Sample records for malpighian tubule polytene

  1. Gap junctions in Malpighian tubules of Aedes aegypti.

    PubMed

    Weng, Xing-He; Piermarini, Peter M; Yamahiro, Atsuko; Yu, Ming-Jiun; Aneshansley, Daniel J; Beyenbach, Klaus W

    2008-02-01

    We present electrical, physiological and molecular evidence for substantial electrical coupling of epithelial cells in Malpighian tubules via gap junctions. Current was injected into one principal cell of the isolated Malpighian tubule and membrane voltage deflections were measured in that cell and in two neighboring principal cells. By short-circuiting the transepithelial voltage with the diuretic peptide leucokinin-VIII we largely eliminated electrical coupling of principal cells through the tubule lumen, thereby allowing coupling through gap junctions to be analyzed. The analysis of an equivalent electrical circuit of the tubule yielded an average gap-junction resistance (R(gj)) of 431 kOmega between two cells. This resistance would stem from 6190 open gap-junctional channels, assuming the high single gap-junction conductance of 375 pS found in vertebrate tissues. The addition of the calcium ionophore A23187 (2 micromol l(-1)) to the peritubular Ringer bath containing 1.7 mmol l(-1) Ca(2+) did not affect the gap-junction resistance, but metabolic inhibition of the tubule with dinitrophenol (0.5 mmol l(-1)) increased the gap-junction resistance 66-fold, suggesting the regulation of gap junctions by ATP. Lucifer Yellow injected into a principal cell did not appear in neighboring principal cells. Thus, gap junctions allow the passage of current but not Lucifer Yellow. Using RT-PCR we found evidence for the expression of innexins 1, 2, 3 and 7 (named after their homologues in Drosophila) in Malpighian tubules. The physiological demonstration of gap junctions and the molecular evidence for innexin in Malpighian tubules of Aedes aegypti call for the double cable model of the tubule, which will improve the measurement and the interpretation of electrophysiological data collected from Malpighian tubules.

  2. Calcium Oxalate Accumulation in Malpighian Tubules of Silkworm (Bombyx mori)

    NASA Astrophysics Data System (ADS)

    Wyman, Aaron J.; Webb, Mary Alice

    2007-04-01

    Silkworm provides an ideal model system for study of calcium oxalate crystallization in kidney-like organs, called Malpighian tubules. During their growth and development, silkworm larvae accumulate massive amounts of calcium oxalate crystals in their Malpighian tubules with no apparent harm to the organism. This manuscript reports studies of crystal structure in the tubules along with analyses identifying molecular constituents of tubule exudate.

  3. The Adult Drosophila Malpighian Tubules Are Maintained by Pluripotent Stem Cells

    PubMed Central

    Singh, Shree Ram; Liu, Wei; Hou, Steven X.

    2007-01-01

    Summary All animals must excrete the waste products of metabolism. Excretion is performed by the kidney in vertebrates and by the Malpighian tubules in Drosophila. The mammalian kidney has an inherent ability for recovery and regeneration following ischemic injury. Stem cells and progenitor cells have been proposed to be responsible for repair and regeneration of injured renal tissue. In Drosophila, the Malpighian tubules are thought to be very stable, and no stem cells have been identified. We have identified pluripotent stem cells in the region of lower tubules and ureters of the Malpighian tubules. Using lineage tracing and molecular marker labeling, we demonstrated that several differentiated cells in the Malpighian tubules arise from the stem cells and an autocrine JAK-STAT signaling regulates the stem cells' self-renewal. Identifying adult kidney stem cells in Drosophila may provide important clues for understanding mammalian kidney repair and regeneration during injury. PMID:18371350

  4. Modelling Malpighian tubule crystals within the predatory soil mite Pergamasus longicornis (Mesostigmata: Parasitidae).

    PubMed

    Bowman, Clive E

    2017-05-01

    The occurrence of refractive crystals (aka guanine) is characterised in the Malpighian tubules of the free-living predatory parasitiform soil mite Pergamasus longicornis (Berlese) from a temporal series of histological sections during and after feeding on larval dipteran prey. The tubular system behaves as a single uniform entity during digestion. Malpighian mechanisms are not the 'concentrative' mechanism sought for the early stasis in gut size during the second later phase of prey feeding. Nor are Malpighian changes associated with the time of 'anal dabbing' during feeding. Peak gut expansion precedes peak Malpighian tubule guanine crystal occurrence in a hysteretic manner. There is no evidence of Malpighian tubule expansion by fluid alone. Crystals are not found during the slow phase of liquidised prey digestion. Malpighian tubules do not appear to be osmoregulatory. Malpighian guanine is only observed 48 h to 10 days after the commencement of feeding. Post digestion guanine crystal levels in the expanded Malpighian tubules are high-peaking as a pulse 5 days after the start of feeding (i.e. after the gut is void of food at 52.5 h). The half-life of guanine elimination from the tubules is 53 h. Evidence for a physiological input cascade is found-the effective half-life of guanine appearance in the Malpighian tubules being 7.8-16.7 h. Crystals are found present at all times in the lumen of the rectal vesicle and not anywhere else lumenally in the gut at all. No guanine was observed inside gut cells. There is no evidence for the storage in the rectal vesicle of a 'pulse' of Malpighian excretory products from a discrete 'pulse' of prey ingestion. A latent egestive common catabolic phase in the gut is inferred commencing 12.5 h after the start of feeding which may cause the rectal vesicle to expand due to the catabolism of current or previous meals. Malpighian tubules swell as the gut contracts in size over time post-prandially. There is evidence that at a

  5. Structural and functional alterations in Malpighian tubules as biomarkers of environmental pollution: synopsis and prospective.

    PubMed

    Giglio, Anita; Brandmayr, Pietro

    2017-08-01

    Although a number of biomarkers of pollutant exposure have been identified in invertebrate species, little is known about the effect on Malpighian tubules playing an essential role in excretion and osmoregulation. Analyses of structural and functional alterations on this organ can be useful to predict the effects at the organism and population level in monitoring studies of environmental pollution. The aim of the present review is to provide a synthesis of existing knowledge on cellular damages induced by xenobiotics in Malpighian tubules both under laboratory and field conditions. We compared studies of exposure to pesticides and heavy metals as mainly environmental contaminants from anthropogenic activities. This report provided evidence that the exposure to xenobiotics has an effect on this organ and reinforces the need for further research integrating molecular biomarkers with analysis on Malpighian tubules. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Salinity alters snakeskin and mesh transcript abundance and permeability in midgut and Malpighian tubules of larval mosquito, Aedes aegypti.

    PubMed

    Jonusaite, Sima; Donini, Andrew; Kelly, Scott P

    2017-03-01

    This study examined the distribution and localization of the septate junction (SJ) proteins snakeskin (Ssk) and mesh in osmoregulatory organs of larval mosquito (Aedes aegypti), as well as their response to altered environmental salt levels. Ssk and mesh transcripts and immunoreactivity were detected in tissues of endodermal origin such as the midgut and Malpighian tubules of A. aegypti larvae, but not in ectodermally derived hindgut and anal papillae. Immunolocalization of Ssk and mesh in the midgut and Malpighian tubules indicated that both proteins are concentrated at regions of cell-cell contact between epithelial cells. Transcript abundance of ssk and mesh was higher in the midgut and Malpighian tubules of brackish water (BW, 30% SW) reared A. aegypti larvae when compared with freshwater (FW) reared animals. Therefore, [ 3 H]polyethylene glycol (MW 400Da, PEG-400) flux was examined across isolated midgut and Malpighian tubule preparations as a measure of their paracellular permeability. It was found that PEG-400 flux was greater across the midgut of BW versus FW larvae while the Malpighian tubules of BW-reared larvae had reduced PEG-400 permeability in conjunction with increased Cl - secretion compared to FW animals. Taken together, data suggest that Ssk and mesh are found in smooth SJs (sSJs) of larval A. aegypti and that their abundance alters in association with changes in epithelial permeability when larvae reside in water of differing salt content. This latter observation suggests that Ssk and mesh play a role in the homeostatic control of salt and water balance in larval A. aegypti. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Mechanisms of calcium sequestration by isolated Malpighian tubules of the house cricket Acheta domesticus.

    PubMed

    Browne, Austin; O'Donnell, Michael J

    2018-01-01

    Hemolymph calcium homeostasis in insects is achieved by the Malpighian tubules, primarily by sequestering excess Ca 2+ within internal calcium stores (Ca-rich granules) most often located within type I (principal) tubule cells. Using both the scanning ion-selective electrode technique and the Ramsay secretion assay this study provides the first measurements of basolateral and transepithelial Ca 2+ fluxes across the Malpighian tubules of an Orthopteran insect, the house cricket Acheta domesticus. Ca 2+ transport was specific to midtubule segments, where 97% of the Ca 2+ entering the tubule is sequestered within intracellular calcium stores and the remaining 3% is secreted into the lumen. Antagonists of voltage-gated (L-type) calcium channels decreased Ca 2+ influx ≥fivefold in adenosine 3',5'-cyclic monophosphate (cAMP)-stimulated tubules, suggesting basolateral Ca 2+ influx is facilitated by voltage-gated Ca 2+ channels. Increasing fluid secretion through manipulation of intracellular levels of cAMP or Ca 2+ had opposite effects on tubule Ca 2+ transport. The adenylyl cyclase-cAMP-PKA pathway promotes Ca 2+ sequestration whereas both 5-hydroxytryptamine and thapsigargin inhibited sequestration. Our results suggest that the midtubules of Acheta domesticus are dynamic calcium stores, which maintain hemolymph calcium concentration by manipulating rates of Ca 2+ sequestration through stimulatory (cAMP) and inhibitory (Ca 2+ ) regulatory pathways. © 2017 Wiley Periodicals, Inc.

  8. Polymorphic organization of the endoplasmic reticulum of the Malpighian tubule. Evidence for a transcellular route.

    PubMed

    Berthelet, F; Beaudry-Lonergan, M; Linares, H; Whittembury, G; Bergeron, M

    1987-01-01

    Isosmotic fluid absorption carried out by many mammalian epithelia appears to be similar to the isosmotic secretion of insect epithelia such as the Malpighian tubules, which are responsible for urine formation and osmoregulation. We have studied by electron microscopy (80 kV) the three-dimensional characteristics of organelles in the Malpighian tubules of Rhodnius prolixus using thick sections (0.3-0.5 microns) and uranyl and lead impregnation. The ER presents a different organization in the upper (distal) and lower (proximal) segments of the Malpighian tubule. In distal secretory segment, the ER forms a network made of chains of vesicles having irregular shapes (ca. 0.06 micron in diameter) connected to each other by canaliculi while in the lower absorptive segment, the ER is made of parallel saccules arranged in stacks or whorls in the central region of the cytoplasm. In both segments, the ER network extends throughout the cytoplasm from the basolateral infoldings to the apex between the many mitochondria present in these two areas. A unique feature of these cells, revealed by thick sections, is the presence in each microvillus of either a mitochondrion or an ER canaliculus in continuity with the ER network. The ER does not seem to have any specific association with mitochondria or other organelles. As in the mammalian nephron, this ER organization is most likely related to specific segmental functions and adds support to its potential role as a transcellular epithelial route.

  9. Cloning and functional characterization of inward-rectifying potassium (Kir) channels from Malpighian tubules of the mosquito Aedes aegypti

    PubMed Central

    Piermarini, Peter M.; Rouhier, Matthew F.; Schepel, Matthew; Kosse, Christin; Beyenbach, Klaus W.

    2013-01-01

    Inward-rectifying K+ (Kir) channels play critical physiological roles in a variety of vertebrate cells/tissues, including the regulation of membrane potential in nerve and muscle, and the transepithelial transport of ions in osmoregulatory epithelia, such as kidneys and gills. It remains to be determined whether Kir channels play similar physiological roles in insects. In the present study, we sought to 1) clone the cDNAs of Kir channel subunits expressed in the renal (Malpighian) tubules of the mosquito Aedes aegypti, and 2) characterize the electrophysiological properties of the cloned Kir subunits when expressed heterologously in oocytes of Xenopus laevis. Here, we reveal that three Kir subunits are expressed abundantly in Aedes Malpighian tubules (AeKir1, AeKir2B, and AeKir3); each of their full-length cDNAs was cloned. Heterologous expression of the AeKir1 or the AeKir2B subunits in Xenopus oocytes elicits inward-rectifying K+ currents that are blocked by barium. Relative to the AeKir2B-expressing oocytes, the AeKir1-expressing oocytes 1) produce larger macroscopic currents, and 2) exhibit a modulation of their conductive properties by extracellular Na+. Attempts to functionally characterize the AeKir3 subunit in Xenopus oocytes were unsuccessful. Lastly, we show that in isolated Aedes Malpighian tubules, the cation permeability sequence of the basolateral membrane of principal cells (Tl+ > K+ > Rb+ > NH4+) is consistent with the presence of functional Kir channels. We conclude that in Aedes Malpighian tubules, Kir channels contribute to the majority of the barium-sensitive transepithelial transport of K+. PMID:23085358

  10. Malpighian tubules are important determinants of Pseudomonas transstadial transmission and longtime persistence in Anopheles stephensi.

    PubMed

    Chavshin, Ali Reza; Oshaghi, Mohammad Ali; Vatandoost, Hasan; Yakhchali, Bagher; Zarenejad, Fahimeh; Terenius, Olle

    2015-01-21

    Pseudomonas is a genus of bacteria commonly found in investigations of gut microbes in malaria mosquitoes. Among those mosquitoes is the dominating malaria vector in Asia, Anopheles stephensi, where Pseudomonas is a prevailing bacterium and natural inhabitant of its breeding places. In order to explore the reason for finding Pseudomonas so frequently, an investigation of its localization and transstadial properties was undertaken. A Pseudomonas isolate from An. stephensi was transformed successfully with an endogenous plasmid modified to express green fluorescent protein (GFP). Subsequently, the Pseudomonas-GFP was added to the laboratory larval breeding place of An. stephensi and taken up by the larvae. After 24 hours, the larvae were cleaned and moved to a bath with double-distilled water. Also, female adults were fed sugar solution containing Pseudomonas-GFP. The Pseudomonas-GFP was traced in the alimentary canal of larvae, pupae and adults. Fluorescent microscopy and PCR assays showed that the Pseudomonas bacteria underwent transstadial transmission from larvae to pupae and then to adults. In blood-fed female mosquitoes, the bacteria increased in numbers and remained in the mosquito body for at least three weeks after eclosion. In addition to the midgut, the Malpighian tubules of both larvae and adult mosquitoes were colonized by the bacteria. Also Pseudomonas-GFP that was distributed through sugar solution was able to colonize the Malpighian tubules of adult females. Colonization of the Malpighian tubules by Pseudomonas bacteria seems to be important for the transstadial passage from larvae to adult and presumably for the longevity of the bacteria in the adult mosquito. The existence of an entry point in the larval stage, and the long duration in the female gut, opens up for a possible use of Pseudomonas in mosquito paratransgenesis.

  11. Feulgen-DNA response and chromatin condensation in Malpighian tubules of Melipona rufiventris and Melipona quadrifasciata (Hymenoptera, Apoidea).

    PubMed

    Mampumbu, André Roberto; Mello, Maria Luiza S

    2008-08-01

    Melipona quadrifasciata and Melipona rufiventris are stingless bee species which present low and high heterochromatin content, respectively, on their mitotic chromosomes as assessed visually after a C-banding assay. However, these species do not show differences in the C-banding responses of their Malpighian tubule interphase nuclei. In the present study, the Feulgen-DNA response, which could inform on differences in DNA depurination due to differences in chromatin condensation, was compared in the cell nuclei of the Malpighian tubules of these species. It was hypothesized that differences in acid hydrolysis kinetics patterns, as assessed by Feulgen reaction and studied microspectrophotometrically, could discriminate M. quadrifasciata and M. rufiventris interphase nuclei not distinguishable with the C-banding method. Feulgen-DNA values corresponding to more than one ploidy class were found in both species; these values at the hydrolysis time corresponding to the maximal DNA depurination for each ploidy degree were higher in M. quadrifasciata, reflecting a higher DNA content in the Malpighian tubule cell nuclei of this species compared to those of M. rufiventris at the same larval instar. The maximal Feulgen-DNA values of M. quadrifasciata after short (50 min) and long (90 min) hydrolysis times were found to be closer to each other, while those of M. rufiventris occurred sharply at the long hydrolysis time, indicating that DNA depurination in M. quadrifasciata occurred faster. This result is probably related to the involvement of differences in chromatin condensation; it agrees with the idea that M. rufiventris contains more heterochromatin than M. quadrifasciata, which is supported by the analysis of results obtained with the image analysis parameter average absorption ratio. The depurination kinetics studied here with the Feulgen reaction were revealed to be more pertinent than the C-banding technique in establishing differences in levels of chromatin condensation

  12. The control of Malpighian tubule secretion in a predacious hemipteran insect, the spined soldier bug Podisus maculiventris (Heteroptera, Pentatomidae)

    USDA-ARS?s Scientific Manuscript database

    Spined soldier bugs, Podisus maculiventris, are heteropteran insects that feed voraciously on other insects, particular the soft bodied larval forms of Lepidoptera and Coleoptera. The response of P. maculiventris Malpighian tubules (MT) to serotonin and known diuretic and antidiuretic peptides has b...

  13. The single kinin receptor signals to separate and independent physiological pathways in Malpighian tubules of the yellow fever mosquito

    USDA-ARS?s Scientific Manuscript database

    In the past we have used the leucokinins, the kinins of the cockroach Leucophaea, to evaluate the mechanism of diuretic action of kinin peptides in Malpighian tubules of the yellow fever mosquito Aedes aegypti. Now using aedeskinins, the kinins of Aedes, are available, we find that in isolated Aede...

  14. RNA-Seq Comparison of Larval and Adult Malpighian Tubules of the Yellow Fever Mosquito Aedes aegypti Reveals Life Stage-Specific Changes in Renal Function.

    PubMed

    Li, Yiyi; Piermarini, Peter M; Esquivel, Carlos J; Drumm, Hannah E; Schilkey, Faye D; Hansen, Immo A

    2017-01-01

    Introduction: The life history of Aedes aegypti presents diverse challenges to its diuretic system. During the larval and pupal life stages mosquitoes are aquatic. With the emergence of the adult they become terrestrial. This shifts the organism within minutes from an aquatic environment to a terrestrial environment where dehydration has to be avoided. In addition, female mosquitoes take large blood meals, which present an entirely new set of challenges to salt and water homeostasis. Methods: To determine differences in gene expression associated with these different life stages, we performed an RNA-seq analysis of the main diuretic tissue in A. aegypti , the Malpighian tubules. We compared transcript abundance in 4th instar larvae to that of adult females and analyzed the data with a focus on transcripts that encode proteins potentially involved in diuresis, like water and solute channels as well as ion transporters. We compared our results against the model of potassium- and sodium chloride excretion in the Malpighian tubules proposed by Hine et al. (2014), which involves at least eight ion transporters and a proton-pump. Results: We found 3,421 of a total number of 17,478 (19.6%) unique transcripts with a P < 0.05 and at least a 2.5 fold change in expression levels between the two groups. We identified two novel transporter genes that are highly expressed in the adult Malpighian tubules, which have not previously been part of the transport model in this species and may play important roles in diuresis. We also identified candidates for hypothesized sodium and chloride channels. Detoxification genes were generally higher expressed in larvae. Significance: This study represents the first comparison of Malpighian tubule transcriptomes between larval and adult A. aegypti mosquitoes, highlighting key differences in their renal systems that arise as they transform from an aquatic filter-feeding larval stage to a terrestrial, blood-feeding adult stage.

  15. Spinosad-mediated effects on the walking ability, midgut, and Malpighian tubules of Africanized honey bee workers.

    PubMed

    Lopes, Marcos Pereira; Fernandes, Kenner Morais; Tomé, Hudson Vaner Ventura; Gonçalves, Wagner Gonzaga; Miranda, Franciane Rosa; Serrão, José Eduardo; Martins, Gustavo Ferreira

    2018-06-01

    The global decline in Apis mellifera colonies is attributed to multiple factors, including pesticides. The bioinsecticide spinosad was initially recognized as safe for non-target organisms; however, its toxicity has been changing this view. Here, we investigated the survival, behavioral changes, and structural changes in the midgut and Malpighian tubules of A. mellifera treated orally with a spinosad formulation. The field-recommended concentration of spinosad killed 100% of the bees. The 5% and 50% lethal concentrations (LC 5 and LC 50 , respectively) of spinosad altered the behavioral activity, reducing the walking distance and velocity, and increased the resting time in comparison to the control. The LC 50 caused disorganization of the epithelia of tested organs and induced oxidative stress and cell death. The present work provides new insights into the debate about the role of bioinsecticides in the mortality of Africanized honey bees. Even at very low concentrations, the spinosad formulation was toxic to the vital organs midgut and Malpighian tubules and adversely affected walking behavior. This detailed evaluation of the impact of the bioinsecticide on A. mellifera will contribute to the clarification of disturbances probably caused by spinosad formulations, which can be used to develop more sustainable protocols in agriculture. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. RNA-Seq Comparison of Larval and Adult Malpighian Tubules of the Yellow Fever Mosquito Aedes aegypti Reveals Life Stage-Specific Changes in Renal Function

    PubMed Central

    Li, Yiyi; Piermarini, Peter M.; Esquivel, Carlos J.; Drumm, Hannah E.; Schilkey, Faye D.; Hansen, Immo A.

    2017-01-01

    Introduction: The life history of Aedes aegypti presents diverse challenges to its diuretic system. During the larval and pupal life stages mosquitoes are aquatic. With the emergence of the adult they become terrestrial. This shifts the organism within minutes from an aquatic environment to a terrestrial environment where dehydration has to be avoided. In addition, female mosquitoes take large blood meals, which present an entirely new set of challenges to salt and water homeostasis. Methods: To determine differences in gene expression associated with these different life stages, we performed an RNA-seq analysis of the main diuretic tissue in A. aegypti, the Malpighian tubules. We compared transcript abundance in 4th instar larvae to that of adult females and analyzed the data with a focus on transcripts that encode proteins potentially involved in diuresis, like water and solute channels as well as ion transporters. We compared our results against the model of potassium- and sodium chloride excretion in the Malpighian tubules proposed by Hine et al. (2014), which involves at least eight ion transporters and a proton-pump. Results: We found 3,421 of a total number of 17,478 (19.6%) unique transcripts with a P < 0.05 and at least a 2.5 fold change in expression levels between the two groups. We identified two novel transporter genes that are highly expressed in the adult Malpighian tubules, which have not previously been part of the transport model in this species and may play important roles in diuresis. We also identified candidates for hypothesized sodium and chloride channels. Detoxification genes were generally higher expressed in larvae. Significance: This study represents the first comparison of Malpighian tubule transcriptomes between larval and adult A. aegypti mosquitoes, highlighting key differences in their renal systems that arise as they transform from an aquatic filter-feeding larval stage to a terrestrial, blood-feeding adult stage. PMID:28536536

  17. Intracellular Chloride and Scaffold Protein Mo25 Cooperatively Regulate Transepithelial Ion Transport through WNK Signaling in the Malpighian Tubule.

    PubMed

    Sun, Qifei; Wu, Yipin; Jonusaite, Sima; Pleinis, John M; Humphreys, John M; He, Haixia; Schellinger, Jeffrey N; Akella, Radha; Stenesen, Drew; Krämer, Helmut; Goldsmith, Elizabeth J; Rodan, Aylin R

    2018-05-01

    Background With No Lysine kinase (WNK) signaling regulates mammalian renal epithelial ion transport to maintain electrolyte and BP homeostasis. Our previous studies showed a conserved role for WNK in the regulation of transepithelial ion transport in the Drosophila Malpighian tubule. Methods Using in vitro assays and transgenic Drosophila lines, we examined two potential WNK regulators, chloride ion and the scaffold protein mouse protein 25 (Mo25), in the stimulation of transepithelial ion flux. Results In vitro , autophosphorylation of purified Drosophila WNK decreased as chloride concentration increased. In conditions in which tubule intracellular chloride concentration decreased from 30 to 15 mM as measured using a transgenic sensor, Drosophila WNK activity acutely increased. Drosophila WNK activity in tubules also increased or decreased when bath potassium concentration decreased or increased, respectively. However, a mutation that reduces chloride sensitivity of Drosophila WNK failed to alter transepithelial ion transport in 30 mM chloride. We, therefore, examined a role for Mo25. In in vitro kinase assays, Drosophila Mo25 enhanced the activity of the Drosophila WNK downstream kinase Fray, the fly homolog of mammalian Ste20-related proline/alanine-rich kinase (SPAK), and oxidative stress-responsive 1 protein (OSR1). Knockdown of Drosophila Mo25 in the Malpighian tubule decreased transepithelial ion flux under stimulated but not basal conditions. Finally, whereas overexpression of wild-type Drosophila WNK , with or without Drosophila Mo25 , did not affect transepithelial ion transport, Drosophila Mo25 overexpressed with chloride-insensitive Drosophila WNK increased ion flux. Conclusions Cooperative interactions between chloride and Mo25 regulate WNK signaling in a transporting renal epithelium. Copyright © 2018 by the American Society of Nephrology.

  18. Early gene Broad complex plays a key role in regulating the immune response triggered by ecdysone in the Malpighian tubules of Drosophila melanogaster.

    PubMed

    Verma, Puja; Tapadia, Madhu G

    2015-08-01

    In insects, humoral response to injury is accomplished by the production of antimicrobial peptides (AMPs) which are secreted in the hemolymph to eliminate the pathogen. Drosophila Malpighian tubules (MTs), however, are unique immune organs that show constitutive expression of AMPs even in unchallenged conditions and the onset of immune response is developmental stage dependent. Earlier reports have shown ecdysone positively regulates immune response after pathogenic challenge however, a robust response requires prior potentiation by the hormone. Here we provide evidence to show that MTs do not require prior potentiation with ecdysone hormone for expression of AMPs and they respond to ecdysone very fast even without immune challenge, although the different AMPs Diptericin, Cecropin, Attacin, Drosocin show differential expression in response to ecdysone. We show that early gene Broad complex (BR-C) could be regulating the IMD pathway by activating Relish and physically interacting with it to activate AMPs expression. BR-C depletion from Malpighian tubules renders the flies susceptible to infection. We also show that in MTs ecdysone signaling is transduced by EcR-B1 and B2. In the absence of ecdysone signaling the IMD pathway associated genes are down regulated and activation and translocation of transcription factor Relish is also affected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Contribution of AT-, GC-, and methylated cytidine-rich DNA to chromatin composition in Malpighian tubule cell nuclei of Panstrongylus megistus (Hemiptera, Reduviidae).

    PubMed

    Alvarenga, Elenice M; Mondin, Mateus; Rodrigues, Vera L C C; Andrade, Larissa M; Vidal, Benedicto de Campos; Mello, Maria Luiza S

    2012-11-01

    The Malpighian tubule cell nuclei of male Panstrongylus megistus, a vector of Chagas disease, contain one chromocenter, which is composed solely of the Y chromosome. Considering that different chromosomes contribute to the composition of chromocenters in different triatomini species, the aim of this study was to determine the contribution of AT-, GC-, and methylated cytidine-rich DNA in the chromocenter as well as in euchromatin of Malpighian tubule cell nuclei of P. megistus in comparison with published data for Triatoma infestans. Staining with 4',6-diamidino-2-phenylindole/actinomycin D and chromomycin A(3)/distamycin, immunodetection of 5-methylcytidine and AgNOR test were used. The results revealed AT-rich/GC-poor DNA in the male chromocenter, but equally distributed AT and GC DNA sequences in male and female euchromatin, like in T. infestans. Accumulation of argyrophilic proteins encircling the chromocenter did not always correlate with that of GC-rich DNA. Methylated DNA identified by immunodetection was found sparsely distributed in the euchromatin of both sexes and at some points around the chromocenter edge, but it could not be considered responsible for chromatin condensation in the chromocenter, like in T. infestans. However, unlike in T. infestans, no correlation between the chromocenter AT-rich DNA and nucleolus organizing region (NOR) DNA was found in P. megistus. Copyright © 2011 Elsevier GmbH. All rights reserved.

  20. Tumor suppressors Sav/Scrib and oncogene Ras regulate stem cell transformation in adult Drosophila Malpighian Tubules

    PubMed Central

    Zeng, Xiankun; Singh, Shree Ram; Hou, David; Hou, Steven X.

