season and showed a typical age-dependent pattern. No significant difference in the response to the two antigens was found, although their combined use yielded in most cases higher IgG level. Conclusions Comparative analysis of gSG6 and fSG6 immunogenicity to humans suggests the occurrence of a wide cross-reactivity, even though the two proteins carry species-specific epitopes. This study supports the use of gSG6 as reliable indicator of exposure to the three main African malaria vectors, a marker which may be useful to monitor malaria transmission and evaluate vector control

  16. Participatory mapping of target areas to enable operational larval source management to suppress malaria vector mosquitoes in Dar es Salaam, Tanzania

    PubMed Central

    Dongus, Stefan; Nyika, Dickson; Kannady, Khadija; Mtasiwa, Deo; Mshinda, Hassan; Fillinger, Ulrike; Drescher, Axel W; Tanner, Marcel; Castro, Marcia C; Killeen, Gerry F

    2007-01-01

    Background Half of the population of Africa will soon live in towns and cities where it can be protected from malaria by controlling aquatic stages of mosquitoes. Rigorous but affordable and scaleable methods for mapping and managing mosquito habitats are required to enable effective larval control in urban Africa. Methods A simple community-based mapping procedure that requires no electronic devices in the field was developed to facilitate routine larval surveillance in Dar es Salaam, Tanzania. The mapping procedure included (1) community-based development of sketch maps and (2) verification of sketch maps through technical teams using laminated aerial photographs in the field which were later digitized and analysed using Geographical Information Systems (GIS). Results Three urban wards of Dar es Salaam were comprehensively mapped, covering an area of 16.8 km2. Over thirty percent of this area were not included in preliminary community-based sketch mapping, mostly because they were areas that do not appear on local government residential lists. The use of aerial photographs and basic GIS allowed rapid identification and inclusion of these key areas, as well as more equal distribution of the workload of malaria control field staff. Conclusion The procedure developed enables complete coverage of targeted areas with larval control through comprehensive spatial coverage with community-derived sketch maps. The procedure is practical, affordable, and requires minimal technical skills. This approach can be readily integrated into malaria vector control programmes, scaled up to towns and cities all over Tanzania and adapted to urban settings elsewhere in Africa. PMID:17784963

  17. Structure and function of a G-actin sequestering protein with a vital role in malaria oocyst development inside the mosquito vector.

    PubMed

    Hliscs, Marion; Sattler, Julia M; Tempel, Wolfram; Artz, Jennifer D; Dong, Aiping; Hui, Raymond; Matuschewski, Kai; Schüler, Herwig

    2010-04-09

    Cyclase-associated proteins (CAPs) are evolutionary conserved G-actin-binding proteins that regulate microfilament turnover. CAPs have a modular structure consisting of an N-terminal adenylate cyclase binding domain, a central proline-rich segment, and a C-terminal actin binding domain. Protozoan parasites of the phylum Apicomplexa, such as Cryptosporidium and the malaria parasite Plasmodium, express small CAP orthologs with homology to the C-terminal actin binding domain (C-CAP). Here, we demonstrate by reverse genetics that C-CAP is dispensable for the pathogenic Plasmodium blood stages. However, c-cap(-) parasites display a complete defect in oocyst development in the insect vector. By trans-species complementation we show that the Cryptosporidium parvum ortholog complements the Plasmodium gene functions. Purified recombinant C. parvum C-CAP protein binds actin monomers and prevents actin polymerization. The crystal structure of C. parvum C-CAP shows two monomers with a right-handed beta-helical fold intercalated at their C termini to form the putative physiological dimer. Our results reveal a specific vital role for an apicomplexan G-actin-binding protein during sporogony, the parasite replication phase that precedes formation of malaria transmission stages. This study also exemplifies how Plasmodium reverse genetics combined with biochemical and structural analyses of orthologous proteins can offer a fast track toward systematic gene characterization in apicomplexan parasites.

  18. Geographic population structure of the African malaria vector Anopheles gambiae suggests a role for the forest-savannah biome transition as a barrier to gene flow.

    PubMed

    Pinto, J; Egyir-Yawson, A; Vicente, Jl; Gomes, B; Santolamazza, F; Moreno, M; Charlwood, Jd; Simard, F; Elissa, N; Weetman, D; Donnelly, Mj; Caccone, A; Della Torre, A

    2013-09-01

    The primary Afrotropical malaria mosquito vector Anopheles gambiae sensu stricto has a complex population structure. In west Africa, this species is split into two molecular forms and displays local and regional variation in chromosomal arrangements and behaviors. To investigate patterns of macrogeographic population substructure, 25 An. gambiae samples from 12 African countries were genotyped at 13 microsatellite loci. This analysis detected the presence of additional population structuring, with the M-form being subdivided into distinct west, central, and southern African genetic clusters. These clusters are coincident with the central African rainforest belt and northern and southern savannah biomes, which suggests restrictions to gene flow associated with the transition between these biomes. By contrast, geographically patterned population substructure appears much weaker within the S-form.

  19. Geographic population structure of the African malaria vector Anopheles gambiae suggests a role for the forest-savannah biome transition as a barrier to gene flow

    PubMed Central

    Pinto, J; Egyir-Yawson, A; Vicente, JL; Gomes, B; Santolamazza, F; Moreno, M; Charlwood, JD; Simard, F; Elissa, N; Weetman, D; Donnelly, MJ; Caccone, A; della Torre, A

    2013-01-01

    The primary Afrotropical malaria mosquito vector Anopheles gambiae sensu stricto has a complex population structure. In west Africa, this species is split into two molecular forms and displays local and regional variation in chromosomal arrangements and behaviors. To investigate patterns of macrogeographic population substructure, 25 An. gambiae samples from 12 African countries were genotyped at 13 microsatellite loci. This analysis detected the presence of additional population structuring, with the M-form being subdivided into distinct west, central, and southern African genetic clusters. These clusters are coincident with the central African rainforest belt and northern and southern savannah biomes, which suggests restrictions to gene flow associated with the transition between these biomes. By contrast, geographically patterned population substructure appears much weaker within the S-form. PMID:24062800

  20. The Role of Oxidative Stress in the Longevity and Insecticide Resistance Phenotype of the Major Malaria Vectors Anopheles arabiensis and Anopheles funestus.

    PubMed

    Oliver, Shüné V; Brooke, Basil D

    2016-01-01

    Oxidative stress plays numerous biological roles, both functional and pathological. The role of oxidative stress in various epidemiologically relevant biological traits in Anopheles mosquitoes is not well established. In this study, the effects of oxidative stress on the longevity and insecticide resistance phenotype in the major malaria vector species An. arabiensis and An. funestus were examined. Responses to dietary copper sulphate and hydrogen peroxide were used as proxies for the oxidative stress phenotype by determining the effect of copper on longevity and hydrogen peroxide lethal dose. Glutathione peroxidase and catalase activities were determined colorimetrically. Oxidative burden was quantified as protein carbonyl content. Changes in insecticide resistance phenotype were monitored by WHO bioassay. Insecticide resistant individuals showed an increased capacity for coping with oxidative stress, mediated by increased glutathione peroxidase and catalase activity. This effect was observed in both species, as well as in laboratory strains and F1 individuals derived from wild-caught An. funestus mothers. Phenotypic capacity for coping with oxidative stress was greatest in strains with elevated Cytochrome P450 activity. Synergism of oxidative stress defence enzymes by dietary supplementation with haematin, 3-Amino-1, 2, 4-triazole and Sodium diethyldithiocarbamate significantly increased pyrethroid-induced mortality in An. arabiensis and An. funestus. It is therefore concluded that defence against oxidative stress underlies the augmentation of the insecticide resistance phenotype associated with multiple blood-feeding. This is because multiple blood-feeding ultimately leads to a reduction of oxidative stress in insecticide resistant females, and also reduces the oxidative burden induced by DDT and pyrethroids, by inducing increased glutathione peroxidase activity. This study highlights the importance of oxidative stress in the longevity and insecticide resistance

  1. Genetic variations of ND5 gene of mtDNA in populations of Anopheles sinensis (Diptera: Culicidae) malaria vector in China

