Sample records for malayi infective larvae

  1. Maternal influence on susceptibility of offspring to Brugia malayi infection in a murine model of filariasis.

    PubMed

    Rajan, T V; Bailis, J M; Yates, J A; Shultz, L D; Greiner, D L; Nelson, F K

    1994-12-01

    We have used the severe combined immunodeficient C.B-17-scid/scid mouse to investigate the influences of maternal immune status and parasite burden on the susceptibility (or resistance) of offspring to infection with the human filarial parasite, Brugia malayi. C.B-17-scid/scid mice are permissive for infection while immunocompetent C.B-17(-)+/+ mice are uniformly resistant. Reciprocal matings of C.B-17-scid/scid and C.B-17(-)+/+ mice were performed. The C.B-17-scid/scid females were either naive or infected with Brugia malayi. The resulting immunocompetent C.B-17-scid/+ and C.B-17(-)+/scid progeny were challenged at weaning with an intraperitoneal injection of Brugia malayi third stage larvae known to produce patent infection in > 95% of C.B-17-scid/scid mice. We observed that 40.0%l (34/85) of the immunocompetent offspring of C.B-17-scid/scid females x C.B-17(-)+/+ males were permissive for the growth and development of Brugia malayi larvae to adults. No difference was observed in susceptibility to infection between the progeny of infected or uninfected C.B-17-scid/scid mothers mated with C.B-17(-)+/+ fathers, arguing against acquired immunological tolerance to the parasite in the former. In marked contrast, only 4.8% (2/42) of the heterozygous progeny of wild type C.B-17(-)+/+ females mated with C.B-17-scid/scid males were permissive. These observations document conversion of a 'resistant' phenotype to a 'susceptible' phenotype by manipulation of maternal immune status and provide clear evidence of maternal influence on offspring susceptibility to infection with Brugia malayi.

  2. Detection of a new focus of Brugia malayi infection in Orissa.

    PubMed

    Rath, R N; Mohapatra, B N; Das, B

    1989-03-01

    526 people were surveyed in a village called Chudamani, in Balasore district of Orissa, for detection of asymptomatic microfilaria (mf) carriers. Of these 36 (6.8 per cent) were cases found to harbour mf; 19 cases had Brugia malayi, 4 Wuchereria bancrofti and 5 cases had mixed infection. In 8 cases, species could not be ascertained. For the first time after 1955, a focus of B. malayi has been detected in Orissa.

  3. Withania somnifera chemotypes NMITLI 101R, NMITLI 118R, NMITLI 128R and withaferin A protect Mastomys coucha from Brugia malayi infection.

    PubMed

    Kushwaha, S; Soni, V K; Singh, P K; Bano, N; Kumar, A; Sangwan, R S; Misra-Bhattacharya, S

    2012-04-01

    Withania somnifera is an ayurvedic Indian medicinal plant whose immunomodulatory activities have been widely used as a home remedy for several ailments. We recently observed immunostimulatory properties in the root extracts of chemotypes NMITLI-101, NMITLI-118, NMITLI-128 and pure withanolide, withaferin A. In the present study, we evaluated the potential immunoprophylactic efficacies of these extracts against an infective pathogen. Our results show that administration of aqueous ethanol extracts (10 mg/kg) and withaferin A (0·3 mg/kg), 7 days before and after challenge with human filarial parasite Brugia malayi, offers differential protection in Mastomys coucha with chemotype 101R offering best protection (53·57%) as compared to other chemotypes. Our findings also demonstrate that establishment of B. malayi larvae was adversely affected by pretreatment with withaferin A as evidenced by 63·6% reduction in adult worm establishment. Moreover, a large percentage of the established female worms (66·2%) also showed defective embryogenesis. While the filaria-specific immunological response induced by withaferin A and NMITLI-101 showed a mixed Th1/Th2 phenotype, 118R stimulated production of IFN-γ and 128R increased levels of IL-4. Taken together, our findings reveal potential immunoprophylactic properties of W. somnifera, and further studies are needed to ascertain the benefits of this plant against other pathogens as well. © 2012 Blackwell Publishing Ltd.

  4. Vaccination of Gerbils with Bm-103 and Bm-RAL-2 Concurrently or as a Fusion Protein Confers Consistent and Improved Protection against Brugia malayi Infection.

    PubMed

    Arumugam, Sridhar; Wei, Junfei; Liu, Zhuyun; Abraham, David; Bell, Aaron; Bottazzi, Maria Elena; Hotez, Peter J; Zhan, Bin; Lustigman, Sara; Klei, Thomas R

    2016-04-01

    The Brugia malayi Bm-103 and Bm-RAL-2 proteins are orthologous to Onchocerca volvulus Ov-103 and Ov-RAL-2, and which were selected as the best candidates for the development of an O. volvulus vaccine. The B. malayi gerbil model was used to confirm the efficacy of these Ov vaccine candidates on adult worms and to determine whether their combination is more efficacious. Vaccine efficacy of recombinant Bm-103 and Bm-RAL-2 administered individually, concurrently or as a fusion protein were tested in gerbils using alum as adjuvant. Vaccination with Bm-103 resulted in worm reductions of 39%, 34% and 22% on 42, 120 and 150 days post infection (dpi), respectively, and vaccination with Bm-RAL-2 resulted in worm reductions of 42%, 22% and 46% on 42, 120 and 150 dpi, respectively. Vaccination with a fusion protein comprised of Bm-103 and Bm-RAL-2 resulted in improved efficacy with significant reduction of worm burden of 51% and 49% at 90 dpi, as did the concurrent vaccination with Bm-103 and Bm-RAL-2, with worm reduction of 61% and 56% at 90 dpi. Vaccination with Bm-103 and Bm-RAL-2 as a fusion protein or concurrently not only induced a significant worm reduction of 61% and 42%, respectively, at 150 dpi, but also significantly reduced the fecundity of female worms as determined by embryograms. Elevated levels of antigen-specific IgG were observed in all vaccinated gerbils. Serum from gerbils vaccinated with Bm-103 and Bm-RAL-2 individually, concurrently or as a fusion protein killed third stage larvae in vitro when combined with peritoneal exudate cells. Although vaccination with Bm-103 and Bm-RAL-2 individually conferred protection against B. malayi infection in gerbils, a more consistent and enhanced protection was induced by vaccination with Bm-103 and Bm-RAL-2 fusion protein and when they were used concurrently. Further characterization and optimization of these filarial vaccines are warranted.

  5. Vaccination of Gerbils with Bm-103 and Bm-RAL-2 Concurrently or as a Fusion Protein Confers Consistent and Improved Protection against Brugia malayi Infection

    PubMed Central

    Arumugam, Sridhar; Wei, Junfei; Liu, Zhuyun; Abraham, David; Bell, Aaron; Bottazzi, Maria Elena; Hotez, Peter J.; Zhan, Bin; Lustigman, Sara; Klei, Thomas R.

    2016-01-01

    Background The Brugia malayi Bm-103 and Bm-RAL-2 proteins are orthologous to Onchocerca volvulus Ov-103 and Ov-RAL-2, and which were selected as the best candidates for the development of an O. volvulus vaccine. The B. malayi gerbil model was used to confirm the efficacy of these Ov vaccine candidates on adult worms and to determine whether their combination is more efficacious. Methodology and Principle Findings Vaccine efficacy of recombinant Bm-103 and Bm-RAL-2 administered individually, concurrently or as a fusion protein were tested in gerbils using alum as adjuvant. Vaccination with Bm-103 resulted in worm reductions of 39%, 34% and 22% on 42, 120 and 150 days post infection (dpi), respectively, and vaccination with Bm-RAL-2 resulted in worm reductions of 42%, 22% and 46% on 42, 120 and 150 dpi, respectively. Vaccination with a fusion protein comprised of Bm-103 and Bm-RAL-2 resulted in improved efficacy with significant reduction of worm burden of 51% and 49% at 90 dpi, as did the concurrent vaccination with Bm-103 and Bm-RAL-2, with worm reduction of 61% and 56% at 90 dpi. Vaccination with Bm-103 and Bm-RAL-2 as a fusion protein or concurrently not only induced a significant worm reduction of 61% and 42%, respectively, at 150 dpi, but also significantly reduced the fecundity of female worms as determined by embryograms. Elevated levels of antigen-specific IgG were observed in all vaccinated gerbils. Serum from gerbils vaccinated with Bm-103 and Bm-RAL-2 individually, concurrently or as a fusion protein killed third stage larvae in vitro when combined with peritoneal exudate cells. Conclusion Although vaccination with Bm-103 and Bm-RAL-2 individually conferred protection against B. malayi infection in gerbils, a more consistent and enhanced protection was induced by vaccination with Bm-103 and Bm-RAL-2 fusion protein and when they were used concurrently. Further characterization and optimization of these filarial vaccines are warranted. PMID:27045170

  6. Brugia malayi infective larvae fail to activate Langerhans cells and dermal dendritic cells in human skin.

    PubMed

    Cotton, R N; McDonald-Fleming, R; Boyd, A; Spates, K; Nutman, T B; Tolouei Semnani, R

    2015-02-01

    Filarial infection in humans is initiated when a mosquito deposits third-stage parasite larvae (L3) in the skin. Langerhans cells (LCs) and dermal dendritic cells (DDCs) are the first cells that the parasite encounters, and L3s must evade these highly effective antigen-presenting cells to establish infection. To assess LC and DDC responses to L3 in human skin, we employed three models of increasing physiologic relevance: in vitro-generated LCs, epidermal blister explants and full-thickness human skin sections. In vitro-generated LCs expressed TLR1-10 and robustly produced IL-6 and TNF-α in response to PolyI:C, but pre-exposure to L3s did not alter inflammatory cytokine production or TLR expression. L3s did not modulate expression of LC markers CDH1, CD207, or CD1a, or the regulatory products TSLP or IDO in epidermal explants or in vitro-generated LC. LC, CD14+ DDC, CD1c+ DC and CD141+ DC from human skin sections were analysed by flow cytometry. While PolyI:C potently induced CCL22 production in LC, CD1c+ DC, and CD141+ DC, and IL-10 production in LC, L3s did not modulate the numbers of or cytokine production by any skin DC subset. L3s broadly failed to activate or modulate LCs or DDCs, suggesting filarial larvae expertly evade APC detection in human skin. © 2014 John Wiley & Sons Ltd.

  7. Brugia malayi and Acanthocheilonema viteae: antifilarial activity of transglutaminase inhibitors in vitro.

    PubMed Central

    Rao, U R; Mehta, K; Subrahmanyam, D; Vickery, A C

    1991-01-01

    The possible involvement of transglutaminase-catalyzed reactions in survival of adult worms, microfilariae (mf), and infective larvae of the filarial parasite Brugia malayi was studied in vitro by using the specific pseudosubstrate monodansylcadaverine (MDC) and the active-site inhibitors cystamine or iodoacetamide. These inhibitors significantly inhibited parasite mobility in a dose-dependent manner. This inhibition was associated with irreversible biochemical lesions followed by filarial death. A structurally related, inactive analog of MDC, dimethyldansylcadaverine, did not affect the mobility or survival of the parasites. Adult worms failed to release mf when they were incubated in the presence of MDC or cystamine, and this inhibitory effect on mf release was concentration dependent. Similar embryostatic and macrofilaricidal effects of MDC were observed in Acanthocheilonema viteae adult worms. These studies suggest that transglutaminase-catalyzed reactions may play an important role in the growth, development, and survival of filarial parasites. PMID:1687106

  8. Heme acquisition in the parasitic filarial nematode Brugia malayi.

    PubMed

    Luck, Ashley N; Yuan, Xiaojing; Voronin, Denis; Slatko, Barton E; Hamza, Iqbal; Foster, Jeremy M

    2016-10-01

    Nematodes lack a heme biosynthetic pathway and must acquire heme from exogenous sources. Given the indispensable role of heme, this auxotrophy may be exploited to develop drugs that interfere with heme uptake in parasites. Although multiple heme-responsive genes (HRGs) have been characterized within the free-living nematode Caenorhabditis elegans, we have undertaken the first study of heme transport in Brugia malayi, a causative agent of lymphatic filariasis. Through functional assays in yeast, as well as heme analog, RNAi, and transcriptomic experiments, we have shown that the heme transporter B. malayi HRG-1 (BmHRG-1) is indeed functional in B. malayi In addition, BmHRG-1 localizes both to the endocytic compartments and cell membrane when expressed in yeast cells. Transcriptomic sequencing revealed that BmHRG-1, BmHRG-2, and BmMRP-5 (all orthologs of HRGs in C. elegans) are down-regulated in heme-treated B. malayi, as compared to non-heme-treated control worms. Likely because of short gene lengths, multiple exons, other HRGs in B. malayi (BmHRG-3-6) remain unidentified. Although the precise mechanisms of heme homeostasis in a nematode with the ability to acquire heme remains unknown, this study clearly demonstrates that the filarial nematode B. malayi is capable of transporting exogenous heme.-Luck, A. N., Yuan, X., Voronin, D., Slatko, B. E., Hamza, I., Foster, J. M. Heme acquisition in the parasitic filarial nematode Brugia malayi. © The Author(s).

  9. Heme acquisition in the parasitic filarial nematode Brugia malayi

    PubMed Central

    Luck, Ashley N.; Yuan, Xiaojing; Voronin, Denis; Slatko, Barton E.; Hamza, Iqbal; Foster, Jeremy M.

    2016-01-01

    Nematodes lack a heme biosynthetic pathway and must acquire heme from exogenous sources. Given the indispensable role of heme, this auxotrophy may be exploited to develop drugs that interfere with heme uptake in parasites. Although multiple heme-responsive genes (HRGs) have been characterized within the free-living nematode Caenorhabditis elegans, we have undertaken the first study of heme transport in Brugia malayi, a causative agent of lymphatic filariasis. Through functional assays in yeast, as well as heme analog, RNAi, and transcriptomic experiments, we have shown that the heme transporter B. malayi HRG-1 (BmHRG-1) is indeed functional in B. malayi. In addition, BmHRG-1 localizes both to the endocytic compartments and cell membrane when expressed in yeast cells. Transcriptomic sequencing revealed that BmHRG-1, BmHRG-2, and BmMRP-5 (all orthologs of HRGs in C. elegans) are down-regulated in heme-treated B. malayi, as compared to non–heme-treated control worms. Likely because of short gene lengths, multiple exons, other HRGs in B. malayi (BmHRG-3–6) remain unidentified. Although the precise mechanisms of heme homeostasis in a nematode with the ability to acquire heme remains unknown, this study clearly demonstrates that the filarial nematode B. malayi is capable of transporting exogenous heme.—Luck, A. N., Yuan, X., Voronin, D., Slatko, B. E., Hamza, I., Foster, J. M. Heme acquisition in the parasitic filarial nematode Brugia malayi. PMID:27363426

  10. Transcriptional response of honey bee larvae infected with the bacterial pathogen Paenibacillus larvae

    USDA-ARS?s Scientific Manuscript database

    American foulbrood disease of honey bees is caused by the bacterium Paenibacillus larvae. Infection occurs per os in larvae and systemic infection requires a breaching of the host peritrophic matrix and midgut epithelium. Genetic variation exists for both bacterial virulence and host resistance, and...

  11. Lethal infection thresholds of Paenibacillus larvae for honeybee drone and worker larvae (Apis mellifera).

    PubMed

    Behrens, Dieter; Forsgren, Eva; Fries, Ingemar; Moritz, Robin F A

    2010-10-01

    We compared the mortality of honeybee (Apis mellifera) drone and worker larvae from a single queen under controlled in vitro conditions following infection with Paenibacillus larvae, a bacterium causing the brood disease American Foulbrood (AFB). We also determined absolute P. larvae cell numbers and lethal titres in deceased individuals of both sexes up to 8 days post infection using quantitative real-time PCR (qPCR). Our results show that in drones the onset of infection induced mortality is delayed by 1 day, the cumulative mortality is reduced by 10% and P. larvae cell numbers are higher than in worker larvae. Since differences in bacterial cell titres between sexes can be explained by differences in body size, larval size appears to be a key parameter for a lethal threshold in AFB tolerance. Both means and variances for lethal thresholds are similar for drone and worker larvae suggesting that drone resistance phenotypes resemble those of related workers. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. Infectivity of Chordodes nobilii larvae (Gordiida: Nematomorpha).

    PubMed

    Achiorno, Cecilia L; de Villalobos, L Cristina; Ferrari, Lucrecia

    2017-03-01

    The gordiids are freshwater representatives of the parasite phylum Nematomorpha that function as a link between aquatic and terrestrial ecosystems. In recent years, different ecotoxicologic studies have been made with the South-American gordiid species, Chordodes nobilii, that have demonstrated the capacity of this group to act as a bioindicator of contamination. Despite the Gordiida’s ecologic relevance, further studies are still needed to elucidate different aspects of the biology of the class, and among those, the infective capacity, a parameter that can be evaluated by the infection index mean abundance (IIMA). A knowledge of the intrinsic variability in the infective capacity of C. nobilii would warrant priority in order to establish, the range of acceptable responses for normal or standard conditions in the laboratory, and, to compare the criteria among different assays. The objective of this study was to establish a baseline value for the infective capacity for C. nobilii larvae, under controlled laboratory conditions, by employing the IIMA as the evaluation parameter. To that end, we analyzed the infective capacity of C. nobilii larvae that had hatched from different strings of eggs laid in the laboratory by a total of 12 females. The C. nobilii adults were collected from streams within the Argentina Sauce Grande basin, between 2006 and 2009. Once in the laboratory, after mating, the females were placed in individual containers for oviposition. The egg strings obtained from each female were cut in 3 mm long segments; and when free larvae were observed, the segments (N= 90) were placed together with 30 Aedes aegypti larvae for evaluation of the gordiids’ infective capacity. After 72 h, the mosquito larvae were observed by microscopy in order to quantify the C. nobilii larvae in body cavities. The IIMAs were calculated as the total number of C. nobilii larvae present divided by total number of A. aegypti larvae examined. For analysis of the IIMAs obtained

  13. Transcriptional Response of Honey Bee Larvae Infected with the Bacterial Pathogen Paenibacillus larvae

    PubMed Central

    Cornman, Robert Scott; Lopez, Dawn; Evans, Jay D.

    2013-01-01

    American foulbrood disease of honey bees is caused by the bacterium Paenibacillus larvae. Infection occurs per os in larvae and systemic infection requires a breaching of the host peritrophic matrix and midgut epithelium. Genetic variation exists for both bacterial virulence and host resistance, and a general immunity is achieved by larvae as they age, the basis of which has not been identified. To quickly identify a pool of candidate genes responsive to P. larvae infection, we sequenced transcripts from larvae inoculated with P. larvae at 12 hours post-emergence and incubated for 72 hours, and compared expression levels to a control cohort. We identified 75 genes with significantly higher expression and six genes with significantly lower expression. In addition to several antimicrobial peptides, two genes encoding peritrophic-matrix domains were also up-regulated. Extracellular matrix proteins, proteases/protease inhibitors, and members of the Osiris gene family were prevalent among differentially regulated genes. However, analysis of Drosophila homologs of differentially expressed genes revealed spatial and temporal patterns consistent with developmental asynchrony as a likely confounder of our results. We therefore used qPCR to measure the consistency of gene expression changes for a subset of differentially expressed genes. A replicate experiment sampled at both 48 and 72 hours post infection allowed further discrimination of genes likely to be involved in host response. The consistently responsive genes in our test set included a hymenopteran-specific protein tyrosine kinase, a hymenopteran specific serine endopeptidase, a cytochrome P450 (CYP9Q1), and a homolog of trynity, a zona pellucida domain protein. Of the known honey bee antimicrobial peptides, apidaecin was responsive at both time-points studied whereas hymenoptaecin was more consistent in its level of change between biological replicates and had the greatest increase in expression by RNA-seq analysis

  14. Transcriptional response of honey bee larvae infected with the bacterial pathogen Paenibacillus larvae.

    PubMed

    Cornman, Robert Scott; Lopez, Dawn; Evans, Jay D

    2013-01-01

    American foulbrood disease of honey bees is caused by the bacterium Paenibacillus larvae. Infection occurs per os in larvae and systemic infection requires a breaching of the host peritrophic matrix and midgut epithelium. Genetic variation exists for both bacterial virulence and host resistance, and a general immunity is achieved by larvae as they age, the basis of which has not been identified. To quickly identify a pool of candidate genes responsive to P. larvae infection, we sequenced transcripts from larvae inoculated with P. larvae at 12 hours post-emergence and incubated for 72 hours, and compared expression levels to a control cohort. We identified 75 genes with significantly higher expression and six genes with significantly lower expression. In addition to several antimicrobial peptides, two genes encoding peritrophic-matrix domains were also up-regulated. Extracellular matrix proteins, proteases/protease inhibitors, and members of the Osiris gene family were prevalent among differentially regulated genes. However, analysis of Drosophila homologs of differentially expressed genes revealed spatial and temporal patterns consistent with developmental asynchrony as a likely confounder of our results. We therefore used qPCR to measure the consistency of gene expression changes for a subset of differentially expressed genes. A replicate experiment sampled at both 48 and 72 hours post infection allowed further discrimination of genes likely to be involved in host response. The consistently responsive genes in our test set included a hymenopteran-specific protein tyrosine kinase, a hymenopteran specific serine endopeptidase, a cytochrome P450 (CYP9Q1), and a homolog of trynity, a zona pellucida domain protein. Of the known honey bee antimicrobial peptides, apidaecin was responsive at both time-points studied whereas hymenoptaecin was more consistent in its level of change between biological replicates and had the greatest increase in expression by RNA-seq analysis.

  15. Loss of surface coat by Strongyloides ratti infective larvae during skin penetration: evidence using larvae radiolabelled with /sup 67/gallium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grove, D.I.; Northern, C.; Warwick, A.

    1984-10-01

    The optimal conditions for labelling infective larvae of Strongyloides ratti with /sup 67/Ga citrate were determined. Radiolabelled larvae were injected s.c. into normal and previously infected rats. The distribution of radioactivity in these animals was compared with that in rats infected subcutaneously with a similar dose of free /sup 67/Ga by using a gamma camera linked to a computer system. Whereas free /sup 67/Ga was distributed throughout the body and excreted via the hepatobiliary system, the bulk of radioactivity in rats injected with radiolabelled larvae remained at the injection sites. Direct microscopical examination of these sites, however, revealed only minimalmore » numbers of worms. When rats were infected percutaneously with radiolabelled larvae, it was found that most radioactivity remained at the surface, despite penetration of worms. When infective larvae were exposed to CO/sub 2/ in vitro and examined carefully by light microscopy, loss of an outer coat was observed. It was concluded that infective larvae lose an outer coat on skin penetration.« less

  16. Lipid and fatty acid analysis of uninfected and granulosis virus-infected Plodia interpunctella larvae

    NASA Technical Reports Server (NTRS)

    Shastri-Bhalla, K.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A comparative study on the lipid and fatty acid composition of the uninfected and GV-infected Plodia interpunctella larvae was performed. Higher levels of free fatty acids were found in GV-infected larvae compared to those of the uninfected larvae, while the latter had more triacylglycerol compared to the former. The known identified phospholipids were fewer in the GV-infected larvae compared to those in the uninfected larvae. However, an unidentified phospholipid was found to be approximately two times higher in GV-infected larvae. The total lipid of both larvae had palmitic, oleic, and linoleic as the major fatty acids. The fatty acid composition of the GV-infected larval phospholipid differed considerably compared to that of the uninfected larvae, in that the ratio of unsaturated fatty acid to saturated fatty acid was 3.5 times less in the GV-infected larvae.

  17. [Anisakis simplex larvae: infection status in marine fishes for sale in Shantou].

    PubMed

    Chen, Jun-Hua; Xu, Zhi-Xia; Xu, Guang-Xing; Huang, Jian-Yun; Chen, Hong-Hui; Shi, Shi-Zun; Wu, Xiu-Yang; Liang, Jing-Jing

    2014-06-01

    To investigate the infection status of Anisakis simplex larvae in marine fishes for sale in Shantou. Marine fishes were randomly collected from markets in Shantou City from February to December 2013, and then classified. The viscera and muscle of each fish were carefully dissected and thoroughly examined for anisakids. The larvae were examined under a light microscope. The infection rate and intensity of Anisakis simplex larvae were calculated. A total of 382 fish specimens belonging to 52 species were examined. 42 out of 52 species (80.8%) were found infected by A. simplex larvae. The overall infection rate reached 47.4% (181/382), and average 5.5 larvae parasitized per infected fish (995/181). The survival rate of larvae was 100%. The highest infection rate observed was 100% in Scomber australasicus (4/4), Trachurus japonicus (9/9), Decapterus maruadsi (8/8), Lutjanus lutjanus (9/9), Argyrosomus argentatus (4/4), Nibea albiflora (4/4), Nemipterus bathybius (12/12), Trachinocephalus myops (7/7) and Mene maculata (9/9), followed by 16/18 in Pneumatophorus japonicus, 6/7 in Lutjanus ophuysenii and 5/6 in Lutjanus fulvus. A. simplex larvae were not detected in 10 fish species, namely, Megalaspis cordyla, Lutjanus argentimaculatus, Lutjanus fulviflamma, Acanthopagrus australis, Acanthopagrus latus, Plectorhinchus nigrus, Dentex tumifrons, Psenopsis anomala, Scatophagus argus, and Seriola lalandi. The infection intensity was the highest in Lutjanus fulvus (21.0 per fish), followed by Trachinocephalus myops (16.7 per fish), Saurida filamentosa (14.0 per fish) and Mene maculate (10.1 per fish). The lowest infection intensity was found in Rastrelliger kanagurta, Kaiwarinus equula, Atule mate, Lutjanus russellii, Plectorhinchus cinctus, Priacanthus tayenus, Branchiostegus argentatus, Branchiostegus albus, Sphyraena pinguis, Formio niger, Trachinotus blochii, Siganus fuscescens and Choerodon azurio (less than 2 per fish). The highest infection rate (34.3%, 131/382) was

  18. Expression, purification and enzymatic characterization of Brugia malayi dihydrofolate reductase.

    PubMed

    Perez-Abraham, Romy; Sanchez, Karla Garabiles; Alfonso, Melany; Gubler, Ueli; Siekierka, John J; Goodey, Nina M

    2016-12-01

    Brugia malayi (B. malayi) is one of the three causative agents of lymphatic filariasis, a neglected parasitic disease. Current literature suggests that dihydrofolate reductase is a potential drug target for the elimination of B. malayi. Here we report the recombinant expression and purification of a ∼20 kDa B. malayi dihydrofolate reductase (BmDHFR). A His6-tagged construct was expressed in E. coli and purified by affinity chromatography to yield active and homogeneous enzyme for steady-state kinetic characterization and inhibition studies. The catalytic activity kcat was found to be 1.4 ± 0.1 s(-1), the Michaelis Menten constant KM for dihydrofolate 14.7 ± 3.6 μM, and the equilibrium dissociation constant KD for NADPH 25 ± 24 nM. For BmDHFR, IC50 values for a six DHFR inhibitors were determined to be 3.1 ± 0.2 nM for methotrexate, 32 ± 22 μM for trimethoprim, 109 ± 34 μM for pyrimethamine, 154 ± 46 μM for 2,4-diaminoquinazoline, 771 ± 44 μM for cycloguanil, and >20,000 μM for 2,4-diaminopyrimidine. Our findings suggest that antifolate compounds can serve as inhibitors of BmDHFR. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. PREVALENCE OF ANISAKID NEMATODE LARVAE INFECTING SOME MARINE FISHES FROM THE LIBYAN COAST.

    PubMed

    Kassem, Hamed H; Bowashi, Salem Mohamed

    2015-12-01

    This study examined eight hundred ninety six marine fishes belonging to nine different fish species; Synodus saurus; Merluccius merluccius; Trachurus mediterraneus; Serranus cabrilla; Mullus surmuletus; Diplodus annularis; Spicara maena; Siganus rirulatus and Liza ramada. The fishes were bought from fish markets at five different sites on Libyan coast, from January to December 2013, for study the anisakids larvae among them. The results showed that 344/896 fishes (38.4%) were infected with Anisakids larvae. S. saurus was the highly infected (80.9%), followed by T mediterraneus (77.5%) but, S. cabrilla, S. maena, M merluccius, M surmuletus, and D. annularis were least anisakid infected showed rates of 58.2%, 53.8%, 43.7%, 36.7% & 3.6%, respectively. No parasites were in S. rirulatus and L, ramada. Ten species of Anisakids larvae was detected during the present study. Two Pseudoterranova sp. Larvae, two types of Anisakis larvae, Anisakis simplex larva and Anisakis sp. Larva, two types of Contracaecum sp. Larvae and four Hysterothylacium larvae. Females showed higher prevalence than males. The number of anisakid larvae varied according to body length and weight of infected fish, without significant difference between prevalence and seasons, but, a significant difference was between prevalence and regions.

  20. Nosema ceranae Can Infect Honey Bee Larvae and Reduces Subsequent Adult Longevity.

    PubMed

    Eiri, Daren M; Suwannapong, Guntima; Endler, Matthew; Nieh, James C

    2015-01-01

    Nosema ceranae causes a widespread disease that reduces honey bee health but is only thought to infect adult honey bees, not larvae, a critical life stage. We reared honey bee (Apis mellifera) larvae in vitro and provide the first demonstration that N. ceranae can infect larvae and decrease subsequent adult longevity. We exposed three-day-old larvae to a single dose of 40,000 (40K), 10,000 (10K), zero (control), or 40K autoclaved (control) N. ceranae spores in larval food. Spores developed intracellularly in midgut cells at the pre-pupal stage (8 days after egg hatching) of 41% of bees exposed as larvae. We counted the number of N. ceranae spores in dissected bee midguts of pre-pupae and, in a separate group, upon adult death. Pre-pupae exposed to the 10K or 40K spore treatments as larvae had significantly elevated spore counts as compared to controls. Adults exposed as larvae had significantly elevated spore counts as compared to controls. Larval spore exposure decreased longevity: a 40K treatment decreased the age by which 75% of adult bees died by 28%. Unexpectedly, the low dose (10K) led to significantly greater infection (1.3 fold more spores and 1.5 fold more infected bees) than the high dose (40K) upon adult death. Differential immune activation may be involved if the higher dose triggered a stronger larval immune response that resulted in fewer adult spores but imposed a cost, reducing lifespan. The impact of N. ceranae on honey bee larval development and the larvae of naturally infected colonies therefore deserve further study.

  1. Chitin synthase in the filarial parasite, Brugia malayi.

    PubMed

    Harris, M T; Lai, K; Arnold, K; Martinez, H F; Specht, C A; Fuhrman, J A

    2000-12-01

    Fragments of putative chitin synthase (chs) genes from two filarial species (Brugia malayi and Dirofilaria immitis) were amplified by PCR using degenerate primers. The full genomic and cDNA sequences were obtained for the B. malayi chs gene (Bm-chs-1); the predicted amino acid sequence is highly similar, over a large region, to two CHS sequences of the nematode Caenorhabditis elegans and also to two insect CHS sequences. Bm-chs-1 is abundantly transcribed in B. malayi adult females, independent of their fertilization status, but is also expressed in males and microfilariae. Oocytes and early embryos contain large amounts of Bm-chs-1 transcript by in situ hybridization, but later stage embryos within the maternal uterus show little or no Bm-chs-1 transcript. No specific hybridization could be demonstrated in maternal somatic tissues. Polyclonal antibodies were raised against a peptide expressed from a recombinant cDNA fragment of Bm-chs-1; immunostaining detected CHS protein in oocytes and early to midstage embryos. These studies characterize a gene that is likely to be essential to oogenesis and embryonic development in a parasitic nematode. Because chitin synthesis and eggshell formation begin after fertilization, the presence of CHS protein in early oocytes suggests that the enzyme must be activated as a result of fertilization. These studies also demonstrate that chitin synthesis may not be restricted to eggshell formation in nematodes, as the Bm-chs-1 gene is transcribed in life cycle stages other than adult females.

  2. Identification of anti-filarial leads against aspartate semialdehyde dehydrogenase of Wolbachia endosymbiont of Brugia malayi: combined molecular docking and molecular dynamics approaches.

    PubMed

    Amala, Mathimaran; Rajamanikandan, Sundaraj; Prabhu, Dhamodharan; Surekha, Kanagarajan; Jeyakanthan, Jeyaraman

    2018-02-06

    Lymphatic filariasis is a debilitating vector borne parasitic disease that infects human lymphatic system by nematode Brugia malayi. Currently available anti-filarial drugs are effective only on the larval stages of parasite. So far, no effective drugs are available for humans to treat filarial infections. In this regard, aspartate semialdehyde dehydrogenase (ASDase) in lysine biosynthetic pathway from Wolbachia endosymbiont Brugia malayi represents an attractive therapeutic target for the development of novel anti-filarial agents. In this present study, molecular modeling combined with molecular dynamics simulations and structure-based virtual screening were performed to identify potent lead molecules against ASDase. Based on Glide score, toxicity profile, binding affinity and mode of interactions with the ASDase, five potent lead molecules were selected. The molecular docking and dynamics results revealed that the amino acid residues Arg103, Asn133, Cys134, Gln161, Ser164, Lys218, Arg239, His246, and Asn321 plays a crucial role in effective binding of Top leads into the active site of ASDase. The stability of the ASDase-lead complexes was confirmed by running the 30 ns molecular dynamics simulations. The pharmacokinetic properties of the identified lead molecules are in the acceptable range. Furthermore, density functional theory and binding free energy calculations were performed to rank the lead molecules. Thus, the identified lead molecules can be used for the development of anti-filarial agents to combat the pathogenecity of Brugia malayi.

  3. A conserved endocrine mechanism controls the formation of dauer and infective larvae in nematodes.

    PubMed

    Ogawa, Akira; Streit, Adrian; Antebi, Adam; Sommer, Ralf J

    2009-01-13

    Under harsh environmental conditions, Caenorhabditis elegans larvae undergo arrest and form dauer larvae that can attach to other animals to facilitate dispersal. It has been argued that this phenomenon, called phoresy, represents an intermediate step toward parasitism. Indeed, parasitic nematodes invade their hosts as infective larvae, a stage that shows striking morphological similarities to dauer larvae. Although the molecular regulation of dauer entry in C. elegans involves insulin and TGF-beta signaling, studies of TGF-beta orthologs in parasitic nematodes didn't provide evidence for a common origin of dauer and infective larvae. To identify conserved regulators between Caenorhabditis and parasitic nematodes, we used an evolutionary approach involving Pristionchus pacificus as an intermediate. We show by mutational and pharmacological analysis that Pristionchus and Caenorhabditis share the dafachronic acid-DAF-12 system as the core endocrine module for dauer formation. One dafachronic acid, Delta7-DA, has a conserved role in the mammalian parasite Strongyloides papillosus by controlling entry into the infective stage. Application of Delta7-DA blocks formation of infective larvae and results in free-living animals. Conservation of this small molecule ligand represents a fundamental link between dauer and infective larvae and might provide a general strategy for nematode parasitism.

  4. A Conserved Endocrine Mechanism Controls the Formation of Dauer and Infective Larvae in Nematodes

    PubMed Central

    Ogawa, Akira; Streit, Adrian; Antebi, Adam; Sommer, Ralf J.

    2009-01-01

    Summary Under harsh environmental conditions Caenorhabditis elegans larvae undergo arrest and form dauer larvae that can attach to other animals to facilitate dispersal[1]. It has been argued that this phenomenon, called phoresy, represents an intermediate step towards parasitism[2, 3]. Indeed, parasitic nematodes invade their hosts as infective larvae, a stage that shows striking morphological similarities to dauer larvae[1]. While the molecular regulation of dauer entry in C. elegans involves insulin and TGF-ß signaling[4-8], studies of TGF-ß orthologues in parasitic nematodes did not provide evidence for a common origin of dauer and infective larvae[9-14]. To identify conserved candidate regulators between Caenorhabditis and parasitic nematodes we used an evolutionary approach involving Pristionchus pacificus as intermediate. We show by mutational and pharmacological analysis that Pristionchus and Caenorhabditis share the dafachronic acid-DAF-12 system as core endocrine module for dauer formation. One of the dafachronic acids, Δ7-DA, has a conserved role in the mammalian parasite Strongyloides papillosus where it controls entry into the infective stage. Application of Δ7-DA blocks formation of infective larvae and results in the generation of free-living animals. The conservation of this small molecule ligand represents a fundamental link between dauer and infective larvae and might provide a general strategy for nematode parasitism. PMID:19110431

  5. Physicochemical properties of the modeled structure of astacin metalloprotease moulting enzyme NAS-36 and mapping the druggable allosteric space of Heamonchus contortus, Brugia malayi and Ceanorhabditis elegans via molecular dynamics simulation.

    PubMed

    Sharma, Om Prakash; Agrawal, Sonali; Kumar, M Suresh

    2013-12-01

    Nematodes represent the second largest phylum in the animal kingdom. It is the most abundant species (500,000) in the planet. It causes chronic, debilitating infections worldwide such as ascariasis, trichuriasis, hookworm, enterobiasis, strongyloidiasis, filariasis and trichinosis, among others. Molecular modeling tools can play an important role in the identification and structural investigation of molecular targets that can act as a vital candidate against filariasis. In this study, sequence analysis of NAS-36 from H. contortus (Heamonchus contortus), B. malayi (Brugia malayi) and C. elegans (Ceanorhabditis elegans) has been performed, in order to identify the conserved residues. Tertiary structure was developed for an insight into the molecular structure of the enzyme. Molecular Dynamics Simulation (MDS) studies have been carried out to analyze the stability and the physical properties of the proposed enzyme models in the H. contortus, B. malayi and C. elegans. Moreover, the drug binding sites have been mapped for inhibiting the function of NAS-36 enzyme. The molecular identity of this protease could eventually demonstrate how ex-sheathment is regulated, as well as provide a potential target of anthelmintics for the prevention of nematode infections.

  6. Effect of gut bacterial isolates from Apis mellifera jemenitica on Paenibacillus larvae infected bee larvae.

    PubMed

    Al-Ghamdi, Ahmad; Ali Khan, Khalid; Javed Ansari, Mohammad; Almasaudi, Saad B; Al-Kahtani, Saad

    2018-02-01

    The probiotic effects of seven newly isolated gut bacteria, from the indegenous honey bees of Saudi Arabia were investigated. In vivo bioassays were used to investigate the effects of each gut bacterium namely, Fructobacillus fructosus (T1), Proteus mirabilis (T2), Bacillus licheniformis (T3), Lactobacillus kunkeei (T4), Bacillus subtilis (T5), Enterobacter kobei (T6), and Morganella morganii (T7) on mortality percentage of honey bee larvae infected with P. larvae spores along with negative control (normal diet) and positive control (normal diet spiked with P. larvae spores). Addition of gut bacteria to the normal diet significantly reduced the mortality percentage of the treated groups. Mortality percentage in all treated groups ranged from 56.67% up to 86.67%. T6 treated group exhibited the highest mortality (86.67%), whereas T4 group showed the lowest mortality (56.67%). Among the seven gut bacterial treatments, T4 and T3 decreased the mortality 56.67% and 66.67%, respectively, whereas, for T2, T6, and T7 the mortality percentage was equal to that of the positive control (86.67%). Mortality percentages in infected larval groups treated with T1, and T5 were 78.33% and 73.33% respectively. Most of the mortality occurred in the treated larvae during days 2 and 3. Treatments T3 and T4 treatments showed positive effects and reduced mortality.

  7. Angiostrongylus cantonensis (Nematode: Metastrongiloidea): in vitro cultivation of infective third-stage larvae to fourth-stage larvae.

    PubMed

    Lin, Rong-Jyh; He, Jie-Wen; Chung, Li-Yu; Lee, June-Der; Wang, Jiun-Jye; Yen, Chuan-Min

    2013-01-01

    The present study to attempt to cultivate Angiostrongylus cantonensis from third-stage larvae (AcL3) to fourth-stage larvae (AcL4) in vitro in defined complete culture medium that contained with Minimum Essential Medium Eagle (MEM), supplemented amino acid (AA), amine (AM), fatty acid (FA), carbohydrate (CA) and 20% fetal calf serum (FCS) was successful. When AcL3 were cultured in the defined complete culture medium at 37°C in a 5% CO2 atmosphere, the larvae began to develop to AcL4 after 30 days of cultivation, and were enclosed within the sheaths of the third molts of the life cycle. Under these conditions, the larvae developed uniformly and reached to the fourth-stage 36 days. The morphology of AcL3 develop to AcL4 were recording and analyzing. Then comparison of A. cantonensis larval morphology and development between in vitro cultivation in defined complete culture medium and in vivo cultivation in infective BALB/c mice. The larvae that had been cultivated in vitro were smaller than AcL4 of infective BALB/c mice. However the AcL3 that were cultured using defined incomplete culture medium (MEM plus 20% FCS with AA+AM, FA, CA, AA+AM+FA, FA+CA, CA+AA+AM or not) did not adequately survive and develop. Accordingly, the inference is made that only the defined complete medium enable AcL3 develop to AcL4 in vitro. Some nematodes have been successfully cultured into mature worms but only a few researches have been made to cultivate A. cantonensis in vitro. The present study is the first to have succeeded in developing AcL3 to AcL4 by in vitro cultivation. Finally, the results of in vitro cultivation studies herein contribute to improving media for the effective development and growth of A. cantonensis. The gap in the A. cantonensis life cycle when the larvae are cultivated in vitro from third-stage larvae to fourth-stage larvae can thus be solved.

  8. Extraction of Hemocytes from Drosophila melanogaster Larvae for Microbial Infection and Analysis.

    PubMed

    Hiroyasu, Aoi; DeWitt, David C; Goodman, Alan G

    2018-05-24

    During the pathogenic infection of Drosophila melanogaster, hemocytes play an important role in the immune response throughout the infection. Thus, the goal of this protocol is to develop a method to visualize the pathogen invasion in a specific immune compartment of flies, namely hemocytes. Using the method presented here, up to 3 × 10 6 live hemocytes can be obtained from 200 Drosophila 3 rd instar larvae in 30 min for ex vivo infection. Alternatively, hemocytes can be infected in vivo through injection of 3 rd instar larvae followed by hemocyte extraction up to 24 h post-infection. These infected primary cells were fixed, stained, and imaged using confocal microscopy. Then, 3D representations were generated from the images to definitively show pathogen invasion. Additionally, high-quality RNA for qRT-PCR can be obtained for the detection of pathogen mRNA following infection, and sufficient protein can be extracted from these cells for Western blot analysis. Taken together, we present a method for definite reconciliation of pathogen invasion and confirmation of infection using bacterial and viral pathogen types and an efficient method for hemocyte extraction to obtain enough live hemocytes from Drosophila larvae for ex vivo and in vivo infection experiments.

  9. Radiolabeling of infective third-stage larvae of Strongyloides stercoralis by feeding ( sup 75 Se)selenomethionine-labeled Escherichia coli to first- and second-stage larvae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aikens, L.M.; Schad, G.A.

    1989-10-01

    A technique is described for radiolabeling Strongyloides stercoralis larvae with ({sup 75}Se)selenomethionine. Cultures of an auxotrophic methionine-dependent stain of Escherichia coli were grown in a medium containing Dulbecco's modified Eagle's medium supplemented with 5% nutrient broth, amino acids, and ({sup 75}Se)selenomethionine. When the {sup 75}Se-labeled bacterial populations were in the stationary phase of growth, cultures were harvested and the bacteria dispersed on agar plates to serve as food for S. stercoralis larvae. Use of nondividing bacteria is important for successful labeling because the isotope is not diluted by cell division and death of larvae attributable to overgrowth by bacteria ismore » prevented. First-stage S. stercoralis larvae were recovered from feces of infected dogs and reared in humid air at 30 C on agar plates seeded with bacteria. After 7 days, infective third-stage larvae were harvested. The mean specific activity of 6 different batches of larvae ranged from 75 to 330 counts per min/larva with 91.8 +/- 9.5% of the population labeled sufficiently to produce an autoradiographic focus during a practicable, 6-wk period of exposure. Labeled infective larvae penetrated the skin of 10-day-old puppies and migrated to the small intestine, where the developed to adulthood.« less

  10. Sulfonamide chalcones: Synthesis and in vitro exploration for therapeutic potential against Brugia malayi.

    PubMed

    Bahekar, Sandeep P; Hande, Sneha V; Agrawal, Nikita R; Chandak, Hemant S; Bhoj, Priyanka S; Goswami, Kalyan; Reddy, M V R

    2016-11-29

    Keeping in mind the immense biological potential of chalcones and sulfonamide scaffolds, a library of sulfonamide chalcones has been synthesized and evaluated for in vitro antifilarial assay against human lymphatic filarial parasite Brugia malayi. Experimental evidence showcased for the first time the potential of some sulfonamide chalcones as effective and safe antifilarial lead molecules against human lymphatic filarial parasite B. malayi. Sulfonamide chalcones 4d, 4p, 4q, 4t and 4aa displayed the significantly wide therapeutic window. Particularly chalcones with halogen substitution in aromatic ring proved to be potent antifilarial agents against Brugia malayi. Sulphonamide chalcones with lipophilic methyl moiety (4q and 4aa) at para position of terminal phenyl rings of compounds were found to have remarkable antifilarial activities with therapeutic efficacy. Observed preliminary evidence of apoptosis by effective chalcone derivatives envisaged its fair possibility to inhibit folate pathway with consequent defect in DNA synthesis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Prediction of Brugia malayi antigenic peptides: candidates for synthetic vaccine design against lymphatic filariasis.

    PubMed

    Gomase, Virendra S; Chitlange, Nikhilkumar R; Changbhale, Smruti S; Kale, Karbhari V

    2013-08-01

    Brugia malayi is a threadlike nematode cause's swelling of lymphatic organs, condition well known as lymphatic filariasis; till date no invention made to effectively address lymphatic filariasis. In this analysis we a have predicted suitable antigenic peptides from Brugia malayi antigen protein for peptide vaccine design against lymphatic filariasis based on cross protection phenomenon as, an ample immune response can be generated with a single protein subunit. We found MHC class II binding peptides of Brugia malayi antigen protein are important determinant against the diseased condition. The analysis shows Brugia malayi antigen protein having 505 amino acids, which shows 497 nonamers. In this assay, we have predicted MHC-I binding peptides for 8mer_H2_Db (optimal score- 15.966), 9mer_H2_Db (optimal score- 15.595), 10mer_H2_Db (optimal score- 19.405), 11mer_H2_Dballeles (optimal score- 23.801). We also predicted the SVM based MHCII-IAb nonamers, 51-FQQIDPLDA, 442-FAAIACLVH, 206-YLNPFGHQF, 167-WYVIMAACY, 367-YAMIVIRLL, 434- LVITTAANF, 176-LDSYCLWKP, 435-VITTAANFA, 364-WPGYAMIVI (optimal score- 13.963); MHCII-IAd nonamers, 52-QQIDPLDAE, 171-MAACYLDSY, 239-QWRSVILCN, 168-YVIMAACYL, 3-QYLSVHSLS, 322-EILLHAKVV, 417- LGIIASFVS, 396-KAIFLAHFG, 167-WYVIMAACY, 269-LALHCINVI, 93-FINKAAPKQ, 259-NCIIVLKAF, 79- QGVLLIIPR, 22-TILQRSQAI, 63-RGFVYGNVS, 109-NISSLAFET,(optimal score- 16.748); and MHCII-IAg7 nonamers 171-MAACYLDSY, 73-KIVNGAQGV, 259-NCIIVLKAF, 209-PFGHQFSFE, 102-SCDTLLKNI, 25-QRSQAIRIV, 444- AIACLVHLF, 88-SLVNGFINK, 252-FPRHQLLNC, 471-RFVLANDNE, 52-QQIDPLDAE, 469-HRRFVLAND, 457- SNRHYFLAD, 362-KSWPGYAMI, 476-NDNEGEDFE, 370-IVIRLLQAL (optimal score- 19.847) which represents potential binders from Brugia malayi antigen protein. The method integrates prediction of MHC class I binding proteasomal C-terminal cleavage peptides and Eighteen potential antigenic peptides at average propensity 1.063 having highest local hydrophilicity. Thus a small antigen fragment can induce

  12. Nematode larvae infecting Priacanthus arenatus Cuvier, 1829 (Pisces: Teleostei) in Brazil.

    PubMed

    Kuraiem, Bianca P; Knoff, Marcelo; Felizardo, Nilza N; Gomes, Delir C; Clemente, Sérgio C São

    2016-05-31

    From July to December, 2013, thirty Priacanthus arenatus specimens commercialized in the cities of Niterói and Rio de Janeiro, State of Rio de Janeiro, were acquired. The fish were necropsied and filleted to investigate the presence of nematode larvae. Twenty fish (66.7%) out of the total were parasitized by nematode larvae. A total of 2024 larvae were collected; among them, 30 third-instar larvae of Anisakis sp. showed prevalence (P) = 20%, mean abundance (MA) = 1, and the mean intensity (MI) = 5, and infection sites (IS) = caecum, stomach, liver, and mesentery; and 1,994 third-instar larvae (1,757 encysted and 237 free) of Hysterothylacium deardorffoverstreetorum with P = 66.7%, MA = 66.5, and MI = 99.7, and IS = spleen, caecum, stomach, liver, mesentery, and abdominal muscle. This is the first study to report H. deardorffoverstreetorum and Anisakis sp. larvae parasitizing P. arenatus.

  13. Lactobacillus kunkeei strains decreased the infection by honey bee pathogens Paenibacillus larvae and Nosema ceranae.

    PubMed

    Arredondo, D; Castelli, L; Porrini, M P; Garrido, P M; Eguaras, M J; Zunino, P; Antúnez, K

    2018-02-27

    Due to their social behaviour, honey bees can be infected by a wide range of pathogens including the microsporidia Nosema ceranae and the bacteria Paenibacillus larvae. The use of probiotics as food additives for the control or prevention of infectious diseases is a widely used approach to improve human and animal health. In this work, we generated a mixture of four Lactobacillus kunkeei strains isolated from the gut microbial community of bees, and evaluated its potential beneficial effect on larvae and adult bees. Its administration in controlled laboratory models was safe for larvae and bees; it did not affect the expression of immune-related genes and it was able to decrease the mortality associated to P. larvae infection in larvae and the counts of N. ceranae spores from adult honey bees. These promising results suggest that this beneficial microorganism's mixture may be an attractive strategy to improve bee health. Field studies are being carried out to evaluate its effect in naturally infected colonies.

  14. Infection and reinfection of Culex pipiens fatigans with Wuchereria bancrofti and the loss of mature larvae in blood-feeding*

    PubMed Central

    de Meillon, Botha; Hayashi, Shigeyo; Sebastian, Anthony

    1967-01-01

    Although previous workers had found no evidence of resistance to superinfection in vectors of filariasis, it was considered desirable to reinvestigate the subject because of the epidemiological implications, since a mosquito that can incubate to maturity successive broods of filarial larvae will obviously be a more efficient vector than one that cannot. The results obtained indicate that a Culex pipiens fatigans mosquito that picks up an infection early in its life can, by taking subsequent infecting feeds, remain infective for the rest of its life. The movement of mature larvae in the vector and losses of larvae during feeding are of interest since from this information one can estimate the probable number of larvae deposited on the host at each feed and the period of infectivity of the vector. In the present experiment there were, on average, 6.1 larvae per infective mosquito before a second blood-meal; after the meal the figure was 3.6. Thus, 41% of the original infective larvae were lost; not all would be inoculated into the host, as some would die on the surface of his skin. The release of infective larvae through blood-feeding results from a combination of the passive pressure of the engorged blood in the abdomen and the active movement of the larva itself. PMID:5298677

  15. Equine Cyathostominae can develop to infective third-stage larvae on straw bedding.

    PubMed

    Love, Sandy; Burden, Faith A; McGirr, Eoghan C; Gordon, Louise; Denwood, Matthew J

    2016-08-31

    Domesticated grazing animals including horses and donkeys are frequently housed using deep litter bedding systems, where it is commonly presumed that there is no risk of infection from the nematodes that are associated with grazing at pasture. We use two different approaches to test whether equids could become infected with cyathostomines from the ingestion of deep litter straw bedding. Two herbage plot studies were performed in horticultural incubators set up to simulate three straw bedding scenarios and one grass turf positive control. Faeces were placed on 16 plots, and larval recoveries performed on samples of straw/grass substrate over 2- to 3-week periods. Within each incubator, a thermostat was set to maintain an environmental temperature of approximately 10 °C to 20 °C. To provide further validation, 24 samples of straw bedding were collected over an 8-week period from six barns in which a large number of donkeys were housed in a deep litter straw bedding system. These samples were collected from the superficial bedding at 16 sites along a "W" route through each barn. No infective larvae were recovered from any of the plots containing dry straw. However, infective cyathostomine larvae were first detected on day 8 from plots containing moist straw. In the straw bedding study, cyathostomine larvae were detected in 18 of the 24 samples. Additionally, in the two barns which were sampled serially, the level of larval infectivity generally increased from week to week, except when the straw bedding was removed and replaced. We have demonstrated that equine cyathostomines can develop to infective larvae on moist straw bedding. It is therefore possible for a horse or donkey bedded in deep litter straw to become infected by ingesting the contaminated straw. This has implications for parasite control in stabled equids and potentially in housed ruminants, and further investigation is required in order to establish the relative infective pressure from pasture versus

  16. Following the infection process of vibriosis in Manila clam (Ruditapes philippinarum) larvae through GFP-tagged pathogenic Vibrio species.

    PubMed

    Dubert, Javier; Nelson, David R; Spinard, Edward J; Kessner, Linda; Gomez-Chiarri, Marta; da Costa, Fiz; Prado, Susana; Barja, Juan L

    2016-01-01

    Vibriosis represents the main bottleneck for the larval production process in shellfish aquaculture. While the signs of this disease in bivalve larvae are well known, the infection process by pathogenic Vibrio spp. during episodes of vibriosis has not been elucidated. To investigate the infection process in bivalves, the pathogens of larvae as V. tubiashii subsp. europaensis, V. neptunius and V. bivalvicida were tagged with green fluorescent protein (GFP). Larvae of Manila clam (Ruditapes philippinarum) were inoculated with the GFP-labeled pathogens in different infection assays and monitored by microscopy. Manila clam larvae infected by distinct GFP-tagged Vibrio spp. in different challenges showed the same progression in the infection process, defining three infection stages. GFP-tagged Vibrio spp. were filtered by the larvae through the vellum and entered in the digestive system through the esophagus and stomach and colonized the digestive gland and particularly the intestine, where they proliferated during the first 2h of contact (Stage I), suggesting a chemotactic response. Then, GFP-tagged Vibrio spp. expanded rapidly to the surrounding organs in the body cavity from the dorsal to ventral region (Stage II; 6-8h), colonizing the larvae completely at the peak of infection (Stage III) (14-24h). Results demonstrated for the first time that the vibriosis is asymptomatic in Manila clam larvae during the early infection stages. Thus, the early colonization and the rapid proliferation of Vibrio pathogens within the body cavity supported the sudden and fatal effect of the vibriosis, since the larvae exhibited the first signs of disease when the infection process is advanced. As a first step in the elucidation of the potential mechanisms of bacterial pathogenesis in bivalve larvae the enzymatic activities of the extracellular products released from the wild type V. neptunius, V. tubiashii subsp. europaensis and V. bivalvicida were determined and their cytotoxicity was

  17. Experimental bacteriophage treatment of honeybees (Apis mellifera) infected with Paenibacillus larvae, the causative agent of American Foulbrood Disease

    PubMed Central

    Yost, Diane G.; Tsourkas, Philippos; Amy, Penny S.

    2016-01-01

    ABSTRACT American Foulbrood Disease (AFB) is an infection of honeybees caused by the bacterium Paenibacillus larvae. One potential remedy involves using biocontrol, such as bacteriophages (phages) to lyse P. larvae. Therefore, bacteriophages specific for P. larvae were isolated to determine their efficacy in lysing P. larvae cells. Samples from soil, beehive materials, cosmetics, and lysogenized P. larvae strains were screened; of 157 total samples, 28 were positive for at least one P. larvae bacteriophage, with a total of 30. Newly isolated bacteriophages were tested for the ability to lyse each of 11 P. larvae strains. Electron microscopy demonstrated that the phage isolates were from the family Siphoviridae. Seven phages with the broadest host ranges were combined into a cocktail for use in experimental treatments of infected bee larvae; both prophylactic and post-infection treatments were conducted. Results indicated that although both pre- and post-treatments were effective, prophylactic administration of the phages increased the survival of larvae more than post-treatment experiments. These preliminary experiments demonstrate the likelihood that phage therapy could be an effective method to control AFB. PMID:27144085

  18. Insecticidal activity of two proteases against Spodoptera frugiperda larvae infected with recombinant baculoviruses

    PubMed Central

    2010-01-01

    Background Baculovirus comprise the largest group of insect viruses most studied worldwide, mainly because they efficiently kill agricutural insect pests. In this study, two recombinant baculoviruses containing the ScathL gene from Sarcophaga peregrina (vSynScathL), and the Keratinase gene from the fungus Aspergillus fumigatus (vSynKerat), were constructed. and their insecticidal properties analysed against Spodoptera frugiperda larvae. Results Bioassays of third-instar and neonate S. frugiperda larvae with vSynScathL and vSynKerat showed a decrease in the time needed to kill the infected insects when compared to the wild type virus. We have also shown that both recombinants were able to increase phenoloxidase activity in the hemolymph of S. frugiperda larvae. The expression of proteases in infected larvae resulted in destruction of internal tissues late in infection, which could be the reason for the increased viral speed of kill. Conclusions Baculoviruses and their recombinant forms constitute viable alternatives to chemical insecticides. Recombinant baculoviruses containing protease genes can be added to the list of engineered baculoviruses with great potential to be used in integrated pest management programs. PMID:20587066

  19. Transcriptional responses in Honey Bee larvae infected with chalkbrood fungus

    PubMed Central

    2010-01-01

    Background Diseases and other stress factors working synergistically weaken honey bee health and may play a major role in the losses of bee populations in recent years. Among a large number of bee diseases, chalkbrood has been on the rise. We present here the experimental identification of honey bee genes that are differentially expressed in response to infection of honey bee larvae with the chalkbrood fungus, Ascosphaera apis. Results We used cDNA-AFLP ®Technology to profile transcripts in infected and uninfected bee larvae. From 64 primer combinations, over 7,400 transcriptionally-derived fragments were obtained A total of 98 reproducible polymorphic cDNA-AFLP fragments were excised and sequenced, followed by quantitative real-time RT-PCR (qRT-PCR) analysis of these and additional samples. We have identified a number of differentially-regulated transcripts that are implicated in general mechanisms of stress adaptation, including energy metabolism and protein transport. One of the most interesting differentially-regulated transcripts is for a chitinase-like enzyme that may be linked to anti-fungal activities in the honey bee larvae, similarly to gut and fat-body specific chitinases found in mosquitoes and the red flour beetle. Surprisingly, we did not find many components of the well-characterized NF-κB intracellular signaling pathways to be differentially-regulated using the cDNA-AFLP approach. Therefore, utilizing qRT-PCR, we probed some of the immune related genes to determine whether the lack of up-regulation of their transcripts in our analysis can be attributed to lack of immune activation or to limitations of the cDNA-AFLP approach. Conclusions Using a combination of cDNA-AFLP and qRT-PCR analyses, we were able to determine several key transcriptional events that constitute the overall effort in the honey bee larvae to fight natural fungal infection. Honey bee transcripts identified in this study are involved in critical functions related to

  20. Transcriptional responses in honey bee larvae infected with chalkbrood fungus.

    PubMed

    Aronstein, Katherine A; Murray, Keith D; Saldivar, Eduardo

    2010-06-21

    Diseases and other stress factors working synergistically weaken honey bee health and may play a major role in the losses of bee populations in recent years. Among a large number of bee diseases, chalkbrood has been on the rise. We present here the experimental identification of honey bee genes that are differentially expressed in response to infection of honey bee larvae with the chalkbrood fungus, Ascosphaera apis. We used cDNA-AFLP Technology to profile transcripts in infected and uninfected bee larvae. From 64 primer combinations, over 7,400 transcriptionally-derived fragments were obtained A total of 98 reproducible polymorphic cDNA-AFLP fragments were excised and sequenced, followed by quantitative real-time RT-PCR (qRT-PCR) analysis of these and additional samples.We have identified a number of differentially-regulated transcripts that are implicated in general mechanisms of stress adaptation, including energy metabolism and protein transport. One of the most interesting differentially-regulated transcripts is for a chitinase-like enzyme that may be linked to anti-fungal activities in the honey bee larvae, similarly to gut and fat-body specific chitinases found in mosquitoes and the red flour beetle. Surprisingly, we did not find many components of the well-characterized NF-kappaB intracellular signaling pathways to be differentially-regulated using the cDNA-AFLP approach. Therefore, utilizing qRT-PCR, we probed some of the immune related genes to determine whether the lack of up-regulation of their transcripts in our analysis can be attributed to lack of immune activation or to limitations of the cDNA-AFLP approach. Using a combination of cDNA-AFLP and qRT-PCR analyses, we were able to determine several key transcriptional events that constitute the overall effort in the honey bee larvae to fight natural fungal infection. Honey bee transcripts identified in this study are involved in critical functions related to transcriptional regulation, apoptotic

  1. Infective larvae of Rhabdiasidae (Nematoda): comparative morphology of seven European species.

    PubMed

    Kuzmin, Yuriy; Junker, Kerstin; Bain, Odile

    2014-03-01

    The morphology of infective third-stage larvae of Rhabdias bufonis, R. rubrovenosa, R. sphaerocephala, R. fuscovenosa, R. elaphe, Entomelas entomelas and E. dujardini is described. The sheath structure in the studied larvae appeared to be similar to that described in other species of the family Rhabdiasidae, its chequered aspect being caused by a combination of outer longitudinal striations and inner longitudinal as well as transverse ridges. The larvae were similar in general morphology but differed in the presence/absence of anterior apical protuberances (pseudolabia), the shape and ornamentation of the tail tip, and the structure of lateral alae in the caudal region of the body. No relationship between the morphological characters of the larvae of the studied species and their taxonomic position or specificity of adult parasites to a particular host group was observed. Regardless, the larvae of each species can be identified by a combination of morphological peculiarities in the anterior and caudal regions of the body.

  2. Density, Viability Conidia And Symptoms of Metarhizium anisopliae infection on Oryctes rhinoceros larvae

    NASA Astrophysics Data System (ADS)

    Indriyanti, D. R.; Putri, R. I. P.; Widiyaningrum, P.; Herlina, L.

    2017-04-01

    M. anisopliae is parasitic fungus on insect pests; it is used as a biocontrol agent. M. anisopliae can be propagated on maize or rice substrate. M. anisopliae is currently sold in the form of kaolin powder formulations. Before it is used to check the density, viability and pathogenicity of M. anisopliae. However the problem is the kaolin powder very soft, so it difficult to distinguish between kaolin and conidia. This article gives information on how to calculate conidia density, viability and symptoms of M. anisopliae infection on Oryctes rhinoceros larvae. The study was conducted in the laboratory to determine the density and viability. The pathogenicity testing was done using pots. The Pot is containing soil substrate mixed with M. Anispoliae and ten tails O. Rhinoceros larvae per pot. The results showed that the density of M. anisopliae conidia was 1.81 x 108 conidia mL-1 and the viability was 94% within 24 hours. The larval mortality began to emerge in the 1st week, and all larvae died at the sixth week. The symptom of M. anisopliae infection on Oryctes rhinoceros larvae, there was a black spot on the larval integument. The larvae movements become slow and poor appetite; it will die within 3-7 days. The larvae die hard, and the white hyphae grow on the body surface that turns green.

  3. Infection of Melissococcus plutonius clonal complex 12 strain in European honeybee larvae is essentially confined to the digestive tract

    PubMed Central

    TAKAMATSU, Daisuke; SATO, Masumi; YOSHIYAMA, Mikio

    2015-01-01

    Melissococcus plutonius is an important pathogen that causes European foulbrood (EFB) in honeybee larvae. Recently, we discovered a group of M. plutonius strains that are phenotypically and genetically distinct from other strains. These strains belong to clonal complex (CC) 12, as determined by multilocus sequence typing analysis, and show atypical cultural and biochemical characteristics in vitro compared with strains of other CCs tested. Although EFB is considered to be a purely intestinal infection according to early studies, it is unknown whether the recently found CC12 strains cause EFB by the same pathomechanism. In this study, to obtain a better understanding of EFB, we infected European honeybee (Apis mellifera) larvae per os with a well-characterized CC12 strain, DAT561, and analyzed the larvae histopathologically. Ingested DAT561 was mainly localized in the midgut lumen surrounded by the peritrophic matrix (PM) in the larvae. In badly affected larvae, the PM and midgut epithelial cells degenerated, and some bacterial cells were detected outside of the midgut. However, they did not proliferate in the deep tissues actively. By immunohistochemical analysis, the PM was stained with anti-M. plutonius serum in most of the DAT561-infected larvae. In some larvae, luminal surfaces of the PM were more strongly stained than the inside. These results suggest that infection of CC12 strain in honeybee larvae is essentially confined to the intestine. Moreover, our results imply the presence of M. plutonius-derived substances diffusing into the larval tissues in the course of infection. PMID:26256232

  4. Sublethal pesticide doses negatively affect survival and the cellular responses in American foulbrood-infected honeybee larvae

    NASA Astrophysics Data System (ADS)

    López, Javier Hernández; Krainer, Sophie; Engert, Antonia; Schuehly, Wolfgang; Riessberger-Gallé, Ulrike; Crailsheim, Karl

    2017-02-01

    Disclosing interactions between pesticides and bee infections is of most interest to understand challenges that pollinators are facing and to which extent bee health is compromised. Here, we address the individual and combined effect that three different pesticides (dimethoate, clothianidin and fluvalinate) and an American foulbrood (AFB) infection have on mortality and the cellular immune response of honeybee larvae. We demonstrate for the first time a synergistic interaction when larvae are exposed to sublethal doses of dimethoate or clothianidin in combination with Paenibacillus larvae, the causative agent of AFB. A significantly higher mortality than the expected sum of the effects of each individual stressor was observed in co-exposed larvae, which was in parallel with a drastic reduction of the total and differential hemocyte counts. Our results underline that characterizing the cellular response of larvae to individual and combined stressors allows unmasking previously undetected sublethal effects of pesticides in colony health.

  5. Sublethal pesticide doses negatively affect survival and the cellular responses in American foulbrood-infected honeybee larvae.

    PubMed

    López, Javier Hernández; Krainer, Sophie; Engert, Antonia; Schuehly, Wolfgang; Riessberger-Gallé, Ulrike; Crailsheim, Karl

    2017-02-01

    Disclosing interactions between pesticides and bee infections is of most interest to understand challenges that pollinators are facing and to which extent bee health is compromised. Here, we address the individual and combined effect that three different pesticides (dimethoate, clothianidin and fluvalinate) and an American foulbrood (AFB) infection have on mortality and the cellular immune response of honeybee larvae. We demonstrate for the first time a synergistic interaction when larvae are exposed to sublethal doses of dimethoate or clothianidin in combination with Paenibacillus larvae, the causative agent of AFB. A significantly higher mortality than the expected sum of the effects of each individual stressor was observed in co-exposed larvae, which was in parallel with a drastic reduction of the total and differential hemocyte counts. Our results underline that characterizing the cellular response of larvae to individual and combined stressors allows unmasking previously undetected sublethal effects of pesticides in colony health.

  6. Identification and characterization of nematode specific protective epitopes of Brugia malayi TRX towards development of synthetic vaccine construct for lymphatic filariasis.

    PubMed

    Madhumathi, Jayaprakasam; Prince, Prabhu Rajaiah; Anugraha, Gandhirajan; Kiran, Pote; Rao, Donthamsetty Nageswara; Reddy, Maryada Venkata Rami; Kaliraj, Perumal

    2010-07-12

    Although multi-epitope vaccines have been evaluated for various diseases, they have not yet been investigated for lymphatic filariasis. Here, we report for the first time identification of two immunodominant B epitopes (TRXP1 and TRXP2) from the antioxidant Brugia malayi thioredoxin by studying their immune responses in mice model and human subjects. TRXP1 was also found to harbor a T epitope recognized by human PBMCs and mice splenocytes. Further, the epitopic peptides were synthesized as a single peptide conjugate (PC1) and their prophylactic efficacy was tested in a murine model of filariasis with L3 larvae. PC1 conferred a significantly high protection (75.14%) (P < 0.0001) compared to control (3.7%) and recombinant TRX (63.03%) (P < 0.018) in experimental filariasis. Our results suggest that multi-epitope vaccines could be a promising strategy in the control of lymphatic filariasis.

  7. Rapid detection of Wuchereria bancrofti and Brugia malayi in mosquito vectors (Diptera: Culicidae) using a real-time fluorescence resonance energy transfer multiplex PCR and melting curve analysis.

    PubMed

    Intapan, Pewpan M; Thanchomnang, Tongjit; Lulitanond, Viraphong; Maleewong, Wanchai

    2009-01-01

    We developed a single-step real-time fluorescence resonance energy transfer (FRET) multiplex polymerase chain reaction (PCR) merged with melting curve analysis for the detection of Wuchereria bancrofti and Brugia malayi DNA in blood-fed mosquitoes. Real-time FRET multiplex PCR is based on fluorescence melting curve analysis of a hybrid of amplicons generated from two families of repeated DNA elements: the 188 bp SspI repeated sequence, specific to W. bancrofti, and the 153-bp HhaI repeated sequence, specific to the genus Brugia and two pairs of specific fluorophore-labeled probes. Both W. bancrofti and B. malayi can be differentially detected in infected vectors by this process through their different fluorescence channel and melting temperatures. The assay could distinguish both human filarial DNAs in infected vectors from the DNAs of Dirofilaria immitis- and Plasmodium falciparum-infected human red blood cells and noninfected mosquitoes and human leukocytes. The technique showed 100% sensitivity and specificity and offers a rapid and reliable procedure for differentially identifying lymphatic filariasis. The introduced real-time FRET multiplex PCR can reduce labor time and reagent costs and is not prone to carry over contamination. The test can be used to screen mosquito vectors in endemic areas and therefore should be a useful diagnostic tool for the evaluation of infection rate of the mosquito populations and for xenomonitoring in the community after eradication programs such as the Global Program to Eliminate Lymphatic Filariasis.

  8. Evaluation of the myoelectrical activity of the equine ileum infected with Strongylus vulgaris larvae.

    PubMed

    Berry, C R; Merritt, A M; Burrows, C F; Campbell, M; Drudge, J H

    1986-01-01

    Five weanling ponies were subjected to an intensive 6-week deworming program after which 4 Ag-AgCl bipolar electrodes were implanted surgically on the distal ileum. For 3 hours each day for 5 consecutive days, ileal myoelectrical activity was recorded from fed ponies under 3 sequential conditions: preinoculation, after oral administration of 1,000 killed Strongylus vulgaris infective larvae (3 ponies), and after oral administration of 1,000 live S vulgaris infective larvae. Recordings were analyzed for slow wave frequency, percentage duration of phases I, II, and III of the migrating myoelectrical complex (MMC), and the frequency of distinct, rapidly migrating action-potential complexes within phase 2 of the MMC. After administration of live and killed infected 3rd-stage larvae, there was a marked increase in the number of disrupted phase III complexes, and a significant (P less than 0.001) increase in the number of migrating action-potential complexes. In addition, after inoculation of live 3rd-stage larvae, there was a significant increase (P less than 0.001) in the percentage of time that the MMC was occupied by prolonged periods devoid of spike activity (phase I). The results indicate that S vulgaris larval mucosal penetration and submucosal migration can cause changes in ileal myoelectrical activity that could cause colic, and that larval antigen alone within the lumen may disrupt ileal motility.

  9. Identification and methods for prevention of Enterococcus mundtii infection in silkworm larvae, Bombyx mori, reared on artificial diet.

    PubMed

    Nwibo, Don Daniel; Matsumoto, Yasuhiko; Sekimizu, Kazuhisa

    2015-06-01

    Previously, it was reported that Enterococcus mundtii (E. mundtii) was associated with flacherie disease of silkworm larvae reared on artificial diet. In this study, we report that E. mundtii was isolated from diseased silkworm larvae, and validated as a pathogenic bacterium of the animal. When silkworm larva was infected with 1.04 × 10⁶ colony-forming units of E. mundtii via oral administration of diet, half population died within six days, indicating that the bacterium is pathogenic to silkworm. Less severe infection was found to cause anorexia and hamper the development of larvae. This pathogen was found to proliferate in both time- and dose-dependent manner in the gastrointestinal tract of the animal. The bacterium was isolated from powder of artificial diet made from mulberry leaves, and from mulberry leaves growing at a field. Minimum inhibitory concentration determination revealed that this bacterium was susceptible to tested antibiotics. Vancomycin treatment of diet significantly decreased the number of E. mundtii in intestine of silkworm larvae infected with the bacteria, compared to control. Furthermore, autoclaving or gamma ray irradiation of diet was also effective for exclusion of E. mundtii from the diet without the loss of its nutrient capacities. These results suggest that mulberry leaves used in making artificial diet for silkworm larvae is one of the sources of E. mundtii infection; and that antibiotic treatment, autoclaving or gamma ray irradiation of artificial diet can exclude the bacteria.

  10. Effective immunosuppression with dexamethasone phosphate in the Galleria mellonella larva infection model resulting in enhanced virulence of Escherichia coli and Klebsiella pneumoniae.

    PubMed

    Torres, Miquel Perez; Entwistle, Frances; Coote, Peter J

    2016-08-01

    The aim was to evaluate whether immunosuppression with dexamethasone 21-phosphate could be applied to the Galleria mellonella in vivo infection model. Characterised clinical isolates of Escherichia coli or Klebsiella pneumoniae were employed, and G. mellonella larvae were infected with increasing doses of each strain to investigate virulence in vivo. Virulence was then compared with larvae exposed to increasing doses of dexamethasone 21-phosphate. The effect of dexamethasone 21-phosphate on larval haemocyte phagocytosis in vitro was determined via fluorescence microscopy and a burden assay measured the growth of infecting bacteria inside the larvae. Finally, the effect of dexamethasone 21-phosphate treatment on the efficacy of ceftazidime after infection was also noted. The pathogenicity of K. pneumoniae or E. coli in G. mellonella larvae was dependent on high inoculum numbers such that virulence could not be attributed specifically to infection by live bacteria but also to factors associated with dead cells. Thus, for these strains, G. mellonella larvae do not constitute an ideal infection model. Treatment of larvae with dexamethasone 21-phosphate enhanced the lethality induced by infection with E. coli or K. pneumoniae in a dose- and inoculum size-dependent manner. This correlated with proliferation of bacteria in the larvae that could be attributed to dexamethasone inhibiting haemocyte phagocytosis and acting as an immunosuppressant. Notably, prior exposure to dexamethasone 21-phosphate reduced the efficacy of ceftazidime in vivo. In conclusion, demonstration of an effective immunosuppressant regimen can improve the specificity and broaden the applications of the G. mellonella model to address key questions regarding infection.

  11. Baylisascaris Larva Migrans

    USGS Publications Warehouse

    Kazacos, Kevin R.; Abbott, Rachel C.; van Riper, Charles

    2016-05-26

    SummaryBaylisascaris procyonis, the common raccoon roundworm, is the most commonly recognized cause of clinical larva migrans (LM) in animals, a condition in which an immature parasitic worm or larva migrates in a host animal’s tissues, causing obvious disease. Infection with B. procyonis is best known as a cause of fatal or severe neurologic disease that results when the larvae invade the brain, the spinal cord, or both; this condition is known as neural larva migrans (NLM). Baylisascariasis is a zoonotic disease, that is, one that is transmissible from animals to humans. In humans, B. procyonis can cause damaging visceral (VLM), ocular (OLM), and neural larva migrans. Due to the ubiquity of infected raccoons around humans, there is considerable human exposure and risk of infection with this parasite. The remarkable disease-producing capability of B. procyonis in animals and humans is one of the most significant aspects of the biology of ascarids (large roundworms) to come to light in recent years. Infection with B. procyonis has important health implications for a wide variety of free-ranging and captive wildlife, zoo animals, domestic animals, as well as human beings, on both an individual and population level. This report, eighth in the series of U.S. Geological Survey Circulars on zoonotic diseases, will help us to better understand the routes of Baylisascaris procyonis infections and how best to adequately monitor this zoonotic disease.

  12. A revised method of examining fish for infection with zoonotic nematode larvae.

    PubMed

    Shamsi, Shokoofeh; Suthar, Jaydipbhai

    2016-06-16

    The infection of fish with zoonotic nematodes, particularly anisakid nematodes is of great interest to many researchers who study food safety, human or animal health or who use them as biological tags for stock assessment studies. Accurate examination of fish for infection with anisakid larvae is crucial in making accurate estimates of their occurrence, abundance and prevalence in their fish hosts. Here we describe a new method of examining fish for infection with these parasites. In 2015, a total of 261 fish were purchased from a fish market in New South Wales, Australia. All fish were first examined by routine visual examination for infection with zoonotic nematode larvae and all data were recorded. Subsequently all internal organs were placed in a container and filled with water and incubated in the room temperature overnight. The prevalence, mean intensity and mean abundance of anisakids were significantly higher (p<0.05) when the revised method of examination, i.e., combining visual examination and overnight incubation in room temperature, was employed (63.98, 8.23 and 5.27, respectively) compared to routine visual examination with or without the aid of a microscope (8.81, 3.78 and 0.33, respectively). The proposed method is effective and has several advantages, such as: not using UV or HCl for fish examination, allowing the examination of a larger number of fish in shorter time; larval specimens collected being suitable for both morphological and DNA sequencing; and being simple and inexpensive. The disadvantages would be the odour of the specimens after overnight incubation as well as not being suitable for use with frozen fish. We suggest that results, conclusions or recommendations made in studies that claim no anisakid/ascaridoid larvae were found in a fish should be approached carefully if it is only based on visual examination of the fish. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. [Recovery of Trichostrongylus colubriformis infective larvae from three grass species contaminated in summer].

    PubMed

    Rocha, Raquel A da; Rocha, Gilberto P da; Bricarello, Patrizia A; Amarante, Alessandro F T

    2008-01-01

    The purpose of the experiment was to evaluate infective Trichostrongylus colubriformis larvae (L3) survival in three forage species. Experimental plots, planted with Brachiaria decumbens cv. Australian, Cynodon dactilon cv. Coast-cross, and Panicum maximum cv. Aruana, were used in the study, totaling two plots for each species. Each plot (32.4 m(2)) was divided into 36 subplots (30 x 30 cm) in order to allow six replicates per forage species and per herbage height in each week of material collection. Larval recovery was evaluated from middle summer to middle autumn under the effect of two forage paring heights: low, 5 cm, and high, 30 cm. The paring was carried out immediately before the fecal samples with T. colubriformis eggs, taken from sheep, were deposited on pasture in 05/Feb/2004. Feces and forage collection was performed one, two, four, eight, 12 and 16 weeks after feces deposition in the experimental plots. Forage grass height was measured in each subdivision immediately before the collections. The forage sample was cut, close to the soil, from an area delimited with a circle with a 10 cm radius. The feces were collected from the subplots. The number of infective larvae recovered from pasture was very small in comparison with the amount of larvae produced in cultures maintained in laboratory (maximum 6.7% on Aruana grass with 30 cm). L3 recovery rates from fecal samples were bigger when the feces were deposited on high grass (measuring 30 cm - P<0.05). L3 recovery from pasture and L3 concentration on herbage (L3/Kg dry matter) were similar for both cuts (P>0.05). Among the forage species, the Aruana grass was the one that, in general, harbored the biggest concentrations of infective T. colubriformis larvae.

  14. Scanning electron microscopy and histopathological observations of Beauveria bassiana infection of Colorado potato beetle larvae.

    PubMed

    Duan, Yulin; Wu, Hui; Ma, Zhiyan; Yang, Liu; Ma, Deying

    2017-10-01

    Beauveria bassiana is a potential candidate for use as an environmentally friendly bio-pesticide. We studied the infection process and histopathology of B. bassiana strain NDBJJ-BFG infection of the Colorado potato beetle (Leptinotarsa decemlineata) using scanning electron microscopy and hematoxylin-eosin staining of tissue sections. The results show that the fungus penetrated the insect epidermis through germ tubes and appressoria after spraying the larvae with conidial suspensions. The conidia began to germinate after 24 h and invade the epidermis. After 48 h, the conidia invaded the larvae with germ tubes and began to enter the haemocoel. By 72 h, hyphae had covered the host surface and had colonized the body cavity. The dermal layer was dissolved, muscle tissues were ruptured and adipose tissue was removed. The mycelium had damaged the intestinal wall muscles, and invaded into intestinal wall and midfield cells resulting in cell separation and tracheal deformation. After 96 h of inoculation, the internal structure of the larvae was destroyed. The research shows that B. bassiana NDBJJ-BFG surface inoculation resulted in a series of histopathological changes to the potato beetle larvae that proved lethal within 72 h. This indicated that this fungus has a high pathogenicity to Colorado potato beetle larvae. Copyright © 2017. Published by Elsevier Ltd.

  15. Physical stress primes the immune response of Galleria mellonella larvae to infection by Candida albicans.

    PubMed

    Mowlds, Peter; Barron, Aoife; Kavanagh, Kevin

    2008-05-01

    Larvae of the greater wax moth (Galleria mellonella) that had been subjected to physical stress by shaking in cupped hands for 2 min showed reduced susceptibility to infection by Candida albicans when infected 24 h after the stress event. Physically stressed larvae demonstrated an increase in haemocyte density and elevated mRNA levels of galiomicin and an inducible metalloproteinase inhibitor (IMPI) but not transferrin or gallerimycin. In contrast, previous work has demonstrated that microbial priming of larvae resulted in the induction of all four genes. Examination of the expression of proteins in the insect haemolymph using 2D electrophoresis and MALDI TOF analysis revealed an increase in the intensity of a number of peptides showing some similarities with proteins associated with the insect immune response to infection. This study demonstrates that non-lethal physical stress primes the immune response of G. mellonella and this is mediated by elevated haemocyte numbers, increased mRNA levels of genes coding for two antimicrobial peptides and the appearance of novel peptides in the haemolymph. This work demonstrates that physical priming increases the insect immune response but the mechanism of this priming is different to that induced by low level exposure to microbial pathogens.

  16. Effects of added CeCl3 on resistance of fifth-instar larvae of silkworm to Bombyx mori nucleopolyhedrovirus infection.

    PubMed

    Li, Bing; Xie, Yi; Cheng, Zhe; Cheng, Jie; Hu, Rengping; Cui, Yaling; Gong, Xiaolan; Shen, Weide; Hong, Fashui

    2012-06-01

    One of the most important agents causing lethal disease in the silkworm is the Bombyx mori nucleopolyhedrovirus (BmNPV), while low-dose rare earths are demonstrated to increase immune capacity in animals. However, very little is known about the effects of added CeCl(3) on decreasing BmNPV infection of silkworm. The present study investigated the effects of added CeCl(3) to an artificial diet on resistance of fifth-instar larvae of silkworm to BmNPV infection. Our findings indicated that added CeCl(3) significantly decreased inhibition of growth and mortality of fifth-instar larvae caused by BmNPV infection. Furthermore, the added CeCl(3) obviously decreased lipid peroxidation level and accumulation of reactive oxygen species such as O(2)(-), H(2)O(2), (·)OH, and NO and increased activities of the antioxidant enzymes including superoxide dismutase, catalase, ascorbate peroxidase, glutathione peroxidase, ascorbate, and glutathione contents in the BmNPV-infected fifth-instar larvae. In addition, the added CeCl(3) could significantly promote acetylcholine esterase activity and attenuate the activity of inducible nitric oxide synthase in the BmNPV-infected fifth-instar larvae. These findings suggested that added CeCl(3) may relieve oxidative damage and neurotoxicity of silkworm caused by BmNPV infection via increasing antioxidant capacity and acetylcholine esterase activity.

  17. Efficacy of albendazole against Taenia multiceps larvae in experimentally infected goats.

    PubMed

    Afonso, Sónia M S; Neves, Luis; Pondja, Alberto; Macuamule, Cristiano; Mukaratirwa, Samson; Arboix, Margarita; Cristòfol, Carles; Capece, Bettencourt P S

    2014-12-15

    A controlled trial was conducted to evaluate the efficacy of three therapeutics regimes of albendazole (ABZ) against Taenia multiceps larvae in experimental infected goats. Forty-nine goats experimentally infected with 3000 T. multiceps eggs were selected and randomly divided into treatment or control groups. Treatment with 10mg/kg for 3 days for group 1 (G1), 10mg/kg for group 2 (G2) and 20mg/kg/day for group 3 (G3) was applied 2 months after infection; group 4 (G4) served as a control group. A treatment with doses of 10mg/kg/day for 3 days on group 5 (G5) and group 6 (G6) was used as control, 5 months after the infection. The efficacy of ABZ was assessed as percentage of non-viable cysts which were determined by morphologic characteristics, movement and methyl blue staining technique. The efficacy of ABZ against 2 months old cysts was significantly different from the control and were 90.3% (28/31), 72.7% (8/11) and 73.9% (14/19) for G1, G2 and G3, respectively. No differences were observed in cyst viability between treated and control groups for 5-month old cysts. The results in this study indicate that ABZ is effective in goats against 2-month-old cysts of T. multiceps larva located in tissues outside the brain. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae.

    PubMed

    Defoirdt, Tom; Sorgeloos, Patrick

    2012-12-01

    Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host-pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp.

  19. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae

    PubMed Central

    Defoirdt, Tom; Sorgeloos, Patrick

    2012-01-01

    Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host–pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp. PMID:22673627

  20. Genetic diversity of infective larvae of Gnathostoma spinigerum (Nematoda: Gnathostomatidae) in freshwater swamp eels from Thailand.