    2012-01-01

    An increasing body of evidence suggests that tumors might originate from a few transformed cells that share many properties with normal stem cells. However, it remains unclear how normal stem cells are transformed into cancer stem cells. Here, we demonstrated that mutations causing the loss of tumor suppressor Sav or Scrib or activation of the oncogene Ras transform normal stem cells into cancer stem cells through a multistep process in the adult Drosophila Malpighian Tubules (MTs). In wild-type MTs, each stem cell generates one self-renewing and one differentiating daughter cell. However, in flies with loss-of-function sav or scrib or gain-of-function Ras mutations, both daughter cells grew and behaved like stem cells, leading to the formation of tumors in MTs. Ras functioned downstream of Sav and Scrib in regulating the stem cell transformation. The Ras-transformed stem cells exhibited many of the hallmarks of cancer, such as increased proliferation, reduced cell death, and failure to differentiate. We further demonstrated that several signal transduction pathways (including MEK/MAPK, RhoA, PKA, and TOR) mediate Rasṕ function in the stem cell transformation. Therefore, we have identified a molecular mechanism that regulates stem cell transformation, and this finding may lead to strategies for preventing tumor formation in certain organs. PMID:20432470

  1. Malpighian Tubule Cells in Overwintering Cave Crickets Troglophilus cavicola (Kollar, 1833) and T. neglectus Krauss, 1879 (Rhaphidophoridae, Ensifera).

    PubMed

    Lipovšek, Saška; Novak, Tone; Janžekovič, Franc; Weiland, Nina; Leitinger, Gerd

    2016-01-01

    During winter, cave cricket larvae undergo dormancy in subterranean habitats; this dormancy is termed diapause in second year Troglophilus cavicola larvae because they mature during this time, and termed quiescence in T. neglectus, because they mature after dormancy. Here we used electron microscopy to analyze ultrastructural changes in the epithelial cells in the Malpighian tubules (MTs) of T. cavicola during diapause, in order to compare them with previous findings on T. neglectus. Moreover, the autophagosomes were studied with immunofluorescence microscopy in both species. Although the basic ultrastructure of the cells was similar, specific differences appeared during overwintering. During this natural starvation period, the nucleus, rER, the Golgi apparatus and mitochondria did not show structural changes, and the spherites were exploited. The abundances of autophagic structures in both species increased during overwintering. At the beginning of overwintering, in both species and sexes, the rates of cells with autophagic structures (phagophores, autophagosomes, autolysosomes and residual bodies) were low, while their rates increased gradually towards the end of overwintering. Between sexes, in T. cavicola significant differences were found in the autophagosome abundances in the middle and at the end, and in T. neglectus at the end of overwintering. Females showed higher rates of autophagic cells than males, and these were more abundant in T. cavicola. Thus, autophagic processes in the MT epithelial cells induced by starvation are mostly parallel in diapausing T. cavicola and quiescent T. neglectus, but more intensive in diapausing females.

  2. Malpighian Tubule Cells in Overwintering Cave Crickets Troglophilus cavicola (Kollar, 1833) and T. neglectus Krauss, 1879 (Rhaphidophoridae, Ensifera)

    PubMed Central

    Lipovšek, Saška; Novak, Tone; Janžekovič, Franc; Weiland, Nina

    2016-01-01

    During winter, cave cricket larvae undergo dormancy in subterranean habitats; this dormancy is termed diapause in second year Troglophilus cavicola larvae because they mature during this time, and termed quiescence in T. neglectus, because they mature after dormancy. Here we used electron microscopy to analyze ultrastructural changes in the epithelial cells in the Malpighian tubules (MTs) of T. cavicola during diapause, in order to compare them with previous findings on T. neglectus. Moreover, the autophagosomes were studied with immunofluorescence microscopy in both species. Although the basic ultrastructure of the cells was similar, specific differences appeared during overwintering. During this natural starvation period, the nucleus, rER, the Golgi apparatus and mitochondria did not show structural changes, and the spherites were exploited. The abundances of autophagic structures in both species increased during overwintering. At the beginning of overwintering, in both species and sexes, the rates of cells with autophagic structures (phagophores, autophagosomes, autolysosomes and residual bodies) were low, while their rates increased gradually towards the end of overwintering. Between sexes, in T. cavicola significant differences were found in the autophagosome abundances in the middle and at the end, and in T. neglectus at the end of overwintering. Females showed higher rates of autophagic cells than males, and these were more abundant in T. cavicola. Thus, autophagic processes in the MT epithelial cells induced by starvation are mostly parallel in diapausing T. cavicola and quiescent T. neglectus, but more intensive in diapausing females. PMID:27379687

  3. Metabolism of an insect diuretic hormone by Malpighian tubules studied by liquid chromatography coupled with electrospray ionization mass spectrometry

    PubMed Central

    Li, Hong; Wang, Houle; Schegg, Kathleen M.; Schooley, David A.

    1997-01-01

    The larger of two diuretic hormones of the tobacco hornworm, Manduca sexta, (Mas-DH) is a peptide of 41 residues. It is one of a family of seven currently known insect diuretic hormones that are similar to the corticotropin-releasing factor–urotensin–sauvagine family of peptides. We investigated the possible inactivation of Mas-DH by incubating it in vitro with larval Malpighian tubules (Mt), the target organ of the hormone. The medium was analyzed, and degradation products were identified, using on-line microbore reversed-phase liquid chromatography coupled to electrospray ionization mass spectrometry (RPLC-ESI-MS). This sensitive technique allows identification of metabolites of Mas-DH (present at an initial level of ≈1 μM). An accurate Mr value for a metabolite is usually sufficient for unambiguous identification. Mas-DH is cleaved by Mt proteases initially at L29–R30 and R30–A31 under our assay conditions; some Mas-DH is also oxidized, apparently at M2 and M11. The proteolysis can be inhibited by 5 mM EDTA, suggesting that divalent metals are needed for peptide cleavage. The oxidation of the hormone can be inhibited by catalase or 1 mM methionine, indicating that H2O2 or related reactive oxygen species are responsible for the oxidative degradation observed. RPLC-ESI-MS is shown here to be an elegant and efficient method for studying peptide hormone metabolism resulting from unknown proteases and pathways. PMID:9391048

  4. Two inwardly rectifying potassium channels, Irk1 and Irk2, play redundant roles in Drosophila renal tubule function

    PubMed Central

    Wu, Yipin; Baum, Michel; Huang, Chou-Long

    2015-01-01

    Inwardly rectifying potassium channels play essential roles in renal physiology across phyla. Barium-sensitive K+ conductances are found on the basolateral membrane of a variety of insect Malpighian (renal) tubules, including Drosophila melanogaster. We found that barium decreases the lumen-positive transepithelial potential difference in isolated perfused Drosophila tubules and decreases fluid secretion and transepithelial K+ flux. In those insect species in which it has been studied, transcripts from multiple genes encoding inwardly rectifying K+ channels are expressed in the renal (Malpighian) tubule. In Drosophila melanogaster, this includes transcripts of the Irk1, Irk2, and Irk3 genes. The role of each of these gene products in renal tubule function is unknown. We found that simultaneous knockdown of Irk1 and Irk2 in the principal cell of the fly tubule decreases transepithelial K+ flux, with no additive effect of Irk3 knockdown, and decreases barium sensitivity of transepithelial K+ flux by ∼50%. Knockdown of any of the three inwardly rectifying K+ channels individually has no effect, nor does knocking down Irk3 simultaneously with Irk1 or Irk2. Irk1/Irk2 principal cell double-knockdown tubules remain sensitive to the kaliuretic effect of cAMP. Inhibition of the Na+/K+-ATPase with ouabain and Irk1/Irk2 double knockdown have additive effects on K+ flux, and 75% of transepithelial K+ transport is due to Irk1/Irk2 or ouabain-sensitive pathways. In conclusion, Irk1 and Irk2 play redundant roles in transepithelial ion transport in the Drosophila melanogaster renal tubule and are additive to Na+/K+-ATPase-dependent pathways. PMID:26224687

  5. The adult Drosophila malphigian tubules are maintained by multipotent stem cells | Center for Cancer Research

    Cancer.gov

    All animals must excrete the waste products of metabolism. Excretion is performed by the kidney in vertebrates and by the Malpighian tubules in Drosophila. The mammalian kidney has an inherent ability for recovery and regeneration after ischemic injury. Stem cells and progenitor cells have been proposed to be responsible for repair and regeneration of injured renal tissue.

  6. Biochemical activity and multiple locations of particulate guanylate cyclase in Rhyacophila dorsalis acutidens (Insecta: Trichoptera) provide insights into the cGMP signalling pathway in Malpighian tubules.

    PubMed

    Secca, T; Sciaccaluga, M; Marra, A; Barberini, L; Bicchierai, M C

    2011-04-01

    In insect renal physiology, cGMP and cAMP have important regulatory roles. In Drosophila melanogaster, considered a good model for molecular physiology studies, and in other insects, cGMP and cAMP act as signalling molecules in the Malpighian tubules (MTs). However, many questions related to cyclic nucleotide functions are unsolved in principal cells (PC) and stellate cells (SC), the two cell types that compose the MT. In PC, despite the large body of information available on soluble guanylate cyclase (sGC) in the cGMP pathway, the functional circuit of particulate guanylate cyclase (pGC) remains obscure. In SC, on the other side, the synthesis and physiological role of the cGMP are still unknown. Our biochemical data regarding the presence of cyclic nucleotides in the MTs of Rhyacophila dorsalis acutidens revealed a cGMP level above the 50%, in comparison with the cAMP. The specific activity values for the membrane-bound guanylate cyclase were also recorded, implying that, besides the sGC, pGC is a physiologically relevant source of cGMP in MTs. Cytochemical studies showed ultrastructurally that there was a great deal of pGC on the basolateral membranes of both the principal and stellate cells. In addition, pGC was also detected in the contact zone between the two cell types and in the apical microvillar region of the stellate cells bordering the tubule lumen. The pGC signal is so well represented in PC and, unexpectedly in SC of MTs, that it is possible to hypothesize the existence of still uncharacterized physiological processes regulated by the pGC-cGMP system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Genetic and cytogenetic analysis of the olive fruit fly Bactrocera oleae (Diptera: Tephritidae).

    PubMed

    Mavragani-Tsipidou, P

    2002-09-01

    The genetic and cytogenetic characteristics of one of the major agricultural pests, the olive fruit fly Bactmcera oleae, are presented here. The mitotic metaphase complement of this insect consists of six pairs of chromosomes including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the polytene complements of three larval tissues, the fat body, the salivary glands and the Malpighian tubules of this pest has shown (a) a total number of five long chromosomes (10 polytene arms) that correspond to the five autosomes of the mitotic nuclei and a heterochromatic mass corresponding to the sex chromosomes, (b) the constancy of the banding pattern of the three somatic tissues, (c) the absence of a typical chromocenter as an accumulation of heterochromatin, (d) the existence of reverse tandem duplications, and (e) the presence of toroid tips of the chromosome arms. The in situ hybridization of genes or DNA sequences to the salivary gland polytene chromosomes of B. oleae provided molecular markers for all five autosomes and permitted the establishment of chromosomal homologies among B. olea, B. tryoni and Ceratitis capitata. The heat shock response of B. oleae, as revealed by heat-inducible puffing and protein pattern, shows a higher thermotolerance than Drosophila melanogaster.

  8. Optical Quantification of Intracellular pH in Drosophila melanogaster Malpighian Tubule Epithelia with a Fluorescent Genetically-encoded pH Indicator.

    PubMed

    Rossano, Adam J; Romero, Michael F

    2017-08-11

    Epithelial ion transport is vital to systemic ion homeostasis as well as maintenance of essential cellular electrochemical gradients. Intracellular pH (pHi) is influenced by many ion transporters and thus monitoring pHi is a useful tool for assessing transporter activity. Modern Genetically Encoded pH-Indicators (GEpHIs) provide optical quantification of pHi in intact cells on a cellular and subcellular scale. This protocol describes real-time quantification of cellular pHi regulation in Malpighian Tubules (MTs) of Drosophila melanogaster through ex vivo live-imaging of pHerry, a pseudo-ratiometric GEpHI with a pKa well-suited to track pH changes in the cytosol. Extracted adult fly MTs are composed of morphologically and functionally distinct sections of single-cell layer epithelia, and can serve as an accessible and genetically tractable model for investigation of epithelial transport. GEpHIs offer several advantages over conventional pH-sensitive fluorescent dyes and ion-selective electrodes. GEpHIs can label distinct cell populations provided appropriate promoter elements are available. This labeling is particularly useful in ex vivo, in vivo, and in situ preparations, which are inherently heterogeneous. GEpHIs also permit quantification of pHi in intact tissues over time without need for repeated dye treatment or tissue externalization. The primary drawback of current GEpHIs is the tendency to aggregate in cytosolic inclusions in response to tissue damage and construct over-expression. These shortcomings, their solutions, and the inherent advantages of GEpHIs are demonstrated in this protocol through assessment of basolateral proton (H + ) transport in functionally distinct principal and stellate cells of extracted fly MTs. The techniques and analysis described are readily adaptable to a wide variety of vertebrate and invertebrate preparations, and the sophistication of the assay can be scaled from teaching labs to intricate determination of ion flux via

  9. The effect of cold acclimation on active ion transport in cricket ionoregulatory tissues.

    PubMed

    Des Marteaux, Lauren E; Khazraeenia, Soheila; Yerushalmi, Gil Y; Donini, Andrew; Li, Natalia G; Sinclair, Brent J

    2018-02-01

    Cold-acclimated insects defend ion and water transport function during cold exposure. We hypothesized that this is achieved via enhanced active transport. The Malpighian tubules and rectum are likely targets for such transport modifications, and recent transcriptomic studies indicate shifts in Na + -K + ATPase (NKA) and V-ATPase expression in these tissues following cold acclimation. Here we quantify the effect of cold acclimation (one week at 12°C) on active transport in the ionoregulatory organs of adult Gryllus pennsylvanicus field crickets. We compared primary urine production of warm- and cold-acclimated crickets in excised Malpighian tubules via Ramsay assay at a range of temperatures between 4 and 25°C. We then compared NKA and V-ATPase activities in Malpighian tubule and rectal homogenates from warm- and cold-acclimated crickets via NADH-linked photometric assays. Malpighian tubules of cold-acclimated crickets excreted fluid at lower rates at all temperatures compared to warm-acclimated crickets. This reduction in Malpighian tubule excretion rates may be attributed to increased NKA activity that we observed for cold-acclimated crickets, but V-ATPase activity was unchanged. Cold acclimation had no effect on rectal NKA activity at either 21°C or 6°C, and did not modify rectal V-ATPase activity. Our results suggest that an overall reduction, rather than enhancement of active transport in the Malpighian tubules allows crickets to maintain hemolymph water balance during cold exposure, and increased Malpighian tubule NKA activity may help to defend and/or re-establish ion homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Rapid change of chromomeric and pairing patterns of polytene chromosome tips in D. melanogaster: migration of polytene-nonpolytene transition zone?

    PubMed

    Roberts, P A

    1979-07-01

    The high variability of chromomeric patterns in near-terminal regions of polytene chromosome arms has been explored in a number of races, strains and hybrids of Drosophila melanogaster. Traditional explanations for tip differences between strains (differential compaction of chromatin, somatic or germinal deletion) are examined and, in the light of the reported observations, rejected. The range of polytene tip variability and rates of change in wild races are greater than has been supposed: strains formerly considered to be terminally deleted appear to gain terminal bands; others, formerly considered normal, appear to have lost them. Strains with high cell-to-cell tip variability are also described. Cell-to-cell variations, as well as much of the observed rapid changes in tip appearance, are probably due to heritable differences in the location of an abrupt transition zone between polytene and nonpolytene chromatin. A quantitative relationship between the amount of certain subterminal bands present and the frequency of tip association of nonhomologous chromosomes is shown and its possible significance for chromosome is shown and its possible for chromosome pairing discussed.

  11. The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster.

    PubMed

    Cannell, Elizabeth; Dornan, Anthony J; Halberg, Kenneth A; Terhzaz, Selim; Dow, Julian A T; Davies, Shireen-A

    2016-06-01

    Malpighian tubules are critical organs for epithelial fluid transport and stress tolerance in insects, and are under neuroendocrine control by multiple neuropeptides secreted by identified neurons. Here, we demonstrate roles for CRF-like diuretic hormone 44 (DH44) and Drosophila melanogaster kinin (Drome-kinin, DK) in desiccation and starvation tolerance. Gene expression and labelled DH44 ligand binding data, as well as highly selective knockdowns and/or neuronal ablations of DH44 in neurons of the pars intercerebralis and DH44 receptor (DH44-R2) in Malpighian tubule principal cells, indicate that suppression of DH44 signalling improves desiccation tolerance of the intact fly. Drome-kinin receptor, encoded by the leucokinin receptor gene, LKR, is expressed in DH44 neurons as well as in stellate cells of the Malpighian tubules. LKR knockdown in DH44-expressing neurons reduces Malpighian tubule-specific LKR, suggesting interactions between DH44 and LK signalling pathways. Finally, although a role for DK in desiccation tolerance was not defined, we demonstrate a novel role for Malpighian tubule cell-specific LKR in starvation tolerance. Starvation increases gene expression of epithelial LKR. Also, Malpighian tubule stellate cell-specific knockdown of LKR significantly reduced starvation tolerance, demonstrating a role for neuropeptide signalling during starvation stress. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Active Solute Transport across Frog Skin and Epithelial Cell Systems According to the Association-Induction Hypothesis,

    DTIC Science & Technology

    1980-01-01

    indicated in insect Malpighian tubules, insect midgut , choroid plexus and gastric mucosa. 9.2.5 Conciliation of the Conflict Between Models of "Homocellular...SeApeinaebility is therefore under close I Ling (P;. 14) control by hormones or drugs that react with receptor sites on these protelns and so...bears remembering that in active transport across bifacial cells the key cation is not always No% Thus in MalPighian tubules of insects the key Lon

  13. The Heterochromatic Rolled Gene of Drosophila Melanogaster Is Extensively Polytenized and Transcriptionally Active in the Salivary Gland Chromocenter

    PubMed Central

    Berghella, L.; Dimitri, P.

    1996-01-01

    This paper reports a cytogenetic and molecular study of the structural and functional organization of the Drosophila melanogaster chromocenter. The relations between mitotic (constitutive) heterochromatin and α- and β-heterochromatin are not fully understood. In the present work, we have studied the polytenization of the rolled (rl) locus, a 100-kb genomic region that maps to the proximal heterochromatin of chromosome 2 and has been previously thought to contribute to α-heterochromatin. We show that rolled undergoes polytenization in salivary gland chromosomes to a degree comparable to that of euchromatic genes, despite its deep heterochromatic location. In contrast, both the Bari-1 sequences and the AAGAC satellite repeats, located respectively to the left and right of rl, are severely underrepresented and thus both appear to be α-heterochromatic. In addition, we found that rl is transcribed in polytene tissues. Together, the results reported here indicate that functional sequences located within the proximal constitutive heterochromatin can undergo polytenization, contributing to the formation of β-heterochromatin. The implications of this finding to chromocenter structure are discussed. PMID:8878678

  14. [Late-replicating regions in salivary gland polytene chromosomes of Drosophila melanogaster].

    PubMed

    Kolesnikov, T D; Andreenkova, N G; Beliaeva, E S; Goncharov, F P; Zykova, T Iu; Boldyreva, L V; Pokholkova, g V; Zhimulev, I F

    2013-01-01

    About 240 specific regions that are replicated at the very end of the S-phase have been identified in D. melanogaster polytene chromosomes. These regions have a repressive chromatine state, low gene density, long intergenic distances and are enriched in tissue specific genes. In polytene chromosomes, about a quarter of these regions have no enough time to complete replication. As a result, underreplication zones represented by fewer DNA copy number, appear. We studied 60 chromosome regions that demonstrated the most pronounced under-replication. By comparing the location of these regions on a molecular map with syntenic blocks found earlier for Drosophila species by von Grotthuss et al., 2010, we have shown that across the genus Drosophila, these regions tend to have conserved gene order. This forces us to assume the existence of evolutionary mechanisms aimed at maintaining the integrity of these regions.

  15. Distribution of spotted fever group rickettsiae in select tissues of experimentally infected and field-collected Gulf Coast ticks.

    PubMed

    Edwards, Kristine T; Goddard, Jerome; Varela-Stokes, Andrea

    2011-05-01

    Salivary glands, midgut, Malpighian tubules, and ovaries were dissected from infected, colony-derived Amblyomma maculatum (Gulf Coast ticks) injected as nymphs with either Rickettsia parkeri (a spotted fever group rickettsia [SFGR]; treatment) or phosphate-buffered saline (negative control). For comparison, similar tissues were dissected from hemolymph-positive, field-collected ticks. Tissues were analyzed by indirect fluorescent antibody (IFA) tests. All phosphate-buffered saline-injected ticks were IFA negative, whereas SFGR were detected by IFA in 100% of the salivary glands and ovaries and 78 and 75% of midgut and Malpighian tubule samples, respectively, of R. parkeri-injected ticks. Nearly 22% (10/46) of the field-collected ticks were hemolymph positive. Of those, SFGR were detected by IFA in 80% of the salivary glands, 67% of the ovaries, and 60% in the midgut and Malpighian tubules. This is the first study to assess the distribution of SFGR in select tissues of A. maculatum ticks.

  16. Chironomus group classification according to the mapping of polytene chromosomes

    NASA Astrophysics Data System (ADS)

    Salleh, Syafinaz; Kutty, Ahmad Abas

    2013-11-01

    Chironomus is one of the important genera in Chironomidae family since they are widely diverse and abundance in aquatic ecosystem. Since Chironomus is very diverse, taxonomic work on this genus is very difficult and incomplete. Objective of this study is to form group classification of Chironomus according to the polytene chromosome mapping. The specific characteristics of polytene chromosomes in the salivary gland appeared to be particularly promising for taxonomic diagnosis of chironomid species. Chironomid larvae were collected from pristine sites at Sg. Langat and cultured in laboratory to reach fourth instar stage. The salivary glands were removed from larvae and chromosomes were stained with aceto orcein. Results showed that polytene chromosomes of Chironomus comprise of three long metacentric or submetacentric arms (BF, CD and AE arms) and one short acrocentric (G arm). In regards to nucleolar organizing region (NOR), Balbiani ring (BR), puffings and chromosome rearrangement, a number of four groups of different banding patterns were found. Two groups called as G group A and B have common NOR on arm BF and BR on arm G. However, group A has rearrangement pattern on arm CD and not in group B. This makes group B separated from group A. Another two groups called as groups C and D do not have common NOR on arm BF and also BR on arm G. Groups C and D were separated using arms G and arm AE. At arm G, only group C rearrangement pattern at unit 23c whereas group D was found to have large NOR at arm G and as well as arm AE, only group D has rearrangement pattern at unit 12c. This study indicates that chromosome arrangement could aid in revealing Chironomus diversity.

  17. Migration of Drosophila intestinal stem cells across organ boundaries

    PubMed Central

    Takashima, Shigeo; Paul, Manash; Aghajanian, Patrick; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2013-01-01

    All components of the Drosophila intestinal tract, including the endodermal midgut and ectodermal hindgut/Malpighian tubules, maintain populations of dividing stem cells. In the midgut and hindgut, these stem cells originate from within larger populations of intestinal progenitors that proliferate during the larval stage and form the adult intestine during metamorphosis. The origin of stem cells found in the excretory Malpighian tubules (‘renal stem cells’) has not been established. In this paper, we investigate the migration patterns of intestinal progenitors that take place during metamorphosis. Our data demonstrate that a subset of adult midgut progenitors (AMPs) move posteriorly to form the adult ureters and, consecutively, the renal stem cells. Inhibiting cell migration by AMP-directed expression of a dominant-negative form of Rac1 protein results in the absence of stem cells in the Malpighian tubules. As the majority of the hindgut progenitor cells migrate posteriorly and differentiate into hindgut enterocytes, a group of the progenitor cells, unexpectedly, invades anteriorly into the midgut territory. Consequently, these progenitor cells differentiate into midgut enterocytes. The midgut determinant GATAe is required for the differentiation of midgut enterocytes derived from hindgut progenitors. Wingless signaling acts to balance the proportion of hindgut progenitors that differentiate as midgut versus hindgut enterocytes. Our findings indicate that a stable boundary between midgut and hindgut/Malpighian tubules is not established during early embryonic development; instead, pluripotent progenitor populations cross in between these organs in both directions, and are able to adopt the fate of the organ in which they come to reside. PMID:23571215

  18. Precise determination of the molecular limits of a polytene chromosome band: regulatory sequences for the Notch gene are in the interband.

    PubMed

    Rykowski, M C; Parmelee, S J; Agard, D A; Sedat, J W

    1988-08-12

    We have aligned the molecular map of the Notch locus to the cytological features of the salivary gland polytene chromosomes of D. melanogaster in order to determine the interphase chromatin structure of this gene. Using high-resolution in situ hybridization and computer-aided optical microscope data collection and image analysis, we have determined that the coding portions and introns of the Notch gene, which is not expressed in this tissue, are all contained within the polytene chromosome band 3C7. The portion of the Notch gene that resides 5' to the start of transcription lies in an open chromatin conformation, the interband between bands 3C6 and 3C7. Our data are most consistent with condensation of the chromosomal DNA into 30 nm fibers in this polytene band.

  19. Similarity in replication timing between polytene and diploid cells is associated with the organization of the Drosophila genome

    PubMed Central

    Goncharov, Fedor P.; Zhimulev, Igor F.

    2018-01-01

    Morphologically, polytene chromosomes of Drosophila melanogaster consist of compact “black” bands alternating with less compact “grey” bands and interbands. We developed a comprehensive approach that combines cytological mapping data of FlyBase-annotated genes and novel tools for predicting cytogenetic features of chromosomes on the basis of their protein composition and determined the genomic coordinates for all black bands of polytene chromosome 2R. By a PCNA immunostaining assay, we obtained the replication timetable for all the bands mapped. The results allowed us to compare replication timing between polytene chromosomes in salivary glands and chromosomes from cultured diploid cell lines and to observe a substantial similarity in the global replication patterns at the band resolution level. In both kinds of chromosomes, the intervals between black bands correspond to early replication initiation zones. Black bands are depleted of replication initiation events and are characterized by a gradient of replication timing; therefore, the time of replication completion correlates with the band length. The bands are characterized by low gene density, contain predominantly tissue-specific genes, and are represented by silent chromatin types in various tissues. The borders of black bands correspond well to the borders of topological domains as well as to the borders of the zones showing H3K27me3, SUUR, and LAMIN enrichment. In conclusion, the characteristic pattern of polytene chromosomes reflects partitioning of the Drosophila genome into two global types of domains with contrasting properties. This partitioning is conserved in different tissues and determines replication timing in Drosophila. PMID:29659604

  20. Dysferlin mediates membrane tubulation and links T-tubule biogenesis to muscular dystrophy.

    PubMed

    Hofhuis, Julia; Bersch, Kristina; Büssenschütt, Ronja; Drzymalski, Marzena; Liebetanz, David; Nikolaev, Viacheslav O; Wagner, Stefan; Maier, Lars S; Gärtner, Jutta; Klinge, Lars; Thoms, Sven

    2017-03-01

    The multi-C2 domain protein dysferlin localizes to the plasma membrane and the T-tubule system in skeletal muscle; however, its physiological mode of action is unknown. Mutations in the DYSF gene lead to autosomal recessive limb-girdle muscular dystrophy type 2B and Miyoshi myopathy. Here, we show that dysferlin has membrane tubulating capacity and that it shapes the T-tubule system. Dysferlin tubulates liposomes, generates a T-tubule-like membrane system in non-muscle cells, and links the recruitment of phosphatidylinositol 4,5-bisphosphate to the biogenesis of the T-tubule system. Pathogenic mutant forms interfere with all of these functions, indicating that muscular wasting and dystrophy are caused by the dysferlin mutants' inability to form a functional T-tubule membrane system. © 2017. Published by The Company of Biologists Ltd.