    PubMed Central

    2013-01-01

    Background Anopheles sinensis is a principal vector for Plasmodium vivax malaria in most parts of China. Understanding of genetic structure and genetic differentiation of the mosquito should contribute to the vector control and malaria elimination in China. Methods The present study investigated the genetic structure of An. sinensis populations using a 729 bp fragment of mtDNA ND5 among 10 populations collected from seven provinces in China. Results ND5 was polymorphic by single mutations within three groups of An. sinensis that were collected from 10 different geographic populations in China. Out of 140 specimens collected from 10 representative sites, 84 haplotypes and 71 variable positions were determined. The overall level of genetic differentiation of An. sinensis varied from low to moderate across China and with a FST range of 0.00065 – 0.341. Genealogy analysis clustered the populations of An. sinensis into three main clusters. Each cluster shared one main haplotype. Pairwise variations within populations were higher (68.68%) than among populations (31.32%) and with high fixation index (FST = 0.313). The results of the present study support population growth and expansion in the An. sinensis populations from China. Three clusters of An. sinensis populations were detected in this study with each displaying different proportion patterns over seven Chinese provinces. No correlation between genetic and geographic distance was detected in overall populations of An. sinensis (R2 = 0.058; P = 0.301). Conclusions The results indicate that the ND5 gene of mtDNA is highly polymorphic in An. sinensis and has moderate genetic variability in the populations of this mosquito in China. Demographic and spatial results support evidence of expansion in An. sinensis populations. PMID:24192424

  2. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis

    PubMed Central

    2010-01-01

    Background This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS) of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the An. gambiae complex. Anopheles gambiae is one of four DVS within the An. gambiae complex, the others being An. arabiensis and the coastal An. merus and An. melas. There are a further three, highly anthropophilic DVS in Africa, An. funestus, An. moucheti and An. nili. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed. Results A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT) method. Conclusions The predicted geographic extent for the following DVS (or species/suspected species complex*) is provided for Africa: Anopheles (Cellia) arabiensis, An. (Cel.) funestus*, An. (Cel.) gambiae, An. (Cel.) melas, An. (Cel.) merus, An. (Cel.) moucheti and An. (Cel.) nili*, and in the European and Middle Eastern Region: An. (Anopheles) atroparvus, An. (Ano

  3. Factors involved in the re-emergence of malaria in borderline of Iran, Armenia, Azerbaijan and Turkey.

    PubMed

    Vatandoost, H; Ashraf, H; Lak, S H Salari; Mahdi, R Entezar; Abai, M R; Nazari, M

    2003-01-01

    The borderline of Iran with Azerbaijan, Armenia and Turkey had been considered a malaria free region. However, in 1991, after the independence of the southern countries of the former Soviet Union, a new threat of malaria importation emerged from those countries into Iran, which was affected by serious epidemics of Plasmodium vivax malaria. Various factors can affect malaria resurgence in this region, such as socioeconomic conditions, especially the displacement of massive populations from war-stricken zones in the Republic of Azerbaijan. Accordingly, in some parts of West-Azerbaijan, East-Azerbaijan, Ardebile and Gilan provinces of Iran, several malaria foci were observed. Construction of dams, people traveling from neighboring countries to Iran, urbanization, irrigation projects, lack of malaria vector control, shortage of drug supplies are also major factors in malaria outbreaks in the region. An investigation was carried out on the bionomics of the main malaria vectors in the region. The result showed that Anopheles sacharovi plays an important role in malaria transmission and An. maculipennis and An. superpictus can be secondary vectors. Larvae were found in slow flowing water and channels with water plants. They were more abundant in June. The parity rate of blood-fed females was high in May. An. sacharovi is active from May to October with two peaks of activity, which occur in August and October. The population of this species is higher in animal shelters with a zoophicity of 95%. About 90% of bites took place in the second half of the night. A CDC light trap can also catch this species. Susceptibility testing using the WHO-recommended diagnostic doses of insecticides, revealed that this species is resistant to DDT and dieldrin, but susceptible to malathion, fenitrothion, propoxur, bendiocarb, lambdacyhalothrin, permethrin, cyfluthrin, etofenprox and deltamethrin.

  4. Attractive toxic sugar bait (ATSB) methods decimate populations of Anopheles malaria vectors in arid environments regardless of the local availability of favoured sugar-source blossoms

    PubMed Central

    2012-01-01

    Background Attractive toxic sugar bait (ATSB) methods are a new and promising "attract and kill" strategy for mosquito control. Sugar-feeding female and male mosquitoes attracted to ATSB solutions, either sprayed on plants or in bait stations, ingest an incorporated low-risk toxin such as boric acid and are killed. This field study in the arid malaria-free oasis environment of Israel compares how the availability of a primary natural sugar source for Anopheles sergentii mosquitoes: flowering Acacia raddiana trees, affects the efficacy of ATSB methods for mosquito control. Methods A 47-day field trial was conducted to compare impacts of a single application of ATSB treatment on mosquito densities and age structure in isolated uninhabited sugar-rich and sugar-poor oases relative to an untreated sugar-rich oasis that served as a control. Results ATSB spraying on patches of non-flowering vegetation around freshwater springs reduced densities of female An. sergentii by 95.2% in the sugar-rich oasis and 98.6% in the sugar-poor oasis; males in both oases were practically eliminated. It reduced daily survival rates of female An. sergentii from 0.77 to 0.35 in the sugar-poor oasis and from 0.85 to 0.51 in the sugar-rich oasis. ATSB treatment reduced the proportion of older more epidemiologically dangerous mosquitoes (three or more gonotrophic cycles) by 100% and 96.7%, respectively, in the sugar-poor and sugar-rich oases. Overall, malaria vectorial capacity was reduced from 11.2 to 0.0 in the sugar-poor oasis and from 79.0 to 0.03 in the sugar-rich oasis. Reduction in vector capacity to negligible levels days after ATSB application in the sugar-poor oasis, but not until after 2 weeks in the sugar-rich oasis, show that natural sugar sources compete with the applied ATSB solutions. Conclusion While readily available natural sugar sources delay ATSB impact, they do not affect overall outcomes because the high frequency of sugar feeding by mosquitoes has an accumulating effect

  5. Malaria transmission and insecticide resistance of Anopheles gambiae (Diptera: Culicidae) in the French military camp of Port-Bouët, Abidjan (Côte d'Ivoire): implications for vector control.

    PubMed

    Girod, Romain; Orlandi-Pradines, Eve; Rogier, Christophe; Pages, Frederic

    2006-09-01

    An important vector control program is ongoing to lower the risk of malaria transmission in the French military camp of Port-Bouët, Abidjan (Côte d'Ivoire). However, some autochthonous malaria cases are regularly suspected. An entomological survey was conducted in June 2004 in the camp to assess malaria transmission and evaluate the pyrethroid and organophosphate resistance of the malaria vectors. The average mosquito biting rate was 178.0 bites per person per night. Mosquitoes belonging to the Anopheles gambiae (Diptera: Culicidae) complex and the Anopheles funestus group were collected. An. gambiae s.s. molecular form M was the only species of the An. gambiae complex present. The average number of An. gambiae bites was approximately 44.3 per person per night. The circumsporozoite index was 0.38% and the entomological inoculation rate estimated to be 1.2 infective bites per week for the study period. The kdr and ace1 gene frequencies in the An. gambiae population were 0.70 and 0.15, respectively. Personnel living in the French barracks of Port-Bouët are thus at high risk of being bitten by parasite-infected mosquitoes. Such an entomological inoculation rate, usually found in African peri-urban environments, was unexpected considering the extensive effort deployed to control mosquitoes in the camp. Insecticide resistance could explain the inefficacy of the vector control program but the spraying strategy is also questionable.

  6. Relative toxicity of neem fruit, bitter gourd, and castor seed extracts against the larvae of filaria vector, Culex quinquefasciatus (Say).