    PubMed

    Eamsobhana, P; Wanachiwanawin, D; Roongruangchai, K; Song, S L; Yong, H S

    2017-11-01

    Human gnathostomiasis is a food-borne zoonosis caused by a tissue nematode of the genus Gnathostoma. The disease is highly endemic in Asia, including Thailand. The freshwater swamp eel (Monopterus albus), the second intermediate host of the gnathostome nematode, has an important role in transmitting the infection in Thailand. Surveys on the infective larvae of Gnathostoma spinigerum based on morphological features in freshwater swamp eels have been performed continuously and reported in Thailand. However, there is still limited molecular data on intra-species variations of the parasite. In this study, a total of 19 third-stage larvae of morphologically identified G. spinigerum were collected from 437 liver samples of freshwater swamp eels purchased from a large wholesale market in Bangkok, Thailand. Molecular characterization based on mitochondrial cytochrome c oxidase subunit I (COI) sequences was performed to elucidate their genetic variations and phylogenetic relationship. Among the 19 infective larvae recovered from these eels, 16 were sequenced successfully. Phylogenetic analyses inferred from the partial COI gene showed the presence of three distinct COI haplotypes. Our findings confirm the presence of G. spinigerum as the main species in Thailand.

  1. EFFECT OF X-RAYS ON THE DEVELOPMENT OF THE INFECTIVE LARVAE OF OESOPHAGOSTOMUM RADIATUM (RUD. 1803) (STRONGYLIDAE: NEMATODA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riek, R.F.; Keith, R.K.

    1960-06-18

    Calves reared worm-free were given either normal infective larvae or irradiated larvae of Oesophagostomum radiatum. These helminths often cause gastrointestinal infestation in cattle. The irradiated larvae were exposed to 20,000 r of x radiation. Calves from the group given irradiated larvae were killed aad examined for worms 3, 4, 5, 6, and 8 weeks after infestation. A calf from the control group was killed 6 weeks after infestation. Results from examinations for worms are tabulated. The main effect of this level of radiation was to prevent the establishment of an adult male population in norrnal numbers. Findings are discussed. (C.H.)

  2. Transcriptional response of Musca domestica larvae to bacterial infection.

    PubMed

    Tang, Ting; Li, Xiang; Yang, Xue; Yu, Xue; Wang, Jianhui; Liu, Fengsong; Huang, Dawei

    2014-01-01

    The house fly Musca domestica, a cosmopolitan dipteran insect, is a significant vector for human and animal bacterial pathogens, but little is known about its immune response to these pathogens. To address this issue, we inoculated the larvae with a mixture of Escherichia coli and Staphylococcus aureus and profiled the transcriptome 6, 24, and 48 h thereafter. Many genes known to controlling innate immunity in insects were induced following infection, including genes encoding pattern recognition proteins (PGRPs), various components of the Toll and IMD signaling pathways and of the proPO-activating and redox systems, and multiple antimicrobial peptides. Interestingly, we also uncovered a large set of novel immune response genes including two broad-spectrum antimicrobial peptides (muscin and domesticin), which might have evolved to adapt to house-fly's unique ecological environments. Finally, genes mediating oxidative phosphorylation were repressed at 48 h post-infection, suggesting disruption of energy homeostasis and mitochondrial function at the late stages of infection. Collectively, our data reveal dynamic changes in gene expression following bacterial infection in the house fly, paving the way for future in-depth analysis of M. domestica's immune system.

  3. [In vitro predatory activity of fungi Arthrobotrys robusta, Duddingtonia flagrans and Monacrosporium thaumasium on infective larvae of Ancylostoma spp. of dogs].

    PubMed

    Maciel, Alessandro S; de Araújo, Jackson V; Cecon, Paulo R

    2006-01-01

    The predatory capacity of isolates of nematode-trapping fungus Arthrobotrys robust (I31), Duddingtonia flagrans (CG768) and Monacrosporium thaumasium (NF34A) on infective larvae of Ancylostoma spp. was evaluated in laboratorial conditions in experimental assay in medium water-agar 2% (WA 2%). There was significant reduction (p <0.05) of 89.89%, 97.75% and 88.76% in the average of infective larvae of Ancylostoma spp. recovered of medium WA 2% from the treatments with isolated CG768, I31 and NF34A, respectively. The isolated I31 was the most effective in the capture of the infective larvae. The results show that these fungi can be used in the environmental control of the free-living stages of Ancylostoma spp. of dogs.

  4. Molecular pathogenesis of American Foulbrood: how Paenibacillus larvae kills honey bee larvae.

    PubMed

    Poppinga, Lena; Genersch, Elke

    2015-08-01

    American Foulbrood caused by Paenibacillus larvae is one of the unsolved health problems honey bee colonies are suffering from. In the recent past, considerable progress has been achieved in understanding molecular details of P. larvae infections of honey bee larvae. This was facilitated by the development of molecular tools for manipulating P. larvae and by the availability of complete genome sequences of different P. larvae genotypes. We here report on several peptides and proteins that have recently been identified, biochemically analyzed, and proposed to act as virulence factors of P. larvae. For some of them, experimental proof for their role as virulence factor has been provided allowing presenting a preliminary model for the molecular pathogenesis of American Foulbrood. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Luminous vibriosis in rock lobster Jasus verreauxi (Decapoda: Palinuridae) phyllosoma larvae associated with infection by Vibrio harveyi.

    PubMed

    Diggles, B K; Moss, G A; Carson, J; Anderson, C D

    2000-11-14

    Studies were conducted to determine the cause of outbreaks of luminous vibriosis in phyllosoma larvae of the packhorse rock lobster Jasus verreauxi reared in an experimental culture facility. On 2 separate occasions mortalities of up to 75% over a period of 4 wk were observed in 4th to 5th and 8th to 10th instar phyllosomas at water temperatures of 20 and 23 degrees C, respectively. Affected larvae became opaque, exhibited small red spots throughout the body and pereiopods, and were faintly luminous when viewed in the dark. Histopathology showed that the gut and hepatopancreas tubules of moribund phyllosomas contained massive bacterial plaques. The hepatopancreas tubules of moribund larvae were atrophic and some contained necrotic cells sloughed into the lumen. Dense, pure cultures of a bacterium identified as Vibrio harveyi were isolated from moribund larvae. The disease syndrome was reproduced by in vivo challenge and V. harveyi was successfully reisolated from diseased larvae after apparently healthy larvae were exposed by immersion to baths of more than 10(4) V. harveyi ml(-1) at 24 degrees C. Injured larvae were more susceptible to infection than were healthy larvae. Survival of larvae experimentally and naturally exposed to V. harveyi was improved when antibiotics were administered via bath exposures.

  6. Honey bee larval peritrophic matrix degradation during infection with Paenibacillus larvae, the aetiological agent of American foulbrood of honey bees, is a key step in pathogenesis.

    PubMed

    Garcia-Gonzalez, Eva; Genersch, Elke

    2013-11-01

    Paenibacillus larvae, the aetiological agent of American foulbrood (AFB) of honey bees, causes a fatal intestinal infection in larvae and invades the haemocoel by breaching the midgut. The peritrophic matrix lining the midgut epithelium in insects constitutes an effective barrier against abrasive food particles, xenobiotics, toxins and pathogens. Pathogens like P. larvae entering the host through the gut first need to overcome this barrier. To better understand AFB pathogenesis, we analysed the fate of the peritrophic matrix in honey bee larvae during P. larvae infection. Using histochemical techniques, we first established that chitin is a major component of the honey bee larval peritrophic matrix. Rearing larvae on a diet containing a fluorochrome blocking formation of the peritrophic matrix or a bacterial endochitinase revealed that a fully formed peritrophic matrix is essential for larval survival. Larvae infected by P. larvae showed total degradation of the peritrophic matrix enabling the bacteria to directly attack the epithelial cells. Carbon source utilization tests confirmed that P. larvae is able to metabolize colloidal chitin. We propose that P. larvae degrades the peritrophic matrix to allow direct access of the bacteria or of bacterial toxins to the epithelium to prepare the breakthrough of the epithelial layer. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. The role of polymorphisms in the spliced leader addition domain in determining promoter activity in Brugia malayi.

    PubMed

    Bailey, Michelle; Chauhan, Chitra; Liu, Canhui; Unnasch, Thomas R

    2011-03-01

    Previous studies of Brugia malayi promoters have suggested that they are unusual in that they lack the CAAT or TATAA boxes that are often emblematic of eucaryotic core promoter domains. Instead, the region surrounding the spliced leader (SL) addition site appears to function as the core promoter domain in B. malayi. To test the hypothesis that polymorphisms in this SL addition domain are important determinants of promoter activity, a series of domain swap mutants were prepared replacing the SL addition domain of the B. malayi 13kDa large subunit ribosomal protein (BmRPL13) with those of other ribosomal protein (RP) promoters exhibiting a wide range of activities. These constructs were then tested for promoter activity in a homologous transient transfection system. On average, polymorphisms in the SL addition domain were found to be responsible for 80% of the variation in promoter activity exhibited by the RP promoters tested. Essentially all of this effect could be attributable to polymorphisms in the 10nt located directly upstream of the SL addition site. A comparison of the sequence of this domain to the promoter activity exhibited by the domain swap mutants suggested that promoter activity was related to the number of T residues present in the coding strand of the upstream domain. Confirming this, mutation of the upstream domain of the promoter of the BmRPS4 gene to a homogeneous stretch of 10 T residues resulted in a significant increase in promoter activity. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Radiation inactivation of Paenibacillus larvae and sterilization of American Foul Brood (AFB) infected hives using Co-60 gamma rays.

    PubMed

    De Guzman, Zenaida M; Cervancia, Cleofas R; Dimasuay, Kris Genelyn B; Tolentino, Mitos M; Abrera, Gina B; Cobar, Ma Lucia C; Fajardo, Alejandro C; Sabino, Noel G; Manila-Fajardo, Analinda C; Feliciano, Chitho P

    2011-10-01

    The effectiveness of gamma radiation in inactivating the Philippine isolate of Paenibacillus larvae was investigated. Spores of P. larvae were irradiated at incremental doses (0.1, 0.2, 0.4, 0.8 and 1.6 kGy) of gamma radiation emitted by a ⁶⁰Co source. Surviving spores were counted and used to estimate the decimal reduction (D₁₀) value. A dose of 0.2 kGy was sufficient to inactivate 90% of the total recoverable spores from an initial count of 10⁵- 9 × 10³ spores per glass plate. The sterilizing effect of high doses of gamma radiation on the spores of P. larvae in infected hives was determined. In this study, a minimum dose (D(min)) of 15 kGy was tested. Beehives with sub-clinical infections of AFB were irradiated and examined for sterility. All the materials were found to be free of P. larvae indicating its susceptibility to γ-rays. After irradiation, there were no visible changes in the physical appearance of the hives' body, wax and frames. Thus, a dose of 15 kGy is effective enough for sterilization of AFB-infected materials. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. A Model of Superinfection of Virus-Infected Zebrafish Larvae: Increased Susceptibility to Bacteria Associated With Neutrophil Death

    PubMed Central

    Boucontet, Laurent; Passoni, Gabriella; Thiry, Valéry; Maggi, Ludovico; Herbomel, Philippe; Levraud, Jean-Pierre; Colucci-Guyon, Emma

    2018-01-01

    Enhanced susceptibility to bacterial infection in the days following an acute virus infection such as flu is a major clinical problem. Mouse models have provided major advances in understanding viral-bacterial superinfections, yet interactions of the anti-viral and anti-bacterial responses remain elusive. Here, we have exploited the transparency of zebrafish to study how viral infections can pave the way for bacterial co-infections. We have set up a zebrafish model of sequential viral and bacterial infection, using sublethal doses of Sindbis virus and Shigella flexneri bacteria. This virus induces a strong type I interferons (IFN) response, while the bacterium induces a strong IL1β and TNFα-mediated inflammatory response. We found that virus-infected zebrafish larvae showed an increased susceptibility to bacterial infection. This resulted in the death with concomitant higher bacterial burden of the co-infected fish compared to the ones infected with bacteria only. By contrast, infecting with bacteria first and virus second did not lead to increased mortality or microbial burden. By high-resolution live imaging, we showed that neutrophil survival was impaired in Sindbis-then-Shigella co-infected fish. The two types of cytokine responses were strongly induced in co-infected fish. In addition to type I IFN, expression of the anti-inflammatory cytokine IL10 was induced by viral infection before bacterial superinfection. Collectively, these observations suggest the zebrafish larva as a useful animal model to address mechanisms underlying increased bacterial susceptibility upon viral infection. PMID:29881380

  10. Exome and Transcriptome Sequencing of Aedes aegypti Identifies a Locus That Confers Resistance to Brugia malayi and Alters the Immune Response

    PubMed Central

    Juneja, Punita; Ariani, Cristina V.; Ho, Yung Shwen; Akorli, Jewelna; Palmer, William J.; Pain, Arnab; Jiggins, Francis M.

    2015-01-01

    Many mosquito species are naturally polymorphic for their abilities to transmit parasites, a feature which is of great interest for controlling vector-borne disease. Aedes aegypti, the primary vector of dengue and yellow fever and a laboratory model for studying lymphatic filariasis, is genetically variable for its capacity to harbor the filarial nematode Brugia malayi. The genome of Ae. aegypti is large and repetitive, making genome resequencing difficult and expensive. We designed exome captures to target protein-coding regions of the genome, and used association mapping in a wild Kenyan population to identify a single, dominant, sex-linked locus underlying resistance. This falls in a region of the genome where a resistance locus was previously mapped in a line established in 1936, suggesting that this polymorphism has been maintained in the wild for the at least 80 years. We then crossed resistant and susceptible mosquitoes to place both alleles of the gene into a common genetic background, and used RNA-seq to measure the effect of this locus on gene expression. We found evidence for Toll, IMD, and JAK-STAT pathway activity in response to early stages of B. malayi infection when the parasites are beginning to die in the resistant genotype. We also found that resistant mosquitoes express anti-microbial peptides at the time of parasite-killing, and that this expression is suppressed in susceptible mosquitoes. Together, we have found that a single resistance locus leads to a higher immune response in resistant mosquitoes, and we identify genes in this region that may be responsible for this trait. PMID:25815506

  11. Induction of an IAP antagonist in Culex quinquefasciatus larvae in response to infection by the baculovirus CuniNPV

    USDA-ARS?s Scientific Manuscript database

    CuniNPV is a member of the Dipteran–specific baculoviruses in the genus Deltabaculovirus that specifically infects mosquito larvae within the genus Culex while species of Aedes and Anopheles are refractory. Infections are restricted to the nuclei of larval midgut epithelial cells with transmission...

  12. A Proteomic Analysis of the Body Wall, Digestive Tract, and Reproductive Tract of Brugia malayi

    PubMed Central

    Morris, C. Paul; Bennuru, Sasisekhar; Kropp, Laura E.; Zweben, Jesse A.; Meng, Zhaojing; Taylor, Rebekah T.; Chan, King; Veenstra, Timothy D.; Nutman, Thomas B.; Mitre, Edward

    2015-01-01

    Filarial worms are parasitic nematodes that cause devastating diseases such as lymphatic filariasis (LF) and onchocerciasis. Filariae are nematodes with complex anatomy including fully developed digestive tracts and reproductive organs. To better understand the basic biology of filarial parasites and to provide insights into drug targets and vaccine design, we conducted a proteomic analysis of different anatomic fractions of Brugia malayi, a causative agent of LF. Approximately 500 adult female B. malayi worms were dissected, and three anatomical fractions (body wall, digestive tract, and reproductive tract) were obtained. Proteins from each anatomical fraction were extracted, desalted, trypsinized, and analyzed by microcapillary reverse-phase liquid chromatography-tandem-mass spectrometry. In total, we identified 4,785 B. malayi proteins. While 1,894 were identified in all three anatomic fractions, 396 were positively identified only within the digestive tract, 114 only within the body wall, and 1,011 only within the reproductive tract. Gene set enrichment analysis revealed a bias for transporters to be present within the digestive tract, suggesting that the intestine of adult filariae is functional and important for nutrient uptake or waste removal. As expected, the body wall exhibited increased frequencies of cytoskeletal proteins, and the reproductive tract had increased frequencies of proteins involved in nuclear regulation and transcription. In assessing for possible vaccine candidates, we focused on proteins sequestered within the digestive tract, as these could possibly represent “hidden antigens” with low risk of prior allergic sensitization. We identified 106 proteins that are enriched in the digestive tract and are predicted to localize to the surface of cells in the the digestive tract. It is possible that some of these proteins are on the luminal surface and may be accessible by antibodies ingested by the worm. A subset of 27 of these proteins

  13. New Paenibacillus larvae bacterial isolates from honey bee colonies infected with American foulbrood disease in Egypt.

    PubMed

    Masry, Saad Hamdy Daif; Kabeil, Sanaa Soliman; Hafez, Elsayed Elsayed

    2014-03-04

    The American foulbrood disease is widely distributed all over the world and causes a serious problem for the honeybee industry. Different infected larvae were collected from different apiaries, ground in phosphate saline buffer (PSB) and bacterial isolation was carried out on nutrient agar medium. Different colonies were observed and were characterized biologically. Two bacterial isolates (SH11 and SH33) were subjected to molecular identification using 16S rRNA gene and the sequence analysis revealed that the two isolates are Paenibacillus larvae with identity not exceeding 83%. The DNA sequence alignment between the other P. larvae bacterial strains and the two identified bacterial isolates showed that all the examined bacterial strains have the same ancestor, i.e. they have the same origin. The SH33 isolate was closely related to the P. larvae isolated from Germany, whereas the isolate SH11 was close to the P. larvae isolated from India. The phylogenetic tree constructed for 20 different Bacillus sp. and the two isolates SH11 and SH33 demonstrated that the two isolates are Bacillus sp. and they are new isolates. The bacterial isolates will be subjected to more tests for more confirmations.

  14. Tick-borne flavivirus infection in Ixodes scapularis larvae: development of a novel method for synchronous viral infection of ticks

    PubMed Central

    Mitzel, Dana N.; Wolfinbarger, James B.; Daniel Long, R.; Masnick, Max; Best, Sonja M.; Bloom, Marshall E.

    2007-01-01

    Following a bite from an infected tick, tick-borne flaviviruses cause encephalitis, meningitis and hemorrhagic fever in humans. Although these viruses spend most of their time in the tick, little is known regarding the virus-vector interactions. We developed a simple method for synchronously infecting Ixodes scapularis larvae with Langat virus (LGTV) by immersion in media containing the virus. This technique resulted in approximately 96% of ticks becoming infected. LGTV infection and replication were demonstrated by both viral antigen expression and the accumulation of viral RNA. Furthermore, ticks transmitted LGTV to 100% of the mice and maintained the virus through molting into the next life stage. This technique circumvents limitations present in the current methods by mimicking the natural route of infection and by using attenuated virus strains to infect ticks; thereby, making this technique a powerful tool to study both virus and tick determinants of replication, pathogenesis and transmission. PMID:17490700

  15. Activity changes of antioxidant and detoxifying enzymes in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae infected by the entomopathogenic nematode Heterorhabditis beicherriana (Rhabditida: Heterorhabditidae).

    PubMed

    Li, Xingyue; Liu, Qizhi; Lewis, Edwin E; Tarasco, Eustachio

    2016-12-01

    Entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis are lethal parasites of many insect species. To investigate defensive mechanisms towards EPNs in relation to antioxidative and detoxifying enzymes, we chose Tenebrio molitor (Coleoptera: Tenebrionidae) as experimental insect. We studied the activity changes of superoxide dismutases (SODs), peroxidases (PODs), and catalases (CATs), as well as tyrosinase (TYR), acetylcholinesterase (AChE), carboxylesterase (CarE), and glutathione S-transferase (GSTs) for 40 h in T. molitor larvae infected with Heterorhabditis beicherriana infective juveniles (IJs) at 5 rates (0, 20, 40, 80, and 160 IJs/larva). We found that when T. molitor larvae infected with H. beicherriana at higher rates (80 and 160 IJs/larva), SOD activity quickly increased to more than 70 % higher than that control levels. The activities of POD and CAT increased after 24 h. TYR activity increased slowly at lower rates of infection for 16 h, followed by a slight decrease, and then increasing from 32 to 40 h. The other detoxifying enzymes (GST, CarE, and AChE) were enhanced at lower infection rates, but were inhibited at higher rates. Our results suggested that host antioxidative response and detoxification reactions played a central role in the defensive reaction to EPNs, and that this stress which was reflected by the higher level enzymes activity contributed to the death of hosts. Further study should explore the exact function of these enzymes using different species of EPNs and investigate the links between enzyme activity and host susceptibility to EPNs.

  16. Characterization and experimental infection of Flexibacter maritimus (Wakabayashi et al. 1986) in hatcheries of post-larvae of Litopenaeus vannamei Boone, 1931.

    PubMed

    Mouriño, J L P; Vinatea, L; Buglione-Neto, C; Ramirez, C T; Vieira, F N; Pedrotti, F; Martins, M L; Derner, R B; Aguilar, M A; Beltrame, E

    2008-02-01

    A preliminary study to characterize filamentous bacteria, whose presence is related to high mortality of Litopenaeus vannamei larvae cultured in Santa Catarina State, Brazil, is reported. The extract of infected larvae was diluted in different concentrations, cultured in marine agar (Difco, Marine Agar 2216) and incubated at 30 degrees C for 48 hours. The biochemical characterization included hydrolytic reactions of starch, gelatin and tyrosine, growth in TCBS agar, growth in 0 and 37 per thousand salinity, pigment production in tyrosine agar, production of H2S, nitrate reduction, congo red reaction, oxidase and catalase. The isolated bacteria belong to the species Flexibacter maritimus, Gram-negative bacilli of 0.4-0.5 microm width and 15 microm length. Experiments were carried out on pathogenicity of F. maritimus in post-larvae of L. vannamei. Survival and symptoms in L. vannamei post-larvae 24 hours after inoculation with F. maritimus and its growth in marine agar were evaluated. Mortality was detected around 92,5% as well as symptoms like melanized lesions in several parts of body, discolouration of gills, bad formation of appendages and of the last abdominal segment, low motility and feeding reduction. The experimental infection results suggested that isolated bacteria of the genus Flexibacter are pathogenic to the shrimp Litopenaeus vannamei post-larvae.

  17. Therapeutic efficacy of eprinomectin extended-release injection against induced infections of developing (fourth-stage larvae) and adult nematode parasites of cattle.

    PubMed

    Rehbein, S; Baggott, D G; Royer, G C; Yoon, S; Cramer, L G; Soll, M D

    2013-03-01

    The therapeutic efficacy of eprinomectin in an extended-release injection (ERI) formulation was evaluated against induced infections of developing fourth-stage larval or adult gastrointestinal and pulmonary nematodes of cattle in a series of six studies under two identical protocols (three each for developing fourth-stage larvae or adults) conducted in the USA, Germany or the UK (two studies at each location, one per stage). Each study initially included 16 nematode-free cattle. The cattle were of various breeds or crosses, weighed 109-186.5 kg prior to treatment, and were approximately 4-7 months old. The animals were blocked based on pre-treatment bodyweight and then randomly allocated to treatment: eprinomectin ERI vehicle (control) at 1 mL/50 kg body weight or eprinomectin 5% ERI at 1 mL/50 kg bodyweight (1.0 mg eprinomectin/kg) for a total of eight and eight animals in each group. Treatments were administered once on Day 0 by subcutaneous injection in front of the shoulder. In each study, cattle were infected with a combination of infective third-stage larvae or eggs of gastrointestinal and pulmonary nematodes. Inoculation was scheduled so that the nematodes were expected to be fourth-stage larvae or adults at the time of treatment. For parasite recovery, all study animals were humanely euthanized and necropsied 14-15 (adult infections) or 21-22 days after treatment (developing fourth-stage larval infections). When compared with the vehicle-treated control counts, efficacy of eprinomectin ERI against developing fourth-stage larvae and adults was ≥98% (p<0.05) for the following nematodes: Dictyocaulus viviparus, Bunostomum phlebotomum, Cooperia curticei, C. oncophora, C. surnabada, C. punctata, Haemonchus contortus, H. placei, Nematodirus helvetianus, Oesophagostomum radiatum, Oes. venulosum, Ostertagia leptospicularis, O. ostertagi, O. circumcincta, O. pinnata, O. trifurcata (developing fourth-stage larval infections only), Strongyloides papillosus

  18. Hemolymph proteins of Anopheles gambiae larvae infected by Escherichia coli.

    PubMed

    He, Xuesong; Cao, Xiaolong; He, Yan; Bhattarai, Krishna; Rogers, Janet; Hartson, Steve; Jiang, Haobo

    2017-09-01

    Anopheles gambiae is a major vector of human malaria and its immune system in part determines the fate of ingested parasites. Proteins, hemocytes and fat body in hemolymph are critical components of this system, mediating both humoral and cellular defenses. Here we assessed differences in the hemolymph proteomes of water- and E. coli-pricked mosquito larvae by a gel-LC-MS approach. Among the 1756 proteins identified, 603 contained a signal peptide but accounted for two-third of the total protein amount on the quantitative basis. The sequence homology search indicated that 233 of the 1756 may be related to defense. In general, we did not detect substantial differences between the control and induced plasma samples in terms of protein numbers or levels. Protein distributions in the gel slices suggested post-translational modifications (e.g. proteolysis) and formation of serpin-protease complexes and high Mr immune complexes. Based on the twenty-five most abundant proteins, we further suggest that major functions of the larval hemolymph are storage, transport, and immunity. In summary, this study provided first data on constitution, levels, and possible functions of hemolymph proteins in the mosquito larvae, reflecting complex changes occurring in the fight against E. coli infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Visceral larva migrans

    MedlinePlus

    ... eating raw liver from a chicken, lamb, or cow. Young children with pica are at high risk ... eat raw liver from a chicken, lamb, or cow. Alternative Names Parasite infection - visceral larva migrans; VLM; ...

  20. Chemokinetic behavior of the infective third-stage larvae of Strongyloides ratti on a sodium chloride gradient.

    PubMed

    Tobata-Kudo, H; Higo, H; Koga, M; Tada, I

    2000-09-01

    The movements of the infective third-stage larvae (L3) of a rodent parasitic nematode Strongyloides ratti were examined on a sodium chloride (NaCl) gradient set up on agarose plates. The movements of larvae were followed by observing their tracks on the surface of the agarose. The direction of movement depended on the NaCl concentration at the point of their initial placement on the gradient. Larvae placed at between 230 and 370 mM NaCl tended to migrate towards areas of lower concentration. On the other hand, when placed at concentrations less than 20 mM NaCl, larvae tended to migrate initially towards higher concentrations but did not linger in areas where the concentration was over approximately 80 mM NaCl. It seems that S. ratti L3, tested in vitro, prefer regions with a concentration of NaCl below 80 mM NaCl. Two typical chemokinetic behaviors are seen; a unidirectional avoidance movement when initially placed in unfavorable environmental conditions and a random dispersal movement when placed within an area of favorable conditions. Track patterns were straight in the avoidance movement but included multiple changes of direction and loops in the dispersal movement. This study introduces an assay system suitable for studying chemokinetic behavior of larvae of Strongyloides ratti.

  1. Complete Genome Sequence of Paenibacillus larvae MEX14, Isolated from Honey Bee Larvae from the Xochimilco Quarter in Mexico City

    PubMed Central

    Peréz de la Rosa, D.; Pérez de la Rosa, J. J.; Cossio-Bayugar, R.; Miranda-Miranda, E.; Lozano, L.; Bravo-Díaz, M. A.; Rocha-Martínez, M. K.

    2015-01-01

    Paenibacillus larvae strain MEX14 is a facultative anaerobic endospore-forming bacterium that infects Apis mellifera larvae. Strain MEX14 was isolated from domestic bee larvae collected in a backyard in Mexico City. The estimated genome size was determined to be 4.18 Mb, and it harbors 4,806 protein coding genes (CDSs). PMID:26316636

  2. CHARACTERIZATION OF THE GLYCOSYLATED ECDYSTEROIDS IN THE HEMOLYMPH OF BACULOVIRUS-INFECTED GYPSY MOTH LARVAE AND CELLS IN CULTURE

    EPA Science Inventory

    Fourth-instar gypsy moth (Lymantria dispar; Lepidoptera: Lymantriidae) larvae, infected with the gypsy moth baculovirus (LdNPV), show an elevated and prolonged extension of the hemolymph ecdysteroid titer peak associated with molting. The ecdysteroid immunoreactivity associated w...

  3. Effect of plant trichomes on the vertical migration of Haemonchus contortus infective larvae on five tropical forages.

    PubMed

    Oliveira, Aruaque L F; Costa, Ciniro; Rodella, Roberto A; Silva, Bruna F; Amarante, Alessandro F T

    2009-06-01

    The influence of trichomes on vertical migration and survival of Haemonchus contortus infective larvae (L3) on different forages was investigated. Four different forages showing different distributions of trichomes (Brachiaria brizantha cv. Marandu, Brachiaria brizantha cv. Xaraes, Andropogon gayanus, and Stylosanthes spp.), and one forage species without trichomes (Panicum maximum cv. Tanzania), were used. Forages cut at the post-grazing height were contaminated with faeces containing L3. Samples of different grass strata (0-10, 10-20, >20 cm) and faeces were collected for L3 quantification once per week over four weeks. In all forages studied, the highest L3 recovery occurred seven days after contamination, with the lowest recovery on A. gayanus. In general, larvae were found on all forages' strata. However, most of the larvae were at the lower stratum. There was no influence of trichomes on migration and survival of H. contortus L3 on the forages.

  4. Protective effect of the probiotic Saccharomyces boulardii in Toxocara canis infection is not due to direct action on the larvae.

    PubMed

    Avila, Luciana Farias da Costa de; Telmo, Paula de Lima; Martins, Lourdes Helena Rodrigues; Glaeser, Thaís Aimeé; Conceição, Fabricio Rochedo; Leite, Fábio Pereira Leivas; Scaini, Carlos James

    2013-01-01

    In a previous study our group found that the probiotic Saccharomyces boulardii was capable of reducing the intensity of infection in mice with toxocariasis. In order to assess whether the mechanism involved would be a direct action of the probiotic on Toxocara canis larvae, this study was designed. Both probiotics were singly cultivated in plates containing RPMI 1640 medium and T. canis larvae. S. boulardii and B. cereus var. toyoi cultures presented 97.6% and 95.7% of larvae with positive motility, respectively, and absence of color by the dye trypan blue, not representing significant difference to the control group (p > 0.05). We conclude that none of the probiotics showed in vitro effects on T. canis larvae and that the interaction with the intestinal mucosa is necessary for the development of the protective effect of S. boulardii.

  5. Description, microhabitat selection and infection patterns of sealworm larvae (Pseudoterranova decipiens species complex, nematoda: ascaridoidea) in fishes from Patagonia, Argentina.

    PubMed

    Hernández-Orts, Jesús S; Aznar, Francisco J; Blasco-Costa, Isabel; García, Néstor A; Víllora-Montero, María; Crespo, Enrique A; Raga, Juan A; Montero, Francisco E

    2013-08-29

    Third-stage larvae of the Pseudoterranova decipiens species complex (also known as sealworms) have been reported in at least 40 marine fish species belonging to 21 families and 10 orders along the South American coast. Sealworms are a cause for concern because they can infect humans who consume raw or undercooked fish. However, despite their economic and zoonotic importance, morphological and molecular characterization of species of Pseudoterranova in South America is still scarce. A total of 542 individual fish from 20 species from the Patagonian coast of Argentina were examined for sealworms. The body cavity, the muscles, internal organs, and the mesenteries were examined to detect nematodes. Sealworm larvae were removed from their capsules and fixed in 70% ethanol. For molecular identification, partial fragments of the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) were amplified for 10 isolates from 4 fish species. Morphological and morphometric data of sealworms were also obtained. A total of 635 larvae were collected from 12 fish species. The most infected fish was Prionotus nudigula, followed by Percophis brasiliensis, Acanthistius patachonicus, Paralichthys isosceles, and Pseudopercis semifasciata. Sequences obtained for the cox1 of sealworms from A. patachonicus, P. isosceles, P. brasiliensis and P. nudigula formed a reciprocally monophyletic lineage with published sequences of adult specimens of Pseudoterranova cattani from the South American sea lion Otaria flavescens, and distinct from the remaining 5 species of Pseudoterranova. A morphological description, including drawings and scanning electron microscopy photomicrographs of these larvae is provided. Sealworms collected from Argentinean fishes did not differ in their diagnostic traits from the previously described larvae of P. cattani. However a discriminant analysis suggests that specimens from P. nudigula were significantly larger than those from other fishes. Most of the sealworms were

  6. Description, microhabitat selection and infection patterns of sealworm larvae (Pseudoterranova decipiens species complex, nematoda: ascaridoidea) in fishes from Patagonia, Argentina

    PubMed Central

    2013-01-01

    Background Third-stage larvae of the Pseudoterranova decipiens species complex (also known as sealworms) have been reported in at least 40 marine fish species belonging to 21 families and 10 orders along the South American coast. Sealworms are a cause for concern because they can infect humans who consume raw or undercooked fish. However, despite their economic and zoonotic importance, morphological and molecular characterization of species of Pseudoterranova in South America is still scarce. Methods A total of 542 individual fish from 20 species from the Patagonian coast of Argentina were examined for sealworms. The body cavity, the muscles, internal organs, and the mesenteries were examined to detect nematodes. Sealworm larvae were removed from their capsules and fixed in 70% ethanol. For molecular identification, partial fragments of the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) were amplified for 10 isolates from 4 fish species. Morphological and morphometric data of sealworms were also obtained. Results A total of 635 larvae were collected from 12 fish species. The most infected fish was Prionotus nudigula, followed by Percophis brasiliensis, Acanthistius patachonicus, Paralichthys isosceles, and Pseudopercis semifasciata. Sequences obtained for the cox1 of sealworms from A. patachonicus, P. isosceles, P. brasiliensis and P. nudigula formed a reciprocally monophyletic lineage with published sequences of adult specimens of Pseudoterranova cattani from the South American sea lion Otaria flavescens, and distinct from the remaining 5 species of Pseudoterranova. A morphological description, including drawings and scanning electron microscopy photomicrographs of these larvae is provided. Sealworms collected from Argentinean fishes did not differ in their diagnostic traits from the previously described larvae of P. cattani. However a discriminant analysis suggests that specimens from P. nudigula were significantly larger than those from other fishes

  7. Complete Genome Sequence of Paenibacillus larvae MEX14, Isolated from Honey Bee Larvae from the Xochimilco Quarter in Mexico City.

    PubMed

    Peréz de la Rosa, D; Pérez de la Rosa, J J; Cossio-Bayugar, R; Miranda-Miranda, E; Lozano, L; Bravo-Díaz, M A; Rocha-Martínez, M K; Sachman-Ruiz, B

    2015-08-27

    Paenibacillus larvae strain MEX14 is a facultative anaerobic endospore-forming bacterium that infects Apis mellifera larvae. Strain MEX14 was isolated from domestic bee larvae collected in a backyard in Mexico City. The estimated genome size was determined to be 4.18 Mb, and it harbors 4,806 protein coding genes (CDSs). Copyright © 2015 Peréz de la Rosa et al.

  8. Activity of superoxide dismutase in Galleria mellonella larvae infected with entomopathogenic nematodes Steinernema affinis and S. feltiae.

    PubMed

    Zółtowska, Krystyna; Grochla, Paulina; Łopieńska-Biernat, Elzbieta

    2006-01-01

    The influence of infection with two species of entomopathogenic nematodes of Steinernematidae family on the activity of superoxide dismutase (SOD) of the host was studied. Last instar larvae of Galleria mellonella were experimentally infected with Steinernema affinis and S. feltiae at 20 invasive juveniles per insect. At 6, 12, 18, 24 and 36 h after infection activity of SOD was determined in extracts from infected and control insects. The activity of SOD decreased gradually in the controls during the experiment. The activity of enzyme was 2-4-times higher in insects from both infected groups than in the control. During the first 12 h of infection the activity of SOD in insects infected with S. feltiae was higher than in those infected with S. affinis, then the activity of enzyme in the insects of both infected groups stayed at a similar level. A significant decrease of SOD activity in infected was recorded in second day of the infection.

  9. Profiling extracellular vesicle release by the filarial nematode Brugia malayi reveals sex-specific differences in cargo and a sensitivity to ivermectin

    PubMed Central

    Harischandra, Hiruni; Yuan, Wang; Zamanian, Mostafa

    2018-01-01

    The filarial nematode Brugia malayi is an etiological agent of Lymphatic Filariasis. The capability of B. malayi and other parasitic nematodes to modulate host biology is recognized but the mechanisms by which such manipulation occurs are obscure. An emerging paradigm is the release of parasite-derived extracellular vesicles (EV) containing bioactive proteins and small RNA species that allow secretion of parasite effector molecules and their potential trafficking to host tissues. We have previously described EV release from the infectious L3 stage B. malayi and here we profile vesicle release across all intra-mammalian life cycle stages (microfilariae, L3, L4, adult male and female worms). Nanoparticle Tracking Analysis was used to quantify and size EVs revealing discrete vesicle populations and indicating a secretory process that is conserved across the life cycle. Brugia EVs are internalized by murine macrophages with no preference for life stage suggesting a uniform mechanism for effector molecule trafficking. Further, the use of chemical uptake inhibitors suggests all life stage EVs are internalized by phagocytosis. Proteomic profiling of adult male and female EVs using nano-scale LC-MS/MS described quantitative and qualitative differences in the adult EV proteome, helping define the biogenesis of Brugia EVs and revealing sexual dimorphic characteristics in immunomodulatory cargo. Finally, ivermectin was found to rapidly inhibit EV release by all Brugia life stages. Further this drug effect was also observed in the related filarial nematode, the canine heartworm Dirofilaria immitis but not in an ivermectin-unresponsive field isolate of that parasite, highlighting a potential mechanism of action for this drug and suggesting new screening platforms for anti-filarial drug development. PMID:29659599

  10. Clash of kingdoms or why Drosophila larvae positively respond to fungal competitors.

    PubMed

    Rohlfs, Marko

    2005-01-27

    BACKGROUND: Competition with filamentous fungi has been demonstrated to be an important cause of mortality for the vast group of insects that depend on ephemeral resources (e.g. fruit, dung, carrion). Recent data suggest that the well-known aggregation of Drosophila larvae across decaying fruit yields a competitive advantage over mould, by which the larvae achieve a higher survival probability in larger groups compared with smaller ones. Feeding and locomotor behaviour of larger larval groups is assumed to cause disruption of fungal hyphae, leading to suppression of fungal growth, which in turn improves the chances of larval survival to the adult stage. Given the relationship between larval density, mould suppression and larval survival, the present study has tested whether fungal-infected food patches elicit communal foraging behaviour on mould-infected sites by which larvae might hamper mould growth more efficiently. RESULTS: Based on laboratory experiments in which Drosophila larvae were offered the choice between fungal-infected and uninfected food patches, larvae significantly aggregated on patches containing young fungal colonies. Grouping behaviour was also visible when larvae were offered only fungal-infected or only uninfected patches; however, larval aggregation was less strong under these conditions than in a heterogeneous environment (infected and uninfected patches). CONCLUSION: Because filamentous fungi can be deadly competitors for insect larvae on ephemeral resources, social attraction of Drosophila larvae to fungal-infected sites leading to suppression of mould growth may reflect an adaptive behavioural response that increases insect larval fitness and can thus be discussed as an anti-competitor behaviour. These observations support the hypothesis that adverse environmental conditions operate in favour of social behaviour. In a search for the underlying mechanisms of communal behaviour in Drosophila, this study highlights the necessity of

  11. The n-hexane and chloroform fractions of Piper betle L. trigger different arms of immune responses in BALB/c mice and exhibit antifilarial activity against human lymphatic filarid Brugia malayi.

    PubMed

    Singh, Meghna; Shakya, Shilpy; Soni, Vishal Kumar; Dangi, Anil; Kumar, Nikhil; Bhattacharya, Shailja-Misra

    2009-06-01

    Modulation of immune functions by using herbal plants and their products has become fundamental regime of therapeutic approach. Piper betle Linn. (Piperaceae) is a widely distributed plant in the tropical and subtropical regions of the world and has been attributed as traditional herbal remedy for many diseases. We have recently reported the antifilarial and antileishmanial efficacy in the leaf extract of Bangla Mahoba landrace of P. betle which is a female plant. The present report describes the in vivo immunomodulatory efficacy of the crude methanolic extract and its n-hexane, chloroform, n-butanol fractions of the female plant at various dose levels ranging between 0.3 and 500 mg/kg in BALB/c. Attempts were also made to observe antifilarial activity of the active extracts and correlate it with the antigen specific immune responses in another rodent Mastomys coucha infected with human lymphatic filarial parasite Brugia malayi. The crude methanol extract and n-hexane fraction were found to potentiate significant (p<0.001) enhancement of both humoral (plaque forming cells, hemagglutination titre) as well as cell-mediated (lymphoproliferation, macrophage activation, delayed type hypersensitivity) immune responses in mice. The flow cytometric analysis of splenocytes of treated mice indicated enhanced population of T-cells (CD4(+), CD8(+)) and B-cells (CD19(+)). The n-hexane fraction (3 mg/kg) was found to induce biased type 2 cytokine response as revealed by increased IL-4(+) and decreased IFN-gamma(+) T-cell population while the chloroform fraction (10 mg/kg) produced a predominant type 1 cytokines. Crude methanolic extract (100 mg/kg) demonstrated a mixed type 1 and type 2 cytokine responses thus suggesting a remarkable immunomodulatory property in this plant. The induction of differential T-helper cell immune response appears ideal to overcome immunosuppression as observed in case of lymphatic, filarial Brugia malayi infection which may also be extended to other

  12. How the position of mussels at the intertidal lagoon affects their infection with the larvae of parasitic flatworms (Trematoda: Digenea): A combined laboratory and field experimental study

    NASA Astrophysics Data System (ADS)

    Nikolaev, Kirill E.; Prokofiev, Vladimir V.; Levakin, Ivan A.; Galaktionov, Kirill V.

    2017-10-01

    In the complex trematode life cycle, cercariae transmit infection from the first to the second intermediate host. These short-lived lecithotrophic larvae possess a complex of behavioural responses for finding and infecting the host. We studied strategies used by cercariae of Himasthla elongata and Cercaria parvicaudata (Renicola sp.) infecting mussels Mytilus edulis at the White Sea intertidal. Laboratory and field experiments were conducted in parallel. Geotactic response of cercariae was tested in an experimental chamber. Their distribution in nature was studied by counting larvae infecting mussels in cages installed in pairs (a ground and a suspended cage) in an intertidal lagoon. In the chamber H. elongata cercariae concentrated at the bottom, C. parvicaudata cercariae aged 1 h mostly concentrated near the surface and those aged 6 h sank to the bottom. A few larvae of both species ("evaders") showed behavioural patterns antithetic to the prevalent ones. Infection was the highest in mussels in ground cages. In suspended cages mussel infection with H. elongata cercariae was much lower than with C. parvicaudata cercariae. Our study confirmed that results of experiments on cercarial behaviour could be extrapolated to natural conditions. Cercariae of two species using the same intermediate hosts and co-occurring in a biotope implemented dramatically different strategies. This might be associated with differences in cercarial output by parthenitae groups. The presence of "evaders" might be useful for successful transmission. Our results indicate that mussels cultivated in suspended cultures are at the least risk of infection with trematode larvae.

  13. The killing speed of egt-inactivated Bombyx mori nucleopolyhedrovirus depends on the developmental stage of B. mori larvae.

    PubMed

    Katsuma, Susumu; Shimada, Toru

    2015-03-01

    Several lines of evidence have shown that the deletion of the ecdysteroid UDP-glucosyltransferase gene (egt) from the nucleopolyhedrovirus (NPV) genome increases the killing speed of host lepidopteran larvae. However, it has not been investigated in detail whether the effects of egt deletion depend on the larval stages of the host insect. In this study, we performed bioassays using 10 continuous larval stages of the 4th- or 5th-instar Bombyx mori larvae and B. mori NPV egt mutants. The fast-killing phenotype was observed in the egt mutants only when the infection process progressed through larval-larval transition. All day-2 4th-instar larvae infected with the egt mutants entered the molting stage and died much earlier than wild-type-infected larvae. Bodies of egt mutant-infected larvae were filled with excessive fluid immediately after head capsule slippage, owing presumably to the degeneration of Malpighian tubules. Fourth- or 5th-instar larvae infected with the egt mutants at early stages of each instar died similarly to those infected with the wild-type virus. Under infection in the middle stages of the 5th-instar, the survival time of egt mutant-infected larvae was significantly longer than that of the wild-type virus-infected larvae. These results clearly show that the effects of egt deletion on killing speed of NPV are largely dependent on the developmental stage of the host larvae infected by the virus. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. [Visceral and cutaneous larva migrans].

    PubMed

    Petithory, Jean-Claude

    2007-11-30

    The syndrome of visceral larva migrans was described for the first time in 1952 by Beaver. He demonstrated that the presence of nematodes larvae, particularly in the liver, were those of Toxocara canis and T. cati. Baylisascaris procyonis, the common racoon ascarid in the U.S.A. can also cause serious diseases in human. Digestive and respiratory clinical symptoms are usually moderate, however severe disease resulting from invasion of the myocardium or the brain has been reported. A blood hypereosinophilia is usually present the first few years after infection. Diagnosis uses serological methods, among them the ELISA test. Ocular larva is also possible with in that case, immunological modifications of the aqueous. Cutaneous larva migrans characterized by a linear, progressing, serpigenous eruption and intense itching is easy to diagnose. Larva migrans is due to dogs, cats and horses helminths. Dogs and cats (referred here as pets) now receive antihelmintitic treatments and parasites are now in decrease.

  15. Visceral Larva Migrans in Immigrants from Latin America

    PubMed Central

    Turrientes, Maria-Carmen; Pérez de Ayala, Ana; Norman, Francesca; Navarro, Miriam; Pérez-Molina, José-Antonio; Rodriquez-Ferrer, Mercedes; Gárate, Teresa

    2011-01-01

    To determine whether increased migration is associated with an increase in incidence of toxocariasis (visceral larva migrans), we analyzed clinical data obtained from immigrants from Latin America. Although infection with Toxocara sp. roundworm larvae is distributed worldwide, seroprevalence is highest in tropical and subtropical areas. PMID:21762582

  16. Comparative susceptibility and immune responses of Asian and European honey bees to the American foulbrood pathogen, Paenibacillus larvae.

    PubMed

    Krongdang, Sasiprapa; Evans, Jay D; Chen, Yanping; Mookhploy, Wannapha; Chantawannakul, Panuwan

    2018-03-26

    American foulbrood (AFB) disease is caused by Paenibacillus larvae. Currently, this pathogen is widespread in the European honey bee-Apis mellifera. However, little is known about infectivity and pathogenicity of P. larvae in the Asiatic cavity-nesting honey bees, Apis cerana. Moreover, comparative knowledge of P. larvae infectivity and pathogenicity between both honey bee species is scarce. In this study, we examined susceptibility, larval mortality, survival rate and expression of genes encoding antimicrobial peptides (AMPs) including defensin, apidaecin, abaecin, and hymenoptaecin in A. mellifera and A. cerana when infected with P. larvae. Our results showed similar effects of P. larvae on the survival rate and patterns of AMP gene expression in both honey bee species when bee larvae are infected with spores at the median lethal concentration (LC 50 ) for A. mellifera. All AMPs of infected bee larvae showed significant upregulation compared with noninfected bee larvae in both honey bee species. However, larvae of A. cerana were more susceptible than A. mellifera when the same larval ages and spore concentration of P. larvae were used. It also appears that A. cerana showed higher levels of AMP expression than A. mellifera. This research provides the first evidence of survival rate, LC 50 and immune response profiles of Asian honey bees, A. cerana, when infected by P. larvae in comparison with the European honey bee, A. mellifera. © 2018 Institute of Zoology, Chinese Academy of Sciences.

  17. Vertical and horizontal transmission of tilapia larvae encephalitis virus: the bad and the ugly.

    PubMed

    Sinyakov, Michael S; Belotsky, Sandro; Shlapobersky, Mark; Avtalion, Ramy R

    2011-02-05

    Impairment of innate immunity in tilapia larvae after vertical and horizontal infection with the newly characterized tilapia larvae encephalitis virus (TLEV) was accessed by evaluation of cell-mediated reactive oxygen species (ROS) production in affected fish with the use of horseradish peroxidase-amplified luminol-dependent chemiluminescence assay. The priming in-vivo infection with TLEV resulted in downregulation of ROS response in both vertically- and horizontally-infected fish; this suppression was further exacerbated by specific in-vitro booster infection with the same virus. Application of Ca ionophore and phorbol myristate acetate as alternative nonspecific boosters enabled restoration of ROS release in vertically-infected but not in horizontally-infected larvae. The results indicate severe TLEV-imposed phagocyte dysfunction in affected larvae. The difference in restoration potential of ROS production after vertical and horizontal virus transmission is interpreted in the frame of principal distinctions between the two modes. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Annual Survey of Horsehair Worm Cysts in Northern Taiwan, with Notes on a Single Seasonal Infection Peak in Chironomid Larvae (Diptera: Chironomidae).

    PubMed

    Chiu, Ming-Chung; Huang, Chin-Gi; Wu, Wen-Jer; Shiao, Shiuh-Feng

    2016-06-01

    The life cycle of the freshwater horsehair worm typically includes a free-living phase (adult, egg, larva) and a multiple-host parasitic phase (aquatic paratenic host, terrestrial definitive host). Such a life cycle involving water and land can improve energy flow in riparian ecosystems; however, its temporal dynamics in nature have rarely been investigated. This study examined seasonal infection with cysts in larval Chironominae (Diptera: Chironomidae) in northern Taiwan. In the larval chironomids, cysts of 3 horsehair worm species were identified. The cysts of the dominant species were morphologically similar to those of Chordodes formosanus. Infection with these cysts increased suddenly and peaked 2 mo after the reproductive season of the adult horsehair worms. Although adult C. formosanus emerged several times in a year, only 1 distinct infection peak was detected in September in the chironomid larvae. Compared with the subfamily Chironominae, samples from the subfamilies Tanypodinae and Orthocladiinae were less parasitized. This indicates that the feeding behavior of the chironomid host likely affects horsehair worm cyst infections; however, bioconcentration in predatory chironomids was not detected.

  19. Haemonchus contortus egg excretion and female length reduction in sheep previously infected with Oestrus ovis (Diptera: Oestridae) larvae.

    PubMed

    Terefe, G; Yacob, H T; Grisez, C; Prevot, F; Dumas, E; Bergeaud, J P; Dorchies, Ph; Hoste, H; Jacquiet, P

    2005-03-31

    Mixed parasitic infection of animals is a common phenomenon in nature. The existence of one species often positively or negatively influences the survival of the other. Our experimental study was started with the objectives to demonstrate the interaction of Haemonchus contortus and Oestrus ovis in relation to cellular and humoral immune responses in sheep. Twenty-two sheep of Tarasconnais breed (France) were divided into four groups (O, OH, H and C) of five or six animals. Group O and OH received 5 weekly consecutive inoculations with O. ovis L1 larvae (total = 82 L1) in the first phase of the experiment between days 0 and 28. On the second phase, groups OH and H received 5000 L3 of H. contortus on day 48 while group C served as our control throughout the experimental period. Parasitological, haematological, serological and histopathological examinations were made according to standard procedures and all animals were slaughtered at day 95. There was no significant variation in the number and degree of development of O. ovis larvae between the two infected groups. Furthermore, in tissues examined in the upper respiratory tract (nasal septum, turbinate, ethmoide and sinus), group O and OH has responded similarly on the basis of cellular inflammatory responses (blood and tissue eosinophils, mast cells and globule leucocytes (GL)) and serum antibody responses against the nasal bots. This may indicate that the presence of H. contortus in the abomasa of group OH had no marked influence over the development of O. ovis larvae in the upper respiratory tract. On the other hand, we have observed a significantly lower H. contortus female worm length, fecal egg count (FEC) and in utero egg count in animals harbouring the nasal bot (OH) than in the mono-infected group (H). This was significantly associated with higher blood eosinophilia, higher packed cell volume (PCV) and increased number of tissue eosinophils and globule leucocytes. We conclude that, the establishment of O

  20. Biological Role of Paenilarvins, Iturin-Like Lipopeptide Secondary Metabolites Produced by the Honey Bee Pathogen Paenibacillus larvae

    PubMed Central

    Gensel, Sebastian; Garcia-Gonzalez, Eva; Ebeling, Julia; Skobalj, Ranko; Kuthning, Anja; Süssmuth, Roderich D.

    2016-01-01

    The Gram-positive bacterium Paenibacillus larvae (P. larvae) is the causative agent of a deadly honey bee brood disease called American Foulbrood (AFB). AFB is a notifiable epizootic in most countries and, hence, P. larvae is of considerable relevance for veterinarians and apiculturists alike. Over the last decade, much progress has been made in the understanding of the (patho)biology of P. larvae. Recently, several non-ribosomally produced peptides (NRP) and peptide/polyketide (NRP/PK) hybrids produced by P. larvae were identified. Among these NRPs were iturin-like lipopeptides, the paenilarvins A-C. Iturins are known to exhibit strong anti-fungal activity; for some iturins, cytotoxic activity towards mammalian erythrocytes and human cancer cell lines are described. We here present our results on the analysis of the natural function of the paenilarvins during pathogenesis of P. larvae infections. We demonstrated production of paenilarvins in infected larvae. However, we could neither demonstrate cytotoxicity of paenilarvins towards cultured insect cells nor towards larvae in feeding assays. Accordingly, exposure bioassays performed with larvae infected by wild-type P. larvae and a knockout mutant of P. larvae lacking production of paenilarvins did not substantiate a role for the paenilarvins as virulence factor. Further experiments are necessary to analyze the relevance of the paenilarvins’ anti-fungal activity for P. larvae infections in the presence of fungal competitors in the larval midgut or cadaver. PMID:27760211

  1. Biological Role of Paenilarvins, Iturin-Like Lipopeptide Secondary Metabolites Produced by the Honey Bee Pathogen Paenibacillus larvae.

    PubMed

    Hertlein, Gillian; Seiffert, Marlene; Gensel, Sebastian; Garcia-Gonzalez, Eva; Ebeling, Julia; Skobalj, Ranko; Kuthning, Anja; Süssmuth, Roderich D; Genersch, Elke

    2016-01-01

    The Gram-positive bacterium Paenibacillus larvae (P. larvae) is the causative agent of a deadly honey bee brood disease called American Foulbrood (AFB). AFB is a notifiable epizootic in most countries and, hence, P. larvae is of considerable relevance for veterinarians and apiculturists alike. Over the last decade, much progress has been made in the understanding of the (patho)biology of P. larvae. Recently, several non-ribosomally produced peptides (NRP) and peptide/polyketide (NRP/PK) hybrids produced by P. larvae were identified. Among these NRPs were iturin-like lipopeptides, the paenilarvins A-C. Iturins are known to exhibit strong anti-fungal activity; for some iturins, cytotoxic activity towards mammalian erythrocytes and human cancer cell lines are described. We here present our results on the analysis of the natural function of the paenilarvins during pathogenesis of P. larvae infections. We demonstrated production of paenilarvins in infected larvae. However, we could neither demonstrate cytotoxicity of paenilarvins towards cultured insect cells nor towards larvae in feeding assays. Accordingly, exposure bioassays performed with larvae infected by wild-type P. larvae and a knockout mutant of P. larvae lacking production of paenilarvins did not substantiate a role for the paenilarvins as virulence factor. Further experiments are necessary to analyze the relevance of the paenilarvins' anti-fungal activity for P. larvae infections in the presence of fungal competitors in the larval midgut or cadaver.

  2. Toxocara cati larva migrans in domestic pigs--detected at slaughterhouse control in Norway.

    PubMed

    Davidson, Rebecca K; Mermer, Anna; Øines, Øivind

    2012-11-21

    Routine Trichinella meat inspection at the slaughterhouse detected one larva in a pooled batch of 100 pig samples. The larva was sent to the Norwegian Veterinary Institute (NVI) for species identification.Morphological examination revealed that the larva was not Trichinella spp. Molecular analysis was performed. PCR and sequencing of 5S/ITS identified the larva as Toxocara cati. A second round of digests was carried out at the meat inspection laboratory, in smaller batches to try to identify the infected animal. No further larvae were detected and it was not possible to identify which of the 100 animals the larva had come from. This is the first time that Toxocara cati has been reported in slaughterhouse pigs in Norway.Although the infected individual could not be identified, the meat originated from one of six potential farms. A small survey regarding rodent control and cats was sent to each of these farms. Cats had restricted access to food storage areas (two farms reported that cats had access) whilst none of the farms allowed cats into the production housing. Cats were, however, present on all the farms (mostly stray cats of unknown health status). Half of the farms also reported seeing rodents in the pig housing during the previous six months and half reported finding rodents in the feed and straw storage areas. We were unable to narrow down the source of infection - however contamination of food or bedding material, with cat faeces or infected rodents, in addition to the presence of infected rodents in pig housing remain potential routes of infection.

  3. Toxocara cati larva migrans in domestic pigs - detected at slaughterhouse control in Norway

    PubMed Central

    2012-01-01

    Routine Trichinella meat inspection at the slaughterhouse detected one larva in a pooled batch of 100 pig samples. The larva was sent to the Norwegian Veterinary Institute (NVI) for species identification. Morphological examination revealed that the larva was not Trichinella spp. Molecular analysis was performed. PCR and sequencing of 5S/ITS identified the larva as Toxocara cati. A second round of digests was carried out at the meat inspection laboratory, in smaller batches to try to identify the infected animal. No further larvae were detected and it was not possible to identify which of the 100 animals the larva had come from. This is the first time that Toxocara cati has been reported in slaughterhouse pigs in Norway. Although the infected individual could not be identified, the meat originated from one of six potential farms. A small survey regarding rodent control and cats was sent to each of these farms. Cats had restricted access to food storage areas (two farms reported that cats had access) whilst none of the farms allowed cats into the production housing. Cats were, however, present on all the farms (mostly stray cats of unknown health status). Half of the farms also reported seeing rodents in the pig housing during the previous six months and half reported finding rodents in the feed and straw storage areas. We were unable to narrow down the source of infection – however contamination of food or bedding material, with cat faeces or infected rodents, in addition to the presence of infected rodents in pig housing remain potential routes of infection. PMID:23171732

  4. DEPENDENCE OF ECDYSTEROID METABOLISM AND DEVELOPMENT IN HOST LARVAE ON THE TIME OF BACULOVIRUS INFECTION AND THE ACTIVITY OF THE UDP-GLUCOSYL TRANSFERASE GENE.

    EPA Science Inventory

    Infection of fourth-instar gypsy moth (Lymantria dispar, Lepidoptera: Lymantriidae) larvae with the wild-type (Wt) gypsy moth baculovirus, LdNPV on the first day post-molt, or infection of fifth instars on the fifth day post-molt, results in elevated ecdysteroid levels in both he...

  5. Paenibacillus larvae-Directed Bacteriophage HB10c2 and Its Application in American Foulbrood-Affected Honey Bee Larvae

    PubMed Central

    Beims, Hannes; Wittmann, Johannes; Bunk, Boyke; Spröer, Cathrin; Rohde, Christine; Günther, Gabi; Rohde, Manfred; von der Ohe, Werner

    2015-01-01

    Paenibacillus larvae is the causative agent of American foulbrood (AFB), the most serious honey bee brood bacterial disease. We isolated and characterized P. larvae-directed bacteriophages and developed criteria for safe phage therapy. Whole-genome analysis of a highly lytic virus of the family Siphoviridae (HB10c2) provided a detailed safety profile and uncovered its lysogenic nature and a putative beta-lactamase-like protein. To rate its antagonistic activity against the pathogens targeted and to specify potentially harmful effects on the bee population and the environment, P. larvae genotypes ERIC I to IV, representatives of the bee gut microbiota, and a broad panel of members of the order Bacillales were analyzed for phage HB10c2-induced lysis. Breeding assays with infected bee larvae revealed that the in vitro phage activity observed was not predictive of the real-life scenario and therapeutic efficacy. On the basis of the disclosed P. larvae-bacteriophage coevolution, we discuss the future prospects of AFB phage therapy. PMID:26048941

  6. Precipitin response of the mitogen produced by Strongylus vulgaris arterial larvae.

    PubMed

    Adeyefa, C A

    1992-07-01

    The precipitin response of the mitogen produced by Strongylus vulgaris arterial larvae was investigated. IgG (T) from the sera of horses naturally infected with S. vulgaris adults and arterial larvae recognised the presence of two antigenic components of the mitogenic fractions. The results obtained seem to confirm that these antigens are immunogenic in stimulating the production of increased levels of IgG(T) in infected animals, and showed that the procedures could be used as immunological tools in the diagnosis of S. vulgaris infection.

  7. Isolation and purification of a granulosis virus from infected larvae of the Indian meal moth, Plodia interpunctella.

    PubMed

    Tweeten, K A; Bulla, L A; Consigli, R A

    1977-09-01

    A procedure was developed for purification of a granulosis virus inclusion body produced in vivo in the Indian meal moth, Plodia interpunctella (Hübner). Purification was accomplished by differential centrifugation, treatment with sodium deoxycholate, and velocity sedimentation in sucrose gradients. The adequacy of the procedure was confirmed by mixing experiments in which uninfected, radioactively labeled larvae were mixed with infected, unlabeled larvae. After purification, the virus was shown to be free of host tissue, to retain its physical integrity, and to be highly infectious per os. Preparations of purified virus consisted of homogeneous populations of intact inclusion bodies (210 by 380 nm) whose buoyant density was 1.271 g/cm3 when centrifuged to equilibrium in sucrose gradients. Electron microscopy of thin-sectioned virus or of virus sequentially disrupted on electron microscope grids demonstrated three components: protein matrix, envelope, and nucleocapsid.

  8. A Case Report of Cutaneous Larva Migrans

    PubMed Central

    Yavuzer, Kemal; Ak, Muharrem; Karadag, Ayse Serap

    2010-01-01

    Cutaneous larva migrans (CLM) is a helminthic infection most commonly found in tropical and subtropical geographic areas. However, with the ease and increase of foreign travel by many around the world, CLM is no longer confined to these areas. CLM is an erythematous, serpiginous, cutaneous eruption caused by accidental percutaneous penetration and subsequent migration of larvae. Here, we present a case diagnosed as CLM and treated with Albendazole. PMID:25610118

  9. Evaluation of follow-up of therapy with fenbendazole incorporated into stabilized liposomes and immunomodulator glucan in mice infected with Toxocara canis larvae.

    PubMed

    Hrckova, G; Velebný, S; Obwaller, A; Auer, H; Kogan, G

    2007-01-01

    Anthelmintic activity of benzimidazole carbamate anthelmintics is low against dormant Toxocara canis larvae during late infections in paratenic hosts. The present study was conducted to examine the efficacy of pure fenbendazole, or drug incorporated into sterically stabilized liposomes (SL-FBZ) administered to T. canis-infected mice alone and after its co-administration with the immunomodulator (1-->3)-beta-D-glucan against larvae localized in muscles and brains. Therapy with either drug forms (in total 250 mg/kg in 10 doses) commenced on day 28 post-infection (p.i.) and the efficacy of treatment, examined on day 30 after the last dose of drug, was the highest in groups of mice treated with SL-FBZ in combination with glucan (89.5+/-5.8% in the muscles, 66.1+/-8.1% in brains). During 56 days of follow-up after termination of therapy, serum levels of anti-TES IgG antibodies, circulating IgG-TES immune complexes (CIC) as well as IgG antibodies to the most immunogenic part of recombinant myosin antigen of T. canis larvae were investigated. In contrast to anti-TES IgG antibodies, levels of CIC and anti-myosin antibodies were in the linear correlation with the efficacy of treatments beginning from day 38 post-therapy. We also showed that the serum levels of CIC as well as anti-myosin IgG antibodies seem to be the suitable serological markers for the monitoring of progress in larval destruction and TES resorption from the tissues.

  10. Galactolipids from Bauhinia racemosa as a new class of antifilarial agents against human lymphatic filarial parasite, Brugia malayi.

    PubMed

    Sashidhara, Koneni V; Singh, Suriya P; Misra, Sweta; Gupta, Jyoti; Misra-Bhattacharya, Shailja

    2012-04-01

    Bioassay guided fractionation of ethanolic extract of the leaves of Bauhinia racemosa led to the isolation of galactolipid and catechin class of the compounds (1-7) from the most active n-butanol fraction (F4). Among the active galactolipids, 1 emerged as the lead molecule which was active on both forms of lymphatic filarial parasite, Brugia malayi. It was found to be better than the standard drug ivermectin and diethylcarbamazine (DEC) in terms of dose and efficacy. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection

    PubMed Central

    Ihalainen, Teemu O.; Vanha-aho, Leena-Maija; Andó, István; Rämet, Mika

    2016-01-01

    Cellular immune responses require the generation and recruitment of diverse blood cell types that recognize and kill pathogens. In Drosophila melanogaster larvae, immune-inducible lamellocytes participate in recognizing and killing parasitoid wasp eggs. However, the sequence of events required for lamellocyte generation remains controversial. To study the cellular immune system, we developed a flow cytometry approach using in vivo reporters for lamellocytes as well as for plasmatocytes, the main hemocyte type in healthy larvae. We found that two different blood cell lineages, the plasmatocyte and lamellocyte lineages, contribute to the generation of lamellocytes in a demand-adapted hematopoietic process. Plasmatocytes transdifferentiate into lamellocyte-like cells in situ directly on the wasp egg. In parallel, a novel population of infection-induced cells, which we named lamelloblasts, appears in the circulation. Lamelloblasts proliferate vigorously and develop into the major class of circulating lamellocytes. Our data indicate that lamellocyte differentiation upon wasp parasitism is a plastic and dynamic process. Flow cytometry with in vivo hemocyte reporters can be used to study this phenomenon in detail. PMID:27414410

  12. Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection.

    PubMed

    Anderl, Ines; Vesala, Laura; Ihalainen, Teemu O; Vanha-Aho, Leena-Maija; Andó, István; Rämet, Mika; Hultmark, Dan

    2016-07-01

    Cellular immune responses require the generation and recruitment of diverse blood cell types that recognize and kill pathogens. In Drosophila melanogaster larvae, immune-inducible lamellocytes participate in recognizing and killing parasitoid wasp eggs. However, the sequence of events required for lamellocyte generation remains controversial. To study the cellular immune system, we developed a flow cytometry approach using in vivo reporters for lamellocytes as well as for plasmatocytes, the main hemocyte type in healthy larvae. We found that two different blood cell lineages, the plasmatocyte and lamellocyte lineages, contribute to the generation of lamellocytes in a demand-adapted hematopoietic process. Plasmatocytes transdifferentiate into lamellocyte-like cells in situ directly on the wasp egg. In parallel, a novel population of infection-induced cells, which we named lamelloblasts, appears in the circulation. Lamelloblasts proliferate vigorously and develop into the major class of circulating lamellocytes. Our data indicate that lamellocyte differentiation upon wasp parasitism is a plastic and dynamic process. Flow cytometry with in vivo hemocyte reporters can be used to study this phenomenon in detail.

  13. Tyramine functions as a toxin in honey bee larvae during Varroa-transmitted infection by Melissococcus pluton.

    PubMed

    Kanbar, G; Engels, W; Nicholson, G J; Hertle, R; Winkelmann, G

    2004-05-01

    From wounds of honey bee pupae, caused by the mite Varroa destructor, coccoid bacteria were isolated and identified as Melissococcus pluton. The bacterial isolate was grown anaerobically in sorbitol medium to produce a toxic compound that was purified on XAD columns, gelfiltration and preparative HPLC. The toxic agent was identified by GC-MS and FTICR-MS as tyramine. The toxicity of the isolated tyramine was tested by a novel mobility test using the protozoon Stylonychia lemnae. A concentration of 0.2 mg/ml led to immediate inhibition of mobility. In addition the toxicity was studied on honey bee larvae by feeding tyramine/water mixtures added to the larval jelly. The lethal dosis of tyramine on 4-5 days old bee larvae was determined as 0.3 mg/larvae when added as a volume of 20 microl to the larval food in brood cells. Several other biogenic amines, such as phenylethylamine, histamine, spermine, cadaverine, putrescine and trimethylamine, were tested as their hydrochloric salts for comparison and were found to be inhibitory in the Stylonychia mobility test at similar concentrations. A quantitative hemolysis test with human red blood cells revealed that tyramine and histamine showed the highest membranolytic activity, followed by the phenylethylamine, trimethylamine and spermine, while the linear diamines, cadaverine and putrescine, showed a significantly lower hemolysis when calculated on a molar amine basis. The results indicate that tyramine which is a characteristic amine produced by M. pluton in culture, is the causative agent of the observed toxic symptoms in bee larvae. Thus this disease, known as European foulbrood, is possibly an infection transmitted by the Varroa destructor mite.

  14. Isolation and purification of a granulosis virus from infected larvae of the Indian meal moth, Plodia interpunctella.

    PubMed Central

    Tweeten, K A; Bulla, L A; Consigli, R A

    1977-01-01

    A procedure was developed for purification of a granulosis virus inclusion body produced in vivo in the Indian meal moth, Plodia interpunctella (Hübner). Purification was accomplished by differential centrifugation, treatment with sodium deoxycholate, and velocity sedimentation in sucrose gradients. The adequacy of the procedure was confirmed by mixing experiments in which uninfected, radioactively labeled larvae were mixed with infected, unlabeled larvae. After purification, the virus was shown to be free of host tissue, to retain its physical integrity, and to be highly infectious per os. Preparations of purified virus consisted of homogeneous populations of intact inclusion bodies (210 by 380 nm) whose buoyant density was 1.271 g/cm3 when centrifuged to equilibrium in sucrose gradients. Electron microscopy of thin-sectioned virus or of virus sequentially disrupted on electron microscope grids demonstrated three components: protein matrix, envelope, and nucleocapsid. Images PMID:334076

  15. Age of Haemonchus contortus third stage infective larvae is a factor influencing the in vitro assessment of anthelmintic properties of tannin containing plant extracts.

    PubMed

    Castañeda-Ramírez, G S; Mathieu, C; Vilarem, G; Hoste, H; Mendoza-de-Gives, P; González-Pech, P G; Torres-Acosta, J F J; Sandoval-Castro, C A

    2017-08-30

    The larval exsheathment inhibition assay (LEIA) of infective larvae (L 3 ) is an in vitro method used to evaluate the anthelmintic (AH) activity of tannin-containing plant extracts against different species of gastrointestinal nematodes, including Haemonchus contortus. Some conditions remain to be defined in order to standardize the LEIA, i.e. the optimal age of larvae produced from donor animals to use in the assays. Therefore, this study aimed at identifying the effect of age and age-related vitality of H. contortus infective larvae produced under tropical conditions, on the in vitro AH activity measured with the LEIA. The same acetone:water (70:30) extract from Acacia pennatula leaves was used to perform respective LEIA tests with H. contortus L 3 of different ages (1-7 weeks). Each week, the L 3 were tested against different concentrations of extract (1200, 600, 400, 200, 100, 40μg/mL of extract) plus a PBS control. Bioassays were performed with a benzimidazole (Bz) resistant H. contortus (Paraíso) strain. In order to identify changes in L 3 vitality on different weeks (1-7), two assays testing larval motility were included only with PBS: the larval migration assay (LMA) and the larval motility observation assay (LMOA). Mean effective concentrations causing 50% and 90% exsheathment inhibition (EC 50 , EC 90 ) were obtained for every week using respective Probit analyses. On the first week, the larvae had lowest EC 50 and EC 90 (39.4 and 65.6μg/mL) compared to older larvae (P<0.05). The EC 50 and EC 90 for weeks 2-5 were similar (P>0.05), while older larvae tended to show higher EC 50 and EC 90 (P<0.05). Motility showed strong negative correlations with age of larvae (r≥-0.83; P <0.05) and EC 50 (r≥-0.80; P<0.05), suggesting that the lower extract efficacy could be associated with decaying vitality of larvae associated with age. More stable efficacy results were found between two to five weeks of age. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Vectorial competence of larvae and adults of Alphitobius diaperinus in the transmission of Salmonella enteritidis in poultry.

    PubMed

    Leffer, Andreia M; Kuttel, Javier; Martins, Lidiane M; Pedroso, Antonio Carlos; Astolfi-Ferreira, Claudete S; Ferreira, Fernando; Ferreira, Antonio J Piantino

    2010-06-01

    The ingestion of food products originating from poultry infected with Salmonella spp. is one of the major causes of food poisoning in humans. The control of poultry salmonellosis is particularly difficult since birds are asymptomatic and numerous factors may expedite the maintenance of bacteria in poultry production facilities. The aim of the study was to determine the vectorial capacity of adults and larvae of Alphitobius diaperinus (Coleoptera: Tenebrionidae) in the experimental transmission of Salmonella Enteritidis phage type 4 to 1-day-old specific pathogen-free White Leghorn chicks. Adult insects and larvae were starved for 1 day, fed for 24 h or 7 days on sterile ration that had been treated with Salmonella Enteritidis phage type 4, and the levels of bacterial infection were determined. Infected adult insects and larvae were fed to groups of day-old chicks, after which bacteria were recovered from cecum, liver, and spleen samples over a 7-day period. Infected larvae were more efficient than adult insects in transmitting Salmonella Enteritidis to chicks. Higher concentrations of bacteria could be reisolated from the cecum, liver, and spleen of chicks that had ingested infected larvae compared with those that had ingested infected adults. The control of A. diaperinus, and particularly of the larvae, represents a critical factor in the reduction of Salmonella spp. in poultry farms.

  17. Paenibacillus larvae-Directed Bacteriophage HB10c2 and Its Application in American Foulbrood-Affected Honey Bee Larvae.

    PubMed

    Beims, Hannes; Wittmann, Johannes; Bunk, Boyke; Spröer, Cathrin; Rohde, Christine; Günther, Gabi; Rohde, Manfred; von der Ohe, Werner; Steinert, Michael

    2015-08-15

    Paenibacillus larvae is the causative agent of American foulbrood (AFB), the most serious honey bee brood bacterial disease. We isolated and characterized P. larvae-directed bacteriophages and developed criteria for safe phage therapy. Whole-genome analysis of a highly lytic virus of the family Siphoviridae (HB10c2) provided a detailed safety profile and uncovered its lysogenic nature and a putative beta-lactamase-like protein. To rate its antagonistic activity against the pathogens targeted and to specify potentially harmful effects on the bee population and the environment, P. larvae genotypes ERIC I to IV, representatives of the bee gut microbiota, and a broad panel of members of the order Bacillales were analyzed for phage HB10c2-induced lysis. Breeding assays with infected bee larvae revealed that the in vitro phage activity observed was not predictive of the real-life scenario and therapeutic efficacy. On the basis of the disclosed P. larvae-bacteriophage coevolution, we discuss the future prospects of AFB phage therapy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. The cellular responses of the rat to an intraperitoneal inoculation of Nippostrongylus brasiliensis larvae

    PubMed Central

    Greenberg, Z.; Wertheim, Guta

    1973-01-01

    The cellular responses to intraperitoneal inoculation of infective (L3) or non-infective (L2) larvae of Nippostrongylus brasiliensis were studied in unprimed rats. Peritoneal macrophages adhered to the larvae immediately after inoculation and the coated larvae became attached to the omentum. As additional inflammatory cells, appearing in the peritoneal exudate, adhered to the larvae, nodules were formed which with time organized into granulomas. The initial response was not specific and consisted of an intense neutrophilia which developed in all rats a few hours after inoculation and lasted 24 hours. Thereafter the cellular responses were distinctly different in the case of each larval stage. In rats receiving L3 larvae an intense eosinophilia in the peritoneal exudate began to develop 7 days after inoculation, and islands of numerous pyroninophilic blast- and plasma cells were present at the periphery of the granuloma. The L3 larvae survived in the granulomas for 7–10 days. The granulomas formed around the L2 larvae consisted mainly of macrophages; the number of eosinophils did not rise above normal and there were no pyroninophilic cells. The L2 larvae survived in the granuloma for 3 days. In control rats, in which an intestinal infection was established by subcutaneous administration of larvae, no changes were detected in the cellular composition of the peritoneal exudate. The significance of these responses is discussed in relation to recent reports about the cellular composition of antigenic and non-antigenic granulomas. ImagesFIG. 3FIG. 4FIG. 5FIG. 6FIG. 7FIG. 8FIG. 9FIG. 10 PMID:4705618

  19. Passive vectoring of entomopathogenic fungus Beauveria bassiana among the wax moth Galleria mellonella larvae by the ectoparasitoid Habrobracon hebetor females.

    PubMed

    Kryukov, Vadim Yu; Kryukova, Natalia A; Tyurin, Maksim V; Yaroslavtseva, Olga N; Glupov, Viktor V

    2017-03-15

    Females of the ectoparasitoid Habrobracon hebetor attack and envenomate numerous host individuals during oviposition. The vectoring of the entomopathogenic fungus Beauveria bassiana during the adhesion stage by ectoparasitoid females among the wax moth larvae Galleria mellonella was explored under laboratory conditions. Vectoring occurred both from infected parasitoids to wax moth larvae and from infected to healthy wax moth larvae by parasitoids. The efficacy of vectoring in both cases was dose dependent. Parasitoid females were unable to recognize infected larvae in a labyrinth test. In addition, the presence of H. hebetor females significantly (1.5-13 fold) increased the mycoses level in clusters of G. mellonella, with 40% of the larvae infected with fungal conidia. Envenomation by H. hebetor increased conidia germination on the cuticles of the wax moth larvae by 4.4 fold. An enhanced germination rate (2 fold) was registered in the n-hexane epicuticular extract of envenomated larvae compared to that of healthy larvae. Both envenomation and mycoses enhanced the phenoloxidase (PO) activity in the integument of G. mellonella and, in contrast, decreased the encapsulation rate in hemolymphs. We hypothesize that changes in the integument property and inhibition of cellular immunity provide the highest infection efficacy of entomopathogenic fungi with H. hebetor. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  20. First Record of Anisakis simplex Third-Stage Larvae (Nematoda, Anisakidae) in European Hake Merluccius merluccius lessepsianus in Egyptian Water

    PubMed Central

    Abou-Rahma, Yasmin; Abdel-Gaber, Rewaida; Kamal Ahmed, Amira

    2016-01-01

    The prevalence of infection and the identification of anisakid larvae in European hake Merluccius merluccius lessepsianus from Hurghada City, Red Sea Governorate, Egypt, were investigated. Fish samples were collected during the period of February and November 2014. Twenty-two (36.66%) out of sixty examined fish specimens were found to be naturally infected with Anisakis type I larvae mostly found as encapsulated larvae in visceral organs. There was a positive relationship between host length/weight and prevalence of infection. Based on morphological, morphometric, and molecular analyses, these nematodes were identified as third-stage larvae of Anisakis simplex. The present study was considered as the first report of anisakid larvae from European hake in the Egyptian water. PMID:26925257

  1. Morphological and morphometric differentiation of dorsal-spined first stage larvae of lungworms, (Nematoda: Protostrongylidae) infecting muskoxen (Ovibos moschatus) in the Central Canadian Arctic

    USDA-ARS?s Scientific Manuscript database

    Umingmakstrongylus pallikuukensis and Varestrongylus eleguneniensis are the two most common protostrongylid nematodes infecting muskoxen in the North American Arctic and Subarctic. First stage larvae (L1) of both these lungworms have a characteristic dorsal spine originating at the level of proxima...

  2. Variability in the intensity of nematode larvae from gastrointestinal tissues of a natural herbivore.

    PubMed

    van Kuren, Andrew T; Boag, Brian; Hruban, Emilie; Cattadori, Isabella M

    2013-04-01

    The migration of infective nematode larvae into the tissues of their hosts has been proposed as a mechanism of reducing larval mortality and increase parasite lifetime reproductive success. Given that individual hosts differ in the level of exposure, strength of immune response and physiological conditions we may expect the number of larvae in tissue to vary both between and within hosts. We used 2 gastrointestinal nematode species common in the European rabbit (Oryctolagus cuniculus) and examined how the number of larvae in the tissue changed with the immune response, parasite intensity-dependent constraints in the lumen and seasonal weather factors, in rabbits of different age, sex and breeding status. For both nematode species, larvae from the gastrointestinal tissue exhibited strong seasonal and host age-related patterns with fewer larvae recovered in summer compared to winter and more in adults than in juveniles. The number of larvae of the 2 nematodes was positively associated with intensity of parasite infection in the lumen and antibody responses while it was negatively related with air temperature and rainfall. Host sex, reproductive status and co-infection with the second parasite species contributed to increase variability between hosts. We concluded that heterogeneities in host conditions are a significant cause of variability of larval abundance in the gastrointestinal tissues. These findings can have important consequences for the dynamics of nematode infections and how parasite's life-history strategies adjust to host changes.

  3. Dose titration of moxidectin oral gel against migrating Strongylus vulgaris and Parascaris equorum larvae in pony foals.

    PubMed

    Monahan, C M; Chapman, M R; Taylor, H W; French, D D; Klei, T R

    1995-11-01

    Moxidectin was tested for efficacy in ponies against experimental infections of 56 day Strongylus vulgaris larvae and 11 day Parascaris equorum larvae. Three dosages of moxidectin were tested: 300 micrograms per kg live body weight, 400 micrograms per kg, and 500 micrograms per kg, and the vehicle served as control. Ponies were first infected with 600 S. vulgaris third-stage larvae (L3) on Experiment Day 0 and then with 3000 embryonated P. equorum eggs on Day 45. Moxidectin treatments were administered on Day 56 and necropsy examinations were performed on Day 91. Strongylus vulgaris fourth-stage (L4) and fifth-stage (L5) larvae were recovered at necropsy from the control ponies, in dissections of the cranial mesenteric artery and its branches (L4 and L5), and recovered from nodules in the wall of the cecum and ventral colon (L5). Parascaris equorum larvae were recovered from the small intestine of control ponies. Moxidectin was highly efficacious against S. vulgaris L4 and L5 at all three doses tested (99.6-100%), and appeared to be equally efficacious against P. equorum larvae (100%); however, control ponies had low levels of P. equorum infections compared to previous experimental infections performed using identical methods. This suggests that the prior S. vulgaris infection on Day 0 may have influenced the subsequent experimental P. equorum infection on Day 45 and contributed to the lower recovery.

  4. Neutropenic Mice Provide Insight into the Role of Skin-Infiltrating Neutrophils in the Host Protective Immunity against Filarial Infective Larvae

    PubMed Central

    Pionnier, Nicolas; Brotin, Emilie; Karadjian, Gregory; Hemon, Patrice; Gaudin-Nomé, Françoise; Vallarino-Lhermitte, Nathaly; Nieguitsila, Adélaïde; Fercoq, Frédéric; Aknin, Marie-Laure; Marin-Esteban, Viviana; Chollet-Martin, Sylvie; Schlecht-Louf, Géraldine

    2016-01-01

    Our knowledge and control of the pathogenesis induced by the filariae remain limited due to experimental obstacles presented by parasitic nematode biology and the lack of selective prophylactic or curative drugs. Here we thought to investigate the role of neutrophils in the host innate immune response to the infection caused by the Litomosoides sigmodontis murine model of human filariasis using mice harboring a gain-of-function mutation of the chemokine receptor CXCR4 and characterized by a profound blood neutropenia (Cxcr4+/1013). We provided manifold evidence emphasizing the major role of neutrophils in the control of the early stages of infection occurring in the skin. Firstly, we uncovered that the filarial parasitic success was dramatically decreased in Cxcr4+/1013 mice upon subcutaneous delivery of the infective stages of filariae (infective larvae, L3). This protection was linked to a larger number of neutrophils constitutively present in the skin of the mutant mice herein characterized as compared to wild type (wt) mice. Indeed, the parasitic success in Cxcr4+/1013 mice was normalized either upon depleting neutrophils, including the pool in the skin, or bypassing the skin via the intravenous infection of L3. Second, extending these observations to wt mice we found that subcutaneous delivery of L3 elicited an increase of neutrophils in the skin. Finally, living L3 larvae were able to promote in both wt and mutant mice, an oxidative burst response and the release of neutrophil extracellular traps (NET). This response of neutrophils, which is adapted to the large size of the L3 infective stages, likely directly contributes to the anti-parasitic strategies implemented by the host. Collectively, our results are demonstrating the contribution of neutrophils in early anti-filarial host responses through their capacity to undertake different anti-filarial strategies such as oxidative burst, degranulation and NETosis. PMID:27111140

  5. Occurrence of Anisakis (Nematoda: Anisakidae) larvae in unusual hosts in Southern hemisphere.

    PubMed

    Shamsi, Shokoofeh; Briand, Marine J; Justine, Jean-Lou

    2017-12-01

    Nematodes belonging to the genus Anisakis are important parasites due to their abundance in seafood and health impacts on humans. In the present study Anisakis larvae were found in a number of uncommon hosts including the Grey petrel, Procellaria cinerea, the Little penguin, Eudyptula minor, Blue-lipped sea krait, Laticauda laticaudata and Spinner shark, Carcharhinus brevipinna. Morphological examination showed nematodes in these animals are Anisakis larval type I. Genetic characterisation suggested that the larva from one Grey petrel was Anisakis berlandi, whereas the other larvae from the second Grey petrel and from the little penguin were Anisakis pegreffii. A number of larvae found in Blue-lipped sea krait and Spinner shark were identified as Anisakis typica. This is the first report of infective stage of Anisakis larvae parasitising hosts other than teleost fish. Understanding of the extent of infection and the pathogenicity of anisakid nematodes in hosts found in the present study is important in the conservation studies and management plans of these hosts. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Morphology of III stage larvae of Angiostrongylus cantonensis in Pomacea canaliculata].

    PubMed

    Zhang, Chao-Wei; Zhou, Xiao-Nong; Lv, Shan; Zhang, Yi; Liu, He-Xiang

    2008-06-30

    To observe the morphologic characteristics of III stage larvae of Angiostrongylus cantonensis from Pomacea canaliculata. P. canaliculata, the intermediate host snail of A. cantonensis, was infected with I stage larvae of A. cantonensis in laboratory. After 61 days, III stage larvae of A. cantonensis were harvested from snail's lungs and muscle of head-foot, followed by HE stain to observe morphological characteristics. The whole body of III stage larva was curling with obtuse head. Its pharyngeal canal extends from the buccal hole on the top of the head to the intestines at the pharyngeal intestine joint place, with apex cauda and clear anal tube. The tegument of the III stage larva was eosin-stained, with a transparent sheath outside of tegument. Some of the larvae cauda showed in circular cylinder, and some larvae presented ventral gland with two very short uterine which used to be the feature only showed in early IV stage larva. Morphologically characteristics of the III stage larvae is helpful to better understand the life-cycle and the control of A. cantonensis.