  1. Effects of cold-acclimation on gene expression in Fall field cricket (Gryllus pennsylvanicus) ionoregulatory tissues.

    PubMed

    Des Marteaux, Lauren E; McKinnon, Alexander H; Udaka, Hiroko; Toxopeus, Jantina; Sinclair, Brent J

    2017-05-08

    Cold tolerance is a key determinant of temperate insect distribution and performance. Chill-susceptible insects lose ion and water homeostasis during cold exposure, but prior cold acclimation improves both cold tolerance and defense of homeostasis. The mechanisms underlying these processes are mostly unknown; cold acclimation is thought to enhance ion transport in the cold and/or prevent leak of water and ions. To identify candidate mechanisms of cold tolerance plasticity we generated transcriptomes of ionoregulatory tissues (hindgut and Malpighian tubules) from Gryllus pennsylvanicus crickets and compared gene expression in warm- and cold-acclimated individuals. We assembled a G. pennsylvanicus transcriptome de novo from 286 million 50-bp reads, yielding 70,037 contigs (~44% of which had putative BLAST identities). We compared the transcriptomes of warm- and cold-acclimated hindguts and Malpighian tubules. Cold acclimation led to a ≥ 2-fold change in the expression of 1493 hindgut genes (733 downregulated, 760 upregulated) and 2008 Malpighian tubule genes (1009 downregulated, 999 upregulated). Cold-acclimated crickets had altered expression of genes putatively associated with ion and water balance, including: a downregulation of V-ATPase and carbonic anhydrase in the Malpighian tubules and an upregulation of Na + -K + ATPase in the hindgut. We also observed acclimation-related shifts in the expression of cytoskeletal genes in the hindgut, including actin and actin-anchoring/stabilizing proteins, tubulin, α-actinin, and genes involved in adherens junctions organization. In both tissues, cold acclimation led to differential expression of genes encoding cytochrome P450s, glutathione-S-transferases, apoptosis factors, DNA repair, and heat shock proteins. This is the first G. pennsylvanicus transcriptome, and our tissue-specific approach yielded new candidate mechanisms of cold tolerance plasticity. Cold acclimation may reduce loss of hemolymph volume in the

  2. A three-dimensional structural dissection of Drosophila polytene chromosomes.

    PubMed

    Urata, Y; Parmelee, S J; Agard, D A; Sedat, J W

    1995-10-01

    We have analyzed the three-dimensional structural details of Drosophila melanogaster polytene chromosome bands and interbands using three-dimensional light microscopy and a novel method of sample preparation that does not involve flattening or stretching the chromosomes. Bands have been visualized in unfixed chromosomes stained with the DNA specific dye 4,6-Diamidino-2-phenylindole (DAPI). Interbands have been visualized using fixed chromosomes that have been immunostained with an antibody to RNA polymerase II. Additionally, these structures have been analyzed using in situ hybridization with probes from specific genetic loci (Notch and white). Bands are seen to be composed of approximately 36 substructural features that measure 0.2-0.4 micron in diameter. We suggest that these substructural features are in fact longitudinal fibers made up of bundles of chromatids. Band shape can be a reproducible characteristic of a particular band and is dependent on the spatial relationship of these bundles, varying from bands with a uniform distribution of bundles to bands with a peripheral concentration of chromatin. Interbands are composed of bundles of chromatids of a similar size and number as those seen in the bands. The distribution of bundles is similar between a band and the neighboring interband, implying that there is a long range organization to the DNA that includes both the coding and the noncoding portions of genes. Finally, we note that the polytene chromosome has a circular shape when viewed in cross section, whether there are one or two homologs present.

  3. Toxicological and histopathological effects of boric acid on Atta sexdens rubropilosa (Hymenoptera: Formicidae) workers.

    PubMed

    Sumida, Simone; Silva-Zacarin, Elaine C M; Decio, Pâmela; Malaspina, Osmar; Bueno, Fabiana C; Bueno, Odair C

    2010-06-01

    The current study compared the toxicity of different concentrations of boric acid in adult workers of Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae), with toxicological bioassays, and examining the dose-dependent and time-dependent histopathological changes, of the midgut, Malpighian tubules, and postpharyngeal glands. Our results revealed the importance of conducting toxicological bioassays combined with morphological analyses of the organs of ants chronically exposed to insecticides used in commercial ant baits. In vitro bioassays showed that boric acid significantly decreases the survivorship of workers regardless of concentration, whereas the morphological data suggested progressive dose-dependent and time-dependent changes in the organs examined, which were evident in the midgut. The midgut is the first organ to be affected, followed by the postpharyngeal gland and Malpighian tubules. This sequence is in agreement with the absorption pathway of this chemical compound in the midgut, its transference to the hemolymph, possibly reaching the postpharyngeal glands, and excretion by the Malpighian tubules. These progressive changes might be due to the cumulative and delayed effect of boric acid. Our findings provide important information for the understanding of the action of boric acid in ant baits in direct and indirect target organs.

  4. Border Structure of Intercalary Heterochromatin Bands of Drosophila melanogaster Polytene Chromosomes.

    PubMed

    Khoroshko, V A; Zykova, T Yu; Popova, O O; Zhimulev, I F

    2018-03-01

    The precise genomic localization of the borders of 62 intercalary heterochromatin bands in Drosophila polytene chromosomes was determined. A new type of bands containing chromatin of different states was identified. This type is a combination of the gray band and the intercalary heterochromatin band, creating a genetic structure that with a light microscope is identified as a continuous band. The border structure of such bands includes the coding regions of genes with ubiquitous activity.

  5. Aniso Tubule

    NASA Image and Video Library

    2015-04-03

    ISS043E087335 (04/03/2015) --- ESA (European Space Agency) astronaut Samantha Cristoforetti works to retrieve samples for the Aniso Tubule experiment from the Cell Biology Experiment Facility (CBEF) on Apr. 3, 2015. Aniso Tubule examines growth modifications of Arabidopsis hypocotyls in space. Scientists will analyze the changes in dynamics of cortical microtubules and microtubule associated proteins with a fluorescence microscope.

  6. A BAC-based physical map of the Hessian fly (Mayetiola destructor) genome anchored to polytene chromosomes

    USDA-ARS?s Scientific Manuscript database

    The Hessian fly (Mayetiola destructor) is an important insect pest of wheat and an experimental organism for studies of plant-insect interactions. It has tractable genetics, polytene chromosomes, a relatively small genome (158 Mb), and shares a gene-for-gene relationship with wheat. To improve its...

  7. Organ growth without cell division: somatic polyploidy in a moth, Ephestia kuehniella.

    PubMed

    Buntrock, Lydia; Marec, František; Krueger, Sarah; Traut, Walther

    2012-11-01

    Organ growth depends on cell division and (or) cell growth. Here, we present a study on two organs whose growth depends entirely on cell growth, once they are formed in the embryo: Malpighian tubules and silk glands of the flour moth, Ephestia kuehniella . Between first and last larval instar, the volume of Malpighian tubule cells increases by a factor of ∼1800 and that of silk gland cells by a factor of ∼3100. We determined the number of endocyles required to reach these stages by Feulgen cytometry. Cells of Malpighian tubules were in the 2C stage in first instar larvae and reached 1024C after 9 endocycles in last instar larvae (1C = 0.45 pg DNA). Silk gland cells already reached a DNA content of 8C-16C in first instar larvae and attained up to 8192C in last instar larvae after a total of 12 endocycles. The nuclei were small and more or less spherical in first instar larvae, but they were huge, flat, and bizarrely branched in last instar larvae. We consider branching as a compensatory adaptation to improve molecular traffic between nucleus and cytoplasm in these excessively large and highly polyploid cells (i) by reducing the mean distance between nucleus and cytoplasm and (ii) by enlarging the surface-to-volume ratio of these nuclei.

  8. Anopheles darlingi polytene chromosomes: revised maps including newly described inversions and evidence for population structure in Manaus

    PubMed Central

    Cornel, Anthony J; Brisco, Katherine K; Tadei, Wanderli P; Secundino, Nágila FC; Rafael, Miriam S; Galardo, Allan KR; Medeiros, Jansen F; Pessoa, Felipe AC; Ríos-Velásquez, Claudia M; Lee, Yoosook; Pimenta, Paulo FP; Lanzaro, Gregory C

    2016-01-01

    Salivary gland polytene chromosomes of 4th instar Anopheles darlingi Root were examined from multiple locations in the Brazilian Amazon. Minor modifications were made to existing polytene photomaps. These included changes to the breakpoint positions of several previously described paracentric inversions and descriptions of four new paracentric inversions, two on the right arm of chromosome 3 and two on the left arm of chromosome 3 that were found in multiple locations. A total of 18 inversions on the X (n = 1) chromosome, chromosome 2 (n = 7) and 3 (n = 11) were scored for 83 individuals from Manaus, Macapá and Porto Velho municipalities. The frequency of 2Ra inversion karyotypes in Manaus shows significant deficiency of heterozygotes (p < 0.0009). No significant linkage disequilibrium was found between inversions on chromosome 2 and 3. We hypothesize that at least two sympatric subpopulations exist within the An. darlingi population at Manaus based on inversion frequencies. PMID:27223867

  9. Structure of the kidney of Bufo arenarum: intermediate segment, distal tubule and collecting tubule.

    PubMed

    Farías, Alejandro; Hermida, Gladys Noemí; Fiorito, Luisa Eleonora

    2003-04-01

    The ultrastructure of the intermediate segment (IS), distal tubule and collecting tubule (CT) of the south american toad Bufo arenarum, was studied by light and transmission electron microscopy. The IS is composed of cubical ciliated cells which propel the urine along the renal tubule. The distal tubule is divided into two portions: the early distal tubule (EDT) and the late distal tubule (LDT). The EDT is characterized by only one type of cells with well developed basolateral interdigitations and numerous elongated mitochondria, which are oriented normal to the basal surface. The "macula densa--like" is a specialized zone of the EDT in contact with the vascular pole, where cells are more tightly packed than in the rest of the tubule. The LDT shows two types of cells called dark and light cells according to the appearance of their cytoplasm. Dark cells have microplicae and few but long microvilli at their luminal surface, and abundant mitochondria in their cytoplasm. Light cells show basal and lateral infoldings and few mitochondria. The CT, which is composed of dark and light cells, exhibits an enlarged lumen with an undulated surface and dilated spaces between neighbouring cells. This work is a contribution to the knowledge of the kidney of B. arenarum; frequently used as an experimental model for physiological and biochemical studies.

  10. Structural studies of polytene chromosomes and bone implant coatings: Raman microspectroscopy and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    de Grauw, Kees

    Raman microscopy and atomic force microscopy (AFM) are used for the investigation of the composition and structure of the banding patterns of polytene chromosomes and of hydroxyapatite bone-implant coatings. For Raman microspectroscopy two new measuring methods are introduced: line-scan Raman and Low-wavenumber Raman microspectroscopy. A transparent and easy to use model to predict the depth resolution of a confocal microscope is described. A Chevron-type of filter set was developed for simultaneous measurements of Stokes and anti-Stokes Raman scattering close to the exciting laser frequency. Bands of polytene chromosomes appeared to contain a higher concentration of DNA and proteins compared to interbands. AFM measurements revealed that bands consist of a densely packed chromatin structure and are hardly affected by stretching of the chromosome. Interbands have a more open chromatin structure and are more accessible to solvent molecules. For the study of bone implant coatings Raman micro spectroscopy appeared to provide an easy, non- destructive, way to obtain information about the apatite structure and the degree of crystallinity. It was shown that the degree of crystallinity was constant over coatings produced by plasma spraying while the material density did vary.

  11. The Extrachromosomal EAST Protein of Drosophila Can Associate with Polytene Chromosomes and Regulate Gene Expression

    PubMed Central

    Wasser, Martin; Chia, William

    2007-01-01

    The EAST protein of Drosophila is a component of an expandable extrachromosomal domain of the nucleus. To better understand its function, we studied the dynamics and localization of GFP-tagged EAST. In live larval salivary glands, EAST-GFP is highly mobile and localizes to the extrachromosomal nucleoplasm. When these cells are permeabilized, EAST-GFP rapidly associated with polytene chromosomes. The affinity to chromatin increases and mobility decreases with decreasing salt concentration. Deleting the C-terminal residues 1535 to 2301 of EAST strongly reduces the affinity to polytene chromosomes. The bulk of EAST-GFP co-localizes with heterochromatin and is absent from transcriptionally active chromosomal regions. The predominantly chromosomal localization of EAST-GFP can be detected in non-detergent treated salivary glands of pupae as they undergo apoptosis, however not in earlier stages of development. Consistent with this chromosomal pattern of localization, genetic evidence indicates a role for EAST in the repression of gene expression, since a lethal east mutation is allelic to the viable mutation suppressor of white-spotted. We propose that EAST acts as an ion sensor that modulates gene expression in response to changing intracellular ion concentrations. PMID:17476334

  12. Uriniferous tubule: structural and functional organization.

    PubMed

    Christensen, Erik Ilsø; Wagner, Carsten A; Kaissling, Brigitte

    2012-04-01

    The uriniferous tubule is divided into the proximal tubule, the intermediate (thin) tubule, the distal tubule and the collecting duct. The present chapter is based on the chapters by Maunsbach and Christensen on the proximal tubule, and by Kaissling and Kriz on the distal tubule and collecting duct in the 1992 edition of the Handbook of Physiology, Renal Physiology. It describes the fine structure (light and electron microscopy) of the entire mammalian uriniferous tubule, mainly in rats, mice, and rabbits. The structural data are complemented by recent data on the location of the major transport- and transport-regulating proteins, revealed by morphological means(immunohistochemistry, immunofluorescence, and/or mRNA in situ hybridization). The structural differences along the uriniferous tubule strictly coincide with the distribution of the major luminal and basolateral transport proteins and receptors and both together provide the basis for the subdivision of the uriniferous tubule into functional subunits. Data on structural adaptation to defined functional changes in vivo and to genetical alterations of specified proteins involved in transepithelial transport importantly deepen our comprehension of the correlation of structure and function in the kidney, of the role of each segment or cell type in the overall renal function,and our understanding of renal pathophysiology. © 2012 American Physiological Society. Compr Physiol 2:933-996, 2012.

  13. T-tubule disease: Relationship between t-tubule organization and regional contractile performance in human dilated cardiomyopathy.

    PubMed

    Crossman, David J; Young, Alistair A; Ruygrok, Peter N; Nason, Guy P; Baddelely, David; Soeller, Christian; Cannell, Mark B

    2015-07-01

    Evidence from animal models suggest that t-tubule changes may play an important role in the contractile deficit associated with heart failure. However samples are usually taken at random with no regard as to regional variability present in failing hearts which leads to uncertainty in the relationship between contractile performance and possible t-tubule derangement. Regional contraction in human hearts was measured by tagged cine MRI and model fitting. At transplant, failing hearts were biopsy sampled in identified regions and immunocytochemistry was used to label t-tubules and sarcomeric z-lines. Computer image analysis was used to assess 5 different unbiased measures of t-tubule structure/organization. In regions of failing hearts that showed good contractile performance, t-tubule organization was similar to that seen in normal hearts, with worsening structure correlating with the loss of regional contractile performance. Statistical analysis showed that t-tubule direction was most highly correlated with local contractile performance, followed by the amplitude of the sarcomeric peak in the Fourier transform of the t-tubule image. Other area based measures were less well correlated. We conclude that regional contractile performance in failing human hearts is strongly correlated with the local t-tubule organization. Cluster tree analysis with a functional definition of failing contraction strength allowed a pathological definition of 't-tubule disease'. The regional variability in contractile performance and cellular structure is a confounding issue for analysis of samples taken from failing human hearts, although this may be overcome with regional analysis by using tagged cMRI and biopsy mapping. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Cytogenetic Analysis of the South American Fruit Fly Anastrepha fraterculus (Diptera:Tephritidae) Species Complex: Construction of Detailed Photographic Polytene Chromosome Maps of the Argentinian Af. sp.1 Member

    PubMed Central

    Augustinos, Antonios A.; Drosopoulou, Elena; Lanzavecchia, Silvia B.; Cladera, Jorge L.; Caceres, Carlos; Bourtzis, Kostas; Mavragani-Tsipidou, Penelope; Zacharopoulou, Antigone

    2016-01-01

    Genetic and cytogenetic studies constitute a significant basis for understanding the biology of insect pests and the design and the construction of genetic tools for biological control strategies. Anastrepha fraterculus is an important pest of the Tephritidae family. It is distributed from southern Texas through eastern Mexico, Central America and South America causing significant crop damage and economic losses. Currently it is considered as a species complex; until now seven members have been described based on multidisciplinary approaches. Here we report the cytogenetic analysis of an Argentinian population characterized as Af. sp.1 member of the Anastrepha fraterculus species complex. The mitotic karyotype and the first detailed photographic maps of the salivary gland polytene chromosomes are presented. The mitotic metaphase complement consists of six (6) pairs of chromosomes, including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the salivary gland polytene complement shows a total number of five long chromosomes that correspond to the five autosomes of the mitotic karyotype and a heterochromatic network corresponding to the sex chromosomes. Comparison of the polytene chromosome maps between this species and Anastrepha ludens shows significant similarity. The polytene maps presented here are suitable for cytogenetic studies that could shed light on the species limits within this species complex and support the development of genetic tools for sterile insect technique (SIT) applications. PMID:27362546

  15. A leucokinin mimic elicits aversive behavior in mosquito Aedes aegypti (L.) and inhibits the sugar taste neuron

    USDA-ARS?s Scientific Manuscript database

    Insect kinins (leucokinins) are multifunctional peptides acting as neurohormones and neurotransmitters. In females of the mosquito vector Aedes aegypti (L.), aedeskinins are known to stimulate fluid secretion from the renal organs (Malpighian tubules) and hindgut contractions by activating a G prot...

  16. Regulation of tight junction permeability with switch-like speed.

    PubMed

    Beyenbach, Klaus W

    2003-09-01

    The case is made that tight junctions can undergo large reversible conductance changes in a matter of seconds and yet preserve their permselectivity. The diuretic peptide leucokinin transforms (renal) Malpighian tubules of the yellow fever mosquito from a moderately tight epithelium to a leaky epithelium by increasing the chloride-conductance of the paracellular shunt pathway. The nine-fold increase in the paracellular chloride-conductance brings about a non-selective stimulation of transepithelial sodium chloride and potassium chloride secretion, as expected from a conductance increase in the pathway taken by the counterion of sodium and potassium. The leucokinin signaling pathway consists in part of a receptor coupled G-protein, phospholipase C, inositol-1,4,5-trisphosphate, and increased intracellular calcium concentration that bring about the increase in the paracellular, tight junction chloride-conductance. As the conductance of the tight junction pathway increases it becomes more selective for the transepithelial passage of chloride. Epithelial cells in Malpighian tubules taper to tight junctions at their lateral edges exposing them directly to apical and serosal solutions. Furthermore, evolutionary pressures to excrete salt and water at high rates without the aid of glomerular filtration have led to powerful mechanisms of tubular secretion, capable of diuresis when the mosquito is challenged with the volume expansion of a blood meal. The tubular diuresis is mediated in part by increasing the paracellular chloride conductance. Thus, anatomical and physiological specializations in Malpighian tubules combine to yield the evidence for the dynamic hormonal regulation of the tight junction pathway.

  17. Identification of the septate junction protein gliotactin in the mosquito Aedes aegypti: evidence for a role in increased paracellular permeability in larvae.

    PubMed

    Jonusaite, Sima; Kelly, Scott P; Donini, Andrew

    2017-07-01

    Septate junctions (SJs) regulate paracellular permeability across invertebrate epithelia. However, little is known about the function of SJ proteins in aquatic invertebrates. In this study, a role for the transmembrane SJ protein gliotactin (Gli) in the osmoregulatory strategies of larval mosquito ( Aedes aegypti ) was examined. Differences in gli transcript abundance were observed between the midgut, Malpighian tubules, hindgut and anal papillae of A. aegypti , which are epithelia that participate in larval mosquito osmoregulation. Western blotting of Gli revealed its presence in monomer, putative dimer and alternatively processed protein forms in different larval mosquito organs. Gli localized to the entire SJ domain between midgut epithelial cells and showed a discontinuous localization along the plasma membranes of epithelial cells of the rectum as well as the syncytial anal papillae epithelium. In the Malpighian tubules, Gli immunolocalization was confined to SJs between the stellate and principal cells. Rearing larvae in 30% seawater caused an increase in Gli protein abundance in the anterior midgut, Malpighian tubules and hindgut. Transcriptional knockdown of gli using dsRNA reduced Gli protein abundance in the midgut and increased the flux rate of the paracellular permeability marker, polyethylene glycol (molecular weight 400 Da; PEG-400). Data suggest that in larval A. aegypti , Gli participates in the maintenance of salt and water balance and that one role for Gli is to participate in the regulation of paracellular permeability across the midgut of A. aegypti in response to changes in environmental salinity. © 2017. Published by The Company of Biologists Ltd.

  18. Salty dog, an SLC5 symporter, modulates Drosophila response to salt stress.

    PubMed

    Stergiopoulos, Konstantinos; Cabrero, Pablo; Davies, Shireen-Anne; Dow, Julian A T

    2009-03-03

    To regulate their internal environments, organisms must adapt to varying ion levels in their diet. Adult Drosophila were exposed to dietary salt stress, and their physiological, survival, and gene expression responses monitored. Insects continued to feed on NaCl-elevated diet, although levels >4% wt/vol ultimately proved fatal. Affymetrix microarray analysis of flies fed on diet containing elevated NaCl showed a phased response: the earliest response was widespread upregulation of immune genes, followed by upregulation of carbohydrate metabolism as the immune response was downregulated, then finally a switch to amino acid catabolism and inhibition of genes associated with the reproductive axis. Significantly, the online transcriptomic resource FlyAtlas reports that most of the modulated genes are predominantly expressed in hindgut or Malpighian (renal) tubule, implicating these excretory tissues as the major responders to salt stress. Three genes were selected for further study: the SLC5 symporter CG2196, the GLUT transporter CG6484, and the transcription factor sugarbabe (previously implicated in starvation and stress responses). Expression profiles predicted by microarray were validated by quantitative PCR (qPCR); expression was mapped to the alimentary canal by in situ hybridization. CG2196::eYFP overexpression constructs were localized to the basolateral membrane of the Malpighian (renal) tubules, and RNAi against CG2196 improved survival on high-salt diet, even when driven specifically to just principal cells of the Malpighian tubule, confirming both this tissue and this transporter as major determinants of survival upon salt stress. Accordingly, CG2196 was renamed salty dog (salt).

  19. Bicarbonate absorption by rabbit cortical collecting tubules in vitro.

    PubMed

    McKinney, T D; Burg, M B

    1978-02-01

    The rate of transport of bicarbonate was studied in isolated perfused rabbit cortical collecting tubules that were absorbing bicarbonate in vitro. Acetazolamide completely inhibited bicarbonate absorption, as was previously observed with isolated proximal tubules. Therefore, carbonic anhydrase probably is important for bicarbonate absorption in both the proximal tubules and collecting tubules. Inhibition of sodium transport by ouabain or elimination of its transport by completely removing the sodium did not cause a decrease in bicarbonate absorption by the collecting tubules. We previously found that inhibition of sodium transport caused a great decrease in bicarbonate absorption by proximal tubules. Therefore, absorption of bicarbonate is not directly related to sodium transport in collecting tubules, but it probably is related to sodium transport in isolated perfused rabbit proximal tubules. Amiloride inhibited bicarbonate absorption by the collecting tubules consistent with previous observations that the drug inhibits urinary acidification. Although amiloride also inhibits sodium transport and reduces the transepithelial voltage across the collecting tubules, the effect of the drug on bicarbonate transport apparently is independent of the other effects.

  20. Radial elasticity of self-assembled lipid tubules.

    PubMed

    Zhao, Yue; Tamhane, Karan; Zhang, Xuejun; An, Linan; Fang, Jiyu

    2008-07-01

    Self-assembled lipid tubules with crystalline bilayer walls represent useful supramolecular architectures which hold promise as vehicles for the controlled release of preloaded drugs and templates for the synthesis of one-dimensional inorganic materials. We study the local elasticity of lipid tubules of 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine by radial atomic force microscope indentation, coupled with finite element analysis. A reduced stiffness is found to extend a distance of approximately 600 nm from the ends of lipid tubules. The middle section of lipid tubules is homogeneous in terms of their radial elasticity with a Young's modulus of approximately 703 MPa. The inhomogeneous radial elasticity likely arises from the variation of lipid packing density near the tubule ends.

  1. Magnetic properties of permalloy-coated organic tubules

    NASA Astrophysics Data System (ADS)

    Krebs, J. J.; Rubinstein, M.; Lubitz, P.; Harford, M. Z.; Baral, S.; Shashidar, R.; Ho, Y. S.; Chow, G. M.; Qadri, S.

    1991-11-01

    An initial investigation is presented of the ferromagnetic properties of a novel type of magnetic composite, viz., permalloy-coated submicron diameter hollow cylinders or tubules. The tubules form spontaneously from an organic material, a diacetylenic phosopholipid, and were used as templates on which the ferromagnetic material was deposited by electroless deposition. The permalloy-coated tubules were dispersed in an epoxy matrix to measure the magnetization and ferromagnetic resonance (FMR) properties of individual tubules. The nature of the magnetic anisotropy and the FMR spectra observed confirmed that the tubules are well aligned by a magnetic field during the epoxy curing. The FMR spectra are interpreted in terms of a powder pattern distribution of thin-film spectra consistent with the large diameter-to-thickness ratio.

  2. Dentinal tubules revealed with X-ray tensor tomography.

    PubMed

    Jud, Christoph; Schaff, Florian; Zanette, Irene; Wolf, Johannes; Fehringer, Andreas; Pfeiffer, Franz

    2016-09-01

    Dentin is a mineralized material making up most of the tooth bulk. A system of microtubules, so called dentinal tubules, transverses it radially from the pulp chamber to the outside. This highly oriented structure leads to anisotropic mechanical properties directly connected to the tubules orientation and density: the ultimate tensile strength as well as the fracture toughness and the shear strength are largest perpendicular to dentinal tubules. Consequently, the fatigue strength depends on the direction of dentinal tubules, too. However, none of the existing techniques used to investigate teeth provide access to orientation and density of dentinal tubules for an entire specimen in a non-destructive way. In this paper, we measure a third molar human tooth both with conventional micro-CT and X-ray tensor tomography (XTT). While the achievable resolution in micro-CT is too low to directly resolve the dentinal tubules, we provide strong evidence that the direction and density of dentinal tubules can be indirectly measured by XTT, which exploits small-angle X-ray scattering to retrieve a 3D map of scattering tensors. We show that the mean directions of scattering structures correlate to the orientation of dentinal tubules and that the mean effective scattering strength provides an estimation of the relative density of dentinal tubules. Thus, this method could be applied to investigate the connection between tubule orientation and fatigue or tensile properties of teeth for a full sample without cutting one, non-representative peace of tooth out of the full sample. Copyright © 2016 The Academy of Dental Materials. All rights reserved.

  3. Detection and measurement of tubulitis in renal allograft rejection

    NASA Astrophysics Data System (ADS)

    Hiller, John B.; Chen, Qi; Jin, Jesse S.; Wang, Yung; Yong, James L. C.

    1997-04-01

    Tubulitis is one of the most reliable signs of acute renal allograft rejection. It occurs when mononuclear cells are localized between the lining tubular epithelial cells with or without disruption of the tubular basement membrane. It has been found that tubulitis takes place predominantly in the regions of the distal convoluted tubules and the cortical collecting system. The image processing tasks are to find the tubule boundaries and to find the relative location of the lymphocytes and epithelial cells and tubule boundaries. The requirement for accuracy applies to determining the relative locations of the lymphocytes and the tubule boundaries. This paper will show how the different sizes and grey values of the lymphocytes and epithelial cells simplify their identification and location. Difficulties in finding the tubule boundaries image processing will be illustrated. It will be shown how proximate location of epithelial cells and the tubule boundary leads to distortion in determination of the calculated boundary. However, in tubulitis the lymphocytes and the tubule boundaries are proximate.In these cases the tubule boundary is adequately resolved and the image processing is satisfactory to determining relativity in location. An adaptive non-linear anisotropic diffusion process is presented for image filtering and segmentation. Multi-layer analysis is used to extract lymphocytes and tubulitis from images. This paper will discuss grading of tissue using the Banff system. The ability to use computer to use computer processing will be argued as obviating problems of reproducability of values for this classification. This paper will also feature discussion of alternative approaches to image processing and provide an assessment of their capability for improving the identification of the tubule boundaries.

  4. Electron microscope mapping of the pericentric and intercalary heterochromatic regions of the polytene chromosomes of the mutant Suppressor of underreplication in Drosophila melanogaster.