    PubMed

    Batabyal, Lata; Sharma, Preeti; Mohan, Lalit; Maurya, Prejwltta; Srivastava, C N

    2009-10-01

    In search of a natural larvicide, petroleum ether, carbon tetrachloride, and methanol extracts of Azadirachta indica fruits and seed extracts of bitter gourd (Momordica charantia) and castor (Ricinus communis) were tested for larvicidal activity against Culex quinquefasciatus. Among the extracts tested, the methanol extract of Az. indica was observed the most potent with LC(50) at 74.04 and 58.52 ppm and LC(-90) at 201.83 and 171.70 ppm as compared to methanol extract of M. charantia with LC(50) at 101.18 and 93.58 ppm and LC(90) at 322.81 and 302.62 ppm carbon tetrachloride extract of R. communis with LC(50) at 144.11 and 92.44 ppm and LC(90) at 432.42 and 352.89 ppm after 24 and 48 h, respectively. The methanol extract of Az. indica exhibited potential results and can be exploited as a preferred natural larvicide for the control of filarial vector, Cx. quinquefasciatus.

  7. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors.

    PubMed

    Santhoshkumar, Thirunavukkarasu; Rahuman, Abdul Abdul; Rajakumar, Govindasamy; Marimuthu, Sampath; Bagavan, Asokan; Jayaseelan, Chidambaram; Zahir, Abdul Abduz; Elango, Gandhi; Kamaraj, Chinnaperumal

    2011-03-01

    The aim of this study was to investigate the larvicidal potential of the hexane, chloroform, ethyl acetate, acetone, methanol, and aqueous leaf extracts of Nelumbo nucifera Gaertn. (Nymphaeaceae) and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of Anopheles subpictus Grassi and Culex quinquefasciatus Say (Diptera: Culicidae). Nanoparticles are being used in many commercial applications. It was found that aqueous silver ions can be reduced by aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. The results recorded from UV-vis spectrum, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared support the biosynthesis and characterization of silver nanoparticles. Larvae were exposed to varying concentrations of plant extracts and synthesized silver nanoparticles for 24 h. All extracts showed moderate larvicidal effects; however, the maximum efficacy was observed in crude methanol, aqueous, and synthesized silver nanoparticles against the larvae of A. subpictus (LC(50) = 8.89, 11.82, and 0.69 ppm; LC(90) = 28.65, 36.06, and 2.15 ppm) and against the larvae of C. quinquefasciatus (LC(50) = 9.51, 13.65, and 1.10 ppm; LC(90) = 28.13, 35.83, and 3.59 ppm), respectively. These results suggest that the leaf methanol, aqueous extracts of N. nucifera, and green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friendly approach for the control of the A. subpictus and C. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the plant extracts and synthesized nanoparticles.

  8. Development of a DNA-Based Method for Distinguishing the Malaria Vectors, Anopheles gambiae from Anopheles arabiensis.

    DTIC Science & Technology

    1987-06-01

    ITj1ex incr i t.’h a’i x I~ h ) ’ ’(1 . 1,-!.t A I a I a , 4 (A. a-ml.ia-a ’ A A. ,aldbiairbi ,dl tht. II ’ At! :;, ’i . ’ . , ’ ’ ," .( ar , mTor( f...gambiae complex includes si morphologically identical specien, two of w~hich (A. gambiae avid A. arabiernsis ) are thie p!- iav y Afr ican malaria .eto)i...8217 today. Since two or more of the species are commonly s,’mpatric, epidemiological studies to determine the invol,.ement of each in maaria transmissior

  9. Induction of CD8(+) T cell responses and protective efficacy following microneedle-mediated delivery of a live adenovirus-vectored malaria vaccine.

    PubMed

    Pearson, Frances E; O'Mahony, Conor; Moore, Anne C; Hill, Adrian V S

    2015-06-22

    There is an urgent need for improvements in vaccine delivery technologies. This is particularly pertinent for vaccination programmes within regions of limited resources, such as those required for adequate provision for disposal of used needles. Microneedles are micron-sized structures that penetrate the stratum corneum of the skin, creating temporary conduits for the needle-free delivery of drugs or vaccines. Here, we aimed to investigate immunity induced by the recombinant simian adenovirus-vectored vaccine ChAd63.ME-TRAP; currently undergoing clinical assessment as a candidate malaria vaccine, when delivered percutaneously by silicon microneedle arrays. In mice, we demonstrate that microneedle-mediated delivery of ChAd63.ME-TRAP induced similar numbers of transgene-specific CD8(+) T cells compared to intradermal (ID) administration with needle-and-syringe, following a single immunisation and after a ChAd63/MVA heterologous prime-boost schedule. When mice immunised with ChAd63/MVA were challenged with live Plasmodium berghei sporozoites, microneedle-mediated ChAd63.ME-TRAP priming demonstrated equivalent protective efficacy as did ID immunisation. Furthermore, responses following ChAd63/MVA immunisation correlated with a specific design parameter of the array used ('total array volume'). The level of transgene expression at the immunisation site and skin-draining lymph node (dLN) was also linked to total array volume. These findings have implications for defining silicon microneedle array design for use with live, vectored vaccines.

  10. Combining viral vectored and protein-in-adjuvant vaccines against the blood-stage malaria antigen AMA1: report on a phase 1a clinical trial.

    PubMed

    Hodgson, Susanne H; Choudhary, Prateek; Elias, Sean C; Milne, Kathryn H; Rampling, Thomas W; Biswas, Sumi; Poulton, Ian D; Miura, Kazutoyo; Douglas, Alexander D; Alanine, Daniel Gw; Illingworth, Joseph J; de Cassan, Simone C; Zhu, Daming; Nicosia, Alfredo; Long, Carole A; Moyle, Sarah; Berrie, Eleanor; Lawrie, Alison M; Wu, Yimin; Ellis, Ruth D; Hill, Adrian V S; Draper, Simon J

    2014-12-01

    The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines--chimpanzee adenovirus ChAd63 and the orthopoxvirus MVA. A variety of promising "mixed-modality" regimens were tested. All volunteers were primed with ChAd63, and then subsequently boosted with MVA and/or protein-in-adjuvant using either an 8- or 16-week prime-boost interval. We report on the safety of these regimens, as well as the T cell, B cell, and serum antibody responses. Notably, IgG antibody responses primed by ChAd63 were comparably boosted by AMA1 protein vaccine, irrespective of whether CPG 7909 was included in the Alhydrogel adjuvant. The ability to improve the potency of a relatively weak aluminium-based adjuvant in humans, by previously priming with an adenoviral vaccine vector encoding the same antigen, thus offers a novel vaccination strategy for difficult or neglected disease targets when access to more potent adjuvants is not possible.

  11. Combining Viral Vectored and Protein-in-adjuvant Vaccines Against the Blood-stage Malaria Antigen AMA1: Report on a Phase 1a Clinical Trial

    PubMed Central

    Hodgson, Susanne H; Choudhary, Prateek; Elias, Sean C; Milne, Kathryn H; Rampling, Thomas W; Biswas, Sumi; Poulton, Ian D; Miura, Kazutoyo; Douglas, Alexander D; Alanine, Daniel GW; Illingworth, Joseph J; de Cassan, Simone C; Zhu, Daming; Nicosia, Alfredo; Long, Carole A; Moyle, Sarah; Berrie, Eleanor; Lawrie, Alison M; Wu, Yimin; Ellis, Ruth D; Hill, Adrian V S; Draper, Simon J

    2014-01-01

    The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines—chimpanzee adenovirus ChAd63 and the orthopoxvirus MVA. A variety of promising “mixed-modality” regimens were tested. All volunteers were primed with ChAd63, and then subsequently boosted with MVA and/or protein-in-adjuvant using either an 8- or 16-week prime-boost interval. We report on the safety of these regimens, as well as the T cell, B cell, and serum antibody responses. Notably, IgG antibody responses primed by ChAd63 were comparably boosted by AMA1 protein vaccine, irrespective of whether CPG 7909 was included in the Alhydrogel adjuvant. The ability to improve the potency of a relatively weak aluminium-based adjuvant in humans, by previously priming with an adenoviral vaccine vector encoding the same antigen, thus offers a novel vaccination strategy for difficult or neglected disease targets when access to more potent adjuvants is not possible. PMID:25156127