  7. Impact of short-term temperature challenges on the larvicidal activities of the entomopathogenic watermold Leptolegnia chapmanii against Aedes aegypti, and development on infected dead larvae.

    PubMed

    Muniz, Elen R; Catão, Alaine M L; Rueda-Páramo, Manuel E; Rodrigues, Juscelino; López Lastra, Claudia C; García, Juan J; Fernandes, Éverton K K; Luz, Christian

    2018-06-01

    The oomycete Leptolegnia chapmanii is among the most promising entomopathogens for biological control of Aedes aegypti. This mosquito vector breeds in small water collections, where this aquatic watermold pathogen can face short-term scenarios of challenging high or low temperatures during changing ambient conditions, but it is yet not well understood how extreme temperatures might affect the virulence and recycling capacities of this pathogen. We tested the effect of short-term exposure of encysted L. chapmanii zoospores (cysts) on A. aegypti larvae killed after infection by this pathogen to stressful low or high temperatures on virulence and production of cysts and oogonia, respectively. Cysts were exposed to temperature regimes between -12 °C and 40 °C for 4, 6 or 8 h, and then their infectivity was tested against third instar larvae (L3) at 25 °C; in addition, production of cysts and oogonia on L3 killed by infection exposed to the same temperature regimes as well as their larvicidal activity were monitored. Virulence of cysts to larvae and the degree of zoosporogenesis on dead larvae under laboratory conditions were highest at 25 °C but were hampered or even blocked after 4 up to 8 h exposure of cysts or dead larvae at both the highest (35 °C and 40 °C) and the lowest (-12 °C) temperatures followed by subsequent incubation at 25 °C. The virulence of cysts was less affected by accelerated than by slow thawing from the frozen state. The production of oogonia on dead larvae was stimulated by short-term exposure to freezing temperatures (-12 °C and 0 °C) or cool temperatures (5 °C and 10 °C) but was not detected at higher temperatures (25 °C-40 °C). These findings emphasize the susceptibility of L. chapmanii to short-term temperature stresses and underscore its interest as an agent for biocontrol of mosquitoes in the tropics and subtropics, especially A. aegypti, that breed preferentially in small volumes of water that are

  8. Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: a practical lab guide.

    PubMed

    van Wyk, Jan A; Mayhew, Estelle

    2013-03-13

    In 2004, a new concept was introduced for simplifying identification of larvae of the common nematodes of cattle, sheep and goats that comprises estimates of the lengths of the sheath tail extensions of infective third-stage larvae (L3) of each genus and/or species to that of Trichostrongylus spp., instead of having to be dependent only on measurements in micrometre. For example, if the mean length of the sheath tail extension (the extension of the sheath caudad, beyond the caudal tip of the larva) of Trichostrongylus colubriformis and Trichostrongylus axei is assumed to be 'X', then that of Haemonchus contortus is 2.0-2.7 'X' - a difference that is not difficult to estimate. An additional new approach suggested now, particularly for L3 of species and/or genera difficult to differentiate (such as Chabertia ovina and Oesophagostomum columbianum), is to estimate the proportion of the larval sheath tail extension comprising a terminal thin, whip-like filament. For the experienced person, it is seldom necessary to measure more than one or two sheath tail extensions of L3 in a mixed culture, because the identity of most of the remaining L3 can thereafter be estimated in relation to those measured, without having to take further measurements. The aim of this article was to present the novel approach in the form of a working guide for routine use in the laboratory. To facilitate identification, figures and a separate organogram for each of small ruminants and cattle have been added to illustrate the distinguishing features of the common L3.

  9. Trypanosoma rangeli: effects of physalin B on the immune reactions of the infected larvae of Rhodnius prolixus.

    PubMed

    Garcia, Eloi S; Castro, Daniele P; Ribeiro, Ivone M; Tomassini, Therezinha C B; Azambuja, Patrícia

    2006-01-01

    Physalins are seco-steroids obtained from plants of the family Solanaceae. Herein, we tested Physalis angulata L purified physalin B as an immunomodulatory compound in 5th-instar larvae of Rhodnius prolixus, which were systemically infected with the H14 Trypanosoma rangeli strain protozoan. In uninfected insects, the effective concentration of physalin B, which inhibited 50% of the blood ingested (ED(50)) volume, was 15.2+/-1.6 microg/ml of the meal. Ecdysis processes and mortality in uninfected larvae, treated orally with physalin B in concentrations ranging from 1 to 10 microg/ml, was similar to that observed in insects not treated with physalin B. However, R. prolixus larvae previously fed on blood containing 1.0, 0.1, and 0.01 microg of physalin B/ml exhibited mortality rates of 78.1, 54.3, and 12.7%, respectively, 6 days after inoculation of T. rangeli (1 x 10(3) parasites/insect), whereas only 7.2% mortality was observed in the control group, injected with sterile culture medium. The insects treated with physalin B (0.1 microg/ml) and inoculated with T. rangeli did not modify the phenoloxidase (PO) activity and total hemocyte count in the hemolymph. However, physalin B treatment caused a reduction in hemocyte micro-aggregation and nitric oxide production and enhanced the parasitemia in the hemolymph. These results demonstrate that physalin B from P. angulata is a potent immunomodulatory substance for the bloodsucking insect, R. prolixus.

  10. Cryopreservation of third-stage larvae of Strongylus vulgaris (large strongyle of horses).

    PubMed

    Titoy, G A; Van Rensburg, L J

    1997-06-01

    A technique for the cryopreservation of third-stage larvae of Strongylus vulgaris is described. Infective larvae of S. vulgaris were exsheathed in a 0.16% sodium hypochlorite solution and then transferred into cryotubes containing 0.09% saline. The samples were stored in the gas phase of liquid nitrogen.

  11. Structure of the Trehalose-6-phosphate Phosphatase from Brugia malayi Reveals Key Design Principles for Anthelmintic Drugs

    PubMed Central

    Farelli, Jeremiah D.; Galvin, Brendan D.; Li, Zhiru; Liu, Chunliang; Aono, Miyuki; Garland, Megan; Hallett, Olivia E.; Causey, Thomas B.; Ali-Reynolds, Alana; Saltzberg, Daniel J.; Carlow, Clotilde K. S.; Dunaway-Mariano, Debra; Allen, Karen N.

    2014-01-01

    Parasitic nematodes are responsible for devastating illnesses that plague many of the world's poorest populations indigenous to the tropical areas of developing nations. Among these diseases is lymphatic filariasis, a major cause of permanent and long-term disability. Proteins essential to nematodes that do not have mammalian counterparts represent targets for therapeutic inhibitor discovery. One promising target is trehalose-6-phosphate phosphatase (T6PP) from Brugia malayi. In the model nematode Caenorhabditis elegans, T6PP is essential for survival due to the toxic effect(s) of the accumulation of trehalose 6-phosphate. T6PP has also been shown to be essential in Mycobacterium tuberculosis. We determined the X-ray crystal structure of T6PP from B. malayi. The protein structure revealed a stabilizing N-terminal MIT-like domain and a catalytic C-terminal C2B-type HAD phosphatase fold. Structure-guided mutagenesis, combined with kinetic analyses using a designed competitive inhibitor, trehalose 6-sulfate, identified five residues important for binding and catalysis. This structure-function analysis along with computational mapping provided the basis for the proposed model of the T6PP-trehalose 6-phosphate complex. The model indicates a substrate-binding mode wherein shape complementarity and van der Waals interactions drive recognition. The mode of binding is in sharp contrast to the homolog sucrose-6-phosphate phosphatase where extensive hydrogen-bond interactions are made to the substrate. Together these results suggest that high-affinity inhibitors will be bi-dentate, taking advantage of substrate-like binding to the phosphoryl-binding pocket while simultaneously utilizing non-native binding to the trehalose pocket. The conservation of the key residues that enforce the shape of the substrate pocket in T6PP enzymes suggest that development of broad-range anthelmintic and antibacterial therapeutics employing this platform may be possible. PMID:24992307

  12. Synthesis, molecular docking and Brugia malayi thymidylate kinase (BmTMK) enzyme inhibition study of novel derivatives of [6]-shogaol.

    PubMed

    Singh, Vinay Kr; Doharey, Pawan K; Kumar, Vikash; Saxena, J K; Siddiqi, M I; Rathaur, Sushma; Narender, Tadigoppula

    2015-03-26

    [6]-Shogaol (1) was isolated from Zingiber officinale. Twelve novel compounds have been synthesized and evaluated for their Brugia malayi thymidylate kinase (BmTMK) inhibition activity, which plays important role for the DNA synthesis in parasite. [6]-Shogaol (1) and shogaol with thymine head group (2), 5-bromouracil head group (3), adenine head group (4) and 2-amino-3-methylpyridine head group (5) showed potential inhibitory effect on BmTMK activity. Further molecular docking studies were carried out to explore the putative binding mode of compounds 1-5. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Relationship between red vent syndrome and anisakid larvae burden in wild atlantic salmon (salmo salar).

    PubMed

    Larrat, Sylvain; Bouchard, Francis; Séguin, Guylaine; Lair, Stéphane

    2013-04-01

    The pathogenesis of the recently recognized "red vent syndrome" in wild Atlantic salmon (Salmo salar) is not fully understood. Pathologic observations indicate that this syndrome is associated with the presence of nonencapsulated larvae of the nematode Anisakis simplex in the body wall, the lower intestinal wall, and the visceral cavity surrounding the vent region. We evaluated the relationship between the occurrence of red vent syndrome and intensity of infection with Anisakis sp. larvae in naturally infected fish. Salmon caught by sport anglers were opportunistically evaluated to detect red vent syndrome. We included 106 salmon with red vent syndrome and 98 without red vent syndrome in this study. Intensity of infection was established by counting the total number of perivisceral larvae and by determining the number of larvae per gram in 10 g of pepsin-digested perianal tissue. The severity of inflammatory changes was also evaluated in standard histologic sections of the perianal area using a semiquantitative scale. Salmon with red vent syndrome had significantly higher intensity of inflammation than salmon without red vent syndrome (P=0.008). The odds of having red vent syndrome increased with the number of perianal larvae per gram of perianal tissue (P=0.002; odds ratio [OR]=1.12; 95% confidence interval: [1.05; 1.22]) but not with the number of perivisceral larvae, fish length, or gender. Although these results support the association between this syndrome and intensity of infection by A. simplex, the relationship is not strong (OR near 1), suggesting that the clinical expression of red vent syndrome at an individual level, and the emergence of this disease on a global scale, must be determined by other factors, such as timing of infection.

  14. Molecular identification of anisakid nematodes third stage larvae isolated from common squid ( Todarodes pacificus) in Korea

    NASA Astrophysics Data System (ADS)

    Setyobudi, Eko; Jeon, Chan-Hyeok; Choi, Kwangho; Lee, Sung Il; Lee, Chung Il; Kim, Jeong-Ho

    2013-06-01

    The occurrence of Genus Anisakis nematode larvae in marine fishes and cephalopods is epidemiologically important because Anisakis simplex larval stage can cause a clinical disease in humans when infected hosts are consumed raw. Common squid ( Todarodes pacificus) from Korean waters were investigated for anisakid nematodes infection during 2009˜2011. In total, 1,556 larvae were collected from 615 common squids and 732 of them were subsequently identified by PCR-RFLP analysis of ITS rDNA. Depending on the sampling locations, the nematode larvae from common squid showed different prevalence, intensity and species distribution. A high prevalence (P) and mean intensity (MI) of infection were observed in the Yellow Sea (n = 250, P = 86.0%, MI = 5.99 larvae/host) and the southern sea of Korea (n = 126, P = 57.1%, MI = 3.36 larvae/host). Anisakis pegreffii was dominantly found in common squid from the southern sea (127/ 140, 90.7%) and the Yellow Sea (561/565, 98.9%). In contrast, the P and MI of infection were relatively low in the East Sea (n = 239, P = 8.37%, MI = 1.25 larvae/host). A. pegreffii was not found from the East Sea and 52.0% (13/25) of the nematodes were identified as A. simplex. Most of them were found in the body cavity or digestive tract of common squid, which are rarely consumed raw by humans. Considering the differenences in anisakid nematode species distribution and their microhabitat in common squid, it remains unclear whether common squid plays an important role in the epidemiology of human anisakis infection in Korea. Further extensive identification of anisakid nematodes in common squid, with geographical and seasonal information will be necessary.

  15. Behavioural fever in zebrafish larvae.

    PubMed

    Rey, Sonia; Moiche, Visila; Boltaña, Sebastian; Teles, Mariana; MacKenzie, Simon

    2017-02-01

    Behavioural fever has been reported in different species of mobile ectotherms including the zebrafish, Danio rerio, in response to exogenous pyrogens. In this study we report, to our knowledge for the first time, upon the ontogenic onset of behavioural fever in zebrafish (Danio rerio) larvae. For this, zebrafish larvae (from first feeding to juveniles) were placed in a continuous thermal gradient providing the opportunity to select their preferred temperature. The novel thermal preference aquarium was based upon a continuous vertical column system and allows for non-invasive observation of larvae vertical distribution under isothermal (T R at 28 °C) and thermal gradient conditions (T CH : 28-32 °C). Larval thermal preference was assessed under both conditions with or without an immersion challenge, in order to detect the onset of the behavioural fever response. Our results defined the onset of the dsRNA induced behavioural fever at 18-20 days post fertilization (dpf). Significant differences were observed in dsRNA challenged larvae, which prefer higher temperatures (1-4 °C increase) throughout the experimental period as compared to non-challenged larvae. In parallel we measured the abundance of antiviral transcripts; viperin, gig2, irf7, trim25 and Mxb mRNAs in dsRNA challenged larvae under both thermal regimes: T R and T Ch . Significant increases in the abundance of all measured transcripts were recorded under thermal choice conditions signifying that thermo-coupling and the resultant enhancement of the immune response to dsRNA challenge occurs from 18 dpf onwards in the zebrafish. The results are of importance as they identify a key developmental stage where the neuro-immune interface matures in the zebrafish likely providing increased resistance to viral infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Serine proteases activity is important for the interaction of nematophagous fungus Duddingtonia flagrans with infective larvae of trichostrongylides and free-living nematodes Panagrellus spp.

    PubMed

    Cruz, Daniela G; Costa, Luana M; Rocha, Letícia O; Retamal, Claudio A; Vieira, Ricardo A M; Seabra, Sergio H; Silva, Carlos P; DaMatta, Renato A; Santos, Clóvis P

    2015-08-01

    The nematode-trapping fungus Duddingtonia flagrans has been studied as a possible control method for gastrointestinal nematodes of livestock animals. These fungi capture and infect the nematode by cuticle penetration, immobilization, and digestion of the internal contents. It has been suggested that this sequence of events occurs by a combination of physical and enzymatical activities. The aim of this study was to investigate the participation of proteolytic enzymatic activity during the interaction of the nematophagous fungus D. flagrans with infective larvae of trichostrongylides and the free-living nematode Panagrellus spp. Protease inhibitors used interfered in the predatory activity of D. flagrans. However, only PMSF significantly reduced the mean number of Panagrellus spp. captured by D. flagrans in comparison with the control. The experiment with fluorogenic substrate showed that maximum urokinase activity during the interaction of the fungus with the infective larvae of trichostrongylides or Panagrellus spp. occurred within 7 or 1 h of incubation, respectively. The protease activity, especially of the serine class, may be important during the interaction between the fungus and nematodes. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  17. Production of the catechol type siderophore bacillibactin by the honey bee pathogen Paenibacillus larvae.

    PubMed

    Hertlein, Gillian; Müller, Sebastian; Garcia-Gonzalez, Eva; Poppinga, Lena; Süssmuth, Roderich D; Genersch, Elke

    2014-01-01

    The Gram-positive bacterium Paenibacillus larvae is the etiological agent of American Foulbrood. This bacterial infection of honey bee brood is a notifiable epizootic posing a serious threat to global honey bee health because not only individual larvae but also entire colonies succumb to the disease. In the recent past considerable progress has been made in elucidating molecular aspects of host pathogen interactions during pathogenesis of P. larvae infections. Especially the sequencing and annotation of the complete genome of P. larvae was a major step forward and revealed the existence of several giant gene clusters coding for non-ribosomal peptide synthetases which might act as putative virulence factors. We here present the detailed analysis of one of these clusters which we demonstrated to be responsible for the biosynthesis of bacillibactin, a P. larvae siderophore. We first established culture conditions allowing the growth of P. larvae under iron-limited conditions and triggering siderophore production by P. larvae. Using a gene disruption strategy we linked siderophore production to the expression of an uninterrupted bacillibactin gene cluster. In silico analysis predicted the structure of a trimeric trithreonyl lactone (DHB-Gly-Thr)3 similar to the structure of bacillibactin produced by several Bacillus species. Mass spectrometric analysis unambiguously confirmed that the siderophore produced by P. larvae is identical to bacillibactin. Exposure bioassays demonstrated that P. larvae bacillibactin is not required for full virulence of P. larvae in laboratory exposure bioassays. This observation is consistent with results obtained for bacillibactin in other pathogenic bacteria.

  18. Production of the Catechol Type Siderophore Bacillibactin by the Honey Bee Pathogen Paenibacillus larvae

    PubMed Central

    Garcia-Gonzalez, Eva; Poppinga, Lena; Süssmuth, Roderich D.; Genersch, Elke

    2014-01-01

    The Gram-positive bacterium Paenibacillus larvae is the etiological agent of American Foulbrood. This bacterial infection of honey bee brood is a notifiable epizootic posing a serious threat to global honey bee health because not only individual larvae but also entire colonies succumb to the disease. In the recent past considerable progress has been made in elucidating molecular aspects of host pathogen interactions during pathogenesis of P. larvae infections. Especially the sequencing and annotation of the complete genome of P. larvae was a major step forward and revealed the existence of several giant gene clusters coding for non-ribosomal peptide synthetases which might act as putative virulence factors. We here present the detailed analysis of one of these clusters which we demonstrated to be responsible for the biosynthesis of bacillibactin, a P. larvae siderophore. We first established culture conditions allowing the growth of P. larvae under iron-limited conditions and triggering siderophore production by P. larvae. Using a gene disruption strategy we linked siderophore production to the expression of an uninterrupted bacillibactin gene cluster. In silico analysis predicted the structure of a trimeric trithreonyl lactone (DHB-Gly-Thr)3 similar to the structure of bacillibactin produced by several Bacillus species. Mass spectrometric analysis unambiguously confirmed that the siderophore produced by P. larvae is identical to bacillibactin. Exposure bioassays demonstrated that P. larvae bacillibactin is not required for full virulence of P. larvae in laboratory exposure bioassays. This observation is consistent with results obtained for bacillibactin in other pathogenic bacteria. PMID:25237888

  19. Transstadial transmission of Hepatozoon canis from larvae to nymphs of Rhipicephalus sanguineus.

    PubMed

    Giannelli, Alessio; Ramos, Rafael Antonio Nascimento; Di Paola, Giancarlo; Mencke, Norbert; Dantas-Torres, Filipe; Baneth, Gad; Otranto, Domenico

    2013-09-01

    Hepatozoon canis is an apicomplexan parasite of dogs, which is known to become infected by ingesting Rhipicephalus sanguineus adult ticks. To investigate the possibility of H. canis transovarial and transstadial transmission from larvae to nymphs, engorged adult female ticks were collected from a private animal shelter in southern Italy, where H. canis infection is highly prevalent. Female ticks (n=35) and egg batches were tested by PCR for H. canis. All eggs examined were PCR-negative whereas 88.6% of females from the environment tested positive. Additionally, fed larvae (n=120) from a dog naturally infected by H. canis were dissected at different time points post collection (i.e. 0, 10, 20 and 30 days). Molted nymphs dissected at 20 days post collection revealed immature oocysts displaying an amorphous central structure in 50% of the specimens, and oocysts containing sporocysts with sporozoites were found in 53.3% of the nymphs dissected at 30 days post collection. This study demonstrates that H. canis is not transmitted transovarially, but it is transmitted transstadially from larvae to nymphs of R. sanguineus and develops sporozoites in oocysts that may infect dogs. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Recombinant Brugia malayi pepsin inhibitor (rBm33) exploits host signaling events to regulate inflammatory responses associated with lymphatic filarial infections.

    PubMed

    Sreenivas, Kirthika; Kalyanaraman, Haripriya; Babu, Subash; Narayanan, Rangarajan Badri

    2017-11-01

    Prolonged existence of filarial parasites and their molecules within the host modulate the host immune system to instigate their survival and induce inflammatory responses that contribute to disease progression. Recombinant Brugia malayi pepsin inhibitor (rBm33) modulates the host immune responses by skewing towards Th1 responses characterized by secretion of inflammatory molecules such as TNF-α, IL-6, nitric oxide (NO). Here we also specified the molecular signaling events triggered by rBm33 in peripheral blood mononuclear cells (PBMCs) of filarial endemic normals (EN). rBm33 predominantly enhanced the levels of nitric oxide in cultured PBMCs but did not result in oxidative stress to the host cells. Further, rBm33 treatment of human PBMCs resulted in higher GSH/GSSG levels. MYD88 dependent activation was found to be associated with rBm33 specific inflammatory cytokine production. rBm33 triggered intracellular signaling events also involved JNK activation in host PBMCs. In addition, c-Fos and not NF-κB was identified as the transcription factor regulating the expression of inflammatory cytokines in rBm33 stimulated PBMCs. rBm33 marked its role in filarial pathology by altered levels of growth factors but did not have a significant impact on matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs) activity of host PBMCs. Thus, the study outlines the signaling network of rBm33 induced inflammatory responses within the host immune cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Identification of tissue-embedded ascarid larvae by ribosomal DNA sequencing.

    PubMed

    Ishiwata, Kenji; Shinohara, Akio; Yagi, Kinpei; Horii, Yoichiro; Tsuchiya, Kimiyuki; Nawa, Yukifumi

    2004-01-01

    Polymerase chain reaction (PCR) was applied to identify tissue-embedded ascarid nematode larvae. Two sequences of the internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA), ITS1 and ITS2, of the ascarid parasites were amplified and compared with those of ascarid-nematodes registered in a DNA database (GenBank). The ITS sequences of the PCR products obtained from the ascarid parasite specimen in our laboratory were compatible with those of registered adult Ascaris and Toxocara parasites. PCR amplification of the ITS regions was sensitive enough to detect a single larva of Ascaris suum mixed with porcine liver tissue. Using this method, ascarid larvae embedded in the liver of a naturally infected turkey were identified as Toxocara canis. These results suggest that even a single larva embedded in tissues from patients with larva migrans could be identified by sequencing the ITS regions.

  2. Liver histopathology in the cane toad, Rhinella marina (Amphibia: Bufonidae), induced by Ortleppascaris sp. larvae (Nematoda: Ascarididae).

    PubMed

    Silva, Jefferson P E; da Silva, Djane C B; Melo, Francisco T V; Giese, Elane G; Furtado, Adriano P; Santos, Jeannie N

    2013-04-01

    Exposure to parasites is considered to be an important factor in the development of many diseases and histopathologies which are the result of the parasite-host interaction. The present study evaluated the impact of natural infection by larvae of Ortleppascaris sp. (Nematoda: Ascaridida) in the liver of the cane toad Rhinella marina (Linnaeus, 1758). Larvae were encysted in nodules delimited by collagenous fibers and fibroblasts or freely within the hepatic parenchyma, provoking a clear response from the host. The histological examination of the liver revealed viable larvae in a number of different developmental stages, as well as cysts filled with amorphous material and cell residues and surrounded by dense fibrotic tissue. The infection of the liver by these larvae induces a significant increase in the area occupied by melanomacrophages and a reduction or deficit in the vascularization of the liver, hypertrophy of the hepatocytes, vacuolar bodies, and cytoplasmatic granules. Focal concentrations of inflammatory infiltrates were observed enclosing the unencapsulated early-stage larvae. These results indicate that infection by Ortleppascaris sp. induces severe physiological problems and histopathological lesions in the liver of R. marina .

  3. Chemoattraction and chemorepulsion of Strongyloides stercoralis infective larvae on a sodium chloride gradient is mediated by amphidial neuron pairs ASE and ASH, respectively.

    PubMed

    Forbes, W M; Ashton, F T; Boston, R; Zhu, X; Schad, G A

    2004-03-25

    Depending on its concentration, sodium chloride acts as either an attractant or a repellant to the infective larvae (L3i) of Strongyloides stercoralis. On a concentration gradient, L3i are attracted to 0.05 M NaCl, but repelled by 2.8M. To test the hypothesis that amphidial neurons ASE and ASH might mediate attraction and repulsion, respectively, these neurons, and control neurons as well, were ablated in hatchling larvae with a laser microbeam. After the larvae attained infectivity (L3i), they were tested on a NaCl gradient. When placed at low salinity, 73.5% of normal controls migrated "up" the gradient, while 26.4% crawled randomly. In contrast, only 20.6% of ASE-ablated L3i migrated "up" the gradient, while 79.4% migrated randomly. Ablation-control ASK-ablated L3i (58.8%) migrated "up" the gradient while 41.1% crawled randomly. When placed at a region of high salinity, 100% of normal control L3i migrated "down" the gradient, whereas 62.5% of ASH-ablated L3i migrated randomly, the remaining 37.5% migrating "down" the gradient. In sharp contrast with ASH-ablated L3i, 94.1% of ablation-control larvae, i.e. ASK-ablated L3i, migrated "down" the gradient. Migration behavior of ASE- and ASH-ablated L3i was significantly different (P < 0.001) from that of ASK-ablated L3i and normal controls. It is noteworthy that 87.5% of ASE-ablated L3i that failed to exhibit chemoattractive behavior were actively chemorepelled from high salinity. Also, 70.0% of ASH-ablated L3i that failed to be chemorepelled from high salinity were capable of chemoattractive behavior, indicating that the worms had retained their behavioral responses except for those associated with the targeted neurons.

  4. Genetic and biochemical diversity of Paenibacillus larvae isolated from Tunisian infected honey bee broods.

    PubMed

    Hamdi, Chadlia; Essanaa, Jihène; Sansonno, Luigi; Crotti, Elena; Abdi, Khaoula; Barbouche, Naima; Balloi, Annalisa; Gonella, Elena; Alma, Alberto; Daffonchio, Daniele; Boudabous, Abdellatif; Cherif, Ameur

    2013-01-01

    Paenibacillus larvae is the causative agent of American foulbrood (AFB), a virulent disease of honeybee (Apis mellifera) larvae. In Tunisia, AFB has been detected in many beekeeping areas, where it causes important economic losses, but nothing is known about the diversity of the causing agent. Seventy-five isolates of P. larvae, identified by biochemical tests and 16S rRNA gene sequencing, were obtained from fifteen contaminated broods showing typical AFB symptoms, collected in different locations in the northern part of the country. Using BOX-PCR, a distinct profile of P. larvae with respect to related Paenibacillus species was detected which may be useful for its identification. Some P. larvae-specific bands represented novel potential molecular markers for the species. BOX-PCR fingerprints indicated a relatively high intraspecific diversity among the isolates not described previously with several molecular polymorphisms identifying six genotypes on polyacrylamide gel. Polymorphisms were also detected in several biochemical characters (indol production, nitrate reduction, and methyl red and oxidase tests). Contrary to the relatively high intraspecies molecular and phenotypic diversity, the in vivo virulence of three selected P. larvae genotypes did not differ significantly, suggesting that the genotypic/phenotypic differences are neutral or related to ecological aspects other than virulence.

  5. Comparative genomics of 9 novel Paenibacillus larvae bacteriophages

    PubMed Central

    Stamereilers, Casey; LeBlanc, Lucy; Yost, Diane; Amy, Penny S.; Tsourkas, Philippos K.

    2016-01-01

    ABSTRACT American Foulbrood Disease, caused by the bacterium Paenibacillus larvae, is one of the most destructive diseases of the honeybee, Apis mellifera. Our group recently published the sequences of 9 new phages with the ability to infect and lyse P. larvae. Here, we characterize the genomes of these P. larvae phages, compare them to each other and to other sequenced P. larvae phages, and putatively identify protein function. The phage genomes are 38–45 kb in size and contain 68–86 genes, most of which appear to be unique to P. larvae phages. We classify P. larvae phages into 2 main clusters and one singleton based on nucleotide sequence identity. Three of the new phages show sequence similarity to other sequenced P. larvae phages, while the remaining 6 do not. We identified functions for roughly half of the P. larvae phage proteins, including structural, assembly, host lysis, DNA replication/metabolism, regulatory, and host-related functions. Structural and assembly proteins are highly conserved among our phages and are located at the start of the genome. DNA replication/metabolism, regulatory, and host-related proteins are located in the middle and end of the genome, and are not conserved, with many of these genes found in some of our phages but not others. All nine phages code for a conserved N-acetylmuramoyl-L-alanine amidase. Comparative analysis showed the phages use the “cohesive ends with 3′ overhang” DNA packaging strategy. This work is the first in-depth study of P. larvae phage genomics, and serves as a marker for future work in this area. PMID:27738559

  6. Investigating the Effect of Different Treatments with Lactic Acid Bacteria on the Fate of Listeria monocytogenes and Staphylococcus aureus Infection in Galleria mellonella Larvae

    PubMed Central

    Grounta, Athena; Harizanis, Paschalis; Mylonakis, Eleftherios; Nychas, George-John E.; Panagou, Efstathios Z.

    2016-01-01

    The use of Galleria mellonella as a model host to elucidate microbial pathogenesis and search for novel drugs and therapies has been well appreciated over the past years. However, the effect of microorganisms with functional appeal in the specific host remains scarce. The present study investigates the effect of treatment with selected lactic acid bacteria (LAB) with probiotic potential, as potential protective agents by using live or heat-killed cells at 6 and 24 h prior to infection with Listeria monocytogenes and Staphylococcus aureus or as potential therapeutic agents by using cell-free supernatants (CFS) after infection with the same pathogens. The employed LAB strains were Lactobacillus pentosus B281 and Lactobacillus plantarum B282 (isolated from table olive fermentations) along with Lactobacillus rhamnosus GG (inhabitant of human intestinal tract). Kaplan-Meier survival curves were plotted while the pathogen’s persistence in the larval hemolymph was determined by microbiological analysis. It was observed that the time (6 or 24 h) and type (live or heat-killed cells) of challenge period with LAB prior to infection greatly affected the survival of infected larvae. The highest decrease of L. monocytogenes population in the hemolymph was observed in groups challenged for 6 h with heat-killed cells by an average of 1.8 log units compared to non challenged larvae for strains B281 (p 0.0322), B282 (p 0.0325), and LGG (p 0.0356). In the case of S. aureus infection, the population of the pathogen decreased in the hemolymph by 1 log units at 8 h post infection in the groups challenged for 6 h with heat-killed cells of strains B281 (p 0.0161) and B282 (p 0.0096) and by 1.8 log units in groups challenged with heat-killed cells of LGG strain (p 0.0175). Further use of CFS of each LAB strain did not result in any significant prolonged survival but interestingly it resulted in pronounced decrease of L. monocytogenes in the hemolymph at 24 h and 48 h after infection by

  7. Biological control of infective larvae of Ancylostoma spp. in beach sand.

    PubMed

    De Mello, Ingrid Ney Kramer; Braga, Fabio R; Monteiro, Thalita S Avelar; Freitas, Leandro G; Araujo, Juliana M; Soares, Filippe E Freitas; Araújo, Jackson V

    2014-01-01

    Geohelminths are parasites that stand out for their prevalence and wide distribution, depending on the soil for their transmission. The aim of this work was to evaluate the predatory capacity of the fungal isolate of the genus Duddingtonia (CG768) on third stage larvae (L3) of Ancylostoma spp. in beach sand under laboratory conditions. In the assay A five treatment groups and 1 control group were formed. The treatment groups contained 5000, 10,000, 15,000, 20,000 or 25,000 chlamydospores of the fungal isolate and 1000 Ancylostoma spp. L3 in pots containing 30g of sand. The control group (without fungus) contained only 1000 Ancylostoma spp. L3 and distilled water in pots with 30g of sand. Evidence of predatory activity was observed at the end of 15 days, where we observed the following percentages of reduction of L3: Group 1 (4.5%); Group 2 (24.5%); Group 3 (59.2%); Group 4 (58.8%); Group 5 (63%). However, difference was noted (p<0.01) only at concentrations 15,000, 20,000 and 25,000 in relation to control group. In the assay B two groups were formed in Petri dishes of 9cm in diameter containing agar water 2% medium. In the treated group, each Petri dish contained 500 Ancylostoma spp. L3 and 5g of sand containing the isolate CG 768 at a concentration of 25,000 chlamydospores/g of sand, and the control group (without fungus) contained only 500 L3. At the end of 7 days the non-predation L3 of Petri dishes using the method of Baermann were recovered. Difference (p<0.01) between groups on reducing the average number of Ancylostoma spp. L3 (percent reduction of 84%) was observed. The results of this study confirm earlier work on the efficiency of the Duddingtonia genus in the control of Ancylostoma spp. infective larvae. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  8. Treatment of third-stage larvae of Toxocara cati with milbemycin oxime plus praziquantel tablets and emodepside plus praziquantel spot-on formulation in experimentally infected cats.

    PubMed

    Wolken, Sonja; Böhm, Claudia; Schaper, Roland; Schnieder, Thomas

    2012-11-01

    Toxocara cati is the most prevalent gastrointestinal helminth in cats worldwide, with cats of all ages at risk of infection. An anthelminthic treatment that not only affects the gut-dwelling stages of this parasite but is also effective against developmental stages in the tissue has the advantage that the pathology caused by migrating larvae is minimized and the need for repeated treatments is reduced. This study was conducted to evaluate the efficacy of milbemycin oxime/praziquantel tablets (Milbemax®, Novartis) against third-stage larvae of T. cati in comparison to a spot-on formulation of emodepside and praziquantel (Profender®, Bayer). Twenty-four kittens were experimentally infected with T. cati and randomly allocated to three study groups. Treatments were performed at the minimum therapeutic dosage 5 days after the experimental infection. The development of patent infections was monitored and all cats were dewormed 50 days post-infection. Efficacies were calculated based on counts of excreted worms in the treated groups compared to a negative control group. Seven of the eight cats in the negative control group developed a patent T. cati infection and all cats were excreting worms at the end of the study (geometric mean worm count 18.1). No efficacy could be observed for the milbemycin oxime-treated animals. All cats developed a patent infection and excreted worms (geometric mean worm count 27.7). The treatment with Profender® was 98.5 % effective against L3 of T. cati. One cat developed a patent infection and was excreting worms at the end of the study (geometric mean worm count 0.3). No adverse reactions were noted in either treatment group.

  9. Purification and Characterization of Functional Human Paraoxonase-1 Expressed in Trichoplusia ni Larvae

    DTIC Science & Technology

    2010-01-01

    purified from Trichoplusia ni (T. ni) larvae infected with an orally active form of bac- ulovirus. SDS-PAGE and anti-HuPON1 Western blot analyses yielded...Organophosphorus (OP) nerve agents readily bind covalently o acetylcholinesterase (AChE) at the active site serine and inhibit he ability of AChE to terminate...The results demon- trate that T. ni larvae are capable of producing high quantities of unctionally active recombinant HuPON1, and larvae expressing

  10. Extrusion of Contracaecum osculatum nematode larvae from the liver of cod (Gadus morhua).

    PubMed

    Zuo, S; Barlaup, L; Mohammadkarami, A; Al-Jubury, A; Chen, D; Kania, P W; Buchmann, K

    2017-10-01

    Baltic cod livers have during recent years been found increasingly and heavily infected with third-stage larvae of Contracaecum osculatum. The infections are associated with an increasing population of grey seals which are final hosts for the parasite. Heavy worm burdens challenge utilization and safety of the fish liver products, and technological solutions for removal of worms are highly needed. We investigated the attachment of the worm larvae in liver tissue by use of histochemical techniques and found that the cod host encapsulates the worm larvae in layers of host cells (macrophages, fibroblasts) supported by enclosures of collagen and calcium. A series of incubation techniques, applying compounds targeting molecules in the capsule, were then tested for their effect to induce worm escape/release reactions. Full digestion solutions comprising pepsin, NaCl, HCl and water induced a fast escape of more than 60% of the worm larvae within 20 min and gave full release within 65 min but the liver tissue became highly dispersed. HCl alone, in concentrations of 48 and 72 mM, triggered a corresponding release of worm larvae with minor effect on liver integrity. A lower HCl concentration of 24 mM resulted in 80% release within 35 min. Water and physiological saline had no effect on worm release, and 1% pepsin in water elicited merely a weak escape reaction. In addition to the direct effect of acid on worm behaviour it is hypothesised that the acid effect on calcium carbonate in the encapsulation, with subsequent release of reaction products, may contribute to activation of C. osculatum larvae and induce escape reactions. Short-term pretreatment of infected cod liver and possibly other infected fish products, using low acid concentrations is suggested as part of a technological solution for worm clearance as low acid concentrations had limited macroscopic effect on liver integrity within 35 min.

  11. A PCR detection method for rapid identification of Melissococcus pluton in honeybee larvae.

    PubMed

    Govan, V A; Brözel, V; Allsopp, M H; Davison, S

    1998-05-01

    Melissococcus pluton is the causative agent of European foulbrood, a disease of honeybee larvae. This bacterium is particularly difficult to isolate because of its stringent growth requirements and competition from other bacteria. PCR was used selectively to amplify specific rRNA gene sequences of M. pluton from pure culture, from crude cell lysates, and directly from infected bee larvae. The PCR primers were designed from M. pluton 16S rRNA sequence data. The PCR products were visualized by agarose gel electrophoresis and confirmed as originating from M. pluton by sequencing in both directions. Detection was highly specific, and the probes did not hybridize with DNA from other bacterial species tested. This method enabled the rapid and specific detection and identification of M. pluton from pure cultures and infected bee larvae.

  12. A PCR Detection Method for Rapid Identification of Melissococcus pluton in Honeybee Larvae

    PubMed Central

    Govan, V. A.; Brözel, V.; Allsopp, M. H.; Davison, S.

    1998-01-01

    Melissococcus pluton is the causative agent of European foulbrood, a disease of honeybee larvae. This bacterium is particularly difficult to isolate because of its stringent growth requirements and competition from other bacteria. PCR was used selectively to amplify specific rRNA gene sequences of M. pluton from pure culture, from crude cell lysates, and directly from infected bee larvae. The PCR primers were designed from M. pluton 16S rRNA sequence data. The PCR products were visualized by agarose gel electrophoresis and confirmed as originating from M. pluton by sequencing in both directions. Detection was highly specific, and the probes did not hybridize with DNA from other bacterial species tested. This method enabled the rapid and specific detection and identification of M. pluton from pure cultures and infected bee larvae. PMID:9572987

  13. Trichinella spiralis: strong antibody response to a 49 kDa newborn larva antigen in infected rats.

    PubMed

    Salinas-Tobon, Maria Del Rosario; Navarrete-Leon, Anaid; Mendez-Loredo, Blanca Esther; Esquivel-Aguirre, Dalia; Martínez-Abrajan, Dulce Maria; Hernandez-Sanchez, Javier

    2007-02-01

    In this work, we analyzed the kinetics of anti-Trichinella spiralis newborn larva (NBL) antibodies (Ab) and the antigenic recognition pattern of NBL proteins and its dose effects. Wistar rats were infected with 0, 700, 2000, 4000 and 8000 muscle larvae (ML) and bled at different time intervals up to day 31 post infection (p.i.). Ab production was higher with 2000 ML dose and decreased with 8000, 4000 and 700 ML. Abs were not detected until day 10, peaked on day 14 for the 2000 ML dose and on day 19 for the other doses and thereafter declined slowly from 19 to 31 days p.i. In contrast, Abs to ML increased from day 10, peaked on day 19 and remained high until the end of the study. Abs bound strongly at least to three NBL components of 188, 205 and 49 kDa. NBL antigen of 188 and 205 kDa were recognized 10-26 days p.i. and that of 49 kDa from day 10 to day 31 p.i. A weak recognition towards antigens of 52, 54, 62 and 83 kDa was also observed during the infection. An early recognition of 31, 43, 45, 55, 68 and 85 kDa ML antigens was observed whereas the response to those of 43, 45, 48, 60, 64 and 97 kDa (described previously as TSL-1 antigens) occurred late in the infection. A follow-up of antigen recognition up to day 61 with the optimal immunization dose (2000 ML) evidenced a decline of Ab production to the 49 kDa NBL antigen 42 days p.i., which suggested antigenic differences with the previously reported 43 kDa ML antigen strongly recognized late in the infection. To analyze the stage-specificity of the 49 kDa NBL antigen, polyclonal antibodies (PoAb) were obtained in rats immunized with 49 kDa NBL antigen. PoAb reacted strongly with the 49 kDa NBL component in NBL total soluble extract but no reactivity was observed with soluble antigen of the other T. spiralis stages. Albeit with less intensity, the 49 kDa component was also recognized by PoAb together with other antigens of 53, 97 and 107 kDa, in NBL excretory-secretory products (NBL-ESP). Thus, our results reveal

  14. Immune-physiological aspects of synergy between avermectins and the entomopathogenic fungus Metarhizium robertsii in Colorado potato beetle larvae.

    PubMed

    Tomilova, Oksana G; Kryukov, Vadim Yu; Duisembekov, Bahytzhan A; Yaroslavtseva, Olga N; Tyurin, Maksim V; Kryukova, Natalia A; Skorokhod, Valery; Dubovskiy, Ivan M; Glupov, Viktor V

    2016-10-01

    The interaction between the entomopathogenic fungus Metarhizium robertsii and natural avermectin metabolites of the actinomycete Streptomyces avermitilis were investigated on Colorado potato beetle larvae. A synergy in the mortality of larvae was detected after simultaneous treatment with half-lethal doses of avermectins (commercial name actarophit) 0.005% and fungus (5×10 5 conidia/ml). The treatment with avermectins led to rapid fungal colonization of the hemolymph. The defense strategies of insects infected by fungus and treated with avermectins and untreated insects were compared to investigate the mechanisms of this synergy. We have shown an increase in hemocytes, especially immunocompetent cells - plasmatocytes and granular cells in the initial stages of mycosis (third day post inoculation). In contrast, avermectins suppressed cellular immunity in hemolymph. Specifically, avermectins dramatically decreased the count of granular cells in larvae infected and uninfected with fungus. Apoptosis inducement and hemocyte necrosis under the influence of avermectins has been shown in vitro as one of the possible reasons for hemocyte mortality. In addition, avermectins enhanced the activity of phenoloxidases in integuments and hemolymph and increased the activity of glutathione-S-transferases activity in the fat body and hemolymph of infected and uninfected larvae, thereby intensifying the development of fungal infection by M. robertsii in Colorado potato beetle larvae. The combination of fungal infection and avermectins constitutes a new perspective for developing multicomponent bioinsecticides. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Efficiency of bacteriophage therapy against Cronobacter sakazakii in Galleria mellonella (greater wax moth) larvae.

    PubMed

    Abbasifar, Reza; Kropinski, Andrew M; Sabour, Parviz M; Chambers, James R; MacKinnon, Joanne; Malig, Thomas; Griffiths, Mansel W

    2014-09-01

    Cronobacter sakazakii, an opportunistic pathogen found in milk-based powdered infant formulae, has been linked to meningitis in infants, with high fatality rates. A set of phages from various environments were purified and tested in vitro against strains of C. sakazakii. Based on host range and lytic activity, the T4-like phage vB_CsaM_GAP161, which belongs to the family Myoviridae, was selected for evaluation of its efficacy against C. sakazakii. Galleria mellonella larvae were used as a whole-animal model for pre-clinical testing of phage efficiency. Twenty-one Cronobacter strains were evaluated for lethality in G. mellonella larvae. Different strains of C. sakazakii caused 0 to 98% mortality. C. sakazakii 3253, with an LD50 dose of ~2.0×10(5) CFU/larva (24 h, 37 °C) was selected for this study. Larvae infected with a dose of 5×LD50 were treated with phage GAP161 (MOI=8) at various time intervals. The mortality rates were as high as 100% in the groups injected with bacteria only, compared to 16.6% in the group infected with bacteria and treated with phage. Phage GAP161 showed the best protective activity against C. sakazakii when the larvae were treated prior to or immediately after infection. The results obtained with heat-inactivated phage proved that the survival of the larvae is not due to host immune stimulation. These results suggest that phage GAP161 is potentially a useful control agent against C. sakazakii. In addition, G. mellonella may be a useful whole-animal model for pre-screening phages for efficacy and safety prior to clinical evaluation in mammalian models.

  16. Paenibacillus larvae Chitin-Degrading Protein PlCBP49 Is a Key Virulence Factor in American Foulbrood of Honey Bees

    PubMed Central

    Garcia-Gonzalez, Eva; Poppinga, Lena; Fünfhaus, Anne; Hertlein, Gillian; Hedtke, Kati; Jakubowska, Agata; Genersch, Elke

    2014-01-01

    Paenibacillus larvae, the etiological agent of the globally occurring epizootic American Foulbrood (AFB) of honey bees, causes intestinal infections in honey bee larvae which develop into systemic infections inevitably leading to larval death. Massive brood mortality might eventually lead to collapse of the entire colony. Molecular mechanisms of host-microbe interactions in this system and of differences in virulence between P. larvae genotypes are poorly understood. Recently, it was demonstrated that the degradation of the peritrophic matrix lining the midgut epithelium is a key step in pathogenesis of P. larvae infections. Here, we present the isolation and identification of PlCBP49, a modular, chitin-degrading protein of P. larvae and demonstrate that this enzyme is crucial for the degradation of the larval peritrophic matrix during infection. PlCBP49 contains a module belonging to the auxiliary activity 10 (AA10, formerly CBM33) family of lytic polysaccharide monooxygenases (LPMOs) which are able to degrade recalcitrant polysaccharides. Using chitin-affinity purified PlCBP49, we provide evidence that PlCBP49 degrades chitin via a metal ion-dependent, oxidative mechanism, as already described for members of the AA10 family. Using P. larvae mutants lacking PlCBP49 expression, we analyzed in vivo biological functions of PlCBP49. In the absence of PlCBP49 expression, peritrophic matrix degradation was markedly reduced and P. larvae virulence was nearly abolished. This indicated that PlCBP49 is a key virulence factor for the species P. larvae. The identification of the functional role of PlCBP49 in AFB pathogenesis broadens our understanding of this important family of chitin-binding and -degrading proteins, especially in those bacteria that can also act as entomopathogens. PMID:25080221

  17. Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae.

    PubMed

    Ebeling, Julia; Knispel, Henriette; Hertlein, Gillian; Fünfhaus, Anne; Genersch, Elke

    2016-09-01

    The gram-positive bacterium Paenibacillus larvae is the etiological agent of American Foulbrood of honey bees, a notifiable disease in many countries. Hence, P. larvae can be considered as an entomopathogen of considerable relevance in veterinary medicine. P. larvae is a highly specialized pathogen with only one established host, the honey bee larva. No other natural environment supporting germination and proliferation of P. larvae is known. Over the last decade, tremendous progress in the understanding of P. larvae and its interactions with honey bee larvae at a molecular level has been made. In this review, we will present the recent highlights and developments in P. larvae research and discuss the impact of some of the findings in a broader context to demonstrate what we can learn from studying "exotic" pathogens.

  18. Scanning electron microscopy of Ancylostoma spp. dog infective larvae captured and destroyed by the nematophagous fungus Duddingtonia flagrans.

    PubMed

    Maciel, A S; Araújo, J V; Campos, A K; Benjamin, L A; Freitas, L G

    2009-06-01

    The interaction between the nematode-trapping fungus Duddingtonia flagrans (isolate CG768) against Ancylostoma spp. dog infective larvae (L(3)) was evaluated by means of scanning electron microscopy. Adhesive network trap formation was observed 6h after the beginning of the interaction, and the capture of Ancylostoma spp. L(3) was observed 8h after the inoculation these larvae on the cellulose membranes colonized by the fungus. Scanning electron micrographs were taken at 0, 12, 24, 36 and 48 h, where 0 is the time when Ancylostoma spp. L(3) was first captured by the fungus. Details of the capture structure formed by the fungus were described. Nematophagous Fungus Helper Bacteria (NHB) were found at interactions points between the D. flagrans and Ancylostoma spp. L(3). The cuticle penetration by the differentiated fungal hyphae with the exit of nematode internal contents was observed 36 h after the capture. Ancylostoma spp. L(3) were completely destroyed after 48 h of interaction with the fungus. The scanning electron microscopy technique was efficient on the study of this interaction, showing that the nematode-trapping fungus D. flagrans (isolate CG768) is a potential exterminator of Ancylostoma spp. L(3).

  19. Proteomic Analysis of Apis cerana and Apis mellifera Larvae Fed with Heterospecific Royal Jelly and by CSBV Challenge

    PubMed Central

    Huang, Xiu; Han, Richou

    2014-01-01

    Chinese honeybee Apis cerana (Ac) is one of the major Asian honeybee species for local apiculture. However, Ac is frequently damaged by Chinese sacbrood virus (CSBV), whereas Apis mellifera (Am) is usually resistant to it. Heterospecific royal jelly (RJ) breeding in two honeybee species may result in morphological and genetic modification. Nevertheless, knowledge on the resistant mechanism of Am to this deadly disease is still unknown. In the present study, heterospecific RJ breeding was conducted to determine the effects of food change on the larval mortality after CSBV infection at early larval stage. 2-DE and MALDI-TOF/TOF MS proteomic technology was employed to unravel the molecular event of the bees under heterospecific RJ breeding and CSBV challenge. The change of Ac larval food from RJC to RJM could enhance the bee resistance to CSBV. The mortality rate of Ac larvae after CSBV infection was much higher when the larvae were fed with RJC compared with the larvae fed with RJM. There were 101 proteins with altered expressions after heterospecific RJ breeding and viral infection. In Ac larvae, 6 differential expression proteins were identified from heterospecific RJ breeding only, 21 differential expression proteins from CSBV challenge only and 7 differential expression proteins from heterospecific RJ breeding plus CSBV challenge. In Am larvae, 17 differential expression proteins were identified from heterospecific RJ breeding only, 26 differential expression proteins from CSBV challenge only and 24 differential expression proteins from heterospecific RJ breeding plus CSBV challenge. The RJM may protect Ac larvae from CSBV infection, probably by activating the genes in energy metabolism pathways, antioxidation and ubiquitin-proteasome system. The present results, for the first time, comprehensively descript the molecular events of the viral infection of Ac and Am after heterospecific RJ breeding and are potentially useful for establishing CSBV resistant

  20. Endosymbiont-based immunity in Drosophila melanogaster against parasitic nematode infection.

    PubMed

    Yadav, Shruti; Frazer, Joanna; Banga, Ashima; Pruitt, Katherine; Harsh, Sneh; Jaenike, John; Eleftherianos, Ioannis

    2018-01-01

    Associations between endosymbiotic bacteria and their hosts represent a complex ecosystem within organisms ranging from humans to protozoa. Drosophila species are known to naturally harbor Wolbachia and Spiroplasma endosymbionts, which play a protective role against certain microbial infections. Here, we investigated whether the presence or absence of endosymbionts affects the immune response of Drosophila melanogaster larvae to infection by Steinernema carpocapsae nematodes carrying or lacking their mutualistic Gram-negative bacteria Xenorhabdus nematophila (symbiotic or axenic nematodes, respectively). We find that the presence of Wolbachia alone or together with Spiroplasma promotes the survival of larvae in response to infection with S. carpocapsae symbiotic nematodes, but not against axenic nematodes. We also find that Wolbachia numbers are reduced in Spiroplasma-free larvae infected with axenic compared to symbiotic nematodes, and they are also reduced in Spiroplasma-containing compared to Spiroplasma-free larvae infected with axenic nematodes. We further show that S. carpocapsae axenic nematode infection induces the Toll pathway in the absence of Wolbachia, and that symbiotic nematode infection leads to increased phenoloxidase activity in D. melanogaster larvae devoid of endosymbionts. Finally, infection with either type of nematode alters the metabolic status and the fat body lipid droplet size in D. melanogaster larvae containing only Wolbachia or both endosymbionts. Our results suggest an interaction between Wolbachia endosymbionts with the immune response of D. melanogaster against infection with the entomopathogenic nematodes S. carpocapsae. Results from this study indicate a complex interplay between insect hosts, endosymbiotic microbes and pathogenic organisms.

  1. α-Amanitin-Resistant Viral RNA Synthesis in Nuclei Isolated from Nuclear Polyhedrosis Virus-Infected Heliothis zea Larvae and Spodoptera frugiperda Cells

    PubMed Central

    Grula, Marjori A.; Buller, Patricia L.; Weaver, Robert F.

    1981-01-01

    [3H]RNA was synthesized in nuclei isolated at various times postinfection from the fat bodies of Heliothis zea larvae infected with H. zea nuclear polyhedrosis virus and from cultured Spodoptera frugiperda cells infected with Autographa californica nuclear polyhedrosis virus. To detect virus-specific RNA synthesis, the [3H]RNA was hybridized to denatured viral DNA immobilized on nitrocellulose filters. Nuclear polyhedrosis virus-specific RNA synthesis in the infected nuclei isolated from H. zea larval fat bodies and S. frugiperda cells was only inhibited 20 to 25% by concentrations of α-amanitin sufficient to inhibit the host RNA polymerase II. In addition, a productive nuclear polyhedrosis virus infection was obtained in S. frugiperda cells grown in the presence of an α-amanitin concentration that inhibited 90% of the cellular RNA polymerase II activity. The cellular RNA polymerase II enzyme remained sensitive to α-amanitin during infection, and there was no evidence that a virus-coded, α-amanitin-resistant enzyme was synthesized after the onset of infection. The data suggest that the bulk of nuclear polyhedrosis virus-specific RNA synthesis in isolated nuclei is transcribed by an enzyme other than the host RNA polymerase II. PMID:16789208

  2. Galleria mellonella larvae as an infection model for group A streptococcus

    PubMed Central

    Loh, Jacelyn MS; Adenwalla, Nazneen; Wiles, Siouxsie; Proft, Thomas

    2013-01-01

    Group A streptococcus is a strict human pathogen that can cause a wide range of diseases, such as tonsillitis, impetigo, necrotizing fasciitis, toxic shock, and acute rheumatic fever. Modeling human diseases in animals is complicated, and rapid, simple, and cost-effective in vivo models of GAS infection are clearly lacking. Recently, the use of non-mammalian models to model human disease is starting to re-attract attention. Galleria mellonella larvae, also known as wax worms, have been investigated for modeling a number of bacterial pathogens, and have been shown to be a useful model to study pathogenesis of the M3 serotype of GAS. In this study we provide further evidence of the validity of the wax worm model by testing different GAS M-types, as well as investigating the effect of bacterial growth phase and incubation temperature on GAS virulence in this model. In contrast to previous studies, we show that the M-protein, among others, is an important virulence factor that can be effectively modeled in the wax worm. We also highlight the need for a more in-depth investigation of the effects of experimental design and wax worm supply before we can properly vindicate the wax worm model for studying GAS pathogenesis. PMID:23652836

  3. Efficacy of maslinic acid and fenbendazole on muscle larvae of Trichinella zimbabwensis in laboratory rats.

    PubMed

    Mukaratirwa, S; Gcanga, L; Kamau, J

    2016-01-01

    Trichinellosis is a zoonotic disease caused by nematode species of the genus Trichinella. Anthelmintics targeting the intestinal adults and muscle-dwelling larvae of Trichinella spp. have been tested, with limited success. This study was aimed at determining the efficacy of maslinic acid and fenbendazole on muscle larvae of Trichinella zimbabwensis in laboratory rats. Forty-two Sprague-Dawley rats, with an average weight of 270 g and 180 g for males and females respectively, were infected with T. zimbabwensis larvae. Infected rats were randomly assigned to three groups which were subjected to single treatments with each of maslinic acid, fenbendazole and a combination of both on day 25 post-infection (pi), and three groups which were subjected to double treatments with each of these drugs and a combination on days 25 and 32 pi. The untreated control group received a placebo. In single-treatment groups, the efficacy of each treatment, measured by rate of reduction in muscle larvae, was significant (P0.05). We conclude that the efficacy of maslinic acid against larval stages of T. zimbabwensis in rats was comparable to that of fenbendazole, with no side-effects observed, making maslinic acid a promising anthelmintic against larval stages of Trichinella species.

  4. Recombinant Antigen-Based Enzyme-Linked Immunosorbent Assay for Diagnosis of Baylisascaris procyonis Larva Migrans ▿

    PubMed Central

    Dangoudoubiyam, Sriveny; Vemulapalli, Ramesh; Ndao, Momar; Kazacos, Kevin R.

    2011-01-01

    Baylisascaris larva migrans is an important zoonotic disease caused by Baylisascaris procyonis, the raccoon roundworm, and is being increasingly considered in the differential diagnosis of eosinophilic meningoencephalitis in children and young adults. Although a B. procyonis excretory-secretory (BPES) antigen-based enzyme-linked immunosorbent assay (ELISA) and a Western blot assay are useful in the immunodiagnosis of this infection, cross-reactivity remains a major problem. Recently, a recombinant B. procyonis antigen, BpRAG1, was reported for use in the development of improved serological assays for the diagnosis of Baylisascaris larva migrans. In this study, we tested a total of 384 human patient serum samples in a BpRAG1 ELISA, including samples from 20 patients with clinical Baylisascaris larva migrans, 137 patients with other parasitic infections (8 helminth and 4 protozoan), and 227 individuals with unknown/suspected parasitic infections. A sensitivity of 85% and a specificity of 86.9% were observed with the BpRAG1 ELISA, compared to only 39.4% specificity with the BPES ELISA. In addition, the BpRAG1 ELISA had a low degree of cross-reactivity with antibodies to Toxocara infection (25%), while the BPES antigen showed 90.6% cross-reactivity. Based on these results, the BpRAG1 antigen has a high degree of sensitivity and specificity and should be very useful and reliable in the diagnosis and seroepidemiology of Baylisascaris larva migrans by ELISA. PMID:21832102

  5. Evaluation of Galleria mellonella larvae for studying the virulence of Streptococcus suis.

    PubMed

    Velikova, Nadya; Kavanagh, Kevin; Wells, Jerry M

    2016-12-15

    Streptococcus suis is an encapsulated Gram-positive bacterium and the leading cause of sepsis and meningitis in young pigs, resulting in considerable economic losses in the porcine industry. S. suis is considered an emerging zoonotic agent with increasing numbers of human cases over the last years. In the environment, both avirulent and virulent strains occur in pigs, with no evidence for consistent adapatation of virulent strains to the human host. Currently, there is an urgent need for a convenient, reliable and standardised animal model to rapidly assess S. suis virulence. Wax moth (Galleria mellonella) larvae have successfully been used in human and animal infectious disease studies. Here, we developed G. mellonella larvae as a model to assess virulence of S. suis strains. Fourteen isolates of S. suis belonging to different serotypes killed G. mellonella larvae in a dose-dependent manner. Larvae infected with the virulent serotype 2 strain, S. suis S3881/S10, were rescued by antibiotic therapy. Crucially, the observed virulence of the different serotypes and mutants was in agreement with virulence observed in piglets (Sus scrofa) and the zebrafish larval infection model. Infection with heat-inactivated bacteria or bacteria-free culture supernatants showed that in most cases live bacteria are needed to cause mortality in G. mellonella. The G. mellonella model is simple, cost-efficient, and raises less ethical issues than experiments on vertebrates and reduces infrastructure requirements. Furthermore, it allows experiments to be performed at the host temperature (37 °C). The results reported here, indicate that the G. mellonella model may aid our understanding of veterinary microbial pathogens such as the emerging zoonotic pathogen S. suis and generate hypotheses for testing in the target animal host. Ultimately, this might lead to the timely introduction of new effective remedies for infectious diseases. Last but not least, use of the G. mellonella

  6. Visceral larva migrans and alveolar hydatid disease. Dangers real or imagined.

    PubMed

    Polley, L

    1978-05-01

    For both visceral larva migrans and alveolar hydatid diseases, it is the feces of companion animals that are the primary source of human infection. Clearly, whatever is done to reduce this form of environmental contamination and the prevalence of the parasites' infective stages will help to protect the health of the human population in the United States and Canada, particularly the children. Very important are appropriate anthelmintic treatment programs, especially for T. canis, and proper control of close associations between pets and people. Probably the known incidence of visceral larva migrans in humans and the range of its known pathogenicity will increase as better diagnostic methods become available. In addition, other animal helminths, for instance Toxocara cati and Toxascaris leonina, may become more substantially documented as causes of human visceral larva migrans. Until more is known of the geographical distribution and prevalence of Echinococcus multilocularis among animals in North America, it will be difficult to assess accurately the future significance of alveolar hydatid disease in the continent's human population. Another important advance would be the development of anthelmintics that are effective for somatic second stage larvae of T. canis, and others effective for adult or larval Echinococcus species. Meanwhile it is a most important responsibility of the veterinary profession to educate its clients thoroughly concerning these dangerous helminths.

  7. Inhibitory effect of indole analogs against Paenibacillus larvae, the causal agent of American foulbrood disease.

    PubMed

    Alvarado, Israel; Margotta, Joseph W; Aoki, Mai M; Flores, Fernando; Agudelo, Fresia; Michel, Guillermo; Elekonich, Michelle M; Abel-Santos, Ernesto

    2017-09-01

    Paenibacillus larvae, a Gram-positive bacterium, causes American foulbrood (AFB) in honey bee larvae (Apis mellifera Linnaeus [Hymenoptera: Apidae]). P. larvae spores exit dormancy in the gut of bee larvae, the germinated cells proliferate, and ultimately bacteremia kills the host. Hence, spore germination is a required step for establishing AFB disease. We previously found that P. larvae spores germinate in response to l-tyrosine plus uric acid in vitro. Additionally, we determined that indole and phenol blocked spore germination. In this work, we evaluated the antagonistic effect of 35 indole and phenol analogs and identified strong inhibitors of P. larvae spore germination in vitro. We further tested the most promising candidate, 5-chloroindole, and found that it significantly reduced bacterial proliferation. Finally, feeding artificial worker jelly containing anti-germination compounds to AFB-exposed larvae significantly decreased AFB infection in laboratory-reared honey bee larvae. Together, these results suggest that inhibitors of P. larvae spore germination could provide another method to control AFB. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  8. Mortality Caused by Bath Exposure of Zebrafish (Danio rerio) Larvae to Nervous Necrosis Virus Is Limited to the Fourth Day Postfertilization

    PubMed Central

    Morick, Danny; Faigenbaum, Or; Smirnov, Margarita; Fellig, Yakov; Inbal, Adi

    2015-01-01

    Nervous necrosis virus (NNV) is a member of the Betanodavirus genus that causes fatal diseases in over 40 species of fish worldwide. Mortality among NNV-infected fish larvae is almost 100%. In order to elucidate the mechanisms responsible for the susceptibility of fish larvae to NNV, we exposed zebrafish larvae to NNV by bath immersion at 2, 4, 6, and 8 days postfertilization (dpf). Here, we demonstrate that developing zebrafish embryos are resistant to NNV at 2 dpf due to the protection afforded by the egg chorion and, to a lesser extent, by the perivitelline fluid. The zebrafish larvae succumbed to NNV infection during a narrow time window around the 4th dpf, while 6- and 8-day-old larvae were much less sensitive, with mortalities of 24% and 28%, respectively. PMID:25746990

  9. Endosymbiont-based immunity in Drosophila melanogaster against parasitic nematode infection

    PubMed Central

    Yadav, Shruti; Frazer, Joanna; Banga, Ashima; Pruitt, Katherine; Harsh, Sneh; Jaenike, John

    2018-01-01

    Associations between endosymbiotic bacteria and their hosts represent a complex ecosystem within organisms ranging from humans to protozoa. Drosophila species are known to naturally harbor Wolbachia and Spiroplasma endosymbionts, which play a protective role against certain microbial infections. Here, we investigated whether the presence or absence of endosymbionts affects the immune response of Drosophila melanogaster larvae to infection by Steinernema carpocapsae nematodes carrying or lacking their mutualistic Gram-negative bacteria Xenorhabdus nematophila (symbiotic or axenic nematodes, respectively). We find that the presence of Wolbachia alone or together with Spiroplasma promotes the survival of larvae in response to infection with S. carpocapsae symbiotic nematodes, but not against axenic nematodes. We also find that Wolbachia numbers are reduced in Spiroplasma-free larvae infected with axenic compared to symbiotic nematodes, and they are also reduced in Spiroplasma-containing compared to Spiroplasma-free larvae infected with axenic nematodes. We further show that S. carpocapsae axenic nematode infection induces the Toll pathway in the absence of Wolbachia, and that symbiotic nematode infection leads to increased phenoloxidase activity in D. melanogaster larvae devoid of endosymbionts. Finally, infection with either type of nematode alters the metabolic status and the fat body lipid droplet size in D. melanogaster larvae containing only Wolbachia or both endosymbionts. Our results suggest an interaction between Wolbachia endosymbionts with the immune response of D. melanogaster against infection with the entomopathogenic nematodes S. carpocapsae. Results from this study indicate a complex interplay between insect hosts, endosymbiotic microbes and pathogenic organisms. PMID:29466376

  10. Cross-reactivity of Toxocariasis with Crude Antigen of Toxascaris leonina Larvae by ELISA.

    PubMed

    Jin, Yan; Shen, Chenghua; Huh, Sun; Choi, Min-Ho; Hong, Sung-Tae

    2015-05-01

    Roundworms of Toxocara canis and Toxascaris leonina are common gastrointestinal helminths of canids over the world. Humans are infected with T. canis larvae through ingestion of infective eggs in contaminated environments or larvae by consumption of raw or uncooked meat or livers. Recently, patients of clinically diagnosed toxocariasis are increasing and require correct diagnosis in Korea. The present study investigated serological cross-reactivity between crude antigens of T. canis (TCLA) and T. leonina (TLLA) larvae. We collected serum specimens from 177 toxocariasis patients who were clinically suspected in the Seoul National University Hospital and 115 healthy controls. An ELISA method for toxocariasis was used to evaluate diagnostic efficacy of TLLA for serodiagnosis of human toxocariasis. The IgG ELISA using TLLA gave 14 (14.3%) positives of 98 TCLA positive specimens among 177 suspected toxocariasis patients. Most of them showed high absorbances with TCLA. In conclusion, there is a partial cross reaction between serum specimens of toxocariasis and TLLA.

  11. A new procedure for marinating fresh anchovies and ensuring the rapid destruction of Anisakis larvae.

    PubMed

    Sánchez-Monsalvez, I; de Armas-Serra, C; Martínez, J; Dorado, M; Sánchez, A; Rodríguez-Caabeiro, F

    2005-05-01

    The consumption of marinated anchovies is the main route of transmission of anisakiasis in Spain. Because this country is one of the world's major tourist destinations, this traditional food also poses a potential health risk to millions of foreign visitors. Anisakis larvae are not destroyed by the traditional marinating procedure, and alternative methods, such as long-term storage in brine, freezing, or hydrostatic pressure treatment, all present major difficulties. In this study, we used high food-grade acetic acid concentrations (10, 20, 30, and 40% [vol/vol] in line with the quantum satis rule) to destroy these larvae rapidly, and we report data on the survival of Anisakis larvae exposed directly to different marinades and when the larvae are placed under the fish musculature. The percentage of salt and acetic acid in the fish tissue water phase was also determined. A marinating procedure is proposed that ensures the rapid death of Anisakis through the use of strong acetic acid concentrations. Posttreatment washes with water reduce these to levels acceptable to consumers. The sensory characteristics of the product were shown to be satisfactory. The actual selection of an acetic acid concentration for marinating depends on costs and the processing time available. The physiological stress of the larvae exposed to the different marinades was determined by measuring the levels of their stress proteins. The latter are good indicators of injury and might reflect the infectivity of larvae. In addition, we also used a rat model to determine the infectivity of larvae considered microscopically dead.

  12. Mortality Caused by Bath Exposure of Zebrafish (Danio rerio) Larvae to Nervous Necrosis Virus Is Limited to the Fourth Day Postfertilization.

    PubMed

    Morick, Danny; Faigenbaum, Or; Smirnov, Margarita; Fellig, Yakov; Inbal, Adi; Kotler, Moshe

    2015-05-15

    Nervous necrosis virus (NNV) is a member of the Betanodavirus genus that causes fatal diseases in over 40 species of fish worldwide. Mortality among NNV-infected fish larvae is almost 100%. In order to elucidate the mechanisms responsible for the susceptibility of fish larvae to NNV, we exposed zebrafish larvae to NNV by bath immersion at 2, 4, 6, and 8 days postfertilization (dpf). Here, we demonstrate that developing zebrafish embryos are resistant to NNV at 2 dpf due to the protection afforded by the egg chorion and, to a lesser extent, by the perivitelline fluid. The zebrafish larvae succumbed to NNV infection during a narrow time window around the 4th dpf, while 6- and 8-day-old larvae were much less sensitive, with mortalities of 24% and 28%, respectively. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Comparative infectivity of homologous and heterologous nucleopolyhedroviruses against beet armyworm larvae

    USDA-ARS?s Scientific Manuscript database

    Homologous and heterologous nucleopolyhedroviruses (NPVs) were assayed to determine the most effective NPV against beet armyworm larvae, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae)(SeMNPV). Included were three isolates from S. exigua, one isolate each from S. littoralis Boisduval, S. litura...

  14. Nematodes parasitic in fishes of cenotes (= sinkholes) of the Peninsula of Yucatan, Mexico. Part 2. Larvae.

    PubMed

    Moravec, F; Vivas-Rodríguez, C; Scholz, T; Vargas-Vázquez, J; Mendoza-Franco, E; Schmitter-Soto, J J; González-Solís, D

    1995-01-01

    This paper comprises a systematic survey of larval nematodes collected from fishes from cenotes (= sinkholes) of the Peninsula of Yucatan, southern Mexico, in 1993-1994. Larvae of the following nine species were recorded: Physocephalus sexalatus, Acuariidae gen. sp., Spiroxys sp., Falcaustra sp., Hysterothylacium cenotae, Contracaecum sp. Type 1, Contracaecum sp. Type 2, Goezia sp., and Eustrongylides sp. Larvae of P. sexalatus are recorded from fishes (Rhamdia guatemalensis) for the first time. The larvae are briefly described and illustrated and problems concerning their morphology, taxonomy, hosts and geographical distribution are discussed. Adults of these larvae are parasitic in piscivorous fishes, reptiles, birds and mammals (definitive hosts). Fishes harbouring the larvae of these parasites serve as paratenic hosts, being mostly an important source of infection for the definitive hosts.

  15. The domestic cat as a host for Brugian filariasis in South Kalimantan (Borneo), Indonesia.

    PubMed

    Palmieri, J R; Masbar, S; Purnomo; Marwoto, H A; Tirtokusumo, S; Darwis, F

    1985-09-01

    Three hundred and twenty-five domestic cats (Felis catus) from six villages of the Hulu Sungai Tengah and Banjar Regency of South Kalimantan (Borneo), Indonesia, were examined for filarial nematodes. Parasites were found in 66 cats, of which 61 (92.4%) had Brugia pahangi, four (6.1%) has B. malayi and one (1.5%) had Dirofilaria repens. Infection rates ranged from 11% to 22% in cats from secondary forest/rice-field habitats, from 15% to 30% in open village/rice-field habitats, to 50% in an open coastal village. In all cases the infection rate of B. malayi in man was greater than in cats from the same collecting area. The number of B. pahangi microfilariae per 20 microliter cat blood ranged from 34 at 1000 hours to 571 at 2200 hours. The results of this study suggest that in this region of Indonesia the domestic cat is not an important host for maintaining B. malayi.

  16. In vitro development of cyathostomin larvae from the third stage larvae to the fourth stage: morphologic characterization, effects of refrigeration, and species-specific patterns.

    PubMed

    Brianti, Emanuele; Giannetto, Salvatore; Traversa, Donato; Chirgwin, Sharon R; Shakya, Krishna; Klei, Thomas R

    2009-08-26

    A mixed population of equine cyathostomin (Nematoda, Strongyloidea) infective third stage larvae (L3) was cultured in vitro using a cell-free medium. Some L3 were cultured immediately after Baermann collection from fecal cultures, while others were kept in water at 4 degrees C for 7 days before initiating the in vitro cultures. Cultures were examined daily for viability. At days 2, 7, 14 and 21 larvae were collected for identification of developmental stage and morphological changes, using both light and scanning electron microscopy. Larvae were classified as early L3 (EL3), developing L3 (DL3), late L3 (LL3) and fourth stage larvae (L4) on the basis of morphological features. Viability remained high throughout the entire study period in cultures of both non-refrigerated (84.7%) and refrigerated (77.4%) larvae. However, viability of the non-refrigerated was significantly greater from 7 through 21 days of culture. Significant differences were also observed in the percentage of DL3 between the non-refrigerated and refrigerated larval cultures by day 7. The highest percentage of DL3 larvae (22.5%) was reached at the end of study in those larvae that were not previously refrigerated. The data suggests that prior refrigeration decreases viability and slows L3 development. At day 21 LL3 larvae were only a small percentage of the DL3: 6.9 and 5% in non-refrigerated and refrigerated cultures, respectively. Few of these larvae freed themselves from the L3 cuticle and moulted to L4 stage. Characteristics of individual species in vitro developmental patterns were determined by the molecular identification of individual larvae in pools of larvae randomly collected at days 0 and 21. Seven species (Coronocyclus coronatus, Cylicostephanus goldi, Cylicostephanus longibursatus, Cyathostomum catinatum, Cylicocyclus nassatus, Cylicocyclus ashworthi, Petrovinema poculatum) were identified in the day 0 pool. The greatest tendency to develop in vitro was shown by the genus

  17. Larvae of chigger mites Neotrombicula spp. (Acari: Trombiculidae) exhibited Borrelia but no Anaplasma infections: a field study including birds from the Czech Carpathians as hosts of chiggers.

    PubMed

    Literak, Ivan; Stekolnikov, Alexandr A; Sychra, Oldrich; Dubska, Lenka; Taragelova, Veronika

    2008-04-01

    Chigger mites were collected from 1,080 wild birds of 37 species at Certak (Czech Republic), in the western Carpathian Mountains, from 29 July to 24 September 2005. The prevalence of infestation with chigger larvae was 7%. A total of 325 chigger specimens from 10 bird species was identified and three chigger species were found: Neotrombicula autumnalis, N. carpathica, and N. inopinata, the latter two species being reported on new hosts. Neotrombicula carpathica is reported in the Czech Republic for the first time. A total of 509 chigger larvae found on 79 host specimens were examined by polymerase chain reaction (PCR) for the presence of Borrelia burgdorferi s.l. DNA (fragments of the rrf (5S)--rrl (23S) intergenic spacer), and Anaplasma phagocytophilum DNA (epank1 gene). A fragment of specific Borrelia DNA was amplified through PCR in one sample, and the PCR product was further analyzed by reverse line blotting assay, whereby both genospecies of B. garinii and B. valaisiana were proved. This sample pooled five chigger larvae collected from one Sylvia atricapilla on 11 August 2005. No A. phagocytophilum DNA was amplified. We conclude that larvae of the genus Neotrombicula can be infected with Borrelia genospecies originated from their present or former hosts.

  18. Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host to study fungal infections.

    PubMed

    de Souza, Patrícia Canteri; Morey, Alexandre Tadachi; Castanheira, Gabriel Marcondes; Bocate, Karla Paiva; Panagio, Luciano Aparecido; Ito, Fabio Augusto; Furlaneto, Márcia Cristina; Yamada-Ogatta, Sueli Fumie; Costa, Idessânia Nazareth; Mora-Montes, Hector Manuel; Almeida, Ricardo Sergio

    2015-11-01

    Models of host–pathogen interactions are crucial for the analysis of microbial pathogenesis. In this context, invertebrate hosts, including Drosophila melanogaster (fruit fly), Caenorhabditis elegans (nematode) and Galleria mellonella (moth), have been used to study the pathogenesis of fungi and bacteria. Each of these organisms offers distinct benefits in elucidating host–pathogen interactions. In this study,we present a newinvertebrate infection model to study fungal infections: the Tenebrio molitor (beetle) larvae. Here we performed T. molitor larvae infection with one of two important fungal human pathogens, Candida albicans or Cryptococcus neoformans, and analyzed survival curves and larva infected tissues.We showed that increasing concentrations of inoculum of both fungi resulted in increased mortality rates, demonstrating the efficiency of the method to evaluate the virulence of pathogenic yeasts. Additionally, following 12 h post-infection, C. albicans formsmycelia, spreading its hyphae through the larva tissue,whilst GMS stain enabled the visualization of C. neoformans yeast and theirmelanin capsule. These larvae are easier to cultivate in the laboratory than G. mellonella larvae, and offer the same benefits. Therefore, this insect model could be a useful alternative tool to screen clinical pathogenic yeast strainswith distinct virulence traits or different mutant strains.

  19. Mass Death of Predatory Carp, Chanodichthys erythropterus, Induced by Plerocercoid Larvae of Ligula intestinalis (Cestoda: Diphyllobothriidae)

    PubMed Central

    Sohn, Woon-Mok; Na, Byoung-Kuk; Jung, Soo Gun; Kim, Koo Hwan

    2016-01-01

    We describe here the mass death of predatory carp, Chanodichthys erythropterus, in Korea induced by plerocercoid larvae of Ligula intestinalis as a result of host manipulation. The carcasses of fish with ligulid larvae were first found in the river-edge areas of Chilgok-bo in Nakdong-gang (River), Korea at early February 2016. This ecological phenomena also occurred in the adjacent areas of 3 dams of Nakdong-gang, i.e., Gangjeong-bo, Dalseong-bo, and Hapcheon-Changnyeong-bo. Total 1,173 fish carcasses were collected from the 4 regions. To examine the cause of death, we captured 10 wondering carp in the river-edge areas of Hapcheon-Changnyeong-bo with a landing net. They were 24.0-28.5 cm in length and 147-257 g in weight, and had 2-11 plerocercoid larvae in the abdominal cavity. Their digestive organs were slender and empty, and reproductive organs were not observed at all. The plerocercoid larvae occupied almost all spaces of the abdominal cavity under the air bladders. The proportion of larvae per fish was 14.6-32.1% of body weight. The larvae were ivory-white, 21.5-63.0 cm long, and 6.0-13.8 g in weight. We suggest that the preference for the river-edge in infected fish during winter is a modified behavioral response by host manipulation of the tapeworm larvae. The life cycle of this tapeworm seems to be successfully continued as the infected fish can be easily eaten by avian definitive hosts. PMID:27417095

  20. Eosinophils mediate protective immunity against secondary nematode infection.

    PubMed

    Huang, Lu; Gebreselassie, Nebiat G; Gagliardo, Lucille F; Ruyechan, Maura C; Luber, Kierstin L; Lee, Nancy A; Lee, James J; Appleton, Judith A

    2015-01-01

    Eosinophils are versatile cells that regulate innate and adaptive immunity, influence metabolism and tissue repair, and contribute to allergic lung disease. Within the context of immunity to parasitic worm infections, eosinophils are prominent yet highly varied in function. We have shown previously that when mice undergo primary infection with the parasitic nematode Trichinella spiralis, eosinophils play an important immune regulatory role that promotes larval growth and survival in skeletal muscle. In this study, we aimed to address the function of eosinophils in secondary infection with T. spiralis. By infecting eosinophil-ablated mice, we found that eosinophils are dispensable for immunity that clears adult worms or controls fecundity in secondary infection. In contrast, eosinophil ablation had a pronounced effect on secondary infection of skeletal muscle by migratory newborn larvae. Restoring eosinophils to previously infected, ablated mice caused them to limit muscle larvae burdens. Passive immunization of naive, ablated mice with sera or Ig from infected donors, together with transfer of eosinophils, served to limit the number of newborn larvae that migrated in tissue and colonized skeletal muscle. Results from these in vivo studies are consistent with earlier findings that eosinophils bind to larvae in the presence of Abs in vitro. Although our previous findings showed that eosinophils protect the parasite in primary infection, these new data show that eosinophils protect the host in secondary infection. Copyright © 2014 by The American Association of Immunologists, Inc.

  1. Uncommon Human Urinary Tract Myiasis Due to Psychoda Sp. Larvae, Kashan, Iran: A Case Report.

    PubMed

    Rasti, Sima; Dehghani, Rouhullah; Khaledi, Hassan Naeimi; Takhtfiroozeh, Sayed Mahdi; Chimehi, Elahe

    2016-01-01

    Contamination of human and animal body tissues with flies' larvae and diptera cause myiasis. A 26 yr old female patient refers to Kashan Shahid Beheshti Hospital, central Iran because of urogenital infection, pain in the right part of stomach, smelly and reddish vaginal discharge and frequent urination. In the first checking, urine sample was taken. In the sample, active and alive larvae were seen. The live samples were taken to the Environmental Health Department Lab of Kashan University of Medical Sciences in clean glass jars. In the morphological survey, Psychoda sp larvae were identified. In Iran, this study is the first report of this species of larva that causes urinary myiasis. This fly larva is not carnivore or bloodsucker and feeds on bacterial agents. Observance of personal hygiene especially during defecation and urination is essential to prevent contamination of this type of myiasis.

  2. Ascaris and hookworm transmission in preschool children from rural Panama: role of yard environment, soil eggs/larvae and hygiene and play behaviours.

    PubMed

    Krause, Rachel J; Koski, Kristine G; Pons, Emérita; Sandoval, Nidia; Sinisterra, Odalis; Scott, Marilyn E

    2015-10-01

    This study explored whether the yard environment and child hygiene and play behaviours were associated with presence and intensity of Ascaris and hookworm in preschool children and with eggs and larvae in soil. Data were collected using questionnaires, a visual survey of the yard, soil samples and fecal samples collected at baseline and following re-infection. The presence of eggs/larvae in soil was associated negatively with water storage (eggs) but positively with dogs (eggs) and distance from home to latrine (larvae). Baseline and re-infection prevalences were: hookworm (28.0%, 3.4%); Ascaris (16.9%, 9.5%); Trichuris (0.9%, 0.7%). Zero-inflated negative binomial regression models revealed a higher baseline hookworm infection if yards had eggs or larvae, more vegetation or garbage, and if the child played with soil. Baseline Ascaris was associated with dirt floor, dogs, exposed soil in yard, open defecation and with less time playing outdoors, whereas Ascaris re-infection was associated with water storage, vegetation cover and garbage near the home and not playing with animals. Our results show complex interactions between infection, the yard environment and child behaviours, and indicate that transmission would be reduced if latrines were closer to the home, and if open defecation and water spillage were reduced.

  3. Exposure of gnotobiotic Artemia franciscana larvae to abiotic stress promotes heat shock protein 70 synthesis and enhances resistance to pathogenic Vibrio campbellii

    PubMed Central

    Pineda, Carlos; MacRae, Thomas H.; Sorgeloos, Patrick; Bossier, Peter

    2008-01-01

    Larvae of the brine shrimp Artemia franciscana serve as important feed in fish and shellfish larviculture; however, they are subject to bacterial diseases that devastate entire populations and consequently hinder their use in aquaculture. Exposure to abiotic stress was shown previously to shield Artemia larvae against infection by pathogenic Vibrio, with the results suggesting a mechanistic role for heat shock protein 70. In the current report, combined hypothermic/hyperthermic shock followed by recovery at ambient temperature induced Hsp70 synthesis in Artemia larvae. Thermotolerance was also increased as was protection against infection by Vibrio campbellii, the latter indicated by reduced mortality and lower bacterial load in challenge tests. Resistance to Vibrio improved in the face of declining body mass as demonstrated by measurement of ash-free dry weight. Hypothermic stress only and acute osmotic insult did not promote Hsp70 expression and thermotolerance in Artemia larvae nor was resistance to Vibrio challenge augmented. The data support a causal link between Hsp70 accumulation induced by abiotic stress and enhanced resistance to infection by V. campbellii, perhaps via stimulation of the Artemia immune system. This possibility is now under investigation, and the work may reveal fundamental properties of crustacean immunity. Additionally, the findings are important in aquaculture where development of procedures to prevent bacterial infection of feed stock such as Artemia larvae is a priority. PMID:18347942

  4. Concerted Activity of IgG1 Antibodies and IL-4/IL-25-Dependent Effector Cells Trap Helminth Larvae in the Tissues following Vaccination with Defined Secreted Antigens, Providing Sterile Immunity to Challenge Infection

    PubMed Central

    Hewitson, James P.; Filbey, Kara J.; Esser-von Bieren, Julia; Camberis, Mali; Schwartz, Christian; Murray, Janice; Reynolds, Lisa A.; Blair, Natalie; Robertson, Elaine; Harcus, Yvonne; Boon, Louis; Huang, Stanley Ching-Cheng; Yang, Lihua; Tu, Yizheng; Miller, Mark J.; Voehringer, David; Le Gros, Graham; Harris, Nicola; Maizels, Rick M.

    2015-01-01

    Over 25% of the world's population are infected with helminth parasites, the majority of which colonise the gastrointestinal tract. However, no vaccine is yet available for human use, and mechanisms of protective immunity remain unclear. In the mouse model of Heligmosomoides polygyrus infection, vaccination with excretory-secretory (HES) antigens from adult parasites elicits sterilising immunity. Notably, three purified HES antigens (VAL-1, -2 and -3) are sufficient for effective vaccination. Protection is fully dependent upon specific IgG1 antibodies, but passive transfer confers only partial immunity to infection, indicating that cellular components are also required. Moreover, immune mice show greater cellular infiltration associated with trapping of larvae in the gut wall prior to their maturation. Intra-vital imaging of infected intestinal tissue revealed a four-fold increase in extravasation by LysM+GFP+ myeloid cells in vaccinated mice, and the massing of these cells around immature larvae. Mice deficient in FcRγ chain or C3 complement component remain fully immune, suggesting that in the presence of antibodies that directly neutralise parasite molecules, the myeloid compartment may attack larvae more quickly and effectively. Immunity to challenge infection was compromised in IL-4Rα- and IL-25-deficient mice, despite levels of specific antibody comparable to immune wild-type controls, while deficiencies in basophils, eosinophils or mast cells or CCR2-dependent inflammatory monocytes did not diminish immunity. Finally, we identify a suite of previously uncharacterised heat-labile vaccine antigens with homologs in human and veterinary parasites that together promote full immunity. Taken together, these data indicate that vaccine-induced immunity to intestinal helminths involves IgG1 antibodies directed against secreted proteins acting in concert with IL-25-dependent Type 2 myeloid effector populations. PMID:25816012

  5. Trichinella spiralis: effect of high temperature on infectivity in pork.

    PubMed

    Kotula, A W; Murrell, K D; Acosta-Stein, L; Lamb, L; Douglass, L

    1983-08-01

    Twenty gram samples of homogenized Boston shoulder from swine experimentally infected with Trichinella spiralis were sealed in plastic pouches, pressed to a uniform thickness of 2 mm, and subjected to water bath temperatures of 49, 52, 55, 60, and 63 +/- 0.5 C for intervals of 2 min to 6 hr, especially within the interval of 0 to 15 min. These times included a period of about 1 min at the start and a period of about 1 min at the end for temperature equilibration. Treated samples were rapidly chilled to 25 C and then digested in a 1% pepsin-HCl solution at 37 C for 18 hr to recover T. spiralis larvae. The recovered larvae were suspended in 2 ml saline; 1 ml of this suspension was introduced into the stomach of each of two rats. The linear equation, log (time) = 17.3 -0.302 (temperature), was calculated from the time required at each temperature for the inactivation of T. spiralis larvae. The correlation coefficient for that relationship was r = -0.994. Larvae heated in the meat to 55 C for 4 min retained their infectivity, but were rendered noninfective after 6 min at 55 C. At 60 C, larvae were not infective after only 2 min (zero dwell time); whereas at 52 C, 47 min were required to render the larvae noninfective. Larvae in meat heated to 49 C were infective after 5 hr but not after 6 hr. These data demonstrate that the destruction of infectivity of T. spiralis is time-temperature related.