    PubMed

    Semeshin, F; Belyaeva, S; Zhimulev, F

    2001-12-01

    Breaks and ectopic contacts in the heterochromatic regions of Drosophila melanogaster polytene chromosomes are the manifestations of the cytological effects of DNA underreplication. Their appearance makes these regions difficult to map. The Su(UR)ES gene, which controls the phenomenon, has been described recently. Mutation of this locus gives rise to new blocks of material in the pericentric heterochromatic regions and causes the disappearance of breaks and ectopic contacts in the intercalary heterochromatic regions, thereby making the banding pattern distinct and providing better opportunities for mapping of the heterochromatic regions in polytene chromosomes. Here, we present the results of an electron microscope study of the heterochromatic regions. In the wild-type salivary glands, the pericentric regions correspond to the beta-heterochromatin and do not show the banding pattern. The most conspicuous cytological effect of the Su(UR)ES mutation is the formation of a large banded chromosome fragment comprising at least 25 bands at the site where the 3L and 3R proximal arms connect. In the other pericentric regions, 20CF, 40BF and 41BC, 15, 12 and 9 new bands were revealed, respectively. A large block of densely packed material appears in the most proximal part of the fourth chromosome. An electron microscope analysis of 26 polytene chromosome regions showing the characteristic features of intercalary heterochromatin was also performed. Suppression of DNA underreplication in the mutant transforms the bands with weak spots into large single bands.

  5. Active peptidomimetic insect kinin analogs with type VI turn motif 4-aminopyroglutamate lack native peptide bonds

    USDA-ARS?s Scientific Manuscript database

    Two stereochemical variant insect kinin mimetic analogs 1796 and 1797 containing (2S,4S)-APy (APy) and (2R,4S)-APy (Apy), respectively, were synthesized and evaluated on isolated Malpighian tubules of the house cricket Acheta domesticus to determine if they could retain the fluid secretion stimulat...

  6. Haematobia irritans dataset of raw sequence reads from Illumina-based transcriptome sequencing of specific tissues and life stages

    USDA-ARS?s Scientific Manuscript database

    Illumina HiSeq technology was used to sequence the transcriptome from various dissected tissues and life stages from the horn fly, Haematobia irritans. These samples include eggs (0, 2, 4, and 9 hours post-oviposition), adult fly gut, adult fly legs, adult fly malpighian tubule, adult fly ovary, adu...

  7. Can the exposure of Apis mellifera (Hymenoptera, Apiadae) larvae to a field concentration of thiamethoxam affect newly emerged bees?

    PubMed

    Friol, Priscila Sepúlveda; Catae, Aline Fernanda; Tavares, Daiana Antonia; Malaspina, Osmar; Roat, Thaisa Cristina

    2017-10-01

    The use of insecticides on crops can affect non-target insects, such as bees. In addition to the adult bees, larvae can be exposed to the insecticide through contaminated floral resources. Therefore, this study aimed to investigate the possible effects of the exposure of A. mellifera larvae to a field concentration of thiamethoxam (0.001 ng/μL thiamethoxam) on larval and pupal survival and on the percentage of adult emergence. Additionally, its cytotoxic effects on the digestive cells of midgut, Malpighian tubules cells and Kenyon cells of the brain of newly emerged A. mellifera bees were analyzed. The results showed that larval exposure to this concentration of thiamethoxam did not influence larval and pupal survival or the percentage of adult bee emergence. However, this exposure caused ultra-structural alterations in the target and non-target organs of newly emerged bees. The digestive cell of bees that were exposed to the insecticide exhibited a basal labyrinth without long and thin channels and compromised mitochondria. In Malpighian tubules cells, disorganized basal labyrinth, dilated mitochondria with a deformed shape and a loss of cristae, and disorganized microvilli were observed. The results showed that the exposed bees presented Kenyon cells with alterations in the nucleus and mitochondria. These alterations indicate possible tissue degeneration, demonstrating the cytotoxicity of thiamethoxam in the target and non-target organs of newly emerged bees. Such results suggest cellular organelle impairment that can compromise cellular function of the midgut cells, Malpighian tubules cells and Kenyon cells, and, consequently, can compromise the longevity of the bees of the whole colony. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effectiveness of various toothpastes on dentine tubule occlusion.

    PubMed

    Arnold, W H; Prange, M; Naumova, E A

    2015-04-01

    Dentine hypersensitivity is an increasing problem in dentistry. Several products are available that claim to occlude open dentine tubules and to reduce dentine hypersensitivity. The aim of this study was to investigate the effectiveness of several different products on dentine tubule occlusion using qualitative and quantitative methods. Dentine discs were prepared from extracted human premolars and molars. The dentine discs were brushed with 6 different experimental toothpastes, 1 positive control toothpaste and 1 negative control without toothpaste; the brushing simulated a total brushing time of 1 year. Half of the discs were etched with lemon juice after toothpaste application. Standardized scanning electron microphotographs were taken and converted into binary black and white images. The black pixels, which represented the open dentine tubules, were counted and statistically evaluated. Then, half of the dentine discs were broken, and the occlusion of the dentine tubules was investigated using energy dispersive X-ray spectroscopy (EDS). The number of open dentine tubules decreased significantly after brushing with 5 of the 6 tested toothpastes. A significant effect was observed after acid erosion for 3 of the 6 tested toothpastes. EDS revealed partly closed dentine tubules after brushing with 3 toothpastes; however, no partly closed dentine tubules were observed after acid erosion. Some toothpastes are capable of partial dentine tubule occlusion. This occlusion is unstable and can be removed with acid erosion. Desensitizing toothpastes are the most common products that are used against dentine hypersensitivity, and these toothpastes affect dentine tubule occlusion. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Solo and keratin filaments regulate epithelial tubule morphology.

    PubMed

    Nishimura, Ryosuke; Kato, Kagayaki; Fujiwara, Sachiko; Ohashi, Kazumasa; Mizuno, Kensaku

    2018-04-28

    Epithelial tubules, consisting of the epithelial cell sheet with a central lumen, are the basic structure of many organs. Mechanical forces play an important role in epithelial tubulogenesis; however, little is known about the mechanisms controlling the mechanical forces during epithelial tubule morphogenesis. Solo (also known as ARHGEF40) is a RhoA-targeting guanine-nucleotide exchange factor that is involved in mechanical force-induced RhoA activation and stress fiber formation. Solo binds to keratin-8/keratin-18 (K8/K18) filaments, and this interaction plays a crucial role in mechanotransduction. In this study, we examined the roles of Solo and K8/K18 filaments in epithelial tubulogenesis using MDCK cells cultured in 3D collagen gels. Knockdown of either Solo or K18 resulted in rounder tubules with increased lumen size, indicating that Solo and K8/K18 filaments play critical roles in forming the elongated morphology of epithelial tubules. Moreover, knockdown of Solo or K18 decreased the level of diphosphorylated myosin light chain (a marker of contractile force) at the luminal and outer surfaces of tubules, suggesting that Solo and K8/K18 filaments are involved in the generation of the myosin II-mediated contractile force during epithelial tubule morphogenesis. In addition, K18 filaments were normally oriented along the long axis of the tubule, but knockdown of Solo perturbed their orientation. These results suggest that Solo plays crucial roles in forming the elongated morphology of epithelial tubules and in regulating myosin II activity and K18 filament organization during epithelial tubule formation.

  10. A novel role of Drosophila cytochrome P450-4e3 in permethrin insecticide tolerance.

    PubMed

    Terhzaz, Selim; Cabrero, Pablo; Brinzer, Robert A; Halberg, Kenneth A; Dow, Julian A T; Davies, Shireen-A

    2015-12-01

    The exposure of insects to xenobiotics, such as insecticides, triggers a complex defence response necessary for survival. This response includes the induction of genes that encode key Cytochrome P450 monooxygenase detoxification enzymes. Drosophila melanogaster Malpighian (renal) tubules are critical organs in the detoxification and elimination of these foreign compounds, so the tubule response induced by dietary exposure to the insecticide permethrin was examined. We found that expression of the gene encoding Cytochrome P450-4e3 (Cyp4e3) is significantly up-regulated by Drosophila fed on permethrin and that manipulation of Cyp4e3 levels, specifically in the principal cells of the Malpighian tubules, impacts significantly on the survival of permethrin-fed flies. Both dietary exposure to permethrin and Cyp4e3 knockdown cause a significant elevation of oxidative stress-associated markers in the tubules, including H2O2 and lipid peroxidation byproduct, HNE (4-hydroxynonenal). Thus, Cyp4e3 may play an important role in regulating H2O2 levels in the endoplasmic reticulum (ER) where it resides, and its absence triggers a JAK/STAT and NF-κB-mediated stress response, similar to that observed in cells under ER stress. This work increases our understanding of the molecular mechanisms of insecticide detoxification and provides further evidence of the oxidative stress responses induced by permethrin metabolism. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Convergence of topological domain boundaries, insulators, and polytene interbands revealed by high-resolution mapping of chromatin contacts in the early Drosophila melanogaster embryo

    PubMed Central

    Stadler, Michael R; Haines, Jenna E

    2017-01-01

    High-throughput assays of three-dimensional interactions of chromosomes have shed considerable light on the structure of animal chromatin. Despite this progress, the precise physical nature of observed structures and the forces that govern their establishment remain poorly understood. Here we present high resolution Hi-C data from early Drosophila embryos. We demonstrate that boundaries between topological domains of various sizes map to DNA elements that resemble classical insulator elements: short genomic regions sensitive to DNase digestion that are strongly bound by known insulator proteins and are frequently located between divergent promoters. Further, we show a striking correspondence between these elements and the locations of mapped polytene interband regions. We believe it is likely this relationship between insulators, topological boundaries, and polytene interbands extends across the genome, and we therefore propose a model in which decompaction of boundary-insulator-interband regions drives the organization of interphase chromosomes by creating stable physical separation between adjacent domains. PMID:29148971

  12. [Advances in understanding Drosophila salivary gland polytene chromosome and its applications in genetics teaching].

    PubMed

    Li, Gang; Chen, Fan-guo

    2015-06-01

    Drosophila salivary gland polytene chromosome, one of the three classical chromosomes with remarkable characteristics, has been used as an outstanding model for a variety of genetic studies since 1934. The greatest contribution of this model to genetics has been providing extraordinary angle of view in studying interphase chromosome structure and gene expression regulation. Additionally, it has been extensively used to understand some special genetic phenomena, such as dosage compensation and position-effect variegation. In this paper, we briefly review the advances in the study of Drosophila salivary gland chromosome, and try to systematically and effectively introduce this model system into genetics teaching practice in order to steer and inspire students' interest in genetics.

  13. Lipid tubules Formed by Flow-Controlled Hydration

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Hirst, Linda S.

    2007-03-01

    Self-assembled cylindrical tubules from lipid molecules have attracted considerable attention because of their interesting supramolecular structures and technological applications. Schnur et al. [1] reported the formation of tubular microstructures from a series of diacetylenic phospholipids after liposomes were cooled through their chain melting transition. After that, several methods have been developed to fabricate such unique microstructures mainly by means of deforming preformed Giant unilamellar vesicles. Here we present a simple strategy to construct lipid microtubules through a flow-controlled lipid hydration. Fluorescent microscopy and Confocal Laser Microscopy were used to visualize the formation and the structure of the lipid tubules. Tubules were found to develop following the direction of the dynamic flow with highly parallel alignment. At high flow speeds, partial cross-linking of the lipid tubules was observed. To demonstrate the generality of this method, different types of phospholipids, such as Phosphatidic Acid (PA), Phosphatidylserine (PS), Phosphatidylethanolamine (PE), and Phosphatidylglycerol (PG) were investigated. [1] J.M. Schnur et al, Science, 264, 945 (1994).

  14. Ontogeny of NHE8 in the rat proximal tubule

    PubMed Central

    Becker, Amy M.; Zhang, Jianning; Goyal, Sunita; Dwarakanath, Vangipuram; Aronson, Peter S.; Moe, Orson W.; Baum, Michel

    2014-01-01

    Proximal tubule bicarbonate reabsorption is primarily mediated via the Na+/H+ exchanger, identified as NHE3 in adults. Previous studies have demonstrated a maturational increase in rat proximal tubule NHE3 expression, with a paucity of NHE3 expression in neonates, despite significant Na+-dependent proton secretion. Recently, a novel Na+/H+ antiporter (NHE8) was identified and found to be expressed on the apical membrane of the proximal tubule. To determine whether NHE8 may be the antiporter responsible for proton secretion in neonates, the present study characterized the developmental expression of NHE8 in rat proximal tubules. RNA blots and real-time RT-PCR demonstrated no developmental difference in the mRNA of renal NHE8. Immunoblots, however, demonstrated peak protein abundance of NHE8 in brush border membrane vesicles of 7- and 14-day-old compared with adult rats. In contrast, the level of NHE8 expression in total cortical membrane protein was higher in adults than in neonates. Immunohistochemistry confirmed the presence of NHE8 on the apical membrane of the proximal tubules of neonatal and adult rats. These data demonstrate that NHE8 does undergo maturational changes on the apical membrane of the rat proximal tubule and may account for the Na+-dependent proton flux in neonatal proximal tubules. PMID:17429030

  15. Pathologic Remodeling of Endoneurial Tubules in Human Neuromas.

    PubMed

    Karsy, Michael; Palmer, Cheryl A; Mahan, Mark A

    2018-01-18

    Laminins are extracellular matrix proteins that participate in endoneurial tubule formation and are important in the regeneration of nerves after injury. They act as scaffolds to guide nerves to distal targets and play a key role in neurite outgrowth. Because there is evidence that laminin architecture affects nerve regeneration, we evaluated endoneurial tubules by examining the laminin structure in clinical samples from patients with nerve injuries. In a retrospective review of eight nerve injury cases, we evaluated nerve histology in relation to clinical history and injury type. The immunohistochemical delineation of the laminin structure in relationship with the neuroma type was performed. Five cases of upper-trunk stretch injuries-four from childbirth injury and one from a motorcycle accident-and three cases of nerve laceration leading to neuroma formation were examined. In the upper-trunk stretch injuries, avulsed nerves demonstrated no neuroma formation with a linear laminin architecture and a regular Schwann cell arrangement, but increased fibrous tissue deposition. For neuromas-in-continuity after a stretch injury, laminin immunohistochemistry demonstrated a double-lumen laminin tubule, with encapsulation of the Schwann cells and axonal processes. Nerve laceration leading to stump neuroma formation had a similar double-lumen laminin tubule, but less severe fibrosis. In nerve injuries with regenerative capacity, endoneurial tubules become pathologically disorganized. A double-lumen endoneurial tubule of unclear significance develops. The consistency of this pattern potentially suggests a reproducible pathophysiologic process. Further exploration of this pathophysiologic healing may provide insight into the failure of programmed peripheral nerve regeneration after injury.

  16. Pathologic Remodeling of Endoneurial Tubules in Human Neuromas

    PubMed Central

    Karsy, Michael; Palmer, Cheryl A

    2018-01-01

    Background: Laminins are extracellular matrix proteins that participate in endoneurial tubule formation and are important in the regeneration of nerves after injury. They act as scaffolds to guide nerves to distal targets and play a key role in neurite outgrowth. Because there is evidence that laminin architecture affects nerve regeneration, we evaluated endoneurial tubules by examining the laminin structure in clinical samples from patients with nerve injuries. Methods: In a retrospective review of eight nerve injury cases, we evaluated nerve histology in relation to clinical history and injury type. The immunohistochemical delineation of the laminin structure in relationship with the neuroma type was performed. Results: Five cases of upper-trunk stretch injuries—four from childbirth injury and one from a motorcycle accident—and three cases of nerve laceration leading to neuroma formation were examined. In the upper-trunk stretch injuries, avulsed nerves demonstrated no neuroma formation with a linear laminin architecture and a regular Schwann cell arrangement, but increased fibrous tissue deposition. For neuromas-in-continuity after a stretch injury, laminin immunohistochemistry demonstrated a double-lumen laminin tubule, with encapsulation of the Schwann cells and axonal processes. Nerve laceration leading to stump neuroma formation had a similar double-lumen laminin tubule, but less severe fibrosis. Conclusions: In nerve injuries with regenerative capacity, endoneurial tubules become pathologically disorganized. A double-lumen endoneurial tubule of unclear significance develops. The consistency of this pattern potentially suggests a reproducible pathophysiologic process. Further exploration of this pathophysiologic healing may provide insight into the failure of programmed peripheral nerve regeneration after injury. PMID:29560300

  17. Mathematical study on robust tissue pattern formation in growing epididymal tubule.

    PubMed

    Hirashima, Tsuyoshi

    2016-10-21

    Tissue pattern formation during development is a reproducible morphogenetic process organized by a series of kinetic cellular activities, leading to the building of functional and stable organs. Recent studies focusing on mechanical aspects have revealed physical mechanisms on how the cellular activities contribute to the formation of reproducible tissue patterns; however, the understanding for what factors achieve the reproducibility of such patterning and how it occurs is far from complete. Here, I focus on a tube pattern formation during murine epididymal development, and show that two factors influencing physical design for the patterning, the proliferative zone within the tubule and the viscosity of tissues surrounding to the tubule, control the reproducibility of epididymal tubule pattern, using a mathematical model based on experimental data. Extensive numerical simulation of the simple mathematical model revealed that a spatially localized proliferative zone within the tubule, observed in experiments, results in more reproducible tubule pattern. Moreover, I found that the viscosity of tissues surrounding to the tubule imposes a trade-off regarding pattern reproducibility and spatial accuracy relating to the region where the tubule pattern is formed. This indicates an existence of optimality in material properties of tissues for the robust patterning of epididymal tubule. The results obtained by numerical analysis based on experimental observations provide a general insight on how physical design realizes robust tissue pattern formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The three-dimensional organization of polytene nuclei in male Drosophila melanogaster with compound XY or ring X chromosomes.

    PubMed

    Mathog, D; Sedat, J W

    1989-02-01

    The three-dimensional organization of polytene chromosomes within nuclei containing rearranged X chromosomes was examined in male Drosophila melanogaster. Salivary glands of third instar larvae containing either an inverted X chromosome (YSX.YL, In(1)EN/O) or a ring X chromosome (R(1) 2/BSYy+) were fixed, embedded, and serially sectioned. The nuclei in contiguous groups of cells were modeled and analyzed. We find that for both genotypes the three-dimensional behavior at each euchromatic locus is independent of the orientation of the chromosome on which it resides, independent of the behavior of loci not closely linked to it, and not similar in neighboring cells. The preference for right-handed chromosome coiling noted in previous studies is shown to be independent of homologous pairing. However, a relation between the extent of chromosome curvature and the handedness of chromosome coiling is present only in homologously paired chromosomes. The attached-XY chromosome has two previously undescribed behaviors: a nearly invariant association of the euchromatic side of the proximal heterochromatin/euchromatin junction with the nucleolus and a frequent failure of this site to attach to the chromocenter. The relative chromosome arm positions are often similar in several neighboring cells. The size of these patches of cells, assuming that they represent clones, indicates that such arrangements are at best quasi-stable: they may be maintained over at least one, but less than four, cell divisions. The observed nuclear organization in salivary glands is inconsistent with the idea that position in the polytene nucleus plays a major role in the normal genetic regulation of euchromatic loci.

  19. Salivary Polytene Chromosome Map of Anopheles darlingi, the Main Vector of Neotropical Malaria

    PubMed Central

    Rafael, Míriam S.; Rohde, Cláudia; Bridi, Letícia C.; da Silva Valente Gaiesky, Vera Lúcia; Tadei, Wanderli P.

    2010-01-01

    New photomap of Anopheles (Nyssorhynchus) darlingi Root, 1926, is described for a population from Guajará-Mirim, State of Rondonia, Brazil. The number of sections in the previous A. darlingi reference map was maintained and new subsections were added to the five chromosome arms. Breakage points of paracentric inversions had been previously incorporated into the photomap of this species. An additional inversion is reported, called 3Lc, totaling 14 inversions in the A. darlingi chromosome arms. The proposed photomap is potentially useful for further evolutionary studies in addition to physical and in silico chromosome mapping using A. darlingi genomic and transcriptome sequences. Furthermore, in our attempt to compare sections of the 2R chromosome arm of A. darlingi with Anopheles funestus, Anopheles stephensi, and Anopheles gambiae, we found great differences in the arrangement of the polytene chromosome bands, which are consistent with the known phylogenetic divergence of these species. PMID:20682862

  20. Dynamic tubulation of mitochondria drives mitochondrial network formation.

    PubMed

    Wang, Chong; Du, Wanqing; Su, Qian Peter; Zhu, Mingli; Feng, Peiyuan; Li, Ying; Zhou, Yichen; Mi, Na; Zhu, Yueyao; Jiang, Dong; Zhang, Senyan; Zhang, Zerui; Sun, Yujie; Yu, Li

    2015-10-01

    Mitochondria form networks. Formation of mitochondrial networks is important for maintaining mitochondrial DNA integrity and interchanging mitochondrial material, whereas disruption of the mitochondrial network affects mitochondrial functions. According to the current view, mitochondrial networks are formed by fusion of individual mitochondria. Here, we report a new mechanism for formation of mitochondrial networks through KIF5B-mediated dynamic tubulation of mitochondria. We found that KIF5B pulls thin, highly dynamic tubules out of mitochondria. Fusion of these dynamic tubules, which is mediated by mitofusins, gives rise to the mitochondrial network. We further demonstrated that dynamic tubulation and fusion is sufficient for mitochondrial network formation, by reconstituting mitochondrial networks in vitro using purified fusion-competent mitochondria, recombinant KIF5B, and polymerized microtubules. Interestingly, KIF5B only controls network formation in the peripheral zone of the cell, indicating that the mitochondrial network is divided into subzones, which may be constructed by different mechanisms. Our data not only uncover an essential mechanism for mitochondrial network formation, but also reveal that different parts of the mitochondrial network are formed by different mechanisms.

  1. Regional distribution of T-tubule density in left and right atria in dogs.

    PubMed

    Arora, Rishi; Aistrup, Gary L; Supple, Stephen; Frank, Caleb; Singh, Jasleen; Tai, Shannon; Zhao, Anne; Chicos, Laura; Marszalec, William; Guo, Ang; Song, Long-Sheng; Wasserstrom, J Andrew

    2017-02-01

    The peculiarities of transverse tubule (T-tubule) morphology and distribution in the atrium-and how they contribute to excitation-contraction coupling-are just beginning to be understood. The objectives of this study were to determine T-tubule density in the intact, live right and left atria in a large animal and to determine intraregional differences in T-tubule organization within each atrium. Using confocal microscopy, T-tubules were imaged in both atria in intact, Langendorf-perfused normal dog hearts loaded with di-4-ANEPPS. T-tubules were imaged in large populations of myocytes from the endocardial surface of each atrium. Computerized data analysis was performed using a new MatLab (Mathworks, Natick, MA) routine, AutoTT. There was a large percentage of myocytes that had no T-tubules in both atria with a higher percentage in the right atrium (25.1%) than in the left atrium (12.5%) (P < .02). The density of transverse and longitudinal T-tubule elements was low in cells that did contain T-tubules, but there were no significant differences in density between the left atrial appendage, the pulmonary vein-posterior left atrium, the right atrial appendage, and the right atrial free wall. In contrast, there were significant differences in sarcomere spacing and cell width between different regions of the atria. There is a sparse T-tubule network in atrial myocytes throughout both dog atria, with significant numbers of myocytes in both atria-the right atrium more so than the left atrium-having no T-tubules at all. These regional differences in T-tubule distribution, along with differences in cell width and sarcomere spacing, may have implications for the emergence of substrate for atrial fibrillation. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  2. Recrystallization of tubules from natural lotus (Nelumbo nucifera) wax on a Au(111) surface

    PubMed Central

    Wandelt, Klaus

    2011-01-01

    Summary We present here the first results on the self-assembly of tubules of natural wax from lotus leaves on a single crystal Au(111) surface. A comparison of the tubule growth on Au(111) to that on HOPG is discussed. Although the tubule formation on both Au(111) and HOPG takes place on an intermediate wax film which should mask the substrate properties, the tubule orientations differ. In contrast to a vertical tubule orientation on HOPG, the tubules lie flat on Au(111). Taking into account the physical properties of HOPG and Au(111), we put forward a hypothesis which can explain the different tubule orientations on both substrates. PMID:21977438

  3. Penetration of sub-micron particles into dentinal tubules using ultrasonic cavitation.

    PubMed

    Vyas, N; Sammons, R L; Pikramenou, Z; Palin, W M; Dehghani, H; Walmsley, A D

    2017-01-01

    Functionalised silica sub-micron particles are being investigated as a method of delivering antimicrobials and remineralisation agents into dentinal tubules. However, their methods of application are not optimised, resulting in shallow penetration and aggregation. The aim of this study is to investigate the impact of cavitation occurring around ultrasonic scalers for enhancing particle penetration into dentinal tubules. Dentine slices were prepared from premolar teeth. Silica sub-micron particles were prepared in water or acetone. Cavitation from an ultrasonic scaler (Satelec P5 Newtron, Acteon, France) was applied to dentine slices immersed inside the sub-micron particle solutions. Samples were imaged with scanning electron microscopy (SEM) to assess tubule occlusion and particle penetration. Qualitative observations of SEM images showed some tubule occlusion. The particles could penetrate inside the tubules up to 60μm when there was no cavitation and up to ∼180μm when there was cavitation. The cavitation bubbles produced from an ultrasonic scaler may be used to deliver sub-micron particles into dentine. This method has the potential to deliver such particles deeper into the dentinal tubules. Cavitation from a clinical ultrasonic scaler may enhance penetration of sub-micron particles into dentinal tubules. This can aid in the development of novel methods for delivering therapeutic clinical materials for hypersensitivity relief and treatment of dentinal caries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The Three-Dimensional Organization of Polytene Nuclei in Male Drosophila Melanogaster with Compound Xy or Ring X Chromosomes

    PubMed Central

    Mathog, D.; Sedat, J. W.

    1989-01-01

    The three-dimensional organization of polytene chromosomes within nuclei containing rearranged X chromosomes was examined in male Drosophila melanogaster. Salivary glands of third instar larvae containing either an inverted X chromosome (Y(S)X·Y(L), In(1)EN/O) or a ring X chromosome (R(1) 2/B(S)Yy(+)) were fixed, embedded, and serially sectioned. The nuclei in contiguous groups of cells were modeled and analyzed. We find that for both genotypes the three-dimensional behavior at each euchromatic locus is independent of the orientation of the chromosome on which it resides, independent of the behavior of loci not closely linked to it, and not similar in neighboring cells. The preference for right-handed chromosome coiling noted in previous studies is shown to be independent of homologous pairing. However, a relation between the extent of chromosome curvature and the handedness of chromosome coiling is present only in homologously paired chromosomes. The attached-XY chromosome has two previously undescribed behaviors: a nearly invariant association of the euchromatic side of the proximal heterochromatin/euchromatin junction with the nucleolus and a frequent failure of this site to attach to the chromocenter. The relative chromosome arm positions are often similar in several neighboring cells. The size of these patches of cells, assuming that they represent clones, indicates that such arrangements are at best quasi-stable: they may be maintained over at least one, but less than four, cell divisions. The observed nuclear organization in salivary glands is inconsistent with the idea that position in the polytene nucleus plays a major role in the normal genetic regulation of euchromatic loci. PMID:2499510

  5. Secretory NaCl and volume flow in renal tubules.

    PubMed

    Beyenbach, K W

    1986-05-01

    This review attempts to give a retrospective survey of the available evidence concerning the secretion of NaCl and fluid in renal tubules of the vertebrate kidney. In the absence of glomerular filtration, epithelial secretory mechanisms, which to this date have not been elucidated, are responsible for the renal excretion of NaCl and water in aglomerular fish. However, proximal tubules isolated from glomerular fish kidneys of the flounder, killifish, and the shark also have the capacity to secrete NaCl and fluid. In shark proximal tubules, fluid secretion appears to be driven via secondary active transport of Cl. In another marine vertebrate, the sea snake, secretion of Na (presumably NaCl) and fluid is observed in freshwater-adapted and water-loaded animals. Proximal tubules of mammals can be made to secrete NaCl in vitro together with secretion of aryl acids. An epithelial cell line derived from dog kidney exhibits secondary active secretion of Cl when stimulated with catecholamines. Tubular secretion of NaCl and fluid may serve a variety of renal functions, all of which are considered here. The occurrence of NaCl and fluid secretion in glomerular proximal tubules of teleosts, elasmobranchs, and reptiles and in mammalian renal tissue cultures suggests that the genetic potential for NaCl secretion is present in every vertebrate kidney.