  12. Population structure analyses and demographic history of the malaria vector Anopheles albimanus from the Caribbean and the Pacific regions of Colombia

    PubMed Central

    2009-01-01

    Background Anopheles albimanus is an important malaria vector in some areas throughout its distribution in the Caribbean and the Pacific regions of Colombia, covering three biogeographic zones of the neotropical region, Maracaibo, Magdalena and Chocó. Methods This study was conducted to estimate intra-population genetic diversity, genetic differentiation and demographic history of An. albimanus populations because knowledge of vector population structure is a useful tool to guide malaria control programmes. Analyses were based on mtDNA COI gene sequences and four microsatellite loci of individuals collected in eight populations from the Caribbean and the Pacific regions of Colombia. Results Two distinctive groups were consistently detected corresponding to COI haplotypes from each region. A star-shaped statistical parsimony network, significant and unimodal mismatch distribution, and significant negative neutrality tests together suggest a past demographic expansion or a selective sweep in An. albimanus from the Caribbean coast approximately 21,994 years ago during the late Pleistocene. Overall moderate to low genetic differentiation was observed between populations within each region. However, a significant level of differentiation among the populations closer to Buenaventura in the Pacific region was observed. The isolation by distance model best explained genetic differentiation among the Caribbean region localities: Los Achiotes, Santa Rosa de Lima and Moñitos, but it could not explain the genetic differentiation observed between Turbo (Magdalena providence), and the Pacific region localities (Nuquí, Buenaventura, Tumaco). The patterns of differentiation in the populations from the different biogeographic provinces could not be entirely attributed to isolation by distance. Conclusion The data provide evidence for limited past gene flow between the Caribbean and the Pacific regions, as estimated by mtDNA sequences and current gene flow patterns among An

  13. One-pot biogenic fabrication of silver nanocrystals using Quisqualis indica: Effectiveness on malaria and Zika virus mosquito vectors, and impact on non-target aquatic organisms.

    PubMed

    Govindarajan, Marimuthu; Vijayan, Periasamy; Kadaikunnan, Shine; Alharbi, Naiyf S; Benelli, Giovanni

    2016-09-01

    Currently, mosquito vector control is facing a number of key challenges, including the rapid development of resistance to synthetic pesticides and the recent spread of aggressive arbovirus outbreaks. The biosynthesis of silver nanoparticles (AgNPs) is currently considered an environmental friendly alternative to the employ of pyrethroids, carbamates and microbial agents (e.g. Bacillus thuringiensis var. israelensis), since AgNPs are easy to produce, effective and stable in the aquatic environment. However, their biophysical features showed wide variations according to the botanical agent using for the green synthesis, outlining the importance of screening local floral resources used as reducing and stabilizing agents. In this study, we focused on the biophysical properties and the mosquitocidal action of Quisqualis indica-fabricated AgNPs. AgNPs were characterized using spectroscopic (UV, FTIR, XRD) and microscopic (AFM, SEM, TEM and EDX) techniques. AFM, SEM and TEM confirmed the synthesis of poly-dispersed AgNPs with spherical shape and size ranging from 1 to 30nm. XRD shed light on the crystalline structure of these AgNPs. The acute toxicity of Quisqualis indica extract and AgNPs was evaluated against malaria, arbovirus, and filariasis vectors, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus, as well as on three important non-target aquatic organisms. The Q. indica leaf extract showed moderate larvicidal effectiveness on Cx. quinquefasciatus (LC50=220.42), Ae. aegypti (LC50=203.63) and An. stephensi (LC50=185.98). Q. indica-fabricated AgNPs showed high toxicity against Cx. quinquefasciatus (LC50=14.63), Ae. aegypti (LC50=13.55) and An. stephensi (LC50=12.52), respectively. Notably, Q. indica-synthesized AgNPs were moderately toxic to non-target aquatic mosquito predators Anisops bouvieri (LC50=653.05μg/mL), Diplonychus indicus (LC50=860.94μg/mL) and Gambusia affinis (LC50=2183.16μg/mL), if compared to the targeted mosquitoes. Overall, the

  14. Is there an efficient trap or collection method for sampling Anopheles darlingi and other malaria vectors that can describe the essential parameters affecting transmission dynamics as effectively as human landing catches? - A Review

    PubMed Central

    Lima, José Bento Pereira; Rosa-Freitas, Maria Goreti; Rodovalho, Cynara Melo; Santos, Fátima; Lourenço-de-Oliveira, Ricardo

    2014-01-01

    Distribution, abundance, feeding behaviour, host preference, parity status and human-biting and infection rates are among the medical entomological parameters evaluated when determining the vector capacity of mosquito species. To evaluate these parameters, mosquitoes must be collected using an appropriate method. Malaria is primarily transmitted by anthropophilic and synanthropic anophelines. Thus, collection methods must result in the identification of the anthropophilic species and efficiently evaluate the parameters involved in malaria transmission dynamics. Consequently, human landing catches would be the most appropriate method if not for their inherent risk. The choice of alternative anopheline collection methods, such as traps, must consider their effectiveness in reproducing the efficiency of human attraction. Collection methods lure mosquitoes by using a mixture of olfactory, visual and thermal cues. Here, we reviewed, classified and compared the efficiency of anopheline collection methods, with an emphasis on Neotropical anthropophilic species, especially Anopheles darlingi, in distinct malaria epidemiological conditions in Brazil. PMID:25185008

  15. Next-generation site-directed transgenesis in the malaria vector mosquito Anopheles gambiae: self-docking strains expressing germline-specific phiC31 integrase.

    PubMed

    Meredith, Janet M; Underhill, Ann; McArthur, Clare C; Eggleston, Paul

    2013-01-01

    Diseases transmitted by mosquitoes have a devastating impact on global health and the situation is complicated due to difficulties with both existing control measures and the impact of climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. The Streptomyces phage phiC31 integrase system has been successfully adapted for site-directed transgene integration in a range of insects, thus overcoming many limitations due to size constraints and random integration associated with transposon-mediated transformation. Using this technology, we previously published the first site-directed transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 docking site at a defined genomic location. A second phase of genetic modification then achieved site-directed integration of an anti-malarial effector gene. In the current publication we report improved efficiency and utility of the phiC31 integrase system following the generation of Anopheles gambiae self-docking strains. Four independent strains, with docking sites at known locations on three different chromosome arms, were engineered to express integrase under control of the regulatory regions of the nanos gene from Anopheles gambiae. The resulting protein accumulates in the posterior oocyte to provide integrase activity at the site of germline development. Two self-docking strains, exhibiting significantly different levels of integrase expression, were assessed for site-directed transgene integration and found to demonstrate greatly improved survival and efficiency of transformation. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters to regulate their expression, enabling those offering maximum effect with minimum fitness cost to be identified

  16. Comparative field evaluation of the Mbita trap, the Centers for Disease Control light trap, and the human landing catch for sampling of malaria vectors in western Kenya.

    PubMed

    Mathenge, Evan M; Omweri, George O; Irungu, Lucy W; Ndegwa, Paul N; Walczak, Elizabeth; Smith, Tom A; Killeen, Gerry F; Knols, Bart G J

    2004-01-01

    The mosquito sampling efficiency of a new bed net trap (the Mbita trap) was compared with that of the Centers for Disease Control miniature light trap (hung adjacent to an occupied bed net) and the human landing catch in western Kenya. Overall, the Mbita trap caught 48.7 +/- 4.8% (mean +/- SEM) the number of Anopheles gambiae Giles sensu lato caught in the human landing catch and 27.4 +/- 8.2% of the number caught by the light trap. The corresponding figures for Anopheles funestus Giles were 74.6 +/- 1.3% and 39.2 +/- 1.9%, respectively. Despite the clear differences in the numbers of mosquitoes caught by each method, both the Mbita trap and light trap catches were directly proportional to human landing catches regardless of mosquito density. No significant differences in parity or sporozoite incidence were observed between mosquitoes caught by the three methods for either An. gambiae s.l. or An. funestus. Identification of the sibling species of the An. gambiae complex by a polymerase chain reaction indicated that the ratio of An. gambiae Giles sensu stricto to An. arabiensis Patton did not vary according to the sampling method used. It is concluded that the Mbita trap is a promising tool for sampling malaria vector populations since its catch can be readily converted into equivalent human biting catch, it can be applied more intensively, it requires neither expensive equipment nor skilled personnel, and it samples mosquitoes in an exposure-free manner. Such intensive sampling capability will allow cost-effective surveillance of malaria transmission at much finer spatial and temporal resolution than has been previously possible.