  6. In vitro assessment of Argemone mexicana, Taraxacum officinale, Ruta chalepensis and Tagetes filifolia against Haemonchus contortus nematode eggs and infective (L3) larvae.

    PubMed

    Jasso Díaz, Gabriela; Hernández, Glafiro Torres; Zamilpa, Alejandro; Becerril Pérez, Carlos Miguel; Ramírez Bribiesca, J Efrén; Hernández Mendo, Omar; Sánchez Arroyo, Hussein; González Cortazar, Manasés; Mendoza de Gives, Pedro

    2017-08-01

    Argemone mexicana, Taraxacum officinale, Ruta chalepensis and Tagetes filifolia are plants with deworming potential. The purpose of this study was to evaluate methanolic extracts of aerial parts of these plants against Haemonchus contortus eggs and infective larvae (L3) and identify compounds responsible for the anthelmintic activity. In vitro probes were performed to identify the anthelmintic activity of plant extracts: egg hatching inhibition (EHI) and larvae mortality. Open column Chromatography was used to bio-guided fractionation of the extract, which shows the best anthelmintic effect. The lethal concentration to inhibit 50% of H. contortus egg hatching or larvae mortality (LC 50 ) was calculated using a Probit analysis. Bio-guided procedure led to the recognition of an active fraction (TF11) mainly composed by 1) quercetagitrin, 2) methyl chlorogenate and chlorogenic acid. Quercetagitrin (1) and methyl chlorogenate (2) did not show an important EHI activity (3-14%) (p < 0.05); however, chlorogenic acid (3) showed 100% of EHI (LC 50 248 μg/mL) (p < 0.05). Chlorogenic acid is responsible of the ovicidal activity and it seems that, this compound is reported for the first time with anthelmintic activity against a parasite of importance in sheep industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Cloning, Expression and Characterization of UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) from Wolbachia Endosymbiont of Human Lymphatic Filarial Parasite Brugia malayi

    PubMed Central

    Shahab, Mohd; Verma, Meenakshi; Pathak, Manisha; Mitra, Kalyan; Misra-Bhattacharya, Shailja

    2014-01-01

    Wolbachia, an endosymbiont of filarial nematode, is considered a promising target for treatment of lymphatic filariasis. Although functional characterization of the Wolbachia peptidoglycan assembly has not been fully explored, the Wolbachia genome provides evidence for coding all of the genes involved in lipid II biosynthesis, a part of peptidoglycan biosynthesis pathway. UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is one of the lipid II biosynthesis pathway enzymes and it has inevitably been recognized as an antibiotic target. In view of the vital role of MurA in bacterial viability and survival, MurA ortholog from Wolbachia endosymbiont of Brugia malayi (wBm-MurA) was cloned, expressed and purified for further molecular characterization. The enzyme kinetics and inhibition studies were undertaken using fosfomycin. wBm-MurA was found to be expressed in all the major life stages of B. malayi and was immunolocalized in Wolbachia within the microfilariae and female adults by the confocal microscopy. Sequence analysis suggests that the amino acids crucial for enzymatic activity are conserved. The purified wBm-MurA was shown to possess the EPSP synthase (3-phosphoshikimate 1-carboxyvinyltransferase) like activity at a broad pH range with optimal activity at pH 7.5 and 37°C temperature. The apparent affinity constant (K m) for the substrate UDP-N-acetylglucosamine was found to be 0.03149 mM and for phosphoenolpyruvate 0.009198 mM. The relative enzymatic activity was inhibited ∼2 fold in presence of fosfomycin. Superimposition of the wBm-MurA homology model with the structural model of Haemophilus influenzae (Hi-MurA) suggests binding of fosfomycin at the same active site. The findings suggest wBm-MurA to be a putative antifilarial drug target for screening of novel compounds. PMID:24941309

  8. BmNPV resistance of silkworm larvae resulting from the ingestion of TiO₂ nanoparticles.

    PubMed

    Li, Bing; Xie, Yi; Cheng, Zhe; Cheng, Jie; Hu, Rengping; Gui, Suxin; Sang, Xuezi; Sun, Qingqing; Zhao, Xiaoyang; Sheng, Lei; Shen, Weide; Hong, Fashui

    2012-12-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) causes infection in the silkworm that is often lethal. The infection is hard to prevent, partly because of the nature of the virus particles and partly because of the different strains of B. mori. Titanium dioxide nanoparticles (TiO₂ NPs) have been demonstrated to have antimicrobial properties. The present study investigated whether TiO₂ NPs added to an artificial diet can increase the resistance of B. mori larvae to BmNPV and examined the molecular mechanism behind any resistance shown. The results indicated that ingested TiO₂ NPs decreased reactive oxygen species and NO accumulation in B. mori larvae under BmNPV infection, which in turn led to a decrease in their growth inhibition and mortality. In addition, the TiO₂ NPs significantly promoted the expression of resistance-related genes, including those encoding superoxide dismutase, catalase, glutathione peroxidase, acetylcholine esterase, carboxylesterase, heat shock protein 21, glutathione S transferase o1, P53, and transferring and of genes encoding cytochrome p302 and nitric oxide synthase. These findings are a useful addition to the understanding of the mechanism of BmNPV resistance of B. mori larvae in response to TiO₂ NPs addition. Such information also provides a theoretical basis for the use of TiO₂ NPs in sericulture.

  9. Involvement of secondary metabolites in the pathogenesis of the American foulbrood of honey bees caused by Paenibacillus larvae.

    PubMed

    Müller, Sebastian; Garcia-Gonzalez, Eva; Genersch, Elke; Süssmuth, Roderich D

    2015-06-01

    The Gram-positive, spore-forming bacterium Paenibacillus larvae (P. larvae) is the causative agent of the epizootic American Foulbrood (AFB), a fatal brood disease of the western honey bee (Apis mellifera). AFB is one of the most destructive honey bee diseases since it is not only lethal for infected larvae but also for the diseased colonies. Due to the high impact of honey bees on ecology and economy this epizootic is a severe and pressing problem. Knowledge about virulence mechanisms and the underlying molecular mechanisms remain largely elusive. Recent genome sequencing of P. larvae revealed its potential to produce unknown secondary metabolites, like nonribosomal peptides and peptide-polyketide hybrids. This article highlights recent findings on secondary metabolites synthesized by P. larvae and discusses their role in virulence and pathogenicity towards the bee larvae.

  10. Light and scanning electron microscopical examination of the third stage larva of Physocephalus dromedarii (Nematoda: Spirocercidae)--an abomasal nematode of the one humped camel (Camelus dromedarius).

    PubMed

    Schuster, Rolf K; Wibbelt, Gudrun; Sivakumar, Saritha; Reiczigel, J

    2015-05-01

    The life cycle of Physocephalus dromedarii was studied under experimental conditions. Larvae obtained from naturally infected Scarabaeus cristatus and Aphodius sp. (Coleoptera: Scarabaeidae) were measured and examined in light and scanning electron microscopy and used to infect a dromedary as final host as well as chicken, mice and a toad as possible paratenic hosts. Larvae with the same morphology and similar measurements were found in naturally infected reptiles (Trapelus flavimaculatus, Eryx jayakari, Cerastes gasperettii). Body length of examined larvae varied between 1450 and 1700 μm. Dorsal, ventral and lateral lips, peg-like papillae and amphideal pits are located on the cephalic cone. There are two asymmetrical cervical deirids, long simple lateral wings and a knob-like posterior end covered with minute spines. In the camel, patency is reached within 12 weeks after infection while larvae in paratenic hosts migrate into the wall of the alimentary tract and become dormant.

  11. Epidemiology of hookworm infection in Soong nern district, Korat province, Thailand.

    PubMed

    Papasarathorn, T; Keittivuti, B; Keittivuti A-N; Rojanapremsuk, J

    1975-03-01

    Stool surveys in Soong Nern district, Korat Province, were done by the MF concentration technique. The intensity of hookworm infection, egg counts, results of treatment by anthelminthic drugs, observations on new infections and reinfections following treatment throughout the year and the density of nematode larvae in soil in the study area were investigated. Hookworm infection rates were high in Na-Glang village, both in adult villagers and school-aged children. The intensity of hookworm infections was considered mild and after treatment the numbers of eggs in the stools diminished or disappeared. New cases and reinfection increased during the rainy month, due to socio-environmental factors in the village that favoured the development of hookworm larvai in the soil. Although in this study it was impossible to distinguish hookworm larvae among the nematode larvae collected form soil it was highly probable that hookworm larvae were present. Control of hookworm infection in the study area was proposed by improvement of environmental sanitation and health education.

  12. Comparison of two techniques used for the recovery of third-stage strongylid nematode larvae from herbage.

    PubMed

    Krecek, R C; Maingi, N

    2004-07-14

    A laboratory trial to determine the efficacy of two methods in recovering known numbers of third-stage (L3) strongylid nematode larvae from herbage was carried out. Herbage samples consisting almost entirely of star grass (Cynodon aethiopicus) that had no L3 nematode parasitic larvae were collected at Onderstepoort, South Africa. Two hundred grams samples were placed in fibreglass fly gauze bags and seeded with third-stage strongylid nematode larvae at 11 different levels of herbage infectivity ranging from 50 to 8000 L3/kg. Eight replicates were prepared for each of the 11 levels of herbage infectivity. Four of these were processed using a modified automatic Speed Queen heavy-duty washing machine at a regular normal cycle, followed by isolation of larvae through centrifugation-flotation in saturated sugar solution. Larvae in the other four samples were recovered after soaking the herbage in water overnight and the larvae isolated with the Baermann technique of the washing. There was a strong correlation between the number of larvae recovered using both methods and the number of larvae in the seeded samples, indicating that the two methods give a good indication of changes in the numbers of larvae on pasture if applied in epidemiological studies. The washing machine method recovered higher numbers of larvae than the soaking and Baermann method at all levels of pasture seeding, probably because the machine washed the samples more thoroughly and a sugar centrifugation-flotation step was used. Larval suspensions obtained using the washing machine method were therefore cleaner and thus easier to examine under the microscope. In contrast, the soaking and Baermann method may be more suitable in field-work, especially in places where resources and equipment are scarce, as it is less costly in equipment and less labour intensive. Neither method recovered all the larvae from the seeded samples. The recovery rates for the washing machine method ranged from 18 to 41% while

  13. Ocular larva migrans caused by Toxocara cati in Mongolian gerbils and a comparison of ophthalmologic findings with those produced by T. canis.

    PubMed

    Akao, N; Takayanagi, T H; Suzuki, R; Tsukidate, S; Fujita, K

    2000-10-01

    To elucidate the pathogenic potential of Toxocara cari, we observed the ophthalmologic changes of the fundi in Mongolian gerbils, Meriones unguiculatus, after oral inoculation of 17 embryonated eggs/g body weight. Ophthalmic conditions in 8 T. cati-infected gerbils were monitored using an ophthalmoscope from day 0 to day 156 and were compared with those of 57 T. canis-infected gerbils. The results showed that T. cati larvae migrated into the eye of the gerbil and then elicited ophthalmic changes, including retinal (25%) and vitreous (50%) hemorrhaging, vasculitis (37.5%), and exudative lesions (25%). Lesions were less prevalent, however, in T. cati-infected than in T. canis-infected gerbils. Unlike in T. canis-infected gerbils, the hemorrhagic lesions did not reappear in T. cati-infected gerbils after they were absorbed. These findings suggested that T. cati larvae are a potentially hazardous pathogen for ocular toxocariasis and that Mongolian gerbils infected with T. cati may be a useful model for the study of human ocular toxocariasis caused by T. cati. This is the first study to report that T. cati larvae can induce ophthalmic lesions in the retina of gerbils.

  14. [Infection and physico-chemical characteristics of Anisakis among marine fish caught in Zhoushan Fishery].

    PubMed

    Wang, Jian-yue; Zhang, Jun-he; Lin, Qi; Zhang, Qian-tong; He, Wei-xian; Li, Ke-feng; Xu, Xu

    2010-09-01

    To study the rates of infection and physicochemical characteristics of the third stage Anisakis simplex larvae among marine fish caught in Zhoushan Fishery. Fish were dissected to detect Anisakis larvae and identified morphologically. The survival tolerance of the third stage Anisakis simplex larvae in various medium, anthelmintic drug, temperature were studied in laboratory. The total infection rate of Anisakis simplex larvae in fish was 49.10%. High rates of Anisakis infection were observed in hairtails, Pneumatophorus japonicus, Miichthys milky, Argyrosomus argentatus and Muraenesox cinereus (infection rates > 90 percent). The infection intensity of Anisakis per fish varied from 1 to 114. The mean intensity of Anisakis larvae was 15.20 per fish. 3314 Anisakis were detected in 218 marine fish. The survival tolerance of the third stage Anisakis simplex larvae in various Medium, anthelmintic drug, temperature were observed in laboratory condition. The third stage Anisakis simplex larvae showed a strong endurance to stock condiment. The anisakicidal effects of the high purity wine were more effective than that of the low purity wine. The anisakicidal effects of 6.25 g/L mebendazole composite were more effective than that of 18.75 g/L and also more effective than those of other drugs. The third stage Anisakis simplex larvae could survive with length up to 9 h and 12 h in condition of -20°C, -10°C and very sensitive to high temperature treatment. However, they could barely survive in more than 11 s and 1 s under the temperature of 50°C and 60°C. The percentage of infection was fairly high for Anisakis larvae of marine fish caught in Zhoushan Fishery. The third stage Anisakis simplex larvae was shown to have a fairly good tolerance to the external environments. The marine fish were frozen under -20°C beyond 24 h before they were sold on market and cooked with high temperature seemed to be helpful for preventing and controlling effectively the infection of Anisakis.

  15. Evaluation of blowfly larvae (Diptera: Calliphoridae) as possible reservoirs and mechanical vectors of African swine fever virus.

    PubMed

    Forth, J H; Amendt, J; Blome, S; Depner, K; Kampen, H

    2018-02-01

    In 2014, highly virulent African swine fever virus (ASFV) was introduced into the Baltic States and Poland, with new cases being reported almost every week from wild boar and also from domestic pigs. Contrary to initial predictions that the disease would either die out due to the high virulence of the virus strain or spread rapidly in westerly direction, the infection became endemic and spread slowly. The unexpected disease epidemiology led to the hypothesis that hitherto unconsidered factors might contribute to virus persistence and dispersal. To check whether arthropod species feeding and developing on infected carcasses might be involved, larvae of two commonly found blowfly species, Lucilia sericata and Calliphora vicina, were experimentally bred on ASFV-infected spleen tissue. After different time intervals, developing larvae and pupae were tested for infectious virus and viral DNA. By qPCR, contamination of the blowfly larvae and pupae with ASFV-DNA could be demonstrated even after several washing steps, proving the uptake of virus during feeding in the larval stage. However, infectious virus could never be isolated. By contrast, the larvae appeared to have inactivated ASFV in the offered tissue, which might be explained by the known anti-biotic effect of salivary secretions. It is concluded that immature blowfly stages do not play a relevant role as reservoirs or mechanical vectors of ASFV. © 2017 Blackwell Verlag GmbH.

  16. Visceral larvae as a predictive index of the overall level of fish batch infection in European anchovies (Engraulis encrasicolus): A rapid procedure for Food Business Operators to assess marketability.

    PubMed

    Guardone, L; Nucera, D; Pergola, V; Costanzo, F; Costa, E; Tinacci, L; Guidi, A; Armani, A

    2017-06-05

    The European anchovy (Engraulis encrasicolus), one of the most important pelagic fish resources in the Mediterranean Sea, is frequently infected by anisakid larvae. Food Business Operators (FBOs) should use appropriate sampling plans and analytical methods to avoid commercialization of massively infected batches and reduce the risk of transmission of viable zoonotic larvae. In this study, performed at FishLab (Department of Veterinary Sciences of the University of Pisa) during 2016, an official sampling plan was associated with a digestion protocol for the inspection of anchovies. Considering that anisakid larvae are usually located in the fish visceral cavity and in the adjacent muscles (VM), this part was analyzed. In particular, we assessed the reliability of the digestion of a subsample of 150g (±30g) of VM, randomly collected from 29 specimens, in estimating the marketability of the anchovies' batch. Fifty-seven samples of 29 anchovies were collected. Each anchovy was sectioned to separate VM. All the subsamples were digested, and visible larvae counted. A high correlation between the number of larvae in VM regions and in the total batch was observed, indicating a very significant contribution of the VM region on total number of parasites. The Mean Abundance (MA) was used to assess the batch marketability according to a threshold calculated on the basis of the maximum number of nematodes tolerated per sample. Considering that the MA can be calculated only when the number of examined specimens is known, the number of visible Larvae per gram of tissue (LpG) was calculated on 150g (±30g) of VM subsamples. A LpG marketability threshold was calculated dividing the maximum number of tolerated nematodes by the average weight of a sample of 29 anchovies calculated considering data available in literature. To evaluate the diagnostic performance of the LpG threshold, the marketability of 57 batches assessed on the basis of the MA threshold was assumed as the gold

  17. The Galleria mellonella larvae as an in vivo model for evaluation of Shigella virulence.

    PubMed

    Barnoy, Shoshana; Gancz, Hanan; Zhu, Yuewei; Honnold, Cary L; Zurawski, Daniel V; Venkatesan, Malabi M

    2017-07-04

    Shigella spp. causing bacterial diarrhea and dysentery are human enteroinvasive bacterial pathogens that are orally transmitted through contaminated food and water and cause bacillary dysentery. Although natural Shigella infections are restricted to humans and primates, several smaller animal models are used to analyze individual steps in pathogenesis. No animal model fully duplicates the human response and sustaining the models requires expensive animals, costly maintenance of animal facilities, veterinary services and approved animal protocols. This study proposes the development of the caterpillar larvae of Galleria mellonella as a simple, inexpensive, informative, and rapid in-vivo model for evaluating virulence and the interaction of Shigella with cells of the insect innate immunity. Virulent Shigella injected through the forelegs causes larvae death. The mortality rates were dependent on the Shigella strain, the infectious dose, and the presence of the virulence plasmid. Wild-type S. flexneri 2a, persisted and replicated within the larvae, resulting in haemocyte cell death, whereas plasmid-cured mutants were rapidly cleared. Histology of the infected larvae in conjunction with fluorescence, immunofluorescence, and transmission electron microscopy indicate that S. flexneri reside within a vacuole of the insect haemocytes that ultrastructurally resembles vacuoles described in studies with mouse and human macrophage cell lines. Some of these bacteria-laden vacuoles had double-membranes characteristic of autophagosomes. These results suggest that G. mellonella larvae can be used as an easy-to-use animal model to understand Shigella pathogenesis that requires none of the time and labor-consuming procedures typical of other systems.

  18. The Galleria mellonella larvae as an in vivo model for evaluation of Shigella virulence

    PubMed Central

    Barnoy, Shoshana; Gancz, Hanan; Zhu, Yuewei; Honnold, Cary L.; Venkatesan, Malabi M.

    2017-01-01

    ABSTRACT Shigella spp. causing bacterial diarrhea and dysentery are human enteroinvasive bacterial pathogens that are orally transmitted through contaminated food and water and cause bacillary dysentery. Although natural Shigella infections are restricted to humans and primates, several smaller animal models are used to analyze individual steps in pathogenesis. No animal model fully duplicates the human response and sustaining the models requires expensive animals, costly maintenance of animal facilities, veterinary services and approved animal protocols. This study proposes the development of the caterpillar larvae of Galleria mellonella as a simple, inexpensive, informative, and rapid in-vivo model for evaluating virulence and the interaction of Shigella with cells of the insect innate immunity. Virulent Shigella injected through the forelegs causes larvae death. The mortality rates were dependent on the Shigella strain, the infectious dose, and the presence of the virulence plasmid. Wild-type S. flexneri 2a, persisted and replicated within the larvae, resulting in haemocyte cell death, whereas plasmid-cured mutants were rapidly cleared. Histology of the infected larvae in conjunction with fluorescence, immunofluorescence, and transmission electron microscopy indicate that S. flexneri reside within a vacuole of the insect haemocytes that ultrastructurally resembles vacuoles described in studies with mouse and human macrophage cell lines. Some of these bacteria-laden vacuoles had double-membranes characteristic of autophagosomes. These results suggest that G. mellonella larvae can be used as an easy-to-use animal model to understand Shigella pathogenesis that requires none of the time and labor-consuming procedures typical of other systems. PMID:28277944

  19. A strain of Serratia marcescens pathogenic for larvae of Lymantria dispar: Infectivity and mechanisms of pathogenicity

    Treesearch

    J.D. Podgwaite; B.J. Cosenza

    1976-01-01

    The ED50 of a strain of Serratia marcescens for microinjected instar III and IV gypsy moth larvae was 7.5 and 14.5 viable cells, respectively. Percentage and rate of mortality were found to be highly variable among replicates of the same instar and between instars in free-feeding bioassays. Mortality in second instar larvae...

  20. The duration of passive protection against Taenia ovis larvae in lambs.

    PubMed

    Heath, D D; Yong, W K; Osborn, P J; Parmeter, S N; Lawrence, S B; Twaalfhoven, H

    1979-10-01

    In an attempt to induce passive protection in lambs against Taenia ovis larvae that would last for the 15-20 weeks from birth to slaughter as fat lambs, one group of ewes was immunized by a series of injections of 2000, 4000, 8000, 16 000 and 32 000 activated oncospheres of Taenia ovis prior to parturition. Another group of ewes was not immunized. All ewes had previously grazed pasture lightly infected with T. ovis eggs. Most lambs from non-immunized ewes developed cysts after oral infection with T. ovis eggs. However, no lambs from immunized ewes developed cysts up to and including 6 weeks after birth. Between 8 and 16 weeks after birth a proportion of lambs were found to be susceptible to infection. By 18 weeks after birth all lambs were apparently susceptible. The 99% confidence band for the mean duration of demonstrable complement-fixing antibody titres was 6.2-7.8 weeks for lambs from immunized ewes. The persistence of maternal protective antibody in some lambs could possibly preclude successful active immunization of all lambs against T. ovis larvae before 18 weeks of age.

  1. Transmission of lymphocystis disease virus to cultured gilthead seabream, Sparus aurata L., larvae.

    PubMed

    Cano, I; Valverde, E J; Garcia-Rosado, E; Alonso, M C; Lopez-Jimena, B; Ortiz-Delgado, J B; Borrego, J J; Sarasquete, C; Castro, D

    2013-06-01

    The transmission of lymphocystis disease virus (LCDV) to gilthead seabream, Sparus aurata L., larvae was investigated using fertilized eggs from a farm with previous reports of lymphocystis disease. LCDV genome was detected by PCR-hybridization in blood samples from 17.5% of the asymptomatic gilthead seabream broodstock analysed. Using the same methodology, eggs spawned from these animals were LCDV positive, as well as larvae hatched from them. The presence of infective viral particles was confirmed by cytopathic effects development on SAF-1 cells. Whole-mount in situ hybridization (ISH) and immunohistochemistry (IHC) showed the presence of LCDV in the epidermis of larvae hatched from LCDV-positive eggs. When fertilized eggs were disinfected with iodine, no viral DNA was detected either in eggs (analysed by PCR-hybridization) or in larvae (PCR-hybridization and ISH). These results suggest the vertical transmission of LCDV, the virus being transmitted on the egg surface. Larvae hatched from disinfected eggs remain LCDV negative during the endotrophic phase, as showed by PCR-hybridization, ISH and IHC. After feeding on LCDV-positive rotifers, viral antigens were observed in the digestive tract, which suggests that viral entry could be achieved via the alimentary canal, and that rotifers can act as a vector in LCDV transmission to gilthead seabream larvae. © 2012 Blackwell Publishing Ltd.

  2. A note on the correlation between rainfall and the prevalence of Gnathostoma spp. infective stage larvae in swamp eels in Thailand.

    PubMed

    Wiwanitkit, V

    2004-12-01

    Gnathostoma spinigerum is the major causative agent of human gnathostomiasis, a parasitic zoonosis with a great variety of clinical manifestations. Generally, humans are infected by consumption of third-stage larvae (L3) of G. spinigerum in infected hosts in the form of partially cooked or uncooked food. Surveys of the contamination of Gnathostoma spp. L3 in swamp eels are useful for prevention and control of diseases and have been continuously performed in Thailand. The author performed a retrospective study on 33 previous cross-sectional surveys with geographical data and the prevalence of Gnathostoma spp. L3 that covered 12 provinces in Thailand. The relation between rainfall (derived from the geographical data) and the prevalence of Gnathostomo spp. L3 in swamp eels (derived from the overall infection rate of Gnathostoma spp. L3) was investigated. The least-square equation plot rainfall (y) versus prevalence (x) is y= 9.68x + 1,035.12 (r = 0.83; p < 0.01). A significant correlation was discerned between rainfall and the prevalence of eel infection but not for the season of the survey. Similar to the previous study, the prevalence of eel infection may depend on rainfall rather than season. However, this study focused on only 33 cross-sectional surveys in Thailand; further similar study in other countries to assess the correlation between rainfall and the prevalence of infection is required to substantiate this conclusion.

  3. qPCR estimates of Babesia bovis and Babesia bigemina infection levels in beef cattle and Rhipicephalus microplus larvae.

    PubMed

    Giglioti, Rodrigo; de Oliveira, Henrique Nunes; Okino, Cintia Hiromi; de Sena Oliveira, Márcia Cristina

    2018-05-04

    Babesia spp. are tick-transmitted intraerythrocytic apicomplexan parasites that infect wild and domestic animals. Babesia bovis and B. bigemina are endemic and responsible for enormous economic losses to the livestock industry in most of the Brazilian territory, wherein the tick Rhipicephalus microplus is the unique vector. Better understanding of epidemiology and parasite-host interactions may improve the tools for disease control and genetic management for selection of resistant animals. This study aimed to detect, quantify and measure the correlation between B. bigemina and B. bovis infection levels in bovine blood and into tick, by absolute quantification of hemoparasite DNA using qPCR. Blood bovine samples and larvae pools from 10 engorged R. microplus females were collected from each Canchim heifers (5/8 Charolais + 3/8 zebu, n = 36). All evaluated samples were positive for both Babesia species tested. Correlations of B. bovis and B. bigemina levels between cattle and tick host were 0.58 and 0.66, respectively. These high positive correlation coefficients indicate that parasitemia load in the bovine may be dependent on or may determine the parasitemia load in the ticks.

  4. An abundantly expressed mucin-like protein from Toxocara canis infective larvae: the precursor of the larval surface coat glycoproteins.

    PubMed Central

    Gems, D; Maizels, R M

    1996-01-01

    Evasion of host immunity by Toxocara canis infective larvae is mediated by the nematode surface coat, which is shed in response to binding by host antibody molecules or effector cells. The major constituent of the coat is the TES-120 glycoprotein series. We have isolated a 730-bp cDNA from the gene encoding the apoprotein precursor of TES-120. The mRNA is absent from T. canis adults but hyperabundant in larvae, making up approximately 10% of total mRNA, and is trans-spliced with the nematode 5' leader sequence SL1. It encodes a 15.8-kDa protein (after signal peptide removal) containing a typical mucin domain: 86 amino acid residues, 72.1% of which are Ser or Thr, organized into an array of heptameric repeats, interspersed with proline residues. At the C-terminal end of the putative protein are two 36-amino acid repeats containing six Cys residues, in a motif that can also be identified in several genes in Caenorhabditis elegans. Although TES-120 displays size and charge heterogeneity, there is a single copy gene and a homogeneous size of mRNA. The association of overexpression of some membrane-associated mucins with immunosuppression and tumor metastasis suggests a possible model for the role of the surface coat in immune evasion by parasitic nematodes. Images Fig. 1 Fig. 4 PMID:8643687

  5. Strongyloides stercoralis Infection in Alcoholic Patients

    PubMed Central

    Pacheco, Flavia T. F.; Souza, Joelma N.; Silva, Mônica L. S.; Inês, Elizabete J.; Soares, Neci M.

    2016-01-01

    The course of Strongyloides stercoralis infection is usually asymptomatic with a low discharge of rhabditoid larva in feces. However, the deleterious effects of alcohol consumption seem to enhance the susceptibility to infection, as shown by a fivefold higher strongyloidiasis frequency in alcoholics than in nonalcoholics. Moreover, the association between S. stercoralis infection and alcoholism presents a risk for hyperinfection and severe strongyloidiasis. There are several possible mechanisms for the disruption of the host-parasite equilibrium in ethanol-addicted patients with chronic strongyloidiasis. One explanation is that chronic ethanol intake stimulates the hypothalamic-pituitary-adrenal (HPA) axis to produce excessive levels of endogenous cortisol, which in turn can lead to a deficiency in type 2 T helper cells (Th2) protective response, and also to mimic the parasite hormone ecdysone, which promotes the transformation of rhabditiform larvae to filariform larvae, leading to autoinfection. Therefore, when untreated, alcoholic patients are continuously infected by this autoinfection mechanism. Thus, the early diagnosis of strongyloidiasis and treatment can prevent serious forms of hyperinfection in ethanol abusers. PMID:28105424

  6. The effect of Strongylus vulgaris larvae on equine intestinal myoelectrical activity.

    PubMed

    Lester, G D; Bolton, J R; Cambridge, H; Thurgate, S

    1989-06-01

    The myoelectrical activity of the ileum, caecum and large colon was monitored from Ag-AgCl bipolar recording electrodes in four conscious 'parasite-naive' weanling foals. All foals were inoculated with 1000 infective 3rd-stage Strongylus vulgaris larvae and alterations to the myoelectrical activity observed. The frequencies of caecal and colonic spike bursts increased significantly in all post infection periods coinciding with assumed larval penetration into the intestinal mucosa and migration through the vasculature. Peaks in caecal and colonic activity occurred at Days 1 to 5 post infection. In the caecum, peaks occurred again at Days 15 and 31 post infection, preceding similar rises in colonic spike burst frequency at Days 19 and 35. Longer term changes indicated a return towards pre-infection levels of activity suggesting smooth muscle adaptation to decreased blood flow. The analysis of caecal and colonic spike burst propagation indicated that the increases in burst frequency were not attributable to an increase in the propagation of spike bursts in any particular direction, but rather to proportional increases in all directions of activity. There was a slight decrease in the simple ileal spike burst frequency immediately post-infection. None of the experimental animals exhibited signs of abdominal pain during the trial, and there was no evidence of bowel infarction at post mortem examination despite the presence of severe parasite-induced arterial lesions. The results suggest that increased caecal and colonic motility is an important host response in susceptible foals exposed to S. vulgaris larvae.

  7. Apoptotic impact on Brugia malayi by sulphonamido-quinoxaline: search for a novel therapeutic rationale.

    PubMed

    Bhoj, Priyanka S; Ingle, Rahul G; Goswami, Kalyan; Jena, Lingaraj; Wadher, Shailesh

    2018-05-01

    Human lymphatic filariasis although not fatal but poses serious socioeconomic burden due to associated disability. This is reflected by the huge magnitude of the estimated disability-adjusted life years of about 5.09 million. Therefore, following WHO mandate, our earlier studies on antifilarial drug development revealed the significance of apoptosis. Apoptotic impact has been implicated in anticancer rationale of several drugs. In this study, we explored the antifilarial potential of sulphonamido-quinoxaline compounds, shown to be specific inhibitor for c-Met kinase in human cancer cells. Out of studied compounds, Q4, showing favorable drug-likeness and medicinal chemistry properties on bioinformatics platform along with subsequently recorded lowest IC 100 value, was considered as a suitable antifilarial candidate. Significant apoptosis due to mitochondrial involvement was recorded in drug-treated parasite unlike untreated control. In spite of homology between human c-Met kinase and Brugia malayi counterpart, comparative docking result of this compound showed more favorable binding parameters with the parasitic target. The wide gap between IC 100 and LD 50 values further confirmed the therapeutic safety. We propose sulphonamido-quinoxaline derivative as a lead candidate for antifilarial drug development. Further study is warranted to authenticate parasitic c-Met kinase as a novel therapeutic target reminiscent of anticancer rationale implicating inhibition of proliferation.

  8. Nematode cysts and larvae found in Achatina fulica Bowdich, 1822.

    PubMed

    Franco-Acuña, D O; Pinheiro, J; Torres, E J L; Lanfredi, R M; Brandolini, S V P B

    2009-02-01

    This study describes the morphology of the nematode cysts and larvae found in Achatina fulica (giant African snail) in Brazil. Sixty snails were collected in Mesquita, Rio de Janeiro State. Fourteen of the snails were naturally infected. The cysts were spherical, pink colored and measured 0.97 to 1.57 mm in diameter. In the majority of cases they had a single larvae involved in amorphous material. A total of 222 encysted larvae were recovered. Of these, 30 were utilized in the morphological study. The length of the larvae varied from 2.57 to 5.8 mm and they were classified as small--up to 3.5 mm; medium--from 3.53 to 4.5 mm; and large--greater than 4.52 mm. The average length of the larvae in the three groups was 2.85, 3.87 and 5.23 mm, respectively. The larval cuticle was white, shiny and transversally striated until the posterior end of the body. At the anterior end there is a mouth with three lips, with amphids and papillae, followed by a muscular esophagus with average length of 0.61 mm, terminating in an esophageal bulb and having a nerve ring in the middle third of the esophagus, and an intestine with an opening near the posterior end. The tail begins from this opening and has two types of ends: short and abrupt or long and gradually tapering. The difference in the tail end can suggest sexual dimorphism, although no primordial reproductive structures were observed. These characteristics were not sufficient to identify the larvae, so there is a need for further study.

  9. Infectivity of a mermithid nematode Romanomermis iyengari (Welch) in different conductivity levels under laboratory and field conditions.

    PubMed

    Paily, K P; Arunachalam, N; Somachary, N; Balaraman, K

    1991-06-01

    Infectivity of R. iyengari was examined by exposing mosquito (Culex quinquefasciatus) larvae to the preparasite at different conductivity levels. The preparasite infected 63.5, 30, 11, 1.5 and 0.5% of the mosquito larvae respectively at 2000, 2500, 3000, 3300 and 3600 mu ho/cm. Although, 62-69% of the preparasite survived at 4000-5400 mu ho/cm, it did not infect. Application of preparasite to tree-holes resulted in 53-63% infection of Aedes albopictus larvae initially. On 6th day the infection level was 40% which decreased further to 7% by 15th day. The infection reappeared on 38th day indicating that R. iyengari has not only infected mosquito larvae as soon as they were applied to tree-holes in which the conductivity was 600-2800 mu ho/cm but also got established there.

  10. Contamination of the environment by strongylid (Nematoda: Strongylidae) infective larvae at horse farms of various types in Ukraine.

    PubMed

    Kuzmina, Tetiana A

    2012-05-01

    Analysis of the influence of horse-keeping conditions by contamination of the environment (pastures, paddocks, and stalls) by the strongylid infective larvae (L(3)) was carried out at various types of horse farms, hippodromes, and riding clubs in Ukraine. A total of 1,237 horses from three types of horse-keeping conditions were examined. Epidemiological studies of stall and grazing area (pasture and paddocks) contamination by L(3) were performed at hippodrome (stalled horse-keeping) and horse farms with stall/paddock-keeping and stall/pasture-keeping conditions. Grass and stall litter samples were examined by the Baermann procedure. It was found that horses of stall-keeping conditions had the lowest level of strongylid infection (prevalence 46.4-77.8%, average infection 25.6-92.9 eggs per gram of feces (EPG)) and lowest proportion of large strongyle L(3) in coprocultures (1.6-11.3%). Horses of stall/pasture-keeping conditions were the most infected (prevalence 95.1-100%, average infection 198.2-453.7 EPG), and the proportion of large strongyle L(3) was 17.3-24.7%. Strongyle L(3) were found in litter of all parts of individual stalls; areas at the stall center, "toilet", and entrance were the most contaminated. The highest L(3) number in stall litter was registered in summer. Contamination of permanent pasture grass by L(3) was notably lower than grass in paddocks (86.3-161.4 L(3)/kg compared with 305.9-409.1 L(3)/kg). The highest level of pasture grass contamination was observed in the middle of summer (July)--up 970.7 L(3)/kg. The results obtained confirmed importance of environmental contamination in epidemiology of horse strongylidosis at various types of horse-keeping conditions.

  11. Molecular Genotyping of Anisakis Larvae in Middle Eastern Japan and Endoscopic Evidence for Preferential Penetration of Normal over Atrophic Mucosa

    PubMed Central

    Arai, Toshio; Akao, Nobuaki; Seki, Takenori; Kumagai, Takashi; Ishikawa, Hirofumi; Ohta, Nobuo; Hirata, Nobuto; Nakaji, So; Yamauchi, Kenji; Hirai, Mitsuru; Shiratori, Toshiyasu; Kobayashi, Masayoshi; Fujii, Hiroyuki; Ishii, Eiji; Naito, Mikio; Saitoh, Shin-ichi; Yamaguchi, Toshikazu; Shibata, Nobumitsu; Shimo, Masamune; Tokiwa, Toshihiro

    2014-01-01

    Background Anisakiasis is a parasitic disease caused primarily by Anisakis spp. larvae in Asia and in Western countries. The aim of this study was to investigate the genotype of Anisakis larvae endoscopically removed from Middle Eastern Japanese patients and to determine whether mucosal atrophy affects the risk of penetration in gastric anisakiasis. Methods In this study, 57 larvae collected from 44 patients with anisakiasis (42 gastric and 2 colonic anisakiasis) were analyzed retrospectively. Genotyping was confirmed by restriction fragment length polymorphism (RFLP) analysis of ITS regions and by sequencing the mitochondrial small subunit (SSU) region. In the cases of gastric anisakiasis, correlation analyses were conducted between the frequency of larval penetration in normal/atrophic area and the manifestation of clinical symptoms. Results Nearly all larvae were A. simplex seusu stricto (s.s.) (99%), and one larva displayed a hybrid genotype. The A. simplex larvae penetrated normal mucosa more frequently than atrophic area (p = 0.005). Finally, patients with normal mucosa infection were more likely to exhibit clinical symptoms than those with atrophic mucosa infection (odds ratio, 6.96; 95% confidence interval, 1.52–31.8). Conclusions In Japan, A. simplex s.s. is the main etiological agent of human anisakiasis and tends to penetrate normal gastric mucosa. Careful endoscopic examination of normal gastric mucosa, particularly in the greater curvature of the stomach will improve the detection of Anisakis larvae. PMID:24586583

  12. Biological control of infective larvae of a gastro-intestinal nematode (Teladorsagia circumcincta) and a small lungworm (Muellerius capillaris) by Duddingtonia flagrans in goat faeces.

    PubMed

    Paraud, C; Chartier, C

    2003-01-01

    The high prevalence of benzimidazole-resistant nematodes in French grazing dairy goat flocks led to a search for nematode-control schemes based on integrated approaches with non-chemical options, like vaccination, grazing management, or biological control using nematophagous fungi. The effect of the daily feeding of goats with spores of the nematophagous fungus Duddingtonia flagrans on third-stage larvae (L3) of Teladorsagia circumcincta was examined in faecal cultures. In addition, the effect of D. flagrans on the survival of first-stage larvae (L1) of Muellerius capillaris was tested. Twenty-two culled dairy goats previously raised in a zero-grazing system were twice infected at monthly intervals with 5,000 and then 7,500 T. circumcincta L3. Eight animals were infected with a benzimidazole-susceptible (BZs) strain while the remainder received a benzimidazole-resistant one (BZr). Six culled goats naturally infected with M. capillaris were purchased from private farms. All the goats were divided in two groups, one group receiving daily 5 x 10(5) chlamydospores of D. flagrans/kg body weight per goat for seven consecutive days in the food, the other group acting as control. For T. circumcincta-infected goats, individual egg counts and coprocultures (13 days, 25 degrees C) followed by L3 extraction with the Baermann method were performed. For M. capillaris-infected goats, extraction of L1 with the Baermann apparatus was individually performed on day 0 and after coprocultures on days 7, 10 and 14. Reductions in percentage development of T. circumcincta L3 in fungus groups compared with control groups ranged from 84% (BZs strain) to 90% (BZr strain). A decrease in M. capillaris L1 recovery was noted on days 7 and 10 (a reduction of 70% compared with day 0) and on day 14 (85%), but this pattern was similar in both groups, whether receiving the fungus or not. At the dosage of 5 x 10(5) spores/kg body weight, D. flagrans was highly effective in reducing the larval

  13. Magnetic Stirrer Method for the Detection of Trichinella Larvae in Muscle Samples.

    PubMed

    Mayer-Scholl, Anne; Pozio, Edoardo; Gayda, Jennifer; Thaben, Nora; Bahn, Peter; Nöckler, Karsten

    2017-03-03

    Trichinellosis is a debilitating disease in humans and is caused by the consumption of raw or undercooked meat of animals infected with the nematode larvae of the genus Trichinella. The most important sources of human infections worldwide are game meat and pork or pork products. In many countries, the prevention of human trichinellosis is based on the identification of infected animals by means of the artificial digestion of muscle samples from susceptible animal carcasses. There are several methods based on the digestion of meat but the magnetic stirrer method is considered the gold standard. This method allows the detection of Trichinella larvae by microscopy after the enzymatic digestion of muscle samples and subsequent filtration and sedimentation steps. Although this method does not require special and expensive equipment, internal controls cannot be used. Therefore, stringent quality management should be applied throughout the test. The aim of the present work is to provide detailed handling instructions and critical control points of the method to analysts, based on the experience of the European Union Reference Laboratory for Parasites and the National Reference Laboratory of Germany for Trichinella.

  14. Galleria mellonella (greater wax moth) larvae as a model for antibiotic susceptibility testing and acute toxicity trials.

    PubMed

    Ignasiak, Katarzyna; Maxwell, Anthony

    2017-08-29

    Infectivity trials and toxicity testing in rodents are important prerequisites to the use of compounds in man. However, trials in rats and mice are expensive and there are ethical considerations. Galleria mellonella (greater wax moth) larvae are a potential alternative. We have assessed the use of these insects in infectivity trials and toxicity testing. Using four bacterial species (two Gram-negative and two Gram-positive) we have assessed the efficacy of four antibiotics against infections in Galleria and compared the antibiotic susceptibility with that in humans. In general, we find a good correlation. Similarly, we have assessed 11 compounds (initially tested blind) for their toxicity in Galleria and compared this with toxicity trials in mice and rats. Again we found a good correlation between toxicity in Galleria and that in rodents. We have found, in our hands, that G. mellonella larvae can be used in infectivity trials and toxicity testing, and that these assays represent an inexpensive and readily executable alternative to testing in rodents.

  15. Anisakid larva parasitizing Plagioscion squamosissimus in Marajó Bay and Tapajós River, state of Pará, Brazil.

    PubMed

    Fontenelle, Gabrielle; Knoff, Marcelo; Felizardo, Nilza Nunes; Torres, Eduardo José Lopes; Matos, Edilson Rodrigues; Gomes, Delir Corrêa; São Clemente, Sérgio Carmona de

    2016-01-01

    In November 2014 and May 2015, a total of 44 specimens of the South American silver croaker Plagioscion squamosissimus were collected: 30 in Marajó Bay and 14 in the Tapajós River, state of Pará, Brazil. The aim was to investigate the presence of anisakid nematodes and determine their parasitism indices and sites of infection, because of their importance regarding health inspection. Sixty-nine Anisakis sp. larvae were found; among them, 16 larvae in seven fish collected in Marajó Bay and 53 larvae in four fish in the Tapajós River. The parasitism indices of the nematodes collected from the fish in Marajó Bay comprised prevalence (P) of 23%, mean infection intensity (MI) of 2.28, mean abundance (MA) of 0.53, range of infection (RI) of 1-4, and infection site (IS) in the mesentery. The fish from the Tapajós River showed P = 28%, MI = 13.2, MA = 3.8, RI = 1-22, and IS = mesentery and intestine. To assist in taxonomic identification, images of the specimens obtained through optical microscopy with Nomarski's interferential contrast system and scanning electron microscopy were used. This is the first record of Anisakis sp. parasitizing P. squamosissimus.

  16. A novel mode of induction of the humoral innate immune response in Drosophila larvae

    PubMed Central

    Kenmoku, Hiroyuki

    2017-01-01

    ABSTRACT Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer. PMID:28250052

  17. Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor).

    PubMed

    Gregorc, Aleš; Evans, Jay D; Scharf, Mike; Ellis, James D

    2012-08-01

    Honey bee (Apis mellifera) larvae reared in vitro were exposed to one of nine pesticides and/or were challenged with the parasitic mite, Varroa destructor. Total RNA was extracted from individual larvae and first strand cDNAs were generated. Gene-expression changes in larvae were measured using quantitative PCR (qPCR) targeting transcripts for pathogens and genes involved in physiological processes, bee health, immunity, and/or xenobiotic detoxification. Transcript levels for Peptidoglycan Recognition Protein (PGRPSC), a pathogen recognition gene, increased in larvae exposed to Varroa mites (P<0.001) and were not changed in pesticide treated larvae. As expected, Varroa-parasitized brood had higher transcripts of Deformed Wing Virus than did control larvae (P<0.001). Varroa parasitism, arguably coupled with virus infection, resulted in significantly higher transcript abundances for the antimicrobial peptides abaecin, hymenoptaecin, and defensin1. Transcript levels for Prophenoloxidase-activating enzyme (PPOact), an immune end product, were elevated in larvae treated with myclobutanil and chlorothalonil (both are fungicides) (P<0.001). Transcript levels for Hexameric storage protein (Hsp70) were significantly upregulated in imidacloprid, fluvalinate, coumaphos, myclobutanil, and amitraz treated larvae. Definitive impacts of pesticides and Varroa parasitism on honey bee larval gene expression were demonstrated. Interactions between larval treatments and gene expression for the targeted genes are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Gnathostoma infection in Nakhon Nayok and Prachin Buri, Central Thailand.

    PubMed

    Rojekittikhun, Wichit; Chaiyasith, Tossapon; Nuamtanong, Supaporn; Pubampen, Somchit; Maipanich, Wanna; Tungtrongchitr, Rungsunn

    2002-09-01

    Gnathostoma infection in Nakhon Nayok and Prachin Buri Provinces, Central Thailand, was investigated. The prevalence and intensity of infection of swamp eels were determined; dog fecal samples and fresh-water copepods were examined for evidence of infection. The overall prevalence of eel infection was 38.1% (117/307) in Nakhon Nayok and 24.0% (74/308) in Prachin Buri--the former rate being significantly higher than the latter. Most of the positive Nalkhon Nayok eels (53.8%) harbored only 1-9 larvae; only one eel bore more than 50 larvae. In Prachin Buri, 67.6% of the positive eels harbored 1-9 larvae; again, only one eel bore more than 50 larvae. The mean number of 11.0 +/- 10.4 larvae/eel in Nakhon Nayok was not significantly different from that of Prachin Buri (9.3 +/- 11.4). A total of 1,292 gnathostome larvae were recovered from 307 eels in Nakhon Nayok. Of these, 52.3% had accumulated in the liver and 47.7% had spread throughout the muscles. In eels from Prachin Buri, 50.6% and 49.4% of the total of 688 larvae (from 308 eels) were found in the liver and muscles, respectively. The larvae preferred encysting in ventral of muscles rather than dorsal part; they preferred the middle portion to the anterior and posterior portions. The average length of gnathostome larvae recovered from Nakhon Nayok eels was 4.0 +/- 0.5 mm (range 2.5-5.1 mm) and the average body width was 0.40 +/- 0.05 mm (range 0.29-0.51 mm). Those from eels in Prachin Buri were 3.9 +/- 0.5 mm (range 2.2-5.1 mm) and 0.34 +/- 0.05 mm (range 0.20-0.48 mm), respectively. The mean body length and width of the larvae from eels in Nakhon Nayok were significantly greater than those of the larvae from eels in Prachin Buri. In Ban Phrao, Nakhon Nayok, none of the first 44 fecal specimens examined was positive. Of the second (68) and the third (70) specimens, one (1.5%) and two (2.9%) samples were positive. However, six months after the third fecal collection, no eggs were found. In Tha Ngam, Prachin Buri, no

  19. Hookworm infection

    MedlinePlus

    ... intestinal wall and suck blood, which results in iron deficiency anemia and protein loss. Adult worms and larvae ... problems that may result from hookworm infection include: Iron deficiency anemia , caused by loss of blood Nutritional deficiencies ...

  20. Paenilamicin: structure and biosynthesis of a hybrid nonribosomal peptide/polyketide antibiotic from the bee pathogen Paenibacillus larvae.

    PubMed

    Müller, Sebastian; Garcia-Gonzalez, Eva; Mainz, Andi; Hertlein, Gillian; Heid, Nina C; Mösker, Eva; van den Elst, Hans; Overkleeft, Herman S; Genersch, Elke; Süssmuth, Roderich D

    2014-09-26

    The spore-forming bacterium Paenibacillus larvae is the causative agent of American Foulbrood (AFB), a fatal disease of honey bees that occurs worldwide. Previously, we identified a complex hybrid nonribosomal peptide/polyketide synthesis (NRPS/PKS) gene cluster in the genome of P. larvae. Herein, we present the isolation and structure elucidation of the antibacterial and antifungal products of this gene cluster, termed paenilamicins. The unique structures of the paenilamicins give deep insight into the underlying complex hybrid NRPS/PKS biosynthetic machinery. Bee larval co-infection assays reveal that the paenilamicins are employed by P. larvae in fighting ecological niche competitors and are not directly involved in killing the bee larvae. Their antibacterial and antifungal activities qualify the paenilamicins as attractive candidates for drug development. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Parasitic pulmonary eosinophilia.

    PubMed

    Chitkara, Rajinder K; Krishna, Ganesh

    2006-04-01

    Parasitic infections, although common in tropical and subtropical regions, are prevalent worldwide because of changing immigration patterns and in international travel. The burden of worm infection is enormous and the intensity of infection is usually high among the poor and in immunocompromised individuals. Pulmonary eosinophilia occurs in almost all metazoan infections. In the Western world, the most common infections are caused by Strongyloides, Ascaris, Toxocara, and Ancylostoma species. Most of the nematodes multiply within the human host and cause pulmonary eosinophilia during larval migration through the lungs. Despite larval migration through the lungs, there is usually no permanent lung damage. The result is an increased number of eosinophils in the airways or lung parenchyma with or without peripheral eosinophilia. Löffler's syndrome, visceral larva migrans, and tropical pulmonary eosinophilia are the most common infections that cause pulmonary eosinophilia. The most serious parasitic eosinophilic lung disease is tropical pulmonary eosinophilia, a disorder caused by the filarial worms Wuchereria bancrofti and Brugia malayi, in which cases have typically been reported to masquerade acute or refractory bronchial asthma. Increasing awareness, newer diagnostic techniques, preventative measures, and antiparasitic drugs are important in reducing the worldwide morbidity and mortality from parasitic helminths and protozoa. This review focuses on common and some uncommon causes of pulmonary parasitic eosinophilia and their manifestations, diagnosis, and management.

  2. Insect Larvae: A New Platform to Produce Commercial Recombinant Proteins.

    PubMed

    Targovnik, Alexandra M; Arregui, Mariana B; Bracco, Lautaro F; Urtasun, Nicolas; Baieli, Maria F; Segura, Maria M; Simonella, Maria A; Fogar, Mariela; Wolman, Federico J; Cascone, Osvaldo; Miranda, Maria V

    2016-01-01

    In Biotechnology, the expression of recombinant proteins is a constantly growing field and different hosts are used for this purpose. Some valuable proteins cannot be produced using traditional systems. Insects from the order Lepidoptera infected with recombinant baculovirus have appeared as a good choice to express high levels of proteins, especially those with post-translational modifications. Lepidopteran insects, which are extensively distributed in the world, can be used as small protein factories, the new biofactories. Species like Bombyx mori (silkworm) have been analyzed in Asian countries to produce a great number of recombinant proteins for use in basic and applied science and industry. Many proteins expressed in this larva have been commercialized. Several recombinant proteins produced in silkworms have already been commercialized. On the other hand, species like Spodoptera frugiperda, Heliothis virescens, Rachiplusia nu, Helicoverpa zea and Trichoplusia ni are widely distributed in both the occidental world and Europe. The expression of recombinant proteins in larvae has the advantage of its low cost in comparison with insect cell cultures. A wide variety of recombinant proteins, including enzymes, hormones and vaccines, have been efficiently expressed with intact biological activity. The expression of pharmaceutically proteins, using insect larvae or cocoons, has become very attractive. This review describes the use of insect larvae as an alternative to produce commercial recombinant proteins.

  3. Poly(d,l)-lactide-co-glycolide (PLGA) microspheres as immunoadjuvant for Brugia malayi antigens.

    PubMed

    Saini, Vinay; Verma, Shiv Kumar; Murthy, P Kalpana; Kohli, Dharmveer

    2013-08-28

    Recently we identified in Brugia malayi adult worm extract (BmA) a pro-inflammatory 54-68kDa SDS-PAGE resolved fraction F6 that protects the host from the parasite via Th1/Th2 type responses. We are currently investigating F6 as a potential source of vaccine candidate(s) and the present study is aimed at investigating the suitability of poly(d,l)-lactide-co-glycolide microspheres (PLGA-Ms) as immunoadjuvant for the antigen administration in a single dose. PLGA-Ms were prepared aseptically by a modified double emulsion (w/o/w) solvent evaporation technique and their size, shape, antigen adsorption efficiency, in-process stability, and antigen release were characterized. Swiss mice were immunized by a single subcutaneous administration of BmA and F6 adsorbed on PLGA-Ms (lactide:glycolide ratios 50:50 and 75:25) and the immune responses were compared with administration of 1 or 2 doses of plain BmA and F6. Specific IgG, IgG1, IgG2a, IgG2b, IgE levels in serum, cellular-proliferative response and release of IFN-γ, TNF-α and nitric oxide from the cells of immunized host in response to the antigens/LPS/Con A challenge and antibody-dependant cellular cytotoxicity (ADCC) to parasite life stages were determined. The average size of PLGA-Ms 50:50 was smaller than the size of PLGA-Ms 75:25 and the % antigen adsorption efficiency of PLGA-Ms 50:50 was greater than PLGA-Ms 75:25. Single shot injection of PLGA-Ms 50:50/75:25-BmA/F6 produced better and stronger IgG, IgG1/IgG2a and cell-mediated immune responses than even two injections of plain BmA or F6. Further, PLGA-Ms 50:50-F6 produced stronger responses than PLGA-Ms 50:50-BmA. Anti-PLGA-Ms 50:50-F6 antibodies elicited higher ADCC response to infective larval and microfilarial stages of the parasite than anti-PLGA-Ms 75:25-F6 antibodies. The findings demonstrate that PLGA-Ms 50:50 is an excellent adjuvant for use with F6 in a single administration. This is the first ever report on PLGA as immunoadjuvant for filarial antigens

  4. Different extracts of Zingiber officinale decrease Enterococcus faecalis infection in Galleria mellonella.

    PubMed

    Maekawa, Lilian Eiko; Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos; Valera, Marcia Carneiro

    2015-01-01

    Dried, fresh and glycolic extracts of Zingiber officinale were obtained to evaluate the action against G. mellonella survival assay against Enterococcus faecalis infection. Eighty larvae were divided into: 1) E. faecalis suspension (control); 2) E. faecalis + fresh extract of Z. officinale (FEO); 3) E. faecalis + dried extract of Z. officinale (DEO); 4) E. faecalis + glycolic extract of Z. officinale (GEO); 5) Phosphate buffered saline (PBS). For control group, a 5 μL inoculum of standardized suspension (107 cells/mL) of E. faecalis (ATCC 29212) was injected into the last left proleg of each larva. For the treatment groups, after E. faecalis inoculation, the extracts were also injected, but into the last right proleg. The larvae were stored at 37 °C and the number of dead larvae was recorded daily for 168 h (7 days) to analyze the survival curve. The larvae were considered dead when they did not show any movement after touching. E. faecalis infection led to the death of 85% of the larvae after 168 h. Notwithstanding, in treatment groups with association of extracts, there was an increase in the survival rates of 50% (GEO), 61% (FEO) and 66% (DEO) of the larvae. In all treatment groups, the larvae exhibited a survival increase with statistically significant difference in relation to control group (p=0.0029). There were no statistically significant differences among treatment groups with different extracts (p=0.3859). It may be concluded that the tested extracts showed antimicrobial activity against E. faecalis infection by increasing the survival of Galleria mellonella larvae.

  5. Toxicity of Bacillus sphaericus strain 2362 on Mansonia spp. larvae.

    PubMed

    Petcharat, J

    1991-09-01

    The efficiency of Bacillus sphaericus strain 2362 (Vectolex) as larvicide against Mansonia spp. was studied. Bioassay studies showed that the toxicity of B. sphaericus on both age groups (I-II instar and III-IV instar) of Mansonia spp. larvae occurred within 24 hours. Probit analysis revealed that LC100 (one hundred per cent lethal concentration) for both age groups of M. boneae were higher than those of M. dives. Small scale field trials were done at Kreng Village, Cha-uat District, Nakhon Si Thammarat Province, one of the most serious filarial infected areas. It was indicated that 100% kill of Mansonia spp. larvae in the field occurred within 9 days after the larvicide application. When a dose of 5 times of LC100 value was used, 100% control was achieved up to about one month.

  6. Comparison of three methods for the detection of Trichinella spiralis infections in pigs by five European laboratories*

    PubMed Central

    Kohler, G.; Ruitenberg, E. J.

    1974-01-01

    Three methods employed in the diagnosis of trichinosis (trichinoscopy, digestion method, and immunofluorescence technique) were compared by laboratories in 5 countries of the European economic community. For this purpose, material from 32 pigs infected with 50, 150, 500, and 1 500 T. spiralis larvae was examined. With none of the three methods was it possible to detect with sufficient reliability a T. spiralis infection in pigs infected with 50 larvae. The digestion method and the immunofluorescence technique yielded more reliable results when the infection dose was 150 larvae or more. With trichinoscopy, reliable results were obtained in pigs infected with 500 and 1 500 larvae. With the digestion method and trichinoscopy, the onset of infections was detectable from 3 weeks post infection, the digestion method being more reliable; the immunofluorescence technique yielded positive results from approximately 4-6 weeks post infection. The immunofluorescence technique is applicable for epidemiological surveys. As a routine diagnostic procedure in the slaughterhouse, trichinoscopy and the digestion method are possible alternatives, the latter being more sensitive. PMID:4616776

  7. Dynamics of transcriptomic response to infection by the nematode Heterorhabditis bacteriophora and its bacterial symbiont Photorhabdus temperata in Heliothis virescens larvae.

    PubMed

    An, R; Suri, K S; Jurat-Fuentes, J L; Grewal, P S

    2017-10-01

    Entomopathogenic nematodes in the Heterorhabditis genus and their symbiotic Photorhabdus bacteria are important biocontrol agents of insect pests and models for the study of microbe-host interactions. In this work, we used larvae of the tobacco budworm (Heliothis virescens) as a model to study its defensive mechanisms against Heterorhabditis bacteriophora nematodes carrying symbiotic Photorhabdus temperata. We first determined time points of initial nematode entry and release of bacteria into the haemolymph to perform transcriptional analysis of insect gene expression during these steps in the infective process. RNA-Sequencing analyses were then performed to profile differential gene expression in the insect during nematode invasion, bacterial release and final steps of infection, relative to the untreated controls. Our results support the theory that insect immune response genes are induced upon nematode invasion, but the majority of these genes are suppressed upon the release of bacteria by the nematodes into the haemolymph. Overall, these findings provide information on the dynamics of the insect's response to a progressing infection by this entomopathogenic nematode-bacteria complex and facilitate development of Hel. virescens as a pest model for future functional studies of the key insect defence factors. © 2017 The Royal Entomological Society.

  8. [An experimental study of the susceptibility of the snakehead Ophiocephalus argus to infestation by larvae of the tapeworm Diphyllobothrium latum].

    PubMed

    Khodakova, V I; Zholdasova, I M; Allaniiazova, T; Frolova, A A; Artamoshin, A S; Guseva, L N; Arystanov, E; Gitsu, G A

    1998-01-01

    Experiments were made to infect young Ophiocephalus argus, the fish of prey delivered from eastern Asia in the Amu-Dar'ya River basin, outside the area of the broad tapeworm Diphyllobothrium latum. The dalags were infected mainly by ingesting the local copepods Arctodiaptomus salinus, the experimentally invaded larvae of the broad tapeworm. The latter larvae were obtained from the development of eggs of the helminth isolated from strobilae from the patients treated in Perm Province. D. latum plerocercoids lived in the dalags nearly 3 weeks, then they died and lysed. Thus, the dalag cannot be a supplementary host of D. latum.

  9. Dose-dependent establishment of Trichuris suis larvae in Göttingen minipigs.

    PubMed

    Vejzagić, Nermina; Roepstorff, Allan; Kringel, Helene; Thamsborg, Stig Milan; Nielsen, Mads Pårup; Kapel, Christian M O

    2015-03-15

    Embryonated eggs of the pig whipworm Trichuris suis (TSOee) constitute the active pharmaceutical ingredient (API) in a medicinal product explored in human clinical trials against several immune-mediated diseases. The measurement of TSO biological potency (hatchability and infectivity) is a requirement for the assessment of TSO's pharmacological potency in human clinical trials. The present study aims to validate the dose-dependent establishment of T. suis larvae in Göttingen minipigs and eventual clinical implication of a dose range (1000-10,000 TSO). Four groups of 5 minipigs were inoculated with doses of 1000, 2500, 7500, and 10,000 TSOee, respectively, to evaluate a range of concentrations of TSOee in a minipig infectivity model. Unembryonated eggs (TSOue) were added to keep the total egg number in the inoculum constant at 10,000 eggs. Two groups received 2500 and 7500 TSOee per pig without the addition of TSOue as controls. The intestinal larval establishment at 21 days post inoculation (dpi) demonstrated a clear positive linear dose-response relationship between numbers of inoculated TSOee and recovered larvae. There was a low level of variation in larval counts in all study groups. Thus, the infectivity model in minipigs within the tested dose range offers a reliable, sensitive and accurate assay for testing biological potency of TSO. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effects of BmCPV Infection on Silkworm Bombyx mori Intestinal Bacteria

    PubMed Central

    Zhang, Hao; Kumar, Dhiraj; Liu, Bo; Gong, Yongchang; Zhu, Min; Zhu, Liyuan; Liang, Zi; Kuang, Sulan; Chen, Fei; Hu, Xiaolong; Cao, Guangli; Xue, Renyu; Gong, Chengliang

    2016-01-01

    The gut microbiota has a crucial role in the growth, development and environmental adaptation in the host insect. The objective of our work was to investigate the microbiota of the healthy silkworm Bombyx mori gut and changes after the infection of B. mori cypovirus (BmCPV). Intestinal contents of the infected and healthy larvae of B. mori of fifth instar were collected at 24, 72 and 144 h post infection with BmCPV. The gut bacteria were analyzed by pyrosequencing of the 16S rRNA gene. 147(135) and 113(103) genera were found in the gut content of the healthy control female (male) larvae and BmCPV-infected female (male) larvae, respectively. In general, the microbial communities in the gut content of healthy larvae were dominated by Enterococcus, Delftia, Pelomonas, Ralstonia and Staphylococcus, however the abundance change of each genus was depended on the developmental stage and gender. Microbial diversity reached minimum at 144 h of fifth instar larvae. The abundance of Enterococcus in the females was substantially lower and the abundance of Delftia, Aurantimonas and Staphylococcus was substantially higher compared to the males. Bacterial diversity in the intestinal contents decreased after post infection with BmCPV, whereas the abundance of both Enterococcus and Staphylococcus which belongs to Gram-positive were increased. Therefore, our findings suggested that observed changes in relative abundance was related to the immune response of silkworm to BmCPV infection. Relevance analysis of plenty of the predominant genera showed the abundance of the Enterococcus genus was in negative correlation with the abundance of the most predominant genera. These results provided insight into the relationship between the gut microbiota and development of the BmCPV-infected silkworm. PMID:26745627

  11. Effects of BmCPV Infection on Silkworm Bombyx mori Intestinal Bacteria.

    PubMed

    Sun, Zhenli; Lu, Yahong; Zhang, Hao; Kumar, Dhiraj; Liu, Bo; Gong, Yongchang; Zhu, Min; Zhu, Liyuan; Liang, Zi; Kuang, Sulan; Chen, Fei; Hu, Xiaolong; Cao, Guangli; Xue, Renyu; Gong, Chengliang

    2016-01-01

    The gut microbiota has a crucial role in the growth, development and environmental adaptation in the host insect. The objective of our work was to investigate the microbiota of the healthy silkworm Bombyx mori gut and changes after the infection of B. mori cypovirus (BmCPV). Intestinal contents of the infected and healthy larvae of B. mori of fifth instar were collected at 24, 72 and 144 h post infection with BmCPV. The gut bacteria were analyzed by pyrosequencing of the 16S rRNA gene. 147(135) and 113(103) genera were found in the gut content of the healthy control female (male) larvae and BmCPV-infected female (male) larvae, respectively. In general, the microbial communities in the gut content of healthy larvae were dominated by Enterococcus, Delftia, Pelomonas, Ralstonia and Staphylococcus, however the abundance change of each genus was depended on the developmental stage and gender. Microbial diversity reached minimum at 144 h of fifth instar larvae. The abundance of Enterococcus in the females was substantially lower and the abundance of Delftia, Aurantimonas and Staphylococcus was substantially higher compared to the males. Bacterial diversity in the intestinal contents decreased after post infection with BmCPV, whereas the abundance of both Enterococcus and Staphylococcus which belongs to Gram-positive were increased. Therefore, our findings suggested that observed changes in relative abundance was related to the immune response of silkworm to BmCPV infection. Relevance analysis of plenty of the predominant genera showed the abundance of the Enterococcus genus was in negative correlation with the abundance of the most predominant genera. These results provided insight into the relationship between the gut microbiota and development of the BmCPV-infected silkworm.

  12. Pathogenicity of Isolates of Serratia Marcescens towards Larvae of the Scarab Phyllophaga Blanchardi (Coleoptera).

    PubMed

    Pineda-Castellanos, Mónica L; Rodríguez-Segura, Zitlhally; Villalobos, Francisco J; Hernández, Luciano; Lina, Laura; Nuñez-Valdez, M Eugenia

    2015-05-13

    Serratia marcescens is a Gram negative bacterium (Enterobacteriaceae) often associated with infection of insects. In order to find pathogenic bacteria with the potential to control scarab larvae, several bacterial strains were isolated from the hemocoel of diseased Phyllophaga spp (Coleoptera:Scarabaeidae) larvae collected from cornfields in Mexico. Five isolates were identified as Serratia marcescens by 16S rRNA gene sequencing and biochemical tests. Oral and injection bioassays using healthy Phyllophaga blanchardi larvae fed with the S. marcescens isolates showed different degrees of antifeeding effect and mortality. No insecticidal activity was observed for Spodoptera frugiperda larvae (Lepidoptera: Noctuidae) by oral inoculation. S. marcescens (Sm81) cell-free culture supernatant caused significant antifeeding effect and mortality to P. blanchardi larvae by oral bioassay and also mortality by injection bioassay. Heat treated culture broths lost the ability to cause disease symptoms, suggesting the involvement of proteins in the toxic activity. A protein of 50.2 kDa was purified from the cell-free broth and showed insecticidal activity by injection bioassay towards P. blanchardi. Analysis of the insecticidal protein by tandem- mass spectrometry (LC-MS/MS) showed similarity to a Serralysin-like protein from S. marcescens spp. This insecticidal protein could have applications in agricultural biotechnology.

  13. A novel mode of induction of the humoral innate immune response in Drosophila larvae.

    PubMed

    Kenmoku, Hiroyuki; Hori, Aki; Kuraishi, Takayuki; Kurata, Shoichiro

    2017-03-01

    Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin ; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer. © 2017. Published by The Company of Biologists Ltd.

  14. Pathogenicity of Isolates of Serratia Marcescens towards Larvae of the Scarab Phyllophaga Blanchardi (Coleoptera)

    PubMed Central

    Pineda-Castellanos, Mónica L.; Rodríguez-Segura, Zitlhally; Villalobos, Francisco J.; Hernández, Luciano; Lina, Laura; Nuñez-Valdez, M. Eugenia

    2015-01-01

    Serratia marcescens is a Gram negative bacterium (Enterobacteriaceae) often associated with infection of insects. In order to find pathogenic bacteria with the potential to control scarab larvae, several bacterial strains were isolated from the hemocoel of diseased Phyllophaga spp (Coleoptera:Scarabaeidae) larvae collected from cornfields in Mexico. Five isolates were identified as Serratia marcescens by 16S rRNA gene sequencing and biochemical tests. Oral and injection bioassays using healthy Phyllophaga blanchardi larvae fed with the S. marcescens isolates showed different degrees of antifeeding effect and mortality. No insecticidal activity was observed for Spodoptera frugiperda larvae (Lepidoptera: Noctuidae) by oral inoculation. S. marcescens (Sm81) cell-free culture supernatant caused significant antifeeding effect and mortality to P. blanchardi larvae by oral bioassay and also mortality by injection bioassay. Heat treated culture broths lost the ability to cause disease symptoms, suggesting the involvement of proteins in the toxic activity. A protein of 50.2 kDa was purified from the cell-free broth and showed insecticidal activity by injection bioassay towards P. blanchardi. Analysis of the insecticidal protein by tandem- mass spectrometry (LC-MS/MS) showed similarity to a Serralysin-like protein from S. marcescens spp. This insecticidal protein could have applications in agricultural biotechnology. PMID:25984910

  15. Live-cell imaging of Salmonella Typhimurium interaction with zebrafish larvae after injection and immersion delivery methods.

    PubMed

    Varas, Macarena; Fariña, Alonso; Díaz-Pascual, Francisco; Ortíz-Severín, Javiera; Marcoleta, Andrés E; Allende, Miguel L; Santiviago, Carlos A; Chávez, Francisco P

    2017-04-01

    The zebrafish model has been used to determine the role of vertebrate innate immunity during bacterial infections. Here, we compare the in vivo immune response induced by GFP-tagged Salmonella Typhimurium inoculated by immersion and microinjection in transgenic zebrafish larvae. Our novel infection protocols in zebrafish allow live-cell imaging of Salmonella colonization. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Strongyloides stercoralis-infected dogs as a model for human disseminated strongyloidiasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aikens, L.M.

    1989-01-01

    The route of migration of Strongyloides stercoralis third-stage infective larvae was explored in primary and autogenous infections in the dog. Larvae was radiolabeled by one of two means: (1) by culture of the free-living L3 stage in a nutrient medium, deficient in methionine, supplemented with ({sup 75}Se)Selenomethionine, and (2) by feeding of ({sup 75}Se)Selenomethionine-labeled bacteria to microbiverous L1 and L2 stages. Third-stage labeled larvae were then injected into 10-day-old pups either subcutaneously, to study primary migration, or into the distal ileum, to study autogenous migration. At intervals after infection pups were killed and whole body compressed organ autoradiography done onmore » individual tissues to determine organ-specific larval transit sites. Autoradiographic recoveries were analyzed in the context of a series of mathematical models designed to test migratory route hypotheses. Postulated routes of migration for primary infections included (1) the Null Hypothesis or Scramble Route in which larvae migrate to the intestines by any available route, (2) the Classical Pulmonary Route in which larvae migrate sequentially from skin, to blood, to lungs, to the trachea, esophagus and intestines, and (3) the Head Migration Route in which larvae move from caudal to cranial sites within the skin and muscle before entering the intestines. Postulated routes for autoinfective migration reiterated 1 and 2 above. Least squares comparisons, of calculated models to observed autoradiographic distributions, led us to conclude that there was no reason to reject the simplest assumption that larvae move by any available route to the definitive site in both forms of migration. Sampling through tracheostomy sites in 14 pups for larval migrants confirmed this conclusion.« less

  17. Nematode infections: soil-transmitted helminths and trichinella.

    PubMed

    Knopp, Stefanie; Steinmann, Peter; Keiser, Jennifer; Utzinger, Jürg

    2012-06-01

    Infection with soil-transmitted helminths occurs via ingestion of nematode eggs with contaminated food and water, via hands, or inhalation of dust, or by penetration of larvae through the skin. Trichinella infections are caused by the ingestion of larvae contained in undercooked meat. In highly endemic areas, preventive chemotherapy (ie, regular administration of anthelmintic drugs to at-risk populations) is the key strategy against soil-transmitted helminthiasis. Integrated control approaches, including improved hygiene, sanitation, and water, are required for lasting effects. Because of growing tourism, travel, and migration, clinicians and specialized travel clinics must remain aware of the diagnosis, prevention, and treatment of soil-transmitted helminth and Trichinella infections. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. A common pathway for p10 and calyx proteins in progressive stages of polyhedron envelope assembly in AcMNPV-infected Spodoptera frugiperda larvae.

    PubMed

    Lee, S Y; Poloumienko, A; Belfry, S; Qu, X; Chen, W; MacAfee, N; Morin, B; Lucarotti, C; Krause, M

    1996-01-01

    The assembly of the polyhedron envelope in baculovirus-infected cells has been the subject of several studies, yet it is still poorly understood. We have used immunogold-labelled antibodies to two baculovirus proteins, p10 and calyx (also referred to as polyhedron envelope protein or PEP), to follow envelope assembly in AcMNPV-infected tissues of Spodoptera frugiperda larvae. We show that, in wild type virus, both proteins colocalize in fibrillar structures and associated electron-dense spacers which progress to encircle the polyhedra, as well as in completed polyhedron envelopes. In cells infected with polyhedrin-negative (PH-) viruses, an unusual proliferation of these spacers was observed suggesting a deregulatory event in the envelope assembly process. Results of Northern and Western blot analysis revealed that synthesis of P10 and calyx mRNA and proteins in PH- AcMNPV is unaffected as compared to wild type virus. Taken together, the observed physical and compositional connection between fibrillar structures, spacers and polyhedron envelopes, as well as the abnormal appearance of the spacers in PH- mutants, provide further evidence in support of a cooperative role of these structures in the assembly of the polyhedron envelope.

  19. Vaccination of calves against Taenia saginata infection using antigens collected during in vitro cultivation of larvae: passive protection via colostrum from vaccinated cows and vaccination of calves protected by maternal antibody.

    PubMed

    Rickard, M D; Adolph, A J; Arundel, J H

    1977-11-01

    Six-to-11-day-old calves which received colostrum from cows vaccinated with in vitro culture antigens of Taenia saginata during their last month of pregnancy showed a high level of resistance to a challenge infection with T saginata eggs. Although colostral antibody reduced the numbers of larvae which became established it did not promote destruction of those which had undergone development. Calves which had received colostrum from vaccinated dams were themselves vaccinated with culture antigen when they were eight to 10 weeks old. These calves showed strong immunity to a challenge infection of T saginata eggs administered four weeks after vaccination.

  20. Rapid identification of differentially virulent genotypes of Paenibacillus larvae, the causative organism of American foulbrood of honey bees, by whole cell MALDI-TOF mass spectrometry.

    PubMed

    Schäfer, Marc Oliver; Genersch, Elke; Fünfhaus, Anne; Poppinga, Lena; Formella, Noreen; Bettin, Barbara; Karger, Axel

    2014-06-04

    Infection with Paenibacillus larvae, the etiological agent of American foulbrood, is lethal for honey bee larvae and may lead to loss of the entire colony. Of the four known ERIC-genotypes of P. larvae, ERIC I and II are most frequently observed and differ significantly in virulence. The course of the disease on the larval level is more accelerated after infection with genotype II strains allowing nurse bees to remove diseased larvae more efficiently before capping. For this reason the lead clinical symptom, conversion of capped larvae into 'ropy mass', is less frequently found than after infection with ERIC I strains bearing the risk of false negative diagnosis. In this study, the potential of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) for the discrimination of P. larvae genotypes ERIC I and II was explored on the basis of a comprehensive set of isolates. Using commercial software and a reference database constructed from field and type strains, ERIC I and II genotypes of all field isolates could be unambiguously identified on basis of mass spectra. Statistical analysis showed that the genotype is the main determinant for the spectral phenotype and MS-based ERIC-type determination is robust against sample selection. Furthermore, analysis of samples from Canada and New Zealand showed that distribution of ERIC II is not restricted to Europe as previously assumed. We suggest adding ERIC I and II genotype isolates as type-specific reference spectra for use in routine diagnostics. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Role of lipids in the transmission of the infective stage (L3) of Strongylus vulgaris (Nematoda: Strongylida).

    PubMed

    Medica, D L; Sukhdeo, M V

    1997-10-01

    Infective larvae (L3) of Strongylus vulgaris have limited energy stores for host finding and for infection. For transmission to occur, the larvae must have sufficient energy to (a) migrate onto grass, where they are ingested by their equine host (host finding), and (b) penetrate into the host gut. This study is designed to test the hypothesis that L3 larvae of S. vulgaris partition their energy stores between locomotory activity (used in host finding) and infection activity (penetration). Chronic locomotory activity was stimulated by incubating S. vulgaris L3 larvae at a constant temperature (38 C). After 8 days of treatment, locomotory activity ceased (exhaustion). Exhausted L3 larvae had significantly decreased total lipid when compared to controls (P < 0.05), but there was no decrease in levels of protein of carbohydrate. Lipids of S. vulgaris L3 larvae are comprised of 9 fatty acids, some of which are depleted in exhausted worms (14:0, 14:1, 16:0, 16:1, 18:1, 18:2), whereas others (18:0, 20:4, 24:0) remain unchanged. These data suggest that specific fatty acids provide the energy source for locomotory activity in S. vulgaris. Exhausted L3 larvae were also less able to penetrate host cecal tissue in in vitro penetration assays when compared to controls (P < 0.05), suggesting that the depletion of individual fatty acids during locomotory activity also reduced infectivity. These data do not support the hypothesis that S. vulgaris L3 larvae partition their energy stores between host-finding and infection activities. A comparison of lipid storage profiles in the L3 larvae of 4 nematode species with similar transmission strategies (S. vulgaris, Strongylus edentatus, Strongylus equinus, and Haemonchus contortus) revealed similarities in the fatty acid composition of these species. These data suggest a relationship between transmission patterns and energy storage strategies in the L3 larvae of nematode parasites of vertebrates.

  2. Use of Galleria mellonella as a model organism to study Legionella pneumophila infection.

    PubMed

    Harding, Clare R; Schroeder, Gunnar N; Collins, James W; Frankel, Gad

    2013-11-22

    Legionella pneumophila, the causative agent of a severe pneumonia named Legionnaires' disease, is an important human pathogen that infects and replicates within alveolar macrophages. Its virulence depends on the Dot/Icm type IV secretion system (T4SS), which is essential to establish a replication permissive vacuole known as the Legionella containing vacuole (LCV). L. pneumophila infection can be modeled in mice however most mouse strains are not permissive, leading to the search for novel infection models. We have recently shown that the larvae of the wax moth Galleria mellonella are suitable for investigation of L. pneumophila infection. G. mellonella is increasingly used as an infection model for human pathogens and a good correlation exists between virulence of several bacterial species in the insect and in mammalian models. A key component of the larvae's immune defenses are hemocytes, professional phagocytes, which take up and destroy invaders. L. pneumophila is able to infect, form a LCV and replicate within these cells. Here we demonstrate protocols for analyzing L. pneumophila virulence in the G. mellonella model, including how to grow infectious L. pneumophila, pretreat the larvae with inhibitors, infect the larvae and how to extract infected cells for quantification and immunofluorescence microscopy. We also describe how to quantify bacterial replication and fitness in competition assays. These approaches allow for the rapid screening of mutants to determine factors important in L. pneumophila virulence, describing a new tool to aid our understanding of this complex pathogen.

  3. Evaluation of Baermann apparatus sedimentation time on recovery of Strongylus vulgaris and S. edentatus third stage larvae from equine coprocultures.

    PubMed

    Bellaw, Jennifer L; Nielsen, Martin K

    2015-06-30

    Traditional methods of diagnosing equine Strongylinae infections require culturing feces, sedimenting the culture media in Baermann apparatuses, collecting the sediment, and morphologically identifying recovered third stage larvae. However, this method is plagued by low negative predictive values. This study evaluated sedimentation time within the Baermann apparatus by comparing larval recovery from the traditionally collected sediment, "sediment 1", and from the usually discarded remaining fluid contents, "sediment 2", of the Baermann apparatus after 12, 24, and 48 h. A grand total of 147,482 larvae were recovered and examined. Sedimentation time did not significantly influence total larval recovery. At all three durations, significantly more Cyathostominae and Strongylus vulgaris larvae were covered from sediment 1 than from sediment 2. However, less than 60% of all recovered Strongylus edentatus were recovered from sediment 1. As 95% of S. vulgaris larvae were always recovered from sediment 1, the need for collection and examination of the remaining fluid contents of the Baermann apparatus is obviated when performing coprocultures for diagnosis of S. vulgaris infections, and sedimentation for 12h is adequate. Approximately 70% of Cyathostominae were recovered in sediment 1 at all durations, suggesting that 12h of sedimentation is adequate, although there is a need for future research to evaluate the risk of selection bias at differing sedimentation times among individual cyathostomin species. In contrast to S. vulgaris, collecting and examining the entire contents of the Baermann apparatus may be necessary when an increased diagnostic sensitivity and negative predictive value is desired in diagnosing S. edentatus infections as only 38-61% of larvae were recovered from sediment 1 portion of the Baermann apparatus. This information will allow researchers and practitioners to make more informed decisions in choosing appropriate larval recovery techniques, balancing

  4. Reduced spatial learning in mice infected with the nematode, Heligmosomoides polygyrus.

    PubMed

    Kavaliers, M; Colwell, D D

    1995-06-01

    Parasite modification of host behaviour influences a number of critical responses, but little is known about the effects on host spatial abilities. This study examined the effects of infection with the intestinal trichostrongylid nematode, Heligmosomoides polygyrus, on spatial water maze learning by male laboratory mice, Mus musculus. In this task individual mice had to learn the spatial location of a submerged hidden platform using extramaze visual cues. Determinations of spatial performance were made on day 19 post-infection with mice that had been administered either 50 or 200 infective larvae of H. polygyrus. The infected mice displayed over 1 day of testing (6 blocks of 4 trials) significantly poorer acquisition and retention of the water maze task than either sham-infected or control mice, with mice that had received 200 infective larvae displaying significantly poorer spatial performance than individuals receiving 50 larvae. The decrease in spatial learning occurred in the absence of either any symptoms of illness and malaise, or any evident motor, visual and motivational impairments. It is suggested that in this single host system the parasitic infection-induced decrease in spatial learning arises as a side-effect of the host's immunological and neuromodulatory responses and represents a fitness cost of response to infection.

  5. Carabid larvae as predators of weed seeds: granivory in larvae of Amara eurynota (Coleoptera: Carabidae).

    PubMed

    Saska, Pavel

    2004-01-01

    Up to date we do not have much information about predation on seeds by larvae of ground beetles. One of the reasons why such knowledge is important is that granivorous larvae contribute to predation of weed seeds. In this study, the food requirements of larvae of autumn breeding carabid species Amara eurynota (Panzer) were investigated in the laboratory and a hypothesis, that they are granivorous was tested. Insect diet (Tenebrio molitor larvae), three seed diets (seeds of Artemisia vulgaris, Tripleurospermum inodorum or Urtica dioica or a mixed diet (T. molitor + A. uulgaris) were used as food. For larvae of A. eurynota, seeds are essential for successful completion of development, because all those fed pure insect diet died before pupation. However, differences in suitability were observed between pure seed diets. Larvae fed seeds of A. vulgaris had the lowest mortality and fastest development of the seed diets. Those fed seeds of T. inodorum had also low mortality, but the development was prolonged in the third instar. In contrast, development of larvae reared on seeds of U. dioica was slowest of the tested diets and could not be completed, as all individuals died before pupation. When insects were included to seed diet of A. vulgaris (mixed diet), the duration of development shortened, but mortality remained the same when compared to seed diet of A. vulgaris. According to the results it was concluded that larvae of A. eurynota are granivorous. A mixed diet and seed diets of A. uulgaris and T. inodorum were suitable and insect diet and seeds of U. dioica were unsuitable diets in this experiment.

  6. The effect of herbal remedy on the development of Trichinella spiralis infection in mice.

    PubMed

    Bany, J; Zdanowska, D; Zdanowski, R; Skopińska-Rózewska, E

    2003-01-01

    The effect of Alchinal (a complex preparation consisting of three substances: Echinacea purpurea extract, Allium sativum extract, cocoa) on the development of Trichinella spiralis infection in mice was studied. The preparation was administered to the animals orally, twice a day in 30 microl doses for 10 days after infecting mice with Trichinella larvae (500 larvae per mouse). It was demonstrated that after Alchinal administration, the number of adult forms (10 dpi--days post infection) and muscular larvae (36 dpi) significantly decreased. It is suggested that the remedy studied causes antiparasitic immunity enhancement in mice. Modulation of immunity by individual component(s) and/or joint action of the substances contained in Alchinal increases the antiparasitic defence of the organism.

  7. Identification of a new C-type lectin, TES-70, secreted by infective larvae of Toxocara canis, which binds to host ligands.