  6. Effects of vasopressin on the isolated perfused human collecting tubule.

    PubMed

    Yanagawa, N; Trizna, W; Bar-Khayim, Y; Fine, L G

    1981-05-01

    Cortical collecting tubules (CCT) were dissected from the surviving normal tissue of human kidneys removed at operation for either carcinoma or calculus. These CCT's were perfused in vitro shortly after the nephrectomy was performed. Transtubular potential differences in different tubules varied from +3.2 to -2.0 mV and were reduced towards zero by lowering the temperature or by adding ouabain to the bath. In the absence of vasopressin, tubules were essentially impermeable to water with extremely low net water fluxes even in the presence of a transtubular osmotic gradient. Addition of vasopressin to the bath caused the transtubular osmotic water permeability coefficient to increase to values of 125, 175, and 155 X 10(-4) cm/sec in three tubules thus studied. These results demonstrate close similarities between the human CCT and the more extensively studied rabbit CCT.

  7. Uptake of gentamicin by separated, viable renal tubules from rabbits.

    PubMed

    Barza, M; Murray, T; Hamburger, R J

    1980-04-01

    The proximal renal tubules have a marked affinity for gentamicin; they also are the major site of nephrotoxicity caused by this drug. The uptake of radiolabeled gentamicin in separated, viable renal tubules prepared by enzymatic digestion of rabbit kidneys was studied. The preparations showed rapid initial uptake of gentamicin followed by continued slower uptake. Accumulation was not affected by pH, but was significantly inhibited by ouabain, dinitrophenol, anoxia, and hypothermia in the absence of evident cellular damage. At gentamicin concentrations of greater than 50 microgram/ml in the medium, there was competition for drug uptake. Gentamicin efflux in tubules that were taken from a medium containing antibiotic and placed into antibiotic-free fluid was slow and incomplete. From these data it appears that gentamicin uptake by separated renal tubules occurs by a process that requires metabolic energy; thereafter, the drug resides in a poorly exchangeable cellular pool.

  8. Self-(Un)rolling Biopolymer Microstructures: Rings, Tubules, and Helical Tubules from the Same Material.

    PubMed

    Ye, Chunhong; Nikolov, Svetoslav V; Calabrese, Rossella; Dindar, Amir; Alexeev, Alexander; Kippelen, Bernard; Kaplan, David L; Tsukruk, Vladimir V

    2015-07-13

    We have demonstrated the facile formation of reversible and fast self-rolling biopolymer microstructures from sandwiched active-passive, silk-on-silk materials. Both experimental and modeling results confirmed that the shape of individual sheets effectively controls biaxial stresses within these sheets, which can self-roll into distinct 3D structures including microscopic rings, tubules, and helical tubules. This is a unique example of tailoring self-rolled 3D geometries through shape design without changing the inner morphology of active bimorph biomaterials. In contrast to traditional organic-soluble synthetic materials, we utilized a biocompatible and biodegradable biopolymer that underwent a facile aqueous layer-by-layer (LbL) assembly process for the fabrication of 2D films. The resulting films can undergo reversible pH-triggered rolling/unrolling, with a variety of 3D structures forming from biopolymer structures that have identical morphology and composition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Polyunsaturated Fatty Acids in Lipid Bilayers and Tubules

    NASA Astrophysics Data System (ADS)

    Hirst, Linda S.; Yuan, Jing; Pramudya, Yohannes; Nguyen, Lam T.

    2007-03-01

    Omega-3 polyunsaturated fatty acids (PUFAs) are found in a variety of biological membranes and have been implicated with lipid raft formation and possible function, typical molecules include DHA (Docosahexanoic Acid) and AA (Alphalinoleic Acid) which have been the focus of considerable attention in recent years. We are interested in the phase behavior of these molecules in the lipid bilayer. The addition of lipid molecules with polyunsaturated chains has a clear effect on the fluidity and curvature of the membrane and we investigate the effects the addition of polyunsaturated lipids on bilayer structure and tubule formation. Self-assembled cylindrical lipid tubules have attracted considerable attention because of their interesting structures and potential technological applications. Using x-ray diffraction techniques, Atomic Force Microscopy and confocal fluorescence imaging, both symmetric and mixed chain lipids were incorporated into model membranes and the effects on bilayer structure and tubule formation investigated.

  10. Wetting-mediated collective tubulation and pearling in confined vesicular drops of DDAB solutions.

    PubMed

    Haidara, Hamidou

    2014-12-21

    Whether driven by external mechanical stresses (shear flow) or induced by membrane-active peptides and/or proteins, the collective growth of tubules in membranous fluids has seldom been reported. The pearling destabilization of these membranous tubules which requires an activation of the shape distortion, often induced by optical tweezers, membrane-active biomolecules or an electrical field, has also rarely been observed under mild experimental conditions. Here we report such events of collective tubulation and pearling destabilization in sessile drops of a didodecyl-dimethylammonium bromide (DDAB) vesicular solution that are confined by a surrounding oil medium. Based on the wetting dynamics and the features of the tubulation process, we show that the growth of the tubules here relies on a mechanism of "pinning-induced pulling" from the retracting drop, rather than the classical hydrodynamic fingering instability. We show that the whole tubulation process is driven by a strong coupling between the bulk properties of the ternary (DAAB/water/oil) system and the dynamics of wetting. Finally, we discuss the pearling destabilization of these tubules under vanishing static interface tension and quite mild tensile force arising from their pulling. We show that under those mild conditions, shape disturbances readily grow, either as pearling waves moving toward the drop-reservoir or as Rayleigh-type peristaltic modulations. Besides revealing singular non-Rayleigh pearling modes, this work also brings new insights into the flow dynamics in membranous tubules anchored to an infinite reservoir.

  11. Organization of tubules in the human caput epididymidis and the ultrastructure of their epithelia.

    PubMed

    Yeung, C H; Cooper, T G; Bergmann, M; Schulze, H

    1991-07-01

    The structure of the human caput epididymidis was examined by gross morphological and light and electron microscopic techniques. There were at least seven types of tubules, each characterized by a different epithelium. These tubules were connected with one another by at least eight types of junctions to form a network. Most of the caput epididymidis was composed of efferent ducts. Within these, five types of tubules, each with a different ciliated epithelium, were found in different regions; and four types of junctions between the efferent ducts and the epididymal tubule were observed. The efferent ducts left the testis, initially as parallel straight tubules containing both ciliated and non-ciliated cells in an epithelium of irregular height. Each efferent duct then coiled tortuously into lobules that folded over one another. These efferent ducts then branched out as thin tubules to join a network of dark tubules which were lined by a regular epithelium containing prominently vacuolated, non-ciliated cells. These tubules anastomosed via common cavities characterized by a ciliated cuboidal epithelium and sometimes joined tubules exhibiting a non-vacuolated ciliated epithelium. The latter, as well as typical efferent ducts, made connection with the epididymis proper in both end-to-end and end-to-side junctions. In the more distal junctions with the epididymis, the efferent ducts joined to a transitional epididymal ductule before joining to the side of the epididymis proper. Post-junctional epithelia in the beginning of the epididymis occasionally contained patches of cells characteristic of efferent ducts. Tall cells with long stereocilia constituted a discontinuous "initial segment"-like region of the epididymis. This is the most detailed study so far of the epithelia and the tubule organization in the caput epididymidis of any species, and most of the results are reported for the first time for the human. Although the pattern of the tubule network resembles that

  12. Histological and three dimensional organizations of lymphoid tubules in normal lymphoid organ of Penaeus monodon.

    PubMed

    Duangsuwan, Pornsawan; Phoungpetchara, Ittipon; Tinikul, Yotsawan; Poljaroen, Jaruwan; Wanichanon, Chaitip; Sobhon, Prasert

    2008-04-01

    The normal lymphoid organ of Penaeus monodon (which tested negative for WSSV and YHV) was composed of two parts: lymphoid tubules and interstitial spaces, which were permeated with haemal sinuses filled with large numbers of haemocytes. There were three permanent types of cells present in the wall of lymphoid tubules: endothelial, stromal and capsular cells. Haemocytes penetrated the endothelium of the lymphoid tubule's wall to reside among the fixed cells. The outermost layer of the lymphoid tubule was covered by a network of fibers embedded in a PAS-positive extracellular matrix, which corresponded to a basket-like network that covered all the lymphoid tubules as visualized by a scanning electron microscope (SEM). Argyrophilic reticular fibers surrounded haemal sinuses and lymphoid tubules. Together they formed the scaffold that supported the lymphoid tubule. Using vascular cast and SEM, the three dimensional structure of the subgastric artery that supplies each lobe of the lymphoid organ was reconstructed. This artery branched into highly convoluted and blind-ending terminal capillaries, each forming the lumen of a lymphoid tubule around which haemocytes and other cells aggregated to form a cuff-like wall. Stromal cells which form part of the tubular scaffold were immunostained for vimentin. Examination of the whole-mounted lymphoid organ, immunostained for vimentin, by confocal microscopy exhibited the highly branching and convoluted lymphoid tubules matching the pattern of the vascular cast observed in SEM.

  13. Proximal tubule hydrogen ion transport processes in diuretic-induced metabolic alkalosis.

    PubMed

    Blumenthal, S S; Ware, R A; Kleinman, J G

    1985-07-01

    Transport systems involved in proximal tubule HCO-3 reabsorption were examined in disaggregated renal cortical tubules from rabbits with metabolic alkalosis. The acid-base disorder was induced by first treating the animals with furosemide, and then maintaining them on low Cl--high HCO-3 diets. On this regimen, the rabbits had increases in blood pH and total CO2 values and decreases in serum K+ concentrations. Urine Cl- concentrations were less than 15 mEq/L in all cases. Na+-H+ exchange was evaluated by incubating tubules in rotenone in an Na+-free medium to deplete them of Na+ and adenosine triphosphate. Then the tubules were resuspended in media containing 65 or 12.5 mEq/L Na+ at either pH 7.1 or pH 7.6. The rise in cell pH estimated by dimethadione distribution was taken as a measure of Na+-H+ exchanger activity. At the high incubation pH, Na+-H+ exchanger activity appeared to be the same in tubules taken from alkalotic rabbits compared with those prepared from normal rabbits. At the low incubation pH, the activity of this transport system appeared to be depressed by 40% to 50% in alkalosis, with kinetics that suggested a decreased Vmax for the exchanger. Na+-independent H+ transport, presumably reflecting activity of an H+-adenosine triphosphatase, was evaluated by preincubating tubules in a Na+-free medium in the presence of ouabain, and then sequentially exposing them to and removing them from a solution containing 20 mmol/L NH4Cl.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. 3D variations in human crown dentin tubule orientation: a phase-contrast microtomography study.

    PubMed

    Zaslansky, Paul; Zabler, Simon; Fratzl, Peter

    2010-01-01

    Tubules dominate the microstructure of dentin, and in crowns of human teeth they are surrounded by thick mineralized peritubular cuffs of high stiffness. Here we examine the three-dimensional (3D) arrangement of tubules in relation to enamel on the buccal and lingual aspects of intact premolars and molars. Specifically we investigate the angular orientation of tubules relative to the plane of the junction of dentin with enamel (DEJ) by means of wet, non-destructive and high-resolution phase-contrast (coherent) tomography. Enamel capped dentin samples (n=16), cut from the buccal and lingual surfaces of upper and lower premolar and molar teeth, were imaged in water by high-resolution synchrotron-based phase-contrast X-ray radiography. Reconstructed 3D virtual images were co-aligned with respect to the DEJ plane. The average tubule orientation was determined at increasing distances from the DEJ, based on integrated projections onto orthogonal virtual planes. The angle and curl of the tubules were determined every 100 microm to a depth of 1.4mm beneath the DEJ. Most tubules do not extend at right angles from the DEJ. Even when they do, tubules always change their orientations substantially within the first half-millimeter zone beneath the DEJ, both on the buccal and lingual aspects of premolar and molar teeth. Tubules also tend to curl and twist within this zone. Student t-tests indicate that lower teeth seem to have greater tilts in the tubule orientations relative to the DEJ normal with an average angle of 42 degrees (+/-2.0 degrees), whereas upper teeth exhibit a smaller change of orientation, with an average of 32 degrees (+/-2.1 degrees). Tubules are a central characteristic of dentin, with important implications on how it is arranged and what the properties are. Knowing about the path that tubules follow is important for various reasons, ranging form improving control over restorative procedures to understanding or simulating the mechanical properties of teeth

  15. Human Papillomavirus 16 Infection Induces VAP-Dependent Endosomal Tubulation.

    PubMed

    Siddiqa, Abida; Massimi, Paola; Pim, David; Broniarczyk, Justyna; Banks, Lawrence

    2018-03-15

    Human papillomavirus (HPV) infection involves complex interactions with the endocytic transport machinery, which ultimately facilitates the entry of the incoming viral genomes into the trans -Golgi network (TGN) and their subsequent nuclear entry during mitosis. The endosomal pathway is a highly dynamic intracellular transport system, which consists of vesicular compartments and tubular extensions, although it is currently unclear whether incoming viruses specifically alter the endocytic machinery. In this study, using MICAL-L1 as a marker for tubulating endosomes, we show that incoming HPV-16 virions induce a profound alteration in global levels of endocytic tubulation. In addition, we also show a critical requirement for the endoplasmic reticulum (ER)-anchored protein VAP in this process. VAP plays an essential role in actin nucleation and endosome-to-Golgi transport. Indeed, the loss of VAP results in a dramatic decrease in the level of endosomal tubulation induced by incoming HPV-16 virions. This is also accompanied by a marked reduction in virus infectivity. In VAP knockdown cells, we see that the defect in virus trafficking occurs after capsid disassembly but prior to localization at the trans -Golgi network, with the incoming virion-transduced DNA accumulating in Vps29/TGN46-positive hybrid vesicles. Taken together, these studies demonstrate that infection with HPV-16 virions induces marked alterations of endocytic transport pathways, some of which are VAP dependent and required for the endosome-to-Golgi transport of the incoming viral L2/DNA complex. IMPORTANCE Human papillomavirus infectious entry involves multiple interactions with the endocytic transport machinery. In this study, we show that incoming HPV-16 virions induce a dramatic increase in endocytic tubulation. This tubulation requires ER-associated VAP, which plays a critical role in ensuring the delivery of cargoes from the endocytic compartments to the trans -Golgi network. Indeed, the loss of

  16. Outer Retinal Tubulation in Degenerative Retinal Disorders

    PubMed Central

    Goldberg, Naomi R.; Greenberg, Jonathan P.; Laud, Ketan; Tsang, Stephen; Freund, K. Bailey

    2013-01-01

    Objective To demonstrate outer retinal tubulation (ORT) in various degenerative retinal disorders. Methods This was a retrospective review of the multimodal imaging of 29 eyes of 15 patients with various retinal dystrophies and inflammatory maculopathies manifesting ORT. The morphologic features of ORT and its evolution over time were analyzed using spectral-domain optical coherence tomography (SD-OCT) data. Results Outer retinal tubulation was identified as round or ovoid structures with hyper-reflective borders in pattern dystrophy (6 eyes), acute zonal occult outer retinopathy (5 eyes), retinitis pigmentosa (4 eyes), Stargardt disease (4 eyes), gyrate atrophy (2 eyes), choroideremia (2 eyes), and various other degenerative conditions. These structures appeared to develop from the invagination of photoreceptors at the junction of intact and atrophic outer retina. During follow-up, the number and distribution of ORT largely remained stable. As zones of atrophy enlarged, the frequency of ORT appeared to increase. The ORT structures were found in fewer than 10% of patients with retinitis pigmentosa, Stargardt, or pattern dystrophy. Conclusion Outer retinal tubulation is found in various degenerative retinal disorders that share in common damage to the outer retina and/or retinal pigment epithelium. The presence of ORT may be in an indicator of underlying disease stage and severity. PMID:23676993

  17. Bicarbonate secretion by rabbit cortical collecting tubules in vitro.

    PubMed

    McKinney, T D; Burg, M B

    1978-06-01

    We previously reported that rabbit renal cortical collecting tubules can secrete bicarbonate in vitro (i.e., there can be net transport from bath to lumen, causing the concentration in the lumen to increase). Net bicarbonate secretion was observed most often when rabbits had been pretreated with NaHCO(3) and were excreting alkaline urine before being killed for experiments. The purpose of the present studies was to elucidate the mechanism involved by testing the effects of ion substitutions and drugs on collecting tubules that were secreting bicarbonate. Acetazolamide inhibited net bicarbonate secretion, suggesting that the process is dependent upon carbonic anhydrase. Net bicarbonate secretion also decreased when sodium in the perfusate and bath was replaced by choline, but not when chloride was replaced by nitrate or methylsulfate. Ouabain had no significant effect. Amiloride caused net bicarbonate secretion to increase. The rate of net secretion did not correlate with transepithelial voltage. The results are compared to those in turtle urinary bladders that also secrete bicarbonate. There are no direct contradictions between the results in the two tissues, i.e., in turtle bladders acetazolamide also inhibited bicarbonate secretion and ouabain had no effect. Nevertheless, it seems unlikely that net secretion of bicarbonate by collecting tubules involves specific exchange for chloride, as has been proposed for turtle bladders, because replacement of chloride by other anions did not inhibit bicarbonate secretion by collecting tubules. It was previously shown that the collecting tubules in vitro also may absorb bicarbonate, especially when the rabbits have been treated with NH(4)Cl and are excreting acid urine before being killed. The effects of drugs on net bicarbonate secretion found in the present studies are compared to their previously reported effects on net bicarbonate absorption and the possibility is discussed that bicarbonate absorption and secretion are

  18. Bicarbonate Secretion by Rabbit Cortical Collecting Tubules in Vitro

    PubMed Central

    McKinney, Thurman D.; Burg, Maurice B.

    1978-01-01

    We previously reported that rabbit renal cortical collecting tubules can secrete bicarbonate in vitro (i.e., there can be net transport from bath to lumen, causing the concentration in the lumen to increase). Net bicarbonate secretion was observed most often when rabbits had been pretreated with NaHCO3 and were excreting alkaline urine before being killed for experiments. The purpose of the present studies was to elucidate the mechanism involved by testing the effects of ion substitutions and drugs on collecting tubules that were secreting bicarbonate. Acetazolamide inhibited net bicarbonate secretion, suggesting that the process is dependent upon carbonic anhydrase. Net bicarbonate secretion also decreased when sodium in the perfusate and bath was replaced by choline, but not when chloride was replaced by nitrate or methylsulfate. Ouabain had no significant effect. Amiloride caused net bicarbonate secretion to increase. The rate of net secretion did not correlate with transepithelial voltage. The results are compared to those in turtle urinary bladders that also secrete bicarbonate. There are no direct contradictions between the results in the two tissues, i.e., in turtle bladders acetazolamide also inhibited bicarbonate secretion and ouabain had no effect. Nevertheless, it seems unlikely that net secretion of bicarbonate by collecting tubules involves specific exchange for chloride, as has been proposed for turtle bladders, because replacement of chloride by other anions did not inhibit bicarbonate secretion by collecting tubules. It was previously shown that the collecting tubules in vitro also may absorb bicarbonate, especially when the rabbits have been treated with NH4Cl and are excreting acid urine before being killed. The effects of drugs on net bicarbonate secretion found in the present studies are compared to their previously reported effects on net bicarbonate absorption and the possibility is discussed that bicarbonate absorption and secretion are

  19. Palladium nanotubes formed by lipid tubule templating and their application in ethanol electrocatalysis.

    PubMed

    Wang, Yinan; Ma, Shenghua; Su, Yingchun; Han, Xiaojun

    2015-04-13

    Palladium nanotubes were fabricated by using lipid tubules as templates for the first time in a controlled manner. The positively charged lipid 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) was doped into lipid tubules to adsorb PdCl4 (2-) on the tubule surfaces for further reduction. The lipid tubule formation was optimized by studying the growing dynamics and ethanol/water ratio. The DOTAP-doped tubules showed pH stability from 0 to 14, which makes them ideal templates for metal plating. The Pd nanotubes are open-ended with a tunable wall thickness. They exhibited good electrocatalytic performance in ethanol. Their electrochemically active surface areas were 6.5, 10.6, and 83.2 m(2)  g(-1) for Pd nanotubes with 77, 101, and 150 nm wall thickness, respectively. These Pd nanotubes have great potential in fuel cells. The method demonstrated also opens up a way to synthesize hollow metal nanotubes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Elevated ventricular wall stress disrupts cardiomyocyte t-tubule structure and calcium homeostasis.

    PubMed

    Frisk, Michael; Ruud, Marianne; Espe, Emil K S; Aronsen, Jan Magnus; Røe, Åsmund T; Zhang, Lili; Norseng, Per Andreas; Sejersted, Ole M; Christensen, Geir A; Sjaastad, Ivar; Louch, William E

    2016-10-01

    Invaginations of the cellular membrane called t-tubules are essential for maintaining efficient excitation-contraction coupling in ventricular cardiomyocytes. Disruption of t-tubule structure during heart failure has been linked to dyssynchronous, slowed Ca(2+) release and reduced power of the heartbeat. The underlying mechanism is, however, unknown. We presently investigated whether elevated ventricular wall stress triggers remodelling of t-tubule structure and function. MRI and blood pressure measurements were employed to examine regional wall stress across the left ventricle of sham-operated and failing, post-infarction rat hearts. In failing hearts, elevated left ventricular diastolic pressure and ventricular dilation resulted in markedly increased wall stress, particularly in the thin-walled region proximal to the infarct. High wall stress in this proximal zone was associated with reduced expression of the dyadic anchor junctophilin-2 and disrupted cardiomyocyte t-tubular structure. Indeed, local wall stress measurements predicted t-tubule density across sham and failing hearts. Elevated wall stress and disrupted cardiomyocyte structure in the proximal zone were also associated with desynchronized Ca(2+) release in cardiomyocytes and markedly reduced local contractility in vivo. A causative role of wall stress in promoting t-tubule remodelling was established by applying stretch to papillary muscles ex vivo under culture conditions. Loads comparable to wall stress levels observed in vivo in the proximal zone reduced expression of junctophilin-2 and promoted t-tubule loss. Elevated wall stress reduces junctophilin-2 expression and disrupts t-tubule integrity, Ca(2+) release, and contractile function. These findings provide new insight into the role of wall stress in promoting heart failure progression. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  1. Renal neuroendocrine control of desiccation and cold tolerance by Drosophila suzukii

    PubMed Central

    Alford, Lucy; Yeoh, Joseph GC; Marley, Richard; Dornan, Anthony J; Dow, Julian AT; Davies, Shireen A

    2017-01-01

    Abstract BACKGROUND Neuropeptides are central to the regulation of physiological and behavioural processes in insects, directly impacting cold and desiccation survival. However, little is known about the control mechanisms governing these responses in Drosophila suzukii. The close phylogenetic relationship of D. suzukii with Drosophila melanogaster allows, through genomic and functional studies, an insight into the mechanisms directing stress tolerance in D. suzukii. RESULTS Capability (Capa), leucokinin (LK), diuretic hormone 44 (DH44) and DH31 neuropeptides demonstrated a high level of conservation between D. suzukii and D. melanogaster with respect to peptide sequences, neuronal expression, receptor localisation, and diuretic function in the Malpighian tubules. Despite D. suzukii's ability to populate cold environments, it proved sensitive to both cold and desiccation. Furthermore, in D. suzukii, Capa acts as a desiccation‐ and cold stress‐responsive gene, while DH 44 gene expression is increased only after desiccation exposure, and the LK gene after nonlethal cold stress recovery. CONCLUSION This study provides a comparative investigation into stress tolerance mediation by neuroendocrine signalling in two Drosophila species, providing evidence that similar signalling pathways control fluid secretion in the Malpighian tubules. Identifying processes governing specific environmental stresses affecting D. suzukii could lead to the development of targeted integrated management strategies to control insect pest populations. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:28714258

  2. Isolation, cDNA cloning and gene expression of an antibacterial protein from larvae of the coconut rhinoceros beetle, Oryctes rhinoceros.

    PubMed

    Yang, J; Yamamoto, M; Ishibashi, J; Taniai, K; Yamakawa, M

    1998-08-01

    An antibacterial protein, designated rhinocerosin, was purified to homogeneity from larvae of the coconut rhinoceros beetle, Oryctes rhinoceros immunized with Escherichia coli. Based on the amino acid sequence of the N-terminal region, a degenerate primer was synthesized and reverse-transcriptase PCR was performed to clone rhinocerosin cDNA. As a result, a 279-bp fragment was obtained. The complete nucleotide sequence was determined by sequencing the extended rhinocerosin cDNA clone by 5' rapid amplification of cDNA ends. The deduced amino acid sequence of the mature portion of rhinocerosin was composed of 72 amino acids without cystein residues and was shown to be rich in glycine (11.1%) and proline (11.1%) residues. Comparison of the deduced amino acid sequence of rhinocerosin with those of other antibacterial proteins indicated that it has 77.8% and 44.6% identity with holotricin 2 and coleoptrecin, respectively. Rhinocerosin had strong antibacterial activity against E. coli, Streptococcus pyogenes, Staphylococcus aureus but not against Pseudomonas aeruginosa. Results of reverse-transcriptase PCR analysis of gene expression in different tissues indicated that the rhinocerosin gene is strongly expressed in the fat body and the Malpighian tubule, and weakly expressed in hemocytes and midgut. In addition, gene expression was inducible by bacteria in the fat body, the Malpighian tubule and hemocyte but constitutive expression was observed in the midgut.

  3. Jellyfish stinging is driven by the moving front of the nematocyst's tubule

    NASA Astrophysics Data System (ADS)

    Shavit, Uri; Park, Sinwook; Piriatinskiy, Gadi; Yossifon, Gilad; Lotan, Tamar

    2017-11-01

    Nematocysts are ultra-fast stinging organelles that are utilized by the Cnidaria phylum for prey capture, defense and locomotion. They consist of a capsule and a tubule and exert high pressure and acceleration to penetrate the target organism. Previous studies report that the ejection and elongation of the tubule are driven by a buildup of osmotic potential in the capsule. We question this explanation using a microfluidic system that controls the osmotic potential by directing the tubule through oil, where no osmotic potential can develop, while keeping the capsule in water. It was found that the time needed for elongation through oil is orders of magnitude larger than through water. Our mathematical model shows that the p γGlu concentration in the tubule is higher than in the capsule and the internal pressure that develops there serves as the elongation driving force. These findings imply that modifications of the environment along the tubule route have the potential to slow down the process and reduce its impact. This may shed light on prey defense strategies, human protection against jellyfish stinging, the use of nematocysts for drug delivery and exploration of osmotic based methods for nanotubes production and elongation.

  4. Uptake of leptin and albumin via separate pathways in proximal tubule cells.

    PubMed

    Briffa, Jessica F; Grinfeld, Esther; Poronnik, Philip; McAinch, Andrew J; Hryciw, Deanne H

    2016-10-01

    The adipokine leptin and oncotic protein albumin are endocytosed in the proximal tubule via the scavenger receptor megalin. Leptin reduces megalin expression and activates cell signalling pathways that upregulate fibrotic protein expression. The aim of this study was to investigate if leptin uptake in proximal tubule cells was via the albumin-megalin endocytic complex. In immortalised proximal tubule Opossum kidney cells (OK) fluorescent leptin and albumin co-localised following 5min exposure, however there was no co-localisation at 10, 20 and 30min exposure. In OK cells, acute exposure to leptin for 2h did not alter NHE3, ClC-5, NHERF1 and NHERF2 mRNA. However, acute leptin exposure increased NHERF2 protein expression in proximal tubule cells. In OK cells, immunoprecipitation experimentation indicated leptin did not bind to ClC-5. Leptin uptake in OK cells was enhanced by bafilomycin and ammonium chloride treatment, demonstrating that uptake was not dependent on lysosomal pH. Thus, it is likely that two pools of megalin exist in proximal tubule cells to facilitate separate uptake of leptin and albumin by endocytosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Morphology and histology of the digestive system of the vector leafhopper Psammotettix striatus (L.) (Hemiptera: Cicadellidae).