  17. Chemical Compositions of the Peel Essential Oil of Citrus aurantium and Its Natural Larvicidal Activity against the Malaria Vector Anopheles stephensi (Diptera: Culicidae) in Comparison with Citrus paradisi

    PubMed Central

    Sanei-Dehkordi, Alireza; Sedaghat, Mohammad Mehdi; Vatandoost, Hassan; Abai, Mohammad Reza

    2016-01-01

    Background: Recently, essential oils and extracts derived from plants have received much interest as potential bio-active agents against mosquito vectors. Methods: The essential oils extract from fresh peel of ripe fruit of Citrus aurantium and Citrus paradisi were tested against mosquito vector Anopheles stephensi (Diptera: Culicidae) under laboratory condition. Then chemical composition of the essential oil of C. aurantium was analyzed using gas chromatography-mass spectrometry (GC–MS). Results: The essential oils obtained from C. aurantium, and C. paradisi showed good larviciding effect against An. stephensi with LC50 values 31.20 ppm and 35.71 ppm respectively. Clear dose response relationships were established with the highest dose of 80 ppm plant extract evoking almost 100% mortality. Twenty-one (98.62%) constituents in the leaf oil were identified. The main constituent of the leaf oil was Dl-limonene (94.81). Conclusion: The results obtained from this study suggest that the limonene of peel essential oil of C. aurantium is promising as larvicide against An. stephensi larvae and could be useful in the search for new natural larvicidal compounds. PMID:28032110

  18. Malaria ecotypes and stratification.

    PubMed

    Schapira, Allan; Boutsika, Konstantina

    2012-01-01

    To deal with the variability of malaria, control programmes need to stratify their malaria problem into a number of smaller units. Such stratification may be based on the epidemiology of malaria or on its determinants such as ecology. An ecotype classification was developed by the World Health Organization (WHO) around 1990, and it is time to assess its usefulness for current malaria control as well as for malaria modelling on the basis of published research. Journal and grey literature was searched for articles on malaria or Anopheles combined with ecology or stratification. It was found that all malaria in the world today could be assigned to one or more of the following ecotypes: savanna, plains and valleys; forest and forest fringe; foothill; mountain fringe and northern and southern fringes; desert fringe; coastal and urban. However, some areas are in transitional or mixed zones; furthermore, the implications of any ecotype depend on the biogeographical region, sometimes subregion, and finally, the knowledge on physiography needs to be supplemented by local information on natural, anthropic and health system processes including malaria control. Ecotyping can therefore not be seen as a shortcut to determine control interventions, but rather as a framework to supplement available epidemiological and entomological data so as to assess malaria situations at the local level, think through the particular risks and opportunities and reinforce intersectoral action. With these caveats, it does however emerge that several ecotypic distinctions are well defined and have relatively constant implications for control within certain biogeographic regions. Forest environments in the Indo-malay and the Neotropics are, with a few exceptions, associated with much higher malaria risk than in adjacent areas; the vectors are difficult to control, and the anthropic factors also often converge to impose constraints. Urban malaria in Africa is associated with lower risk than savanna

  19. Predicting Scenarios for Successful Autodissemination of Pyriproxyfen by Malaria Vectors from Their Resting Sites to Aquatic Habitats; Description and Simulation Analysis of a Field-Parameterizable Model

    PubMed Central

    Kiware, Samson S.; Corliss, George; Merrill, Stephen; Lwetoijera, Dickson W.; Devine, Gregor; Majambere, Silas; Killeen, Gerry F.

    2015-01-01

    Background Large-cage experiments indicate pyriproxifen (PPF) can be transferred from resting sites to aquatic habitats by Anopheles arabiensis - malaria vector mosquitoes to inhibit emergence of their own offspring. PPF coverage is amplified twice: (1) partial coverage of resting sites with PPF contamination results in far higher contamination coverage of adult mosquitoes because they are mobile and use numerous resting sites per gonotrophic cycle, and (2) even greater contamination coverage of aquatic habitats results from accumulation of PPF from multiple oviposition events. Methods and Findings Deterministic mathematical models are described that use only field-measurable input parameters and capture the biological processes that mediate PPF autodissemination. Recent successes in large cages can be rationalized, and the plausibility of success under full field conditions can be evaluated a priori. The model also defines measurable properties of PPF delivery prototypes that may be optimized under controlled experimental conditions to maximize chances of success in full field trials. The most obvious flaw in this model is the endogenous relationship that inevitably occurs between the larval habitat coverage and the measured rate of oviposition into those habitats if the target mosquito species is used to mediate PPF transfer. However, this inconsistency also illustrates the potential advantages of using a different, non-target mosquito species for contamination at selected resting sites that shares the same aquatic habitats as the primary target. For autodissemination interventions to eliminate malaria transmission or vector populations during the dry season window of opportunity will require comprehensive contamination of the most challenging subset of aquatic habitats (Clx) that persist or retain PPF activity (Ux) for only one week (Clx→1, where Ux = 7 days). To achieve >99% contamination coverage of these habitats will necessitate values for the product of

  20. Dynamics of multiple insecticide resistance in the malaria vector Anopheles gambiae in a rice growing area in South-Western Burkina Faso

    PubMed Central

    Dabiré, Kounbobr Roch; Diabaté, Abdoulaye; Djogbenou, Luc; Ouari, Ali; N'Guessan, Raphaël; Ouédraogo, Jean-Bosco; Hougard, Jean-Marc; Chandre, Fabrice; Baldet, Thierry

    2008-01-01

    Background Insecticide resistance of the main malaria vector, Anopheles gambiae, has been reported in south-western Burkina Faso, West Africa. Cross-resistance to DDT and pyrethroids was conferred by alterations at site of action in the sodium channel, the Leu-Phe kdr mutation; resistance to organophosphates and carbamates resulted from a single point mutation in the oxyanion hole of the acetylcholinesterase enzyme designed as ace-1R. Methods An entomological survey was carried out during the rainy season of 2005 at Vallée du Kou, a rice growing area in south-western Burkina Faso. At the Vallée du Kou, both insecticide resistance mechanisms have been previously described in the M and S molecular forms of An. gambiae. This survey aimed i) to update the temporal dynamics and the circumsporozoite infection rate of the two molecular forms M and S of An. gambiae ii) to update the frequency of the Leu-Phe kdr mutation within these forms and finally iii) to investigate the occurrence of the ace-1R mutation. Mosquitoes collected by indoor residual collection and by human landing catches were counted and morphologically identified. Species and molecular forms of An. gambiae, ace-1R and Leu-Phe kdr mutations were determined using PCR techniques. The presence of the circumsporozoite protein of Plasmodium falciparum was determined using ELISA. Results Anopheles gambiae populations were dominated by the M form. However the S form occurred in relative important proportion towards the end of the rainy season with a maximum peak in October at 51%. Sporozoite rates were similar in both forms. The frequency of the Leu-Phe kdr mutation in the S form reached a fixation level while it is still spreading in the M form. Furthermore, the ace-1R mutation prevailed predominately in the S form and has just started spreading in the M form. The two mutations occurred concomitantly both in M and S populations. Conclusion These results showed that the Vallée du Kou, a rice growing area

  1. Mathematical evaluation of community level impact of combining bed nets and indoor residual spraying upon malaria transmission in areas where the main vectors are Anopheles arabiensis mosquitoes