    PubMed

    Loukas, A; Doedens, A; Hintz, M; Maizels, R M

    2000-11-01

    Infective larvae of the dog roundworm Toxocara canis survive in the tissues of their hosts for extended periods in a state of developmental arrest, successfully evading immune destruction. This survival strategy is thought to be mediated by T. canis excretory/secretory (TES) products which downregulate or divert the immune response. We purified one of the major TES products, TES-70 and gained amino acid sequence from 4 tryptic peptides. These peptides were matched to a predicted protein from a cDNA that was isolated by expression screening a T. canis cDNA library with mouse anti-TES serum. The predicted protein (Tc-CTL-4) is similar to, but larger than, Tc-CTL-1, a 32-kDa C-type lectin secreted by T. canis larvae. Tc-CTL-4 has a signal peptide, 2 Cys-rich domains and a C-terminal calcium-dependent C-type lectin domain that shares sequence similarity with host immune cell receptors such as macrophage mannose receptor and CD23. The lectin domain was expressed in bacteria and antiserum to the purified recombinant protein was used to confirm that Tc-ctl-4 did encode the native TES-70 glycoprotein. TES-70 selectively bound to ligands on the surface of Madin-Darby Canine Kidney cells in vitro in a calcium-dependent manner, inhibitable by mammalian serum, indicating that a host glycan is the native ligand for this new parasite lectin.

  8. Coral larvae conservation: physiology and reproduction.

    PubMed

    Hagedorn, M; Pan, R; Cox, E F; Hollingsworth, L; Krupp, D; Lewis, T D; Leong, J C; Mazur, P; Rall, W F; MacFarlane, D R; Fahy, G; Kleinhans, F W

    2006-02-01

    Coral species throughout the world's oceans are facing severe environmental pressures. We are interested in conserving coral larvae by means of cryopreservation, but little is known about their cellular physiology or cryobiology. These experiments examined cryoprotectant toxicity, dry weight, water and cryoprotectant permeability using cold and radiolabeled glycerol, spontaneous ice nucleation temperatures, chilling sensitivity, and settlement of coral larvae. Our two test species of coral larvae, Pocillopora damicornis (lace coral), and Fungia scutaria (mushroom coral) demonstrated a wide tolerance to cryoprotectants. Computer-aided morphometry determined that F. scutaria larvae were smaller than P. damicornis larvae. The average dry weight for P. damicornis was 24.5%, while that for F. scutaria was 17%, yielding osmotically inactive volumes (V(b)) of 0.22 and 0.15, respectively. The larvae from both species demonstrated radiolabeled glycerol uptake over time, suggesting they were permeable to the glycerol. Parameter fitting of the F. scutaria larvae data yielded a water permeability 2 microm/min/atm and a cryoprotectant permeability = 2.3 x 10(-4) cm/min while modeling indicated that glycerol reached 90% of final concentration in the larvae within 25 min. The spontaneous ice nucleation temperature for F. scutaria larvae in filtered seawater was -37.8+/-1.4 degrees C. However, when F. scutaria larvae were chilled from room temperature to -11 degrees C at various rates, they exhibited 100% mortality. When instantly cooled from room temperature to test temperatures, they showed damage below 10 degrees C. These data suggest that they are sensitive to both the rate of chilling and the absolute temperature, and indicate that vitrification may be the only means to successfully cryopreserve these organisms. Without prior cryopreservation, both species of coral settled under laboratory conditions.

  9. Fungal DNA virus infects a mycophagous insect and utilizes it as a transmission vector

    PubMed Central

    Liu, Si; Xie, Jiatao; Cheng, Jiasen; Li, Bo; Chen, Tao; Fu, Yanping; Li, Guoqing; Wang, Manqun; Jin, Huanan; Wan, Hu; Jiang, Daohong

    2016-01-01

    Mycoviruses are usually transmitted horizontally via hyphal anastomosis and vertically via sexual/asexual spores. Previously, we reported that a gemycircularvirus, Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), could infect its fungal host extracellularly. Here, we discovered that SsHADV-1 could infect a mycophagous insect, Lycoriella ingenua, and use it as a transmission vector. Virus acquired by larvae feeding on colonies of a virus-infected strain of S. sclerotiorum was replicated and retained in larvae, pupae, adults, and eggs. Virus could be transmitted to insect offspring when larvae were injected with virus particles and allowed to feed on a nonhost fungus. Virus replication in insect cells was further confirmed by inoculating Spodoptera frugiperda cells with virus particles and analyzing with RT-PCR, Northern blot, immunofluorescence, and flow cytometry assays. Larvae could transmit virus once they acquired virus by feeding on virus-infected fungal colony. Offspring larvae hatched from viruliferous eggs were virus carriers and could also successfully transmit virus. Virus transmission between insect and fungus also occurred on rapeseed plants. Virus-infected isolates produced less repellent volatile substances to attract adults of L. ingenua. Furthermore, L. ingenua was easily observed on Sclerotinia lesions in rapeseed fields, and viruliferous adults were captured from fields either sprayed with a virus-infected fungal strain or nonsprayed. Our findings may facilitate the exploration of mycoviruses for control of fungal diseases and enhance our understanding of the ecology of SsHADV-1 and other newly emerging SsHADV-1–like viruses, which were recently found to be widespread in various niches including human HIV-infected blood, human and animal feces, insects, plants, and even sewage. PMID:27791095

  10. Gnathostoma infection in fish caught for local consumption in Nakhon Nayok Province, Thailand. II. Deasonal variation in swamp eels.

    PubMed

    Rojekittikhun, Wichit; Chaiyasith, Tossapon; Butraporn, Piyarat

    2004-12-01

    From August 2000 to August 2001, 1844 swamp eels (Monopterus albus) were purchased from several local markets in Nakhon Nayok Province, Thailand, and examined for the presence of Gnathostoma advanced third-stage larvae. The overall prevalence was 30.1% and the mean number of larvae/eel (infection intensity) was 10.0. The highest infection rate (44.1%) was found in August 2000 and the lowest (10.7%) in March 2001. The greatest mean number of larvae/eel (75.1) was found in August 2000, whereas the fewest (2.3) was in July 2001. It is suggested that the prevalence and intensity of infection decreased within two months after the end of the rainy season and started to rise again about two months after the next rainy season began. A total of 5,532 Gnathostoma larvae were recovered from 555 infected eels, with a maximum number of 698 larvae/eel. The highest rates of Gnathostoma infection according to eel body length and weight were 87.5% in the group 91-100 cm, and 100% in groups of 901-1100 g, respectively. There were significant correlations between eel body lengths and infection rates, body lengths and infection intensities; eel body weights were also significantly correlated with infection rates and infection intensities. It was noted that the longer/ heavier the eels were, the higher would be the infection rates and the greater the infection intensities. Tissue distributions of Gnathostoma larvae in the livers and muscles of swamp eels were as follows: 43.0% of the total number of larvae were found in the muscles and 57.0% were in the liver; 29.7, 51.7, and 18.6% were in the anterior, middle, and posterior parts, respectively; 35.1% were in the dorsal part, while 64.9% were in the ventral part; 9.0, 18.7, 7.4, 20.6, 33.1, and 11.2% were in the anterodorsal, mediodorsal, posterodorsal, anteroventral, medioventral and posteroventral parts, respectively. Of the 5,532 Gnathostoma larvae examined, 1101 (19.9%) were found to possess morphological variants or abnormal

  11. Experimental immunization of ponies with Strongylus vulgaris radiation-attenuated larvae or crude soluble somatic extracts from larval or adult stages.

    PubMed

    Monahan, C M; Taylor, H W; Chapman, M R; Klei, T R

    1994-12-01

    Protection from Strongylus vulgaris infection through immunization with radiation-attenuated third-stage larvae (L3) or crude soluble homogenates from larval or adult stages was examined. Yearling ponies raised parasite-free were divided into 3 immunization groups: radiation-attenuated L3; soluble adult somatic extracts; larval somatic extracts with excretory/secretory products (E/S) from in vitro culture; and 1 medium control group. Ponies were immunized twice; attenuated larvae were administered orally and somatic extracts or controls injected intramuscularly with adjuvant. Approximately 6 wk following the second immunization, all ponies were challenged. Necrospy examinations were performed 6 wk following challenge. Irradiated larvae recipients had the fewest postchallenge clinical signs and lesions and were 91% protected from infection determined by larval recoveries from arterial dissections. Soluble antigen recipients and controls had similar larval recoveries and thus equal susceptibility to challenge. Soluble antigen recipients had more severe clinical signs and lesions than controls, suggesting that parenteral immunization exacerbated postchallenge inflammatory responses. Protection by immunization with irradiated larvae was associated with an anamnestic eosinophilia and postimmunization antibody recognition of S. vulgaris L3 surface antigens. Histologic staining of eosinophils within tissues of this group suggested that this immunization induced a cytophilic antibody response that facilitated degranulation.

  12. Efficacy of albendazole:β-cyclodextrin citrate in the parenteral stage of Trichinella spiralis infection.

    PubMed

    Codina, Ana V; García, Agustina; Leonardi, Darío; Vasconi, María D; Di Masso, Ricardo J; Lamas, María C; Hinrichsen, Lucila I

    2015-01-01

    Albendazole-β-cyclodextrin citrate (ABZ:C-β-CD) inclusion complex in vivo antiparasitic activity was evaluated in the parenteral phase of Trichinella spiralis infection in mice. An equimolar complex of ABZ:C-β-CD was prepared by spray-drying and tested in CBi-IGE male mice orally infected with L1 infective larvae. Infected animals were treated with 50 or 30mg/kg albendazole, (ABZ) equivalent amounts of the ABZ:C-β-CD complex and non treated (controls). Mice received a daily dose on days 28, 29 and 30 post-infection. A week later, larval burden and percentage of encysted dead larvae were assessed in the host by counting viable and non-viable larvae in the tongue. Complexation of ABZ with C-β-CD increased the drug dissolution efficiency nearly eightfold. At 37 days p-i, the reduction percentage in muscle larval load was 35% in mice treated with 50mg/kg/day ABZ and 68% in those given the complex. Treatment with the lower dose showed a similar decrease in parasite burden. Treated animals showed a high percentage of nonviable larvae, the proportion being significantly higher in mice receiving the complex than in control animals (72-88% vs. 11%, P=0.0032). These data indicate that ABZ:C-β-CD increases bioavailability and effectiveness of ABZ against encapsulated Trichinella larvae, thus allowing the use of small doses. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Short-term heat shock affects the course of immune response in Galleria mellonella naturally infected with the entomopathogenic fungus Beauveria bassiana.

    PubMed

    Vertyporokh, Lidiia; Taszłow, Paulina; Samorek-Pieróg, Małgorzata; Wojda, Iwona

    2015-09-01

    We aimed to investigate how exposition of infected insects to short-term heat shock affects the biochemical and molecular aspects of their immune response. Galleria mellonella larvae were exposed to 43°C for 15min, at the seventy second hour after natural infection with entomopathogenic fungus Beauveria bassiana. As a result, both qualitative and quantitative changes in hemolymph protein profiles, and among them infection-induced changes in the amount of apolipophorin III (apoLp-III), were observed. Heat shock differently affects the expression of the tested immune-related genes. It transiently inhibits expression of antifungal peptides gallerimycin and galiomicin in both the fat body and hemocytes of infected larvae. The same, although to a lesser extent, concerned apoLp-III gene expression and was observed directly after heat shock. Nevertheless, in larvae that had recovered from heat shock, apoLp-III expression was higher in comparison to unshocked larvae in the fat body but not in hemocytes, which was consistent with the higher amount of this protein detected in the hemolymph of the infected, shocked larvae. Furthermore, lysozyme-type activity was higher directly after heat shock, while antifungal activity was significantly higher also in larvae that had recovered from heat shock, in comparison to the respective values in their non-shocked, infected counterparts. These results show how changes in the external temperature modulate the immune response of G. mellonella suffering from infection with its natural pathogen B. bassiana. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Self-mixing of fly larvae during feeding

    NASA Astrophysics Data System (ADS)

    Shishkov, Olga; Johnson, Christopher; Zhang, Bryan; Hu, David

    2016-11-01

    How do we sustainably feed a growing world population? One solution of increasing interest is the use of black solider fly larvae, pea-sized grubs envisioned to transform hundreds of tons of food waste into a sustainable protein source. Although startups across the world are raising these larvae, a physical understanding of how they should be raised and fed remains missing. In this study, we present experiments measuring their feeding rate as a function of number of larvae. We show that larger groups of larvae have greater mixing which entrains hungry larvae around the food, increasing feeding rate. Feeding of larvae thus differs from feeding of cattle or other livestock which exhibit less self-mixing.

  15. Self mixing of fly larvae during feeding

    NASA Astrophysics Data System (ADS)

    Shishkov, Olga; Johnson, Christopher; Hu, David

    How do we sustainably feed a growing world population? One solution of increasing interest is the use of black solider fly larvae, pea-sized grubs envisioned to transform hundreds of tons of food waste into a sustainable protein source. Although startups across the world are raising these larvae, a physical understanding of how they should be raised and fed remains missing. In this study, we present experiments measuring their feeding rate as a function of number of larvae. We show that larger groups of larvae have greater mixing which entrains hungry larvae around the food, increasing feeding rate. Feeding of larvae thus differs from feeding of cattle or other livestock which exhibit less self-mixing.

  16. Identification of Nanopillars on the Cuticle of the Aquatic Larvae of the Drone Fly (Diptera: Syrphidae).

    PubMed

    Hayes, Matthew J; Levine, Timothy P; Wilson, Roger H

    2016-01-01

    Here, we describe a nano-scale surface structure on the rat-tailed maggot, the aquatic larva of the Drone fly Eristalis tenax(L.). Larvae of this syrphid hover fly live in stagnant, anaerobic water-courses that are rich in organic matter. The larvae burrow into fetid slurry and feed on microorganisms which they filter out from the organic material. This environment is rich in bacteria, fungi and algae with the capacity to form biofilms that might develop on the larval surface and harm them. Using transmission and scanning electron microscopy we have identified an array of slender (typically < 100 nm in diameter) nanopillars that cover the surface of the larvae. The high density and dimensions of these spine-like projections appear to make it difficult for bacteria to colonize the surface of the animal. This may interfere with the formation of biofilms and potentially act as a defence against bacterial infection. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  17. Evaluation of the PrioCHECK™ Trichinella AAD Kit for the digestion and recovery of larvae in pork, horse meat and wild meat.

    PubMed

    Konecsni, Kelly; Scheller, Cheryl; Scandrett, Brad; Buholzer, Patrik; Gajadhar, Alvin

    2017-08-30

    The artificial digestion magnetic stirrer method using pepsin protease and hydrochloric acid is the standard assay for the detection of Trichinella larvae in muscle of infected animals. Recently, an alternative enzyme, serine protease, was employed in the development of a commercially available digestion kit (PrioCHECK™ Trichinella AAD Kit). This assay requires a higher digestion temperature of 60°C which kills the larvae during the digestion process, mitigating the risk of environmental contamination from the parasite. The present study was conducted to determine the performance of the PrioCHECK™ Trichinella AAD Kit compared to the conventional pepsin/HCl digestion. Replicate paired 115g samples of Trichinella-negative pork diaphragm and masseter, and of horse tongue and masseter, were used to compare the two methods for tissue digestibility. Similarly, paired 100g samples of pork diaphragm and horse tongue were spiked with proficiency samples containing known numbers of Trichinella spiralis first stage larvae to compare larval recoveries for the two methods. Masseter samples from wild bears and wolves naturally infected with Trichinella nativa or T6 were also used to compare the performance of the methods. The results of the study showed that the PrioCHECK™ Trichinella AAD Kit, when used according to the manufacturer's instructions, was effective in detecting Trichinella infection in all samples that contained 0.05 or more larvae per gram of tissue. Although there was no significant difference between the Kit method and the standard pepsin/HCl digestion procedure in the average number of larvae recovered from spiked pork diaphragm, 38% fewer larvae were recovered from similarly spiked samples of horse tongue by digestion using serine protease (one way ANOVA, P value <0.001). Additional clarification was also more often required for both horse meat and pork when using the Kit compared to the pepsin/HCl method. The results of testing wildlife samples were

  18. [Investigation on snails Achatina fulica and Pomacea canaliculata infected with Angiostrongylus cantonensis in Panyu region of Guangzhou City].

    PubMed

    Chen, Chu-Xuan; He, Hui-Fang; Yin, Zhu; Zhou, Jin-Huan; Li, Shi-Qun; Li, Fang-Hui; Chen, Jiong-Min; Zhu, Wei-Jin; Zhong, Xiu-Ming; Yang, Kai-Ying; Liu, Gui-Ping; Jia, Xun; Chen, Wan-Tong; Li, Xiao-Mei; Chen, Yu-Chang; Luo, Xiao-Dong; Chen, Dai-Xiong; Shen, Hao-Xian

    2012-06-01

    To understand the natural infection status of Angiostrongylus cantonensis in snails Achatina fulica and Pomacea canaliculata from Panyu region of Guangzhou City. The snails Achatina fulica and Pomacea canaliculata captured from the field were digested with the artificial stomach fluid. The third-stage larvae of A. cantonensis were examined and counted under a microscope. The collected third-stage larvae were used to infect SD rats. A total of 367 Achatina fulica and 357 Pomacea canaliculata were examined. The infection rate of A. cantonensis in Achatina fulica was 22.62%, with a mean intensity of 57.00 larvae per positive snail. The infection rate of A. cantonensis in Pomacea canaliculata was 3.08%, with a mean intensity of 1.64 larvae per positive snail. The infection rates of A. cantonensis in Achatina fulica from Dagang, Shiqi, Hualong, and Lanhe towns and Nansha District, were 13.33%, 15.00%, 20.93%, 73.68% and 8.41%, respectively. Those in Pomacea canaliculata were 5.88%, 2.88%, 1.89%, 0% and 3.96%, respectively. A. cantonensis infection exists in Achatina fulica and Pomacea canaliculata from Panyu region of Guangzhou City, and the infection in Achatina fulica is more serious than that in Pomacea canaliculata. The infection rates of the snails among five sites are different.

  19. Epidemiology of Strongylus vulgaris infection of the horse in Morocco.

    PubMed

    Pandey, V S

    1981-05-01

    Between August 1978 and July 1979 the anterior mesenteric artery and its branches were collected regularly from adult horses and examined for Strongylus vulgaris larvae. The incidence of infection varied from 55 to 100% (annual mean 80%). The mean monthly number of larvae ranged form 3 to 22 with an annual overall mean of 13. The arterial infection was at its minimum in December to January, rose gradually to attain the peak in June and declined thereafter. These observations indicated that S. vulgaris is an annual species in Morocco, infection occurring during the rainy season (November-April), the heavy arterial population in spring and adult population during autumn and winter.

  20. Acute toxicity of sodium metabisulphite in larvae and post-larvae of the land crab, Cardisoma guanhumi.

    PubMed

    Galli, Orlando B S; Fujimoto, Rodrigo Y; Abrunhosa, Fernando A

    2012-08-01

    Sodium metabisulphite (SMB) is used in marine shrimp aquaculture to prevent the occurrence of black spot. The release SMB into the estuarine environment from shrimp farm pond effluents has been reported. This study evaluated the susceptibility of larvae and post-larvae of land crab, Cardisoma guanhumi to this salt. A decrease in dissolved oxygen and pH occurred with increasing concentration of SMB and exposure time. LC(50) values after 48 h of exposure were 34 ± 1.1 mg/L, 31.1 ± 1.9 mg/L, and 30.6 ± 0.5 mg/L for I zoea larvae, megalopa larvae and stage I juveniles, respectively.

  1. Update on Baylisascariasis, a Highly Pathogenic Zoonotic Infection

    PubMed Central

    Morassutti, Alessandra Loureiro; Kazacos, Kevin R.

    2016-01-01

    SUMMARY Baylisascaris procyonis, the raccoon roundworm, infects a wide range of vertebrate animals, including humans, in which it causes a particularly severe type of larva migrans. It is an important cause of severe neurologic disease (neural larva migrans [NLM]) but also causes ocular disease (OLM; diffuse unilateral subacute neuroretinitis [DUSN]), visceral larva migrans (VLM), and covert/asymptomatic infections. B. procyonis is common and widespread in raccoons, and there is increasing recognition of human disease, making a clinical consideration of baylisascariasis important. This review provides an update for this disease, especially its clinical relevance and diagnosis, and summarizes the clinical cases of human NLM and VLM known to date. Most diagnosed patients have been young children less than 2 years of age, although the number of older patients diagnosed in recent years has been increasing. The recent development of recombinant antigen-based serodiagnostic assays has aided greatly in the early diagnosis of this infection. Patients recovering with fewer severe sequelae have been reported in recent years, reinforcing the current recommendation that early treatment with albendazole and corticosteroids should be initiated at the earliest suspicion of baylisascariasis. Considering the seriousness of this zoonotic infection, greater public and medical awareness is critical for the prevention and early treatment of human cases. PMID:26960940

  2. Propolis envelope in Apis mellifera colonies supports honey bees against the pathogen, Paenibacillus larvae.

    PubMed

    Borba, Renata S; Spivak, Marla

    2017-09-12

    Honey bees have immune defenses both as individuals and as a colony (e.g., individual and social immunity). One form of honey bee social immunity is the collection of antimicrobial plant resins and the deposition of the resins as a propolis envelope within the nest. In this study, we tested the effects of the propolis envelope as a natural defense against Paenibacillus larvae, the causative agent of American foulbrood (AFB) disease. Using colonies with and without a propolis envelope, we quantified: 1) the antimicrobial activity of larval food fed to 1-2 day old larvae; and 2) clinical signs of AFB. Our results show that the antimicrobial activity of larval food was significantly higher when challenged colonies had a propolis envelope compared to colonies without the envelope. In addition, colonies with a propolis envelope had significantly reduced levels of AFB clinical signs two months following challenge. Our results indicate that the propolis envelope serves as an antimicrobial layer around the colony that helps protect the brood from bacterial pathogen infection, resulting in a lower colony-level infection load.

  3. Application of Giemsa stain for easy detection of Trichinella spiralis muscle larvae

    PubMed Central

    Ramírez-Melgar, Carmen; Gómez-Priego, Alberto

    2007-01-01

    The application of Giemsa technique to stain compressed diaphragm samples obtained from rodents experimentally infected with Trichinella spiralis is described. Diaphragm samples from rats heavily infected with 20 muscle larvae per gram of body weight (20 ML/gbw) were cut into several pieces and stained with Giemsa; on the other hand, whole diaphragms from slightly infected mice (1 ML/gbw) were also stained with Giemsa. Besides, muscle samples were also stained with Giemsa. Observation at 10 × magnification revealed that both ML and nurse cells (NC) look as bluish structures clearly contrasting with the pinkish color of the non-infected muscle fibers. NC in the diaphragms of mice could be easily observed at naked eye as blue points contrasting with the pink surrounding areas formed by the non-infected muscle fibers. Among NC observed in the diaphragms of rats infected with 20 ML/gbw, 4.4% was multiple infection. These findings were confirmed in sectioned and hematoxylin-eosin stained specimens. This data could be usefulness for a rapid diagnosis of trichinellosis in post-mortem mammals without magnification procedures. PMID:17374981

  4. The occurrence of Toxocara species in naturally infected broiler chickens revealed by molecular approaches.

    PubMed

    Zibaei, M; Sadjjadi, S M; Maraghi, S

    2017-09-01

    Consuming raw and undercooked meat is known to enhance the risk of human toxocariasis because Toxocara species have a wide range of paratenic hosts, including chickens. The aim of this study was to identify species of Toxocara in naturally infected broiler chickens using molecular approaches. A polymerase chain reaction (PCR) method was used for the differentiation of Toxocara canis and Toxocara cati larvae recovered from tissues and organs, and identified by microscopic observations. Thirty-three 35- to 47-day-old broiler chickens were used for examination of Toxocara larvae. The duodenum, liver, lungs, heart, kidneys, skeletal muscles and brain of each chicken were examined using the pepsin method, and DNA from each tissue was extracted as the template for PCR assay. The findings revealed that 5 of 33 (15.2%) broiler chickens were infected with Toxocara larvae. Larvae were recovered from the liver (n = 19), duodenum (n = 8), skeletal muscles (n = 8) and brain (n = 2) of broiler chickens naturally infected with Toxocara spp. The results showed that the frequencies of the species in the chickens were T. canis larvae (n = 5, 83.3%) and T. cati larvae (n = 1, 16.7%). Our data from the present study demonstrated the importance of broiler chickens as a paratenic host for the parasite's life cycle in the environment. The implementation of DNA amplification as a routine diagnostic technique is a specific and alternative method for identification of Toxocara larvae, and allowed the observation of specific species under field conditions within the locations where broiler chickens are typically raised and exposed to Toxocara spp. eggs or larvae.

  5. The role of host abundance in regulating populations of freshwater mussels with parasitic larvae

    Treesearch

    Wendell R. Haag; James A. Stoeckel

    2015-01-01

    Host–parasite theory makes predictions about the influence of host abundance, competition for hosts, and parasite transmission on parasite population size, but many of these predictions are not well tested empirically. We experimentally examined these factors in ponds using two species of freshwater mussels with parasitic larvae that infect host fishes via different...

  6. Ivermectin: activity against larval Strongylus vulgaris and adult Trichostrongylus axei in experimental infections in ponies.

    PubMed

    Lyons, E T; Drudge, J H; Tolliver, S C

    1982-08-01

    Activity of ivermectin, administered IM at the dosage rate of 200 micrograms/kg of body weight, was evaluated in controlled tests against migrating larvae of Strongylus vulgaris and adult Trichostrongylus axei in experimental infections in 6 ponies raised worm-free. Ponies were given 2,190 or 2,400 infective 3rd-stage larvae of S vulgaris at 7 days before treatment and 22,000 or 22,750 infective 3rd-stage larvae of T axei at 42 or 45 days before treatment. Three ponies were given ivermectin plus vehicle, and 3 ponies were given the vehicle only; the ponies were euthanatized 7 or 9 days after treatment. At necropsy, 4th-stage S vulgaris larvae were not recovered from visceral arteries of the 3 ivermectin plus vehicle-treated ponies, but 21 to 40 larvae were recovered from each of the 3 vehicle-treated ponies. Also at necropsy, adult T axei (140 specimens) were recovered from only 1 ot the 3 ivermectin plus vehicle-treated ponies, but 4,610 to 6,410 specimens were found in each of the 3 vehicle-treated ponies. Toxicosis was not observed after treatment.

  7. Assessing the efficacy of Duddingtonia flagrans chlamydospores per gram of faeces to control Haemonchus contortus larvae.

    PubMed

    Ojeda-Robertos, Nadia Florencia; Torres-Acosta, Juan Felipe de Jesus; Aguilar-Caballero, Armando Jacinto; Ayala-Burgos, Armín; Cob-Galera, Ligia Amira; Sandoval-Castro, Carlos Alfredo; Barrientos-Medina, Roberto Carlos; de Gives, Pedro Mendoza

    2008-12-20

    The aims were (a) to quantify the number of Duddingtonia flagrans chlamydospores per gram of faeces (CPG) recovered from sheep administered with different oral doses and, (b) to describe the relationship between CPG and eggs per gram of faeces (EPG) on the efficacy to reduce Haemonchus contortus infective larvae. Three doses of chlamydospores per kg BW were orally administered during seven days: (T1) non treated control group, (T2) 1 x 10(6), (T3) 2.5 x 10(6) and (T4) 5 x 10(6). Three lambs, infected with H. contortus, were used per group. Faeces were obtained from the rectum of each lamb during the fungal administration period (days 0-6) and for six days after that period. Four coproculture replicates were made from each animal in days 2, 4, 6, 8 and 10. A higher chlamydospore dose produced higher CPG in faeces (p < 0.05), but a clear dose dependent effect was not found either in the larvae reduction or in the CPG:EPG ratio. When ratios were re-analyzed, independently of the treatment groups of origin, a better efficacy was obtained with a ratio from 5 to 10 CPG:EPG and a higher ratio (> 10 per egg) showed a lower reduction efficacy (p < 0.05). The binomial analysis showed that for each unit of increment in CPG:EPG ratio there was a reduction of larvae number until a point (between 5 and 10 CPG:EPG) where no further reduction was detected. The surface response test indicated that the number of larvae was reduced by CPG until possible saturation. The highest CPG:EPG ratios did not necessarily improve efficacy of D. flagrans.

  8. Phaeobacter gallaeciensis Reduces Vibrio anguillarum in Cultures of Microalgae and Rotifers, and Prevents Vibriosis in Cod Larvae

    PubMed Central

    D’Alvise, Paul W.; Lillebø, Siril; Prol-Garcia, Maria J.; Wergeland, Heidrun I.; Nielsen, Kristian F.; Bergh, Øivind; Gram, Lone

    2012-01-01

    Phaeobacter gallaeciensis can antagonize fish-pathogenic bacteria in vitro, and the purpose of this study was to evaluate the organism as a probiont for marine fish larvae and their feed cultures. An in vivo mechanism of action of the antagonistic probiotic bacterium is suggested using a non-antagonistic mutant. P. gallaeciensis was readily established in axenic cultures of the two microalgae Tetraselmis suecica and Nannochloropsis oculata, and of the rotifer Brachionus plicatilis. P. gallaeciensis reached densities of 107 cfu/ml and did not adversely affect growth of algae or rotifers. Vibrio anguillarum was significantly reduced by wild-type P. gallaeciensis, when introduced into these cultures. A P. gallaeciensis mutant that did not produce the antibacterial compound tropodithietic acid (TDA) did not reduce V. anguillarum numbers, suggesting that production of the antibacterial compound is important for the antagonistic properties of P. gallaeciensis. The ability of P. gallaeciensis to protect fish larvae from vibriosis was determined in a bath challenge experiment using a multidish system with 1 larva per well. Unchallenged larvae reached 40% accumulated mortality which increased to 100% when infected with V. anguillarum. P. gallaeciensis reduced the mortality of challenged cod larvae (Gadus morhua) to 10%, significantly below the levels of both the challenged and the unchallenged larvae. The TDA mutant reduced mortality of the cod larvae in some of the replicates, although to a much lesser extent than the wild type. It is concluded that P. gallaeciensis is a promising probiont in marine larviculture and that TDA production likely contributes to its probiotic effect. PMID:22928051

  9. Acquisition of Borrelia burgdorferi infection by larval Ixodes scapularis (Acari: Ixodidae) associated with engorgement measures

    USGS Publications Warehouse

    Couret, Janelle; Dyer, M.C.; Mather, T.N.; Han, S.; Tsao, J.I.; LeBrun, R.A.; Ginsberg, Howard

    2017-01-01

    Measuring rates of acquisition of the Lyme disease pathogen, Borrelia burgdorferi sensu lato Johnson, Schmid, Hyde, Steigerwalt & Brenner, by the larval stage of Ixodes scapularis Say is a useful tool for xenodiagnoses of B. burgdorferi in vertebrate hosts. In the nymphal and adult stages of I. scapularis, the duration of attachment to hosts has been shown to predict both body engorgement during blood feeding and the timing of infection with B. burgdorferi. However, these relationships have not been established for the larval stage of I. scapularis. We sought to establish the relationship between body size during engorgement of larval I. scapularis placed on B. burgdorferi-infected, white-footed mice (Peromyscus leucopus Rafinesque) and the presence or absence of infection in larvae sampled from hosts over time. Body size, time, and their interaction were the best predictors of larval infection with B. burgdorferi. We found that infected larvae showed significantly greater engorgement than uninfected larvae as early as 24 h after placement on a host. These findings may suggest that infection with B. burgdorferi affects the larval feeding process. Alternatively, larvae that engorge more rapidly on hosts may acquire infections faster. Knowledge of these relationships can be applied to improve effective xenodiagnosis of B. burgdorferi in white-footed mice. Further, these findings shed light on vector–pathogen–host interactions during an understudied part of the Lyme disease transmission cycle.

  10. Helminth Infections and Cardiovascular Diseases: Toxocara Species is Contributing to the Disease

    PubMed Central

    Zibaei, Mohammad

    2017-01-01

    Toxocariasis is the clinical term used to describe human infection with either the dog ascarid Toxocara canis or the feline ascarid Toxocara cati. As with other helminths zoonoses, the infective larvae of these Toxocara species cannot mature into adults in the human host. Instead, the worms wander through organs and tissues, mainly the liver, lungs, myocardium, kidney and central nervous system, in a vain attempt to find that, which they need to mature into adults. The migration of these immature nematode larvae causes local and systemic inflammation, resulting in the “larva migrans” syndrome. The clinical manifestations of toxocariasis are divided into visceral larva migrans, ocular larva migrans and neurotoxocariasis. Subclinical infection is often referred to as covert toxocariasis. One of the primary causes of death all around the world is cardiovascular disease that accounted for up to 30 percent of all-cause mortality. Cardiovascular disease and more precisely atherosclerotic cardiovascular disease, is predicted to remain the single leading cause of death (23.3 million deaths by 2030). A-quarter of people presenting the disease does not show any of the known cardiovascular risk factors. Therefore, there is considerable interest in looking for novel components affecting cardiovascular health, especially for those that could improve global cardiovascular risk prediction. This review endeavours to summarize the clinical aspects, new diagnostic and therapeutic perspectives of toxocaral disease with cardiovascular manifestations. PMID:27492228

  11. Molecular Identification of Zoonotic Tissue-Invasive Tapeworm Larvae Other than Taenia solium in Suspected Human Cysticercosis Cases.

    PubMed

    Tappe, Dennis; Berkholz, Jörg; Mahlke, Uwe; Lobeck, Hartmut; Nagel, Thomas; Haeupler, Alexandra; Muntau, Birgit; Racz, Paul; Poppert, Sven

    2016-01-01

    Rarely, zoonotic Taenia species other than Taenia solium cause human cysticercosis. The larval stages are morphologically often indistinguishable. We therefore investigated 12 samples of suspected human cysticercosis cases at the molecular level and surprisingly identified one Taenia crassiceps and one Taenia serialis (coenurosis) infection, which were caused by tapeworm larvae normally infecting rodents and sheep via eggs released from foxes and dogs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Effects of oxamyl on the citrus nematode, Tylenchulus semipenetrans, and on infection of sweet orange.

    PubMed

    Baines, R C; Small, R H

    1976-04-01

    Foliar sprays of 4 microg/ml oxamyl on sweet orange trees in a greenhouse slightly depressed the number of Tylenchulus semipenetrans larvae obtained from roots and soil, but similar treatments were not effective in two orchards. Soil drench treatments decreased the number of citrus nematode larvae obtained from roots or soil of citrus plants grown itt a greenhouse and in orchards. Exposure to 5-10 microg/ml of oxamyl in water was lethal to only a few second-stage larvae treated 10 days, and many second-stage larvae in 2.0 microg/ml oxamyl recovered motility when transferred to fresh water. Aqueous solutions of 50 and 100 microg/ml of oxamyl were toxic to citrus nematode larvae. Additional observations indicate that oxamyl interfered with hatch of citrus nematode larvae and was nematistatic and/or protected sweet orange roots from infection. Oxamyl degraded at different rates in two soils. The number of citrus nematode larvae that infected and developed on sweet orange roots was increased by an undetermined product of the degradation of oxamyl in soil, water, and possibly within plants. This product apparently was translocated in roots.

  13. Cephenemyia stimulator and Hypoderma diana infection of roe deer in the Czech Republic over an 8-year period.

    PubMed

    Salaba, Ondrej; Vadlejch, Jaroslav; Petrtyl, Miloslav; Valek, Petr; Kudrnacova, Marie; Jankovska, Ivana; Bartak, Miroslav; Sulakova, Hana; Langrova, Iva

    2013-04-01

    A survey of naso-pharyngeal and subcutaneous myiasis affecting roe deer (Capreolus capreolus) was conducted in the Czech Republic over an 8-year period (1999-2006). A total of 503 bucks and 264 does from six hunting localities were examined. The sampling area comprised predominantly agricultural lowlands and a mountain range primarily covered by forest. Since 1997, the deer have been treated each winter across the board with ivermectin (150 mg/kg, CERMIX® pulvis, Biopharm, CZ). Parasites found were the larvae of Hypoderma diana and Cephenemyia stimulator. There were no significant differences in warble fly infection among captured animals in the individual hunting localities. Overall, 146 (28.8%) of 503 animals (bucks) were infected with Cephenemyia stimulator larvae; body size of the second instar larva reached 13-18 mm. The prevalence ranged from 16.1 to 42.9% per year, and the mean intensity from 6 to 11 larvae per animal. Additionally, a total of 264 roe deer (does) were examined for H. diana larvae, and 77 (29.1%) were found to be positive; body size of the second instar larva reached 17 mm. The prevalence ranged from 18.8 to 50.0% per year, and the mean intensity from 13 to 22 larvae per animal. The results showed that the bot flies, Cephenemyia stimulator as well as H. diana, are common parasites in roe deer in the Czech Republic, and that through the help of treatment (ivermectin), it is possible to keep parasite levels low. The body weights of infected and non-infected H. diana deer did not differ significantly.

  14. Immunologic and hematologic responses in ponies with experimentally induced Strongylus vulgaris infection.

    PubMed

    Bailey, M; Martin, S C; Lloyd, S

    1989-08-01

    Immunologic and hematologic responses were examined in 4 ponies with experimentally induced Strongylus vulgaris infection and in 5 helminth-free ponies. Two ponies were inoculated with 200 larvae and 2 were inoculated with 700 larvae of S vulgaris and then were reinoculated with the same numbers of larvae 34 weeks later. Initial response of the ponies inoculated with S vulgaris was S vulgaris antigen-induced lymphocyte response that developed 1.5 to 3 weeks after inoculation and did not persist. Development of antigen-reactive lymphocytes was followed sequentially by a biphasic complement-fixing antibody response, then biphasic eosinophilia. Antibody titer to S vulgaris antigen was higher in ponies inoculated with 700 larvae, compared with that in ponies given 200 larvae of S vulgaris. Also, the second peak in antibody titer and in absolute number of eosinophils was observed earlier in ponies inoculated with 700 larvae, compared with ponies inoculated with 200 S vulgaris larvae, and subsided before or from about 24 weeks after inoculation. The prepatent period for S vulgaris infection was 24 to 25 weeks. After reinoculation with S vulgaris, a degree of increased lymphocyte responsiveness was apparent but, by 17 weeks after reinoculation, only the primary peak in the absolute number of eosinophils indicated an anamnestic response. Essentially, antibody was not detectable after reinoculation.

  15. First report of Coelomomyces santabrancae sp. nov. (Blastocladiomycetes: Blastocladiales) infecting mosquito larvae (Diptera: Culicidae) in central Brazil.

    PubMed

    Rueda-Páramo, M E; Montalva, C; Arruda, W; Fernandes, É K K; Luz, C; Humber, R A

    2017-10-01

    A project from 2013 to 2017 sought to discover pathogenic fungi and oomycetes from dipteran species that are vectors of major diseases of humans and animals in central Brazil and to begin evaluating the potential of these pathogens as potential biological control agents concentrated on mosquito larvae. Some collecting sites proved to be especially productive for pathogens of naturally occurring mosquito species and for placements of healthy sentinel larvae of Aedes aegypti in various sorts of containers in a gallery forest in the Santa Branca Ecoturismo Private Reserve of Natural Patrimony (RPPN) near Terezópolis de Goiás (GO). Collections during May-April of 2016 and February 2017 yielded a few dead mosquito larvae of an undetermined Onirion sp. (Culicidae: Sabethini) whose hemocoels contained many ovoid, thick-walled, yellow-golden to golden-brown, ovoid thick-walled resistant sporangia, 38.3±4×22.8±2.3µm, decorated by numerous, closely and randomly spaced punctations of variable size and shape. These were the first indisputable collections from Brazil of any Coelomomyces species. Comparisons of the morphology of these sporangia with those of other species of Coelomomyces, confirmed that this Brazilian fungus represented a new species that is described here as Coelomomyces santabrancae. Copyright © 2017. Published by Elsevier Inc.

  16. The Behavior Response of Amphipods Infected by Hedruris suttonae (Nematoda) and Pseudocorynosoma sp. (Acanthocephala).

    PubMed

    Casalins, Laura M; Brugni, Norma L; Rauque, Carlos A

    2015-12-01

    The manipulation of intermediate host behavior may increase chances of parasite transmission to the definitive host. In freshwater environments of the Neotropical Region, studies on behavioral manipulations by parasites are rare, and the majority of these consider only a single parasite species and/or 1 life stage of a particular parasite species. In Andean Patagonian lakes of Argentina, the amphipod Hyalella patagonica is infected by larvae of the fish nematode Hedruris suttonae and by the bird acanthocephalan Pseudocorynosoma sp. The 3 objectives of the present study were to determine whether H. suttonae and Pseudocorynosoma sp. differ in their effects on behavior of H. patagonica , whether such modification is associated with parasite development, and to assess the associations between behavioral traits. From naturally parasitized amphipods, activity (swimming levels) and phototaxis (light preference) was measured. Only in phototaxis trials did larvae of H. suttonae induce significantly higher levels of photophilia, suggesting that they are manipulative. Scores of activity and phototaxis were positive and significantly related for non-parasitized female amphipods and for amphipods parasitized by larvae of Pseudocorynosoma sp. but were not associated in amphipods parasitized with larvae of H. suttonae (infective and non-infective), suggesting that infection separated the relationship between these variables.

  17. Infectivity and egg production of Nematospiroides dubius as affected by space flight and ultraviolet irradiation

    NASA Technical Reports Server (NTRS)

    Long, R. A.; Ellis, W. L.; Taylor, G. R.

    1973-01-01

    Nematospiroides dubius was tested to determine the infective potential of the third stage larvae and the egg-production and egg-viability rates of the resulting adults after they are exposed to space flight and solar ultraviolet irradiation. The results are indicative that space-flown larvae exposed to solar ultraviolet irradiation were rendered noninfective in C57 mice, whereas flight control larvae that received no solar ultraviolet irradiation matured at the same rate as the ground control larvae. However, depressed egg viability was evident in the flight control larvae.

  18. Larval diet affects mosquito development and permissiveness to Plasmodium infection.

    PubMed

    Linenberg, Inbar; Christophides, George K; Gendrin, Mathilde

    2016-12-02

    The larval stages of malaria vector mosquitoes develop in water pools, feeding mostly on microorganisms and environmental detritus. Richness in the nutrient supply to larvae influences the development and metabolism of larvae and adults. Here, we investigated the effects of larval diet on the development, microbiota content and permissiveness to Plasmodium of Anopheles coluzzii. We tested three fish diets often used to rear mosquitoes in the laboratory, including two pelleted diets, Dr. Clarke's Pool Pellets and Nishikoi Fish Pellets, and one flaked diet, Tetramin Fish-Flakes. Larvae grow and develop faster and produce bigger adults when feeding on both types of pellets compared with flakes. This correlates with a higher microbiota load in pellet-fed larvae, in agreement with the known positive effect of the microbiota on mosquito development. Larval diet also significantly influences the prevalence and intensity of Plasmodium berghei infection in adults, whereby Nishikoi Fish Pellets-fed larvae develop into adults that are highly permissive to parasites and survive longer after infection. This correlates with a lower amount of Enterobacteriaceae in the midgut microbiota. Together, our results shed light on the influence of larval feeding on mosquito development, microbiota and vector competence; they also provide useful data for mosquito rearing.

  19. Philornis sp. bot fly larvae in free living scarlet macaw nestlings and a new technique for their extraction.

    PubMed

    Olah, George; Vigo, Gabriela; Ortiz, Lizzie; Rozsa, Lajos; Brightsmith, Donald J

    2013-09-01

    Bot fly larvae (Philornis genus) are obligate subcutaneous blood-feeding parasites of Neotropical birds including psittacines. We analyze twelve years of data on scarlet macaw (Ara macao) nestlings in natural and artificial nests in the lowland forests of southeastern Peru and report prevalence and intensity of Philornis parasitism. Bot fly prevalence was 28.9% while mean intensity was 5.0 larvae per infected chick. Prevalence in natural nests (11%, N=90 nestlings) was lower than in wooden nest-boxes (39%, N=57) and PVC boxes (39%, N=109). We describe a new technique of removing Philornis larvae using a reverse syringe design snake bite extractor. We compare this new technique to two other methods for removing bots from macaw chicks and find the new method the most suitable. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Repressed Beauveria bassiana Infections in Delia antiqua due to Associated Microbiota.

    PubMed

    Zhou, Fangyuan; Wu, Xiaoqing; Xu, Letian; Guo, Shuhai; Chen, Guanhong; Zhang, Xinjian

    2018-05-23

    Insects form both mutualistic and antagonistic relationships with microbes, and some antagonistic microbes have been used as biocontrol agents (BCAs) in pest management. Contextually, BCAs may be inhibited by beneficial insect symbionts, which can become potential barriers for entomopathogen-dependent pest biocontrol. Thus, by using the symbioses formed by one devastating dipteran pest, Delia antiqua, and its associated microbes as a model system, we sought to determine whether the antagonistic interaction between BCAs and microbial symbionts could affect the outcome of entomopathogen-dependent pest biocontrol. The result showed that in contrast to non-axenic D. antiqua larvae, i.e., onion maggots, axenic larvae lost resistance to the entomopathogenic Beauveria bassiana, and the re-inoculation of microbiota increased the resistance of axenic larvae to B. bassiana. Furthermore, bacteria, including Citrobacter freundii, Enterobacter ludwigii, Pseudomonas protegens, Serratia plymuthica, Sphingobacterium faecium, and Stenotrophomonas maltophilia, frequently isolated from larvae suppressed B. bassiana conidia germination and hyphal growth, and the re-inoculation of specific individual bacteria enhanced the resistance of axenic larvae to B. bassiana. Bacteria associated with larvae, including C. freundii, E. ludwigii, P. protegens, S. plymuthica, S. faecium, and S. maltophilia, can inhibit B. bassiana infection. Removing the microbiota can suppress larval resistance to fungal infection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Workbook on the Identification of Mosquito Larvae.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; And Others

    This self-instructional booklet is designed to enable public health workers identify larvae of some important North American mosquito species. The morphological features of larvae of the various genera and species are illustrated in a programed booklet, which also contains illustrated taxonomic keys to the larvae of 11 North American genera and to…

  2. Overview: Pyraloidea larvae (Insecta: Lepidoptera)

    USDA-ARS?s Scientific Manuscript database

    The larvae of pyraloid or snout moths are pests to many crops and stored products and rank as among the most destructive pests to graminaceous crops such as corn, sugarcane, and rice. On the other hand, some larvae have been investigated and used for the biological control of noxious terrestrial a...

  3. Toxocara canis in experimentally infected silver and arctic foxes.

    PubMed

    Saeed, Isam; Taira, Kensuke; Kapel, Christian M O

    2005-09-01

    In two experiments, thirty-six farm foxes of two species were inoculated with various doses of infective Toxocara canis eggs or tissue larvae isolated from mice. In experiment I, six adult arctic foxes (Alopex lagopus; 11-month old) were each inoculated with 20,000 eggs and sacrificed 100, 220, or 300 days post infection (dpi), while ten silver fox cubs (Vulpes vulpes; 6-9-week old) were infected with varying doses of eggs (30-3000) and necropsied 120 dpi. In experiment II, two groups of five cubs and two groups of five adult silver foxes received both a primary inoculation and either one or two challenge inoculations: primary inoculation (day 0) with 400 embryonated eggs were administered to five cubs and five adults and another five cubs and five adults received 400 larvae. At 50 dpi, the first challenge inoculation (400 eggs) was inoculated in all animals. At 100 dpi, three animals from each group were necropsied. The remaining two animals in each group were received a second challenge inoculation of 400 tissue larvae on 100 dpi and were subsequently necropsied at 150 dpi. In both experiments, the highest numbers of larvae per gram (lpg) of tissue was found in the kidneys (100-300 dpi). In adult foxes receiving a high dose (20,000 eggs), increasing larval burdens were found in the kidneys over the course of the experiment (up to 300 dpi). The larval migration from the lungs to other tissues appeared to be dose-dependent with the highest larval burdens found in adult foxes. The faecal egg excretion, larval burden and intestinal worm burdens decreased from the first to the second challenge infection.

  4. Transcriptome Analysis of Bombyx mori Larval Midgut during Persistent and Pathogenic Cytoplasmic Polyhedrosis Virus Infection

    PubMed Central

    Kolliopoulou, Anna; Van Nieuwerburgh, Filip; Stravopodis, Dimitrios J.; Deforce, Dieter; Swevers, Luc; Smagghe, Guy

    2015-01-01

    Many insects can be persistently infected with viruses but do not show any obvious adverse effects with respect to physiology, development or reproduction. Here, Bombyx mori strain Daizo, persistently infected with cytoplasmic polyhedrosis virus (BmCPV), was used to study the host’s transcriptional response after pathogenic infection with the same virus in midgut tissue of larvae persistently and pathogenically infected as 2nd and 4th instars. Next generation sequencing revealed that from 13,769 expressed genes, 167 were upregulated and 141 downregulated in both larval instars following pathogenic infection. Several genes that could possibly be involved in B. mori immune response against BmCPV or that may be induced by the virus in order to increase infectivity were identified, whereas classification of differentially expressed transcripts (confirmed by qRT-PCR) resulted in gene categories related to physical barriers, immune responses, proteolytic / metabolic enzymes, heat-shock proteins, hormonal signaling and uncharacterized proteins. Comparison of our data with the available literature (pathogenic infection of persistently vs. non-persistently infected larvae) unveiled various similarities of response in both cases, which suggests that pre-existing persistent infection does not affect in a major way the transcriptome response against pathogenic infection. To investigate the possible host’s RNAi response against BmCPV challenge, the differential expression of RNAi-related genes and the accumulation of viral small RNAs (vsRNAs) were studied. During pathogenic infection, siRNA-like traces like the 2-fold up-regulation of the core RNAi genes Ago-2 and Dcr-2 as well as a peak of 20 nt small RNAs were observed. Interestingly, vsRNAs of the same size were detected at lower rates in persistently infected larvae. Collectively, our data provide an initial assessment of the relative significance of persistent infection of silkworm larvae on the host response following

  5. Cutaneous larva migrans in a gardener

    NASA Astrophysics Data System (ADS)

    Agustiningtyas, I.

    2018-03-01

    Cutaneous larva migrans is parasitic infestation caused by animal hookworm larva which attacks the epidermis. Contact with soil which is the contaminated larva of hookworm. Cat and dog are the most popular hosts which exceed the egg of hookworm. Ancylostoma caninum and braziliensi are the most common. Diagnosis of CLM is the feature of theserpiginous eruption, lesion erythematous in and itching approximately a week after contact with contaminated soil. In this case report, we describe a case of CLM in a gardener.

  6. Effects of various diets on the calcium and phosphorus composition of mealworms (Tenebrio molitor larvae) and superworms (Zophobas morio larvae).

    PubMed

    Latney, La'Toya V; Toddes, Barbara D; Wyre, Nicole R; Brown, Dorothy C; Michel, Kathryn E; Briscoe, Johanna A

    2017-02-01

    OBJECTIVE To evaluate whether the nutritive quality of Tenebrio molitor larvae and Zophobas morio larvae, which are commonly cultured as live food sources, is influenced by 4 commercially available diets used as nutritional substrates; identify which diet best improved calcium content of larvae; and identify the feeding time interval that assured the highest calcium intake by larvae. ANIMALS 2,000 Zophobas morio larvae (ie, superworms) and 7,500 Tenebrio molitor larvae (ie, mealworms). PROCEDURES Larvae were placed in control and diet treatment groups for 2-, 7-, and 10-day intervals. Treatment diets were as follows: wheat millings, avian hand feeding formula, organic avian mash diet, and a high-calcium cricket feed. Control groups received water only. After treatment, larvae were flash-frozen live with liquid nitrogen in preparation for complete proximate and mineral analyses. Analyses for the 2-day treatment group were performed in triplicate. RESULTS The nutrient composition of the high-calcium cricket feed groups had significant changes in calcium content, phosphorus content, and metabolizable energy at the 2-day interval, compared with other treatment groups, for both mealworms and superworms. Calcium content and calcium-to-phosphorus ratios for larvae in the high-calcium cricket feed group were the highest among the diet treatments for all treatment intervals and for both larval species. CONCLUSIONS AND CLINICAL RELEVANCE A 2-day interval with the high-calcium cricket feed achieved a larval nutrient composition sufficient to meet National Research Council dietary calcium recommendations for nonlactating rats. Mealworm calcium composition reached 2,420 g/1,000 kcal at 48 hours, and superworm calcium composition reached 2,070g/1,000 kcal at 48 hours. These findings may enable pet owners, veterinarians, insect breeders, and zoo curators to optimize nutritive content of larvae fed to insectivorous animals.

  7. Lymphatic filarial species differentiation using evolutionarily modified tandem repeats: generation of new genetic markers.

    PubMed

    Sakthidevi, Moorthy; Murugan, Vadivel; Hoti, Sugeerappa Laxmanappa; Kaliraj, Perumal

    2010-05-01

    Polymerase chain reaction based methods are promising tools for the monitoring and evaluation of the Global Program for the Elimination of Lymphatic Filariasis. The currently available PCR methods do not differentiate the DNA of Wuchereria bancrofti or Brugia malayi by a single PCR and hence are cumbersome. Therefore, we designed a single step PCR strategy for differentiating Bancroftian infection from Brugian infection based on a newly identified gene from the W. bancrofti genome, abundant larval transcript-2 (alt-2), which is abundantly expressed. The difference in PCR product sizes generated from the presence or absence of evolutionarily altered tandem repeats in alt-2 intron-3 differentiated W. bancrofti from B. malayi. The analysis was performed on the genomic DNA of microfilariae from a number of patient blood samples or microfilariae positive slides from different Indian geographical regions. The assay gave consistent results, differentiating the two filarial parasite species accurately. This alt-2 intron-3 based PCR assay can be a potential tool for the diagnosis and differentiation of co-infections by lymphatic filarial parasites. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Image-based automatic recognition of larvae

    NASA Astrophysics Data System (ADS)

    Sang, Ru; Yu, Guiying; Fan, Weijun; Guo, Tiantai

    2010-08-01

    As the main objects, imagoes have been researched in quarantine pest recognition in these days. However, pests in their larval stage are latent, and the larvae spread abroad much easily with the circulation of agricultural and forest products. It is presented in this paper that, as the new research objects, larvae are recognized by means of machine vision, image processing and pattern recognition. More visional information is reserved and the recognition rate is improved as color image segmentation is applied to images of larvae. Along with the characteristics of affine invariance, perspective invariance and brightness invariance, scale invariant feature transform (SIFT) is adopted for the feature extraction. The neural network algorithm is utilized for pattern recognition, and the automatic identification of larvae images is successfully achieved with satisfactory results.

  9. The Identification of Congeners and Aliens by Drosophila Larvae.

    PubMed

    Del Pino, Francisco; Jara, Claudia; Pino, Luis; Medina-Muñoz, María Cristina; Alvarez, Eduardo; Godoy-Herrera, Raúl

    2015-01-01

    We investigated the role of Drosophila larva olfactory system in identification of congeners and aliens. We discuss the importance of these activities in larva navigation across substrates, and the implications for allocation of space and food among species of similar ecologies. Wild type larvae of cosmopolitan D. melanogaster and endemic D. pavani, which cohabit the same breeding sites, used species-specific volatiles to identify conspecifics and aliens moving toward larvae of their species. D. gaucha larvae, a sibling species of D. pavani that is ecologically isolated from D. melanogaster, did not respond to melanogaster odor cues. Similar to D. pavani larvae, the navigation of pavani female x gaucha male hybrids was influenced by conspecific and alien odors, whereas gaucha female x pavani male hybrid larvae exhibited behavior similar to the D. gaucha parent. The two sibling species exhibited substantial evolutionary divergence in processing the odor inputs necessary to identify conspecifics. Orco (Or83b) mutant larvae of D. melanogaster, which exhibit a loss of sense of smell, did not distinguish conspecific from alien larvae, instead moving across the substrate. Syn97CS and rut larvae of D. melanogaster, which are unable to learn but can smell, moved across the substrate as well. The Orco (Or83b), Syn97CS and rut loci are necessary to orient navigation by D. melanogaster larvae. Individuals of the Trana strain of D. melanogaster did not respond to conspecific and alien larval volatiles and therefore navigated randomly across the substrate. By contrast, larvae of the Til-Til strain used larval volatiles to orient their movement. Natural populations of D. melanogaster may exhibit differences in identification of conspecific and alien larvae. Larval locomotion was not affected by the volatiles.

  10. Complete validation of a unique digestion assay to detect Trichinella larvae in horse meat demonstrates the reliability of this assay for meeting food safety and trade requirements.

    PubMed

    Forbes, L B; Hill, D E; Parker, S; Tessaro, S V; Gamble, H R; Gajadhar, A A

    2008-03-01

    A tissue digestion assay using a double separatory funnel procedure for the detection of Trichinella larvae in horse meat was validated for application in food safety programs and trade. The assay consisted of a pepsin-HCl digestion step to release larvae from muscle tissue and two sequential sedimentation steps in separatory funnels to recover and concentrate larvae for detection with a stereomicroscope. With defined critical control points, the assay was conducted within a quality assurance system compliant with International Organization for Standardization-International Electrotechnical Commission (ISO/IEC) 17025 guidelines. Samples used in the validation were obtained from horses experimentally infected with Trichinella spiralis to obtain a range of muscle larvae densities. One-, 5-, and 10-g samples of infected tissue were combined with 99, 95, and 90 g, respectively, of known negative horse tissue to create a 100-g sample for testing. Samples of 5 and 10 g were more likely to be positive than were 1-g samples when larval densities were less than three larvae per gram (lpg). This difference is important because ingested meat with 1 lpg is considered the threshold for clinical disease in humans. Using a 5-g sample size, all samples containing 1.3 to 2 lpg were detected, and 60 to 100% of samples with infected horse meat containing 0.1 to 0.7 lpg were detected. In this study, the double separatory funnel digestion assay was efficient and reliable for its intended use in food safety and trade. This procedure is the only digestion assay for Trichinella in horse meat that has been validated as consistent and effective at critical levels of sensitivity.

  11. Freshly squeezed: anaphylaxis caused by drone larvae juice.

    PubMed

    Stoevesandt, J; Trautmann, A

    2017-11-30

    Drone larvae are mostly considered a by-product of beekeeping, but have recently been advo-cated as a high-protein source of food. There are as yet no data concerning their allergenic po-tential. We report on a 29-year old bee keeper who experienced an anaphylactic reaction following the consumption of a freshly prepared beverage from raw drone larvae. Larvae-specific sensitization was confirmed by prick-to-prick and basophil activation testing. Bee stings and classical bee products including honey and royal jelly were tolerated. This is the hitherto first report on IgE-mediated allergy to drone larvae. We suggest that a certain awareness towards the allergenicity of bee larvae is required.

  12. Early detection of Trichinella spiralis DNA in the feces of experimentally infected mice by using PCR.

    PubMed

    Liu, Xiao Lin; Ren, Hua Nan; Shi, Ya Li; Hu, Chen Xi; Song, Yan Yan; Duan, Jiang Yang; Zhang, Hui Ping; Du, Xin Rui; Liu, Ruo Dan; Jiang, Peng; Wang, Zhong Quan; Cui, Jing

    2017-02-01

    The aim of this study was to detect Trichinella spiralis DNA in mouse feces during the early stages of infection using PCR. The target gene fragment, a 1.6kb repetitive sequence of T. spiralis genome, was amplified by PCR from feces of mice infected with 100 or 300 larvae at 3-24h post infection (hpi) and 2-28dpi. The sensitivity of PCR was 0.016 larvae in feces. The primers used were highly specific for T. spiralis. No cross-reactivity was observed with the DNA of other intestinal helminths. T. spiralis DNA was detected in 100% (12/12) of feces of mice infected with 100 or 300 larvae as early as 3hpi, with the peak detection lasting to 12-24hpi, and then fluctuating before declining gradually. By 28dpi, the detection rate of T. spiralis DNA in feces of the two groups of infected mice decreased to 8.33% and 25%, respectively. PCR detection of T. spiralis DNA in feces is simple and specific; it might be useful for the early diagnosis of Trichinella infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honey bee pathogenic bacterium Paenibacillus larvae.

    PubMed

    Garcia-Gonzalez, Eva; Müller, Sebastian; Hertlein, Gillian; Heid, Nina; Süssmuth, Roderich D; Genersch, Elke

    2014-10-01

    Paenibacillus larvae is the etiological agent of American Foulbrood (AFB) a world-wide distributed devastating disease of the honey bee brood. Previous comparative genome analysis and more recently, the elucidation of the bacterial genome, provided evidence that this bacterium harbors putative functional nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) and therefore, might produce nonribosomal peptides (NRPs) and polyketides (PKs). Such biosynthesis products have been shown to display a wide-range of biological activities such as antibacterial, antifungal or cytotoxic activity. Herein we present an in silico analysis of the first NRPS/PKS hybrid of P. larvae and we show the involvement of this cluster in the production of a compound named paenilamicin (Pam). For the characterization of its in vitro and in vivo bioactivity, a knock-out mutant strain lacking the production of Pam was constructed and subsequently compared to wild-type species. This led to the identification of Pam by mass spectrometry. Purified Pam-fractions showed not only antibacterial but also antifungal and cytotoxic activities. The latter suggested a direct effect of Pam on honey bee larval death which could, however, not be corroborated in laboratory infection assays. Bee larvae infected with the non-producing Pam strain showed no decrease in larval mortality, but a delay in the onset of larval death. We propose that Pam, although not essential for larval mortality, is a virulence factor of P. larvae influencing the time course of disease. These findings are not only of significance in elucidating and understanding host-pathogen interactions but also within the context of the quest for new compounds with antibiotic activity for drug development. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  14. Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni

    PubMed Central

    Freitak, Dalial; Wheat, Christopher W; Heckel, David G; Vogel, Heiko

    2007-01-01

    Background Insects helped pioneer, and persist as model organisms for, the study of specific aspects of immunity. Although they lack an adaptive immune system, insects possess an innate immune system that recognizes and destroys intruding microorganisms. Its operation under natural conditions has not been well studied, as most studies have introduced microbes to laboratory-reared insects via artificial mechanical wounding. One of the most common routes of natural exposure and infection, however, is via food; thus, the role of dietary microbial communities in herbivorous insect immune system evolution invites study. Here, we examine the immune system response and consequences of exposing a lepidopteran agricultural pest to non-infectious microorganisms via simple oral consumption. Results Immune system response was compared between Trichoplusia ni larvae reared on diets with or without non-pathogenic bacteria (Escherichia coli and Micrococcus luteus). Two major immune response-related enzymatic activities responded to diets differently – phenoloxidase activity was inhibited in the bacteria-fed larvae, whereas general antibacterial activity was enhanced. Eight proteins were highly expressed in the hemolymph of the bacteria fed larvae, among them immune response related proteins arylphorin, apolipophorin III and gloverin. Expression response among 25 putative immune response-related genes were assayed via RT-qPCR. Seven showed more than fivefold up regulation in the presence of bacterial diet, with 22 in total being differentially expressed, among them apolipophorin III, cecropin, gallerimycin, gloverin, lysozyme, and phenoloxidase inhibiting enzyme. Finally, potential life-history trade-offs were studied, with pupation time and pupal mass being negatively affected in bacteria fed larvae. Conclusion The presence of bacteria in food, even if non-pathogenic, can trigger an immune response cascade with life history tradeoffs. Trichoplusia ni larvae are able to detect

  15. Larvae of Contracaecum sp. (Nematoda: Anisakidae) in the threatened freshwater fish Sandelia capensis (Anabantidae) in South Africa.

    PubMed

    Moravec, Franti Ek; van Rensburg, Candice Jansen; Van As, Liesl L

    2016-08-09

    Third-stage larvae of the nematode genus Contracaecum Railliet et Henry, 1912 (Contracaecum sp.) were, for the first time, recorded from the abdominal cavity of the threatened endemic freshwater fish Sandelia capensis (Cuvier) in South Africa. The larval morphology indicated that they belong to a species of which the adults are parasitic in fish-eating birds. Although the nematode seems to be a common parasite of S. capensis in the locality under study (prevalence 23%), the low intensity of infection recorded (1 to 4) and the generally known low pathogenicity of Contracaecum larvae in fish indicate that this parasite probably does not represent a danger to the local population of this threatened fish species.

  16. [Biotechnological aspects in "loco" larvae].

    PubMed

    Inestrosa, N C; Labarca, R; Perelman, A; Campos, E O; Araneda, R; González, M; Brandan, E; Sánchez, J P; González-Plaza, R

    1990-10-01

    The biology of planktotrophic larvae of Concholepas concholepas is the main bottleneck towards developing biotechnologies to rear this muricid. Data concerning planktonic larvae development, diets and environmental signals triggering larval settlement and recruitment is scarce. We have begun the study of the molecular and cell biology of embryos, larvae and recruits having as a final goal, the development of appropriate biotechnologies to rear this gastropod. First, an inverse ratio between BuChE and AChE enzyme activities was established. This ratio may be a precise developmental marker for this species. Second, for the first time a phosphoinositide related regulatory pathway is reported in a muricid, opening a new approach to the biotechnological management of larvae. Third, the relation between sulfate in sea water and larval motility was studied. Concentrations below 125 microM sulfate decreases larval motility. The sulfate is incorporated in proteoglycans which participate in different developmental phenomena. Lastly, a genomic Concholepas concholepas DNA sequence, similar to that of a human growth hormone probe was detected. This is very interesting since growth factors are key molecules during development, growth and are involved in food conversion rates in fish and also, in a variety of marine invertebrates.

  17. Tools for automating the imaging of zebrafish larvae.

    PubMed

    Pulak, Rock

    2016-03-01

    The VAST BioImager system is a set of tools developed for zebrafish researchers who require the collection of images from a large number of 2-7 dpf zebrafish larvae. The VAST BioImager automates larval handling, positioning and orientation tasks. Color images at about 10 μm resolution are collected from the on-board camera of the system. If images of greater resolution and detail are required, this system is mounted on an upright microscope, such as a confocal or fluorescence microscope, to utilize their capabilities. The system loads a larvae, positions it in view of the camera, determines orientation using pattern recognition analysis, and then more precisely positions to user-defined orientation for optimal imaging of any desired tissue or organ system. Multiple images of the same larva can be collected. The specific part of each larva and the desired orientation and position is identified by the researcher and an experiment defining the settings and a series of steps can be saved and repeated for imaging of subsequent larvae. The system captures images, then ejects and loads another larva from either a bulk reservoir, a well of a 96 well plate using the LP Sampler, or individually targeted larvae from a Petri dish or other container using the VAST Pipettor. Alternative manual protocols for handling larvae for image collection are tedious and time consuming. The VAST BioImager automates these steps to allow for greater throughput of assays and screens requiring high-content image collection of zebrafish larvae such as might be used in drug discovery and toxicology studies. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  18. Filtering out parasites: sand crabs (Lepidopa benedicti) are infected by more parasites than sympatric mole crabs (Emerita benedicti)

    PubMed Central

    2017-01-01

    Two digging decapod crustaceans, the sand crab species Lepidopa benedicti and the mole crab species Emerita benedicti, both live in the swash zone of fine sand beaches. They were examined for two parasites that infect decapod crustaceans in the region, an unidentified nematode previously shown to infect L. benedicti, and cestode tapeworm larvae, Polypocephalus sp., previously shown to infect shrimp (Litopenaeus setiferus). Lepidopa benedicti were almost always infected with both parasite species, while E. benedicti were rarely infected with either parasite species. This difference in infection pattern suggests that tapeworms are ingested during sediment feeding in L. benedicti, which E. benedicti avoid by filter feeding. Larger L. benedicti had more Polypocephalus sp. larvae. The thoracic ganglia, which make up the largest proportion of neural tissue, contained the largest numbers of Polypocephalus sp. larvae. Intensity of Polypocephalus sp. infection was not correlated with how long L. benedicti remained above sand in behavioural tests, suggesting that Polypocephalus sp. do not manipulate the sand crabs in a way that facilitates trophic transmission of the parasite. Litopenaeus setiferus may be a primary host for Polypocephalus sp., and L. benedict may be a secondary, auxiliary host. PMID:28951818

  19. Dirofilaria, visceral larva migrans, and tropical pulmonary eosinophilia.

    PubMed

    Chitkara, R K; Sarinas, P S

    1997-06-01

    Helminthic infections are prevalent worldwide. The intestinal ascarid, Toxocara, the animal filarial parasite, Dirofilaria, and the human filarial parasite, Wuchereria or Brugia, produce an array of pulmonary disease in humans. Infections are common in temperate, tropical, and subtropical regions of the world. Pulmonary dirofilariasis is essentially an asymptomatic disease. Most cases are diagnosed accidentally after thoracotomy for a solitary pulmonary nodule presumed to be lung cancer. Clinical manifestations of toxocariasis or visceral larva migrans (VLM) are the result of allergic and inflammatory responses of the host, and manifest with airway reactivity, acute pneumonia, and persistent eosinophilia. VLM is a self-limited disease and specific treatment is rarely necessary. In acute cases, a short course of steroids reduces morbidity and mortality but preventive measures are more important in curbing toxocara infection. Tropical pulmonary eosinophilia (TPE) is the result of immunologic hyperresponsiveness to the human filarial antigen and eosinophils play a crucial role in its pathogenesis. Airway hyperreactivity, extreme eosinophilia, and pulmonary physiologic impairment are the characteristic features. Treatment of TPE with diethylcarbamazine results in dramatic amelioration of symptoms. However, low grade inflammation persists in a significant number of patients and can lead to chronic interstitial lung disease. Mass treatment of patients in certain endemic areas has been effective in eliminating TPE.

  20. Galleria mellonella larvae are capable of sensing the extent of priming agent and mounting proportionatal cellular and humoral immune responses.

    PubMed

    Wu, Gongqing; Xu, Li; Yi, Yunhong

    2016-06-01

    Larvae of Galleria mellonella are useful models for studying the innate immunity of invertebrates or for evaluating the virulence of microbial pathogens. In this work, we demonstrated that prior exposure of G. mellonella larvae to high doses (1×10(4), 1×10(5) or 1×10(6) cells/larva) of heat-killed Photorhabdus luminescens TT01 increases the resistance of larvae to a lethal dose (50 cells/larva) of viable P. luminescens TT01 infection administered 48h later. We also found that the changes in immune protection level were highly correlated to the changes in levels of cellular and humoral immune parameters when priming the larvae with different doses of heat-killed P. luminescens TT01. Priming the larvae with high doses of heat-killed P. luminescens TT01 resulted in significant increases in the hemocytes activities of phagocytosis and encapsulation. High doses of heat-killed P. luminescens TT01 also induced an increase in total hemocyte count and a reduction in bacterial density within the larval hemocoel. Quantitative real-time PCR analysis showed that genes coding for cecropin and gallerimycin and galiomycin increased in expression after priming G. mellonella with heat-killed P. luminescens TT01. All the immune parameters changed in a dose-dependent manner. These results indicate that the insect immune system is capable of sensing the extent of priming agent and mounting a proportionate immune response. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  1. In vitro anthelmintic activity of five tropical legumes on the exsheathment and motility of Haemonchus contortus infective larvae.

    PubMed

    von Son-de Fernex, Elke; Alonso-Díaz, Miguel Angel; Valles-de la Mora, Braulio; Capetillo-Leal, Concepción M

    2012-08-01

    This study investigated the in vitro anthelmintic (AH) activity of five tropical legume plants [Arachis pintoi CIAT 22160 (A.p. 22160), Gliricidia sepium, Cratylia argentea (C.a. Yacapani), C. argentea CIAT 22386 (C.a. 22386), C. argentea Veranera (C.a. Veranera)] against Haemonchus contortus infective larvae and the role of tannins/polyphenolic compounds in the AH effect. Lyophilized leaf extracts of each plant were evaluated using the Larval Exsheathment Inhibition Assay (LEIA) and the larval migration inhibition assay (LMIA). The role of tannins/polyphenolic compounds in the AH effect was evaluated in both assays using polyethylene glycol (PEG) to remove tannins from the solutions. At the highest concentration (1200μg of extract/ml), A. pintoi 22160, C.a. Yacapani, C.a. Veranera and C.a. 22386 completely inhibited the exsheathment process of H. contortus (P<0.01). At the same concentration (1200μg of extract/ml), the inhibition of larval migration for C.a. 22386, C.a. Veranera and G. sepium was 66.0%, 35.9% and 39.2% (relative to the PBS control), respectively. In both bioassays (LEIA and LMIA), the AH effect shown by each plant was blocked after the addition of polyethylene glycol (PEG), corroborating the role of tannins/polyphenolic compounds. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. An Introduction to the Identification of Chironomid Larvae.

    ERIC Educational Resources Information Center

    Mason, William T., Jr.

    This publication is an introductory guide to the identification of Chironomid (Midge) larvae. The larvae of these small flies are an important link in the food chain between algae and microinvertebrates. As a family, the larvae exhibit a wide range of tolerance to environmental factors such as amounts and types of pollutants. Much of this…

  3. Identification of Enterococcus mundtii as a pathogenic agent involved in the "flacherie" disease in Bombyx mori L. larvae reared on artificial diet.

    PubMed

    Cappellozza, Silvia; Saviane, Alessio; Tettamanti, Gianluca; Squadrin, Marta; Vendramin, Elena; Paolucci, Paolo; Franzetti, Eleonora; Squartini, Andrea

    2011-03-01

    Enterococcus mundtii was shown to be directly correlated with flacherie disease of the silkworm larvae reared on artificial diet supplemented with chloramphenicol. Its identification was carried out by means of light and electron microscopy and nucleotide sequencing of 16S gene. The bacterium is capable of rapidly multiplying in the silkworm gut and of invading other body tissues, as demonstrated by deliberate infection of germfree larvae and by subsequent TEM observations. E. mundtii can endure alkaline pH of the silkworm gut and it has been proved to adapt in vitro to commonly applied doses of chloramphenicol, whose use can further contribute to reduce competition by other bacteria in Bombyx mori alimentary canal. The modality of transmission of the infection to the larvae was among the objectives of the present research. Since contamination of the progeny by mother moths can be avoided through routine egg shell disinfection, a trans-ovarian vertical transmission can be ruled out. On the other hand the bacterium was for the first time identified on mulberry leaves, and therefore artificial diet based on leaf powder could be a source of infection. We showed that while microwaved diet could contain live E. mundtii cells, the autoclaved diet is safe in this respect. Being E. mundtii also part of the human-associated microbiota, and since B. mori is totally domestic species, a possible role of man in its epidemiology can be postulated. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Sun-Compass Orientation in Mediterranean Fish Larvae.

    PubMed

    Faillettaz, Robin; Blandin, Agathe; Paris, Claire B; Koubbi, Philippe; Irisson, Jean-Olivier

    2015-01-01

    Mortality is very high during the pelagic larval phase of fishes but the factors that determine recruitment success remain unclear and hard to predict. Because of their bipartite life history, larvae of coastal species have to head back to the shore at the end of their pelagic episode, to settle. These settlement-stage larvae are known to display strong sensory and motile abilities, but most work has been focused on tropical, insular environments and on the influence of coast-related cues on orientation. In this study we quantified the in situ orientation behavior of settlement-stage larvae in a temperate region, with a continuous coast and a dominant along-shore current, and inspected both coast-dependent and independent cues. We tested six species: one Pomacentridae, Chromis chromis, and five Sparidae, Boops boops, Diplodus annularis, Oblada melanura, Spicara smaris and Spondyliosoma cantharus. Over 85% of larvae were highly capable of keeping a bearing, which is comparable to the orientation abilities of tropical species. Sun-related cues influenced the precision of bearing-keeping at individual level. Three species, out of the four tested in sufficient numbers, oriented significantly relative to the sun position. These are the first in situ observations demonstrating the use of a sun compass for orientation by wild-caught settlement-stage larvae. This mechanism has potential for large-scale orientation of fish larvae globally.

  5. Sun-Compass Orientation in Mediterranean Fish Larvae

    PubMed Central

    Faillettaz, Robin; Blandin, Agathe; Paris, Claire B.; Koubbi, Philippe; Irisson, Jean-Olivier

    2015-01-01

    Mortality is very high during the pelagic larval phase of fishes but the factors that determine recruitment success remain unclear and hard to predict. Because of their bipartite life history, larvae of coastal species have to head back to the shore at the end of their pelagic episode, to settle. These settlement-stage larvae are known to display strong sensory and motile abilities, but most work has been focused on tropical, insular environments and on the influence of coast-related cues on orientation. In this study we quantified the in situ orientation behavior of settlement-stage larvae in a temperate region, with a continuous coast and a dominant along-shore current, and inspected both coast-dependent and independent cues. We tested six species: one Pomacentridae, Chromis chromis, and five Sparidae, Boops boops, Diplodus annularis, Oblada melanura, Spicara smaris and Spondyliosoma cantharus. Over 85% of larvae were highly capable of keeping a bearing, which is comparable to the orientation abilities of tropical species. Sun-related cues influenced the precision of bearing-keeping at individual level. Three species, out of the four tested in sufficient numbers, oriented significantly relative to the sun position. These are the first in situ observations demonstrating the use of a sun compass for orientation by wild-caught settlement-stage larvae. This mechanism has potential for large-scale orientation of fish larvae globally. PMID:26308915

  6. Regional distribution of Paenibacillus larvae subspecies larvae, the causative organism of American foulbrood, in honey bee colonies of the Western United States.

    PubMed

    Eischen, Frank A; Graham, R Henry; Cox, Robert

    2005-08-01

    We examined honey bee, Apis mellifera L., colonies pollinating almonds in California during February 2003 for Paenibacillus larvae subsp. Larvae, the causative organism of the virulent brood disease American foulbrood. Colonies originating from the Rocky Mountain area and California had significantly higher numbers (P < 0.05) of bacterial colony-forming units (CFUs) (408 and 324 per 30 adult bees, respectively) than colonies from the upper Midwest (1.28). Colonies from the northwestern, central, and southwestern United States had intermediate CFU or bacterial colony levels. Operations positive for P. larvae larvae were relatively uniform at approximately 70-80%, and no regional significant differences were found. Percentages of colonies with high CFUs (> or = 400 per 30 bees) differed significantly, with those from the Rocky Mountain region having 8.73% compared with those of the upper Midwest with 0%. The significance of CFU levels was evaluated by inoculating healthy colonies with diseased immatures and sampling adult bees. The number of CFUs detected per diseased immature was conservatively estimated to be approximately 399 CFUs per 30 adult bees. We defined this spore level as 1 disease equivalent. Based on this, 3.86% colonies in our survey had 1 or more disease equivalent number of P. larvae larvae CFUs. Operations with high P. larvae larvae spore levels in their colonies will likely observe American foulbrood if prophylaxis is not practiced diligently.

  7. How the pilidium larva feeds

    PubMed Central

    2013-01-01

    Introduction The nemertean pilidium is a long-lived feeding larva unique to the life cycle of a single monophyletic group, the Pilidiophora, which is characterized by this innovation. That the pilidium feeds on small planktonic unicells seems clear; how it does so is unknown and not readily inferred, because it shares little morphological similarity with other planktotrophic larvae. Results Using high-speed video of trapped lab-reared pilidia of Micrura alaskensis, we documented a multi-stage feeding mechanism. First, the external ciliation of the pilidium creates a swimming and feeding current which carries suspended prey past the primary ciliated band spanning the posterior margins of the larval body. Next, the larva detects prey that pass within reach, then conducts rapid and coordinated deformations of the larval body to re-direct passing cells and surrounding water into a vestibular space between the lappets, isolated from external currents but not quite inside the larva. Once a prey cell is thus captured, internal ciliary bands arranged within this vestibule prevent prey escape. Finally, captured cells are transported by currents within a buccal funnel toward the stomach entrance. Remarkably, we observed that the prey of choice – various cultured cryptomonads – attempt to escape their fate. Conclusions The feeding mechanism deployed by the pilidium larva coordinates local control of cilia-driven water transport with sensorimotor behavior, in a manner clearly distinct from any other well-studied larval feeding mechanisms. We hypothesize that the pilidium’s feeding strategy may be adapted to counter escape responses such as those deployed by cryptomonads, and speculate that similar needs may underlie convergences among disparate planktotrophic larval forms. PMID:23927417

  8. Fate of pharmaceuticals and pesticides in fly larvae composting.

    PubMed

    Lalander, C; Senecal, J; Gros Calvo, M; Ahrens, L; Josefsson, S; Wiberg, K; Vinnerås, B

    2016-09-15

    A novel and efficient organic waste management strategy currently gaining great attention is fly larvae composting. High resource recovery efficiency can be achieved in this closed-looped system, but pharmaceuticals and pesticides in waste could potentially accumulate in every loop of the treatment system and spread to the environment. This study evaluated the fate of three pharmaceuticals (carbamazepine, roxithromycin, trimethoprim) and two pesticides (azoxystrobin, propiconazole) in a fly larvae composting system and in a control treatment with no larvae. It was found that the half-life of all five substances was shorter in the fly larvae compost (<10% of control) and no bioaccumulation was detected in the larvae. Fly larvae composting could thus impede the spread of pharmaceuticals and pesticides into the environment. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Rearing Water Treatment Induces Microbial Selection Influencing the Microbiota and Pathogen Associated Transcripts of Cod (Gadus morhua) Larvae.

    PubMed

    Vestrum, Ragnhild I; Attramadal, Kari J K; Winge, Per; Li, Keshuai; Olsen, Yngvar; Bones, Atle M; Vadstein, Olav; Bakke, Ingrid

    2018-01-01

    We have previously shown that K-selection and microbial stability in the rearing water increases survival and growth of Atlantic cod ( Gadus morhua ) larvae, and that recirculating aquaculture systems (RAS) are compatible with this. Here, we have assessed how water treatment influenced the larval microbiota and host responses at the gene expression level. Cod larvae were reared with two different rearing water systems: a RAS and a flow-through system (FTS). The water microbiota was examined using a 16S rDNA PCR/DGGE strategy. RNA extracted from larvae at 8, 13, and 17 days post hatching was used for microbiota and microarray gene expression analysis. Bacterial cDNA was synthesized and used for 16S rRNA amplicon 454 pyrosequencing of larval microbiota. Both water and larval microbiota differed significantly between the systems, and the larval microbiota appeared to become more dissimilar between systems with time. In total 4 phyla were identified for all larvae: Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. The most profound difference in larval microbiota was a high abundance of Arcobacter (Epsilonproteobacteria) in FTS larvae (34 ± 9% of total reads). Arcobacter includes several species that are known pathogens for humans and animals. Cod larval transcriptome responses were investigated using an oligonucleotide gene expression microarray covering approximately 24,000 genes. Interestingly, FTS larvae transcriptional profiles revealed an overrepresentation of upregulated transcripts associated with responses to pathogens and infections, such as c1ql3-like , pglyrp-2-like and zg16, compared to RAS larvae. In conclusion, distinct water treatment systems induced differences in the larval microbiota. FTS larvae showed up-regulation of transcripts associated with responses to microbial stress. These results are consistent with the hypothesis that RAS promotes K-selection and microbial stability by maintaining a microbial load close to the carrying

  10. Rearing Water Treatment Induces Microbial Selection Influencing the Microbiota and Pathogen Associated Transcripts of Cod (Gadus morhua) Larvae

    PubMed Central

    Vestrum, Ragnhild I.; Attramadal, Kari J. K.; Winge, Per; Li, Keshuai; Olsen, Yngvar; Bones, Atle M.; Vadstein, Olav; Bakke, Ingrid

    2018-01-01

    We have previously shown that K-selection and microbial stability in the rearing water increases survival and growth of Atlantic cod (Gadus morhua) larvae, and that recirculating aquaculture systems (RAS) are compatible with this. Here, we have assessed how water treatment influenced the larval microbiota and host responses at the gene expression level. Cod larvae were reared with two different rearing water systems: a RAS and a flow-through system (FTS). The water microbiota was examined using a 16S rDNA PCR/DGGE strategy. RNA extracted from larvae at 8, 13, and 17 days post hatching was used for microbiota and microarray gene expression analysis. Bacterial cDNA was synthesized and used for 16S rRNA amplicon 454 pyrosequencing of larval microbiota. Both water and larval microbiota differed significantly between the systems, and the larval microbiota appeared to become more dissimilar between systems with time. In total 4 phyla were identified for all larvae: Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. The most profound difference in larval microbiota was a high abundance of Arcobacter (Epsilonproteobacteria) in FTS larvae (34 ± 9% of total reads). Arcobacter includes several species that are known pathogens for humans and animals. Cod larval transcriptome responses were investigated using an oligonucleotide gene expression microarray covering approximately 24,000 genes. Interestingly, FTS larvae transcriptional profiles revealed an overrepresentation of upregulated transcripts associated with responses to pathogens and infections, such as c1ql3-like, pglyrp-2-like and zg16, compared to RAS larvae. In conclusion, distinct water treatment systems induced differences in the larval microbiota. FTS larvae showed up-regulation of transcripts associated with responses to microbial stress. These results are consistent with the hypothesis that RAS promotes K-selection and microbial stability by maintaining a microbial load close to the carrying capacity

  11. Travel-related infections in children.

    PubMed

    Fox, Thomas G; Manaloor, John J; Christenson, John C

    2013-04-01

    Malaria, diarrhea, respiratory infections, and cutaneous larva migrans are common travel-related infections observed in children and adolescents returning from trips to developing countries. Children visiting friends and relatives are at the highest risk because few visit travel clinics before travel, their stays are longer, and the sites they visit are more rural. Clinicians must be able to prepare their pediatric-age travelers before departure with preventive education, prophylactic and self-treating medications, and vaccinations. Familiarity with the clinical manifestations and treatment of travel-related infections will secure prompt and effective therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Does suckling offer protection to the lamb against Teladorsagia circumcincta infection?