    PubMed

    Zhang, Fangmei; Zhang, Chunni; Dai, Wu; Zhang, Yalin

    2012-06-01

    The vector leafhopper Psammotettix striatus (L.) (Hemiptera: Cicadellidae) is an important economic pest that is a serious threat to wheat in Northwest China, causing great losses to agricultural production by transmitting wheat blue dwarf (WBD) in a persistent circulative manner. Studies on morphology and ultrastructure of the digestive system were made using light, scanning and transmission electron microscopy. The gross morphology of the alimentary canal consists of esophagus (foregut), midgut, hindgut, and special filter chamber. The esophagus, a narrow and slender tube, runs through the whole thorax extending into the filter chamber and connecting with the anterior midgut. The midgut consists of three major regions, anterior, middle and posterior midgut. The anterior midgut is composed of exceptionally thick epithelial cells surrounding a large lumen. Numerous well-developed microvilli occur at the basal region of the epithelium. A large number of electron-lucent and lipid-like vesicles are observed under the microvilli. The posterior midgut is smaller than the anterior midgut in diameter. Numerous different concentric circular bodies are characteristic of the posterior midgut. The hindgut arises from the posterior midgut at the boundary of the filter chamber. It extends downward toward the anus where the hindgut enlarges to form the rectum. The rectum is formed by various cells typical of epithelium, whose nuclei are relatively smaller than those of the midgut. Relatively large muscle cells are present at the well-defined and thick basement membrane. There are two pairs of Malpighian tubules. Numerous mitochondria and lamellar rough endoplasmic reticulum in the cells of the anterior segment of the Malpighian tubules; the sub-anterior segment of the tubules resemble the distal segment which are wave-like, amount vesicles in the cells; numerous tightly packed large vesicles contain two types of brochosomes in the inflated segment of the Malpighian tubules. The

  6. Effect of theobromine-containing toothpaste on dentin tubule occlusion in situ.

    PubMed

    Amaechi, Bennett T; Mathews, Sapna M; Mensinkai, Poornima K

    2015-01-01

    Dentin hypersensitivity (DH) is treated by either occlusion of dentin tubules or nerve desensitization. This in situ study compared dentin tubules occlusion by theobromine-containing dentifrices with (Theodent-classic-F®, TCF) and without (Theodent-classic®, TC) fluoride with 1,500 ppm fluoride toothpaste, Colgate®-Regular (Fluoride) and Novamin®-containing toothpaste, Sensodyne®-5000-Nupro (Novamin®). Each subject wore four intraoral appliances bearing dentin blocks while using one of four test dentifrices (n = 20/dentifrice) twice daily for 7 days. The four appliances were removed successively after 1, 2, 3, and 7 days. Treated blocks and their control (untreated) blocks were examined with scanning electron microscopy (SEM). Effects were compared statistically (ANOVA/Tukey's) based on percentage of surface area covered by deposited precipitate layer (%DPL) and percentage of fully open (%FOT), partially occluded (%POT), and completely occluded (%COT) tubules in each block calculated relative to the number of tubules in their control blocks. SEM observation indicated an increased %COT and %DPL over time. After 1 and 2 days, %COT was comparable with TC and TCF, and significantly (p < 0.05) higher compared with Novamin® and Fluoride. Following 3 and 7 days, %COT was comparable among TC, TCF, and Novamin®, but remained significantly lower in Fluoride. At any time, %DPL was significantly (p < 0.05) higher in TC, TCF, and Novamin® compared with Fluoride. Theobromine-containing toothpastes with and without fluoride have equal potential in occluding dentin tubules within a shorter time period than Novamin®-containing toothpaste; however, the three demonstrated equal potential after 1 week, but not the fluoride toothpaste. Theobromine-containing toothpaste promoted dentin tubule occlusion thus shows potential to relief DH.

  7. Impaired organic ion transport in proximal tubules of rats with Heymann nephritis.

    PubMed

    Park, E K; Hong, S K; Goldinger, J; Andres, G; Noble, B

    1985-10-01

    Organic ion transport across the basolateral membrane of proximal tubules was measured by means of the tissue slice technique in each of the four different stages of Heymann nephritis. Impairment of both organic anion and cation transport was detected early in Stage 2, and became more severe in Stage 3 of Heymann nephritis. The decreased transport function was associated with extensive damage to proximal tubule cells, including loss of brush border microvilli and basal infoldings. Despite these abnormalities of structure and function, oxygen consumption of proximal tubule cells remained essentially normal. Partial recovery of organic cation transport was noted late in Heymann nephritis (Stage 4). Recovery of the cation transport function was associated with a partial restoration of brush border microvilli and basal infoldings to proximal tubule cells. However, organic anion transport remained depressed throughout the entire course of disease. Impairment of organic ion transport in rats with Heymann nephritis appeared to result from damage to basolateral membrane transport elements rather than general deterioration of the metabolic machinery of proximal tubule cells. Decreased organic cation transport appeared to be the consequence of a reduction in the number of carrier sites, a phenomenon that could have resulted from decreased membrane surface area. However, the depression of organic anion transport was associated with decreased substrate affinity of the anion carrier, indicating that qualitative, rather than quantitative changes, were primarily responsible for that defect. Specific antibody-mediated damage to the anion transport elements in basolateral membranes of proximal tubules is postulated to occur in Heymann nephritis.

  8. Exploring the human mesenchymal stem cell tubule communication network through electron microscopy.

    PubMed

    Valente, Sabrina; Rossi, Roberta; Resta, Leonardo; Pasquinelli, Gianandrea

    2015-04-01

    Cells use several mechanisms to transfer information to other cells. In this study, we describe micro/nanotubular connections and exosome-like tubule fragments in multipotent mesenchymal stem cells (MSCs) from human arteries. Scanning and transmission electron microscopy allowed characterization of sinusoidal microtubular projections (700 nm average size, 200 µm average length, with bulging mitochondria and actin microfilaments); short, uniform, variously shaped nanotubular projections (100 nm, bidirectional communication); and tubule fragments (50 nm). This is the first study demonstrating that MSCs from human arteries constitutively interact through an articulate and dynamic tubule network allowing long-range cell to cell communication.

  9. Dentinal tubules occluded by bioactive glass-containing toothpaste exhibit high resistance toward acidic soft drink challenge.

    PubMed

    Bakri, M M; Hossain, M Z; Razak, F A; Saqina, Z H; Misroni, A A; Ab-Murat, N; Kitagawa, J; Saub, R B

    2017-06-01

    Dentine hypersensitivity is a common problem attributed by patent dentinal tubules. Ingredients incorporated in toothpastes aim to occlude patent dentinal tubules to minimize the dentine hypersensitivity. However, frequent consumption of acidic soft drinks may reverse the dentinal tubules' occlusion. In this in vitro study, the efficacy of dentinal tubules occluded by commercially available toothpastes to withstand different durations of an acidic soft drink challenge was investigated. One hundred and twenty dentine discs were divided into three groups. The discs from each group were brushed with toothpaste containing bioactive glass, arginine and control toothpaste. Each group was then divided into four subgroups and exposed to acidic soft drink over four different time durations. The scoring and the percentage of occluded dentinal tubules by Novamin-containing toothpaste was significantly better compared with arginine or the control toothpaste. Acidic soft drink challenge reduced the extent of dentinal tubules occlusion along with time. Dentinal tubules occluded by Novamin-containing toothpaste withstand the acidic challenge comparatively for a longer period. The findings demonstrated that occlusion of dentinal tubules is more efficient by the bioactive glass-containing toothpaste and thus may contribute to its better resistance to acidic soft drink challenge. © 2016 Australian Dental Association.

  10. Annexin IV (Xanx-4) has a functional role in the formation of pronephric tubules.

    PubMed

    Seville, Rachel A; Nijjar, Sarbjit; Barnett, Mark W; Massé, Karine; Jones, Elizabeth A

    2002-04-01

    Vertebrate kidney organogenesis is characterised by the successive formation of the pronephros, the mesonephros and the metanephros. The pronephros is the first to form and is the functional embryonic kidney of lower vertebrates; although it is vestigial in higher vertebrates, it is a necessary precursor for the other kidney types. The Xenopus pronephros is a simple paired organ; each nephron consists of a single large glomus, one set of tubules and a single duct. The simple organisation of the pronephros and the amenability of Xenopus laevis embryos to manipulation make the Xenopus pronephros an attractive system in which to study organogenesis. It has been shown that pronephric tubules can be induced to form in presumptive ectodermal tissue by treatment with RA and activin. We have used this system in a subtractive hybridisation screen that resulted in the cloning of Xenopus laevis annexin IV (Xanx-4). Xanx-4 transcripts are specifically located to the developing pronephric tubules, and the protein to the luminal surface of these tubules. Temporal expression shows zygotic transcription is upregulated at the time of pronephric tubule specification and persists throughout pronephric development. The temporal and spatial expression pattern of Xanx-4 suggests it may have a role in pronephric tubule development. Overexpression of Xanx-4 yields no apparent phenotype, but Xanx-4 depletion, using morpholinos, produces a shortened, enlarged tubule phenotype. The phenotype observed can be rescued by co-injection of Xanx-4 mRNA. Although the function of annexins is not yet clear, studies have suggested a role for annexins in a number of cellular processes. Annexin IV has been shown to have an inhibitory role in the regulation of epithelial calcium-activated chloride ion conductance. The enlarged pronephric tubule phenotype observed may be attributed to incorrect modulation of exocytosis, membrane plasticity or ion channels and/or water homeostasis. In this study, we

  11. Polytene Chromosomes - A Portrait of Functional Organization of the Drosophila Genome.

    PubMed

    Zykova, Tatyana Yu; Levitsky, Victor G; Belyaeva, Elena S; Zhimulev, Igor F

    2018-04-01

    This mini-review is devoted to the problem genetic meaning of main polytene chromosome structures - bands and interbands. Generally, densely packed chromatin forms black bands, moderately condensed regions form grey loose bands, whereas decondensed regions of the genome appear as interbands. Recent progress in the annotation of the Drosophila genome and epigenome has made it possible to compare the banding pattern and the structural organization of genes, as well as their activity. This was greatly aided by our ability to establish the borders of bands and interbands on the physical map, which allowed to perform comprehensive side-by-side comparisons of cytology, genetic and epigenetic maps and to uncover the association between the morphological structures and the functional domains of the genome. These studies largely conclude that interbands 5'-ends of housekeeping genes that are active across all cell types. Interbands are enriched with proteins involved in transcription and nucleosome remodeling, as well as with active histone modifications. Notably, most of the replication origins map to interband regions. As for grey loose bands adjacent to interbands, they typically host the bodies of house-keeping genes. Thus, the bipartite structure composed of an interband and an adjacent grey band functions as a standalone genetic unit. Finally, black bands harbor tissue-specific genes with narrow temporal and tissue expression profiles. Thus, the uniform and permanent activity of interbands combined with the inactivity of genes in bands forms the basis of the universal banding pattern observed in various Drosophila tissues.

  12. Drug transporter expression profiling in a three-dimensional kidney proximal tubule in vitro nephrotoxicity model.

    PubMed

    Diekjürgen, Dorina; Grainger, David W

    2018-05-09

    Given currently poor toxicity translational predictions for drug candidates, improved mechanistic understanding underlying nephrotoxicity and drug renal clearance is needed to improve drug development and safety screening. Therefore, better relevant and well-characterized in vitro screening models are required to reliably predict human nephrotoxicity. Because kidney proximal tubules are central to active drug uptake and secretion processes and therefore to nephrotoxicity, this study acquired regio-specific expression data from recently reported primary proximal tubule three-dimensional (3D) hyaluronic acid gel culture and non-gel embedded cultured murine proximal tubule suspensions used in nephrotoxicity assays. Quantitative assessment of the mRNA expression of 21 known kidney tubule markers and important proximal tubule transporters with known roles in drug transport was obtained. Asserting superior gene expression levels over current commonly used two-dimensional (2D) kidney cell culture lines was the study objective. Hence, we compare previously published gel-based 3D proximal tubule fragment culture and their non-gel suspensions for up to 1 week. We demonstrate that 3D tubule culture exhibits superior gene expression levels and profiles compared to published commonly used 2D kidney cell lines (Caki-1 and HK-2) in plastic plate monocultures. Additionally, nearly all tested genes retain mRNA expression after 7 days in both proximal tubule cultures, a limitation of 2D cell culture lines. Importantly, gel presence is shown not to interfere with the gene expression assay. Western blots confirm protein expression of OAT1 and 3 and OCT2. Functional transport assays confirm their respective transporter functions in vitro. Overall, results validate retention of essential toxicity-relevant transporters in this published 3D proximal tubule model over conventional 2D kidney cell cultures, producing opportunities for more reliable, sensitive, and comprehensive drug

  13. Inducible nitric oxide synthase and apoptosis in murine proximal tubule epithelial cells.

    PubMed

    Tiwari, Manish M; Messer, Kurt J; Mayeux, Philip R

    2006-06-01

    Since inducible nitric oxide synthase (iNOS) and proximal tubule injury are known to be critical determinants of lipopolysaccharide (LPS)-induced renal failure, the role of nitric oxide (NO) in proximal tubule cell apoptosis was examined. An 18-h treatment with a combination of LPS (5 microg/ml) and interferon-gamma (IFN-gamma, 100 units/ml) synergistically induced iNOS and produced a 20-fold increase in NO generation in the TKPTS murine proximal tubule cell line. NO generation by LPS + IFN-gamma was blocked by a specific iNOS blocker, L-N6-(1-iminoethyl)-lysine (L-NIL, 1 mM). To assess the role of iNOS-derived NO in proximal tubule cell apoptosis, annexin V- and propidium iodide-labeled cells were analyzed by flow cytometry. Neither the induction of iNOS nor its inhibition produced significant apoptotic cell death in TKPTS cells. Two exogenous NO donors were used to examine the role of NO more directly in proximal tubule apoptosis. Although both sodium nitroprusside (SNP), an iron-containing, nitrosonium cation donor, and S-nitroso-N-acetylpenicillamine (SNAP), a noniron-containing, NO generator, produced a concentration-dependent increase in NO generation, only SNP increased apoptotic cell death in TKPTS cells (5.9 +/- 0.7% in control cells vs. 21.6 +/- 3.8% in SNP [500 microM]-treated cells; n = 4-9; p < 0.01). SNP-mediated tubule cell apoptosis was not dependent on the activation of caspases or p53 but was possibly related to the generation of reactive oxygen species by SNP. Thus, in TKPTS cells induction of iNOS and generation of NO by LPS does not lead to tubular epithelial cell death.

  14. A scanning electron microscopic evaluation of in vitro dentinal tubules penetration by selected anaerobic bacteria.

    PubMed

    Siqueira, J F; De Uzeda, M; Fonseca, M E

    1996-06-01

    In vitro root canal dentinal tubule invasion by selected anaerobic bacteria commonly isolated from endodontic infections was evaluated. Dentinal cylinders obtained from bovine incisors were inoculated with bacteria, and microbial penetration into tubules was demonstrated by scanning electron microscopy. The results indicated that all bacterial strains tested were able to penetrate into dentinal tubules, but to different extents.

  15. Dentine tubule infection and endodontic therapy implications.

    PubMed

    Oguntebi, B R

    1994-07-01

    A critical review of the literature suggests that the microenvironment of dentinal tubules appears to favour the selection of relatively few bacterial types irrespective of the aetiology of the infection process; coronal dental caries or pulpar necrosis. These bacteria may constitute an important reservoir from which root canal infection and reinfection may occur following pulp necrosis or during and after endodontic treatment. Previous studies of this microflora have utilized microbiological culture techniques which need to be supplemented by those that allow in situ demonstration as well as identification of the bacteria. Newer treatment strategies that are designed to eliminate this microflora must include agents that can penetrate the dentinal tubules and destroy these microorganisms, since they are located in an area beyond the host defence mechanisms where they cannot be reached by systemically administered antimicrobial agents.

  16. ULTRASTRUCTURAL STUDIES OF VASOPRESSIN EFFECT ON ISOLATED PERFUSED RENAL COLLECTING TUBULES OF THE RABBIT

    PubMed Central

    Ganote, Charles E.; Grantham, Jared J.; Moses, Harold L.; Burg, Maurice B.; Orloff, Jack

    1968-01-01

    Isolated cortical collecting tubules from rabbit kidney were studied during perfusion with solutions made either isotonic or hypotonic to the external bathing medium. Examination of living tubules revealed a reversible increase in thickness of the cellular layer, prominence of lateral cell membranes, and formation of intracellular vacuoles during periods of vasopressin-induced osmotic water transport. Examination in the electron microscope revealed that vasopressin induced no changes in cell structure in collecting tubules in the absence of an osmotic difference and significant bulk water flow across the tubule wall. In contrast, tubules fixed during vasopressin-induced periods of high osmotic water transport showed prominent dilatation of lateral intercellular spaces, bulging of apical cell membranes into the tubular lumen, and formation of intracellular vacuoles. It is concluded that the ultrastructural changes are secondary to transepithelial bulk water flow and not to a direct effect of vasopressin on the cells, and that vasopressin induces osmotic flow by increasing water permeability of the luminal cell membrane. The lateral intercellular spaces may be part of the pathway for osmotically induced transepithelial bulk water flow. PMID:4867134

  17. The role of polyester interstitium and aldosterone during structural development of renal tubules in serum-free medium.

    PubMed

    Minuth, Will W; Denk, Lucia; Hu, Kanghong

    2007-10-01

    Little knowledge is available regarding the development of renal stem/progenitor cells into functional parenchyme. To investigate the environmental mechanisms during this maturation process, we elaborated an advanced culture technique to follow renal tubule development. Embryonic stem/progenitor cells derived from neonatal rabbit kidney were placed in a perfusion culture container at the interphase of an artificial polyester interstitium. Tissue culture was carried out in IMDM without serum or protein supplementation and without coating with extracellular matrix proteins. Development of tubules was registered histochemically on cryosections labeled with soybean agglutinin (SBA) and tissue-specific antibodies. The experiments revealed that the development of renal tubules depends exclusively on the administration of aldosterone. The use of 1x10(-7) M aldosterone for 13 days generated numerous SBA-labeled tubules, while no tubules developed in the absence of the steroid hormone. To obtain further information about the action of the hormone on the cognate receptor, molecular precursors of the aldosterone synthesis pathway were tested. Surprisingly, application of cholesterol, pregnenolone, progesterone, 11-deoxycorticosterone (DOCA) and corticosterone failed to form numerous tubules. Only 11-DOCA and progesterone induced a few tubules, which were barely SBA-labeled. Furthermore, application of aldosterone antagonists such as 1x10(-4) M spironolactone and 1x10(-4) M canrenoate completely inhibited the development of tubules. We conclude that specifically aldosterone promotes the development of tubules via the mineralocorticoid receptor whereas its precursors have no effect.

  18. Excretion of NaCl and KCl loads in mosquitoes. 2. Effects of the small molecule Kir channel modulator VU573 and its inactive analog VU342

    PubMed Central

    Rouhier, Matthew F.; Hine, Rebecca M.; Park, Seokhwan Terry; Raphemot, Rene; Denton, Jerod; Piermarini, Peter M.

    2014-01-01

    The effect of two small molecules VU342 and VU573 on renal functions in the yellow fever mosquito Aedes aegypti was investigated in vitro and in vivo. In isolated Malpighian tubules, VU342 (10 μM) had no effect on the transepithelial secretion of Na+, K+, Cl−, and water. In contrast, 10 μM VU573 first stimulated and then inhibited the transepithelial secretion of fluid when the tubules were bathed in Na+-rich or K+-rich Ringer solution. The early stimulation was blocked by bumetanide, suggesting the transient stimulation of Na-K-2Cl cotransport, and the late inhibition of fluid secretion was consistent with the known block of AeKir1, an Aedes inward rectifier K+ channel, by VU573. VU342 and VU573 at a hemolymph concentration of about 11 μM had no effect on the diuresis triggered by hemolymph Na+ or K+ loads. VU342 at a hemolymph concentration of 420 μM had no effect on the diuresis elicited by hemolymph Na+ or K+ loads. In contrast, the same concentration of VU573 significantly diminished the Na+ diuresis by inhibiting the urinary excretion of Na+, Cl−, and water. In K+-loaded mosquitoes, 420 μM VU573 significantly diminished the K+ diuresis by inhibiting the urinary excretion of K+, Na+, Cl−, and water. We conclude that 1) the effects of VU573 observed in isolated Malpighian tubules are overwhelmed in vivo by the diuresis triggered with the coinjection of Na+ and K+ loads, and 2) at a hemolymph concentration of 420 μM VU573 affects Kir channels systemically, including those that might be involved in the release of diuretic hormones. PMID:25056106

  19. Isolation and characterization of distinct domains of sarcolemma and T-tubules from rat skeletal muscle.

    PubMed

    Muñoz, P; Rosemblatt, M; Testar, X; Palacín, M; Zorzano, A

    1995-04-01

    1. Several cell-surface domains of sarcolemma and T-tubule from skeletal-muscle fibre were isolated and characterized. 2. A protocol of subcellular fractionation was set up that involved the sequential low- and high-speed homogenization of rat skeletal muscle followed by KCl washing, Ca2+ loading and sucrose-density-gradient centrifugation. This protocol led to the separation of cell-surface membranes from membranes enriched in sarcoplasmic reticulum and intracellular GLUT4-containing vesicles. 3. Agglutination of cell-surface membranes using wheat-germ agglutinin allowed the isolation of three distinct cell-surface membrane domains: sarcolemmal fraction 1 (SM1), sarcolemmal fraction 2 (SM2) and a T-tubule fraction enriched in protein tt28 and the alpha 2-component of dihydropyridine receptor. 4. Fractions SM1 and SM2 represented distinct sarcolemmal subcompartments based on different compositions of biochemical markers: SM2 was characterized by high levels of beta 1-integrin and dystrophin, and SM1 was enriched in beta 1-integrin but lacked dystrophin. 5. The caveolae-associated molecule caveolin was very abundant in SM1, SM2 and T-tubules, suggesting the presence of caveolae or caveolin-rich domains in these cell-surface membrane domains. In contrast, clathrin heavy chain was abundant in SM1 and T-tubules, but only trace levels were detected in SM2. 6. Immunoadsorption of T-tubule vesicles with antibodies against protein tt28 and against GLUT4 revealed the presence of GLUT4 in T-tubules under basal conditions and it also allowed the identification of two distinct pools of T-tubules showing different contents of tt28 and dihydropyridine receptors. 7. Our data on distribution of clathrin and dystrophin reveal the existence of subcompartments in sarcolemma from muscle fibre, featuring selective mutually exclusive components. T-tubules contain caveolin and clathrin suggesting that they contain caveolin- and clathrin-rich domains. Furthermore, evidence for the

  20. Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips

    NASA Astrophysics Data System (ADS)

    Homan, Kimberly A.; Kolesky, David B.; Skylar-Scott, Mark A.; Herrmann, Jessica; Obuobi, Humphrey; Moisan, Annie; Lewis, Jennifer A.

    2016-10-01

    Three-dimensional models of kidney tissue that recapitulate human responses are needed for drug screening, disease modeling, and, ultimately, kidney organ engineering. Here, we report a bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an extracellular matrix and housed in perfusable tissue chips, allowing them to be maintained for greater than two months. Their convoluted tubular architecture is circumscribed by proximal tubule epithelial cells and actively perfused through the open lumen. These engineered 3D proximal tubules on chip exhibit significantly enhanced epithelial morphology and functional properties relative to the same cells grown on 2D controls with or without perfusion. Upon introducing the nephrotoxin, Cyclosporine A, the epithelial barrier is disrupted in a dose-dependent manner. Our bioprinting method provides a new route for programmably fabricating advanced human kidney tissue models on demand.

  1. Diadenosine polyphosphate-stimulated gluconeogenesis in isolated rat proximal tubules.

    PubMed Central

    Edgecombe, M; Craddock, H S; Smith, D C; McLennan, A G; Fisher, M J

    1997-01-01

    Diadenosine polyphosphates released into the extracellular environment influence a variety of metabolic and other cellular activities in a wide range of target tissues. Here we have studied the impact of these novel nucleotides on gluconeogenesis in isolated rat proximal tubules. Gluconeogenesis was stimulated following exposure of isolated proximal tubules to a range of adenine-containing nucleotides including ADP, ATP, Ap3A, Ap4A, Ap5A and Ap6A. The concentration-dependence of ATP-, Ap3A- and Ap4A-mediated stimulation of gluconeogenesis was similar and was consistent with a role for these agents in the physiological control of renal metabolism. Nucleotide-stimulated gluconeogenesis was diminished in the presence of agents that interfere with phospholipase C activation or intracellular Ca2+ metabolism, indicative of a role for polyphosphoinositide-mediated Ca2+ mobilization in the mechanism of action of ATP, Ap3A and Ap4A. The characteristics of binding of [2-3H]Ap4A to renal plasma-membrane preparations suggest that Ap4A mediates its effects on proximal tubule gluconeogenesis via interaction with P2y-like purinoceptor(s) also recognized by extracellular ATP. PMID:9163337

  2. Impact of agrochemicals on non-target species: Calathus fuscipes Goeze 1777 (Coleoptera: Carabidae) as model.

    PubMed

    Giglio, Anita; Cavaliere, Francesco; Giulianini, Piero Giulio; Mazzei, Antonio; Talarico, Federica; Vommaro, Maria Luigia; Brandmayr, Pietro

    2017-08-01

    Carabid beetles are important in the biological control of arable crop pests. Agricultural practices can produce over time a delayed toxic effect at the organismal and population levels and can compromise the survival on these species. In this research, we quantified the cumulative sublethal effect on body size, Malpighian tubules and immune responses in Calathus fuscipes adults living in the potato field and exposed to lambda-cyhalothrin and cymoxanil-based commercial formulates. Reductions of morphological parameters such as body, pronotum and elytron in both males and females from the potato field indicated that the pre-imaginal stages (larvae and pupae) suffer the sublethal effects of exposure to the larvicide control action of lambda-cyhalothrin. Ultrastructural alterations recorded in Malpighian tubules at the level of plasma membrane, mitochondria and nucleus indicated the reduction of the detoxification capability. The basal phenoloxidase and lysozyme-like enzyme activities have measured as markers of immune competence. Spectrophometric analyses showed that the chronic exposure in field causes an increase of basal phenoloxidase enzyme activity, while the lytic activity of haemolymph was not affected. As a result, the use of larvicides and fungicides have a harmful effect on beneficial species such C. fuscipes living in the soil of potato fields. These morphological and physiological results recorded at the organismal level can provide useful information of effects at the population and community levels to preserve the biodiversity of agroecosystem. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. An Eye on Trafficking Genes: Identification of Four Eye Color Mutations in Drosophila

    PubMed Central

    Grant, Paaqua; Maga, Tara; Loshakov, Anna; Singhal, Rishi; Wali, Aminah; Nwankwo, Jennifer; Baron, Kaitlin; Johnson, Diana

    2016-01-01

    Genes that code for proteins involved in organelle biogenesis and intracellular trafficking produce products that are critical in normal cell function . Conserved orthologs of these are present in most or all eukaryotes, including Drosophila melanogaster. Some of these genes were originally identified as eye color mutants with decreases in both types of pigments found in the fly eye. These criteria were used for identification of such genes, four eye color mutations that are not annotated in the genome sequence: chocolate, maroon, mahogany, and red Malpighian tubules were molecularly mapped and their genome sequences have been evaluated. Mapping was performed using deletion analysis and complementation tests. chocolate is an allele of the VhaAC39-1 gene, which is an ortholog of the Vacuolar H+ ATPase AC39 subunit 1. maroon corresponds to the Vps16A gene and its product is part of the HOPS complex, which participates in transport and organelle fusion. red Malpighian tubule is the CG12207 gene, which encodes a protein of unknown function that includes a LysM domain. mahogany is the CG13646 gene, which is predicted to be an amino acid transporter. The strategy of identifying eye color genes based on perturbations in quantities of both types of eye color pigments has proven useful in identifying proteins involved in trafficking and biogenesis of lysosome-related organelles. Mutants of these genes can form the basis of valuable in vivo models to understand these processes. PMID:27558665

  4. Evaluation of desensitizing agents on dentin permeability and dentinal tubule occlusion: an in vitro study.

    PubMed

    Oberg, Carolina; Pochapski, Marcia Thais; Farago, Paulo Vitor; Granado, Carlos Jose Fernandes; Pilatti, Gibson Luiz; Santos, Fabio Andre

    2009-01-01

    One hundred twelve specimens from bovine incisors were divided into eight groups: Group 1 (treated with 10% strontium chloride gel), Group 2 (treated with 2% sodium fluoride gel), Group 3 (treated with 2% stannous fluoride gel), Group 4 (treated with 5% potassium nitrate gel), Group 5 (treated with 10% potassium nitrate gel), Group 6 (treated with 3% potassium oxalate gel), Group 7 (treated with hydroxyethylcellulose gel), and Group 8 (which received no treatment). Dentinal tubules were exposed after 0.5 mm of deep abrasion using a carbide bur and EDTA gel application. After each treatment, dentin permeability, tubule occlusion, and chemical elements on dentin were analyzed. There was a significant difference among groups in dentin permeability (p < 0.05 ANOVA). Groups 4, 5, and 6 showed the lowest values, while Groups 1, 7, and 8 exhibited the highest. Groups 1, 2, 3, 7, and 8 showed open dentinal tubules, Groups 4 and 5 had partial tubule occlusion, and most of the tubules in Group 6 were obliterated. Energy-dispersive x-rays revealed similar chemical characteristics among the experimental agents used, with traces of strontium, fluoride, sodium, and potassium. Within the limits of the study, 3% potassium oxalate gel showed the best results in terms of dentin permeability and dentinal tubule occlusion.