    PubMed Central

    2013-01-01

    Background Indoor residual insecticide spraying (IRS) and long-lasting insecticide treated nets (LLINs) are commonly used together even though evidence that such combinations confer greater protection against malaria than either method alone is inconsistent. Methods A deterministic model of mosquito life cycle processes was adapted to allow parameterization with results from experimental hut trials of various combinations of untreated nets or LLINs (Olyset®, PermaNet 2.0®, Icon Life® nets) with IRS (pirimiphos methyl, lambda cyhalothrin, DDT), in a setting where vector populations are dominated by Anopheles arabiensis, so that community level impact upon malaria transmission at high coverage could be predicted. Results Intact untreated nets alone provide equivalent personal protection to all three LLINs. Relative to IRS plus untreated nets, community level protection is slightly higher when Olyset® or PermaNet 2.0® nets are added onto IRS with pirimiphos methyl or lambda cyhalothrin but not DDT, and when Icon Life® nets supplement any of the IRS insecticides. Adding IRS onto any net modestly enhances communal protection when pirimiphos methyl is sprayed, while spraying lambda cyhalothrin enhances protection for untreated nets but not LLINs. Addition of DDT reduces communal protection when added to LLINs. Conclusions Where transmission is mediated primarily by An. arabiensis, adding IRS to high LLIN coverage provides only modest incremental benefit (e.g. when an organophosphate like pirimiphos methyl is used), but can be redundant (e.g. when a pyrethroid like lambda cyhalothin is used) or even regressive (e.g. when DDT is used for the IRS). Relative to IRS plus untreated nets, supplementing IRS with LLINs will only modestly improve community protection. Beyond the physical protection that intact nets provide, additional protection against transmission by An. arabiensis conferred by insecticides will be remarkably small, regardless of whether they are delivered

  2. Transmission blocking activity of a standardized neem (Azadirachta indica) seed extract on the rodent malaria parasite Plasmodium berghei in its vector Anopheles stephensi

    PubMed Central

    2010-01-01

    Background The wide use of gametocytocidal artemisinin-based combination therapy (ACT) lead to a reduction of Plasmodium falciparum transmission in several African endemic settings. An increased impact on malaria burden may be achieved through the development of improved transmission-blocking formulations, including molecules complementing the gametocytocidal effects of artemisinin derivatives and/or acting on Plasmodium stages developing in the vector. Azadirachtin, a limonoid (tetranortriterpenoid) abundant in neem (Azadirachta indica, Meliaceae) seeds, is a promising candidate, inhibiting Plasmodium exflagellation in vitro at low concentrations. This work aimed at assessing the transmission-blocking potential of NeemAzal®, an azadirachtin-enriched extract of neem seeds, using the rodent malaria in vivo model Plasmodium berghei/Anopheles stephensi. Methods Anopheles stephensi females were offered a blood-meal on P. berghei infected, gametocytaemic BALB/c mice, treated intraperitoneally with NeemAzal, one hour before feeding. The transmission-blocking activity of the product was evaluated by assessing oocyst prevalence, oocyst density and capacity to infect healthy mice. To characterize the anti-plasmodial effects of NeemAzal® on early midgut stages, i.e. zygotes and ookinetes, Giemsa-stained mosquito midgut smears were examined. Results NeemAzal® completely blocked P. berghei development in the vector, at an azadirachtin dose of 50 mg/kg mouse body weight. The totally 138 examined, treated mosquitoes (three experimental replications) did not reveal any oocyst and none of the healthy mice exposed to their bites developed parasitaemia. The examination of midgut content smears revealed a reduced number of zygotes and post-zygotic forms and the absence of mature ookinetes in treated mosquitoes. Post-zygotic forms showed several morphological alterations, compatible with the hypothesis of an azadirachtin interference with the functionality of the microtubule

  3. Anopheles gambiae exploits the treehole ecosystem in western Kenya: a new urban malaria risk?

    PubMed

    Omlin, Francois X; Carlson, John C; Ogbunugafor, C Brandon; Hassanali, Ahmed

    2007-12-01

    At six sites in western Kenya, we explored the presence of Anopheles immature stages in treeholes. An. gambiae larvae were found in 19 species, 13 of which are exotic. The most common exotic species were Delonix regia, Jacaranda mimosipholia, and Eucalyptus citrodora. In Kisumu city, longitudinal assessments of 10 Flamboyant trees showed repeated presence of An. gambiae s.s. in treeholes with water. Production of Anopheles larvae did not correlate with habitat volume but with habitat height, showing a strong but statistically insignificant negative correlation. During a dry season, eggs recovered by rinsing dry treeholes hatched into 2.5 +/- 3.06 An. gambiae and 7.9 +/- 8.2 Aedes larvae. In cage experiments, An. gambiae s.s. laid more eggs in water originating from treeholes than in distilled or lake water, implying preference for ovipositing in this habitat. Our findings indicate that treeholes represent a hitherto unrecognized habitat for malaria vectors, which needs further studies.

  4. Malaria Facts

    MedlinePlus

    ... Laveran and the Discovery of the Malaria Parasite Ross and the Discovery that Mosquitoes Transmit Malaria Parasites ... for work associated with malaria: to Sir Ronald Ross (1902), Charles Louis Alphonse Laveran (1907), Julius Wagner- ...

  5. Ecological zones rather than molecular forms predict genetic differentiation in the malaria vector Anopheles gambiae s.s. in Ghana.

    PubMed

    Yawson, Alexander E; Weetman, David; Wilson, Michael D; Donnelly, Martin J

    2007-02-01

    The malaria mosquito Anopheles gambiae s.s. is rapidly becoming a model for studies on the evolution of reproductive isolation. Debate has centered on the taxonomic status of two forms (denoted M and S) within the nominal taxon identified by point mutations in the X-linked rDNA region. Evidence is accumulating that there are significant barriers to gene flow between these forms, but that the barriers are not complete throughout the entire range of their distribution. We sampled populations from across Ghana and southern Burkina Faso, West Africa, from areas where the molecular forms occurred in both sympatry and allopatry. Neither Bayesian clustering methods nor F(ST)-based analysis of microsatellite data found differentiation between the M and S molecular forms, but revealed strong differentiation among different ecological zones, irrespective of M/S status and with no detectable effect of geographical distance. Although no M/S hybrids were found in the samples, admixture analysis detected evidence of contemporary interform gene flow, arguably most pronounced in southern Ghana where forms occur sympatrically. Thus, in the sampled area of West Africa, lack of differentiation between M and S forms likely reflects substantial introgression, and ecological barriers appear to be of greater importance in restricting gene flow.

  6. Development of a DNA-Based Method for Distinguishing the Malaria Vectors, Anopheles Gambiae from Anopheles Arabiensis.

    DTIC Science & Technology

    1987-11-15

    dessicated thoraces since the DNA probe can readily diacinose sinale dessicatei abdomens. Blood Meal analysis can readily utilize the protein pellet ObLained...range. The species differ in behavior and preferred habitat. Moreover, there is evidence suggesting that the two major vector species may not be equally...contains most of the protein . Dr. Collins has examined this protein pellet from a number of the infecteo soeci fens listed in Table I for blood meal IgG

  7. Evaluation of repellent activities of Cymbopogon essential oils against mosquito vectors of Malaria, Filariasis and Dengue Fever in India.

    PubMed

    Tyagi, B K; Shahi, A K; Kaul, B L

    1998-08-01

    Essential oils of four species and two hybrid varieties of Cymbopogon grasses were evaluated for their repellent properties against the major vector mosquitoes, namely, Anopheles stephensi, Culex quinque-fasciatus and Aedes aegypti, both in laboratory and field. The magnitude of repellency in the Cymbopogon essential oils was found to be of moderate to high order. All grass species protected completely from mosquito bites for 4 hrs, whereas C. nardus provided protection for as much as 8-10 hrs overnight.

  8. Multiple Insecticide Resistance in the Malaria Vector Anopheles funestus from Northern Cameroon Is Mediated by Metabolic Resistance Alongside Potential Target Site Insensitivity Mutations

    PubMed Central

    Menze, Benjamin D.; Riveron, Jacob M.; Ibrahim, Sulaiman S.; Irving, Helen; Antonio-Nkondjio, Christophe; Awono-Ambene, Parfait H.; Wondji, Charles S.