    PubMed

    Iposu, S O; McAnulty, R W; Greer, A W; Xie, H L; Green, R S; Stankiewicz, M; Sykes, A R

    2008-05-31

    This study tested the hypothesis that milk has a direct effect on the establishment of infection with Teladorsagia circumcincta, and provides information on the effects of suckling on resilience to infection in young lambs. Of 46 six-week-old twin-born lambs, one from each twin was allowed to continue suckling (S-) and its twin-weaned (W-) while both were concurrently infected with an average of either 0 (-0; n=7/group), 250 (-250; n=8/group) or 1000 (-1000; n=8/group) third stage infective larvae (L3) of T. circumcincta per day, providing six treatment groups. All groups grazed minimally contaminated pasture, and after 42 days were slaughtered for necropsy. Low pasture larval contamination was confirmed in W0 and S0 lambs by faecal egg counts (FEC) of less than 30 eggs per gram (EPG) and burdens of less than 140 worms. There was no difference in FEC between weaned and suckled lambs. Within infection regime, total worm burdens were 55-60% greater in the weaned compared with their suckled counterparts (P=0.05), and represented 27 and 17%, respectively, net establishment of larvae. The greater worm burdens of both groups of weaned animals, which compared with their suckled counterparts, and of those infected with 1000 compared with 250 larvae per day, were associated with shorter female adults that had fewer eggs in utero, perhaps indicating intra-worm population regulation, but highlighting the limitation of FEC in assessing nematode burdens of such young lambs. There was no effect of infection on live weight gain of either weaned or suckled groups and the possibility was raised that, in such young lambs, immune unresponsiveness may be responsible. The major benefit of continued milk consumption appears to lie more in providing nutrients for enhanced growth rather than in improving resilience of the lambs to infection.

  13. Rachiplusia nu larva as a biofactory to achieve high level expression of horseradish peroxidase.

    PubMed

    Romero, Lucía Virginia; Targovnik, Alexandra Marisa; Wolman, Federico Javier; Cascone, Osvaldo; Miranda, María Victoria

    2011-05-01

    A process based on orally-infected Rachiplusia nu larvae as biological factories for expression and one-step purification of horseradish peroxidase isozyme C (HRP-C) is described. The process allows obtaining high levels of pure HRP-C by membrane chromatography purification. The introduction of the partial polyhedrin homology sequence element in the target gene increased HRP-C expression level by 2.8-fold whereas it increased 1.8-fold when the larvae were reared at 27 °C instead of at 24 °C, summing up a 4.6-fold overall increase in the expression level. Additionally, HRP-C purification by membrane chromatography at a high flow rate greatly increase D the productivity without affecting the resolution. The V(max) and K(m) values of the recombinant HRP-C were similar to those of the HRP from Armoracia rusticana roots. © Springer Science+Business Media B.V. 2011

  14. AcMNPV ChiA protein disrupts the peritrophic membrane and alters midgut physiology of Bombyx mori larvae.

    PubMed

    Rao, Rosa; Fiandra, Luisa; Giordana, Barbara; de Eguileor, Magda; Congiu, Terenzio; Burlini, Nedda; Arciello, Stefania; Corrado, Giandomenico; Pennacchio, Francesco

    2004-11-01

    Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) chitinase A (ChiA) is a protein which promotes the final liquefaction of infected host larvae. The potential of this viral molecule as a new tool for insect control is explored here. The ChiA gene was isolated from the AcMNPV genome by PCR and expressed in E. coli. The recombinant protein, purified by affinity chromatography, showed both exo- and endo-chitinase activities and produced perforations on the peritrophic membrane (PM) of Bombyx mori larvae which increased in number and in size, in a dose-dependent manner. This structural alteration resulted into a significant increase of PM permeability to methylene blue and to the small neuropeptide proctolin. When the fifth instar larvae of B. mori were fed on a artificial diet supplemented with the recombinant ChiA, 100% mortality was observed at a dose of 1 microg/g of larval body weight (LW), while at sub-lethal doses of 0.56 microg/g LW, a reduced larval growth was recorded. These results indicate that AcMNPV-ChiA may offer interesting new opportunities for pest control.

  15. Haematological and biochemical values in horses naturally infected with Strongylus vulgaris.

    PubMed

    Bailey, M; Kent, J; Martin, S C; Lloyd, S; Soulsby, E J

    1984-08-18

    The concentrations of serum proteins (beta 1, beta 2, gamma, alpha 1, alpha 2 globulins and albumin) and absolute numbers of eosinophils, neutrophils and lymphocytes were examined in 64 naturally infected horses and ponies in which the number of larvae of Strongylus vulgaris in the cranial mesenteric artery and the severity of the lesion of verminous arteritis could be determined. The horses were grouped according to the number of larvae found and the severity of the arteritis. The results demonstrated that, although some significant deviation from a random distribution occurred in certain of the values (chi 2 test), there was considerable individual variation in the values obtained for individual animals within groups and overlap of the range of values between groups. Also the number of larvae present in the artery did not necessarily accurately reflect the severity of the arterial lesion. Thus, the parameters examined could not be used reliably to estimate the intensity of infection with S vulgaris in an individual animal.

  16. Ring trial among National Reference Laboratories for parasites to detect Trichinella spiralis larvae in pork samples according to the EU directive 2075/2005.

    PubMed

    Marucci, Gianluca; Pezzotti, Patrizio; Pozio, Edoardo

    2009-02-23

    To control Trichinella spp. infection in the European Union, all slaughtered pigs should be tested by one of the approved digestion methods described in EU directive 2075/2005. The aim of the present work was to evaluate, by a ring trial, the sensitivity of the digestion method used at the National Reference Laboratories for Parasites (NRLP). These Laboratories are responsible for the quality of the detection method in their own country. Of the 27 EU countries, only three (Hungary, Luxembourg and Malta) did not participate in the ring trial. Each participating laboratory received 10 samples of 100g of minced pork containing 3-5 larvae (3 samples), 10-20 larvae (3 samples), 30-50 larvae (3 samples), and one negative control. In each positive sample, there were living Trichinella spiralis larvae without the collagen capsule, obtained by partial artificial digestion of muscle tissue from infected mice. No false positive sample was found in any laboratories, whereas nine laboratories (37.5%) failed to detect some positive samples with the percentage of false negatives ranging from 11 to 100%. The variation between expected and reported larval counts observed among the participating laboratories was statistically significant. There was a direct correlation between the consistency of the results and the use of a validated/accredited digestion method. Conversely, there was no correlation between the consistency of the results and the number of digestions performed yearly by the NRLP. These results support the importance of validating the test.

  17. Galleria mellonella as an in vivo model for assessing the efficacy of antimicrobial agents against Enterobacter cloacae infection.

    PubMed

    Yang, Hai-Fei; Pan, Ai-Jun; Hu, Li-Fen; Liu, Yan-Yan; Cheng, Jun; Ye, Ying; Li, Jia-Bin

    2017-02-01

    Enterobacter cloacae is a well-recognized nosocomial pathogen. Use of a rapid, in vivo infection model for E. cloacae that can determine the efficacy of antibiotic therapies could help facilitate screening for new treatments. Nonmammalian model systems of infection, such as Galleria mellonella, have significant logistical and ethical advantages over mammalian models. We utilized G. mellonella larvae to determine the utility of this infection model to study antibacterial efficacy. G. mellonella killing with heat-killed or live clinical isolates (E. cloacae GN1059 and GN0791) was tested. We also investigated the effect of postinoculation incubation temperature on the survival of infected larvae. The protection of administration of antibiotics to infected larvae was investigated. Finally, we determined the G. mellonella hemolymph burden of E. cloacae after administration of different antibiotics. With live bacterial inocula, G. mellonella killing was significantly dependent on the number of E. cloacae cells injected in a dose-dependent manner. Further, we observed that survival was reduced with increasing the postinoculation temperature. Treatment of a lethal E. cloacae infection with antibiotics that had in vitro activity significantly prolonged the survival of larvae compared with treatment with antibiotics to which the bacteria were resistant. The therapeutic benefit arising from administration of antibiotic correlated with a reduced burden of E. cloacae cells in the hemolymph. The G. mellonella infection model has the potential to be used to facilitate the in vivo study of host-pathogen interactions in E. cloacae and the efficacy of antibacterial agents. Copyright © 2014. Published by Elsevier B.V.

  18. Effects of various treatments on the chemokinetic behavior of third-stage larvae of Strongyloides ratti on a sodium chloride gradient.

    PubMed

    Tobata-Kudo, H; Higo, H; Koga, M; Tada, I

    2000-11-01

    In observations of the movements of the infective third-stage larvae of a rodent parasitic nematode, Strongyloides ratti, on a sodium chloride gradient set up on agarose plates, two types of chemokinetic behavior were seen: a unidirectional avoidance movement on initial placement of the larvae in unfavorable environmental conditions and a random dispersal movement on their placement within an area of favorable conditions. Track patterns were straight in the avoidance movement but included multiple changes of direction and loops in the dispersal movement. In the present study we examined the interventional activity of treatment with various enzymes, lectins, and chemicals by analyzing the unidirectional avoidance movements of the larvae. We observed that beta-glucosidase, hyaluronidase, beta-galactosidase, trypsin, protease, lipase, phospholipase C, soybean agglutinin, wheat germ agglutinin, and spermidine exerted inhibitory actions on those movements, which may be guided by the chemosensory function of this nematode.

  19. Transcriptome analysis of Gossypium hirsutum flower buds infested by cotton boll weevil (Anthonomus grandis) larvae.

    PubMed

    Artico, Sinara; Ribeiro-Alves, Marcelo; Oliveira-Neto, Osmundo Brilhante; de Macedo, Leonardo Lima Pepino; Silveira, Sylvia; Grossi-de-Sa, Maria Fátima; Martinelli, Adriana Pinheiro; Alves-Ferreira, Marcio

    2014-10-04

    Cotton is a major fibre crop grown worldwide that suffers extensive damage from chewing insects, including the cotton boll weevil larvae (Anthonomus grandis). Transcriptome analysis was performed to understand the molecular interactions between Gossypium hirsutum L. and cotton boll weevil larvae. The Illumina HiSeq 2000 platform was used to sequence the transcriptome of cotton flower buds infested with boll weevil larvae. The analysis generated a total of 327,489,418 sequence reads that were aligned to the G. hirsutum reference transcriptome. The total number of expressed genes was over 21,697 per sample with an average length of 1,063 bp. The DEGseq analysis identified 443 differentially expressed genes (DEG) in cotton flower buds infected with boll weevil larvae. Among them, 402 (90.7%) were up-regulated, 41 (9.3%) were down-regulated and 432 (97.5%) were identified as orthologues of A. thaliana genes using Blastx. Mapman analysis of DEG indicated that many genes were involved in the biotic stress response spanning a range of functions, from a gene encoding a receptor-like kinase to genes involved in triggering defensive responses such as MAPK, transcription factors (WRKY and ERF) and signalling by ethylene (ET) and jasmonic acid (JA) hormones. Furthermore, the spatial expression pattern of 32 of the genes responsive to boll weevil larvae feeding was determined by "in situ" qPCR analysis from RNA isolated from two flower structures, the stamen and the carpel, by laser microdissection (LMD). A large number of cotton transcripts were significantly altered upon infestation by larvae. Among the changes in gene expression, we highlighted the transcription of receptors/sensors that recognise chitin or insect oral secretions; the altered regulation of transcripts encoding enzymes related to kinase cascades, transcription factors, Ca2+ influxes, and reactive oxygen species; and the modulation of transcripts encoding enzymes from phytohormone signalling pathways. These

  20. Toxicity of dissolved ozone to fish eggs and larvae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asbury, C.; Coler, R.

    1980-07-01

    To find levels of dissolved residual ozone lethal to fish eggs and larvae during brief exposures, continuous-flow toxicity tests were performed with eggs and larvae of yellow perch (Perca flavescens), and fathead minnow (Pimephales promelas), eggs of white sucker (Catastomus commersoni), and larvae of bluegill sunfish (Lepomis macrochirus). The 50 and 99% lethal concentrations with confidence limits were calculated. Eggs of the species tested were more tolerant than larvae, which were destroyed by very brief exposures (less than 2 minutes) to residuals less than 0.1 mg/1. Because of the sensitivity of the larvae, residual ozone concentrations in natural waters shouldmore » remain well below 50 ..mu..g/1.« less

  1. Iron levels change in larval Heliothis virescens tissues following baculovirus infection

    USDA-ARS?s Scientific Manuscript database

    Inductively-coupled plasma mass spectrometry (ICP-MS) and 59Fe radiotracers were used to investigate changes in levels of iron (Fe) in the tissues of Heliothis virescens following baculovirus infection. Fe concentrations were determined by ICP-MS in hemolymph collected from 4th instar larvae infect...

  2. Nematode infection in liver of the fish Gymnotus inaequilabiatus (Gymnotiformes: Gymnotidae) from the Pantanal Region in Brazil: pathobiology and inflammatory response.

    PubMed

    Sayyaf Dezfuli, Bahram; Fernandes, Carlos E; Galindo, Gizela M; Castaldelli, Giuseppe; Manera, Maurizio; DePasquale, Joseph A; Lorenzoni, Massimo; Bertin, Sara; Giari, Luisa

    2016-08-30

    A survey on endoparasitic helminths from freshwater fishes in the Pantanal Region (Mato Grosso do Sul, Brazil) revealed the occurrence of third-larval stage of the nematode Brevimulticaecum sp. (Heterocheilidae) in most organs of Gymnotus inaequilabiatus (Gymnotidae) also known by the local name tuvira. The aim of the present study was to examine Brevimulticaecum sp.-infected tuvira liver at the ultrastructural level and clarify the nature of granulomas and the cellular elements involved in the immune response to nematode larvae. Thirty-eight adult specimens of tuvira from Porto Morrinho, were acquired in January and March 2016. Infected and uninfected liver tissues were fixed and prepared for histological and ultrastructure investigations. The prevalence of infection of tuvira liver by the nematode larvae was 95 %, with an intensity of infection ranging from 4 to 343 larvae (mean ± SD: 55.31 ± 73.94 larvae per liver). In livers with high numbers of nematode larvae, almost entire hepatic tissue was occupied by the parasites. Hepatocytes showed slight to mild degenerative changes and accumulation of pigments. Parasite larvae were surrounded by round to oval granulomas, the result of focal host tissue response to the infection. Each granuloma was typically formed by three concentric layers: an outer layer of fibrous connective tissue with thin elongated fibroblasts; a middle layer of mast cells entrapped in a thin fibroblast-connective mesh; and an inner layer of densely packed epithelioid cells, displaying numerous desmosomes between each other. Numerous macrophage aggregates occurred in the granulomas and in the parenchyma. Our results in tuvira showed that the larvae were efficiently sequestered within the granulomas, most of the inflammatory components were confined within the thickness of the granuloma, and the parenchyma was relatively free of immune cells and without fibrosis. Presumably this focal encapsulation of the parasites permits uninfected

  3. Self-heating by large insect larvae?

    PubMed

    Cooley, Nikita L; Emlen, Douglas J; Woods, H Arthur

    2016-12-01

    Do insect larvae ever self-heat significantly from their own metabolic activity and, if so, under what sets of environmental temperatures and across what ranges of body size? We examine these questions using larvae of the Japanese rhinoceros beetle (Trypoxylus dichotomus), chosen for their large size (>20g), simple body plan, and underground lifestyle. Using CO 2 respirometry, we measured larval metabolic rates then converted measured rates of gas exchange into rates of heat production and developed a mathematical model to predict how much steady state body temperatures of underground insects would increase above ambient depending on body size. Collectively, our results suggest that large, extant larvae (20-30g body mass) can self-heat by at most 2°C, and under many common conditions (shallow depths, moister soils) would self-heat by less than 1°C. By extending the model to even larger (hypothetical) body sizes, we show that underground insects with masses >1kg could heat, in warm, dry soils, by 1.5-6°C or more. Additional experiments showed that larval critical thermal maxima (CT max ) were in excess of 43.5°C and that larvae could behaviorally thermoregulate on a thermal gradient bar. Together, these results suggest that large larvae living underground likely regulate their temperatures primarily using behavior; self-heating by metabolism likely contributes little to their heat budgets, at least in most common soil conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Single multivalent vaccination boosted by trickle larval infection confers protection against experimental lymphatic filariasis

    PubMed Central

    Joseph, SK; Ramaswamy, K

    2013-01-01

    The multivalent vaccine BmHAT, consisting of the Brugia malayi infective larval (L3) antigens heat shock protein12.6 (HSP12.6), abundant larval transcript-2 (ALT-2) and tetraspanin large extra cellular loop (TSP-LEL), was shown to be protective in rodent models from our laboratory. We hypothesize that since these antigens were identified using protective antibodies from immune endemic normal individuals, the multivalent vaccine can be augmented by natural L3 infections providing protection to the vaccinated host. This hypothesis was tested using single dose of DNA and Protein or Protein alone of the BmHAT vaccination in gerbils followed by live trickle L3 infection as booster dose. Vaccine-induced protection in gerbils was determined by worm establishment, micropore chamber assay and by antibody dependant cell cytotoxicity (ADCC) assay. Results were compared with the traditional prime-boost vaccination regimen. Gerbils vaccinated with BmHAT and boosted with L3 trickle infection were protected 51% (BmHAT DNA-Protein) and 48% (BmHAT Protein) respectively. BmHAT vaccination plus L3 trickle booster generated significant titer of antigen-specific IgG antibodies comparable to the traditional prime boost vaccination approach. BmHAT vaccination plus L3 trickle booster also generated antigen-specific cells in the spleen of vaccinated animals and these cells secreted predominantly IFN-γ and IL-4 in response to the vaccine antigens. These studies thus show that single dose of BmHAT multivalent vaccination followed by L3 trickle booster infection can confer significant protection against lymphatic filariasis. PMID:23735679

  5. Bacteria Present in Comadia redtenbacheri Larvae (Lepidoptera: Cossidae).

    PubMed

    Hernández-Flores, L; Llanderal-Cázares, C; Guzmán-Franco, A W; Aranda-Ocampo, S

    2015-09-01

    The external and internal culturable bacterial community present in the larvae of Comadia redtenbacheri Hammerschmidt, an edible insect, was studied. Characterization of the isolates determined the existence of 18 morphotypes and phylogenetic analysis of the 16S rRNA gene revealed the existence of Paenibacillus sp., Bacillus safensis, Pseudomonas sp., Bacillus pseudomycoides, Corynebacterium variabile, Enterococcus sp., Gordonia sp., Acinetobacter calcoaceticus, Arthrobacter sp., Micrococcus sp., and Bacillus cereus. Greater diversity of bacteria was found in those larvae obtained from vendors than in those directly taken from Agave plants in nature. Many of the larvae obtained from vendors presented signs of potential disease, and after the analysis, results showed a greater bacterial community compared with the larvae with a healthy appearance. This indicates that bacterial flora can vary in accordance with how the larvae are handled during extraction, collection, and transport. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Immune responses of B. malayi thioredoxin (TRX) and venom allergen homologue (VAH) chimeric multiple antigen for lymphatic filariasis.

    PubMed

    Anugraha, Gandhirajan; Jeyaprita, Parasurama Jawaharlal; Madhumathi, Jayaprakasam; Sheeba, Tamilvanan; Kaliraj, Perumal

    2013-12-01

    Although multiple vaccine strategy for lymphatic filariasis has provided tremendous hope, the choice of antigens used in combination has determined its success in the previous studies. Multiple antigens comprising key vaccine candidates from different life cycle stages would provide a promising strategy if the antigenic combination is chosen by careful screening. In order to analyze one such combination, we have used a chimeric construct carrying the well studied B. malayi antigens thioredoxin (BmTRX) and venom allergen homologue (BmVAH) as a fusion protein (TV) and evaluated its immune responses in mice model. The efficacy of fusion protein vaccine was explored in comparison with the single antigen vaccines and their cocktail. In mice, TV induced significantly high antibody titer of 1,28,000 compared to cocktail vaccine TRX+VAH (50,000) and single antigen vaccine TRX (16,000) or VAH (50,000). Furthermore, TV elicited higher level of cellular proliferative response together with elevated levels of IFN-γ, IL-4 and IL-5 indicating a Th1/Th2 balanced response. The isotype antibody profile showed significantly high level of IgG1 and IgG2b confirming the balanced response elicited by TV. Immunization with TV antigen induced high levels of both humoral and cellular immune responses compared to either cocktail or antigen given alone. The result suggests that TV is highly immunogenic in mice and hence the combination needs to be evaluated for its prophylactic potential.

  7. The biological control of Ancylostoma spp. dog infective larvae by Duddingtonia flagrans in a soil microcosm.

    PubMed

    Maciel, A S; Freitas, L G; Campos, A K; Lopes, E A; Araújo, J V

    2010-10-29

    Experiments to evaluate the potential ability of the nematode-trapping fungus Duddingtonia flagrans (Isolate CG768) to prey on the Ancylostoma spp. dog infective larvae (L(3)) in pasteurized soil were performed through several laboratory assays. A microcosm approach was used with increasing fungal concentrations in an inoculum of a chlamydospore water suspension. The highest fungal concentrations provide a more consistent larval reduction than the lowest concentrations, but no difference was observed from 10,000 to 25,000 chlamydospores per grain of soil. When using D. flagrans in a water suspension, in white rice and in milled maize, there were reductions in the larval population of 72.0%, 78.4% and 79.4%, respectively, but there was no difference between white rice and milled maize (p<0.05). To evaluate the nematode control by D. flagrans inoculated in milled maize at 10,000 chlamydospores per grain of soil under greenhouse conditions, observations were performed at 10, 15, 20, 25 and 30 days after inoculation and the percent reduction in the larval population was 61.4%, 73.2%, 70.8%, 64.5% and 57%, respectively (p<0.05). There was an inverse relationship between the number of L(3) recovered from the soil and the total days of exposure to the fungus (p<0.05). These results showed that D. flagrans could present some potential to be used as a non-chemotherapeutic alternative for regulation of Ancylostoma spp. populations in the environment. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Antibacterial properties of grapefruit seed extract against Paenibacillus larvae subsp. larvae.

    PubMed

    Semprini, P; Langella, V; Pasini, B; Falda, M T; Calvarese, S

    2004-01-01

    Twenty-one samples of grapefruit seed extract (GSE) either from marketed products or provided by an apiculturist were analysed to verify their inhibition activity, in particular against Paenibacillus larvae subsp. larvae, responsible for American foulbrood. The bactericide capacity of GSE has been measured in Bacillus subtilis BGA, Bacillus cereus 11778, Bacillus cereus K250 and Micrococcus luteus 9341a; these bacteria are normally used in the laboratory to study inhibitors. The results showed that not all GSE have the same inhibitory activity and two of those analysed do not inhibit the five bacteria used. Considering that 19 samples inhibited American foulbrood bacillus, the authors conclude that the use of a natural product (such as GSE) to control this important disease of bees, can be used as a substitute for chemotherapeutic products, after appropriate expedients.

  9. Preliminary study on the inactivation of anisakid larvae in baccalà prepared according to traditional methods.

    PubMed

    Smaldone, Giorgio; Marrone, Raffaele; Palma, Giuseppe; Sarnelli, Paolo; Anastasio, Aniello

    2017-10-20

    The European Food Safety Authority stated that many traditional marinating and cold smoking methods are not sufficient to kill A. simplex and asked to evaluate alternative treatments for killing viable parasites in fishery . Baccalà is a well-liked traditional product. The aim of study was to evaluate the effectiveness of the salting process on the inactivation of nematodes of the genus Anisakis in naturally infected Baccalà fillets. N. 19 fillets, subjected to a dual salting process (brine and dry salting) were analyzed. Visual inspection and chloropeptic digestion were performed. Larvae viability was evaluated, and parameters such as NaCl (%), moisture (%), WPS and a w were determined. In n. 17 samples parasites were found 123 parasites with a mean intensity of 7.23±4.78 and an mean abundance of 6.47±5.05. Visual examination has revealed 109 parasites. 61.8% of larvae were found in the ventral portions. The results show that salting process with a salt concentration of 18.6%, a w values of 0.7514 and 24.15% WPS in all parts of baccalà fillets, devitalise Anisakidae larvae in a 15-day period.

  10. Preliminary study on the inactivation of anisakid larvae in baccalà prepared according to traditional methods

    PubMed Central

    Smaldone, Giorgio; Marrone, Raffaele; Palma, Giuseppe; Sarnelli, Paolo; Anastasio, Aniello

    2017-01-01

    The European Food Safety Authority stated that many traditional marinating and cold smoking methods are not sufficient to kill A. simplex and asked to evaluate alternative treatments for killing viable parasites in fishery. Baccalà is a well-liked traditional product. The aim of study was to evaluate the effectiveness of the salting process on the inactivation of nematodes of the genus Anisakis in naturally infected Baccalà fillets. N. 19 fillets, subjected to a dual salting process (brine and dry salting) were analyzed. Visual inspection and chloropeptic digestion were performed. Larvae viability was evaluated, and parameters such as NaCl (%), moisture (%), WPS and aw were determined. In n. 17 samples parasites were found 123 parasites with a mean intensity of 7.23±4.78 and an mean abundance of 6.47±5.05. Visual examination has revealed 109 parasites. 61.8% of larvae were found in the ventral portions. The results show that salting process with a salt concentration of 18.6%, aw values of 0.7514 and 24.15% WPS in all parts of baccalà fillets, devitalise Anisakidae larvae in a 15-day period. PMID:29564240

  11. Abscisic acid enhances cold tolerance in honeybee larvae

    PubMed Central

    Sturla, Laura; Guida, Lucrezia; Vigliarolo, Tiziana; Maggi, Matías; Eguaras, Martín; Zocchi, Elena; Lamattina, Lorenzo

    2017-01-01

    The natural composition of nutrients present in food is a key factor determining the immune function and stress responses in the honeybee (Apis mellifera). We previously demonstrated that a supplement of abscisic acid (ABA), a natural component of nectar, pollen, and honey, increases honeybee colony survival overwinter. Here we further explored the role of ABA in in vitro-reared larvae exposed to low temperatures. Four-day-old larvae (L4) exposed to 25°C for 3 days showed lower survival rates and delayed development compared to individuals growing at a standard temperature (34°C). Cold-stressed larvae maintained higher levels of ABA for longer than do larvae reared at 34°C, suggesting a biological significance for ABA. Larvae fed with an ABA-supplemented diet completely prevent the low survival rate due to cold stress and accelerate adult emergence. ABA modulates the expression of genes involved in metabolic adjustments and stress responses: Hexamerin 70b, Insulin Receptor Substrate, Vitellogenin, and Heat Shock Proteins 70. AmLANCL2, the honeybee ABA receptor, is also regulated by cold stress and ABA. These results support a role for ABA increasing the tolerance of honeybee larvae to low temperatures through priming effects. PMID:28381619

  12. Abscisic acid enhances cold tolerance in honeybee larvae.

    PubMed

    Ramirez, Leonor; Negri, Pedro; Sturla, Laura; Guida, Lucrezia; Vigliarolo, Tiziana; Maggi, Matías; Eguaras, Martín; Zocchi, Elena; Lamattina, Lorenzo

    2017-04-12

    The natural composition of nutrients present in food is a key factor determining the immune function and stress responses in the honeybee ( Apis mellifera ). We previously demonstrated that a supplement of abscisic acid (ABA), a natural component of nectar, pollen, and honey, increases honeybee colony survival overwinter. Here we further explored the role of ABA in in vitro -reared larvae exposed to low temperatures. Four-day-old larvae (L4) exposed to 25°C for 3 days showed lower survival rates and delayed development compared to individuals growing at a standard temperature (34°C). Cold-stressed larvae maintained higher levels of ABA for longer than do larvae reared at 34°C, suggesting a biological significance for ABA. Larvae fed with an ABA-supplemented diet completely prevent the low survival rate due to cold stress and accelerate adult emergence. ABA modulates the expression of genes involved in metabolic adjustments and stress responses: Hexamerin 70b, Insulin Receptor Substrate, Vitellogenin , and Heat Shock Proteins 70. AmLANCL2, the honeybee ABA receptor, is also regulated by cold stress and ABA. These results support a role for ABA increasing the tolerance of honeybee larvae to low temperatures through priming effects. © 2017 The Author(s).

  13. Nonsensical choices? Fall armyworm moths choose seemingly best or worst hosts for their larvae, but neonate larvae make their own choices.

    PubMed

    Rojas, Julio C; Kolomiets, Michael V; Bernal, Julio S

    2018-01-01

    Selecting optimal host plants is critical for herbivorous insects, such as fall armyworm (Spodoptera frugiperda), an important maize pest in the Americas and Africa. Fall armyworm larvae are presumed to have limited mobility, hence female moths are presumed to be largely responsible for selecting hosts. We addressed host selection by fall armyworm moths and neonate and older (3rd-instar) larvae, as mediated by resistance and herbivory in maize plants. Thus, we compared discrimination among three maize cultivars with varying degrees of resistance to fall armyworm, and between plants subjected or not to two types of herbivory. The cultivars were: (i) susceptible, and deficient in jasmonic acid (JA) production and green leaf volatiles (GLV) emissions (inbred line B73-lox10); (ii) modestly resistant (B73), and; (iii) highly resistant (Mp708). The herbivory types were: (i) ongoing (= fall armyworm larvae present), and; (ii) future (= fall armyworm eggs present). In choice tests, moths laid more eggs on the highly resistant cultivar, and least on the susceptible cultivar, though on those cultivars larvae performed poorest and best, respectively. In the context of herbivory, moths laid more eggs: (i) on plants subject to versus free of future herbivory, regardless of whether plants were deficient or not in JA and GLV production; (ii) on plants subject versus free of ongoing herbivory, and; (iii) on plants not deficient in compared to deficient in JA and GLV production. Neonate larvae dispersed aerially from host plants (i.e. ballooned), and most larvae colonized the modestly resistant cultivar, and fewest the highly resistant cultivar, suggesting quasi-directional, directed aerial descent. Finally, dispersing older larvae did not discriminate among the three maize cultivars, nor between maize plants and (plastic) model maize plants, suggesting random, visually-oriented dispersal. Our results were used to assemble a model of host selection by fall armyworm moths and larvae

  14. Workbook on Identification of Aedes Aegypti Larvae.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; And Others

    This self-instructional booklet is designed to enable yellow fever control workers to identify the larvae of "Aedes aegypti." The morphological features of mosquito larvae are illustrated in this partially programed text, and the distinguishing features of "A. aegypti" indicated. A glossary is included. (AL)

  15. Workbook on the Identification of Anopheles Larvae. Preliminary Issue.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; Stojanovich, Chester J.

    This self-instructional booklet is designed to enable malarial control workers to identify the larvae of "Anopheles" species that are important malaria vectors. The morphological features of the larvae are illustrated in a programed booklet, which also contains an illustrated taxonomic key to 25 species of anopheline larvae. A glossary and a short…

  16. Histopathology and the inflammatory response of European perch, Perca fluviatilis muscle infected with Eustrongylides sp. (Nematoda).

    PubMed

    Dezfuli, Bahram S; Manera, Maurizio; Lorenzoni, Massimo; Pironi, Flavio; Shinn, Andrew P; Giari, Luisa

    2015-04-15

    The European perch, Perca fluviatilis L. is a common paratenic host of dioctophymatid nematodes belonging to the genus Eustrongylides. In this host, once infected oligochaetes, which serve as the first intermediate host, are ingested, Eustrongylides migrates through the intestine and is frequently encountered within the musculature, free within the body cavity, or encapsulated on the viscera. The current study details the first Italian record of Eustrongylides sp. with larvae reported in the muscle of P. fluviatilis. Uninfected and nematode-infected muscle tissues of perch were fixed and prepared for histological evaluation and electron microscopy. Some sections were subjected to an indirect immunohistochemical method using anti-PCNA, anti-piscidin 3 and anti-piscidin 4 antibodies. A total of 510 P. fluviatilis (TL range 15-25 cm) from Lake Trasimeno, Perugia were post-mortemed; 31 individuals had encysted nematode larvae within their musculature (1-2 worms fish(-1)). Histologically, larvae were surrounded by a capsule with an evident acute inflammatory reaction. Muscle degeneration and necrosis extending throughout the sarcoplasm, sarcolemmal basal lamina, endomysial connective tissue cells and capillaries was frequently observed. Within the encapsulating reaction, macrophage aggregates (MAs) were seen. Immunohistochemical staining with the proliferating cell nuclear antigen (PCNA) revealed numerous PCNA-positive cells within the thickness of the capsule and in the immediate vicinity surrounding Eustrongylides sp. larvae (i.e. fibroblasts and satellite cells), suggesting a host response had been initiated to repair the nematode-damaged muscle. Mast cells (MCs) staining positively for piscidin 3, were demonstrated for the first time in response to a muscle-infecting nematode. The piscidin 3 positive MC's were seen principally in the periphery of the capsule surrounding the Eustrongylides sp. larva. A host tissue response to Eustrongylides sp. larvae infecting the

  17. Distinct innate immune phagocyte responses to Aspergillus fumigatus conidia and hyphae in zebrafish larvae.

    PubMed

    Knox, Benjamin P; Deng, Qing; Rood, Mary; Eickhoff, Jens C; Keller, Nancy P; Huttenlocher, Anna

    2014-10-01

    Aspergillus fumigatus is the most common filamentous fungal pathogen of immunocompromised hosts, resulting in invasive aspergillosis (IA) and high mortality rates. Innate immunity is known to be the predominant host defense against A. fumigatus; however, innate phagocyte responses to A. fumigatus in an intact host and their contributions to host survival remain unclear. Here, we describe a larval zebrafish A. fumigatus infection model amenable to real-time imaging of host-fungal interactions in live animals. Following infection with A. fumigatus, innate phagocyte populations exhibit clear preferences for different fungal morphologies: macrophages rapidly phagocytose conidia and form aggregates around hyphae, while the neutrophil response is dependent upon the presence of hyphae. Depletion of macrophages rendered host larvae susceptible to invasive disease. Moreover, a zebrafish model of human leukocyte adhesion deficiency with impaired neutrophil function also resulted in invasive disease and impaired host survival. In contrast, macrophage-deficient but not neutrophil-deficient larvae exhibited attenuated disease following challenge with a less virulent (ΔlaeA) strain of A. fumigatus, which has defects in secondary metabolite production. Taking these results together, we have established a new vertebrate model for studying innate immune responses to A. fumigatus that reveals distinct roles for neutrophils and macrophages in mediating host defense against IA. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. In vitro predatory activity of Arthrobotrys oligospora and after passing through gastrointestinal tract of small ruminants on infective larvae of trichostrongylides.

    PubMed

    Cai, Kui-Zheng; Wang, Feng-Hui; Wang, Kang-Ying; Liu, Jun-Lin; Wang, Bo-Bo; Xu, Qiang; Xue, Yu-Jia; Wang, Fan; Zhang, Chao; Fang, Wen-Xiu; Cai, Bin; Liu, Yan-Qiu; Cao, Xin; Ma, Zhong-Ren

    2017-06-01

    In vitro predatory activity of 157 native isolates of Arthrobotrys oligospora from China on larvae of trichostrongylides (Trichostrongylus colubriformis and Haemonchus contortus) in feces of sheep were assessed. The results showed that 135 of tested isolates of A. oligospora reduced the development of trichostrongylide larvae in feces by 90-99.99%, 11 isolates by 80-89.46% and 11 isolates by 14.58-78.82%. To understand their capacity of passing through gastrointestinal tract of sheep, 50 native isolates of A. oligospora were selected and assessed in sheep. Among these isolates, 16 isolates significantly reduced the number of larvae developing in the feces (P < 0.05); their percentage reduction of L3 ranged from 42.87% to 99.51% and the isolates tested were harvested in 5 g sub-samples of from sheep in each treatment group, indicating that these isolates had the capacity of preying larvae of trichostrongylides after the passage through gastrointestinal tract of sheep. The remaining isolates of A. oligospora were not able to survive after passage through gastrointestinal tract of sheep. In the following, the 16 isolates that presented more or less viability after sheep gastrointestinal passage were selected and assessed in goats. The results showed that the 11 isolates out of them could be able to pass through the digestive tract of goats without loss of ability of preying larvae of trichostrongylides in feces and their efficacies ranged from 53.88% to 94.28%, and that the isolates tested were harvested in 5 g sub-samples of feces from goats in each treatment group. In the current study, these isolates which demonstrated outstanding properties in vitro and could survive in the passage through the alimentary tract of sheep and goat should be potential candidates as a possible feed additive. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effect of Lactobacillus rhamnosus on the response of Galleria mellonella against Staphylococcus aureus and Escherichia coli infections.

    PubMed

    Jorjão, Adeline Lacerda; de Oliveira, Felipe Eduardo; Leão, Mariella Vieira Pereira; Jorge, Antonio Olavo Cardoso; de Oliveira, Luciane Dias

    2018-04-01

    This study evaluated the prophylactic effects of the live or heat-killed probiotic strain Lactobacillus rhamnosus ATCC 7469 in Galleria mellonella, inoculated with Staphylococcus aureus or Escherichia coli. L. rhamnosus suspension was prepared and a part of it was autoclaved to obtain heat-killed lactobacilli. The larvae were inoculated of these suspensions and pathogenic. The survival of the larvae was observed during 7 days and after 24 h of inoculation haemocytes counted, melanization and nitric oxide production were analyzed. Larvae survival rate increased in the group inoculated with heat-killed L. rhamnosus, however, with no statistical difference. There was a significant increase in total haemocyte counts in all test groups. Haemolymph melanization and nitric oxide production were higher in the group inoculated with L. rhamnosus and infected with S. aureus. It was concluded that, in this model of infection, heat-killed L. rhamnosus ATCC 7469 promoted greater protection in Galleria mellonella infected with S. aureus or E. coli.

  20. Multiple pruritic papules from lone star tick larvae bites.

    PubMed

    Fisher, Emily J; Mo, Jun; Lucky, Anne W

    2006-04-01

    Ticks are the second most common vectors of human infectious diseases in the world. In addition to their role as vectors, ticks and their larvae can also produce primary skin manifestations. Infestation by the larvae of ticks is not commonly recognized, with only 3 cases reported in the literature. The presence of multiple lesions and partially burrowed 6-legged tick larvae can present a diagnostic challenge for clinicians. We describe a 51-year-old healthy woman who presented to our clinic with multiple erythematous papules and partially burrowed organisms 5 days after exposure to a wooded area in southern Kentucky. She was treated with permethrin cream and the lesions resolved over the following 3 weeks without sequelae. The organism was later identified as the larva of Amblyomma species, the lone star tick. Multiple pruritic papules can pose a diagnostic challenge. The patient described herein had an unusually large number of pruritic papules as well as tick larvae present on her skin. Recognition of lone star tick larvae as a cause of multiple bites may be helpful in similar cases.

  1. Larvicidal Activity of Nerium oleander against Larvae West Nile Vector Mosquito Culex pipiens (Diptera: Culicidae)

    PubMed Central

    El-Akhal, Fouad; Guemmouh, Raja; Ez Zoubi, Yassine; El Ouali Lalami, Abdelhakim

    2015-01-01

    Background. Outbreaks of the West Nile virus infection were reported in Morocco in 1996, 2003, and 2010. Culex pipiens was strongly suspected as the vector responsible for transmission. In the North center of Morocco, this species has developed resistance to synthetic insecticides. There is an urgent need to find alternatives to the insecticides as natural biocides. Objective. In this work, the insecticidal activity of the extract of the local plant Nerium oleander, which has never been tested before in the North center of Morocco, was studied on larval stages 3 and 4 of Culex pipiens. Methods. Biological tests were realized according to a methodology inspired from standard World Health Organization protocol. The mortality values were determined after 24 h of exposure and LC50 and LC90 values were calculated. Results. The extract had toxic effects on the larvae of culicid mosquitoes. The ethanolic extract of Nerium oleander applied against the larvae of Culex pipiens has given the lethal concentrations LC50 and LC90 in the order of 57.57 mg/mL and 166.35 mg/mL, respectively. Conclusion. This investigation indicates that N. oleander could serve as a potential larvicidal, effective natural biocide against mosquito larvae, particularly Culex pipiens. PMID:26640701

  2. Intraguild predation and cannibalism among larvae of detritivorous caddisflies in subalpine wetlands

    USGS Publications Warehouse

    Wissinger, S.A.; Sparks, G.B.; Rouse, G.L.; Brown, W.S.; Steltzer, Heidi

    1996-01-01

    Comparative data from subalpine wetlands in Colorado indicate that larvae of the limnephilid caddisflies, Asynarchus nigriculus and Limnephilus externus, are reciprocally abundant among habitats - Limnephilus larvae dominate in permanent waters, whereas Asynarchus larvae dominate in temporary basins. The purpose of this paper is to report on field and laboratory experiments that link this pattern of abundance to biotic interactions among larvae. In the first field experiment, growth and survival were compared in single and mixed species treatments in littoral enclosures. Larvae, which eat mainly vascular plant detritus, grew at similar rates among treatments in both temporary and permanent habitats suggesting that exploitative competition is not important under natural food levels and caddisfly densities. However, the survival of Limnephilus larvae was reduced in the presence of Asynarchus larvae. Subsequent behavioral studies in laboratory arenas revealed that Asynarchus larvae are extremely aggressive predators on Limnephilus larvae. In a second field experiment we manipulated the relative sizes of larvae and found that Limnephilus larvae were preyed on only when Asynarchus larvae had the same size advantage observed in natural populations. Our data suggest that the dominance of Asynarchus larvae in temporary habitats is due to asymmetric intraguild predation (IGP) facilitated by a phenological head start in development. These data do not explain the dominance of Limnephilus larvae in permanent basins, which we show elsewhere to be an indirect effect of salamander predation. Behavioral observations also revealed that Asynarchus larvae are cannibalistic. In contrast to the IGP on Limnephilus larvae, Asynarchus cannibalism occurs among same-sized larvae and often involves the mobbing of one victim by several conspecifics. In a third field experiment, we found that Asynarchus cannibalism was not density-dependent and occurred even at low larval densities. We

  3. Interactions between the solitary endoparasitoid, Meteorus gyrator (Hymenoptera: Braconidae) and its host, Lacanobia oleracea (Lepidoptera: Noctuidae), infected with the entomopathogenic microsporidium, Vairimorpha necatrix (Microspora: Microsporidia).

    PubMed

    Down, R E; Smethurst, F; Bell, H A; Edwards, J P

    2005-04-01

    Infection of Lacanobia oleracea (Linnaeus) larvae with the microsporidium Vairimorpha necatrix (Kramer) resulted in significant effects on the survival and development of the braconid parasitoid, Meteorus gyrator (Thunberg). Female M. gyrator did not show any avoidance of V. necatrix-infected hosts when they were selecting hosts for oviposition. When parasitism occurred at the same time as infection by the pathogen, or up to four days later, no significant detrimental effects on the parasitoid were observed. However, when parasitism occurred six to eight days after infection, a greater proportion (12.5-14%) of hosts died before parasitoid larvae egressed. Successful eclosion of adult wasps was also reduced. When parasitism and infection were concurrent, parasitoid larval development was significantly faster in infected hosts, and cocoons were significantly heavier. However, as the time interval between infection and parasitism increased, parasitoid larval development was significantly extended by up to two days, and the cocoons formed were significantly (c. 20%) smaller. Vairimorpha necatrix spores were ingested by the developing parasitoid larvae, accumulated in the occluded midgut, and were excreted in the meconium upon pupation.

  4. Paenilarvins: Iturin family lipopeptides from the honey bee pathogen Paenibacillus larvae.

    PubMed

    Sood, Sakshi; Steinmetz, Heinrich; Beims, Hannes; Mohr, Kathrin I; Stadler, Marc; Djukic, Marvin; von der Ohe, Werner; Steinert, Michael; Daniel, Rolf; Müller, Rolf

    2014-09-05

    The bacterium Paenibacillus larvae has been extensively studied as it is an appalling honey bee pathogen. In the present work, we screened crude extracts derived from fermentations of P. larvae genotypes ERIC I and II for antimicrobial activity, following the detection of four putative secondary metabolite gene clusters that show high sequence homology to known biosynthetic gene clusters for the biosynthesis of antibiotics. Low molecular weight metabolites produced by P. larvae have recently been shown to have toxic effects on honey bee larvae. Moreover, a novel tripeptide, sevadicin, was recently characterized from laboratory cultures of P. larvae. In this study, paenilarvins, which are iturinic lipopeptides exhibiting strong antifungal activities, were obtained by bioassay-guided fractionation from cultures of P. larvae, genotype ERIC II. Their molecular structures were determined by extensive 2D NMR spectroscopy, high resolution mass spectrometry, and other methods. Paenilarvins are the first antifungal secondary metabolites to be identified from P. larvae. In preliminary experiments, these lipopeptides also affected honey bee larvae and might thus play a role in P. larvae survival and pathogenesis. However, further studies are needed to investigate their function. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Migratory phase of Litomosoides sigmodontis filarial infective larvae is associated with pathology and transient increase of S100A9 expressing neutrophils in the lung

    PubMed Central

    Pionnier, Nicolas; Vallarino-Lhermitte, Nathaly; Lefoulon, Emilie; Nieguitsila, Adélaïde; Specht, Sabine; Carlin, Leo M.; Martin, Coralie

    2017-01-01

    Filarial infections are tropical diseases caused by nematodes of the Onchocercidae family such as Mansonella perstans. The infective larvae (L3) are transmitted into the skin of vertebrate hosts by blood-feeding vectors. Many filarial species settle in the serous cavities including M. perstans in humans and L. sigmodontis, a well-established model of filariasis in mice. L. sigmodontis L3 migrate to the pleural cavity where they moult into L4 around day 9 and into male and female adult worms around day 30. Little is known of the early phase of the parasite life cycle, after the L3 is inoculated in the dermis by the vector and enters the afferent lymphatic vessels and before the moulting processes in the pleural cavity. Here we reveal a pulmonary phase associated with lung damage characterized by haemorrhages and granulomas suggesting L3 reach the lung via pulmonary capillaries and damage the endothelium and parenchyma by crossing them to enter the pleural cavity. This study also provides evidence for a transient inflammation in the lung characterized by a very early recruitment of neutrophils associated with high expression levels of S100A8 and S100A9 proteins. PMID:28486498

  6. Larva of Palaemnema brasiliensis Machado (Odonata: Platystictidae), from Amazonas, Brazil.

    PubMed

    Neiss, Ulisses Gaspar; Hamada, Neusa

    2016-02-09

    The larva of Palaemnema brasiliensis Machado, 2009 is described and illustrated based on last-instar larvae and exuviae of reared larvae collected in a blackwater stream in Barcelos and Presidente Figueiredo municipalities, Amazonas state, Brazil. The larva of P. brasiliensis can be distinguished from the two South American species of the genus with described larvae (P. clementia Selys and P. mutans Calvert), mainly by presence of a single obtuse cusp on the labial palp, the presence and configuration of setae in the caudal lamellae, and the proportional length of terminal filaments of the caudal lamellae. The family is recorded here for the first time in Brazilian state of Amazonas.

  7. Salivary gland morphology, tissue tropism and the progression of tospovirus infection in Frankliniella occidentalis.

    PubMed

    Montero-Astúa, Mauricio; Ullman, Diane E; Whitfield, Anna E

    2016-06-01

    Tomato spotted wilt virus (TSWV) is transmitted by thrips in a propagative manner; however, progression of virus infection in the insect is not fully understood. The goal of this work was to study the morphology and infection of thrips salivary glands. The primary salivary glands (PSG) are complex, with three distinct regions that may have unique functions. Analysis of TSWV progression in thrips revealed the presence of viral proteins in the foregut, midgut, ligaments, tubular salivary glands (TSG), and efferent duct and filament structures connecting the TSG and PSG of first and second instar larvae. The primary site of virus infection shifted from the midgut and TSG in the larvae to the PSG in adults, suggesting that tissue tropism changes with insect development. TSG infection was detected in advance of PSG infection. These findings support the hypothesis that the TSG are involved in trafficking of TSWV to the PSG. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. [Development of cysticercoid larva of Hymenolepis nana var. fraterna in Tenebrio molitor and Leucophaea maderae haemoceles (author's transl)].

    PubMed

    Pesson, B; Leger, N; Bouchet, P

    1978-01-01

    When embryos of Hymenolepis nana var. fraterna are injected abdominally, they are able to reach the cysticercoid stage in the haemocele of Leucophaea maderae which naturally resist to infection by ingestion of the eggs. The haemocytic defence reaction of the cockroach and the structure of the surface of larvae are examined and compared with development in a natural host Tenebrio molitor.

  9. Cranial Mesenteric Arterial Obstruction Due To Strongylus vulgaris Larvae in a Donkey (Equus asinus).

    PubMed

    Borji, Hassan; Moosavi, Zahra; Ahmadi, Fatemeh

    2014-09-01

    Arteritis due to Strongylus vulgaris is a well-known cause of colic in horses and donkeys. The current report describes a fatal incidence of arterial obstruction in cranial mesenteric artery caused by S. vulgaris infection in an adult donkey in which anthelmintic treatment was not regularly administered. Necropsy findings of the abdominal cavity revealed a complete cranial mesenteric arterial obstruction due to larvae of S. vulgaris, causing severe colic. To the authors' knowledge, a complete cranial mesenteric arterial obstruction due to verminous arteritis has rarely been described in horses and donkeys. Based on recent reports of fatal arterial obstruction due to S. vulgaris infection in donkeys, it may be evident to consider acute colic caused by this pathogenic parasite a re-emerging disease in donkeys and horses.

  10. Evaluating the Effect of Sarconesiopsis magellanica (Diptera: Calliphoridae) Larvae-Derived Haemolymph and Fat Body Extracts on Chronic Wounds in Diabetic Rabbits

    PubMed Central

    Góngora, Jennifher; Díaz-Roa, Andrea; Ramírez-Hernández, Alejandro; Cortés-Vecino, Jesús A.; Gaona, María A.; Patarroyo, Manuel A.

    2015-01-01

    We evaluated extracts taken from S. magellanica third instar larvae fat body and haemolymph using a diabetic rabbit model and compared this to the effect obtained with the same substances taken from Lucilia sericata larvae. Alloxan (a toxic glucose analogue) was used to induce experimental diabetes in twelve rabbits. Dorsal wounds were made in each animal and they were infected with Staphylococcus aureus and Pseudomonas aeruginosa. They were then treated with haemolymph and lyophilized extracts taken from the selected blowflies' larvae fat bodies. Each wound was then evaluated by using rating scales and histological analysis. More favourable scores were recorded on the PUSH and WBS scales for the wounds treated with fat body derived from the larvae of both species compared to that obtained with haemolymph; however, wounds treated with the substances taken from S. magellanica had better evolution. Histological analysis revealed that treatment led to tissue proliferation and more effective neovascularisation in less time with both species' fat body extracts compared to treatment with just haemolymph. The results suggest the effectiveness of the substances evaluated and validate them in the animal model being used here as topical agents in treating chronic wounds. PMID:25866825

  11. Effect of tributyltin on veliger larvae of the Manila clam, Ruditapes philippinarum.

    PubMed

    Inoue, Suguru; Oshima, Yuji; Usuki, Hironori; Hamaguchi, Masami; Hanamura, Yukio; Kai, Norihisa; Shimasaki, Yohei; Honjo, Tsuneo

    2007-01-01

    We investigated the effects of waterborne and maternal exposure to tributyltin (TBT) on veliger larvae of the Manila clam, Ruditapes philippinarum. In a waterborne exposure test, veliger larvae (D-larvae stage: 24h after fertilization) were exposed to TBT at measured concentrations of <0.01 (control), 0.055, 0.130, 0.340, and 0.600microg/l for 13d. The percentage of normal veliger larvae (the ratio of normal veliger larvae to all larvae) decreased significantly in all TBT treatment groups compared with that in the control group. In a maternal exposure test, 100 clams were exposed to TBT at measured concentrations of <0.01 (control), 0.061, and 0.310microg/l at 20-22 degrees C for 3 weeks, and the percentage of normal veliger larvae assessed for 13d. No maternal effects on veliger larvae from TBT were observed in TBT treatment groups as compared with the control group. These results demonstrate that waterborne TBT affects Manila clam veliger larvae, and indicates that TBT may have reduced Manila clam populations by preventing the development and survival of veliger larvae.

  12. Assessment of selected biochemical parameters and humoral immune response of Nile crocodiles (Crocodylus niloticus) experimentally infected with Trichinella zimbabwensis.

    PubMed

    La Grange, Louis J; Mukaratirwa, Samson

    2014-08-21

    Fifteen crocodiles were randomly divided into three groups of five animals. They represented high-infection, medium-infection and low-infection groups of 642 larvae/kg, 414 larvae/kg and 134 larvae/kg bodyweight, respectively. The parameters assessed were blood glucose, creatine phosphokinase (CPK), lactate dehydrogenase (LDH), aspartate transaminase (AST) and alanine transaminase (ALT). The humoral immune response to Trichinella zimbabwensis infection was evaluated in all three groups by an indirect ELISA method. The results showed deviations from normal parameters of blood glucose, CPK, LDH, AST and ALT when compared with reported levels in uninfected reptiles. Contrary to studies involving mammals, hypoglycaemia was not observed in the infected groups in this study. Peak values of blood glucose were reached on post-infection (PI) Day 49, Day 42 and Day 35 in the high-infection, medium-infection and low-infection groups, respectively. Peak values of LDH and AST were observed on PI Day 56, Day 49 and Day 42 in the high-infection, medium-infection and low-infection groups, respectively. Peak values of CPK were observed on Day 35 PI in all three groups. Peak ALT values were reached on Day 56 in the high-infection group and on Day 28 PI in both the medium-infection and low-infection groups. No correlations between the biochemical parameters and infection intensity were observed. Peak antibody titres were reached on Day 49 PI in the medium-infection group, and on Day 42 PI in both the high-infection and low-infection groups. Infection intensity could not be correlated with the magnitude of the humoral immune response or time to sero-conversion. Results from this study were in agreement with results reported in mammals infected with other Trichinella species and showed that antibody titres could not be detected indefinitely.

  13. Morphology of eggs of Dioctophyme renale Goeze, 1782 (Nematoda: Dioctophymatidae) and influences of temperature on development of first-stage larvae in the eggs.

    PubMed

    Pedrassani, Daniela; Lux Hoppe, Estevam Guilherme; Avancini, Neuri; do Nascimento, Adjair Antonio

    2009-01-01

    This study aims to provide information on morphological data of D. renale eggs, as well as on first-stage larvae development into eggs kept at different temperatures. Eggs were obtained by centrifugation of infected dog urine, placed in Petri dishes, and stored in BOD chamber for a 90-day period. Each treatment (GI--15 degrees C, GII--20 degrees C, and GIII--26 degrees C) was repeated five times. Eggs showed average measures of 67.23 x 42.78 microm, and the mean incubation time was inversely proportional to the incubation temperature. Larvae motility was observed one week after being observed in eggs.

  14. Validation of daily increments in otoliths of northern squawfish larvae

    USGS Publications Warehouse

    Wertheimer, R.H.; Barfoot, C.A.

    1998-01-01

    Otoliths from laboratory-reared northern squawfish, Ptychocheilus oregonensis, larvae were examined to determine the periodicity of increment deposition. Increment deposition began in both sagittae and lapilli after hatching. Reader counts indicated that increment formation was daily in sagittae of 1-29-day-old larvae. However, increment counts from lapilli were significantly less than the known ages of northern squawfish larvae, possibly because some increments were not detectable. Otolith readability and age agreement among readers were greatest for young (<11 days) northern squawfish larvae. This was primarily because a transitional zone of low-contrast material began forming in otoliths of 8-11-day-old larvae and persisted until approximately 20 days after hatching. Formation of the transition zone appeared to coincide with the onset of exogenous feeding and continued through yolk sac absorption. Our results indicate that aging wild-caught northern squawfish larvae using daily otolith increment counts is possible.

  15. Effect of feeding sericea lespedeza leaf meal in goats experimentally infected with Haemonchus contortus.

    PubMed

    Joshi, B R; Kommuru, D S; Terrill, T H; Mosjidis, J A; Burke, J M; Shakya, K P; Miller, J E

    2011-05-31

    Effect of sericea lespedeza [SL; Lespedeza cuneata (Dum-Cours.) G. Don.] leaf meal feeding was evaluated in two experiments in indoor reared goats with experimental infection of Haemonchus contortus larvae. In the first experiment, ten 8-10 month old male Spanish and Alpine cross kids pair matched for body weight and age were fed SL or bermudagrass [BG; Cynodon dactylon (L.) Pers.] hay one week before infection and were infected with 5000 H. contortus L(3). The animals were maintained on the same diet for the remaining period and were slaughtered 28 days post-infection (DPI) to determine the establishment of incoming infective larvae. Goats fed SL had lower establishment (P<0.05) of H. contortus larvae than that of the control goats fed BG hay. In the second experiment, twenty-five 8-10 months old male Alpine cross, Saanen, Nubian×Saanen and Spanish kids reared in confinement on BG were experimentally infected with 5000 H. contortus L(3). On 35 DPI, the animals were allocated to two groups after blocking by fecal egg count (FEC), and one group was fed SL leaf meal (n=13), and another control group remained on BG (n=12). Four goats/group were slaughtered successively on days 7, 14, and 28 days post SL feeding, except on day 7, when five SL fed goats were slaughtered. Fecal egg counts and blood packed cell volume (PCV) were measured at weekly intervals and worm count, female worm fecundity, worm length and mucosal eosinophils, mast cells and globule leucocytes were measured after slaughter. Goats fed SL had a lower FEC (P<0.05) one week after feeding, as compared to those fed on BG, and the values remained at low level thereafter. Similarly, PCV was also significantly affected by feeding (P<0.01), and feeding and time interaction (P<0.05). However, worm burden, female worm fecundity, parasite length, and mucosal inflammatory cell count were similar between the groups. Feeding SL reduced the establishment of infective larvae and FEC of H. contortus in experimental

  16. Suppressing bullfrog larvae with carbon dioxide

    USGS Publications Warehouse

    Gross, Jackson A.; Ray, Andrew; Sepulveda, Adam J.; Watten, Barnaby J.; Densmore, Christine L.; Layhee, Megan J.; Mark Abbey-Lambert,; ,

    2014-01-01

    Current management strategies for the control and suppression of the American Bullfrog (Lithobates catesbeianus = Rana catesbeiana Shaw) and other invasive amphibians have had minimal effect on their abundance and distribution. This study evaluates the effects of carbon dioxide (CO2) on pre- and prometamorphic Bullfrog larvae. Bullfrogs are a model organism for evaluating potential suppression agents because they are a successful invader worldwide. From experimental trials we estimated that the 24-h 50% and 99% lethal concentration (LC50 and LC99) values for Bullfrog larvae were 371 and 549 mg CO2/L, respectively. Overall, larvae that succumbed to experimental conditions had a lower body condition index than those that survived. We also documented sublethal changes in blood chemistry during prolonged exposure to elevated CO2. Specifically, blood pH decreased by more than 0.5 pH units after 9 h of exposure and both blood partial pressure of CO2 (pCO2) and blood glucose increased. These findings suggest that CO2 treatments can be lethal to Bullfrog larvae under controlled laboratory conditions. We believe this work represents the necessary foundation for further consideration of CO2 as a potential suppression agent for one of the most harmful invaders to freshwater ecosystems.

  17. Guppies as predators of common mosquito larvae in Malaysia.

    PubMed

    Saleeza, S N R; Norma-Rashid, Y; Sofian-Azirun, M

    2014-03-01

    Observation on predation activities of guppies (Poecilia reticulata) on the larvae of three species of mosquito, namely Aedes albopictus, Aedes aegypti, and Culex quinquefasciatus was carried out under laboratory conditions. Male and female guppies were used as predators for predation experiments on the 4th instars of mosquito larvae. The daily feeding rates comparing male and female guppies on mosquito larvae were different; the female guppies consumed more mosquito larvae than male guppies did. The daily feeding rates of female guppies were 121.3 for Ae. aegypti, 105.6 for Ae. albopictus, and 72.3 for Cx. quinquefasciatus. The daily feeding rates of male guppies were 98.6 for Ae. aegypti, 73.6 for Ae. albopictus, and 47.6 for Cx. quinquefasciatus. In terms of prey preference, there was greater preference towards mosquito larvae of Ae. aegypti, followed by Ae. albopictus, and the least preferred was Cx. quinquefasciatus. Male and female guppies consumed more mosquito larvae during lights on (day time) compared with lights off (night time). The water volume, prey species, number of fish predators available, prey densities, and prey's sex also influenced the predation activities.

  18. Predation of Ancylostoma spp. dog infective larvae by nematophagous fungi in different conidial concentrations.

    PubMed

    Maciel, A S; Araújo, J V; Campos, A K; Lopes, E A; Freitas, L G

    2009-05-12

    In the present work, it was evaluated the in vitro effect of 12 isolates from the fungal species Arthrobotrys, Duddingtonia, Nematoctonus and Monacrosporium genera in different conidial concentrations on the capture of Ancylostoma spp. dog infective larvae (L(3)), on 2% water-agar medium at 25 degrees C, at the end of a period of 7 days. The concentrations used for each nematophagous fungus were 1000, 5000, 10,000, 15,000 and 20,000conidia/Petri dish plated with 1000 Ancylostoma spp. L(3). All nematode-trapping fungi isolates tested reduced the averages of the uncaptured Ancylostoma spp. L(3) recovered, with the increase of the fungal inoculum concentration, in comparison to the fungus-free control (p<0.05). The adhesive network producing species were better predators than the constricting ring or adhesive knob producing species. Duddingtonia flagrans (Isolate CG768) was the most effective, reducing the averages of the uncaptured Ancylostoma spp. L(3) recovered in 92.8%, 96.3%, 97.5%, 98.3% and 98.9%, respectively in five fungal inoculum concentrations established. Other effective nematophagous fungi were Arthrobotrys robusta (Isolate I31), which reduced the averages of the uncaptured Ancylostoma spp. L(3) recovered in 85.4%, 88.3%, 90.7%, 92.5% and 95.2%, and Arthrobotrys oligospora (Isolate A183), with reductions of 66.6%, 79.8%, 86.8%, 89.5% and 90.8%, respectively for both, in the five fungal inoculum concentrations established. No difference was found between Isolates A183 and I31 in the conidial concentrations of 15,000/Petri dish. Nematoctonus robustus (Isolate D1) and Arthrobotrys bronchophaga (Isolate AB) had the smallest percentages of reduction among the tested isolates and showed the lowest predacious activity. The Isolates CG768, I31 and A183 were considered potential biological control agents of Ancylostoma spp. dog free-living stages, being directly influenced by the fungal inoculum concentration.

  19. Transcriptome Sequencing Reveals Large-Scale Changes in Axenic Aedes aegypti Larvae

    PubMed Central

    Vogel, Kevin J.; Valzania, Luca; Coon, Kerri L.; Brown, Mark R.; Strand, Michael R.

    2017-01-01

    Mosquitoes host communities of microbes in their digestive tract that consist primarily of bacteria. We previously reported that Aedes aegypti larvae colonized by a native community of bacteria and gnotobiotic larvae colonized by only Escherichia coli develop very similarly into adults, whereas axenic larvae never molt and die as first instars. In this study, we extended these findings by first comparing the growth and abundance of bacteria in conventional, gnotobiotic, and axenic larvae during the first instar. Results showed that conventional and gnotobiotic larvae exhibited no differences in growth, timing of molting, or number of bacteria in their digestive tract. Axenic larvae in contrast grew minimally and never achieved the critical size associated with molting by conventional and gnotobiotic larvae. In the second part of the study we compared patterns of gene expression in conventional, gnotobiotic and axenic larvae by conducting an RNAseq analysis of gut and nongut tissues (carcass) at 22 h post-hatching. Approximately 12% of Ae. aegypti transcripts were differentially expressed in axenic versus conventional or gnotobiotic larvae. However, this profile consisted primarily of transcripts in seven categories that included the down-regulation of select peptidases in the gut and up-regulation of several genes in the gut and carcass with roles in amino acid transport, hormonal signaling, and metabolism. Overall, our results indicate that axenic larvae exhibit alterations in gene expression consistent with defects in acquisition and assimilation of nutrients required for growth. PMID:28060822

  20. [Toxicity and influencing factors of liquid chlorine on chironomid larvae].

    PubMed

    Sun, Xing-Bin; Cui, Fu-Yi; Zhang, Jin-Song; Guo, Zhao-Hai; Xu, Feng; Liu, Li-Jun

    2005-09-01

    The excessive propagation of Chironomid larvae (red worm) in the sedimentation tanks is a difficult problem for the normal function of waterworks. The toxic effect of liquid chlorine on the different instar larvae of Chironomid was studied using distilled water as test sample. Furthermore, the effect of pH value, organic matter content, ammonia nitrogen, and algae content on toxicity of liquid chlorine was observed. The results show that the tolerance of Chironomid larvae to liquid chlorine is strengthened with the increase in instar. The 24h semi-lethal concentration (LC50) of liquid chlorine to the 4th instar larvae of Chironomid is 3.39 mg/L. Low pH value and high algae content are helpful to improve the toxic effect of liquid chlorine to Chironomid larvae. In neutral water body, the increase in organic matter content results in the decrease in the death rate of Chironomid larvae. The toxicity of liquid chlorine differs greatly in different concentrations of ammonia nitrogen. The death rate of the 4th instar larvae of Chironomid in raw water is higher by contrast with that in sedimentation tanks water for 24h disposal with various amount of liquid chlorine.

  1. Structural organisation and lipid composition of the epicuticular accessory layer of infective larvae of Trichinella spiralis.

    PubMed

    Gounaris, K; Smith, V P; Selkirk, M E

    1996-05-22

    The epicuticle of infective larvae of Trichinella spiralis represents the interface between this intracellular nematode parasite and the cytosol of mammalian skeletal muscle. The macromolecular structures that make up the epicuticle were studied by freeze-fracture electron microscopy and compositional analysis. Three fracture planes were observed: one with a typical plasma membrane-type bilayer organisation which was overlaid by two extended layers of lipid in an inverted cylindrical configuration. This overall structure remained unchanged in response to variations in temperature between 20 degrees C and 45 degrees C. The lipid cylinders were on average 6.8 nm in diameter, with randomly-associated particles that were not dissociated by high-salt treatment, indicative of hydrophobically associated proteins. The majority of the lipids were non-polar, consisting of cholesterol, cholesterol esters, mono- and tri-glycerides, and free fatty acids. Three major classes of phospholipids were identified: phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine. Total lipid extracts did not adopt an inverted cylindrical or micellar configuration on isolation, but formed flat sheets of lamellae as did the purified polar and non-polar fractions of the lipids. Isolated lipids did not undergo thermally-induced polymorphism between 20 degrees C and 60 degrees C and there was no pH dependency of the structures adopted. The fatty acid saturation levels of the phospholipids were compatible with the observation that they did not form polymorphic structures on isolation. We suggest that this unusual configuration is probably stabilised by the associated (glyco)proteins and may be required for selective permeation of nutrients from the host cell cytosol and/or for maintaining the high curvature of the parasite within the cell.

  2. Quantitative PCR estimates Angiostrongylus cantonensis (rat lungworm) infection levels in semi-slugs (Parmarion martensi)

    PubMed Central

    Jarvi, Susan I.; Farias, Margaret E.M.; Howe, Kay; Jacquier, Steven; Hollingsworth, Robert; Pitt, William

    2013-01-01

    The life cycle of the nematode Angiostrongylus cantonensis involves rats as the definitive host and slugs and snails as intermediate hosts. Humans can become infected upon ingestion of intermediate or paratenic (passive carrier) hosts containing stage L3 A. cantonensis larvae. Here, we report a quantitative PCR (qPCR) assay that provides a reliable, relative measure of parasite load in intermediate hosts. Quantification of the levels of infection of intermediate hosts is critical for determining A. cantonensis intensity on the Island of Hawaii. The identification of high intensity infection ‘hotspots’ will allow for more effective targeted rat and slug control measures. qPCR appears more efficient and sensitive than microscopy and provides a new tool for quantification of larvae from intermediate hosts, and potentially from other sources as well. PMID:22902292

  3. Habitat selection by marine larvae in changing chemical environments.

    PubMed

    Lecchini, D; Dixson, D L; Lecellier, G; Roux, N; Frédérich, B; Besson, M; Tanaka, Y; Banaigs, B; Nakamura, Y

    2017-01-15

    The replenishment and persistence of marine species is contingent on dispersing larvae locating suitable habitat and surviving to a reproductive stage. Pelagic larvae rely on environmental cues to make behavioural decisions with chemical information being important for habitat selection at settlement. We explored the sensory world of crustaceans and fishes focusing on the impact anthropogenic alterations (ocean acidification, red soil, pesticide) have on conspecific chemical signals used by larvae for habitat selection. Crustacean (Stenopus hispidus) and fish (Chromis viridis) larvae recognized their conspecifics via chemical signals under control conditions. In the presence of acidified water, red soil or pesticide, the ability of larvae to chemically recognize conspecific cues was altered. Our study highlights that recruitment potential on coral reefs may decrease due to anthropogenic stressors. If so, populations of fishes and crustaceans will continue their rapid decline; larval recruitment will not replace and sustain the adult populations on degraded reefs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effect of Fungal Colonization of Wheat Grains with Fusarium spp. on Food Choice, Weight Gain and Mortality of Meal Beetle Larvae (Tenebrio molitor)

    PubMed Central

    Guo, Zhiqing; Döll, Katharina; Dastjerdi, Raana; Karlovsky, Petr; Dehne, Heinz-Wilhelm; Altincicek, Boran

    2014-01-01

    Species of Fusarium have significant agro-economical and human health-related impact by infecting diverse crop plants and synthesizing diverse mycotoxins. Here, we investigated interactions of grain-feeding Tenebrio molitor larvae with four grain-colonizing Fusarium species on wheat kernels. Since numerous metabolites produced by Fusarium spp. are toxic to insects, we tested the hypothesis that the insect senses and avoids Fusarium-colonized grains. We found that only kernels colonized with F. avenaceum or Beauveria bassiana (an insect-pathogenic fungal control) were avoided by the larvae as expected. Kernels colonized with F. proliferatum, F. poae or F. culmorum attracted T. molitor larvae significantly more than control kernels. The avoidance/preference correlated with larval feeding behaviors and weight gain. Interestingly, larvae that had consumed F. proliferatum- or F. poae-colonized kernels had similar survival rates as control. Larvae fed on F. culmorum-, F. avenaceum- or B. bassiana-colonized kernels had elevated mortality rates. HPLC analyses confirmed the following mycotoxins produced by the fungal strains on the kernels: fumonisins, enniatins and beauvericin by F. proliferatum, enniatins and beauvericin by F. poae, enniatins by F. avenaceum, and deoxynivalenol and zearalenone by F. culmorum. Our results indicate that T. molitor larvae have the ability to sense potential survival threats of kernels colonized with F. avenaceum or B. bassiana, but not with F. culmorum. Volatiles potentially along with gustatory cues produced by these fungi may represent survival threat signals for the larvae resulting in their avoidance. Although F. proliferatum or F. poae produced fumonisins, enniatins and beauvericin during kernel colonization, the larvae were able to use those kernels as diet without exhibiting increased mortality. Consumption of F. avenaceum-colonized kernels, however, increased larval mortality; these kernels had higher enniatin levels than F

  5. The effects of dissolved gas supersaturation on white sturgeon larvae

    USGS Publications Warehouse

    Counihan, T.D.; Miller, Allen I.; Mesa, M.G.; Parsley, M.J.

    2000-01-01

    Spill at dams has caused supersaturation of atmospheric gas in waters of the Columbia and Snake rivers and raised concerns about the effects of dissolved gas supersaturation (DGS) on white sturgeons Acipenser transmontanus. The timing and location of white sturgeon spawning and the dispersal of white sturgeon larvae from incubation areas makes the larval stage potentially vulnerable to the effects of DGS. To assess the effects of DGS on white sturgeon larvae, we exposed larvae to mean total dissolved gas (TDG) levels of 118% and 131% saturation in laboratory bioassay tests. Gas bubble trauma (GBT) was manifested as a gas bubble in the buccal cavity, nares, or both and it first occurred at developmental stages characterized by the formation of the mouth and gills. Exposure times of 15 min were sufficient to elicit these signs in larvae in various stages of development. No mortality was observed in larvae exposed to 118% TDG for 10 d, but 50% mortality occurred after a 13-d exposure to 131% TDG. The signs of GBT we observed resulted in positive buoyancy and alterations in behavior that may affect the dispersal and predation vulnerability of white sturgeon larvae. The exact depth distribution of dispersing white sturgeon larvae in the Columbia River currently is unknown. Thus, our results may represent a worst-case scenario if white sturgeon larvae are dispersed at depths with insufficient hydrostatic pressure to compensate for high TDG levels.

  6. Selenium impacts on razorback sucker, Colorado: Colorado River III. Larvae.

    PubMed

    Hamilton, Steven J; Holley, Kathy M; Buhl, Kevin J; Bullard, Fern A

    2005-06-01

    Razorback sucker (Xyrauchen texanus) larvae from adults exposed to selenium at three sites near Grand Junction, Colorado, for 9 months were used in a 30-day waterborne and dietary selenium study. Selenium concentrations in water averaged <1.6 microg/L from 24-Road, 0.9 microg/L from Horsethief, 5.5 microg/L from Adobe Creek, and 10.7 microg/L from the North Pond. Selenium in dietary items averaged 2.7 microg/g in brine shrimp, 5.6 microg/g in zooplankton from Horsethief east wetland, 20 microg/g in zooplankton from Adobe Creek, and 39 microg/g in zooplankton from North Pond. The lowest survival occurred in larvae fed zooplankton rather than brine shrimp. Survival of larvae at Adobe Creek and North Pond was lower in site water than in reference water. Survival of brood stock larvae was higher than Horsethief larvae even though they received the same water and dietary treatments. Arsenic concentrations in brine shrimp may have resulted in an antagonistic interaction with selenium and reduced adverse effects in larvae. Deformities in larvae from North Pond were similar to those reported for selenium-induced teratogenic deformities in other fish species. Selenium concentrations of 4.6 microg/g in food resulted in rapid mortality of larvae from Horsethief, Adobe Creek, and North Pond, and suggested that selenium toxicity in the Colorado River could limit recovery of this endangered fish.

  7. Evaluation of efficacy of entomopathogenic nematodes against larvae of Lucilia sericata (Meigen, 1826) (Diptera: Calliphoridae).

    PubMed

    Tóth, Erika M; Márialigeti, K; Fodor, A; Lucskai, A; Farkas, R

    2005-01-01

    The blowfly Lucilia sericata (Meigen, 1826) (Diptera: Calliphoridae) is the primary agent of cutaneous myiasis of sheep in northern Europe, southern Africa, Australia and New Zealand. As the application of chemicals has several disadvantages, alternative control measures of traumatic myiasis of livestock must be developed. In this study, the use of entomopathogenic nematodes (EPNs) as potential biocontrol agents against second instar larvae of Lucilia sericata was considered. The following nematode species were tested: Heterorhabditis bacteriophora (IS 5, HHU 1, Hmol, HNC 1, HAZ 36, Hbrecon, HHU 2, HAZ 29, HHP 88, HHU 3, HHU 4 and HGua), Steinernema intermedia, NC513 strain of S. glaserii, S. anomali, S. riobrave, Steinernema sp. and 5 strains of S. feltiae (22, Vija Norway, HU 1, scp, and IS 6). None of the examined EPN species or strains showed larvicidal efficacy at 37 degrees C (no killing effect was observed in the case of the two heat-tolerant strains--H. bacteriophora and S.feltiae) against L. sericata larvae. At lower temperatures (20 degrees C and 25 degrees C) only strains of S. feltiae were found to be active. The overall odds ratios calculated for L. sericata maggots to contract S. feltiae nematode infection show significant (p < 0.05) effect only in the case of strains HU 1, 22 and IS 6. In the case of strains HU 1 and 22 parasitic forms of S. feltiae could be detected in the dead larvae of L. sericata. Strain IS 6 (and also Vija Norway at 20 degrees C) penetrated and killed fly larvae, but only adult forms of the nematode occurred in the cadavers.

  8. Automatic multiple zebrafish larvae tracking in unconstrained microscopic video conditions.

    PubMed

    Wang, Xiaoying; Cheng, Eva; Burnett, Ian S; Huang, Yushi; Wlodkowic, Donald

    2017-12-14

    The accurate tracking of zebrafish larvae movement is fundamental to research in many biomedical, pharmaceutical, and behavioral science applications. However, the locomotive characteristics of zebrafish larvae are significantly different from adult zebrafish, where existing adult zebrafish tracking systems cannot reliably track zebrafish larvae. Further, the far smaller size differentiation between larvae and the container render the detection of water impurities inevitable, which further affects the tracking of zebrafish larvae or require very strict video imaging conditions that typically result in unreliable tracking results for realistic experimental conditions. This paper investigates the adaptation of advanced computer vision segmentation techniques and multiple object tracking algorithms to develop an accurate, efficient and reliable multiple zebrafish larvae tracking system. The proposed system has been tested on a set of single and multiple adult and larvae zebrafish videos in a wide variety of (complex) video conditions, including shadowing, labels, water bubbles and background artifacts. Compared with existing state-of-the-art and commercial multiple organism tracking systems, the proposed system improves the tracking accuracy by up to 31.57% in unconstrained video imaging conditions. To facilitate the evaluation on zebrafish segmentation and tracking research, a dataset with annotated ground truth is also presented. The software is also publicly accessible.

  9. Palatability of twelve species of anuran larvae in eastern Texas

    Treesearch

    Cory K. Adams; Daniel Saenz; Richard N. Conner

    2011-01-01

    We tested the palatability of 12 species of anuran larvae that occur in eastern Texas using four common predators. Palatability was determined by offering larvae to predators and recording the behavior of the predator. We also tested for ontogenetic shifts in palatability in twelve species of anuran larvae. Incilius nebulifer, Anaxyrus woodhousii, Lithobates...

  10. Reorientation and Swimming Stability in Sea Urchin Larvae

    NASA Astrophysics Data System (ADS)

    Wheeler, J.; Chan, K. Y. K.; Anderson, E.; Helfrich, K. R.; Mullineaux, L. S.; Sengupta, A.; Stocker, R.

    2016-02-01

    Many benthic marine invertebrates have two-phase life histories, relying on planktonic larval stages for dispersal and exchange of individuals between adult populations. The dispersal of planktonic larvae is determined by two factors: passive advection by the ambient flow and active motility. By modifying dispersal and ultimately settlement, larval motility influences where and when individuals recruit into benthic communities. Despite its ecological relevance, our understanding of larval motility and behavior in the plankton remains limited, especially regarding the interactions of larval motility and ambient turbulence. As most larvae are smaller than the Kolmogorov scale, they experience ocean turbulence in part as a time-changing viscous torque produced by local fluid shear. This torque causes larval reorientation, impacting swimming direction and potentially dispersal at the macroscale. It is therefore paramount to understand the mechanisms of larval reorientation and the stability of larvae against reorientation. Here we report on the larval reorientation behavior of the sea urchins Arbacia punctulata and Heliocidaris crassispina. Both species have life histories characterized by ontogenetic changes to internal density structure and morphology, which we hypothesized to impact stability. To test this hypothesis, we performed "flip chamber" experiments, in which larvae swim freely in a small chamber that is intermittently inverted, mimicking the overturning experienced by larvae in turbulence. We investigated the role of larval age, body size, species, morphology (number of arms), and motility (live versus dead) on the reorientation dynamics. Our work contributes to a more mechanistic understanding of the role of hydrodynamics in the motility and transport of planktonic larvae.

  11. UV-B exposure impairs resistance to infection by Trichinella spiralis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goettsch, W.; Garssen, J.; Deijns, A.

    1994-03-01

    To assess the possibility that increases in UV-B exposure on the earth's surface could lead to impaired resistance to several infectious diseases, we studied the effect of UV-B exposure on resistance against Trichinella spiralis. Wistar rats, orally infected with T. spiralis larvae, were exposed to suberythemal doses of UV-B radiation daily for 5 days at different time periods before or after infection. A significant increase in the number of Trichinella larvae was found in the carcasses of rats irradiated with UV-B between 6 and 10 days after infection. These data indicate that exposure to UV-B radiation suppresses the resistance tomore » a parasitic infection. We suggested that UV-B radiation especially suppresses cellular immune responses against these worms because specific IgM, IgG, and IgE titers were not significantly altered by UV-B exposure. These data indicate that UV-B irradiation plays a role in the course of infection with T. spiralis, which suggests that increases of UV-B exposure might also lead to problems with other infectious diseases and might affect vaccination because of the interaction of UV-B irradiation with memory T-cells. 38 refs., 3 figs., 1 tab.« less

  12. Host size-dependent anisakid infection in Baltic cod Gadus morhua associated with differential food preferences.

    PubMed

    Zuo, Shaozhi; Huwer, Bastian; Bahlool, Qusay; Al-Jubury, Azmi; Daugbjerg Christensen, Nanna; Korbut, Rozalia; Kania, Per; Buchmann, Kurt

    2016-06-15

    A significant increase in the infection level of Baltic cod Gadus morhua with the anisakid nematode larvae Contracaecum osculatum and Pseudoterranova decipiens has been recorded during recent years due to the expanding local population of grey seals Halichoerus grypus, which act as final hosts for these parasites. Here, we report from an investigation of 368 cod (total length [TL] 6-49 cm; caught in ICES Subdivision 25) that the infection level of juvenile cod (TL 6-30 cm) with larvae of C. osculatum and P. decipiens is absent or very low, whereas it increases drastically in larger cod (TL 31-48 cm). A third nematode Hysterothylacium aduncum was rarely found. The study indicates that the prey animals for large cod act as transport hosts for the parasite larvae. Analyses of stomach contents of cod caught in the same area (2007-2014) showed that small benthic organisms (including polychaetes Harmothoë sarsi) are preferred food items by small cod, the isopod Saduria entomon is taken by all size classes, and sprat Sprattus sprattus are common prey items for cod larger than 30 cm. Parasitological investigations (microscopic and molecular analyses) of H. sarsi (100 specimens) and S. entomon (40 specimens) did not reveal infection in these invertebrates, but 11.6% of sprat (265 specimens examined) was shown to be infected with 1-8 C. osculatum third stage larvae per fish. Analyses of sprat stomach contents confirmed that copepods and cladocerans are the main food items of sprat. These observations suggest that the C. osculatum life cycle in the Baltic Sea includes grey seals as final hosts, sprat as the first transport host and cod as second transport host. It may be speculated that sprat obtain infection by feeding on copepods and/or cladocerans, which could serve as the first intermediate hosts. One cannot exclude the possibility that the size-dependent C. osculatum infection of cod may contribute (indirectly or directly) to the differential mortality of larger cod

  13. Specific serum protein changes associated with primary and secondary Strongylus vulgaris infections in pony yearlings.

    PubMed

    Kent, J E

    1987-03-01

    The concentrations of haptoglobin, immunoglobin (Ig)G(T) and IgG were measured in the serum of four previously parasite-free pony yearlings following a single dose of 700 (Group H) or 200 (Group L) stage three Strongylus vulgaris larvae (L3) and following a reinfection with the same doses 34 weeks later. The results are compared with an uninfected control pony. The haptoglobin concentration increased during Weeks 1 to 6 and 14 to 17 after infection in the serum of the ponies receiving 200 L3, but in only one pony dosed with 700 L3 (during Weeks 1 to 16). The serum haptoglobin also increased during the first seven weeks after the second infection, in three of the four ponies following the second dose of larvae. The serum IgG(T) concentration started to increase from Week 6 or 9 in the ponies given 700 L3, reaching peaks of 44 and 32 g/litre respectively, eight to nine weeks later, compared with a peak of 16 g/litre 20 to 22 weeks after infection in ponies dosed with 200 L3. The IgG(T) concentration increased to a maximum of 25 g/litre in the serum of only one of the four ponies after the reinfection. The serum IgG concentration in all ponies increased nearly twofold during the first eight weeks after both the primary and secondary dose of larvae. It is concluded that the measurement of specific proteins is more reliable and quicker than the electrophoretic separation and quantitation of protein bands, in tracing changes in serum proteins following the artificial infection of ponies with S vulgaris larvae.

  14. Selenium impacts on razorback sucker, Colorado: Colorado River: III. Larvae

    USGS Publications Warehouse

    Hamilton, Steven J.; Holley, Kathy M.; Buhl, Kevin J.; Bullard, Fern A.

    2005-01-01

    Razorback sucker (Xyrauchen texanus) larvae from adults exposed to selenium at three sites near Grand Junction, Colorado, for 9 months were used in a 30-day waterborne and dietary selenium study. Selenium concentrations in water averaged <1.6 μg/L from 24-Road, 0.9 μg/L from Horsethief, 5.5 μg/L from Adobe Creek, and 10.7 μg/L from the North Pond. Selenium in dietary items averaged 2.7 μg/g in brine shrimp, 5.6 μg/g in zooplankton from Horsethief east wetland, 20 μg/g in zooplankton from Adobe Creek, and 39 μg/g in zooplankton from North Pond. The lowest survival occurred in larvae fed zooplankton rather than brine shrimp. Survival of larvae at Adobe Creek and North Pond was lower in site water than in reference water. Survival of brood stock larvae was higher than Horsethief larvae even though they received the same water and dietary treatments. Arsenic concentrations in brine shrimp may have resulted in an antagonistic interaction with selenium and reduced adverse effects in larvae. Deformities in larvae from North Pond were similar to those reported for selenium-induced teratogenic deformities in other fish species. Selenium concentrations of ⩾4.6 μg/g in food resulted in rapid mortality of larvae from Horsethief, Adobe Creek, and North Pond, and suggested that selenium toxicity in the Colorado River could limit recovery of this endangered fish.

  15. Parasites of fish larvae: do they follow metabolic energetic laws?

    PubMed

    Muñoz, Gabriela; Landaeta, Mauricio F; Palacios-Fuentes, Pamela; George-Nascimento, Mario

    2015-11-01

    Eumetazoan parasites in fish larvae normally exhibit large body sizes relative to their hosts. This observation raises a question about the potential effects that parasites might have on small fish. We indirectly evaluated this question using energetic metabolic laws based on body volume and the parasite densities. We compared the biovolume as well as the numeric and volumetric densities of parasites over the host body volume of larval and juvenile-adult fish and the average of these parasitological descriptors for castrator parasites and the parasites found in the fish studied here. We collected 5266 fish larvae using nearshore zooplankton sampling and 1556 juveniles and adult fish from intertidal rocky pools in central Chile. We considered only the parasitized hosts: 482 fish larvae and 629 juvenile-adult fish. We obtained 31 fish species; 14 species were in both plankton and intertidal zones. Fish larvae exhibited a significantly smaller biovolume but larger numeric and volumetric densities of parasites than juvenile-adult fish. Therefore, fish larvae showed a large proportion of parasite biovolume per unit of body host (cm(3)). However, the general scaling of parasitological descriptors and host body volume were similar between larvae and juvenile-adult fish. The ratio between the biovolume of parasites and the host body volume in fish larvae was similar to the proportion observed in castrator parasites. Furthermore, the ratios were different from those of juvenile-adult fish, which suggests that the presence of parasites implies a high energetic cost for fish larvae that would diminish the fitness of these small hosts.