  5. Sildenafil ameliorates left ventricular T-tubule remodeling in a pressure overload-induced murine heart failure model

    PubMed Central

    Huang, Chun-kai; Chen, Bi-yi; Guo, Ang; Chen, Rong; Zhu, Yan-qi; Kutschke, William; Hong, Jiang; Song, Long-sheng

    2016-01-01

    Aim: Sildenafil, a phosphodiesterase 5 (PDE5) inhibitor, has been shown to exert beneficial effects in heart failure. The purpose of this study was to test whether sildenafil suppressed transverse-tubule (T-tubule) remodeling in left ventricular (LV) failure and thereby providing the therapeutic benefits. Methods: A pressure overload-induced murine heart failure model was established in mice by thoracic aortic banding (TAB). One day after TAB, the mice received sildenafil (100 mg·kg−1·d−1, sc) or saline for 5 weeks. At the end of treatment, echocardiography was used to examine LV function. Then the intact hearts were dissected out and placed in Langendorff-perfusion chamber for in situ confocal imaging of T-tubule ultrastructure from epicardial myocytes. Results: TAB surgery resulted in heart failure accompanied by remarkable T-tubule remodeling. Sildenafil treatment significantly attenuated TAB-induced cardiac hypertrophy and congestive heart failure, improved LV contractile function, and preserved T-tubule integrity in LV cardiomyocytes. But sildenafil treatment did not significantly affect the chamber dilation. The integrity of LV T-tubule structure was correlated with cardiac hypertrophy (R2=0.74, P<0.01) and global LV function (R2=0.47, P<0.01). Conclusion: Sildenafil effectively ameliorates LV T-tubule remodeling in TAB mice, revealing a novel mechanism underlying the therapeutic benefits of sildenafil in heart failure. PMID:26972492

  6. Microorganism penetration in dentinal tubules of instrumented and retreated root canal walls. In vitro SEM study.

    PubMed

    Al-Nazhan, Saad; Al-Sulaiman, Alaa; Al-Rasheed, Fellwa; Alnajjar, Fatimah; Al-Abdulwahab, Bander; Al-Badah, Abdulhakeem

    2014-11-01

    This in vitro study aimed to investigate the ability of Candida albicans (C. albicans) and Enterococcus faecalis (E. faecalis) to penetrate dentinal tubules of instrumented and retreated root canal surface of split human teeth. Sixty intact extracted human single-rooted teeth were divided into 4 groups, negative control, positive control without canal instrumentation, instrumented, and retreated. Root canals in the instrumented group were enlarged with endodontic instruments, while root canals in the retreated group were enlarged, filled, and then removed the canal filling materials. The teeth were split longitudinally after canal preparation in 3 groups except the negative control group. The teeth were inoculated with both microorganisms separately and in combination. Teeth specimens were examined by scanning electron microscopy (SEM), and the depth of penetration into the dentinal tubules was assessed using the SMILE view software (JEOL Ltd). Penetration of C. albicans and E. faecalis into the dentinal tubules was observed in all 3 groups, although penetration was partially restricted by dentin debris of tubules in the instrumented group and remnants of canal filling materials in the retreated group. In all 3 groups, E. faecalis penetrated deeper into the dentinal tubules by way of cell division than C. albicans which built colonies and penetrated by means of hyphae. Microorganisms can easily penetrate dentinal tubules of root canals with different appearance based on the microorganism size and status of dentinal tubules.

  7. In vitro dentin tubule occlusion and remineralization competence of various toothpastes.

    PubMed

    Farooq, Imran; Moheet, Imran Alam; AlShwaimi, Emad

    2015-09-01

    The purpose of this study was to evaluate dentin tubule occlusion and remineralization competence of various toothpastes containing fluoride, bioactive glass (BG), and hydroxyapatite (HAP) as active ingredients. Sixty dentin discs that were etched with ethylene-diamine-tetraacetic acid (EDTA) were randomly divided into nine groups. The first five groups containing eight dentin discs corresponded to subsequent brushing experiments: control, distilled water, fluoride toothpaste, BG toothpaste, and HAP toothpaste. Scanning electron microscopy (SEM) was used to demonstrate tubule occlusion after 7 days of simulated brushing (twice a day for 2min), which was followed by a citric acid challenge. The discs were stored in freshly prepared artificial saliva (AS) after every brushing cycle. The remaining four groups that contained five discs each received the following treatment: discs kept in distilled water (control), discs kept in a mixture of AS (pH 7.2) and 2g fluoride toothpaste, discs kept in a mixture of AS and 2g BG toothpaste, and discs kept in a mixture of AS and 2g HAP toothpaste. These discs were left in the mixture for one week at 37°C and were then examined under SEM. The pH of the leftover mixture was analyzed using a pH meter. The Wilcoxon signed-rank test was used to identify any statistically significant differences (p<0.05). All toothpastes demonstrated tubule occlusion after simulated brushing experiments. However, after the citric acid challenge, particles of fluoride toothpaste were completely washed away from the tubules whereas HAP and BG toothpastes demonstrated tremendous resistance to the acid challenge. After immersion of the discs in the mixture of AS and toothpaste, HAP and BG toothpastes again showed superior tubule occlusion in comparison to the other groups, but the highest pH increase was observed for fluoride toothpaste after mixing the toothpastes in AS. The results of this study demonstrate that the highest tubule occlusion competence

  8. Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips

    PubMed Central

    Homan, Kimberly A.; Kolesky, David B.; Skylar-Scott, Mark A.; Herrmann, Jessica; Obuobi, Humphrey; Moisan, Annie; Lewis, Jennifer A.

    2016-01-01

    Three-dimensional models of kidney tissue that recapitulate human responses are needed for drug screening, disease modeling, and, ultimately, kidney organ engineering. Here, we report a bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an extracellular matrix and housed in perfusable tissue chips, allowing them to be maintained for greater than two months. Their convoluted tubular architecture is circumscribed by proximal tubule epithelial cells and actively perfused through the open lumen. These engineered 3D proximal tubules on chip exhibit significantly enhanced epithelial morphology and functional properties relative to the same cells grown on 2D controls with or without perfusion. Upon introducing the nephrotoxin, Cyclosporine A, the epithelial barrier is disrupted in a dose-dependent manner. Our bioprinting method provides a new route for programmably fabricating advanced human kidney tissue models on demand. PMID:27725720

  9. Akt recruits Dab2 to albumin endocytosis in the proximal tubule.

    PubMed

    Koral, Kelly; Li, Hui; Ganesh, Nandita; Birnbaum, Morris J; Hallows, Kenneth R; Erkan, Elif

    2014-12-15

    Proximal tubule epithelial cells have a highly sophisticated endocytic machinery to retrieve the albumin in the glomerular filtrate. The megalin-cubilin complex and the endocytic adaptor disabled-2 (Dab2) play a pivotal role in albumin endocytosis. We previously demonstrated that protein kinase B (Akt) regulates albumin endocytosis in the proximal tubule through an interaction with Dab2. Here, we examined the nature of Akt-Dab2 interaction. The pleckstrin homology (PH) and catalytic domains (CD) of Akt interacted with the proline-rich domain (PRD) of Dab2 based on yeast-two hybrid (Y2H) experiments. Pull-down experiments utilizing the truncated constructs of Dab2 demonstrated that the initial 11 amino acids of Dab2-PRD were sufficient to mediate the interaction between Akt and Dab2. Endocytosis experiments utilizing Akt1- and Akt2-silencing RNA revealed that both Akt1 and Akt2 mediate albumin endocytosis in proximal tubule epithelial cells; therefore, Akt1 and Akt2 may play a compensatory role in albumin endocytosis. Furthermore, both Akt isoforms phosphorylated Dab2 at Ser residues 448 and 449. Ser-to-Ala mutations of these Dab2 residues inhibited albumin endocytosis and resulted in a shift in location of Dab2 from the peripheral to the perinuclear area, suggesting the physiological relevance of these phosphorylation sites in albumin endocytosis. We conclude that both Akt1 and Akt2 are involved in albumin endocytosis, and phosphorylation of Dab2 by Akt induces albumin endocytosis in proximal tubule epithelial cells. Further delineation of how Akt affects expression/phosphorylation of endocytic adaptors and receptors will enhance our understanding of the molecular network triggered by albumin overload in the proximal tubule. Copyright © 2014 the American Physiological Society.

  10. Structure-Activity Relationships for in vitro Diuretic Activity of CAP2b in the Housefly

    DTIC Science & Technology

    2007-01-01

    p e p t i d e s 2 8 ( 2 0 0 7 ) 5 7 – 6 1Structure-activity relationships for in vitro diuretic activity of CAP2b in the housefly Ronald J. Nachman a...the peptide Manse-CAP2b (pELYAFPRV-NH2) were assayed for diuretic activity on Malpighian tubules of the housefly Musca domestica (M. domestica). The C...required the C-terminal heptapeptide, which was equipotent with the most active of the native housefly CAP2b peptides. Replacement of Arg7 and Val8 with

  11. Phospholipase D2 Is Involved in the Formation of Golgi Tubules and ArfGAP1 Recruitment

    PubMed Central

    Martínez-Martínez, Narcisa; Martínez-Alonso, Emma; Ballesta, José; Martínez-Menárguez, José A.

    2014-01-01

    Lipids and lipid-modifying enzymes play a key role in the biogenesis, maintenance and fission of transport carriers in the secretory and endocytic pathways. In the present study we demonstrate that phosphatidic acid generated by phospholipase D2 (PLD2) is involved in the formation of Golgi tubules. The main evidence to support this is: 1) inhibitors of phosphatidic acid formation and PLD2 depletion inhibit the formation of tubules containing resident enzymes and regulators of intra-Golgi transport in a low temperature (15°C) model of Golgi tubulation but do not affect brefeldin A-induced tubules, 2) inhibition of PLD2 enzymatic activity and PLD2 depletion in cells cultured under physiological conditions (37°C) induce the formation of tubules specifically containing Golgi matrix proteins, and, 3) over-expression of PLD2 induces the formation of a tubular network. In addition, it was found that the generation of this lipid by the isoenzyme is necessary for ArfGAP1 recruitment to Golgi membranes. These results suggest that both proteins are involved in the molecular mechanisms which drive the formation of different types of Golgi tubules. PMID:25354038

  12. Microorganism penetration in dentinal tubules of instrumented and retreated root canal walls. In vitro SEM study

    PubMed Central

    Al-Sulaiman, Alaa; Al-Rasheed, Fellwa; Alnajjar, Fatimah; Al-Abdulwahab, Bander; Al-Badah, Abdulhakeem

    2014-01-01

    Objectives This in vitro study aimed to investigate the ability of Candida albicans (C. albicans) and Enterococcus faecalis (E. faecalis) to penetrate dentinal tubules of instrumented and retreated root canal surface of split human teeth. Materials and Methods Sixty intact extracted human single-rooted teeth were divided into 4 groups, negative control, positive control without canal instrumentation, instrumented, and retreated. Root canals in the instrumented group were enlarged with endodontic instruments, while root canals in the retreated group were enlarged, filled, and then removed the canal filling materials. The teeth were split longitudinally after canal preparation in 3 groups except the negative control group. The teeth were inoculated with both microorganisms separately and in combination. Teeth specimens were examined by scanning electron microscopy (SEM), and the depth of penetration into the dentinal tubules was assessed using the SMILE view software (JEOL Ltd). Results Penetration of C. albicans and E. faecalis into the dentinal tubules was observed in all 3 groups, although penetration was partially restricted by dentin debris of tubules in the instrumented group and remnants of canal filling materials in the retreated group. In all 3 groups, E. faecalis penetrated deeper into the dentinal tubules by way of cell division than C. albicans which built colonies and penetrated by means of hyphae. Conclusions Microorganisms can easily penetrate dentinal tubules of root canals with different appearance based on the microorganism size and status of dentinal tubules. PMID:25383343

  13. Length Is Associated with Pain: Jellyfish with Painful Sting Have Longer Nematocyst Tubules than Harmless Jellyfish.

    PubMed

    Kitatani, Ryuju; Yamada, Mayu; Kamio, Michiya; Nagai, Hiroshi

    2015-01-01

    A large number of humans are stung by jellyfish all over the world. The stings cause acute pain followed by persistent pain and local inflammation. Harmful jellyfish species typically cause strong pain, whereas harmless jellyfish cause subtle or no pain. Jellyfish sting humans by injecting a tubule, contained in the nematocyst, the stinging organ of jellyfish. The tubule penetrates into the skin leading to venom injection. The detailed morphology of the nematocyst tubule and molecular structure of the venom in the nematocyst has been reported; however, the mechanism responsible for the difference in pain that is caused by harmful and harmless jellyfish sting has not yet been explored or explained. Therefore, we hypothesized that differences in the length of the nematocyst tubule leads to different degrees of epithelial damage. The initial acute pain might be generated by penetration of the tubule, which stimulates pain receptor neurons, whilst persistent pain might be caused by injection of venom into the epithelium. To test this hypothesis we compared the lengths of discharged nematocyst tubules from harmful and harmless jellyfish species and evaluated their ability to penetrate human skin. The results showed that the harmful jellyfish species, Chrysaora pacifica, Carybdea brevipedalia, and Chironex yamaguchii, causing moderate to severe pain, have nematocyst tubules longer than 200 μm, compared with a jellyfish species that cause little or no pain, Aurelia aurita. The majority of the tubules of harmful jellyfishes, C. yamaguchii and C. brevipedalia, were sufficiently long to penetrate the human epidermis and physically stimulate the free nerve endings of Aδ pain receptor fibers around plexuses to cause acute pain and inject the venom into the human skin epithelium to cause persistent pain and inflammation.

  14. Detection of abnormal extracellular matrix in the interstitium of regenerating renal tubules.

    PubMed

    Minuth, Will W; Denk, Lucia

    2014-12-15

    Stem/progenitor cells are promising candidates for the regeneration of parenchyma in acute and chronic renal failure. However, recent data exhibit that survival of stem/progenitor cells after implantation in diseased renal parenchyma is restricted. To elaborate basic parameters improving survival, cell seeding was simulated under advanced in vitro conditions. After isolation, renal stem/progenitor cells were mounted in a polyester interstitium for perfusion culture. During generation of tubules, chemically defined CO2 Independent Medium or Leibovitz's L-15 Medium was applied. Specimens were then fixed for transmission electron microscopy to analyze morphological features in generated tubules. Fixation in conventional glutaraldehyde (GA) solution shows development of tubules each exhibiting a polarized epithelium, an intact basal lamina and an inconspicuous interstitium. In contrast, special fixation of specimens in GA solution containing cupromeronic blue, ruthenium red or tannic acid unveils previously not visible extracellular matrix. Control experiments elucidate that a comparable extracellular matrix is not present in the interstitium of the matured kidney. Thus, generation of renal tubules in combination with advanced fixation of specimens for electron microscopy demonstrates that development of abnormal features in the newly developed interstitium has to be considered, when repair of renal parenchyma is performed by implantation of stem/progenitor cells.

  15. Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy.

    PubMed

    Fujita, Naonobu; Huang, Wilson; Lin, Tzu-Han; Groulx, Jean-Francois; Jean, Steve; Nguyen, Jen; Kuchitsu, Yoshihiko; Koyama-Honda, Ikuko; Mizushima, Noboru; Fukuda, Mitsunori; Kiger, Amy A

    2017-01-07

    Transverse (T)-tubules make-up a specialized network of tubulated muscle cell membranes involved in excitation-contraction coupling for power of contraction. Little is known about how T-tubules maintain highly organized structures and contacts throughout the contractile system despite the ongoing muscle remodeling that occurs with muscle atrophy, damage and aging. We uncovered an essential role for autophagy in T-tubule remodeling with genetic screens of a developmentally regulated remodeling program in Drosophila abdominal muscles. Here, we show that autophagy is both upregulated with and required for progression through T-tubule disassembly stages. Along with known mediators of autophagosome-lysosome fusion, our screens uncovered an unexpected shared role for Rab2 with a broadly conserved function in autophagic clearance. Rab2 localizes to autophagosomes and binds to HOPS complex members, suggesting a direct role in autophagosome tethering/fusion. Together, the high membrane flux with muscle remodeling permits unprecedented analysis both of T-tubule dynamics and fundamental trafficking mechanisms.

  16. Numerical analysis of the effect of T-tubule location on calcium transient in ventricular myocytes.

    PubMed

    George, Uduak Z; Wang, Jun; Yu, Zeyun

    2014-01-01

    Intracellular calcium (Ca2+) signaling in cardiac myocytes is vital for proper functioning of the heart. Understanding the intracellular Ca2+ dynamics would give an insight into the functions of normal and diseased hearts. In the current study, spatiotemporal Ca2+ dynamics is investigated in ventricular myocytes by considering Ca2+ release and re-uptake via sarcolemma and transverse tubules (T-tubules), Ca2+ diffusion and buffering in the cytosol, and the blockade of Ca2+ activities associated with the sarcoplasmic reticulum. This study is carried out using a three dimensional (3D) geometric model of a branch of T-tubule extracted from the electron microscopy (EM) images of a partial ventricular myocyte. Mathematical modeling is done by using a system of partial differential equations involving Ca2+, buffers, and membrane channels. Numerical simulation results suggest that a lack of T-tubule structure at the vicinity of the cell surface could increase the peak time of Ca2+ concentration in myocytes. The results also show that T-tubules and mobile buffers play an important role in the regulation of Ca2+ transient in ventricular myocytes.

  17. SGLT2 Inhibitors: Glucotoxicity and Tumorigenesis Downstream the Renal Proximal Tubule?

    PubMed

    Bertinat, Romina; Nualart, Francisco; Yáñez, Alejandro J

    2016-08-01

    At present, diabetes mellitus is the main cause of end-stage renal disease. Effective glycaemic management is the most powerful tool to delay the establishment of diabetic complications, such as diabetic kidney disease. Together with reducing blood glucose levels, new anti-diabetic agents are expected not only to control the progression but also to restore known defects of the diabetic kidney. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are promising anti-diabetic agents that reduce hyperglycaemia by impairing glucose reabsorption in proximal tubule of the kidney and increasing glucosuria. SGLT2 inhibitors have shown to reduce glucotoxicity in isolated proximal tubule cells and also to attenuate expression of markers of overall kidney damage in experimental animal models of diabetes, but the actual renoprotective effect for downstream nephron segments is still unknown and deserves further attention. Here, we briefly discuss possible undesired effects of enhanced glucosuria and albuminuria in nephron segments beyond the proximal tubule after SGLT2 inhibitor treatment, offering new lines of research to further understand the renoprotective action of these anti-diabetic agents. Strategies blocking glucose reabsorption by renal proximal tubule epithelial cells (RPTEC) may be protective for RPTEC, but downstream nephron segments will still be exposed to high glucose and albumin levels through the luminal face. The actual effect of constant enhanced glucosuria over distal nephron segments remains to be established. J. Cell. Physiol. 231: 1635-1637, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  18. Tight junctions of the proximal tubule and their channel proteins.

    PubMed

    Fromm, Michael; Piontek, Jörg; Rosenthal, Rita; Günzel, Dorothee; Krug, Susanne M

    2017-08-01

    The renal proximal tubule achieves the majority of renal water and solute reabsorption with the help of paracellular channels which lead through the tight junction. The proteins forming such channels in the proximal tubule are claudin-2, claudin-10a, and possibly claudin-17. Claudin-2 forms paracellular channels selective for small cations like Na + and K + . Independently of each other, claudin-10a and claudin-17 form anion-selective channels. The claudins form the paracellular "pore pathway" and are integrated, together with purely sealing claudins and other tight junction proteins, in the belt of tight junction strands surrounding the tubular epithelial cells. In most species, the proximal tubular tight junction consists of only 1-2 (pars convoluta) to 3-5 (pars recta) horizontal strands. Even so, they seal the tubule very effectively against leak passage of nutrients and larger molecules. Remarkably, claudin-2 channels are also permeable to water so that 20-25% of proximal water absorption may occur paracellularly. Although the exact structure of the claudin-2 channel is still unknown, it is clear that Na + and water share the same pore. Already solved claudin crystal structures reveal a characteristic β-sheet, comprising β-strands from both extracellular loops, which is anchored to a left-handed four-transmembrane helix bundle. This allowed homology modeling of channel-forming claudins present in the proximal tubule. The surface of cation- and anion-selective claudins differ in electrostatic potentials in the area of the proposed ion channel, resulting in the opposite charge selectivity of these claudins. Presently, while models of the molecular structure of the claudin-based oligomeric channels have been proposed, its full understanding has only started.

  19. The effect of big endothelin-1 in the proximal tubule of the rat kidney

    PubMed Central

    Beara-Lasić, Lada; Knotek, Mladen; Čejvan, Kenan; Jakšić, Ozren; Lasić, Zoran; Skorić, Boško; Brkljačić, Vera; Banfić, Hrvoje

    1997-01-01

    An obligatory step in the biosynthesis of endothelin-1 (ET-1) is the conversion of its inactive precursor, big ET-1, into the mature form by the action of specific, phosphoramidon-sensitive, endothelin converting enzyme(s) (ECE). Disparate effects of big ET-1 and ET-1 on renal tubule function suggest that big ET-1 might directly influence renal tubule function. Therefore, the role of the enzymatic conversion of big ET-1 into ET-1 in eliciting the functional response (generation of 1,2-diacylglycerol) to big ET-1 was studied in the rat proximal tubules.In renal cortical slices incubated with big ET-1, pretreatment with phosphoramidon (an ECE inhibitor) reduced tissue immunoreactive ET-1 to a level similar to that of cortical tissue not exposed to big ET-1. This confirms the presence and effectiveness of ECE inhibition by phosphoramidon.In freshly isolated proximal tubule cells, big ET-1 stimulated the generation of 1,2-diacylglycerol (DAG) in a time- and dose-dependent manner. Neither phosphoramidon nor chymostatin, a chymase inhibitor, influenced the generation of DAG evoked by big ET-1.Big ET-1-dependent synthesis of DAG was found in the brush-border membrane. It was unaffected by BQ123, an ETA receptor antagonist, but was blocked by bosentan, an ETA,B-nonselective endothelin receptor antagonist.These results suggest that the proximal tubule is a site for the direct effect of big ET-1 in the rat kidney. The effect of big ET-1 is confined to the brush-border membrane of the proximal tubule, which may be the site of big ET-1-sensitive receptors. PMID:9051300

  20. Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.

    PubMed

    Homma-Takeda, Shino; Kitahara, Keisuke; Suzuki, Kyoko; Blyth, Benjamin J; Suya, Noriyoshi; Konishi, Teruaki; Terada, Yasuko; Shimada, Yoshiya

    2015-12-01

    Renal toxicity is a hallmark of uranium exposure, with uranium accumulating specifically in the S3 segment of the proximal tubules causing tubular damage. As the distribution, concentration and dynamics of accumulated uranium at the cellular level is not well understood, here, we report on high-resolution quantitative in situ measurements by high-energy synchrotron radiation X-ray fluorescence analysis in renal sections from a rat model of uranium-induced acute renal toxicity. One day after subcutaneous administration of uranium acetate to male Wistar rats at a dose of 0.5 mg uranium kg(-1) body weight, uranium concentration in the S3 segment of the proximal tubules was 64.9 ± 18.2 µg g(-1) , sevenfold higher than the mean renal uranium concentration (9.7 ± 2.4 µg g(-1) ). Uranium distributed into the epithelium of the S3 segment of the proximal tubules and highly concentrated uranium (50-fold above mean renal concentration) in micro-regions was found near the nuclei. These uranium levels were maintained up to 8 days post-administration, despite more rapid reductions in mean renal concentration. Two weeks after uranium administration, damaged areas were filled with regenerating tubules and morphological signs of tissue recovery, but areas of high uranium concentration (100-fold above mean renal concentration) were still found in the epithelium of regenerating tubules. These data indicate that site-specific accumulation of uranium in micro-regions of the S3 segment of the proximal tubules and retention of uranium in concentrated areas during recovery are characteristics of uranium behavior in the kidney. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Tubulation of class II MHC compartments is microtubule dependent and involves multiple endolysosomal membrane proteins in primary dendritic cells.

    PubMed

    Vyas, Jatin M; Kim, You-Me; Artavanis-Tsakonas, Katerina; Love, J Christopher; Van der Veen, Annemarthe G; Ploegh, Hidde L

    2007-06-01

    Immature dendritic cells (DCs) capture exogenous Ags in the periphery for eventual processing in endolysosomes. Upon maturation by TLR agonists, DCs deliver peptide-loaded class II MHC molecules from these compartments to the cell surface via long tubular structures (endolysosomal tubules). The nature and rules that govern the movement of these DC compartments are unknown. In this study, we demonstrate that the tubules contain multiple proteins including the class II MHC molecules and LAMP1, a lysosomal resident protein, as well as CD63 and CD82, members of the tetraspanin family. Endolysosomal tubules can be stained with acidotropic dyes, indicating that they are extensions of lysosomes. However, the proper trafficking of class II MHC molecules themselves is not necessary for endolysosomal tubule formation. DCs lacking MyD88 can also form endolysosomal tubules, demonstrating that MyD88-dependent TLR activation is not necessary for the formation of this compartment. Endolysosomal tubules in DCs exhibit dynamic and saltatory movement, including bidirectional travel. Measured velocities are consistent with motor-based movement along microtubules. Indeed, nocodazole causes the collapse of endolysosomal tubules. In addition to its association with microtubules, endolysosomal tubules follow the plus ends of microtubules as visualized in primary DCs expressing end binding protein 1 (EB1)-enhanced GFP.

  2. Basolateral phosphate transport in renal proximal-tubule-like OK cells.

    PubMed

    Barac-Nieto, M; Alfred, M; Spitzer, A

    2002-09-01

    It is generally assumed that phosphate (Pi) effluxes from proximal tubule cells by passive diffusion across the basolateral (BL) membrane. We explored the mechanism of BL Pi efflux in proximal tubule-like OK cells grown on permeable filters and then loaded with 32P. BL efflux of 32P was significantly stimulated (P < 0.05) by exposing the BL side of the monolayer to 12.5 mM Pi, to 10 mM citrate, or by acid-loading the cells, and was inhibited by exposure to 0.05 mM Pi or 25 mM HCO3; by contrast, BL exposure to high (8.4) pH, 40 mM K+, 140 mM Na gluconate (replacing NaCl), 10 mM lactate, 10 mM succinate, or 10 mM glutamate did not affect BL 32P efflux. These data are consistent with BL Pi efflux from proximal tubule-like cells occurring, in part, via an electro-neutral sodium-sensitive anion transporter capable of exchanging two moles of intracellular acidic H2PO4- for each mole of extracellular basic HPO4= or for citrate.

  3. Piecewise-Constant-Model-Based Interior Tomography Applied to Dentin Tubules

    DOE PAGES

    He, Peng; Wei, Biao; Wang, Steve; ...

    2013-01-01

    Dentin is a hierarchically structured biomineralized composite material, and dentin’s tubules are difficult to study in situ. Nano-CT provides the requisite resolution, but the field of view typically contains only a few tubules. Using a plate-like specimen allows reconstruction of a volume containing specific tubules from a number of truncated projections typically collected over an angular range of about 140°, which is practically accessible. Classical computed tomography (CT) theory cannot exactly reconstruct an object only from truncated projections, needless to say a limited angular range. Recently, interior tomography was developed to reconstruct a region-of-interest (ROI) from truncated data in amore » theoretically exact fashion via the total variation (TV) minimization under the condition that the ROI is piecewise constant. In this paper, we employ a TV minimization interior tomography algorithm to reconstruct interior microstructures in dentin from truncated projections over a limited angular range. Compared to the filtered backprojection (FBP) reconstruction, our reconstruction method reduces noise and suppresses artifacts. Volume rendering confirms the merits of our method in terms of preserving the interior microstructure of the dentin specimen.« less

  4. Masonry structures built with fictile tubules: Experimental and numerical analyses

    NASA Astrophysics Data System (ADS)

    Tiberti, Simone; Scuro, Carmelo; Codispoti, Rosamaria; Olivito, Renato S.; Milani, Gabriele

    2017-11-01

    Masonry structures with fictile tubules were a distinctive building technique of the Mediterranean area. This technique dates back to Roman and early Christian times, used to build vaulted constructions and domes with various geometrical forms by virtue of their modular structure. In the present work, experimental tests were carried out to identify the mechanical properties of hollow clay fictile tubules and a possible reinforcing technique for existing buildings employing such elements. The experimental results were then validated by devising and analyzing numerical models with the FE software Abaqus, also aimed at investigating the structural behavior of an arch via linear and nonlinear static analyses.