    2016-01-01

    Background Despite the recent progress in establishing the patterns of insecticide resistance in the major malaria vector Anopheles funestus, Central African populations of this species remain largely uncharacterised. To bridge this important gap and facilitate the implementation of suitable control strategies against this vector, we characterised the resistance patterns of An. funestus population from northern Cameroon. Methods and Findings Collection of indoor-resting female mosquitoes in Gounougou (northern Cameroon) in 2012 and 2015 revealed a predominance of An. funestus during dry season. WHO bioassays performed using F1 An. funestus revealed that the population was multiple resistant to several insecticide classes including pyrethroids (permethrin, deltamethrin, lambda-cyhalothrin and etofenprox), carbamates (bendiocarb) and organochlorines (DDT and dieldrin). However, a full susceptibility was observed against the organophosphate malathion. Bioassays performed with 2015 collection revealed that resistance against pyrethroids and DDT is increasing. PBO synergist assays revealed a significant recovery of susceptibility for all pyrethroids but less for DDT. Analysis of the polymorphism of a portion of the voltage-gated sodium channel gene (VGSC) revealed the absence of the L1014F/S kdr mutation but identified 3 novel amino acid changes I877L, V881L and A1007S. However, no association was established between VGSC polymorphism and pyrethroid/DDT resistance. The DDT resistant 119F-GSTe2 allele (52%) and the dieldrin resistant 296S-RDL allele (45%) were detected in Gounougou. Temporal analysis between 2006, 2012 and 2015 collections revealed that the 119F-GSTe2 allele was relatively stable whereas a significant decrease is observed for 296S-RDL allele. Conclusion This multiple resistance coupled with the temporal increased in resistance intensity highlights the need to take urgent measures to prolong the efficacy of current insecticide-based interventions against

  9. Effect of different larval rearing temperatures on the productivity (R o) and morphology of the malaria vector Anopheles superpictus Grassi (Diptera: Culicidae) using geometric morphometrics.

    PubMed

    Aytekin, Secil; Aytekin, A Murat; Alten, Bulent

    2009-06-01

    Temperature affects both the biology and morphology of mosquito vectors. Geometric morphometrics is a useful new tool for capturing and analyzing differences in shape and size in many morphological parameters, including wings. We have used this technique for capturing the differences in the wings of the malaria vector Anopheles superpictus, using cohorts reared at six different constant temperatures (15°, 20°, 25°, 27°, 30°, and 35° C) and also searched for potential correlations with the life tables of the species. We studied wing shape in both male and female adults, using 22 landmarks on the wing in relation to ecological parameters, including the development rate. The ecological zero was calculated as 9.93° C and the thermal constant as 296.34 day-degrees. The rearing temperature affects egg, larval, and pupal development and also the total time from egg to adult. As rearing temperatures increased, longevity decreased in both sexes. In An. superpictus, R(o) value and productivity correlated with the statistically significant gradual deformations in the wing shape related to size in both sexes. These deformations directly linked to differences in immature rearing temperatures. Analysis using PCA and UPGMA phenograms showed that although wings of females became narrower dorsoventrally as the temperature increased, they became broader in males. Comparisons of the wing landmarks indicated the medial part of the wing was most affected by larval rearing temperatures, showing relatively more deformations. Algorithmic values of the life tables were determined in correlation with the results of geometric morphometrics. Comparisons of centroid sizes in the cohorts showed that overall wing size became smaller in both sexes in response to higher rearing temperatures.

  10. A low-cost mesocosm for the study of behaviour and reproductive potential in Afrotropical mosquito (Diptera: Culicidae) vectors of malaria.

    PubMed

    Jackson, B T; Stone, C M; Ebrahimi, B; Briët, O J T; Foster, W A

    2015-03-01

    A large-scale mesocosm was constructed and tested for its effectiveness for use in experiments on behaviour, reproduction and adult survivorship in the Afrotropical malaria vector Anopheles gambiae s.s. Giles (Diptera: Culicidae) in temperate climates. The large space (82.69 m(3) ) allowed for semi-natural experiments that increased demand on a mosquito's energetic reserves in an environment of widely distributed resources. A one-piece prefabricated enclosure, made with white netting and vinyl, prevented the ingress of predators and the egress of mosquitoes. Daylight and white materials prompted the mosquitoes to seclude themselves in restricted daytime resting sites and allowed the easy collection of dead bodies so that daily mortality could be assessed accurately using a method that accounts for the loss of a proportion of bodies. Here, daily, age-dependent mortality rates of males and females were estimated using Bayesian Markov chain Monte Carlo simulation. In overnight experiments, mosquitoes successfully located plants and took sugar meals. A 3-week survival trial with a single cohort demonstrated successful mating, blood feeding, oviposition and long life. The relatively low cost of the mesocosm and the performance of the mosquitoes in it make it a viable option for any behavioural or ecological study of tropical mosquitoes in which space and seasonal cold are constraining factors.

  11. A low-cost mesocosm for the study of behaviour and reproductive potential of Afrotropical mosquito (Diptera: Culicidae) vectors of malaria

    PubMed Central

    Jackson, Bryan T.; Stone, Christopher M.; Ebrahimi, Babak; Briët, Olivier J.T.; Foster, Woodbridge A.

    2014-01-01

    A large-scale mesocosm was constructed and tested for its effectiveness for experiments on behaviour, reproduction, and adult survivorship of the Afrotropical malaria vector Anopheles gambiae s.s. Giles (Diptera: Culicidae) in temperate climates. The large space (82.69 m3) allowed for semi-natural experiments that increased demand on a mosquito’s energetic reserves in an environment of widely distributed resources. A one-piece prefabricated enclosure, made with white netting and vinyl, prevented the ingress of predators and the egress of mosquitoes. Daylight and white materials prompted the mosquitoes to seclude themselves in restricted daytime resting sites and allowed easy collection of dead bodies so that daily mortality could be assessed accurately, using a method that accounts for a proportion of bodies being lost. Here, daily, age-dependent mortality rates of males and females were estimated using Bayesian Markov Chain Monte Carlo simulation. In overnight experiments, mosquitoes successfully located plants and took sugar meals. A 3-week survival trial with a single-cohort demonstrated successful mating, blood feeding, oviposition, and long life. The relatively low cost of the mesocosm and the performance of the mosquitoes in it make it a viable option for any behavioural or ecological study of tropical mosquitoes where space and seasonal cold are constraining factors. PMID:25294339

  12. Population dynamics of pest mosquitoes and potential malaria and West Nile virus vectors in relation to climatic factors and human activities in the Camargue, France.

    PubMed

    Ponçon, N; Toty, C; L'ambert, G; le Goff, G; Brengues, C; Schaffner, F; Fontenille, D

    2007-12-01

    The Camargue is an extensive wetland in the southeast of France, which is highly influenced by human activities. Large ponds, marshes and irrigated fields provide abundant potential breeding sites for mosquitoes. mosquitoes, which are important in terms of the nuisance they cause to people and animals, the limitations they impose on tourism and their potential threat to human health. Several of the mosquito species present are potential vectors of malaria and West Nile virus. Therefore, the population dynamics of these species were monitored over an entire breeding season during March-October 2005. Mosquito populations were sampled in two study areas once every 2 weeks, using CDC light traps baited with CO(2). Sixteen species were collected. The majority (98.7%) of the catch were Aedes caspius (Pallas) (Diptera: Culicidae), Culex modestus (Ficalbi), Culex pipiens L. and Anopheles hyrcanus (Pallas). The population dynamics of these species varied considerably in relation to the species' biology, climatic conditions (rainfall, temperature and season), water management, implementation of mosquito control campaigns and landscape use.

  13. Annona muricata leaf extract-mediated silver nanoparticles synthesis and its larvicidal potential against dengue, malaria and filariasis vector.