  16. Development of antiviral gene therapy for Monodon baculovirus using dsRNA loaded chitosan-dextran sulfate nanocapsule delivery system in Penaeus monodon post-larvae.

    PubMed

    Ramesh Kumar, D; Elumalai, Rajasegaran; Raichur, Ashok M; Sanjuktha, M; Rajan, J J; Alavandi, S V; Vijayan, K K; Poornima, M; Santiago, T C

    2016-07-01

    In the present study, a suitable carrier system was developed for the delivery of dsRNA into Penaeus monodon (P. monodon) post larvae to silence the Monodon baculovirus (MBV) structural gene of p74. The carrier system was developed by layer by layer adsorption of oppositely charged chitosan-dextran sulfate, on charged silica nanoparticles. The silica template was removedto produce multilayered hollow nanocapsules (CS-DS) that were utilized for dsRNA loading at an alkaline pH. The capsule's surface was modified by conjugating with shrimp feed for enhanced cellular uptake. In vivo cellular uptake of CS-DS/FITC loaded nanocapsules conjugated with feed was studied after oral administration into post-larvae. The results revealed that the encapsulated FITC was effectively delivered and exhibited a sustained release into the cytoplasm of shrimp post-larvae. The MBV challenge study for structural gene p74was conducted after 3-25 days of post infection (dpi) with respective CS-DS/dsRNA coated with feed. The results showed a significant survival rate of 86.63% and effective gene silencing in P. monodon. Our findings indicated that the delivery of dsRNA using shrimp feed coatedCS-DSnanocapsules could be a novel approach to prevent viral infections in shrimp. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The larva of Paracapnia disala (Jewett) (Plecoptera: Capniidae)

    Treesearch

    Kenneth W. Stewart

    2010-01-01

    The larva of Paracapnia disala (Jewett) was associated from two first order headwater streams in the H.J. Andrews Experimental Forest, Oregon, U.S.A. Larvae of this first western Paracapnia species to be associated, were studied and compared morphologically with those of the eastern Paracapnia angulata...

  18. Mortality through ontogeny of soft-bottom marine invertebrates with planktonic larvae

    NASA Astrophysics Data System (ADS)

    Pedersen, Troels Møller; Hansen, Jørgen L. S.; Josefson, Alf B.; Hansen, Benni W.

    2008-09-01

    The present survey covers one spawning season of marine benthic invertebrates in a large geographical area, the inner Danish waters, and includes a wide range of habitats with steep salinity and nutrient load gradients. The loss ratios of soft-bottom marine invertebrates from one development stage to the next is calculated based on average abundances of pelagic larvae, benthic post-larvae and adults of Bivalvia, Gastropoda, Polychaeta and Echinodermata, with planktonic development. This gives a rough estimate of the larval and post-larval mortality. Loss ratios between post-larvae stage and adult stage (post-larval mortality) varies from 3:1 to 7:1 (71.2-84.9%) and loss ratios between larvae and post-larvae (larval mortality) and between larvae and adult, ranging from 7:1 to 42:1 (85.2-97.6%) and from 45:1 to 210:1 (97.8-99.5%), respectively. The results show a remarkable unity in loss ratios (mortality) between the mollusc taxa (Bivalvia and Gastropoda) at the phylum/class level. This similarity in loss ratios among the mollusc taxa exhibiting the same developmental pathways suggests that the mortality is governed by the same biotic and abiotic factors. Larval mortality is estimated to range from 0.10 d - 1 to 0.32 d - 1 for Bivalvia and ranging from 0.09 d - 1 to 0.23 d - 1 for Polychaeta. The species loss ratios combined with specific knowledge of the reproduction cycles give estimated loss ratios (mortality) between the post-larvae and the adult stage of 25:1 and 14:1 for the bivalves Abra spp. and Mysella bidentata. For the polychaete Pygospio elegans the loss ratio (larval mortality) between the larvae and the post-larval stage is 154:1 and between the post-larvae and the adult stage 41:1. For Pholoe inornata the loss ratio between post-larvae and adults is 7:1. The present results confirm that the larval stage, metamorphosis and settlement are the critical phase in terms of mortality in the life cycle for Bivalvia. Assuming steady state based on actual

  19. Peroral infection of nuclear polyhedrosis virus budded particles in the host, Bombyx mori l., enabled by an optical brightener, Tinopal UNPA-GX.

    PubMed

    Arakawa, T; Kamimura, M; Furuta, Y; Miyazawa, M; Kato, M

    2000-08-01

    Perorally inoculated budded particles of a nuclear polyhedrosis virus was used to infect Bombyx mori (BmNPV) (Lepidoptera; Bombycidae), aided by an optical brightener, Tinopal UNPA-GX (Tinopal). BmNPV budded particles not occluded in the occlusion body do not infect successfully the host, B. mori, when administered perorally. It was found that feeding the host Tinopal enabled perorally delivered BmNPV budded particles to infect the host. B. mori larvae ingesting BmNPV budded particles (1.3 x 10(6) TCID(50) units per larva) after they consumed an artificial diet containing 0. 3% Tinopal died of the viral infection. Peroral administration of these particles to host larvae with 1% Tinopal also resulted in virus infection. Tinopal is a candidate for viral activity enhancing agent promoting viral insecticide infection in hosts. The results suggest that B. mori-BmNPV budded particles are convenient for detecting viral infection enhancement activity of a chemical of interest. Since recombinant baculovirus vectors are constructed by replacing the polyhedrin gene with the foreign gene of interest, they do not produce occlusion bodies, i.e. polyhedra. Budded particles of a baculovirus vector not occluded in polyhedra cannot infect their hosts when administered perorally. The peroral inoculation of BmNPV budded particles by Tinopal leads to industrial pharmaceutics production using a baculovirus vector for a huge number of insect hosts, i.e. an 'insect factory'.

  20. How to kill the honey bee larva: genomic potential and virulence mechanisms of Paenibacillus larvae.

    PubMed

    Djukic, Marvin; Brzuszkiewicz, Elzbieta; Fünfhaus, Anne; Voss, Jörn; Gollnow, Kathleen; Poppinga, Lena; Liesegang, Heiko; Garcia-Gonzalez, Eva; Genersch, Elke; Daniel, Rolf

    2014-01-01

    Paenibacillus larvae, a Gram positive bacterial pathogen, causes American Foulbrood (AFB), which is the most serious infectious disease of honey bees. In order to investigate the genomic potential of P. larvae, two strains belonging to two different genotypes were sequenced and used for comparative genome analysis. The complete genome sequence of P. larvae strain DSM 25430 (genotype ERIC II) consisted of 4,056,006 bp and harbored 3,928 predicted protein-encoding genes. The draft genome sequence of P. larvae strain DSM 25719 (genotype ERIC I) comprised 4,579,589 bp and contained 4,868 protein-encoding genes. Both strains harbored a 9.7 kb plasmid and encoded a large number of virulence-associated proteins such as toxins and collagenases. In addition, genes encoding large multimodular enzymes producing nonribosomally peptides or polyketides were identified. In the genome of strain DSM 25719 seven toxin associated loci were identified and analyzed. Five of them encoded putatively functional toxins. The genome of strain DSM 25430 harbored several toxin loci that showed similarity to corresponding loci in the genome of strain DSM 25719, but were non-functional due to point mutations or disruption by transposases. Although both strains cause AFB, significant differences between the genomes were observed including genome size, number and composition of transposases, insertion elements, predicted phage regions, and strain-specific island-like regions. Transposases, integrases and recombinases are important drivers for genome plasticity. A total of 390 and 273 mobile elements were found in strain DSM 25430 and strain DSM 25719, respectively. Comparative genomics of both strains revealed acquisition of virulence factors by horizontal gene transfer and provided insights into evolution and pathogenicity.

  1. Chironomidae bloodworms larvae as aquatic amphibian food.

    PubMed

    Fard, Mojdeh Sharifian; Pasmans, Frank; Adriaensen, Connie; Laing, Gijs Du; Janssens, Geert Paul Jules; Martel, An

    2014-01-01

    Different species of chironomids larvae (Diptera: Chironomidae) so-called bloodworms are widely distributed in the sediments of all types of freshwater habitats and considered as an important food source for amphibians. In our study, three species of Chironomidae (Baeotendipes noctivagus, Benthalia dissidens, and Chironomus riparius) were identified in 23 samples of larvae from Belgium, Poland, Russia, and Ukraine provided by a distributor in Belgium. We evaluated the suitability of these samples as amphibian food based on four different aspects: the likelihood of amphibian pathogens spreading, risk of heavy metal accumulation in amphibians, nutritive value, and risk of spreading of zoonotic bacteria (Salmonella, Campylobacter, and ESBL producing Enterobacteriaceae). We found neither zoonotic bacteria nor the amphibian pathogens Ranavirus and Batrachochytrium dendrobatidis in these samples. Our data showed that among the five heavy metals tested (Hg, Cu, Cd, Pb, and Zn), the excess level of Pb in two samples and low content of Zn in four samples implicated potential risk of Pb accumulation and Zn inadequacy. Proximate nutritional analysis revealed that, chironomidae larvae are consistently high in protein but more variable in lipid content. Accordingly, variations in the lipid: protein ratio can affect the amount and pathway of energy supply to the amphibians. Our study indicated although environmentally-collected chironomids larvae may not be vectors of specific pathogens, they can be associated with nutritional imbalances and may also result in Pb bioaccumulation and Zn inadequacy in amphibians. Chironomidae larvae may thus not be recommended as single diet item for amphibians. © 2014 Wiley Periodicals, Inc.

  2. Transient infection of the zebrafish notochord with E. coli induces chronic inflammation

    PubMed Central

    Nguyen-Chi, Mai; Phan, Quang Tien; Gonzalez, Catherine; Dubremetz, Jean-François; Levraud, Jean-Pierre; Lutfalla, Georges

    2014-01-01

    Zebrafish embryos and larvae are now well-established models in which to study infectious diseases. Infections with non-pathogenic Gram-negative Escherichia coli induce a strong and reproducible inflammatory response. Here, we study the cellular response of zebrafish larvae when E. coli bacteria are injected into the notochord and describe the effects. First, we provide direct evidence that the notochord is a unique organ that is inaccessible to leukocytes (macrophages and neutrophils) during the early stages of inflammation. Second, we show that notochord infection induces a host response that is characterised by rapid clearance of the bacteria, strong leukocyte recruitment around the notochord and prolonged inflammation that lasts several days after bacteria clearance. During this inflammatory response, il1b is first expressed in macrophages and subsequently at high levels in neutrophils. Moreover, knock down of il1b alters the recruitment of neutrophils to the notochord, demonstrating the important role of this cytokine in the maintenance of inflammation in the notochord. Eventually, infection of the notochord induces severe defects of the notochord that correlate with neutrophil degranulation occurring around this tissue. This is the first in vivo evidence that neutrophils can degranulate in the absence of a direct encounter with a pathogen. Persistent inflammation, neutrophil infiltration and restructuring of the extracellular matrix are defects that resemble those seen in bone infection and in some chondropathies. As the notochord is a transient embryonic structure that is closely related to cartilage and bone and that contributes to vertebral column formation, we propose infection of the notochord in zebrafish larvae as a new model to study the cellular and molecular mechanisms underlying cartilage and bone inflammation. PMID:24973754

  3. Evaluation of Pathogenicity of the Fungi Metarhizium anisopliae and Beauveria bassiana in Hazelnut Weevil (Curculio nucum L., Coleoptera, Curculionidae) Larvae.

    PubMed

    Cheng, Yunqing; Liu, Ting; Zhao, Yixin; Geng, Wanting; Chen, Longtao; Liu, Jianfeng

    2016-12-01

    The nut weevil ( Curculio nucum ) is one of the most important and widespread pests in hazelnut orchards. In order to screen entomopathogenic fungal strains with high virulence against C. nucum , the growth rate, sporulation, and cumulative mortality of different Metarhizium anisopliae and Beauveria bassiana strains were investigated, and the process by which M. anisopliae CoM 02 infects C. nucum larvae was observed using scanning electron microscopy. The results indicated that the growth rate and sporulation of different fungal strains significantly differed. Thirteen days after inoculation with M. anisopliae CoM 02, the cumulative mortality of C. nucum larvae reached 100 %, which was considerably higher than that of the other five strains. As the most virulent of the six test strains, the cadaver rate, LT 50 , and LT 90 of M. anisopliae CoM 02 were 93.4 %, 7.05 and 11.90 days, respectively. Analysis of the infection process by scanning electron microscopy showed that the spore attachment, hyphal germination, hyphal rapid growth, and sporulation of M. anisopliae CoM 02 occurred on the 3rd, 5th, 7th, and 11th day after inoculation, respectively, indicating that the infection cycle takes approximately 11 days. This finding suggests that the highly virulent M. anisopliae plays an important role in the biocontrol of C. nucum in China.

  4. The use of fly larvae for organic waste treatment.

    PubMed

    Čičková, Helena; Newton, G Larry; Lacy, R Curt; Kozánek, Milan

    2015-01-01

    The idea of using fly larvae for processing of organic waste was proposed almost 100 years ago. Since then, numerous laboratory studies have shown that several fly species are well suited for biodegradation of organic waste, with the house fly (Musca domestica L.) and the black soldier fly (Hermetia illucens L.) being the most extensively studied insects for this purpose. House fly larvae develop well in manure of animals fed a mixed diet, while black soldier fly larvae accept a greater variety of decaying organic matter. Blow fly and flesh fly maggots are better suited for biodegradation of meat processing waste. The larvae of these insects have been successfully used to reduce mass of animal manure, fecal sludge, municipal waste, food scrapes, restaurant and market waste, as well as plant residues left after oil extraction. Higher yields of larvae are produced on nutrient-rich wastes (meat processing waste, food waste) than on manure or plant residues. Larvae may be used as animal feed or for production of secondary products (biodiesel, biologically active substances). Waste residue becomes valuable fertilizer. During biodegradation the temperature of the substrate rises, pH changes from neutral to alkaline, ammonia release increases, and moisture decreases. Microbial load of some pathogens can be substantially reduced. Both larvae and digested residue may require further treatment to eliminate pathogens. Facilities utilizing natural fly populations, as well as pilot and full-scale plants with laboratory-reared fly populations have been shown to be effective and economically feasible. The major obstacles associated with the production of fly larvae from organic waste on an industrial scale seem to be technological aspects of scaling-up the production capacity, insufficient knowledge of fly biology necessary to produce large amounts of eggs, and current legislation. Technological innovations could greatly improve performance of the biodegradation facilities and

  5. Seroprevalence and risk factors for canine toxocariasis by detection of specific IgG as a marker of infection in dogs from Salvador, Brazil.

    PubMed

    Regis, Sabynne Christina Silva; Mendonça, Lívia Ribeiro; Silva, Nairléia dos Santos; Dattoli, Vitor Camilo Cavalcante; Alcântara-Neves, Neuza Maria; Barrouin-Melo, Stella Maria

    2011-01-01

    Toxocara canis is a highly prevalent worldwide canine nematode responsible for enzootic and zoonotic infections. It is considered to be one of the main agents of human visceral and ocular larva migrans. False negative diagnosis may occur because adult infected dogs with "dormant" larvae may have negative fecal test results since they usually do not shed parasite eggs in their stools. During pregnancy, the larvae become active and infect the offspring through the placenta. A serological test can distinguish infected animals, thus increasing the accuracy of the diagnosis for epidemiological studies and prophylactic purposes. In the present work a serological investigation was carried out to study the risk factors for the acquisition of this infection in 301 dogs inhabiting the city of Salvador, northeast Brazil. A validated questionnaire was applied to the donors and caretakers to assess animal management practices. All dogs were submitted to clinical evaluation and blood collection. Serum samples were analyzed for IgG antibodies against excretory-secretory products of T. canis larvae, used as antigens, by indirect ELISA. The overall seroprevalence of anti-T. canis IgG antibodies was 82.7%. Risk factors for T. canis infection included sex, area of origin within the city, homemade leftover food intake, failure to receive regular vaccination against infectious diseases and lack of preventive anti-helminthic treatment. Most of these risk factors suggest a lack of veterinary care and poverty. The high frequency of seropositivity found for toxocariasis in dogs suggests that results based on parasitological fecal examination could underestimate the actual prevalence of the infection. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Factors affecting infection of corals and larval oysters by Vibrio coralliilyticus.

    PubMed

    Ushijima, Blake; Richards, Gary P; Watson, Michael A; Schubiger, Carla B; Häse, Claudia C

    2018-01-01

    The bacterium Vibrio coralliilyticus can threaten vital reef ecosystems by causing disease in a variety of coral genera, and, for some strains, increases in virulence at elevated water temperatures. In addition, strains of V. coralliilyticus (formally identified as V. tubiashii) have been implicated in mass mortalities of shellfish larvae causing significant economic losses to the shellfish industry. Recently, strain BAA-450, a coral pathogen, was demonstrated to be virulent towards larval Pacific oysters (Crassostrea gigas). However, it is unclear whether other coral-associated V. coralliilyticus strains can cause shellfish mortalities and if infections are influenced by temperature. This study compared dose dependence, temperature impact, and gross pathology of four V. coralliilyticus strains (BAA-450, OCN008, OCN014 and RE98) on larval C. gigas raised at 23°C and 27°C, and evaluated whether select virulence factors are required for shellfish infections as they are for corals. All strains were infectious to larval oysters in a dose-dependent manner with OCN014 being the most pathogenic and BAA-450 being the least. At 27°C, higher larval mortalities (p < 0.05) were observed for all V. coralliilyticus strains, ranging from 38.8-93.7%. Gross pathological changes to the velum and cilia occurred in diseased larvae, but there were no distinguishable differences between oysters exposed to different V. coralliilyticus strains or temperatures. Additionally, in OCN008, the predicted transcriptional regulator ToxR and the outer membrane protein OmpU were important for coral and oyster disease, while mannose sensitive hemagglutinin type IV pili were required only for coral infection. This study demonstrated that multiple coral pathogens can infect oyster larvae in a temperature-dependent manner and identified virulence factors required for infection of both hosts.

  7. Microstructured Surface Arrays for Injection of Zebrafish Larvae

    PubMed Central

    Irimia, Daniel

    2017-01-01

    Abstract Microinjection of zebrafish larvae is an essential technique for delivery of treatments, dyes, microbes, and xenotransplantation into various tissues. Although a number of casts are available to orient embryos at the single-cell stage, no device has been specifically designed to position hatching-stage larvae for microinjection of different tissues. In this study, we present a reusable silicone device consisting of arrayed microstructures, designed to immobilize 2 days postfertilization larvae in lateral, ventral, and dorsal orientations, while providing maximal access to target sites for microinjection. Injection of rhodamine dextran was used to demonstrate the utility of this device for precise microinjection of multiple anatomical targets. PMID:28151697

  8. First record of a nematode Metastrongyloidea (Aelurostrongylus abstrusus larvae) in Achatina (Lissachatina) fulica (Mollusca, Achatinidae) in Brazil.

    PubMed

    Thiengo, Silvana C; Fernandez, Monica A; Torres, Eduardo J L; Coelho, Pablo M; Lanfredi, Reinalda M

    2008-05-01

    Achatina (Lissachatina) fulica was introduced in Brazil in the 1980s for commercial purposes ("escargot" farming) and nowadays, mainly by human activity, it is widespread in at least 23 out of 26 Brazilian states and Brasília, including the Amazonian region and natural reserves, where besides a general nuisance for people it is a pest and also a public health concern, since it is one of the natural intermediate host of Angiostrongylus cantonensis, ethiological agent of the meningoencephalitis in Asia. As Brazil is experiencing the explosive phase of the invasion, the Laboratório de Malacologia do Instituto Oswaldo Cruz/Fiocruz has been receiving samples of these molluscs for identification and search for Angiostrongylus cantonensis and Angiostrongylus costaricensis larvae. While examining samples of A. fulica different nematode larvae were obtained, including Aelurostrongylus, whose different species are parasites of felids, dogs, primates, and badger. Morphological and morphometric analyses presented herein indicated the species Aelurostrongylus abstrusus, as well as the occurrence of other nematode larvae (Strongyluris-like) found in the interior of the pallial cavity of A. fulica. This is the first report in Brazil of the development of A. abstrusus infective larvae in A. fulica evidencing the veterinary importance of this mollusc in the transmission of A. abstrusus to domestic cats. Since the spread of A. fulica is pointed out in the literature as one of the main causative spread of the meningoencephalitis caused by A. cantonensis the authors emphasize the need of sanitary vigilance of snails and rats from vulnerable areas for A. cantonensis introduction as the port side areas.

  9. Identification of Hymenolepis diminuta Cysticercoid Larvae in Tribolium castaneum (Coleoptera: Tenebrionidae) Beetles from Iran.

    PubMed

    Makki, Mahsa Sadat; Mowlavi, Gholamreza; Shahbazi, Farideh; Abai, Mohammad Reza; Najafi, Faezeh; Hosseini-Farash, Bibi Razieh; Teimoori, Salma; Hasanpour, Hamid; Naddaf, Saied Reza

    2017-06-01

    Hymenolepis diminuta is a cestod of rodents and rarely infects humans. Infection in humans is via ingestion of infected insects. This study was aimed to detect H. diminuta cysticercoids in red flour beetles, Tribolium castaneum, and cockroaches originated from different regions of Iran. The red flour beetles and cockroaches were collected from local bakeries in five cities including Tehran, Ahvaz, Kazerun, and Sabzevar during 2010-2011. Some beetles and cockroaches were colonized in insectary and adults from F1 generation were fed on H. diminuta eggs. Both laboratory-infected and field-collected samples were dissected and examined for cysticercoids. Detection of H. diminuta DNA in T. castaneum beetles was performed by targeting a partial sequence of Ribosomal gene. Except the beetles from Ahvaz, all specimens were negative for cysticercoid by microscopy. Of the four dissected beetles from Ahvaz, one harbored 12 cysticercoids. Also, 110 (52%) of laboratory-infected beetles showed infection with an average of 12-14 larvae. None of the cockroaches was infected. Two beetles from Ahvaz, including the remainder of the microscopic positive specimen, yielded the expected amplicon in PCR assay. The H. diminuta DNA sequences generated in this study were identical and matched 97-100% with similar sequences from GenBank database. Lack of infection in the majority of beetles may reflect a low rat infestation rate in those areas, alternatively, the examined specimens might not have been the representative samples of the T. castaneum populations.

  10. Crustacean Larvae-Vision in the Plankton.

    PubMed

    Cronin, Thomas W; Bok, Michael J; Lin, Chan

    2017-11-01

    We review the visual systems of crustacean larvae, concentrating on the compound eyes of decapod and stomatopod larvae as well as the functional and behavioral aspects of their vision. Larval compound eyes of these macrurans are all built on fundamentally the same optical plan, the transparent apposition eye, which is eminently suitable for modification into the abundantly diverse optical systems of the adults. Many of these eyes contain a layer of reflective structures overlying the retina that produces a counterilluminating eyeshine, so they are unique in being camouflaged both by their transparency and by their reflection of light spectrally similar to background light to conceal the opaque retina. Besides the pair of compound eyes, at least some crustacean larvae have a non-imaging photoreceptor system based on a naupliar eye and possibly other frontal eyes. Larval compound-eye photoreceptors send axons to a large and well-developed optic lobe consisting of a series of neuropils that are similar to those of adult crustaceans and insects, implying sophisticated analysis of visual stimuli. The visual system fosters a number of advanced and flexible behaviors that permit crustacean larvae to survive extended periods in the plankton and allows them to reach acceptable adult habitats, within which to metamorphose. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  11. Starvation-Induced Dietary Behaviour in Drosophila melanogaster Larvae and Adults.

    PubMed

    Ahmad, Muhammad; Chaudhary, Safee Ullah; Afzal, Ahmed Jawaad; Tariq, Muhammad

    2015-09-24

    Drosophila melanogaster larvae are classified as herbivores and known to feed on non-carnivorous diet under normal conditions. However, when nutritionally challenged these larvae exhibit cannibalistic behaviour by consuming a diet composed of larger conspecifics. Herein, we report that cannibalism in Drosophila larvae is confined not only to scavenging on conspecifics that are larger in size, but also on their eggs. Moreover, such cannibalistic larvae develop as normally as those grown on standard cornmeal medium. When stressed, Drosophila melanogaster larvae can also consume a carnivorous diet derived from carcasses of organisms belonging to diverse taxonomic groups, including Musca domestica, Apis mellifera, and Lycosidae sp. While adults are ill-equipped to devour conspecific carcasses, they selectively oviposit on them and also consume damaged cadavers of conspecifics. Thus, our results suggest that nutritionally stressed Drosophila show distinct as well as unusual feeding behaviours that can be classified as detritivorous, cannibalistic and/or carnivorous.

  12. Parasite infections in nestling red-shouldered hawks (Buteo lineatus) in northeast Wisconsin.

    PubMed

    King, Janet C; Dubay, Shelli A; Huspeni, Todd C; VanLanen, Andrew R; Gerhold, Richard W

    2010-06-01

    Red-shouldered hawks (Buteo lineatus) are threatened in Wisconsin and long-term data suggest that nest productivity is low in the state for unknown reasons. Our objective was to determine whether red-shouldered hawks in northeast Wisconsin were infected with parasites that could contribute to low nest productivity. We examined nestlings for the presence of Trichomonas gallinae, Protocalliphora avium, and blood parasites in June 2006 and 2007. We did not detect T. gallinae in throat swabs taken from 24 nestlings in 2007. Ear canals of nestlings were parasitized by P. avium larvae in 10 of 11 (91%) nests and in 22 of 24 (92%) nestlings. Larvae were found in higher intensity in 1 ear relative to the other. Leucocytozoon toddi was present in 90.5% (38/42) of the nestlings. At least 1 bird in each nest was infected. Intensity of L. toddi averaged 48.6 +/- 58.3 infected cells per 2,000 erythrocytes (2.4 +/- 2.9%). No other blood parasites were identified.

  13. Adult fruit fly attraction to larvae biases experience and mediates social learning.

    PubMed

    Durisko, Zachary; Anderson, Blake; Dukas, Reuven

    2014-04-01

    We investigated whether adult fruit flies (Drosophila melanogaster) use cues of larvae as social information in their food patch choice decisions. Adult male and female fruit flies showed attraction to odours emanating from foraging larvae, and females preferred to lay eggs on food patches occupied by larvae over similar unoccupied patches. Females learned and subsequently preferred to lay eggs at patches with novel flavours previously associated with feeding larvae over patches with novel flavours previously associated with no larvae. However, when we controlled for the duration of exposure to each flavoured patch, females no longer preferred the flavour previously associated with feeding larvae. This suggests that social learning in this context is indirect, as a result of strong social attraction biasing experience.

  14. Phylogenetics links monster larva to deep-sea shrimp.

    PubMed

    Bracken-Grissom, Heather D; Felder, Darryl L; Vollmer, Nicole L; Martin, Joel W; Crandall, Keith A

    2012-10-01

    Mid-water plankton collections commonly include bizarre and mysterious developmental stages that differ conspicuously from their adult counterparts in morphology and habitat. Unaware of the existence of planktonic larval stages, early zoologists often misidentified these unique morphologies as independent adult lineages. Many such mistakes have since been corrected by collecting larvae, raising them in the lab, and identifying the adult forms. However, challenges arise when the larva is remarkably rare in nature and relatively inaccessible due to its changing habitats over the course of ontogeny. The mid-water marine species Cerataspis monstrosa (Gray 1828) is an armored crustacean larva whose adult identity has remained a mystery for over 180 years. Our phylogenetic analyses, based in part on recent collections from the Gulf of Mexico, provide definitive evidence that the rare, yet broadly distributed larva, C. monstrosa, is an early developmental stage of the globally distributed deepwater aristeid shrimp, Plesiopenaeus armatus. Divergence estimates and phylogenetic relationships across five genes confirm the larva and adult are the same species. Our work demonstrates the diagnostic power of molecular systematics in instances where larval rearing seldom succeeds and morphology and habitat are not indicative of identity. Larval-adult linkages not only aid in our understanding of biodiversity, they provide insights into the life history, distribution, and ecology of an organism.

  15. Phylogenetics links monster larva to deep-sea shrimp

    PubMed Central

    Bracken-Grissom, Heather D; Felder, Darryl L; Vollmer, Nicole L; Martin, Joel W; Crandall, Keith A

    2012-01-01

    Mid-water plankton collections commonly include bizarre and mysterious developmental stages that differ conspicuously from their adult counterparts in morphology and habitat. Unaware of the existence of planktonic larval stages, early zoologists often misidentified these unique morphologies as independent adult lineages. Many such mistakes have since been corrected by collecting larvae, raising them in the lab, and identifying the adult forms. However, challenges arise when the larva is remarkably rare in nature and relatively inaccessible due to its changing habitats over the course of ontogeny. The mid-water marine species Cerataspis monstrosa (Gray 1828) is an armored crustacean larva whose adult identity has remained a mystery for over 180 years. Our phylogenetic analyses, based in part on recent collections from the Gulf of Mexico, provide definitive evidence that the rare, yet broadly distributed larva, C. monstrosa, is an early developmental stage of the globally distributed deepwater aristeid shrimp, Plesiopenaeus armatus. Divergence estimates and phylogenetic relationships across five genes confirm the larva and adult are the same species. Our work demonstrates the diagnostic power of molecular systematics in instances where larval rearing seldom succeeds and morphology and habitat are not indicative of identity. Larval–adult linkages not only aid in our understanding of biodiversity, they provide insights into the life history, distribution, and ecology of an organism. PMID:23145324

  16. The phylogenetic significance of colour patterns in marine teleost larvae

    PubMed Central

    Baldwin, Carole C

    2013-01-01

    Ichthyologists, natural-history artists, and tropical-fish aquarists have described, illustrated, or photographed colour patterns in adult marine fishes for centuries, but colour patterns in marine fish larvae have largely been neglected. Yet the pelagic larval stages of many marine fishes exhibit subtle to striking, ephemeral patterns of chromatophores that warrant investigation into their potential taxonomic and phylogenetic significance. Colour patterns in larvae of over 200 species of marine teleosts, primarily from the western Caribbean, were examined from digital colour photographs, and their potential utility in elucidating evolutionary relationships at various taxonomic levels was assessed. Larvae of relatively few basal marine teleosts exhibit erythrophores, xanthophores, or iridophores (i.e. nonmelanistic chromatophores), but one or more of those types of chromatophores are visible in larvae of many basal marine neoteleosts and nearly all marine percomorphs. Whether or not the presence of nonmelanistic chromatophores in pelagic marine larvae diagnoses any major teleost taxonomic group cannot be determined based on the preliminary survey conducted, but there is a trend toward increased colour from elopomorphs to percomorphs. Within percomorphs, patterns of nonmelanistic chromatophores may help resolve or contribute evidence to existing hypotheses of relationships at multiple levels of classification. Mugilid and some beloniform larvae share a unique ontogenetic transformation of colour pattern that lends support to the hypothesis of a close relationship between them. Larvae of some tetraodontiforms and lophiiforms are strikingly similar in having the trunk enclosed in an inflated sac covered with xanthophores, a character that may help resolve the relationships of these enigmatic taxa. Colour patterns in percomorph larvae also appear to diagnose certain groups at the interfamilial, familial, intergeneric, and generic levels. Slight differences in generic

  17. Anisakis simplex (Nematoda: Anisakidae) third-stage larval infections of marine cage cultured cobia, Rachycentron canadum L., in Taiwan.

    PubMed

    Shih, Hsiu-Hui; Ku, Chen-Chun; Wang, Chun-Shun

    2010-08-04

    The first confirmed case of Anisakis simplex infection of the marine cage cobia, Rachycentron canadum (L.), was recorded in Taiwan. The case investigation revealed the presence of third-stage larvae (L3) in either the stomach lumen or abdominal cavity of the cobia but never within the musculatures. Larvae were mainly encapsulated in the peritoneal mesentery on the outer surface of the stomach wall and occasionally on the liver surface. Part of the diet fed to the cobia includes chopped raw fish, and of these, seven species were found to harbor these larvae (as paratenic hosts), indicating that these particular fish might be the larval sources for this infection. To illustrate the course of infection and distribution of this parasite inside cobia, both juvenile and adult cobia were experimentally infected with live L3 by oral transmission. The prevalence of infection reached 100% at the end of all trials. The course of the infection was assessed after necropsy by histological and ultrastructural observations. A. simplex L3 recovered from various locations within juvenile cobia at different post-infection (p.i.) times were at the L3 stage and did not grow significantly. The L3 either adhered to or penetrated into the gastric mucosa of cobia by 2 h p.i. By 25 d p.i., many were trapped within the submucosa and encapsulated by fibroconnective tissue. This phenomenon was more apparent in adult cobia, such that 37.5-86.0% of the injected L3 were primarily found encapsulated within the gastric submucosa. Based upon a PCR-RFLP assay, the larvae encountered in this study were identified as having a recombinant genotype of A. simplex sensu stricto and A. pegreffii. Based upon the results of this study, strategies to ensure the safety of seafood manufactured from cobia and to prevent the potential risks of anisakiasis or allergies risk to consumers were suggested. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Raccoon Roundworm Eggs near Homes and Risk for Larva Migrans Disease, California Communities

    PubMed Central

    Roussere, Gabriel P.; Raudenbush, Caroline B.; Kutilek, Michael J.; Levee, Darcy J.; Kazacos, Kevin R.

    2003-01-01

    The raccoon roundworm, Baylisascaris procyonis, is increasingly recognized as a cause of serious or fatal larva migrans disease in humans and animals. We assessed the potential for infection in three northern California communities by determining the density and distribution of raccoon latrines, where transmission primarily occurs, and the prevalence of eggs at private residences. We collected fecal samples from 215 latrines and found that 44%-53% of the latrines contained B. procyonis eggs and that 16% to 32% contained infective eggs. Among the properties surveyed, 28%-49% harbored at least one latrine that was positive for B. procyonis eggs. The latrine densities in these communities were higher than any previously reported. The presence of B. procyonis eggs in raccoon latrines was common, widespread, and closely associated with human habitation. Where raccoon densities are high, education of the public and removal of raccoons may be necessary. PMID:14720389

  19. Role of the eosinophil in serum-mediated adherence of equine leukocytes to infective larvae of Strongylus vulgaris.

    PubMed

    Klei, T R; Chapman, M R; Dennis, V A

    1992-06-01

    The adherence of equine leukocytes to Strongylus vulgaris infective larvae (L3) in the presence of normal and immune sera was examined in vitro. Immune sera promoted adherence of buffy coat cells from ponies with S. vulgaris-induced eosinophilia (eosinophilic ponies) to S. vulgaris L3. However, eosinophils in the buffy coat cells were the predominant adherent cell type. Studies using leukocyte populations enriched for eosinophils, neutrophils, and mononuclear cells from eosinophilic ponies support the observations using buffy coat cells that eosinophils were the main effector cells. Adherent eosinophils from eosinophilic ponies immobilized L3. Neutrophils were less adherent and did not immobilize L3. Mononuclear cells failed to adhere. Normal eosinophils from strongly-naive ponies did not immobilize S. vulgaris L3 in the presence of immune serum, suggesting the in vivo activation of eosinophils in eosinophilic animals. Immune serum promoted less adherence of buffy coat cells to Strongylus edentatus or mixed species of Cyathostominae L3, suggesting that the serum-mediated cellular adherence phenomenon was species-specific. Normal serum promoted less cellular adherence to S. vulgaris L3 than immune serum. The adherence mediated by normal serum was removed by heat inactivation, suggesting that this nonspecific phenomenon was a complement-mediated reaction. Immune globulins promoted reactions similar to that seen using heat-inactivated immune serum, whereas normal globulins did not promote adherence. Immune globulins absorbed with pieces of S. vulgaris adult worms did not promote the adherence of buffy coat cells to S. vulgaris L3, suggesting that adult and L3 stages share antigens important in this phenomenon that resulted in the removal of specific adherence antibody during absorption.

  20. Lagrangian Observations and Modeling of Marine Larvae

    NASA Astrophysics Data System (ADS)

    Paris, Claire B.; Irisson, Jean-Olivier

    2017-04-01

    Just within the past two decades, studies on the early-life history stages of marine organisms have led to new paradigms in population dynamics. Unlike passive plant seeds that are transported by the wind or by animals, marine larvae have motor and sensory capabilities. As a result, marine larvae have a tremendous capacity to actively influence their dispersal. This is continuously revealed as we develop new techniques to observe larvae in their natural environment and begin to understand their ability to detect cues throughout ontogeny, process the information, and use it to ride ocean currents and navigate their way back home, or to a place like home. We present innovative in situ and numerical modeling approaches developed to understand the underlying mechanisms of larval transport in the ocean. We describe a novel concept of a Lagrangian platform, the Drifting In Situ Chamber (DISC), designed to observe and quantify complex larval behaviors and their interactions with the pelagic environment. We give a brief history of larval ecology research with the DISC, showing that swimming is directional in most species, guided by cues as diverse as the position of the sun or the underwater soundscape, and even that (unlike humans!) larvae orient better and swim faster when moving as a group. The observed Lagrangian behavior of individual larvae are directly implemented in the Connectivity Modeling System (CMS), an open source Lagrangian tracking application. Simulations help demonstrate the impact that larval behavior has compared to passive Lagrangian trajectories. These methodologies are already the base of exciting findings and are promising tools for documenting and simulating the behavior of other small pelagic organisms, forecasting their migration in a changing ocean.

  1. Physiological effects and bioconcentration of triclosan on amphibian larvae.

    PubMed

    Palenske, Nicole M; Nallani, Gopinath C; Dzialowski, Edward M

    2010-08-01

    We examined the acute effects of triclosan (TCS) exposure, a common antimicrobial found as a contaminant in the field, on survival and physiology of amphibian larvae. LC50 values were determined after 96h for North American larval species: Acris crepitans blanchardii, Bufo woodhousii woodhousii, Rana sphenocephala, and for a developmental model: Xenopus laevis. Amphibian larvae were most sensitive to TCS exposure during early development based upon 96-h LC50 values. Heart rates for X. laevis and North American larvae exposed to TCS were variable throughout development. Metabolic rates of X. laevis and R. sphenocephala larvae exposed to TCS were significantly affected in larvae exposed to [50% LC50] and [LC50]. Tissue uptake and tissue bioconcentration factor (BCF) of TCS were investigated in X. laevis, B. woodhousii woodhousii, and R. sphenocephala. In general, a significant increase was observed as exposure concentration increased. Tissue BCF values were dependent upon stage and species. While TCS concentrations used here are higher than environmental concentrations, exposure to TCS was dependent upon species and developmental stage, with early developmental stages being most sensitive to TCS exposure. Copyright 2010 Elsevier Inc. All rights reserved.

  2. [Cutaneous larva migrans: report of three cases from the Western Black Sea Region, Turkey].

    PubMed

    Çalışkan, Emel; Uslu, Esma; Turan, Hakan; Başkan, Elife; Kılıç, Nida

    2016-01-01

    Cutaneous larva migrans (CLM) is a parasitosis frequently seen in persons who have travelled to tropical or subtropical regions and in those who have worked in contact with soil. The disease frequently develops due to Ancylostoma braziliensis and Ancylostoma caninum species. After penetrating the skin and entering the body, the hookworm larva proceeds to bore tunnels through the epidermis, creating pruritic, erythematous, serpiginous lesions. Secondary bacterial infections of the lesions can often be seen, especially on the legs and buttocks. In this article we presented three atypical local cases which have not been declared previously in our country. The first case, a 54-year-old male who was admitted to hospital in August with complaints of an obverse body rash and itching lasting for a week. Eruptions were observed over a small area on the right side of the abdomen, consisting of itchy, raised, erythematous, curvilinear string-like lesions. Moreover, no eosinophilia was detected in the patient, whose culture showed a growth of Streptococcus pyogenes. The patient was clinically diagnosed with CLM accompanied by secondary bacterial infection and treated for three days with 1 g of amoxicillin-clavulanic acid, mupirocin cream and albendazole 400 mg/d. Under this regime, the lesions were seen to decline. The second case, a 38-year-old male was also admitted in August, complaining of itching and redness on his body. The patient, whose blood count values were normal, exhibited itchy, raised, serpiginous string-like lesions located on the left side of his body. The patient, whose bacterial culture was negative, was clinically diagnosed as CLM and treated for three days with albendazole 400 mg/d and the lesions were seen to improve. The third case, a 23-year old male was admitted in September complaining of itching and redness on his neck. An itchy, crescent-shaped erythematous lesion was detected on his neck; bacteriological cultures and blood count were normal. The

  3. Starvation-Induced Dietary Behaviour in Drosophila melanogaster Larvae and Adults

    PubMed Central

    Ahmad, Muhammad; Chaudhary, Safee Ullah; Afzal, Ahmed Jawaad; Tariq, Muhammad

    2015-01-01

    Drosophila melanogaster larvae are classified as herbivores and known to feed on non-carnivorous diet under normal conditions. However, when nutritionally challenged these larvae exhibit cannibalistic behaviour by consuming a diet composed of larger conspecifics. Herein, we report that cannibalism in Drosophila larvae is confined not only to scavenging on conspecifics that are larger in size, but also on their eggs. Moreover, such cannibalistic larvae develop as normally as those grown on standard cornmeal medium. When stressed, Drosophila melanogaster larvae can also consume a carnivorous diet derived from carcasses of organisms belonging to diverse taxonomic groups, including Musca domestica, Apis mellifera, and Lycosidae sp. While adults are ill-equipped to devour conspecific carcasses, they selectively oviposit on them and also consume damaged cadavers of conspecifics. Thus, our results suggest that nutritionally stressed Drosophila show distinct as well as unusual feeding behaviours that can be classified as detritivorous, cannibalistic and/or carnivorous. PMID:26399327

  4. Evaluation of pyrantel pamoate, nitramisole and avermectin B1a against migrating Strongylus vulgaris larvae.

    PubMed

    Slocombe, J O; McCraw, B M

    1980-01-01

    Trials were conducted in ponies to evaluate the efficacy of pyrantel pamoate (Strongid-T(R)) and two newer anthelmintics not yet commercially available, nitramisole and avermectin B(1)a, against migrating Strongylus vulgaris larvae. Ponies were removed from their mares within 24-48 hr after birth and reared in isolation, worm free. Between six and 14 weeks of age they were infected with 2000 or 2500 infective S. vulgaris larvae. Subsequently, they were monitored daily for clinical signs until the experiment terminated at 28 days postinfection. All ponies showed increased body temperature and reduced appetite within the first week of infection. All anthelmintics were administered on day 7 and in addition pyrantel pamoate was given on day 8 postinfection. The anthelmintics were in liquid formulation. Nitramisole and pyrantel pamoate were given by stomach tube and avermectin B(1)a by subcutaneous injection.Following administration of these compounds toxic reactions were not observed. All anthelmintics caused a reduction in body temperature and increased appetite and effected a clinical cure. In ponies which were not treated with an anthelmintic, temperatures remained elevated and appetites never returned completely to normal. These ponies also showed variable degrees of lethargy, depression, recumbency and colic and the majority died between two and three weeks postinfection. At necropsy, these control ponies showed variable degrees of adhesions involving the abdominal organs, necrosis of the ileum and cecum and severe arteritis and thrombosis of the major abdominal arteries and their branches.Although pyrantel pamoate, used at eight times the therapeutic dose for intestinal nematodes in the horse, effected a clinical cure it did not produce a radical cure. At necropsy, ponies treated with pyrantel pamoate had arteritis and thrombosis of the cranial mesenteric artery and its major branches. Nitramisole and avermectin B(1)a were able to effect both a clinical and

  5. Effect of aminoguanidine and albendazole on inducible nitric oxide synthase (iNOS) activity in T. spiralis-infected mice muscles.

    PubMed

    Zeromski, Jan; Boczoń, Krystyna; Wandurska-Nowak, Elzbieta; Mozer-Lisewska, Iwona

    2005-01-01

    The aim of this study was to provide evidence for the expression of iNOS in the cells of inflammatory infiltrates around larvae in skeletal muscles of T. spiralis infected mice. The BALB/c mice (n = 8) divided into subgroups, received either aminoguanidine (AMG)--a specific iNOS inhibitor or albendazole (ALB)--an antiparasitic drug of choice in trichinellosis treatment. Control animals (n = 2 in each subgroup) were either uninfected and treated or uninfected and untreated. Frozen sections of hind leg muscles from mice sacrificed at various time intervals after infection were cut and subjected to immunohistochemistry, using monoclonal anti-iNOS antibody. The ALB-treated mice revealed stronger iNOS staining in the infiltrating cells around larvae than the infected and untreated animals. On the contrary, in the AMG-treated animals, the infiltrating cells did not show any specific iNOS reaction. These data confirm the specificity of iNOS staining in the cellular infiltrates around T. spiralis larvae and shed some light on the role of nitric oxide during ALB treatment in experimental trichinellosis.

  6. Early detection of non-native fishes using fish larvae

    EPA Science Inventory

    Our objective was to evaluate the use of fish larvae for early detection of non-native fishes, comparing traditional and molecular taxonomy approaches to investigate potential efficiencies. Fish larvae present an interesting opportunity for non-native fish early detection. First,...

  7. Laboratory trials to infect insects and nematodes by some acaropathogenic Hirsutella strains (Mycota: Clavicipitaceous anamorphs).

    PubMed

    Bałazy, Stanisław; Wrzosek, Marta; Sosnowska, Danuta; Tkaczuk, Cezary; Muszewska, Anna

    2008-02-01

    Laboratory assays have been carried out to artificially infect insect larvae of the birch bark-beetle (Scolytus ratzeburgi Jans.-Coleoptera, Scolytidae) and codling moth Cydia pomonella L. -Lepidoptera, Tortricidae) as well as the potato cyst nematode-Globodera rostochiensis Wollenweber, sugar beet nematode-Heterodera schachtii Schmidt and root-knot nematode-Meloidogyne hapla Chif (Nematoda, Heteroderidae), by the phialoconidia of some fungal species of the genus Hirsutella. From among four species tested on insects only H. nodulosa Petch infected about 20% of S. ratzeburgi larvae, whereas H. kirchneri (Rostrup) Minter, Brady et Hall, H. minnesotensis Chen, Liu et Chen, and H. rostrata Bałazy et Wiśniewski did not affect insect larvae. Only single eggs of the root-knot nematode were infected by H. minnesotensis in the laboratory trials, whereas its larvae remained unaffected. No infection cases of the potato cyst nematode (G. rostochiensis) and sugar beet nematode eggs were obtained. Comparisons of DNA-ITS-region sequences of the investigated strains with GenBank data showed no differences between H. minnesotensis isolates from the nematodes Heterodera glycines Ichinohe and from tarsonemid mites (authors' isolate). A fragment of ITS 2 with the sequence characteristic only for H. minnesotensis was selected. Two cluster analyses indicated close similarity of this species to H. thompsonii as sister clades, but the latter appeared more heterogenous. Insect and mite pathogenic species H. nodulosa localizes close to specialized aphid pathogen H. aphidis, whereas the phytophagous mite pathogens H. kirchneri and H. gregis form a separate sister clade. Hirsutella rostrata does not show remarkable relations to the establishment of aforementioned groups. Interrelated considerations on the morphology, biology and DNA sequencing of investigated Hirsutella species state their identification more precisely and facilitate the establishment of systematic positions.

  8. Morphology of the advanced-stage larva of Eustrongylides wenrichi Canavan 1929, occurring encapsulated in the tissues of Amphiuma in Louisiana.

    PubMed

    Panesar, T S; Beaver, P C

    1979-02-01

    Larval nematodes identified as Eustrongylides wenrichi Canavan 1929, from cysts in the tissues of Amphiuma means tridactylum Cuvier in Louisana were redescribed. The extent of differentiation of the sex organs was found to be greater than that of 3rd-stage Dioctophyma renale, or of the infective stage of Trichinella spiralis, and comparable with the late 4th-stage larva of secernentean (phasmid) nematodes.

  9. Black soldier fly (Diptera: Stratiomyidae) larvae reduce Escherichia coli in dairy manure.

    PubMed

    Liu, Qiaolin; Tomberlin, Jeffery K; Brady, Jeff A; Sanford, Michelle R; Yu, Ziniu

    2008-12-01

    Escherichia coli labeled with a green fluorescent protein was inoculated into sterile dairy manure at 7.0 log cfu/g. Approximately 125 black soldier fly larvae were placed in manure inoculated and homogenized with E. coli. Manure inoculated with E. coli but without black soldier fly larvae served as the control. For the first experiment, larvae were introduced into 50, 75, 100, or 125 g sterilized dairy manure inoculated and homogenized with E. coli and stored 72 h at 27 degrees C. Black soldier fly larvae significantly reduced E. coli counts in all treatments. However, varying the amount of manure provided the black soldier fly larvae significantly affected their weight gain and their ability to reduce E. coli populations present. For the second experiment, larvae were introduced into 50 g manure inoculated with E. coli and stored for 72 h at 23, 27, 31, or 35 degrees C. Minimal bacterial growth was recorded in the control held at 35 degrees C and was excluded from the analysis. Black soldier fly larvae significantly reduced E. coli counts in manure held at remaining temperatures. Accordingly, temperature significantly influenced the ability of black soldier fly larvae to develop and reduce E. coli counts with greatest suppression occurring at 27 degrees C.

  10. Description of larva and puparium of Oplodontha rubrithorax (Diptera: Stratiomyidae) from the Oriental Region.

    PubMed

    Nerudová, Jana; Kovac, Damir; Tóthová, Andrea

    2015-05-01

    This is the first description of larva and puparium of Oplodontha rubrithorax (Macquart, 1838) from the Oriental Region. Larvae were found at a hot spring in North Thailand. The morphological features and cuticular structures of the larva are documented by drawings and SEM micrographs and the main characters are compared with the European O. viridula (Fabricius, 1775), the only described larva of this genus. Differences between larvae of both species were only found in pubescence. The characteristic, somewhat dilated and slightly clavate hairs on the dorsal surface of the body segments of O. viridula larva are apparently lacking in the larva of O. rubrithorax.

  11. Transient infection of the zebrafish notochord with E. coli induces chronic inflammation.

    PubMed

    Nguyen-Chi, Mai; Phan, Quang Tien; Gonzalez, Catherine; Dubremetz, Jean-François; Levraud, Jean-Pierre; Lutfalla, Georges

    2014-07-01

    Zebrafish embryos and larvae are now well-established models in which to study infectious diseases. Infections with non-pathogenic Gram-negative Escherichia coli induce a strong and reproducible inflammatory response. Here, we study the cellular response of zebrafish larvae when E. coli bacteria are injected into the notochord and describe the effects. First, we provide direct evidence that the notochord is a unique organ that is inaccessible to leukocytes (macrophages and neutrophils) during the early stages of inflammation. Second, we show that notochord infection induces a host response that is characterised by rapid clearance of the bacteria, strong leukocyte recruitment around the notochord and prolonged inflammation that lasts several days after bacteria clearance. During this inflammatory response, il1b is first expressed in macrophages and subsequently at high levels in neutrophils. Moreover, knock down of il1b alters the recruitment of neutrophils to the notochord, demonstrating the important role of this cytokine in the maintenance of inflammation in the notochord. Eventually, infection of the notochord induces severe defects of the notochord that correlate with neutrophil degranulation occurring around this tissue. This is the first in vivo evidence that neutrophils can degranulate in the absence of a direct encounter with a pathogen. Persistent inflammation, neutrophil infiltration and restructuring of the extracellular matrix are defects that resemble those seen in bone infection and in some chondropathies. As the notochord is a transient embryonic structure that is closely related to cartilage and bone and that contributes to vertebral column formation, we propose infection of the notochord in zebrafish larvae as a new model to study the cellular and molecular mechanisms underlying cartilage and bone inflammation. © 2014. Published by The Company of Biologists Ltd.

  12. Proteinase pattern of honeybee prepupae from healthy and American Foulbrood infected bees investigated by zymography.

    PubMed

    Felicioli, Antonio; Turchi, Barbara; Fratini, Filippo; Giusti, Matteo; Nuvoloni, Roberta; Dani, Francesca Romana; Sagona, Simona

    2018-05-15

    American foulbrood disease (AFB) is the main devastating disease that affects honeybees' brood, caused by Paenibacillus larvae. The trend of the research on AFB has addressed the mechanisms by which P. larvae bacteria kill honeybee larvae. Since prepupae could react to the infection of AFB by increasing protease synthesis, the aim of this work was to compare protease activity in worker prepupae belonging to healthy colonies and to colonies affected by AFB. This investigation was performed by zymography. In gel, proteolytic activity was observed in prepupae extracts belonging only to the healthy colonies. In the prepupae extracts, 2D zimography followed by protein identification by MS allowed to detect Trypsin-1 and Chymotrypsin-1, which were not observed in diseased specimens. Further investigations are needed to clarify the involvement of these proteinases in the immune response of honeybee larvae and the mechanisms by which P. larvae inhibits protease production in its host. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cutaneous larva migrans syndrome: a case report.

    PubMed

    Tekely, Emilia; Szostakiewicz, Beata; Wawrzycki, Bartłomiej; Kądziela-Wypyska, Grażyna; Juszkiewicz-Borowiec, Maria; Pietrzak, Aldona; Chodorowska, Grażyna

    2013-04-01

    Cutaneous larva migrans (CML) is a frequent parasitic infestation caused by migration of animal hookworm larvae into the human epidermis. This skin disease is common in warmer climates among people, who have contact with contaminated soil. Clinical manifestation of CML is an itchy, erythematous, linear tract, which appears days to even months after exposure to infested sand or soil. Diagnosis is established on the clinical presentation. We describe a case of CML acquired during a holiday in Brazil.

  14. The distribution of dragonfly larvae in a South Carolina stream: relationships with sediment type, body size, and the presence of other larvae.

    PubMed

    Worthen, Wade B; Horacek, Henry Joseph

    2015-01-01

    Dragonfly larvae were sampled in Little Creek, Greenville, SC. The distributions of five common species were described relative to sediment type, body size, and the presence of other larvae. In total, 337 quadrats (1 m by 0.5 m) were sampled by kick seine. For each quadrat, the substrate was classified as sand, sand-cobble mix, cobble, coarse, or rock, and water depth and distance from bank were measured. Larvae were identified to species, and the lengths of the body, head, and metafemur were measured. Species were distributed differently across sediment types: sanddragons, Progomphus obscurus (Rambur) (Odonata: Gomphidae), were common in sand; twin-spotted spiketails, Cordulegaster maculata Selys (Odonata: Cordulegastridae), preferred a sand-cobble mix; Maine snaketails, Ophiogomphus mainensis Packard (Odonata: Gomphidae), preferred cobble and coarse sediments; fawn darners, Boyeria vinosa (Say) (Odonata: Aeshnidae), preferred coarse sediments; and Eastern least clubtails, Stylogomphus albistylus (Hagen) (Odonata: Gomphidae), preferred coarse and rock sediments. P. obscurus and C. maculata co-occurred more frequently than expected by chance, as did O. mainensis, B. vinosa, and S. albistylus. Mean size varied among species, and species preferences contributed to differences in mean size across sediment types. There were significant negative associations among larval size classes: small larvae (<12 mm) occurred less frequently with large larvae (>15 mm) than expected by chance, and large larvae were alone in quadrats more frequently than other size classes. Species may select habitats at a large scale based on sediment type and their functional morphology, but small scale distributions are consistent with competitive displacement or intraguild predation. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  15. Quantifying and predicting Drosophila larvae crawling phenotypes

    NASA Astrophysics Data System (ADS)

    Günther, Maximilian N.; Nettesheim, Guilherme; Shubeita, George T.

    2016-06-01

    The fruit fly Drosophila melanogaster is a widely used model for cell biology, development, disease, and neuroscience. The fly’s power as a genetic model for disease and neuroscience can be augmented by a quantitative description of its behavior. Here we show that we can accurately account for the complex and unique crawling patterns exhibited by individual Drosophila larvae using a small set of four parameters obtained from the trajectories of a few crawling larvae. The values of these parameters change for larvae from different genetic mutants, as we demonstrate for fly models of Alzheimer’s disease and the Fragile X syndrome, allowing applications such as genetic or drug screens. Using the quantitative model of larval crawling developed here we use the mutant-specific parameters to robustly simulate larval crawling, which allows estimating the feasibility of laborious experimental assays and aids in their design.

  16. Persistence of host response against glochidia larvae in Micropterus salmoides.

    PubMed

    Dodd, Benjamin J; Barnhart, M Christopher; Rogers-Lowery, Constance L; Fobian, Todd B; Dimock, Ronald V

    2006-11-01

    Host fish acquire resistance to the parasitic larvae (glochidia) of freshwater mussels (Unionidae). Glochidia metamorphose into juvenile mussels while encysted on host fish. We investigated the duration of acquired resistance of largemouth bass, Micropterus salmoides (Lacepède, 1802) to glochidia of the broken rays mussel, Lampsilis reeveiana (Call, 1887). Fish received three successive priming infections with glochidia to induce an immune response. Primed fish were held at 22-23 degrees C and were challenged (re-infected) at intervals after priming. Metamorphosis success was quantified as the percent of attached glochidia that metamorphosed to the juvenile stage and were recovered alive. Metamorphosis success at 3, 7, and 12 months after priming was significantly lower on primed fish (26%, 40%, and 68% respectively) than on control fish (85%, 93%, and 92% respectively). A second group of largemouth bass was similarly primed and blood was extracted. Immunoblotting was used to detect host serum antibodies to L. reeveiana glochidia proteins. Serum antibodies were evident in primed fish, but not in naive control fish. Acquired resistance of host fish potentially affects natural reproduction and artificial propagation of unionids, many of which are of conservation concern.

  17. [Cutaneous larva migrans syndrome on a malformed foot (a case report)].

    PubMed

    Benbella, Imane; Khalki, Hanane; Lahmadi, Khalid; Kouara, Sara; Abbadi, Abderrahim; Er-Rami, Mohammed

    2016-01-01

    Cutaneous larva migrans syndrome is a subcutaneous dermatitis caused by hookworms' larvae, originating from animals in parasitic impasse in humans. Transcutaneous infestation is favored by contact with contaminated soil. We report the case of a 15-month-old child, native of Guinea - Bissau, suffering from cutaneous larva migrans syndrome on a malformed foot. This malformation in the form of a syndactyly, associated with a tumefaction of the foot cause a delay in the standing position. Besides, the fact that the child never wears shoes because of the sick foot is another factor contributing to the patient's infestation by the larvae of the nematode.

  18. Distribution of Paenibacillus larvae spores inside honey bee colonies and its relevance for diagnosis.

    PubMed

    Gillard, M; Charriere, J D; Belloy, L

    2008-09-01

    One of the most important factors affecting the development of honey bee colonies is infectious diseases such as American foulbrood (AFB) caused by the spore forming Gram-positive bacterium Paenibacillus larvae. Colony inspections for AFB clinical symptoms are time consuming. Moreover, diseased cells in the early stages of the infection may easily be overlooked. In this study, we investigated whether it is possible to determine the sanitary status of a colony based on analyses of different materials collected from the hive. We analysed 237 bee samples and 67 honey samples originating from 71 colonies situated in 13 apiaries with clinical AFB occurrences. We tested whether a difference in spore load among bees inside the whole hive exists and which sample material related to its location inside the hive was the most appropriate for an early AFB diagnosis based on the culture method. Results indicated that diagnostics based on analysis of honey samples and bees collected at the hive entrance are of limited value as only 86% and 83%, respectively, of samples from AFB-symptomatic colonies were positive. Analysis of bee samples collected from the brood nest, honey chamber, and edge frame allowed the detection of all colonies showing AFB clinical symptoms. Microbiological analysis showed that more than one quarter of samples collected from colonies without AFB clinical symptoms were positive for P. larvae. Based on these results, we recommend investigating colonies by testing bee samples from the brood nest, edge frame or honey chamber for P. larvae spores.

  19. Predaceous diving beetle, Dytiscus sharpi sharpi (Coleoptera: Dytiscidae) larvae avoid cannibalism by recognizing prey.

    PubMed

    Inoda, Toshio

    2012-09-01

    Larvae of diving beetles such as the various Dytiscus species (Coleoptera: Dytiscidae) are carnivorous and usually prey on other aquatic animals. Cannibalism among larvae of Dytiscus sharpi sharpi (Wehncke) was observed to begin when they were starved for more than two days under artificial breeding conditions. However, the 2-day starved larvae did not show cannibalism in the presence of intact, motionless, frozen tadpoles, or frozen shrimps. The beetle larvae attacked and captured intact tadpoles faster (15 sec) than other motionless and frozen tadpoles (120 sec), indicating that prey movement was an important factor in stimulating feeding behavior in larvae. Prey density does not have an effect on larval cannibalism. In cases in which preys are present at lower densities than that of larvae, a group of beetle larvae frequently fed on single prey. This feeding behavior, therefore, provides direct evidence of self-other recognition at the species level. Using two traps in one aquarium that allows the larvae to detect only prey smell, one containing tadpoles and another empty, the beetle larvae were attracted to the trap with tadpoles at high frequency, but not to the empty trap. In another experiment, the beetle larvae were not attracted to the trap containing a beetle larva. These results suggest that the larvae of D. sharpi sharpi are capable of recognizing prey scent, which enables the promotion of foraging behavior and the prevention of cannibalism.

  20. Identification of Hymenolepis diminuta Cysticercoid Larvae in Tribolium castaneum (Coleoptera: Tenebrionidae) Beetles from Iran

    PubMed Central

    Makki, Mahsa Sadat; Mowlavi, Gholamreza; Shahbazi, Farideh; Abai, Mohammad Reza; Najafi, Faezeh; Hosseini-Farash, Bibi Razieh; Teimoori, Salma; Hasanpour, Hamid; Naddaf, Saied Reza

    2017-01-01

    Background: Hymenolepis diminuta is a cestod of rodents and rarely infects humans. Infection in humans is via ingestion of infected insects. This study was aimed to detect H. diminuta cysticercoids in red flour beetles, Tribolium castaneum, and cockroaches originated from different regions of Iran. Methods: The red flour beetles and cockroaches were collected from local bakeries in five cities including Tehran, Ahvaz, Kazerun, and Sabzevar during 2010–2011. Some beetles and cockroaches were colonized in insectary and adults from F1 generation were fed on H. diminuta eggs. Both laboratory-infected and field-collected samples were dissected and examined for cysticercoids. Detection of H. diminuta DNA in T. castaneum beetles was performed by targeting a partial sequence of Ribosomal gene. Results: Except the beetles from Ahvaz, all specimens were negative for cysticercoid by microscopy. Of the four dissected beetles from Ahvaz, one harbored 12 cysticercoids. Also, 110 (52%) of laboratory-infected beetles showed infection with an average of 12–14 larvae. None of the cockroaches was infected. Two beetles from Ahvaz, including the remainder of the microscopic positive specimen, yielded the expected amplicon in PCR assay. The H. diminuta DNA sequences generated in this study were identical and matched 97–100% with similar sequences from GenBank database. Conclusion: Lack of infection in the majority of beetles may reflect a low rat infestation rate in those areas, alternatively, the examined specimens might not have been the representative samples of the T. castaneum populations. PMID:29062858

  1. Effects of daily pyrantel tartrate on strongylid population dynamics and performance parameters of young horses repeatedly infected with cyathostomins and Strongylus vulgaris.

    PubMed

    Reinemeyer, C R; Prado, J C; Andersen, U V; Nielsen, M K; Schricker, B; Kennedy, T

    2014-08-29

    Strongylid infections are ubiquitous in grazing horse populations. Infections with cyathostomin (small strongyle) and strongylin (large strongyle) nematodes have long been associated with clinical disease in horses, but little is known about their subclinical impact. A masked, randomized, controlled study was conducted to evaluate the effects of daily administration of pyrantel tartrate on body condition scores, weight gain, fecal egg counts, and total worm counts of young horses repeatedly inoculated with strongylid larvae. Twenty eight immature horses were treated with larvicidal anthelmintic regimens and randomly allocated to two groups. Group 1 horses were given a pelleted placebo product once daily, and those in Group 2 received pyrantel tartrate once daily at ∼ 2.64 mg/kg body weight. On five days during each week, ∼ 5000 infective cyathostomin larvae were administered to each horse. In addition, horses received ∼ 25 infective Strongylus vulgaris larvae once weekly. Horses were maintained on pasture for 154 days and had ad libitum access to grass hay throughout. At approximate, 14-day intervals, body weights were measured, body condition scores were assigned, fecal samples were collected for egg counts, and blood samples were collected for measurement of S. vulgaris antibodies and various physiologic parameters. After 22 weeks at pasture and 14-17 days in confinement, horses were euthanatized and necropsied. Nematodes were recovered and counted from aliquots of organ contents, representative samples of large intestinal mucosa, and the root of the cranial mesenteric artery. Daily treatment with pyrantel tartrate at the recommended dosage significantly reduced numbers of adult cyathostomins in the gut lumen and early third-stage larvae in the cecal mucosa, increased the proportions of fourth-stage larvae in the gut contents, and was accompanied by significant improvements in body condition scores. Fecal egg counts of horses receiving daily pyrantel

  2. Incorporation of bacterial extracellular polysaccharide by black fly larvae (Simuliidae)

    USGS Publications Warehouse

    Couch, C.A.; Meyer, J.L.; Hall, R.O.

    1996-01-01

    Black fly larvae (Simulium) assimilated, with high efficiency (80-90%), bacterial extracellular polysaccharide (EPS) extracted from laboratory cultures of a pseudomonad isolated from the Ogeechee River. Incorporation was traced using 13C-labelled EPS offered to larvae as a coating on a mixture of 1-??m latex beads and kaolin particles. These EPS-coated particles were used to simulate natural particles, both living and dead. Solubility, protein, and nitrogen content of the EPS suggested it was a slime rather than a capsular polysaccharide. Glycosyl composition of the EPS was glucose and galactose in ?? and ?? linkages, with pyruvate, succinate, and possibly malonate constituent groups. To evaluate the incorporation of C derived from protein associated with the EPS matrix, feeding experiments were conducted using EPS with and without proteins extracted. Black fly larvae incorporated 7.2 ??g EPS C larva-1 d-1 from EPS that did not have proteins extracted, and 19.5 ??g EPS C larva-1 d-1 from EPS with proteins extracted. Carbon in protein that is typically associated with EPS was not solely or selectively incorporated. EPS incorporation rates are similar to rates of cellular bacterial carbon incorporation previously estimated for Ogeechee River black fly larvae. If EPS is generally available as a food resource, the importance of bacteria in detrital food webs may be underestimated by studies that examine only the consumption of bacterial cells.

  3. Cutaneous larva migrans syndrome: a case report

    PubMed Central

    Szostakiewicz, Beata; Wawrzycki, Bartłomiej; Kądziela-Wypyska, Grażyna; Juszkiewicz-Borowiec, Maria; Pietrzak, Aldona; Chodorowska, Grażyna

    2013-01-01

    Cutaneous larva migrans (CML) is a frequent parasitic infestation caused by migration of animal hookworm larvae into the human epidermis. This skin disease is common in warmer climates among people, who have contact with contaminated soil. Clinical manifestation of CML is an itchy, erythematous, linear tract, which appears days to even months after exposure to infested sand or soil. Diagnosis is established on the clinical presentation. We describe a case of CML acquired during a holiday in Brazil. PMID:24278060

  4. Cortisol elevation post-hatch affects behavioural performance in zebrafish larvae.

    PubMed

    Best, Carol; Vijayan, Mathilakath M

    2018-02-01

    Maternal cortisol is essential for cortisol stress axis development and de novo production of this steroid commences only after hatch in zebrafish (Danio rerio). However, very little is known about the effect of elevated cortisol levels, during the critical period of stress axis activation, on larval performance. We tested the hypothesis that elevated cortisol levels post-hatch affect behavioural performance and this is mediated by glucocorticoid receptor (GR) activation in zebrafish larvae. The behavioural response included measuring larval activity in response to alternating light and dark cycles, as well as thigmotaxis. Zebrafish larvae at 3days post-fertilization were exposed to waterborne cortisol for 24h to mimic a steroid response to an early-life stressor exposure. Also, larvae were exposed to waterborne RU-486 (a GR antagonist) either in the presence or absence of cortisol to confirm GR activation. Co-treatment with RU-486 completely abolished the upregulation of cortisol-induced 11β-hydroxysteroid dehydrogenase type 2 transcript abundance, confirming GR signalling. Cortisol-exposed larvae displayed increased locomotor activity irrespective of light condition, but showed no changes in thigmotaxis. This cortisol-mediated behavioural response was not affected by co-treatment with RU-486. Cortisol exposure also did not modify the transcript abundances of GR and mineralocorticoid receptor (MR) in zebrafish larvae. Altogether, cortisol stress axis activation post-hatch increases locomotor activity in zebrafish larvae. Our results suggest that GR signalling may not be involved in this behavioural response, leading to the proposal that cortisol action via MR signalling may influence locomotor activity in zebrafish larvae. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Light and scanning electron microscopy of the ecdysis of Haemonchus contortus infective larvae.

    PubMed

    Gamble, H R; Lichtenfels, J R; Purcell, J P

    1989-04-01

    During the second ecdysis of ruminant trichostrongyles, a region of the second molt cuticle is digested by a 44-kDa Zn-metalloprotease. We have examined this digestion process by light and scanning electron microscopy (SEM). The substrate region of the cuticle appeared, during the ecdysis process, as an indented ring at the 20th cuticular annulus coincident with the anterior terminus of the lateral alae. Continued digestion of the cuticle resulted in holes in the ring region that expanded until they became continuous and separation occurred between the anterior and posterior portions of the cuticle. Mechanical movements of the L3 forced aside the cuticle cap that generally remained attached on one side to the posterior portion as the larva escaped from the sheath. The site of secretion of the 44-kDa ecdysing enzyme causing cuticle digestion was not clear from morphological observations; however, existing evidence strongly points to the release of enzyme from the esophageal (pharyngeal) glands through the mouth.

  6. [Arterial repair after mechanical injury by migrating fourth-stage larvae of Strongylus vulgaris in the horse (a light and electron microscopic study) (author's transl)].

    PubMed

    Pauli, B; Althaus, S; Von Tscharner, C

    1975-08-01

    Migrating fourth-stage larvae of Strongylus vulgaris, a parasite of equines, damage the intima of the anterior mesenteric artery and its larger branches and induce thrombus formation on the injured sites. As the time of larval passage through each of these branches has been exactly determined in earlier experiments, the aim of the present studies is to contribute to a more complete understanding of repair mechanisms in the process of time after thrombotic vascular injuries. five foals were separated individually to specially cleaned stables and given anthelmintic treatment till the age of one year. One foal was infected per os with 350, the second with 500 and the remaining three with 1,000 third-stage larvae of Strongylus vulgaris...

  7. Oral contraceptive pills: Risky or protective in case of Trichinella spiralis infection?

    PubMed

    Hasby Saad, M A; Radi, D A; Hasby, E A

    2017-08-01

    The aim of this study was to investigate how Trichinella spiralis infection can be affected by contraceptive pills in vivo. Methods included six groups of female Wistar rats; healthy, Trichinella infected, receiving combined contraceptive pills (COCPs), receiving progestin only pills (POPs), infected receiving COCPs and infected receiving POPs. Parasite burden was measured; adult worm counts, gravidity, larvae and reproductive capacity index). Histopathological examination, immunohistochemical detection of C-kit+ mast cells and Foxp3+ T-reg. cells in intestinal sections, eosinophils muscle infiltration and CPK level were performed. Rats infected and receiving COCPs showed a significant increase in parasitic burden, and infected receiving POPs showed a significant reduction compared to infected only, with a significant increase in nongravid females (Mean total worms=964.40±55.9, 742±52.63, 686±31.68, larvae/g=5030±198.75, 2490±143.18 and 4126±152,91, respectively). Intestinal sections from infected receiving COCPs showed intact mucosa (though the high inflammatory cells infiltrate), and significant increase in C-kit+ mast cells number and intensity (30.20±4.15 and 60.40±8.29), and Foxp3+ T-reg. cells (10±1.58). Infected receiving POPs showed a significantly less CPK (5886±574.40) and eosinophilic muscle infiltration (58±13.51). Oestrogen-containing pills established a favourable intestinal environment for Trichinella by enhancing Foxp+T-reg. cells and stabilizing C-kit+mast cells, while POPs gave a potential protection with less gravidity, larval burden and eosinophilic infiltrate. © 2017 John Wiley & Sons Ltd.

  8. Developmental Toxicity of Dextromethorphan in Zebrafish Embryos/Larvae

    PubMed Central

    Xu, Zheng; Williams, Frederick E.; Liu, Ming-Cheh

    2012-01-01

    Dextromethorphan is widely used in over-the-counter cough and cold medications. Its efficacy and safety for infants and young children remains to be clarified. The present study was designed to use the zebrafish as a model to investigate the potential toxicity of dextromethorphan during the embryonic and larval development. Three sets of zebrafish embryos/larvae were exposed to dextromethorphan at 24 hours post fertilization (hpf), 48 hpf, and 72 hpf, respectively, during the embryonic/larval development. Compared with the 48 and 72 hpf exposure sets, the embryos/larvae in the 24 hpf exposure set showed much higher mortality rates which increased in a dose-dependent manner. Bradycardia and reduced blood flow were observed for the embryos/larvae treated with increasing concentrations of dextromethorphan. Morphological effects of dextromethorphan exposure, including yolk sac and cardiac edema, craniofacial malformation, lordosis, non-inflated swim bladder, and missing gill, were also more frequent and severe among zebrafish embryos/larvae exposed to dextromethorphan at 24 hpf. Whether the more frequent and severe developmental toxicity of dextromethorphan observed among the embryos/larvae in the 24 hpf exposure set, as compared with the 48 and 72 hpf exposure sets, is due to the developmental expression of the Phase I and Phase II enzymes involved in the metabolism of dextromethorphan remains to be clarified. A reverse transcription-polymerase chain reaction (RT-PCR) analysis, nevertheless, revealed developmental stage-dependent expression of mRNAs encoding SULT3 ST1 and SULT3 ST3, two enzymes previously shown to be capable of sulfating dextrorphan, an active metabolite of dextromethorphan. PMID:20737414

  9. Distribution and elimination of Norfloxacin in Fenneropenaeus chinensis larvae

    NASA Astrophysics Data System (ADS)

    Sun, Ming; Li, Jian; Zhao, Fazhen; Li, Jitao; Chang, Zhiqiang

    2013-09-01

    This study examined the distribution and elimination of Norfloxacin (NFLX) in Fenneropenaeus chinensis ovary and egg and newly hatched larvae. Mature parental shrimp were exposed to 4 or 10 mg L-1 NFLX for 2 or 5 d. Ovary and eggs of the shrimp were sampled after spawning in order to detect NFLX residue using high-performance liquid chromatography (HPLC). Results showed that NFLX residue accumulated in F. chinensis eggs after the parental exposure, with the highest residue detected in ovary. To examine the fate of NFLX residue in larvae, we further determined the concentration of NFLX residue in F. chinensis eggs and larvae at 4 different developmental stages after 24-h exposure. From the newly metamorphosed larvae (0 h post-metamorphosis, h.p.m), samples were taken at different time intervals to 72 h.p.m. HPLC assay showed that the concentrations of NFLX residue in zoea exposed to 4 and 10 mg L-1 NFLX were the highest at 1.5 h, i.e., 0.332 and 0.454 μg g-1, respectively. At the two NFLX exposure levels, the elimination time of half NFLX (half life) in nauplius was 45.36 and 49.85 h, respectively, followed by that in zoea (31.68 and 33.13 h), mysis larvae (42.24 and 47.28 h) and postlarvae (24.48 and 30.96 h). Both NFLX exposure levels had a germicidal effect. The distribution and elimination of NFLX residue in F. chinensis tissue, eggs and larvae correlated well with the drug exposure level. The disappearance of NFLX residue coincided with the larval growth, and the half-life of NFLX decreased with the larval development.

  10. Length changes in white sturgeon larvae preserved in ethanol or formaldehyde

    USGS Publications Warehouse

    Bayer, J.M.; Counihan, T.D.

    2001-01-01

    We examined the effects of two preservatives on the notochord and total lengths of white sturgeon (Acipenser transmontanus) larvae. White sturgeon larvae that were one, seven, and 14 days old were measured live and then preserved in 95% ethanol or 10% formaldehyde. Length changes were then determined at 20 and 95 days after preservation. We found mean length changes ranging from 0.4% to 3.4% shrinkage. Length changes varied with preservative, age of larvae, and length of time preserved. Constant length correction factors are provided for 10% formaldehyde or 95% ethanol valid for larvae between 1 and 14 days old preserved for less than 100 days.

  11. Factor Associated with Neutral Sphingomyelinase Activity Mediates Navigational Capacity of Leukocytes Responding to Wounds and Infection: Live Imaging Studies in Zebrafish Larvae

    PubMed Central

    Boecke, Alexandra; Sieger, Dirk; Neacsu, Cristian Dan; Kashkar, Hamid

    2012-01-01

    Factor associated with neutral sphingomyelinase activity (FAN) is an adaptor protein that specifically binds to the p55 receptor for TNF (TNF-RI). Our previous investigations demonstrated that FAN plays a role in TNF-induced actin reorganization by connecting the plasma membrane with actin cytoskeleton, suggesting that FAN may impact on cellular motility in response to TNF and in the context of immune inflammatory conditions. In this study, we used the translucent zebrafish larvae for in vivo analysis of leukocyte migration after morpholino knockdown of FAN. FAN-deficient zebrafish leukocytes were impaired in their migration toward tail fin wounds, leading to a reduced number of cells reaching the wound. Furthermore, FAN-deficient leukocytes show an impaired response to bacterial infections, suggesting that FAN is generally required for the directed chemotactic response of immune cells independent of the nature of the stimulus. Cell-tracking analysis up to 3 h after injury revealed that the reduced number of leukocytes is not due to a reduction in random motility or speed of movement. Leukocytes from FAN-deficient embryos protrude pseudopodia in all directions instead of having one clear leading edge. Our results suggest that FAN-deficient leukocytes exhibit an impaired navigational capacity, leading to a disrupted chemotactic response. PMID:22802420

  12. Oslerus osleri (Cobbold, 1876) infection in maned wolf (Chrysocyon brachyurus, illiger, 1815).

    PubMed

    Dias, Rafael Grobério Souto; Legatti, Emerson; Rahal, Sheila Canevese; Teixeira, Carlos Roberto; Ruiz Júnior, Raul Lopes; Rocha, Noeme Sousa; dos Santos, Ivan Felismino Charas; Schmidt, Elizabeth Moreira dos Santos

    2012-09-01

    Oslerus osleri is a small nematode that infects the respiratory tract of domestic and wild canids and is responsible for causing chronic nodular tracheobronchitis. This paper aims to report a case of parasitism by O. osleri in a free-living maned wolf (Chrysocyon brachyurus) that was struck by a motor vehicle. Fecal samples were collected, and the presence of spiral larvae, with "S"-shaped tails, was observed on flotation. This characteristic was compatible with the Filaroididae Family larvae of O. osleri. Although the animal did not show clinical signs of respiratory system impairment, a tracheobronchoscopy was performed. Semitransparent nodules, 5 mm in diameter, containing adult parasites were observed in the third distal portion of the trachea, cranial to the carina. Larval morphological characteristics and the nodular locations were compatible with an O. osleri respiratory tract infection.

  13. Responses of caddisfly larvae (Brachycentrus spp. ) to temperature, food availability and current velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallepp, G.W.

    1977-07-01

    Larvae of the stream caddisflies, Brachycentrus americanus and Brachycentrus occidentalis, were studied in eight simulated stream channels to determine their behavioral responses to temperature, food availability (brine shrimp) and current velocity. For both species, filtering, withdrawn and case-building were the primary behavior patterns of larvae that had attached their cases to the substrate. Most larvae not attached to the substrate were crawling or holding. As temperatures increased above 8 C, B. occidentalis larvae filtered more frequantly; but above 20 C the percentage of larvae filtering steadily decreased and the percentage withdrawn increased dramatically with increasing temperature. Percentages of larvae case-buildingmore » and unattached generally decreased over the range of 4 to 27 C. Despite this decrease in case-building, B. occidentalis larvae generally grew faster as temperature increased from 4 to 16 C. Behavior of B. americanus as a function of temperature was similar to behavior of B. occidentalis. Both species responded to decreased ration by increasing the percentage of time filtering. Although many larvae were unattached and probably grazing in Lawrence Creek, few larvae were unattached in the laboratory, even at the lowest ration (1.2 percent of the body weight per day). Growth and case-building activity of B. americanus larvae were directly related to ration. Over the range of current velocities of 7 to 26 cm/sec, behavior of B. occidentalis changed little. At 5 cm/sec fewer larvae filtered and more were unattached; this suggested a threshold response to current velocity. Increasing temperatures from 10 to 20 C caused the percentage withdrawn at low velocities to increase; however, this trend was hardly noticeable at velocities above 10 cm/sec. In these tests, Brachycentrus were more responsive to temperature and food availability than to current velocity.« less

  14. Role of biogenic amines in the post-mortem migration of Anisakis pegreffii (Nematoda: Anisakidae Dujardin, 1845) larvae into fish fillets.

    PubMed

    Šimat, Vida; Miletić, Jelena; Bogdanović, Tanja; Poljak, Vedran; Mladineo, Ivona

    2015-12-02

    Infective third-stage larvae (L3) of nematode Anisakis spp. have been recognized as one of the major food-borne threats in lightly processed fish products in Europe, particularly in the Mediterranean region. Therefore, the effect of different storage temperatures of fish on larval post-mortem migration from visceral cavity into fillets is an important parameter to take into account when evaluating the risk for consumer safety. The European anchovy (Engraulis encrasicolus) were caught during fishing season, a subsample of fillets was checked for the presence of Anisakis larvae at capture (mean abundance=0.07), and the rest was stored at four different temperatures (-18, 0, 4 and 22°C) in order to count migrating larvae and measure the production of biogenic amines over a period of time. Larvae were identified by morphological features and molecular tools. Post-mortem migration was observed in fillets stored at 0 and 4°C after three and five days, respectively, but not at 22 and -18°C. In case of storage at 22°C for two days, at the onset of putrefaction of the visceral organs, larvae migrated out of the visceral cavity towards the fish surface. Measured pH and biogenic amine profile during storage indicated that certain biochemical conditions trigger larval migration into fillets. Likewise, migration was observed at pH ~6.4 when sensory degradation of the fish was markedly visible. Although larval migration was delayed for approximately four days at a temperature of <4°C the correlation between pH and abundance of A. pegreffii larvae in the fillet was high and statistically significant at both 0 (r=0.998, p<0.01) and 4°C (r=0.946, p<0.05). Out of eight biogenic amines measured, cadaverine and putrescine levels correlated the most with the post-mortem migration at 4°C, while tyramine levels were significant at both temperatures. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Haemothorax associated with Angiostrongylus vasorum infection in a dog.

    PubMed

    Sasanelli, M; Paradies, P; Otranto, D; Lia, R P; de Caprariis, D

    2008-08-01

    Angiostrongylosis was diagnosed in a dog presenting with haemothorax on the basis of detection of Angiostrongylus vasorum first-stage larvae both in the pleural effusion and in faeces. A one-year-old, male, mixed-breed dog was presented with fever, depression and persistent cough of one month's duration. Clinical examination revealed temperature of 39.5 degrees C, loud bronchovesicular sounds on thoracic auscultation and attenuated cardiac sounds. Thoracic radiographs showed a moderate bilateral pleural effusion and a diffuse interstitial pulmonary pattern, with an alveolar pattern in one lobe. Routine haematology revealed anaemia and leucocytosis with eosinophilia, basophilia and thrombocytopenia. Coagulation assays showed a consumptive coagulopathy resembling disseminated intravascular coagulation. The relationship between haemothorax and the presence of A vasorum larvae in the pleural effusion is discussed. The dog was successfully treated with fenbendazole until negative for larvae on faecal examination. This case report indicates that A vasorum infection should be considered as a possible aetiological cause of haemothorax in dogs.

  16. Digenetic larvae in Schistosome snails from El Fayoum, Egypt with detection of Schistosoma mansoni in the snail by PCR.

    PubMed

    Aboelhadid, Shawky M; Thabet, Marwa; El-Basel, Dayhoum; Taha, Ragaa

    2016-09-01

    The present study aims to detect the digenetic larvae infections in Bulinus truncatus and Biomphalaria alexandrina snails and also PCR detection of Schistosoma mansoni infection. The snails were collected from different branches of Yousef canal and their derivatives in El Fayoum Governorate. The snails were investigated for infection through induction of cercarial shedding by exposure to light and crushing of the snails. The shed cercariae were S. mansoni, Pharyngeate longifurcate type I and Pharyngeate longifurcate type II from B. alexandrina, while that found in B. truncatus were Schitosoma haematobium and Xiphidiocercaria species cercariae. The seasonal prevalence of infection was discussed. Polymerase chain reaction was used for the detection of S. mansoni in the DNA from field collected infected and non infected snails. The results of PCR showed that the pool of B. alexandrina snails which shed S. mansoni cercariae in the laboratory, gave positive reaction in the samples. Pooled samples of field collected B. alexandrina that showed negative microscopic shedding of cercariae gave negative and positive PCR in a consecutive manner. Accordingly, a latent infection in the snail (negative microscopic) could be detected by using PCR.

  17. Eosinophilia, parasite burden and lung damage in Toxocara canis infection in C57Bl/6 mice genetically deficient in IL-5.

    PubMed Central

    Takamoto, M; Ovington, K S; Behm, C A; Sugane, K; Young, I G; Matthaei, K I

    1997-01-01

    C57Bl/6 mice genetically deficient in interleukin (IL)-5 (IL-5-/-) and mice with the normal IL-5 gene (IL-5+/+) were infected with embryonated eggs of Toxocara canis. IL-5+/+ mice developed a marked eosinophilia in their peripheral bloods and bone marrows after infection. In contrast, the number of eosinophils at these sites actually decreased during the acute phase of infection in IL-5-/- mice. A smaller number of eosinophils infiltrated the lung, liver, heart and skeletal muscle of infected IL-5-/- mice than those of infected IL-5+/+ mice. Eosinophils were not produced in cultures of bone marrow cells from either IL-5+/+ or IL-5-/- mice which were stimulated with excretory secretory antigen of T. canis larvae. The capacity of cells from the bone marrow to differentiate into eosinophils when stimulated in vitro with recombinant murine IL-5 was the same whether the cells were from IL-5+/+ or IL-5-/- mice. Taken together, these results show that an IL-5-like molecule is not produced by the T. canis larvae and that IL-5 produced by host cells is solely responsible for the eosinophilia in mice infected with this nematode. The number and location of T. canis larvae were not altered in the absence of IL-5. In contrast, lung damage in infected IL-5-/- mice was less extensive than that in infected IL-5+/+ mice, although structures resembling Charcot-Leyden crystals were seen in the lungs of both IL-5+/+ and IL-5-/- mice. These results suggest that eosinophils play a role in the pathology in mice infected with T. canis. Images Figure 3 PMID:9176103

  18. Constrained circulation at Endeavour ridge facilitates colonization by vent larvae.

    PubMed

    Thomson, Richard E; Mihály, Steven F; Rabinovich, Alexander B; McDuff, Russell E; Veirs, Scott R; Stahr, Frederick R

    2003-07-31

    Understanding how larvae from extant hydrothermal vent fields colonize neighbouring regions of the mid-ocean ridge system remains a major challenge in oceanic research. Among the factors considered important in the recruitment of deep-sea larvae are metabolic lifespan, the connectivity of the seafloor topography, and the characteristics of the currents. Here we use current velocity measurements from Endeavour ridge to examine the role of topographically constrained circulation on larval transport along-ridge. We show that the dominant tidal and wind-generated currents in the region are strongly attenuated within the rift valley that splits the ridge crest, and that hydrothermal plumes rising from vent fields in the valley drive a steady near-bottom inflow within the valley. Extrapolation of these findings suggests that the suppression of oscillatory currents within rift valleys of mid-ocean ridges shields larvae from cross-axis dispersal into the inhospitable deep ocean. This effect, augmented by plume-driven circulation within rift valleys having active hydrothermal venting, helps retain larvae near their source. Larvae are then exported preferentially down-ridge during regional flow events that intermittently over-ride the currents within the valley.

  19. Microplastic ingestion in fish larvae in the western English Channel.

    PubMed

    Steer, Madeleine; Cole, Matthew; Thompson, Richard C; Lindeque, Penelope K

    2017-07-01

    Microplastics have been documented in marine environments worldwide, where they pose a potential risk to biota. Environmental interactions between microplastics and lower trophic organisms are poorly understood. Coastal shelf seas are rich in productivity but also experience high levels of microplastic pollution. In these habitats, fish have an important ecological and economic role. In their early life stages, planktonic fish larvae are vulnerable to pollution, environmental stress and predation. Here we assess the occurrence of microplastic ingestion in wild fish larvae. Fish larvae and water samples were taken across three sites (10, 19 and 35 km from shore) in the western English Channel from April to June 2016. We identified 2.9% of fish larvae (n = 347) had ingested microplastics, of which 66% were blue fibres; ingested microfibers closely resembled those identified within water samples. With distance from the coast, larval fish density increased significantly (P < 0.05), while waterborne microplastic concentrations (P < 0.01) and incidence of ingestion decreased. This study provides baseline ecological data illustrating the correlation between waterborne microplastics and the incidence of ingestion in fish larvae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Immune responses of pony foals during repeated infections of Strongylus vulgaris and regular ivermectin treatments.

    PubMed

    Dennis, V A; Klei, T R; Miller, M A; Chapman, M R; McClure, J R

    1992-04-01

    Ten helminth-free pony foals divided into three groups were used in this study. Eight foals were each experimentally infected per os with 50 Strongylus vulgaris infective larvae weekly for 4 weeks, at which time one foal died of acute verminous arteritis. The remaining seven foals subsequently received 50 S. vulgaris infective larvae every 2 weeks for an additional 20 weeks. Four of the infected foals remained untreated (Group 1) and three of the infected foals were given ivermectin at 8, 16 and 24 weeks post initial infection (Group 2). Two foals served as controls (Group 3). Foals in Group 1 developed eosinophilia, which was sustained throughout the course of infection. A mild eosinophilia also developed in Group 2 foals; however, the eosinophil numbers were markedly reduced for 3 weeks after each ivermectin treatment. Only foals in Group 1 developed significant (P less than 0.05) hyperproteinemia, hyperbetaglobulinemia and a reversal of the albumin/globulin (A/G) ratio 4 weeks after initial infection. Significant (P less than 0.05) IgG anti-S. vulgaris ELISA titers developed in foals in Groups 1 and 2 3 weeks after infection and were sustained for the duration of the experiment. Western blot analysis of soluble somatic antigens of S. vulgaris adult female and male worms probed with sera from foals in Groups 1 and 2 revealed only subtle differences between these animals. The blastogenic reactivity of peripheral blood mononuclear cells (PBMC) to phytohemagglutinin and concanavalin A was not significantly different between groups. Peripheral blood mononuclear cells from foals in Groups 1 and 2 developed significant (P less than 0.05) blastogenic reactivity to S. vulgaris soluble adult somatic antigen when examined at 25 weeks after infection. Mesenteric lymph node cells from foals in Group 2, although not statistically significant, were more reactive to antigen than were the mesenteric lymph node cells from foals in Group 1 when examined at 27 weeks after infection

  1. Trichinella spiralis infection enhances protein kinase C phosphorylation in guinea pig alveolar macrophages.

    PubMed

    Dzik, J M; Zieliński, Z; Cieśla, J; Wałajtys-Rode, E

    2010-03-01

    To learn more about the signalling pathways involved in superoxide anion production in guinea pig alveolar macrophages, triggered by Trichinella spiralis infection, protein level and phosphorylation of mitogen activated protein (MAP) kinases and protein kinase C (PKC) were investigated. Infection with T. spiralis, the nematode having 'lung phase' during colonization of the host, enhances PKC phosphorylation in guinea pig alveolar macrophages. Isoenzymes beta and delta of PKC have been found significantly phosphorylated, although their location was not changed as a consequence of T. spiralis infection. Neither in macrophages from T. spiralis-infected guinea pig nor in platelet-activating factor (PAF)-stimulated macrophages from uninfected animals, participation of MAP kinases in respiratory burst activation was statistically significant. The parasite antigens seem to act through macrophage PAF receptors, transducing a signal for enhanced NADPH oxidase activity, as stimulating effect of newborn larvae homogenate on respiratory burst was abolished by specific PAF receptor antagonist CV 6209. A suppressive action of T. spiralis larvae on host alveolar macrophage innate immunological response was reflected by diminished protein level of ERK2 kinase and suppressed superoxide anion production, in spite of high level of PKC phosphorylation.

  2. Zebrafish larvae require specific strains of bacteria for neurobehavioral development

    EPA Science Inventory

    There is an increasing appreciation of the relationship between gut microbiota and nervous system development and function. We previously showed that axenic (microbe-free) larvae are hyperactive at 10 days post fertilization (dpf) relative to colonized zebrafish larvae. Interesti...

  3. Lactobacillus paracasei modulates the immune system of Galleria mellonella and protects against Candida albicans infection

    PubMed Central

    Rossoni, Rodnei Dennis; Fuchs, Beth Burgwyn; de Barros, Patrícia Pimentel; Velloso, Marisol dos Santos; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos; Mylonakis, Eleftherios

    2017-01-01

    Probiotics have been described as a potential strategy to control opportunistic infections due to their ability to stimulate the immune system. Using the non-vertebrate model host Galleria mellonella, we evaluated whether clinical isolates of Lactobacillus spp. are able to provide protection against Candida albicans infection. Among different strains of Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus fermentum, we verified that L. paracasei 28.4 strain had the greatest ability to prolong the survival of larvae infected with a lethal dose of C. albicans. We found that the injection of 107 cells/larvae of L. paracasei into G. mellonella larvae infected by C. albicans increased the survival of these insects compared to the control group (P = 0.0001). After that, we investigated the immune mechanisms involved in the protection against C. albicans infection, evaluating the number of hemocytes and the gene expression of antifungal peptides. We found that L. paracasei increased the hemocyte quantity (2.38 x 106 cells/mL) in relation to the control group (1.29 x 106 cells/mL), indicating that this strain is capable of raising the number of circulating hemocytes into the G. mellonella hemolymph. Further, we found that L. paracasei 28.4 upregulated genes that encode the antifungal peptides galiomicin and gallerymicin. In relation to the control group, L. paracasei 28.4 increased gene expression of galiomicin by 6.67-fold and 17.29-fold for gallerymicin. Finally, we verified that the prophylactic provision of probiotic led to a significant reduction of the number of fungal cells in G. mellonella hemolymph. In conclusion, L. paracasei 28.4 can modulate the immune system of G. mellonella and protect against candidiasis. PMID:28267809

  4. Microbiome symbionts and diet diversity incur costs on the immune system of insect larvae.

    PubMed

    Krams, Indrikis A; Kecko, Sanita; Jõers, Priit; Trakimas, Giedrius; Elferts, Didzis; Krams, Ronalds; Luoto, Severi; Rantala, Markus J; Inashkina, Inna; Gudrā, Dita; Fridmanis, Dāvids; Contreras-Garduño, Jorge; Grantiņa-Ieviņa, Lelde; Krama, Tatjana

    2017-11-15

    Communities of symbiotic microorganisms that colonize the gastrointestinal tract play an important role in food digestion and protection against opportunistic microbes. Diet diversity increases the number of symbionts in the intestines, a benefit that is considered to impose no cost for the host organism. However, less is known about the possible immunological investments that hosts have to make in order to control the infections caused by symbiont populations that increase because of diet diversity. Using taxonomical composition analysis of the 16S rRNA V3 region, we show that enterococci are the dominating group of bacteria in the midgut of the larvae of the greater wax moth ( Galleria mellonella ). We found that the number of colony-forming units of enterococci and expressions of certain immunity-related antimicrobial peptide (AMP) genes such as Gallerimycin , Gloverin , 6-tox , Cecropin-D and Galiomicin increased in response to a more diverse diet, which in turn decreased the encapsulation response of the larvae. Treatment with antibiotics significantly lowered the expression of all AMP genes. Diet and antibiotic treatment interaction did not affect the expression of Gloverin and Galiomicin AMP genes, but significantly influenced the expression of Gallerimycin , 6-tox and Cecropin-D Taken together, our results suggest that diet diversity influences microbiome diversity and AMP gene expression, ultimately affecting an organism's capacity to mount an immune response. Elevated basal levels of immunity-related genes ( Gloverin and Galiomicin ) might act as a prophylactic against opportunistic infections and as a mechanism that controls the gut symbionts. This would indicate that a diverse diet imposes higher immunity costs on organisms. © 2017. Published by The Company of Biologists Ltd.

  5. Real-time PCR as a surveillance tool for the detection of Trichinella infection in muscle samples from wildlife.

    PubMed

    Cuttell, Leigh; Corley, Sean W; Gray, Christian P; Vanderlinde, Paul B; Jackson, Louise A; Traub, Rebecca J

    2012-09-10

    Trichinella nematodes are the causative agent of trichinellosis, a meat-borne zoonosis acquired by consuming undercooked, infected meat. Although most human infections are sourced from the domestic environment, the majority of Trichinella parasites circulate in the natural environment in carnivorous and scavenging wildlife. Surveillance using reliable and accurate diagnostic tools to detect Trichinella parasites in wildlife hosts is necessary to evaluate the prevalence and risk of transmission from wildlife to humans. Real-time PCR assays have previously been developed for the detection of European Trichinella species in commercial pork and wild fox muscle samples. We have expanded on the use of real-time PCR in Trichinella detection by developing an improved extraction method and SYBR green assay that detects all known Trichinella species in muscle samples from a greater variety of wildlife. We simulated low-level Trichinella infections in wild pig, fox, saltwater crocodile, wild cat and a native Australian marsupial using Trichinella pseudospiralis or Trichinella papuae ethanol-fixed larvae. Trichinella-specific primers targeted a conserved region of the small subunit of the ribosomal RNA and were tested for specificity against host and other parasite genomic DNAs. The analytical sensitivity of the assay was at least 100 fg using pure genomic T. pseudospiralis DNA serially diluted in water. The diagnostic sensitivity of the assay was evaluated by spiking 10 g of each host muscle with T. pseudospiralis or T. papuae larvae at representative infections of 1.0, 0.5 and 0.1 larvae per gram, and shown to detect larvae at the lowest infection rate. A field sample evaluation on naturally infected muscle samples of wild pigs and Tasmanian devils showed complete agreement with the EU reference artificial digestion method (k-value=1.00). Positive amplification of mouse tissue experimentally infected with T. spiralis indicated the assay could also be used on encapsulated

  6. Brief Exposure to Turbulence Permanently Alters Development of Sand Dollar Larvae

    NASA Astrophysics Data System (ADS)

    Ferner, M. C.; Hodin, J.; Ng, G.; Lowe, C. J.; Gaylord, B.

    2016-02-01

    Fluid motion underlies interactions between animals and their environment through effects on locomotion, food capture, respiration, information transfer, and other processes. Recent studies of marine invertebrates indicate that metamorphosis and settlement can be altered when swimming larvae experience a change in turbulence intensity, possibly increasing the likelihood that larvae will settle in appropriate habitat. For example, brief exposure to levels of turbulence characteristic of wave-swept coasts causes echinoderm larvae to quickly transition from a non-responsive "pre-competent" stage into a "competent" stage, thereby allowing the larvae to respond to local cues and settle. However, responding to one's entry into the nearshore environment isn't enough, as many such species live as adults in a narrower range of highly specific benthic habitat that is even more rarely encountered. Here we provide an account for this apparent mismatch between larval responses to broadly distributed cues and their need for more specialized settlement locations: turbulence exposure seems to cause larval sand dollars (Dendraster excentricus) to permanently shift from pre-competence to competence. This observation suggests a scenario where turbulence can activate a temporally extensive search image in larvae over a broad habitat range, a seemingly adaptive feature for larvae entering dynamic coastal environments.

  7. Developmental toxicity of dextromethorphan in zebrafish embryos/larvae.

    PubMed

    Xu, Zheng; Williams, Frederick E; Liu, Ming-Cheh

    2011-03-01

    Dextromethorphan is widely used in over-the-counter cough and cold medications. Its efficacy and safety for infants and young children remains to be clarified. The present study was designed to use zebrafish as a model to investigate the potential toxicity of dextromethorphan during embryonic and larval development. Three sets of zebrafish embryos/larvae were exposed to dextromethorphan at 24, 48 and 72 h post fertilization (hpf), respectively, during the embryonic/larval development. Compared with the 48 and 72 hpf exposure sets, the embryos/larvae in the 24 hpf exposure set showed much higher mortality rates which increased in a dose-dependent manner. Bradycardia and reduced blood flow were observed for the embryos/larvae treated with increasing concentrations of dextromethorphan. Morphological effects of dextromethorphan exposure, including yolk sac and cardiac edema, craniofacial malformation, lordosis, non-inflated swim bladder and missing gill, were also more frequent and severe among zebrafish embryos/larvae exposed to dextromethorphan at 24 hpf. Whether the more frequent and severe developmental toxicity of dextromethorphan observed among the embryos/larvae in the 24 hpf exposure set, as compared with the 48 and 72 hpf exposure sets, is due to the developmental expression of the phase I and phase II enzymes involved in the metabolism of dextromethorphan remains to be clarified. A reverse transcription-polymerase chain reaction analysis, nevertheless, revealed developmental stage-dependent expression of mRNAs encoding SULT3 ST1 and SULT3 ST3, two enzymes previously shown to be capable of sulfating dextrorphan, an active metabolite of dextromethorphan. Copyright © 2010 John Wiley & Sons, Ltd.

  8. An assay of behavioral plasticity in Drosophila larvae

    PubMed Central

    Min, Virginia A.; Condron, Barry G.

    2010-01-01

    Stress, or threats to homeostasis, is a universal part of life. Organisms face changing and challenging situations everyday, and the ability to respond to such stress is essential for survival. When subjected to acute stress, the body responds molecularly and behaviorally in order to recover a steady state. We developed a simple and robust assay of behavioral plasticity for Drosophila larvae in which well-defined behavioral responses and recovery can be observed and quantified. After experiencing different control and bright light treatments, populations of photophobic fly larvae were placed a defined distance from a food source to which they crawled. Half-times (t½), or times at which half the total number of larvae reached the food, were used to compare different treatments and larval populations. Repeated control treatments with a main experimental strain gave tight, reproducible t½ ranges. Control treatments with the wild type strains Oregon R and Canton S, the “rover” and “sitter” alleles of the forager locus, and eyeless mutants gave comparable results to those of the experimental strain. Exposure to bright light for a defined time period resulted in a reproducible slowing of locomotion. However, given a defined recovery period, the larvae recover full, normal locomotion. In addition, bright light treatments with Canton S gave comparable results to those of the experimental strain. Eyeless mutants, which are partially blind, do not show a response to bright light treatment. Thus, our assay measures the behavioral responses to bright light in Drosophila larvae and therefore might be useful as a general assay for studying behavioral plasticity and, potentially, adaptation to a stressful stimulus. PMID:15922026

  9. Foraging behaviour in Drosophila larvae: mushroom body ablation.

    PubMed

    Osborne, K A; de Belle, J S; Sokolowski, M B

    2001-02-01

    Drosophila larvae and adults exhibit a naturally occurring genetically based behavioural polymorphism in locomotor activity while foraging. Larvae of the rover morph exhibit longer foraging trails than sitters and forage between food patches, while sitters have shorter foraging trails and forage within patches. This behaviour is influenced by levels of cGMP-dependent protein kinase (PGK) encoded by the foraging (for) gene. Rover larvae have higher expression levels and higher PGK activities than do sitters. Here we discuss the importance of the for gene for studies of the mechanistic and evolutionary significance of individual differences in behaviour. We also show how structure-function analysis can be used to investigate a role for mushroom bodies in larval behaviour both in the presence and in the absence of food. Hydroxyurea fed to newly hatched larvae prevents the development of all post-embryonically derived mushroom body (MB) neuropil. This method was used to ablate MBs in rover and sitter genetic variants of foraging to test whether these structures mediate expression of the foraging behavioural polymorphism. We found that locomotor activity levels during foraging of both the rover and sitter larval morphs were not significantly influenced by MB ablation. Alternative hypotheses that may explain how variation in foraging behaviour is generated are discussed.

  10. Activity of Selected Formulated Biorational and Synthetic Insecticides Against Larvae of Helicoverpa armigera (Lepidoptera: Noctuidae).

    PubMed

    Vivan, L M; Torres, J B; Fernandes, P L S

    2017-02-01

    This work studied 17 insecticides belonging to nucleopolyhedrovirus (NPV), Bacillus thuringiensis (Bt kurstaki and Bt aizawai), benzoylureas (insect growth regulators [IGRs]), carbamates, organophosphates, spinosyns, and diamides against larvae of Helicoverpa armigera (Hübner), invasive species in the South American continent. Larvae of different instars were fed for 7 d with untreated or insecticide-treated diets. Mortality was recorded daily for 7 d, and surviving larvae were individually weighed on the seventh day. The NPV and Bt insecticides caused 100% mortality of first-instar larvae and first-instar and second-instar larvae, respectively. However, both NPV and Bt-based products caused low mortality of third-instar larvae and did not kill older larvae. The IGR lufenuron was highly effective against all three ages of larvae tested, whereas teflubenzuron and triflumuron produced maximum 60% mortality of second-instar larvae and lower than 50% to older larvae. Thiodicarb, chlorantraniliprole, indoxacarb, chlorpyrifos, and chlorfenapyr, irrespective of tested age, caused 100% mortality of larvae, with the last two insecticides reaching 100% mortality within 2 d of feeding on the treated diet. Flubendiamide caused lower mortality but significantly affected the weight of surviving larvae, whereas neither spinosad nor methomyl produced significant mortality or affected the weight of larvae. Based on the results, the age of H. armigera larvae plays an important role in the recommendation of NPV and Bt insecticides. Furthermore, there are potential options between biological and synthetic insecticides tested against H. armigera, and recording larval size during monitoring, in addition to the infestation level, should be considered when recommending biological-based insecticides to control this pest. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. [Strongyloides infections in former prisoners of war in South-East Asia in the second World War; additional information from serological diagnosis].

    PubMed

    Polderman, A M; Verweij, J J; Vetter, J C; Verburg, G P; de Geus, A

    1994-06-04

    To analyse the efficacy of ELISA serology in patients with Strongyloides infection acquired during World War II and maintained through repeated autoinfection. Descriptive. Laboratory of Parasitology, Faculty of Medicine, Leiden, the Netherlands. Parasitological and clinical data on 193 ex-prisoners of war (South-east Asia) were presented previously (1990) by Verburg and De Geus. ELISA using L-3 S. ratti antigen was carried out with sera of these patients and the results were compared with those of repeated stool examinations using Baermann's method. All subjects harbouring larvae in repeated stool examinations (26) were positive in serology. In 21 out of 167 patients in whom no larvae could be demonstrated, specific antibodies were detected. Anamnestic information together with data on eosinophilia and IgE levels suggested that the majority of these subjects were actually infected. The serological prevalence of infection with Strongyloides stercoralis was 33% for those imprisoned in Burma and 4% for those who were prisoners of war in the former Netherlands East Indies. In the group of subjects studied, in whom Strongyloides infection was apparently maintained through a process of autoinfection for a period of over 40 years, serology appears a sensitive and specific diagnostic tool. Larvae could be detected in no more than 26 out of 47 serologically positive subjects.

  12. Effects of benzylisoquinoline alkaloids on the larvae of polyphagous Lepidoptera.

    PubMed

    Miller, James S; Feeny, Paul

    1983-06-01

    Six benzylisoquinoline alkaloids were fed to the larvae of three polyphagous Lepidoptera species: Hyphantria cunea, Spodoptera eridania, and Lymantria dispar. Exposure of last instar larvae to alkaloid-containing diets over a 24-h period resulted in reduced feeding rates and reduced growth efficiencies. Lymantria dispar larvae reared from eggs on alkaloid diets took longer to reach the fifth instar, attained lower larval weights, and showed reduced survivorship. The benzylisoquinolines tested were not equally effective as toxins or feeding inhibitors. Some produced dramatic effects while others produced no effects. The relative responses of the three caterpillar species to the six alkaloids were similar. Those benzylisoquinolines with a methylene-dioxyphenyl (1,3-benzodioxole) group were consistently the most toxic or repellent while laudanosine, a relatively simple benzylisoquinoline, was generally innocuous. Available host records indicate that benzylisoquinoline-containing plants are avoided by the larvae of these moth species.

  13. Evaluation of Target Specificity of Antibacterial Agents Using Staphylococcus aureus ddlA Mutants and d-Cycloserine in a Silkworm Infection Model▿

    PubMed Central

    Kurokawa, Kenji; Hamamoto, Hiroshi; Matsuo, Miki; Nishida, Satoshi; Yamane, Noriko; Lee, Bok Luel; Murakami, Kazuhisa; Maki, Hideki; Sekimizu, Kazuhisa

    2009-01-01

    The availability of a silkworm larva infection model to evaluate the therapeutic effectiveness of antibiotics was examined. The 50% effective doses (ED50) of d-cycloserine against the Staphylococcus aureus ddlA mutant-mediated killing of larvae were remarkably lower than those against the parental strain-mediated killing of larvae. Changes in MICs and ED50 of other antibiotics were negligible, suggesting that these alterations are d-cycloserine selective. Therefore, this model is useful for selecting desired compounds based on their therapeutic effectiveness during antibiotic development. PMID:19546371

  14. Habitat stability and occurrences of malaria vector larvae in western Kenya highlands.

    PubMed

    Himeidan, Yousif E; Zhou, Guofa; Yakob, Laith; Afrane, Yaw; Munga, Stephen; Atieli, Harrysone; El-Rayah, El-Amin; Githeko, Andrew K; Yan, Guiyun

    2009-10-21

    Although the occurrence of malaria vector larvae in the valleys of western Kenya highlands is well documented, knowledge of larval habitats in the uphill sites is lacking. Given that most inhabitants of the highlands actually dwell in the uphill regions, it is important to develop understanding of mosquito breeding habitat stability in these sites in order to determine their potential for larval control. A total of 128 potential larval habitats were identified in hilltops and along the seasonal streams in the Sigalagala area of Kakamega district, western Kenya. Water availability in the habitats was followed up daily from August 3, 2006 to February 23, 2007. A habitat is defined as stable when it remains aquatic continuously for at least 12 d. Mosquito larvae were observed weekly. Frequencies of aquatic, stable and larvae positive habitats were compared between the hilltop and seasonal stream area using chi2-test. Factors affecting the presence/absence of Anopheles gambiae larvae in the highlands were determined using multiple logistic regression analysis. Topography significantly affected habitat availability and stability. The occurrence of aquatic habitats in the hilltop was more sporadic than in the stream area. The percentage of habitat occurrences that were classified as stable during the rainy season is 48.76% and 80.79% respectively for the hilltop and stream area. Corresponding frequencies of larvae positive habitats were 0% in the hilltop and 5.91% in the stream area. After the rainy season, only 23.42% of habitat occurrences were stable and 0.01% larvae positive habitats were found in the hilltops, whereas 89.75% of occurrences remained stable in the stream area resulting in a frequency of 12.21% larvae positive habitats. The logistic regression analysis confirmed the association between habitat stability and larval occurrence and indicated that habitat surface area was negatively affecting the occurrence of An. gambiae larvae. While An. gambiae and An

  15. TIME management by medicinal larvae.

    PubMed

    Pritchard, David I; Čeřovský, Václav; Nigam, Yamni; Pickles, Samantha F; Cazander, Gwendolyn; Nibbering, Peter H; Bültemann, Anke; Jung, Wilhelm

    2016-08-01

    Wound bed preparation (WBP) is an integral part of the care programme for chronic wounds. The acronym TIME is used in the context of WBP and describes four barriers to healing in chronic wounds; namely, dead Tissue, Infection and inflammation, Moisture imbalance and a non-migrating Edge. Larval debridement therapy (LDT) stems from observations that larvae of the blowfly Lucilia sericata clean wounds of debris. Subsequent clinical studies have proven debriding efficacy, which is likely to occur as a result of enzymatically active alimentary products released by the insect. The antimicrobial, anti-inflammatory and wound healing activities of LDT have also been investigated, predominantly in a pre-clinical context. This review summarises the findings of investigations into the molecular mechanisms of LDT and places these in context with the clinical concept of WBP and TIME. It is clear from these findings that biotherapy with L. sericata conforms with TIME, through the enzymatic removal of dead tissue and its associated biofilm, coupled with the secretion of defined antimicrobial peptides. This biotherapeutic impact on the wound serves to reduce inflammation, with an associated capacity for an indirect effect on moisture imbalance. Furthermore, larval serine proteinases have the capacity to alter fibroblast behaviour in a manner conducive to the formation of granulation tissue. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  16. Taenia solium cysticercosis in young pigs: age at first infection and histological characteristics.

    PubMed

    de Aluja, A S; Martinez M, J J; Villalobos, A N

    1998-03-31

    In spite of the vast knowledge that exists in the fields of immunology, biochemistry, diagnosis and treatment, the basic facts about the dynamics of the transmission of Taenia solium are incomplete. The present study determines the age at which piglets become infected in a rural community of Mexico, where the climate is divided into the dry and rainy seasons. It was found that piglets become infected during the dry months, not so during the rainy season. They pick up eggs at the age of 2 to 4 weeks and the metacestodes are present in the liver. In older animals aged 4 to 6 months, the larvae were also found in the muscles. In a 6-month-old pig larvae were found in the muscles and brain. These findings may be explained by behavioural studies of free living pigs and climatic conditions.

  17. The immunological capacity in the larvae of Pacific oyster Crassostrea gigas.

    PubMed

    Song, Xiaorui; Wang, Hao; Xin, Lusheng; Xu, Jiachao; Jia, Zhihao; Wang, Lingling; Song, Linsheng

    2016-02-01

    As the immune system has not fully developed during early developmental stages, bivalve larvae are more susceptible for pathogens, which frequently leads to the significant mortality in hatcheries. In the present study, the development of immune system and its response against bacteria challenge were investigated in order to characterize the repertoire of immunological capacity of Pacific oyster Crassostrea gigas during the ontogenesis. The phagocytosis was firstly observed in the early D-veliger larvae (17 hpf), especially in their velum site, which indicated the appearance of functional hemocytes during early D-veliger larvae stage. The whole-mount immunofluorescence assay of three pattern recognition receptors (integrin β-1, caspase-3 and C-type lectin 3) and one immune effector gene (IL17-5) was performed in blastula, early D-veliger and umbo larvae, suggested that velum and digestive gland were the potential sites of immune system in the larvae. The lowest activities of antioxidant enzymes (superoxide dismutase and catalase) and hydrolytic enzyme (lysozyme), as well as descended expression levels of 12 immune genes at the transition between embryogenesis and planktonic, indicated that the larvae at hatching (9 hpf) were in hypo-immunity. While the ascending activities of enzymes and expression levels of seven immune genes during the trochophore stage (15 hpf) suggested the initiation of immune system. The steadily increasing trend of all the 12 candidate genes at the early umbo larvae (120 h) hinted that the immune system was well developed at this stage. After bacterial challenge, some immune recognition (TLR4) and immune effector (IL17-5 and defh2) genes were activated in blastula stage (4 hpf), and other immune genes were up regulated in D-veliger larvae, indicating that the zygotic immune system could respond earlier against the bacterial challenge during its development. These results indicated that the cellular and humoral immune components

  18. Nutrient effects of broodstocks on the larvae in Patinopecten yessoensis

    NASA Astrophysics Data System (ADS)

    Bai, Yucen; Zhang, Tao; Qiu, Tianlong; Gao, Yan; Zhang, Xiaofang

    2015-07-01

    Patinopecten yessoensis is a commercial valuable species. This study deals with the effect of nutrient effects of the broodstock (mainly ovaries) on the larvae. Concentrations of total carbohydrate, total protein and total lipid in the gonads of P. yessoensis from three Hatcheries (Hatchery 1, Hatchery 2, and Hatchery 3) were determined before and after spawning. The relationship between the nutrient concentration in ovaries before spawning (BC) and that of larvae (LC) was assessed as well as the change in nutrient levels in ovaries after spawning (DC). Results indicate that the BC of total carbohydrate (7.66%) and total lipid (14.48%) in ovaries were significantly higher than in testes (5.20%, 5.20% respectively), whereas the BC of total protein in the ovaries was lower (61.76%) than in the testes (81.67%). The different gonadal composition suggests the different nutrient demands between male and female broodstocks in breeding season. Patinopecten yessoensis gonads contained a higher proportion of lipids, in comparison to other bivalves, which might be a response to the low ambient water temperatures. Further analysis of fatty acids showed that the concentrations of n-3PUFA, EPA and DHA in larvae (LC) were positively correlated with BC and DC, indicating the significant nutrient influence of broodstocks on the larvae. As these fatty acids are important in metabolism, and have been demonstrated to be influential to the viability of the larvae, larval growth and the settlement, spat growth, and juvenile survival in many bivalves, they could possibly be used as indexes to evaluate, and predict condition of broodstocks and larvae.

  19. Ascaridoid parasites infecting in the frequently consumed marine fishes in the coastal area of China: A preliminary investigation.

    PubMed

    Zhao, Wen-Ting; Lü, Liang; Chen, Hui-Xia; Yang, Yue; Zhang, Lu-Ping; Li, Liang

    2016-04-01

    Marine fishes represent the important components of the diet in the coastal areas of China and they are also natural hosts of various parasites. However, to date, little is known about the occurrence of ascaridoid parasites in the frequently consumed marine fishes in China. In order to determine the presence of ascaridoid parasites in the frequently consumed marine fishes in the coastal town Huizhou, Guangdong Province, China, 211 fish representing 45 species caught from the South China Sea (off Daya Gulf) were examined. Five species of ascaridoid nematodes at different developmental stages were detected in the marine fishes examined herein, including third-stage larva of Anisakis typica (Diesing, 1860), third and fourth-stage larvae of Hysterothylacium sp. IV-A of Shamsi, Gasser & Beveridge, 2013, adult and third-stage larvae of Hysterothylacium zhoushanense Li, Liu & Zhang, 2014, adults and third-stage larvae of Raphidascaris lophii (Wu, 1949) and adults of Raphidascaris longispicula Li, Liu & Zhang, 2012. The overall prevalence of infection is 18.0%. Of them, Hysterothylacium sp. IV-A with the highest prevalence (17.5%) and intensity (mean=14.6) of infection was the predominant species. The prevalence and intensity of A. typica were very low (1/211 of marine fish infected with an intensity of one parasite per fish). The morphological and molecular characterization of all nematode species was provided. A cladistic analysis based on ITS sequence was constructed in order to determine the phylogenetic relationships of these ascaridoid parasites obtained herein. The present study provided important information on the occurrence and diagnosis of ascaridoid nematodes in the commercially important marine fishes from the South China Sea. The low level of infection and the species composition of ascaridoid nematodes seem to indicate the presence of low risk of human anisakidosis when local population consumed these marine fishes examined herein. Copyright © 2015 Elsevier

  20. Histopathology of nymphal pentastomid infections (Sebekia mississippiensis) in paratenic hosts.

    PubMed

    Boyce, W M; Kazacos, E A

    1991-02-01

    The histopathologic alterations occurring in mice, hamsters, turtles, and a frog were described following experimental infection with nymphs of Sebekia mississippiensis. Initially, nymphal migration caused traumatic tissue damage and hemorrhage characteristic of larva migrans. Subsequent inflammatory responses included cellular infiltration with eosinophils, macrophages, and lymphocytes, and fibrotic encapsulation of the nymphs. Dead nymphs were surrounded by a necrotic granulomatous response similar to that reported previously in humans and other animals. Differences were not seen in animals given single or multiple infections, but mice and hamsters exhibited a more marked inflammatory response than turtles. Overall, the histopathologic response to nymphal infections resembled those seen in infections resulting from ingestion of eggs, and both sources of infection should be considered in epidemiologic investigations of naturally occurring pentastomiasis.

  1. Effects of coded-wire-tagging on stream-dwelling Sea Lamprey larvae

    USGS Publications Warehouse

    Johnson, Nicholas; Swink, William D.; Dawson, Heather A.; Jones, Michael L.

    2016-01-01

    The effects of coded wire tagging Sea Lamprey Petromyzon marinus larvae from a known-aged stream-dwelling population were assessed. Tagged larvae were significantly shorter on average than untagged larvae from 3 to 18 months after tagging. However, 30 months after tagging, the length distribution of tagged and untagged larvae did not differ and tagged Sea Lampreys were in better condition (i.e., higher condition factor) and more likely to have undergone metamorphosis than the untagged population. The reason why tagged larvae were more likely to metamorphose is not clear, but the increased likelihood of metamorphosis could have been a compensatory response to the period of slower growth after tagging. Slower growth after tagging was consistent across larval size-classes, so handling and displacement from quality habitat during the early part of the growing season was likely the cause rather than the tag burden. The tag effects observed in this study, if caused by displacement and handling, may be minimized in future studies if tagging is conducted during autumn after growth has concluded for the year.

  2. Evaluation of a novel Dot-ELISA assay utilizing a recombinant protein for the effective diagnosis of Taenia pisiformis larval infections.

    PubMed

    Chen, Lin; Yang, Deying; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2014-08-29

    Cysticercosis, caused by the larvae of Taenia pisiformis, is a common disease in domestic breeds of the rabbit Oryctolagus cuniculus that results in economic losses. At present, there is no convenient and effective method for the rapid detection of T. pisiformis larvae. Here, we developed and tested the efficacy of a Dot-ELISA assay for the diagnosis of T. pisiformis larval infections in rabbits, based on the expression of the recombinant fusion protein (rTp1) from the Tp1 gene. Rapid amplification of cDNA ends (RACE) was used to amplify the 3' ends of the Tp1 gene, based on the unigene similar to Ts1 gene (EU009656.1) which comes from transcriptome sequencing of T. pisiformis. The Tp1 gene was successfully amplified, cloned and expressed in BL21 (DE3). Western blot analysis revealed that the recombinant Tp1 protein is specifically recognized by rabbit T. pisiformis cysticercosis antisera. This purified recombinant fusion protein, rTp1, was probed by Dot-ELISA with sera from rabbits infected with T. pisiformis larvae and with other parasitic infections. Results showed that this Dot-ELISA assay had both high sensitivity (92.9-97.6%) and specificity (95.2-98.4%) to detect T. pisiformis larval infections. We also found very low levels of cross-reaction with other parasitic infections. This study has revealed that our novel Dot-ELISA assay utilizing the recombinant fusion protein, rTp1, has a strong potential for the effective diagnosis of T. pisiformis infections in rabbits. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Direct Effects of Microalgae and Protists on Herring (Clupea harengus) Yolk Sac Larvae

    PubMed Central

    Illing, Björn; Moyano, Marta; Niemax, Jan; Peck, Myron A.

    2015-01-01

    This study investigated effects of microalgae (Rhodomonas baltica) and heterotrophic protists (Oxyrrhis marina) on the daily growth, activity, condition and feeding success of Atlantic herring (Clupea harengus) larvae from hatch, through the end of the endogenous (yolk sac) period. Yolk sac larvae were reared in the presence and absence of microplankton and, each day, groups of larvae were provided access to copepods. Larvae reared with microalgae and protists exhibited precocious (2 days earlier) and ≥ 60% increased feeding incidence on copepods compared to larvae reared in only seawater (SW). In the absence and presence of microalgae and protists, life span and growth trajectories of yolk sac larvae were similar and digestive enzyme activity (trypsin) and nutritional condition (RNA-DNA ratio) markedly declined in all larvae directly after yolk sac depletion. Thus, microplankton promoted early feeding but was not sufficient to alter life span and growth during the yolk sac phase. Given the importance of early feeding, field programs should place greater emphasis on the protozooplankton-ichthyoplankton link to better understand match-mismatch dynamics and bottom-up drivers of year class success in marine fish. PMID:26035592

  4. Direct Effects of Microalgae and Protists on Herring (Clupea harengus) Yolk Sac Larvae.

    PubMed

    Illing, Björn; Moyano, Marta; Niemax, Jan; Peck, Myron A

    2015-01-01

    This study investigated effects of microalgae (Rhodomonas baltica) and heterotrophic protists (Oxyrrhis marina) on the daily growth, activity, condition and feeding success of Atlantic herring (Clupea harengus) larvae from hatch, through the end of the endogenous (yolk sac) period. Yolk sac larvae were reared in the presence and absence of microplankton and, each day, groups of larvae were provided access to copepods. Larvae reared with microalgae and protists exhibited precocious (2 days earlier) and ≥ 60% increased feeding incidence on copepods compared to larvae reared in only seawater (SW). In the absence and presence of microalgae and protists, life span and growth trajectories of yolk sac larvae were similar and digestive enzyme activity (trypsin) and nutritional condition (RNA-DNA ratio) markedly declined in all larvae directly after yolk sac depletion. Thus, microplankton promoted early feeding but was not sufficient to alter life span and growth during the yolk sac phase. Given the importance of early feeding, field programs should place greater emphasis on the protozooplankton-ichthyoplankton link to better understand match-mismatch dynamics and bottom-up drivers of year class success in marine fish.

  5. The promiscuous larvae: flexibility in the establishment of symbiosis in corals

    NASA Astrophysics Data System (ADS)

    Cumbo, V. R.; Baird, A. H.; van Oppen, M. J. H.

    2013-03-01

    Coral reefs thrive in part because of the symbiotic partnership between corals and Symbiodinium. While this partnership is one of the keys to the success of coral reef ecosystems, surprisingly little is known about many aspects of coral symbiosis, in particular the establishment and development of symbiosis in host species that acquire symbionts anew in each generation. More specifically, the point at which symbiosis is established (i.e., larva vs. juvenile) remains uncertain, as does the source of free-living Symbiodinium in the environment. In addition, the capacity of host and symbiont to form novel combinations is unknown. To explore patterns of initial association between host and symbiont, larvae of two species of Acropora were exposed to sediment collected from three locations on the Great Barrier Reef. A high proportion of larvae established symbiosis shortly after contact with sediments, and Acropora larvae were promiscuous, taking up multiple types of Symbiodinium. The Symbiodinium types acquired from the sediments reflected the symbiont assemblage within a wide range of cnidarian hosts at each of the three sites, suggesting potential regional differences in the free-living Symbiodinium assemblage. Coral larvae clearly have the capacity to take up Symbiodinium prior to settlement, and sediment is a likely source. Promiscuous larvae allow species to associate with Symbiodinium appropriate for potentially novel environments that may be experienced following dispersal.

  6. Development of black soldier fly (Diptera: Stratiomyidae) larvae fed dairy manure.

    PubMed

    Myers, Heidi M; Tomberlin, Jeffery K; Lambert, Barry D; Kattes, David

    2008-02-01

    Black soldier flies, Hermetia illucens L., are a common colonizer of animal wastes. However, all published development data for this species are from studies using artificial diets. This study represents the first examining black soldier fly development on animal wastes. Additionally, this study examined the ability of black soldier fly larvae to reduce dry matter and associated nutrients in manure. Black soldier fly larvae were fed four rates of dairy manure to determine their effects on larval and adult life history traits. Feed rate affected larval and adult development. Those fed less ration daily weighed less than those fed a greater ration. Additionally, larvae provided the least amount of dairy manure took longer to develop to the prepupal stage; however, they needed less time to reach the adult stage. Adults resulting from larvae provided 27 g dairy manure/d lived 3-4 d less than those fed 70 g dairy manure. Percentage survivorship to the prepupal or adult stages did not differ across treatments. Larvae fed 27 g dairy manure daily reduced manure dry matter mass by 58%, whereas those fed 70 g daily reduced dry matter 33%. Black soldier fly larvae were able to reduce available P by 61-70% and N by 30-50% across treatments. Based on results from this study, the black soldier fly could be used to reduce wastes and associated nutrients in confined bovine facilities.

  7. Viral encephalitis of tilapia larvae: primary characterization of a novel herpes-like virus.

    PubMed

    Shlapobersky, Mark; Sinyakov, Michael S; Katzenellenbogen, Mark; Sarid, Ronit; Don, Jeremy; Avtalion, Ramy R

    2010-04-10

    We report here an outbreak of an acute disease that caused high mortality rate in laboratory-reared tilapia larvae. The disease was initially observed in inbred gynogenetic line of blue tilapia larvae (Oreochromis aureus) and could be transmitted to larvae of other tilapia species. Based on the clinical manifestation (a whirling syndrome), we refer to the disease as viral encephalitis of tilapia larvae. The disease-associated DNA virus is described and accordingly designated tilapia larvae encephalitis virus (TLEV). A primary morphological, biophysical and molecular characterization of TLEV is presented. By virtue of these properties, the newly discovered virus is a herpes-like virus. Phylogenetic analysis, albeit limited, confirms this assumption and places TLEV within the family of Herpesviridae and distantly from the families Alloherpesviridae and Iridoviridae. By using PCR with virus-specific primers, diseased larvae and adult TLEV carriers were also identified in tilapia delivered from external hatcheries. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Rapid bioassay to screen potential biopesticides in Tenebrio molitor larvae

    USDA-ARS?s Scientific Manuscript database

    A simplified assay was devised to evaluate the response of Tenebrio molitor larvae to potential insect control products. The assay incorporates punched disks of flattened whole-grain bread placed in 96-well plates, with treatments applied topically, and neonate larvae added to each well. To evalua...

  9. Formetanate toxicity and changes in antioxidant enzyme system of Apis mellifera larvae.

    PubMed

    Staroň, Martin; Sabo, Rastislav; Sobeková, Anna; Sabová, Lucia; Legáth, Jaroslav; Lohajová, Ľuboslava; Javorský, Peter

    2017-06-01

    Substantial percentage of world food production depends on pollinating service of honeybees that directly depends on their health status. Among other factors, the success of bee colonies depends on health of developed larvae. The crucial phase of larval development is the first 6 days after hatching when a worker larva grows exponentially and larvae are potentially exposed to xenobiotics via diet. In the present study, we determined the lethal concentration LC 50 (72 h) following single dietary exposure of honeybee larvae to formetanate under laboratory conditions, being also the first report available in scientific literature. Activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) were also measured in the homogenates of in vitro reared honeybee larvae after single formetanate exposure. Decreased specific activity of SOD and increased activities of CAT and GST suggest the induction of oxidative stress. Higher levels of thiobarbituric reactive species in all samples supported this fact. Comparing determined larval toxicity (LC 50 of 206.01 mg a.i./kg diet) with adult toxicity data, we can suppose that the larvae may be less sensitive to formetanate than the adult bees.

  10. Cytokine production in BALB/c mice immunized with radiation attenuated third stage larvae of the filarial nematode, Brugia pahangi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bancroft, A.J.; Devaney, E.; Grencis, R.K.

    1993-02-15

    BALB/c mice immunized with radiation-attenuated third stage larvae of the filarial nematode Brugia pahangi are strongly immune to challenge infection. Investigation of the profile of cytokines secreted by spleen cells from immune mice stimulated in vitro with either parasite Ag or with Con A revealed high levels of IL-5 and IL-9 and moderate levels of IL-4. In contrast, secretion of IFN-[gamma] by spleen cells from immune animals was negligible. Spleen cells from control mice secreted low levels of all cytokines assayed. Levels of parasite-specific IgE were significantly elevated in immune animals and a peripheral blood eosinophilia was observed, which exhibitedmore » a biphasic distribution. Our results are consistent with the preferential expansion of Th2 cells in immune animals and provide the basis for dissecting the means by which radiation-attenuated larvae of filarial nematodes stimulate immunity. 5l refs., 3 figs., 3 tabs.« less

  11. Mussel larvae modify calcifying fluid carbonate chemistry to promote calcification.

    PubMed

    Ramesh, Kirti; Hu, Marian Y; Thomsen, Jörn; Bleich, Markus; Melzner, Frank

    2017-11-22

    Understanding mollusk calcification sensitivity to ocean acidification (OA) requires a better knowledge of calcification mechanisms. Especially in rapidly calcifying larval stages, mechanisms of shell formation are largely unexplored-yet these are the most vulnerable life stages. Here we find rapid generation of crystalline shell material in mussel larvae. We find no evidence for intracellular CaCO 3 formation, indicating that mineral formation could be constrained to the calcifying space beneath the shell. Using microelectrodes we show that larvae can increase pH and [CO 3 2- ] beneath the growing shell, leading to a ~1.5-fold elevation in calcium carbonate saturation state (Ω arag ). Larvae exposed to OA exhibit a drop in pH, [CO 3 2- ] and Ω arag at the site of calcification, which correlates with decreased shell growth, and, eventually, shell dissolution. Our findings help explain why bivalve larvae can form shells under moderate acidification scenarios and provide a direct link between ocean carbonate chemistry and larval calcification rate.

  12. Enantiomerization and enantioselective bioaccumulation of metalaxyl in Tenebrio molitor larvae.

    PubMed

    Gao, Yongxin; Wang, Huili; Qin, Fang; Xu, Peng; Lv, Xiaotian; Li, Jianzhong; Guo, Baoyuan

    2014-02-01

    The enantiomerization and enantioselective bioaccumulation of metalaxyl by a single dose of exposure to Tenebrio molitor larvae under laboratory condition were studied by high-performance liquid chromatography tandem mass spectroscopy (HPLC-MS/MS) based on a ChiralcelOD-3R [cellulosetris-tris-(3, 5-dichlorophenyl-carbamate)] column. Exposure of enantiopure R-metalaxyl and S-metalaxyl in Tenebrio molitor larvae exhibited significant enantiomerization, with formation of the R enantiomers from the S enantiomers, and vice versa, which might be attributed to the chiral pesticide catalyzed by a certain enzyme in Tenebrio molitor larvae. Enantiomerization was not observed in wheat bran during the period of 21 d. In addition, bioaccumulation of rac-metalaxyl in Tenebrio molitor larvae was enantioselective with a preferential accumulation of S-metalaxyl. These results showed that enantioselectivity was caused not only by actual degradation and metabolism but also by enantiomerization, which was an important process in the environmental fate and behavior of metalaxyl enantiomers. Copyright © 2013 Wiley Periodicals, Inc.

  13. Trichinella britovi biomass in naturally infected pine martens (Martes martes) of Latvia.

    PubMed

    Kirjušina, Muza; Bakasejevs, Eduards; Pezzotti, Patrizio; Pozio, Edoardo

    2016-11-15

    Parasites of the genus Trichinella are cosmopolitan nematodes infecting primarily wild animals, which represent the main reservoirs of these zoonotic pathogens. To investigate the transmission patterns of Trichinella spp. from wild to domestic animals and to humans and for the risk assessment of these parasites in a geographical area, it is important to know the number of possible transmission events deriving from carcasses of infected hosts. For this purpose, the evaluation of the larval biomass in reservoir hosts is needed. No data is available on how to estimate the biomass of Trichinella spp. larvae in muscles of naturally infected animals. The aim of this study was to evaluate the larval biomass in naturally infected pine martens (Martes martes) of Latvia, in which the prevalence of Trichinella britovi infection was over 50%. Single muscles or group of muscles (abdomen, back, diaphragm, intercostal muscles, muscles from the head, left and right shoulders, lower and upper parts of the forelimbs and hind limbs, neck, rump with tail, and base and tip of the tongue) were collected from five skinned and eviscerated carcasses of T. britovi infected pine martens. Muscles were entirely removed from the bones and weighted. Each muscle or group of muscles was separately digested to detect the larvae per gram (LPG). Using linear regression, the larval burden in each muscle or group of muscles was evaluated to measure the possible prediction of the total animal larval burden (both as total number of larvae and as average LPG). All muscles were significantly predictive of the total burden with high "goodness of fit" (all adjusted R2>0.80; P≤0.01), and the left shoulder provided the highest adjusted R2 (0.999). Then, to estimate the Trichinella britovi biomass in the pine marten population of Latvia, recent literature data on prevalence (56.2%, 95% CI: 47.8-64.3) and geometric mean LPG (1.26, 95% CI: 0.89-1.79) in the limb muscles of a sample representative of the whole

  14. Zika virus infection in travelers returning from countries with local transmission, Guangdong, China, 2016.

    PubMed

    Jia, Haimei; Zhang, Meng; Chen, Maoyu; Yang, Zhiwen; Li, Jiansen; Huang, Guo; Guan, Dawei; Cen, Xiaoli; Zhang, Lijie; Feng, Qiwen; Yi, Jianron; Wu, De; Zhong, Haojie; Ma, Huilai; Song, Tie

    Zika virus (ZIKV) is a mosquito-borne virus spreading rapidly in the Americas, Africa, and Asia. No indigenous ZIKV infection had been seen in China. We monitored ZIKV infection among travelers returning to Enping county from ZIKV transmitting countries from 1 March to 10 April 2016. We analyzed data including interviews; conducted laboratory test on blood, urine, saliva, conjunctival swab or semen specimens for evidence of ZIKV infection; evaluated household for presence of Aedes mosquitoes or larvae. A total of 925 individuals were screened, 507 (54.8%) were interviewed, 400 (43.2%) provided samples, of which 13 (3.3%) tested positive for ZIKV including 3 asymptomatic. Rash, conjunctivitis, sore throat, fever were the common symptoms; rash was more pronounced in adults than in children. ZIKV RNA was detected for 1-4 days in blood, but longer in urine and saliva (3-32 days and 2-10 days). Among interviewed, 57.0% had good knowledge about ZIKV, 45.8% were worried about ZIKV, 99.2% would go to hospital if they had infection. Aedes mosquitoes or larvae were detected in townships of infected returners. ZIKV was imported to China. Screening by symptoms alone is inadequate for detecting ZIKV infection. ZIKV surveillance, health-education, and vector control are necessary to decrease risk of ZIKV transmission. Copyright © 2017. Published by Elsevier Ltd.

  15. Lungworm (Nematoda: Protostrongylidae) infection in wild and domestic ruminants from Małopolska region of Poland.

    PubMed

    Kowal, Jerzy; Kornaś, Sławomir; Nosal, Paweł; Basiaga, Marta; Wajdzik, Marek; Skalska, Marta; Wyrobisz, Anna

    2016-01-01

    The conducted study has focused on domestic, as well as wild ruminant species. The post mortem examination was carried out on 68 animals, including three wild species: roe deer (Capreolus capreolus) (25 indyviduals), red deer (Cervus elaphus) (6), fallow deer (Dama dama) (5) and two domestic: sheep (Ovis aries) (14) and cattle (Bos taurus) (18). Some of the species have also been investigated in the field by the coproscopical analyses. The faecal samples from roe deer (27), fallow deer (20), red deer (36) and moose (Alces alces) (10) were collected from the environment, while from sheep (10) and goat (Capra hircus) (10)--per rectum. Based on the obtained results the following values were calculated: prevalence, mean intensity and intensity range. The post mortem examination did not reveal pulmonary nematodes neither in domestic nor in wild ungulates, however, the larvae of aforementioned parasites were often stated in the stool samples taken from the environment. All wild species, except fallow deer were infected. Consequently, six species of lungworms have been identified. The first stage larvae of Varestrongylus capreoli occurred in 11 samples of roe deer and Varestrongylus alces in one moose. The larvae of Elaphostrongylus cervi were found in 19 red deer and Varestrongylus sagittatus in 3. Furthermore, Elaphostrongylus alces larvae were noted in 6 moose. Within domestic ruminants only one sheep and two goats were infected by Muellerius capillaris.

  16. Effects of fish cues on mosquito larvae development.

    PubMed

    Silberbush, Alon; Abramsky, Zvika; Tsurim, Ido

    2015-10-01

    We investigated the effects of predator-released kairomones on life history traits of larval Culex pipiens (Linnaeus). We compared the development time and survival of sibling larvae, reared in either water conditioned by the presence of Gambusia affinis (Baird and Girard) or fishless control-water. Our results indicate that larvae developing in fish-conditioned water (FCW) pupated faster than larvae in fishless-control water. The effect of FCW on larval survival was evident only in females. Surprisingly, FCW increased female survival. In both development-time and survival, boiling the water eliminated the FCW effect, supporting our hypothesis that fish conditioning is based on kairomones. Accelerated metamorphosis in response to predator released kairomones, evident in our results, is a rarely described phenomenon. Intuitively, when exposed to predator associated signals, aquatic larvae should metamorphose earlier to escape the higher risk of predation. However, theoretical models predict this outcome only under specific conditions. Indeed, longer - rather than shorter - time to metamorphosis is usually observed in response to predation risk. We argue that the response of larval mosquitoes to predation risk is context-dependent. Shortening larval development time may not be an exceptional response, but rather represents a part of a response spectrum that depends on the level of predation risk and resource abundance. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Infectivity, distribution, and persistence of the entomopathogenic nematode Steinernema carpocapsae all strain (Rhabditida: Steinernematidae) applied by sprinklers or boom sprayer to dry-pick cranberries.

    PubMed

    Hayes, A E; Fitzpatrick, S M; Webster, J M

    1999-06-01

    We evaluated infectivity, distribution, and persistence of commercially produced Steinernema carpocapsae (Weiser) All strain applied through solid set sprinkler irrigation or boom sprayer to 2 dry-pick cranberry farms on peat soil in British Columbia in 1993. Most infectivity assays used Galleria mellonella (L.) larvae. When possible, larvae of the target pest, Otiorynchus sulcatas (F.) were used as assay organisms. Nematodes in almost all samples of nematode suspensions diluted from shipping containers, from spray tanks, or collected in cups after passage through application equipment were infective to G. mellonella larvae. When O. sulcatus larvae were used as assay organisms, 93% (n = 14) of assays from the spray tank and 67% (n = 12) of assays after application showed infectivity. In the spring, sprinklers delivered nematodes to only 15 of 20 sample points on the 0.2-ha plot; delivery by the boom sprayer was better but 2 of 20 points on the 0.2-ha plot received approximately twice as many nematodes as the other points. In the fall, nematode delivery by both systems was more even. However, the average number of nematodes per milliliter of sprayed water collected from the 20 samples on each farm after each application did not correspond to the rates of nematodes applied. Persistence of nematodes in the soil was encouraging, but percentage of infectivity was lower than expected. After application in the spring, assays using G. mellonella larvae showed the presence of infective nematodes in soil samples (0-5 and 5-10 cm deep) on each sampling day (0, 3, 7, and 25) after application by boom sprayer, and on days 0, 3, and 7 after application through sprinklers. In the fall, G. mellonella assays showed infective nematodes in soil samples on each sampling day (0, 3, 7, and 25) after application by boom sprayer, and on days 0, 3, 7, 35, 60, 135, and 250 after application through sprinklers. In the spring, when assays lasted 4 d, percentage of infectivity rose to a

  18. Pupal vibratory signals of a group-living beetle that deter larvae

    PubMed Central

    Kojima, Wataru; Ishikawa, Yukio; Takanashi, Takuma

    2012-01-01

    Pupae of some insects produce sounds or vibrations, but the function of the sounds/vibrations has not been clarified in most cases. Recently, we found vibratory communication between pupae and larvae of a group-living beetle Trypoxylus dichotoma, which live in humus soil. The vibratory signals produced by pupae were shown to deter approaching larvae, thereby protecting themselves. In the present study, we tested our hypothesis that pupal signals are mimics of vibratory noises associated with foraging of moles, the most common predators of T. dichotoma. Mole vibrations played back in laboratory experiments deterred larval approaches in the same way as pupal signals. These findings suggest that to deter conspecific larvae, pupae of T. dichotoma may have exploited a preexisting response of larvae to predator vibrations by emitting deceptive signals. PMID:22896788

  19. Estuarine retention of larvae of the crab Rhithropanopeus harrisii

    NASA Astrophysics Data System (ADS)

    Cronin, Thomas W.

    1982-08-01

    Larvae of estuarine organisms continually face possible export from the parent estuary. Retention of larvae of the estuarine crab Rhithropanopeus harrisii was investigated in the upper Newport River estuary, North Carolina. All of the developmental stages occurred in the same area of the estuary with similar horizontal distributions, and the concentrations of intermediate and late stages were not greatly reduced from those of the first larval stage. This was strong evidence for the continuous retention of larvae in the upper estuary. To determine mechanisms by which retention might be effected, field studies of the vertical distributions and migrations of these larvae were made. The four zoeal stages had similar but complex vertical migration patterns, which varied from study to study. These migrations centered on the depth of no net flow, reducing longitudinal transport during development. Cross-spectral analysis of the larval migrations and the environmental cycles of light, salinity and current speed revealed that each of these external cycles affected larval depth. Megalopae of R. harrisii also migrated vertically, but they were present in much lower concentrations than the zoeal stages, an indication of a change to benthic existence in this final larval form.

  20. Trichinella spiralis: killing of newborn larvae by lung cells.

    PubMed

    Falduto, Guido H; Vila, Cecilia C; Saracino, María P; Calcagno, Marcela A; Venturiello, Stella M

    2015-02-01

    The migratory stage of Trichinella spiralis, the newborn larva (NBL), travels along the pulmonary microvascular system on its way to the skeletal muscle cells. The present work studies the capability of lung cells to kill NBL. For this purpose, in vitro cytotoxicity assays were performed using NBL, lung cell suspensions from Wistar rats, rat anti-NBL surface sera, and fresh serum as complement source. The cytotoxic activity of lung cells from rats infected on day 6 p.i. was compared with that from noninfected rats. Two and 20 h-old NBL (NBL2 and NBL20) were used as they had shown to exhibit different surface antigens altering their biological activity. Sera antibodies were analyzed by indirect immunofluorescence assay, and cell populations used in each assay were characterized by histological staining. The role of IgE in the cytotoxic attack against NBL was analyzed using heated serum. The FcεRI expression on cell suspensions was examined by flow cytometry. Results showed that lung cells were capable of killing NBL by antibody-dependent cell-mediated cytotoxicity (ADCC). Lung cells from infected animals yielded the highest mortality percentages of NBL, with NBL20 being the most susceptible to such attack. IgE yielded a critical role in the cytotoxic attack. Regarding the analysis of cell suspensions, cells from infected rats showed an increase in the percentage of eosinophils, neutrophils, and the number of cells expressing the FcεRI receptor. We conclude that lung cells are capable of killing NBL in the presence of specific antibodies, supporting the idea that the lung is one of the sites where the NBL death occurs due to ADCC.

  1. Diet affects the redox system in developing Atlantic cod (Gadus morhua) larvae.

    PubMed

    Penglase, Samuel; Edvardsen, Rolf B; Furmanek, Tomasz; Rønnestad, Ivar; Karlsen, Ørjan; van der Meeren, Terje; Hamre, Kristin

    2015-08-01

    The growth and development of marine fish larvae fed copepods is superior to those fed rotifers, but the underlying molecular reasons for this are unclear. In the following study we compared the effects of such diets on redox regulation pathways during development of Atlantic cod (Gadus morhua) larvae. Cod larvae were fed a control diet of copepods or the typical rotifer/Artemia diet commonly used in commercial marine fish hatcheries, from first feeding until after metamorphosis. The oxidised and reduced glutathione levels, the redox potential, and the mRNA expression of 100 genes in redox system pathways were then compared between treatments during larval development. We found that rotifer/Artemia-fed cod larvae had lower levels of oxidised glutathione, a more reduced redox potential, and altered expression of approximately half of the redox system genes when compared to copepod-fed larvae. This rotifer/Artemia diet-induced differential regulation of the redox system was greatest during periods of suboptimal growth. Upregulation of the oxidative stress response transcription factor, nrf2, and NRF2 target genes in rotifer/Artemia fed larvae suggest this diet induced an NRF2-mediated oxidative stress response. Overall, the data demonstrate that nutritional intake plays a role in regulating the redox system in developing fish larvae. This may be a factor in dietary-induced differences observed in larval growth. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Seasonal occurrence and abundance of caridean shrimp larvae at Helgoland, German Bight

    NASA Astrophysics Data System (ADS)

    Wehrtmann, Ingo S.

    1989-03-01

    Plankton samples were collected from January 1985 to January 1986 three times per week at Helgoland to study seasonal occurrence and abundance of caridean shrimp larvae. A total of eleven species were obtained. Ninety-one % of all larvae collected during the sample period belonged to Crangon crangon L. and Crangon allmanni Kinahan, 6% to Philocheras trispinosus Hailstone and 3% to the remaining eight species. Collections were generally dominated by C. crangon larvae. However, C. allmanni larvae were most abundant in June coinciding with hatching activities of the population near Helgoland. C. allmanni was observed to have the highest density of all species with approximately 8 larvae per m3. Larvae of Eualus occultus (Lebour), Eualus pusiolus (Kroyer), Hippolyte varians Leach and Athanas nitescens Leach were most likely released by populations inhabiting the rocky intertidal zone around Helgoland. The presence of Processa modica Williamson & Rochanaburanon and Processa nouveli holthuisi Al-Adhub & Williamson in the German Bight was verified by observations of a series of different developmental stages. Larvae of the rare species Caridion steveni Lebour were also recorded. The observed shrimp species were placed into three different groups with respect to their seasonal occurrence. Possible advantages of the timing of larval dispersal relative to predation and food availability are given. The results on seasonal occurrence and relative abundance are discussed in relation to environmental factors (temperature, salinity) as well as to the geographical distribution of the species.

  3. Tracking transparent monogenean parasites on fish from infection to maturity

    PubMed Central

    Trujillo-González, Alejandro; Constantinoiu, Constantin C.; Rowe, Richard; Hutson, Kate S.

    2015-01-01

    The infection dynamics and distribution of the ectoparasitic fish monogenean Neobenedenia sp. (Monogenea: Capsalidae) throughout its development was examined on barramundi, Lates calcarifer (Bloch) (Latidae), by labelling transparent, ciliated larvae (oncomiracidia) with a fluorescent dye. Replicate fish were each exposed to approximately 50 fluorescent oncomiracidia and then examined for parasites using an epifluorescence stereomicroscope at 10 time intervals post-exposure (15, 30, 60, 120 min, 24, 48 h, four, eight, 12, and 16 days). Fluorescent labelling revealed that parasites attached underneath and on the surface of the scales of host fish. Parasite infection success was 20% within 15 min, and peaked at 93% two days post-exposure, before gradually declining between four and sixteen days. Differences in parasite distribution on L. calcarifer over time provided strong evidence that Neobenedenia sp. larvae settled opportunistically and then migrated to specific microhabitats. Parasites initially attached (<24 h) in greater mean numbers on the body surface (13 ± 1.5) compared to the fins (4 ± 0.42) and head region (2 ± 0.41). Once larvae recruitment had ceased (48 h), there were significantly higher mean post-larvae counts on the head (5 ± 3.4) and fins (12 ± 3) compared to previous time intervals. Neobenedenia sp. aggregated on the eyes, fins, and dorsal and ventral extremities on the main body. As parasites neared sexual maturity, there was a marked aggregation on the fins (22 ± 2.35) compared to the head (4 ± 0.97) and body (9 ± 1.33), indicating that Neobenedenia sp. may form mating aggregations. PMID:26199875

  4. Comparative Sigma Factor-mRNA Levels in Mycobacterium marinum under Stress Conditions and during Host Infection

    PubMed Central

    Pettersson, B. M. Fredrik; Das, Sarbashis; Behra, Phani Rama Krishna; Jordan, Heather R.; Ramesh, Malavika; Mallick, Amrita; Root, Kate M.; Cheramie, Martin N.; de la Cruz Melara, Irma; Small, Pamela L. C.; Dasgupta, Santanu; Ennis, Don G.; Kirsebom, Leif A.

    2015-01-01

    We have used RNASeq and qRT-PCR to study mRNA levels for all σ-factors in different Mycobacterium marinum strains under various growth and stress conditions. We also studied their levels in M. marinum from infected fish and mosquito larvae. The annotated σ-factors were expressed and transcripts varied in relation to growth and stress conditions. Some were highly abundant such as sigA, sigB, sigC, sigD, sigE and sigH while others were not. The σ-factor mRNA profiles were similar after heat stress, during infection of fish and mosquito larvae. The similarity also applies to some of the known heat shock genes such as the α-crystallin gene. Therefore, it seems probable that the physiological state of M. marinum is similar when exposed to these different conditions. Moreover, the mosquito larvae data suggest that this is the state that the fish encounter when infected, at least with respect to σ-factor mRNA levels. Comparative genomic analysis of σ-factor gene localizations in three M. marinum strains and Mycobacterium tuberculosis H37Rv revealed chromosomal rearrangements that changed the localization of especially sigA, sigB, sigD, sigE, sigF and sigJ after the divergence of these two species. This may explain the variation in species-specific expression upon exposure to different growth conditions. PMID:26445268

  5. Larvicidal activity of Cybistax antisyphilitica against Aedes aegypti larvae.

    PubMed

    Rodrigues, A M S; de Paula, J E; Roblot, F; Fournet, A; Espíndola, L S

    2005-12-01

    The larvicidal activity against Aedes aegypti larvae of a stem wood hexane extract of Cybistax antisyphilitica was evaluated. Bioassay-guided fractionation of the crude extract, monitored by larvicidal assay, led to the isolation of a natural quinone identified as 2-hydroxy-3-(3-methyl-2-butenyl)-1.4-naphthoquinone (lapachol). This compound was quite potent against A. aegypti larvae (LC50 26.3 microg/ml).

  6. Scanning electron microscope observations of brine shrimp larvae from space shuttle experiments

    NASA Technical Reports Server (NTRS)

    DeBell, L.; Paulsen, A.; Spooner, B.

    1992-01-01

    Brine shrimp are encysted as gastrula stage embryos, and may remain dehydrated and encysted for years without compromising their viability. This aspect of brine shrimp biology is desirable for studying development of animals during space shuttle flight, as cysts placed aboard a spacecraft may be rehydrated at the convenience of an astronaut, guaranteeing that subsequent brine shrimp development occurs only on orbit and not on the pad during launch delays. Brine shrimp cysts placed in 5 ml syringes were rehydrated with salt water and hatched during a 9 day space shuttle mission. Subsequent larvae developed to the 8th larval stage in the sealed syringes. We studied the morphogenesis of the brine shrimp larvae and found the larvae from the space shuttle experiments similar in rate of growth and extent of development, to larvae grown in sealed syringes on the ground. Extensive differentiation and development of embryos and larvae can occur in a microgravity environment.

  7. Predator response to releases of American shad larvae in the Susquehanna River basin

    USGS Publications Warehouse

    Johnson, James H.; Ringler, N.H.

    1998-01-01

    Predation on American shad (Alosa sapidissima) larvae within the first two hours of release was examined from 1989 to 1992 on 31 occasions at stocking sites in the Susquehanna River basin. Twenty-two fish species consumed shad larvae; the dominant predators were spotfin shiner (Cyprinella spiloptera), mimic shiner (Notropis volucellus) and juvenile smallmouth bass (Micropterus dolomieu). The number of shad larvae found in predator stomachs ranged from 0 to 900. Mortality of shad larvae at the stocking site was usually less than 2%. The greatest mortality (9.6%) occurred at the highest stocking level (1.5 million larvae). Highly variable predation rates and release levels of shad insufficient to achieve predator satiation hindered the ability to determine a specific type of functional response of predators. Predator numbers increased with stocking density, indicating short-term aggregation at the release site. Because of practical problems associated with releasing the large numbers of larvae that would be required to satiate predators, routine stocking at these levels is probably unreasonable. Releases of 400,000 to 700,000 larvae may reduce predation by offsetting depensatory mechanisms that operate on small releases and the effects of increased predation due to predator aggregation on large releases. Night stocking may reduce predation on larval shad at the release site.

  8. [Fish larvae association in a Mexican Caribbean bay].

    PubMed

    Quintal-Lizama, C; Vásquez-Yeomans, L

    2001-06-01

    Interannual ichthyoplankton variation, was analyzed in Bahía de la Ascensión, Mexico, during December of four consecutive years (1994-1997). A total of 32 families, 35 genera and 21 species of fish larvae were identified. The most abundant fish larvae were the Gobiidae followed by the Callionymidae, Clupeidae and Tetraodontidae. Larval diversity was low when compared with other periods ("dry" and "rainy"). Three spatial associations (internal, medium and external) were found in December 1994 and 1995. In 1996-1997, stations of the inner and outer parts of the bay were mixed. The dominant families characterized most of the faunal associations. Egg density was highest in the external zone of the bay, whereas larvae were most abundant in the inner area. Major factors affecting the fish larval assemblages during December (1994-1997) in Bahía de la Ascensión seem to be related to the nursery areas location and to the tropical fishes reproductive period.

  9. [Effects of fermented cattle dung on the growth and development of Tenebrio molitor larvae].

    PubMed

    Zeng, Xiang-Wei; Wang, Xia; Guo, Li-Yue; Zhan, Li-Jie; Bo, Wen-Jing; Li, Zhan; Wu, Guang-Lei; Jiang, Gao-Ming

    2012-07-01

    In order to make use of and industrialize the animal dung from large cattle farms, this paper explored the feasibility of using Tenebrio molitor to digest and utilize cattle dung. Cattle dung was mixed with the conventional feed (65% wheat bran, 30% corn flour, and 5% bean pulp) of T. molitor in definite proportions, and fermented with effective microorganisms (EM). The fermented products containing 60% and 80% of cattle dung (FD1 and FD2, respectively) were selected to feed T. molitor larvae, and the effects of the fermented products on the growth curve, death rate, pupation rate, and antioxidant system of the larvae were compared. Compared with CK (conventional deed), the FD1 made the developmental duration of the larvae prolonged by 10 days and the larvae's death rate upraised somewhat, but made the single larva's total food intake, average body mass, crude fat content, and ratio of unsaturated to saturated fat acids increased by 49%, 28%, 26%, and 32%, respectively (P < 0.05), and the activity of larvae's antioxidant system improved significantly, showing a remarkable adaptability of the larvae to FD1. Unlike FD1, FD2 displayed definite disadvantages in most test growth indicators, as compared with CK, indicating that T. molitor larvae had weak adaptability to FD2. Our findings suggested that using FD1 to feed the 3rd instar of T. molitor larvae would have good practical prospects in industrializing cattle dung.

  10. Tracking living decapod larvae: mass staining of eggs with neutral red prior to hatching.

    PubMed

    Øresland, V; Horobin, R W

    2012-04-01

    Mass staining of decapod females carrying eggs, with subsequent identification of hatched larvae in the environment, is a research tool with great potential for field ecologists wishing to track the movements of larvae. For this to be achieved, however, numerous requirements must be met. These include adequate dye solubility, short staining time, dye penetration through different tissues, dye retention within the organism, absence of toxic and behavioral effects, low visibility to predators of stained larvae, no loss of staining owing to preservatives and low cost. The dye, neutral red, appears to meet most of these requirements. This dye was used in aliquots of 0.7 g/770 ml seawater applied to the females of Norway lobster (Nephrops norvegicus) and European lobster (Homarus gammarus) for 10 min. This procedure stained lobster eggs and embryos so that hatched larvae could be distinguished easily by fluorescence microscopy from larvae that hatched from unstained eggs. Stained larvae that were preserved in 4% formaldehyde in seawater were still stained after 1 year. Larvae should not come in contact with ethanol, because it extracts the dye rapidly.

  11. [Infestation of the human digestive system with beetle larvae (Coleoptera: Cantharidae): a case report].

    PubMed

    Yılmaz, Hasan; Taş Cengiz, Zeynep; Dülger, Ahmet Cumhur; Ekici, Pınar

    2014-12-01

    This study was conducted to report the digestive system infestation caused by the larvae of Coleoptera in a female pediatric patient. She was admitted to our hospital with the complaints of emergence of insect larvae from her vomit and feces, abdominal pain, inguinal pain, lack of appetite, hair loss, excessive cleaning behavior, extreme irritability, and distractibility. The larvae observed typically had the morphology of the larvae of insects related to the Cantharidae family in the Coleoptera order. For treatment, a single dose of albendazole (400 mg) was used. Consequently, in the present case, it was seen that the larvae of Coleoptera incidentally taken orally could continue to live for a period in the digestive tract of people, without losing vitality, and the larvae caused a variety of symptoms due to both their toxic agents and the possible irritation they caused.

  12. Infestation of a bird and two cats by larvae of Plodia interpunctella (Lepidoptera: Pyralidae).

    PubMed

    Pinckney, R D; Kanton, K; Foster, C N; Steinberg, H; Pellitteri, P

    2001-09-01

    The larvae of Plodia interpunctella (Hübner), commonly known as the Indian meal moth, often cause enormous losses in stored food supplies. We present three clinical case reports of accidental infestation by P. interpunctella larvae in two domestic cats and one parakeet. A larva gained entry into the avian host and subsequently migrated to the brain. It was alive, covered with "silk-like" fibers and confirmed to be a fourth instar. Plodia interpunctella larvae were excised with forceps from the subcutaneous tissues of the ear and neck of two cats in a different household. Previous reports of infestation by P. interpunctella larvae in vertebrates are unknown.

  13. Feeding ecology of lake whitefish larvae in eastern Lake Ontario

    USGS Publications Warehouse

    Johnson, James H.; McKenna, James E.; Chalupnicki, Marc A.; Wallbridge, Tim; Chiavelli, Rich

    2009-01-01

    We examined the feeding ecology of larval lake whitefish (Coregonus clupeaformis) in Chaumont Bay, Lake Ontario, during April and May 2004-2006. Larvae were collected with towed ichthyoplankton nets offshore and with larval seines along the shoreline. Larval feeding periodicity was examined from collections made at 4-h intervals over one 24-h period in 2005. Inter-annual variation in diet composition (% dry weight) was low, as was spatial variation among collection sites within the bay. Copepods (81.4%), primarily cyclopoids (59.1%), were the primary prey of larvae over the 3-year period. Cladocerans (8.1%; mainly daphnids, 6.7%) and chironomids (7.3%) were the other major prey consumed. Larvae did not exhibit a preference for any specific prey taxa. Food consumption of lake whitefish larvae was significantly lower at night (i.e., 2400 and 0400 h). Substantial variation in diet composition occurred over the 24-h diel study. For the 24-h period, copepods were the major prey consumed (50.4%) and their contribution in the diet ranged from 29.3% (0400 h) to 85.9% (1200 h). Chironomids made up 33.4% of the diel diet, ranging from 8.0% (0800 h) to 69.9% (0400 h). Diel variation in the diet composition of lake whitefish larvae may require samples taken at several intervals over a 24-h period to gain adequate representation of their feeding ecology.

  14. A Single Swede Midge (Diptera: Cecidomyiidae) Larva Can Render Cauliflower Unmarketable.

    PubMed

    Stratton, Chase A; Hodgdon, Elisabeth A; Zuckerman, Samuel G; Shelton, Anthony M; Chen, Yolanda H

    2018-05-01

    Swede midge, Contarinia nasturtii Kieffer (Diptera: Cecidomyiidae), is an invasive pest causing significant damage on Brassica crops in the Northeastern United States and Eastern Canada. Heading brassicas, like cauliflower, appear to be particularly susceptible. Swede midge is difficult to control because larvae feed concealed inside meristematic tissues of the plant. In order to develop damage and marketability thresholds necessary for integrated pest management, it is important to determine how many larvae render plants unmarketable and whether the timing of infestation affects the severity of damage. We manipulated larval density (0, 1, 3, 5, 10, or 20) per plant and the timing of infestation (30, 55, and 80 d after seeding) on cauliflower in the lab and field to answer the following questions: 1) What is the swede midge damage threshold? 2) How many swede midge larvae can render cauliflower crowns unmarketable? and 3) Does the age of cauliflower at infestation influence the severity of damage and marketability? We found that even a single larva can cause mild twisting and scarring in the crown rendering cauliflower unmarketable 52% of the time, with more larvae causing more severe damage and additional losses, regardless of cauliflower age at infestation.

  15. Effects of gamma irradiation as a quarantine treatment on development of codling moth larvae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burditt, A.K. Jr.; Moffitt, H.R.; Hungate, F.P.

    1985-03-01

    Codling moth, Cydia pomonella (L.), larvae were exposed to gamma radiation at doses upto 160 Gy. Following irradiation the larvae were permited further development, pupation and adult emergence. The number of adults emerging, mature larvae and pupae present were determined. Data from these studies will be used to predict doses of gamma irradiation required as a quarantine treatment to prevent emergence of codling moth adults from fruit infested by larvae. 5 refs., 1 tab.

  16. Recycling of urea associated with the host plant urease in the silkworm larvae, Bombyx mori.

    PubMed

    Hirayama, C; Sugimura, M; Shinbo, H

    1999-01-01

    Urea concentration and urease activity in the midgut content were compared between larvae of the silkworm, Bombyx mori fed an artificial diet and those fed fresh mulberry leaves. A considerable amount of urea was found in the midgut content of the both larvae, however it was significantly lower in the larvae fed fresh mulberry leaves than in the larvae fed the artificial diet; average urea concentrations in the midgut content of the larvae fed fresh mulberry leaves and the artificial diet were 2.9 and 4.6 &mgr;mol/g, respectively. Urea in the midgut content seems to be secreted from the insect itself since the amount of urea in both diets were negligibly small. Urease activity was detected only in the midgut content of the larvae fed fresh mulberry leaves but not in other tissues of the larvae. On the other hand, no urease activity was detected in the midgut content of the larvae fed the artificial diet. Subsequently, to elucidate the role of mulberry leaf urease in the midgut lumen, larvae that had been reared on the artificial diet were switched to fresh mulberry leaves. The diet switch caused a rapid decrease in urea concentration in the midgut content and an increase in ammonia concentration in the midgut content, suggesting that secreted urea could be hydrolyzed to ammonia by mulberry leaf urease in the midgut lumen. Furthermore, to investigate the physiological significance of mulberry leaf urease on urea metabolism of the silkworm, (15)N-urea was injected into the hemocoel, and after 12 h the larvae were dissected for (15)N analysis. A considerable amount of (15)N was found to be incorporated into the silk-protein of the larvae fed fresh mulberry leaves, but there was little incorporation of (15)N into the silk-protein of the larvae fed the artificial diet. These data indicate that urea is converted into ammonia by the action of mulberry leaf urease in the midgut lumen and used as a nitrogen source in larvae fed mulberry leaves.

  17. Streambed Mobility and Dispersal of Aquatic Insect Larvae: Results from a Laboratory Study.

    NASA Astrophysics Data System (ADS)

    Kenworthy, S. T.

    2002-12-01

    Three series of flume experiments were conducted to quantify relationships between entrainment of surface layer gravels and displacement of benthic insect larvae. One series (B) utilized a sediment mixture with a median size 6.9 mm, maximum size 45 mm, and 10% < 2mm. Two other series examined the effects of locally coarsening the bed surface (Bc) and increasing the < 2mm fraction to 20% (S). Aquatic insect larvae were collected in the field and placed in an upstream segment of the flume bed. Flow rate, flume slope, and sediment transport rate were varied systematically among experiments. Displaced larvae were collected in a net at the end of the flume. The distribution of larvae remaining in the bed was obtained by sorting larvae from the sediment in 25 channel segments. Flow rate and mean boundary shear stress varied among runs by factors of 1.2 and 2.4 respectively. Proportional entrainment of >11mm surface grains ranged from <0.05 to >0.90. Displacement of insect larvae increased in a regular and consistent manner with increasing flow strength and surface sediment entrainment. Significant displacement occurred for some types of larvae (Ephemerellid mayflies) over a relatively low range of shear stress and bed surface entrainment. Other larvae (Atherix sp.) were displaced only at the highest levels of bed surface entrainment. Displacement was lower from coarsened bed surfaces in series Bc, and higher from sandier sediments in series S experiments. The differential effects of bed surface entrainment upon various types of larvae are consistent with anatomical and behavioral differences that influence exposure to near-bed flow and bedload transport. These results suggest that spatial patterns of sediment mobilization are important for understanding patterns of dispersal and disturbance of streambed communities.

  18. Feeding by larvae of intertidal invertebrates: assessing their position in pelagic food webs.

    PubMed

    Vargas, Cristian A; Manríquez, Patricio H; Navarrete, Sergio A

    2006-02-01

    One of the leading determinants of the structure and dynamics of marine populations is the rate of arrival of new individuals to local sites. While physical transport processes play major roles in delivering larvae to the shore, these processes become most important after larvae have survived the perils of life in the plankton, where they usually suffer great mortality. The lack of information regarding larval feeding makes it difficult to assess the effects of food supply on larval survival, or the role larvae may play in nearshore food webs. Here, we examine the spectrum of food sizes and food types consumed by the larvae of two intertidal barnacle species and of the predatory gastropod Concholepas concholepas. We conducted replicated experiments in which larvae were exposed to the food size spectrum (phytoplankton, microprotozoan and autotrophic picoplankton) found in nearshore waters in central Chile. Results show that barnacle nauplii and gastropod veligers are omnivorous grazers, incorporating significant fractions of heterotrophs in their diets. In accordance with their feeding mechanisms and body size, barnacle nauplii were able to feed on autotrophic picoplankton (<5 microm) and did not consume the largest phytoplankton cells, which made the bulk of phytoplankton biomass in spring-summer blooms. Balanoid nauplii exhibited higher ingestion rates than the smaller-bodied chthamaloid larvae. Newly hatched C. concholepas larvae also consumed picoplankton cells, while competent larvae of this species ingested mostly the largest phytoplankton cells and heterotrophic protozoans. Results suggest that persistent changes in the structure of pelagic food webs can have important effects on the species-specific food availability for invertebrate larvae, which can result in large-scale differences in recruitment rates of a given species, and in the relative recruitment success of the different species that make up benthic communities.

  19. Arthrostoma miyazakiense (Nematoda: Ancylostomatidae) infection in raccoon dogs of Korea and experimental transmission to dogs

    PubMed Central

    Cha, Dae-Jung; Cho, Kyoung-Oh; Cho, Ho-Sung; Choi, Jeong-Ok; Cho, Shin-Hyeong

    2007-01-01

    Arthrostoma miyazakiense (Nematoda: Ancylostomatidae) is a hookworm species reported from the small intestines of raccoon dogs (Nyctereutes procyonoides) in Japan. Five Korean raccoon dogs (N. procyonoides koreensis) caught from 2002 to 2005 in Jeollanam-do (Province), a southeastern area of South Korea, contained helminth eggs belonging to 4 genera (roundworm, hookworm, whipworm, and Capillaria spp.) and cysts of Giardia sp. in their feces. Necropsy findings of 1 raccoon dog revealed a large number of adult hookworms in the duodenum. These hookworms were identified as Arthrostoma miyazakiense based on the 10 articulated plates observed in the buccal capsule and the presence of right-sided prevulval papillae. Eggs of A. miyazakiense were 60-65 × 35-40 µm (av. 62.5 × 35 µm), and were morphologically indistinguishable from those of Ancylostoma caninum. The eggs were cultured to infective 2nd stage larvae via charcoal culture, and 100 infective larvae were used to experimentally infect each of 3 mixed-bred puppies. All puppies harbored hookworm eggs in their feces on the 12th day after infection. This is the first report thus far concerning A. miyazakiense infections in raccoon dogs in Korea, and the first such report outside of Japan. PMID:17570975

  20. Acute ecotoxicology of natural oil and gas condensate to coral reef larvae

    PubMed Central

    Negri, Andrew P.; Brinkman, Diane L.; Flores, Florita; Botté, Emmanuelle S.; Jones, Ross J.; Webster, Nicole S.

    2016-01-01

    Risks posed by oil spills to coral reefs are difficult to evaluate, partially due to the absence of studies that adequately assess toxicity to relevant coral reef species. Here we experimentally tested the acute toxicity of condensate, representing a fraction of light crude oil, to coral (Acropora tenuis) and sponge (Rhopaloeides odorabile) larvae. The metamorphosis of coral larvae was inhibited at total petroleum aromatic hydrocarbon (TPAH) concentrations of water accommodated fractions (WAF) as low as 103 μg l−1, similar to concentrations detected in seawater following large spills. The sensitivity of coral larvae increased by 40% when co-exposed to UV light that they might encounter in shallow reefal systems. Condensate WAF was more toxic to coral larvae than predicted by summing the toxicity of its main components (benzene, toluene, p-xylene and napthalene). In contrast, the sensitivity of sponge larvae to condensate WAF (>10,000 μg l−1 TPAH) was far less than coral in the presence and absence of UV, but similar to that of other marine invertebrates. While these results highlight the relative sensitivity of coral larvae to oil, further research is needed to better understand and predict the impacts and risks posed by hydrocarbons to tropical reef systems. PMID:26892387