    PubMed

    Santhosh, S B; Yuvarajan, R; Natarajan, D

    2015-08-01

    Mosquitoes transmit several diseases which cause millions of deaths every year. The use of synthetic insecticides to control mosquitoes caused diverse effects to the environment, mammals, and high manufacturing cost. The present study was aimed to test the larvicidal activity of green synthesized silver nanoparticles using Annona muricata plant leaf extract against third instar larvae of three medically important mosquitoes, i.e., Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. The different concentrations of green synthesized Ag Nanoparticles (AgNPs; 6, 12, 18, 24, 30 μg mL(-1)) and aqueous crude leaf extract (30, 60, 90, 120, 150 μg mL(-1)) were tested against the larvae for 24 h. Significant larval mortality was observed after the treatment of A. muricata for all mosquitoes with lowest LC50 and LC90 values, viz., A. aegypti (LC50 and LC90 values of 12.58 and 26.46 μg mL(-1)), A. stephensi (LC50 and LC90 values of 15.28 and 31.91 μg mL(-1)) and C. quinquefasciatus (LC50 and LC90 values of 18.77 and 35.72 μg mL(-1)), respectively. The synthesized AgNPs from A. muricata were highly toxic than aqueous crude extract. The nanoparticle characterization was done using spectral and microscopic analysis, namely UV-visible spectroscopy which showed a sharp peak at 420 nm of aqueous medium containing AgNPs, X-ray diffraction (XRD) analysis revealed the average crystalline size of synthesized AgNPs (approximately 45 nm), and Fourier transform infrared spectroscopy (FTIR) study exhibited prominent peaks 3381.28, 2921.03, 1640.17, 1384.58, 1075.83, and 610.77 cm(-1). Particle size analysis (PSA) showed the size and distribution of AgNPs (103 nm); field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) analysis showed a spherical shape, size range from 20 to 53 nm; and energy-dispersive X-ray spectroscopy (EDX) reflects the chemical composition of synthesized AgNPs. Heat stability of the AgNPs was

  14. Highly focused anopheline breeding sites and malaria transmission in Dakar

    PubMed Central

    Machault, Vanessa; Gadiaga, Libasse; Vignolles, Cécile; Jarjaval, Fanny; Bouzid, Samia; Sokhna, Cheikh; Lacaux, Jean-Pierre; Trape, Jean-François; Rogier, Christophe; Pagès, Frédéric

    2009-01-01

    Background Urbanization has a great impact on the composition of the vector system and malaria transmission dynamics. In Dakar, some malaria cases are autochthonous but parasite rates and incidences of clinical malaria attacks have been recorded at low levels. Ecological heterogeneity of malaria transmission was investigated in Dakar, in order to characterize the Anopheles breeding sites in the city and to study the dynamics of larval density and adult aggressiveness in ten characteristically different urban areas. Methods Ten study areas were sampled in Dakar and Pikine. Mosquitoes were collected by human landing collection during four nights in each area (120 person-nights). The Plasmodium falciparum circumsporozoite (CSP) index was measured by ELISA and the entomological inoculation rates (EIR) were calculated. Open water collections in the study areas were monitored weekly for physico-chemical characterization and the presence of anopheline larvae. Adult mosquitoes and hatched larvae were identified morphologically and by molecular methods. Results In September-October 2007, 19,451 adult mosquitoes were caught among which, 1,101 were Anopheles gambiae s.l. The Human Biting Rate ranged from 0.1 bites per person per night in Yoff Village to 43.7 in Almadies. Seven out of 1,101 An. gambiae s.l. were found to be positive for P. falciparum (CSP index = 0.64%). EIR ranged from 0 infected bites per person per year in Yoff Village to 16.8 in Almadies. The An. gambiae complex population was composed of Anopheles arabiensis (94.8%) and Anopheles melas (5.2%). None of the An. melas were infected with P. falciparum. Of the 54 water collection sites monitored, 33 (61.1%) served as anopheline breeding sites on at least one observation. No An. melas was identified among the larval samples. Some physico-chemical characteristics of water bodies were associated with the presence/absence of anopheline larvae and with larval density. A very close parallel between larval and adult

  15. Eye pigments in wild-type and eye-color mutant strains of the African malaria vector Anopheles gambiae.

    PubMed

    Beard, C B; Benedict, M Q; Primus, J P; Finnerty, V; Collins, F H

    1995-01-01

    Chromatographic analysis of pigments extracted from wild-type eyes of the mosquito Anopheles gambiae reveals the presence of the ommatin precursor 3-hydroxykynurenine, its transamination derivative xanthurenic acid, and a dark, red-brown pigment spot that probably is composed of two or more low mobility xanthommatins. No colored or fluorescent pteridines are evident. Mosquitoes homozygous for an autosomal recessive mutation at the red-eye (r) locus have a brick-red eye color in larvae, pupae, and young adults, in contrast to the almost black color of the wild eye. Mosquitoes homozygous for this mutant allele have levels of ommochrome precursors that are indistinguishable from the wild-type, but the low-mobility xanthommatin spot is ochre-brown in color rather than red-brown as in the wild-type. Mosquitoes with two different mutant alleles at the X-linked pink-eye locus (p, which confers a pink eye color, and pw, which confers a white eye phenotype in homozygotes or hemizygous males) have normal levels of ommochrome precursors but no detectable xanthommatins. Mosquitoes homozygous for both the r and p mutant alleles have apricot-colored eyes and show no detectable xanthommatins. Both the pink-eye and red-eye mutations appear to involve defects in the transport into or assembly of pigments in the membrane-bound pigment granules rather then defects in ommochrome synthesis.

  16. Forced egg retention and oviposition behavior of malaria, dengue and filariasis vectors to a topical repellent diethyl-phenylacetamide.

    PubMed

    Seenivasagan, T; Iqbal, S Thanvir; Guha, Lopamudra

    2015-07-01

    Egg retention and oviposition behavior of four species of mosquito vectors viz., Anopheles stephensi, Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus to a topical insect repellent diethyl-phenylacetamide (DEPA) at 0.1-1000 mg/L was investigated under laboratory conditions. Based on oviposition activity indices, DEPA demonstrated concentration dependent oviposition deterrent effect to A. stephensi (-0.18 to -0.97), A. aegypti (-0.18 to -0.91) and A. albopictus (-0.50 to -0.98) females. In contrast, positive oviposition response by C. quinquefasciatus (+0.39 and +0.70) was observed respectively at 0.1 and 1 ppm, while 10 ppm of DEPA on water received 50% lesser egg rafts than control. Gravid Culex females laid no egg rafts at 100 and 1000 ppm DEPA treated bowls effecting 100% oviposition deterrence. Test mosquito females deposited most of their eggs (> 90%) in the absence of repellent odour, while DEPA odour on water surface forced them to retain huge numbers of eggs. Females of A. aegypti, A. albopictus and A. stephensi retained 49, 67 and 50% of total eggs, respectively throughout the experiment. Egg retention by Culex females due to DEPA on the water surface was ca. 65%, equivalent to 4 egg rafts. Therefore, DEPA at lower concentrations could effectively disturb the oviposition by these vectors. Application of repellents in small water bodies would help in reducing the population build up of mosquitoes near human households and could be useful in the integrated management of mosquito vectors.

  17. Laboratory and field efficacy of Pedalium murex and predatory copepod, Mesocyclops longisetus on rural malaria vector, Anopheles culicifacies

    PubMed Central

    Chitra, Thangadurai; Murugan, Kadarkarai; Kumar, Arjunan Naresh; Madhiyazhagan, Pari; Nataraj, Thiyagarajan; Indumathi, Duraisamy; Hwang, Jiang-Shiou

    2013-01-01

    Objective To test the potentiality of the leaf extract of Pedalium murex (P. murex) and predatory copepod Mesocyclops longisetus (M. longisetus) in individual and combination in controlling the rural malarial vector, Anopheles culicifacies (An. culicifacies) in laboratory and field studies. Methods P. murex leaves were collected from in and around Erode, Tamilnadu, India. The active compounds were extracted with 300 mL of methanol for 8 h in a Soxhlet apparatus. Laboratory studies on larvicidal and pupicidal effects of methanolic extract of P. murex tested against the rural malarial vector, An. culicifacies were significant. Results Evaluated lethal concentrations (LC50) of P. murex extract were 2.68, 3.60, 4.50, 6.44 and 7.60 mg/L for I, II, III, IV and pupae of An. culicifacies, respectively. Predatory copepod, M. longisetus was examined for their predatory efficacy against the malarial vector, An. culicifacies. M. longisetus showed effective predation on the early instar (47% and 36% on I