  5. Studies on the structure of the boundary tissue of the white rat seminiferous tubules.

    PubMed

    Cieciura, L

    1988-01-01

    The studies on boundary tissue of the white rat seminiferous tubules with light and electron microscopy were carried out. The wall of the tubules consists of four layers: two cellular and two amorphous ones. In cellular external sheath the characteristic intercellular fissures a network of hexagonal meshes were seen resembling the honey-combs.

  6. Effects of tooth-brushing force with a desensitising dentifrice on dentine tubule patency and surface roughness.

    PubMed

    Mullan, F; Paraskar, S; Bartlett, D W; Olley, R C

    2017-05-01

    To investigate the effects of a 5% NovaMin containing dentifrice on dentine tubule patency and surface roughness at 100g and 400g tooth brush abrasion forces. 75 polished human dentine samples were prepared and randomly allocated into one of five groups; control (1), Na 2 PFO 3 100g abrasion force (2), NovaMin 100g (3), Na 2 PFO 3 400g (4) and NovaMin 400g (5). The control group underwent two 2-min cycles of artificial saliva (AS), one 2-min erosion cycle; the rest underwent two toothbrush abrasion cycles in an AS/dentifrice slurry and one 2-min erosion cycle. All samples were imaged at baseline and post intervention using Tandem Scanning Microscopy and Profilometry to analyse tubule patency and roughness. Mean tubule patency increased significantly between baseline and post intervention in groups 1,2 and 4 and decreased significantly post intervention in groups 3 and 5 (p<0.01). Post intervention, there were statistically significant differences in mean patent tubules between NovaMin and the Na 2 PFO 3 and control groups (p<0.001). Surface roughness increased for all groups between baseline and post interventions (P<0.001); mean (SD) roughness increases for groups 1, 2, 3, 4 and 5 were 0.14 (0.05) μm, 0.18 (0.04) μm, 0.16 (0.06) μm, 0.19 (0.07) μm and 0.21 (0.02) μm respectively. Differences between group 1 and 5 were significant (p<0.01). Brushing with NovaMin resulted in significant dentine tubule occlusion at 100g and 400g, but brushing with Na 2 PFO 3 resulted in increased tubule patency. Surface roughness increased significantly at 400g brushing with NovaMin. There was no correlation between tubule patency and surface roughness. A NovaMin desensitising dentifrice resulted in tubule occlusion even at high brushing forces. There was minimal increase in surface roughness at the lower (100g) brushing force. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Transformation, migration and outcome of residual bodies in the seminiferous tubules of the rat testis.

    PubMed

    Xiao, C-Y; Wang, Y-Q; Li, J-H; Tang, G-C; Xiao, S-S

    2017-12-01

    Experiments were performed to study the transformation, migration and outcome of residual bodies (RBs) in the seminiferous tubules of the rat testes. One part of the testes from adult Sprague-Dawley rats was used to generate paraffin sections to observe RBs and RB precursors through specific staining, and the other part of the testes was used to generate ultrathin sections to observe RBs under a transmission electron microscope. Deep blue particles of different sizes were observed in some seminiferous tubules through specific staining for RBs and RB precursors. These particles first appeared in the seminiferous tubules at stage I of the spermatogenic cycle, and after spermiation, the particles travelled rapidly towards the deeper region of the seminiferous epithelium and soon appeared close to the basement membrane of the seminiferous tubule. All of the particles in the tubules disappeared at stage IX. Using transmission electron microscopy, components of different electron densities were observed in the RBs on the surface of the seminiferous epithelium, all of which gradually formed in the cytoplasm of spermatozoon in later stages of spermiogenesis. After the spermatozoa were released, the RBs in the epithelium travelled quickly to the edge of the tube and were gradually transformed into lipid inclusions. These lipid inclusions ultimately became lipidlike particles. The lipidlike particles were discharged into the interstitial tissue. RBs initiate their own digestive process before their formation during spermiation in the rat testes. After spermiation, the RBs transform into lipid inclusions and finally into lipidlike particles. These lipidlike particles can be eliminated from the seminiferous tubules. © 2017 Blackwell Verlag GmbH.

  8. Postnatal somatic cell proliferation and seminiferous tubule maturation in pigs: A non-random event

    PubMed Central

    Avelar, Gleide F.; Oliveira, Carolina F.A.; Soares, Jaqueline M.; Silva, Israel J.; Dobrinski, Ina; Hess, Rex A.; França, Luiz R.

    2015-01-01

    Although seminiferous tubule maturation in horses begins in the central area of the testis, this process is thought to occur randomly throughout the testis in most mammals. Studies in our laboratory revealed that the establishment of spermatogenesis may not be a synchronous event in the testicular parenchyma of pigs. The objectives of the present study were to evaluate the pattern of seminiferous cord/tubule maturation and the morphological and functional characteristics of testicular somatic cells during postnatal development in three regions of the pig testis: a) near the tunica albuginea (TA); b) in the transitional area between the seminiferous tubules and mediastinum (TR); and c) in the intermediate area (ID) between the TA and TR. Based on the diameter of seminiferous cords/tubules, nucleus size of Sertoli cells and fluid secretion, mainly at 90 and 120 d of age, seminiferous tubule maturation was more advanced in the ID and TR. The mitotic activity of Sertoli cells was higher (P < 0.05) in the TR than the ID and TA at 7 and 120 d. Except for the mitotic index of the Leydig cells, which was lower (P < 0.05) in the ID at 7, 30, and 180 d than in the TA and TR, other Leydig cell ebd points, e.g., individual cell size, nuclear volume, and cytoplasmic volume, were consistently higher (P < 0.05) in the ID, suggesting that steroidogenesis was more active in this region during the period investigated. Overall, we inferred that Leydig cells in the ID may play a pivotal role in postnatal testis development in pigs and this type of cell is likely related to asynchronous testicular parenchyma development, with the transitional area providing the primary zone for growth of seminiferous tubules. PMID:20189235

  9. Evaluation of dentin tubule occlusion after laser irradiation and desensitizing agent application.

    PubMed

    Kim, Min-Ho; Kim, Ryan Jin-Young; Lee, Woo-Cheol; Lee, In-Bog

    2015-10-01

    To evaluate the effects of lasers (Nd:YAG and Er:YAG) and of topical desensitizing agents on dentin tubule occlusion by measuring real-time dentin fluid flow (DFF). 32 molars were prepared with V-shape cavity at the cervical area, acid-etched, water rinsed, blotted dry, and treated with (1) Nd:YAG laser; (2) Er:YAG laser; (3) SuperSeal, a desensitizing agent; (4) ClinproXT, a resin-modified glass-ionomer (RMGI) varnish (n = 8 each). A real-time fluid flow measuring instrument (nano-Flow) was used to measure the DFF throughout the procedures. The DFF rates before and after the treatment were compared. Moreover, the surface topography of dentin tubules after each desensitizing method was examined using SEM. DFF varied among the groups. The DFF rate was significantly reduced after laser irradiation/application of the desensitizing agents (P < 0.05). ClinproXT showed the greatest reduction of DFF rate (71.9%), followed by the SuperSeal (34.8%) and laser groups (P< 0.05). However, there was no significant difference between the Nd:YAG (24.1%) and Er:YAG (20.6%) groups (P > 0.05). In SEM images, narrowed dentin tubules were observed in both lased groups and SuperSeal group. In the ClinproXT group, the occluded dentin tubules by the RMGI covering were observed.

  10. The Drosophila melanogaster Homologue of the Xeroderma Pigmentosum D Gene Product Is Located in Euchromatic Regions and Has a Dynamic Response to UV Light-induced Lesions in Polytene Chromosomes

    PubMed Central

    Reynaud, Enrique; Lomelí, Hilda; Vázquez, Martha; Zurita, Mario

    1999-01-01

    The XPD/ERCC2/Rad3 gene is required for excision repair of UV-damaged DNA and is an important component of nucleotide excision repair. Mutations in the XPD gene generate the cancer-prone syndrome, xeroderma pigmentosum, Cockayne’s syndrome, and trichothiodystrophy. XPD has a 5′- to 3′-helicase activity and is a component of the TFIIH transcription factor, which is essential for RNA polymerase II elongation. We present here the characterization of the Drosophila melanogaster XPD gene (DmXPD). DmXPD encodes a product that is highly related to its human homologue. The DmXPD protein is ubiquitous during development. In embryos at the syncytial blastoderm stage, DmXPD is cytoplasmic. At the onset of transcription in somatic cells and during gastrulation in germ cells, DmXPD moves to the nuclei. Distribution analysis in polytene chromosomes shows that DmXPD is highly concentrated in the interbands, especially in the highly transcribed regions known as puffs. UV-light irradiation of third-instar larvae induces an increase in the signal intensity and in the number of sites where the DmXPD protein is located in polytene chromosomes, indicating that the DmXPD protein is recruited intensively in the chromosomes as a response to DNA damage. This is the first time that the response to DNA damage by UV-light irradiation can be visualized directly on the chromosomes using one of the TFIIH components. PMID:10198066

  11. Distal tubule bicarbonate reabsorption in NH4Cl acidotic rats.

    PubMed

    Vandorpe, D H; Levine, D Z

    1989-08-01

    NH4Cl acidosis--a common experimental model of hyperchloremic metabolic acidosis--elicits complex intrarenal responses whereby the fall in plasma bicarbonate concentration can be restored to normal after the initial acid load. Using the technique of in vivo micropuncture of surface distal tubules of the rat kidney, we attempted to further define controlling mechanisms underlying the enhanced bicarbonate reabsorption in this setting. Specifically, we wished to determine the dependence of distal tubule bicarbonate reabsorption (JtCO2) on sodium transport, water reabsorption, and carbonic anhydrase activity. Surface distal tubules of Sprague-Dawley rats made acidotic by ammonium chloride gavage (arterial blood pH: 7.15 +/- 0.01, [HCO3]: 14.8 +/- 0.5 mM) were perfused in vivo at 8 and 24 nL/min with 4 different isoosmotic, 25 mM bicarbonate solutions: Group 1 was perfused with 60 mM Na, Group 2 with 60 mM choline, Group 3 with 60 mM choline + 3 x 10(-4) M amiloride, and Group 4 with 60 mM Na + 10(-3) M acetazolamide. At 8 nL/min, significant bicarbonate reabsorption occurred with all perfusates. JtCO2 was 65 +/- 4, 59 +/- 5, 58 +/- 6, and 40 +/- 4 pmol.min-1.mm-1, in Groups 1, 2, 3, and 4, respectively. However, JtCO2 in Group 4 was significantly less than that in Groups 1 and 2 (p less than 0.01 and p less than 0.05, respectively). Amiloride added to the low sodium perfusate did not reduce bicarbonate reabsorption. We conclude that bicarbonate reabsorption in distal tubules of acidotic rats is acetazolamide-sensitive and is not significantly sustained by sodium or water movements.

  12. Cyclophilin B expression in renal proximal tubules of hypertensive rats.

    PubMed

    Kainer, D B; Doris, P A

    2000-04-01

    Rat cyclophilin-like protein (Cy-LP) is a candidate hypertension gene initially identified by differential hybridization and implicated in renal mechanisms of salt retention and high blood pressure. We report the molecular characterization of rat cyclophilin B (CypB) and demonstrate, through sequence analysis and an allele-specific polymerase chain reaction primer assay, that CypB but not Cy-LP is expressed in rat kidney. CypB is an endoplasmic reticulum-localized prolyl-isomerase that interacts with elongation initiation factor 2-beta, an important regulator of protein translation and a central component of the endoplasmic reticulum stress response to hypoxia or ATP depletion. Active renal transport of sodium is increased in the spontaneously hypertensive rat (SHR), and there is evidence that this coincides with hypoxia and ATP depletion in the renal cortex. In the present studies we have examined expression of CypB in rat proximal tubules, which contributes to the increased renal sodium reabsorption in this model of hypertension. We report that CypB transcript abundance is significantly elevated in proximal convoluted tubules from SHR compared with the control Wistar-Kyoto strain. This upregulation occurs in weanling animals and precedes the development of hypertension, indicating that it is not a simple response to hypertension in SHR. Further, CypB expression is also higher in a proximal tubule cell line derived from SHR compared with a similar line derived from Wistar-Kyoto rats, indicating that this difference is genetically determined. No sequence differences were observed in the CypB cDNA from these 2 strains. These observations suggest that a genetically determined alteration in proximal tubules from SHR occurs that leads to increased expression of CypB. In view of evidence linking CypB to the regulation of elongation initiation factor-2, the upregulation of CypB may result from metabolic stress.

  13. Transport of H(+), Na(+) and K(+) across the posterior midgut of blood-fed mosquitoes (Aedes aegypti).

    PubMed

    Pacey, Evan K; O'Donnell, Michael J

    2014-02-01

    Following ingestion of a blood meal, the adult female mosquito undergoes a massive diuresis during which Na(+), Cl(-) and water are secreted at high rates by the Malpighian tubules. In the hours following completion of diuresis, digestion of the K(+)-rich blood cells provides a source of energy as well as amino acids for proteins in the developing eggs. Although the transport of inorganic ions by the Malpighian tubules of blood-fed mosquitoes has been extensively characterized, relatively little is known of the epithelial transport mechanisms responsible for movement of Na(+), H(+), and K(+) across the posterior midgut. In this paper we have used the Scanning Ion-selective Electrode Technique (SIET) to measure the basal (unstimulated) rates of transport of K(+), Na(+) and H(+) across the isolated posterior midgut at intervals after the blood meal. We have also measured luminal concentrations of Na(+) and K(+) and the transepithelial electrical potential at the same time points and have calculated the electrochemical potentials for Na(+), K(+) and H(+) across the midgut. SIET measurements reveal absorption (lumen to bath) of Na(+) and H(+) and secretion of K(+) for the first 2h after blood-feeding. By 24h after the meal, absorption of Na(+) and H(+) remains active while there is an electrochemical gradient favouring absorption of K(+). Inhibition by ouabain and Ba(2+) suggest a role for the Na(+)/K(+)-ATPase and K(+) channels in absorption of Na(+) and K(+), respectively. Inhibition of H(+) absorption by acetazolamide implicates carbonic anhydrase in transepithelial H(+) transport. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Strategies for regulation of hemolymph pH in acidic and alkaline water by the larval mosquito Aedes aegypti (L.) (Diptera; Culicidae).

    PubMed

    Clark, Thomas M; Vieira, Marcus A L; Huegel, Kara L; Flury, Dawn; Carper, Melissa

    2007-12-01

    The responses of larval Aedes aegypti to media of pH 4, 7 and 11 provide evidence for pH regulatory strategies. Drinking rates in pH 4 media were elevated 3- to 5-fold above those observed in pH 7 or 11. Total body water was elevated during acute exposure to acidic media. During chronic exposure, total body water was decreased and Malpighian tubule mitochondrial luminosity, quantified using Mitotracker Green FM, increased. Malpighian tubule secretion rates and energy demands thus appear to increase dramatically during acid exposure. In alkaline media, drinking rates were quite low. Larvae in pH 11 media excreted net acid (0.12 nequiv H(+) g(-1) h(-1)) and the pH indicators azolitmin and bromothymol blue revealed that the rectal lumen is acidic in vivo at all ambient pH values. The anal papillae (AP) were found to be highly permeant to acid-base equivalents. Ambient pH influenced the length, and the mass-specific length, of the AP in the presence of NaCl (59.9 mmol l(-1)). In contrast, the length and mass-specific length of AP were not influenced by ambient pH in low NaCl conditions. Mitochondrial luminosity was reduced in AP of larvae reared in acidic media, and was not elevated in alkaline media, relative to that of larvae reared in neutral media. These data suggest that the AP may compromise acid-base balance in acidic media, and may also be an important site of trade-offs between H(+) homeostasis and NaCl uptake in dilute, acidic media.

  15. Tubulation of Class II MHC Compartments Is Microtubule Dependent and Involves Multiple Endolysosomal Membrane Proteins in Primary Dendritic Cells1

    PubMed Central

    Vyas, Jatin M.; Kim, You-Me; Artavanis-Tsakonas, Katerina; Love, J. Christopher; Van der Veen, Annemarthe G.; Ploegh, Hidde L.

    2009-01-01

    Immature dendritic cells (DCs) capture exogenous Ags in the periphery for eventual processing in endolysosomes. Upon maturation by TLR agonists, DCs deliver peptide-loaded class II MHC molecules from these compartments to the cell surface via long tubular structures (endolysosomal tubules). The nature and rules that govern the movement of these DC compartments are unknown. In this study, we demonstrate that the tubules contain multiple proteins including the class II MHC molecules and LAMP1, a lysosomal resident protein, as well as CD63 and CD82, members of the tetraspanin family. Endolysosomal tubules can be stained with acidotropic dyes, indicating that they are extensions of lysosomes. However, the proper trafficking of class II MHC molecules themselves is not necessary for endolysosomal tubule formation. DCs lacking MyD88 can also form endolysosomal tubules, demonstrating that MyD88-dependent TLR activation is not necessary for the formation of this compartment. Endolysosomal tubules in DCs exhibit dynamic and saltatory movement, including bidirectional travel. Measured velocities are consistent with motor-based movement along microtubules. Indeed, nocodazole causes the collapse of endolysosomal tubules. In addition to its association with microtubules, endolysosomal tubules follow the plus ends of microtubules as visualized in primary DCs expressing end binding protein 1 (EB1)-enhanced GFP. PMID:17513769

  16. Depression of fractional sodium reabsorption by the proximal tubule of the dog without sodium diuresis

    PubMed Central

    Howards, Stuart S.; Davis, Bernard B.; Knox, Franklyn G.; Wright, Fred S.; Berliner, Robert W.

    1968-01-01

    The effect of infusions of hyperoncotic solutions on fractional sodium reabsorption by the proximal tubule of the dog was studied by the recollection micropuncture method. Tubule fluid to plasma inulin concentration ratios were measured for identified proximal tubule segments before and after infusion of 25% albumin or dextran solutions. Results were compared with changes in fractional reabsorption during saline diuresis. Plasma volume increased 66% ± SE 5.8 after infusion of albumin solution and 94% ± SE 8.2 after infusion of dextran solution. Fractional sodium reabosorption by the proximal tubule was depressed after infusion of both of these hyperoncotic solutions. Nevertheless, changes in sodium excretion after infusion of albumin and dextran were small. In contrast, after infusions of isotonic sodium chloride solution, which increased plasma volume 61% ± SE 5.8, a decrease in fractional reabsorption of 50.7% ± SE 7.2 was associated with large changes in sodium excretion. PMID:5658588

  17. Lengths of nephron tubule segments and collecting ducts in the CD-1 mouse kidney: an ontogeny study.

    PubMed

    Walton, Sarah L; Moritz, Karen M; Bertram, John F; Singh, Reetu R

    2016-11-01

    The kidney continues to mature postnatally, with significant elongation of nephron tubules and collecting ducts to maintain fluid/electrolyte homeostasis. The aim of this project was to develop methodology to estimate lengths of specific segments of nephron tubules and collecting ducts in the CD-1 mouse kidney using a combination of immunohistochemistry and design-based stereology (vertical uniform random sections with cycloid arc test system). Lengths of tubules were determined at postnatal day 21 (P21) and 2 and 12 mo of age and also in mice fed a high-salt diet throughout adulthood. Immunohistochemistry was performed to identify individual tubule segments [aquaporin-1, proximal tubules (PT) and thin descending limbs of Henle (TDLH); uromodulin, distal tubules (DT); aquaporin-2, collecting ducts (CD)]. All tubular segments increased significantly in length between P21 and 2 mo of age (PT, 602% increase; DT, 200% increase; TDLH, 35% increase; CD, 53% increase). However, between 2 and 12 mo, a significant increase in length was only observed for PT (76% increase in length). At 12 mo of age, kidneys of mice on a high-salt diet demonstrated a 27% greater length of the TDLH, but no significant change in length was detected for PT, DT, and CD compared with the normal-salt group. Our study demonstrates an efficient method of estimating lengths of specific segments of the renal tubular system. This technique can be applied to examine structure of the renal tubules in combination with the number of glomeruli in the kidney in models of altered renal phenotype. Copyright © 2016 the American Physiological Society.

  18. Distal Renal Tubules Are Deficient in Aggresome Formation and Autophagy upon Aldosterone Administration

    PubMed Central

    Cheema, Muhammad Umar; Damkier, Helle Hasager; Nielsen, Jakob; Poulsen, Ebbe Toftgaard; Enghild, Jan J.; Fenton, Robert A.; Praetorius, Jeppe

    2014-01-01

    Prolonged elevations of plasma aldosterone levels are associated with renal pathogenesis. We hypothesized that renal distress could be imposed by an augmented aldosterone-induced protein turnover challenging cellular protein degradation systems of the renal tubular cells. Cellular accumulation of specific protein aggregates in rat kidneys was assessed after 7 days of aldosterone administration. Aldosterone induced intracellular accumulation of 60 s ribosomal protein L22 in protein aggregates, specifically in the distal convoluted tubules. The mineralocorticoid receptor inhibitor spironolactone abolished aldosterone-induced accumulation of these aggregates. The aldosterone-induced protein aggregates also contained proteasome 20 s subunits. The partial de-ubiquitinase ataxin-3 was not localized to the distal renal tubule protein aggregates, and the aggregates only modestly colocalized with aggresome transfer proteins dynactin p62 and histone deacetylase 6. Intracellular protein aggregation in distal renal tubules did not lead to development of classical juxta-nuclear aggresomes or to autophagosome formation. Finally, aldosterone treatment induced foci in renal cortex of epithelial vimentin expression and a loss of E-cadherin expression, as signs of cellular stress. The cellular changes occurred within high, but physiological aldosterone concentrations. We conclude that aldosterone induces protein accumulation in distal renal tubules; these aggregates are not cleared by autophagy that may lead to early renal tubular damage. PMID:25000288

  19. 3D Proximal Tubule Tissues Recapitulate Key Aspects of Renal Physiology to Enable Nephrotoxicity Testing

    PubMed Central

    King, Shelby M.; Higgins, J. William; Nino, Celina R.; Smith, Timothy R.; Paffenroth, Elizabeth H.; Fairbairn, Casey E.; Docuyanan, Abigail; Shah, Vishal D.; Chen, Alice E.; Presnell, Sharon C.; Nguyen, Deborah G.

    2017-01-01

    Due to its exposure to high concentrations of xenobiotics, the kidney proximal tubule is a primary site of nephrotoxicity and resulting attrition in the drug development pipeline. Current pre-clinical methods using 2D cell cultures and animal models are unable to fully recapitulate clinical drug responses due to limited in vitro functional lifespan, or species-specific differences. Using Organovo's proprietary 3D bioprinting platform, we have developed a fully cellular human in vitro model of the proximal tubule interstitial interface comprising renal fibroblasts, endothelial cells, and primary human renal proximal tubule epithelial cells to enable more accurate prediction of tissue-level clinical outcomes. Histological characterization demonstrated formation of extensive microvascular networks supported by endogenous extracellular matrix deposition. The epithelial cells of the 3D proximal tubule tissues demonstrated tight junction formation and expression of renal uptake and efflux transporters; the polarized localization and function of P-gp and SGLT2 were confirmed. Treatment of 3D proximal tubule tissues with the nephrotoxin cisplatin induced loss of tissue viability and epithelial cells in a dose-dependent fashion, and cimetidine rescued these effects, confirming the role of the OCT2 transporter in cisplatin-induced nephrotoxicity. The tissues also demonstrated a fibrotic response to TGFβ as assessed by an increase in gene expression associated with human fibrosis and histological verification of excess extracellular matrix deposition. Together, these results suggest that the bioprinted 3D proximal tubule model can serve as a test bed for the mechanistic assessment of human nephrotoxicity and the development of pathogenic states involving epithelial-interstitial interactions, making them an important adjunct to animal studies. PMID:28337147

  20. On the morphology of the digestive system of two Monomorium ant species.

    PubMed

    Solis, Daniel Russ; Rossi, Mônica Lanzoni; Fox, Eduardo Gonçalves Paterson; Nogueira, Neusa de Lima; Tanaka, Francisco André Ossamu; Bueno, Odair Correa

    2013-01-01

    The digestive system of adults and mature larvae of two ant species of Monomorium Mayr (Hymoneptera: Formicidae) were described with the aid of light and scanning electron microscopy, as there is a lack of studies in this area. These two ant species are recurrently found in urban habitats and are known as 'tramp species,' as they cause problems in households, businesses, and hospitals. The most interesting finds of the present study include the existence of spinules in the crop of adults, and the number of Malpighian tubules and rectal pads was constant among different castes, ages, and species.

  1. On the Morphology of the Digestive System of Two Monomorium Ant Species

    PubMed Central

    Solis, Daniel Russ; Rossi, Mônica Lanzoni; Fox, Eduardo Gonçalves Paterson; Nogueira, Neusa de Lima; Tanaka, Francisco André Ossamu; Bueno, Odair Correa

    2013-01-01

    The digestive system of adults and mature larvae of two ant species of Monomorium Mayr (Hymoneptera: Formicidae) were described with the aid of light and scanning electron microscopy, as there is a lack of studies in this area. These two ant species are recurrently found in urban habitats and are known as ‘tramp species,’ as they cause problems in households, businesses, and hospitals. The most interesting finds of the present study include the existence of spinules in the crop of adults, and the number of Malpighian tubules and rectal pads was constant among different castes, ages, and species. PMID:24224520

  2. Grouper tshβ Promoter-Driven Transgenic Zebrafish Marks Proximal Kidney Tubule Development

    PubMed Central

    Wang, Yang; Sun, Zhi-Hui; Zhou, Li; Li, Zhi; Gui, Jian-Fang

    2014-01-01

    Kidney tubule plays a critical role in recovering or secreting solutes, but the detailed morphogenesis remains unclear. Our previous studies have found that grouper tshβ (gtshβ) is also expressed in kidney, however, the distribution significance is still unknown. To understand the gtshβ role and kidney tubule morphogenesis, here, we have generated a transgenic zebrafish line Tg(gtshβ:GFP) with green fluorescent protein driven by the gtshβ promoter. Similar to the endogenous tshβ in zebrafish or in grouper, the gtshβ promoter-driven GFP is expressed in pituitary and kidney, and the developing details of proximal kidney tubule are marked in the transgenic zebrafish line. The gfp initially transcribes at 16 hours post fertilization (hpf) above the dorsal mesentery, and partially co-localizes with pronephric tubular markers slc20a1a and cdh17. Significantly, the GFP specifically localizes in proximal pronephric segments during embryogenesis and resides at kidney duct epithelium in adult fish. To test whether the gtshβ promoter-driven GFP may serve as a readout signal of the tubular development, we have treated the embryos with retinoic acid signaing (RA) reagents, in which exogenous RA addition results in a distal extension of the proximal segments, while RA inhibition induces a weakness and shortness of the proximal segments. Therefore, this transgenic line provides a useful tool for genetic or chemical analysis of kidney tubule. PMID:24905828

  3. In Vitro Evaluation of Dentin Tubule Occlusion for Novel Calcium Lactate Phosphate (CLP) Paste

    PubMed Central

    Yang, Jen-Chang; Hu, Hsin-Tai; Lee, Sheng-Yang; Hsieh, Sung-Chih; Huang, Pei-Chi; Ma, Chen-Feng; Ji, Dian-Yu; Chang, Liang-Yu; Teng, Nai-Chia

    2017-01-01

    Introduction: The objective of this in vitro study is to evaluate the effective and long-term occlusion of dentinal tubules using a novel calcium lactate phosphate (CLP) based desensitizing agent. Methods: Dentin disks (n = 9) were pre-etched using 1 M lactic acid for 30 s and individually treated with Colgate® Pro-Relief™ paste, CLP paste, and double distilled water (ddH2O) by a rubber-cupped handpiece. Dentin disks were analyzed under optical micrographs for pre-treatment, directly after treatment, and 14 days post-treatment. One-way ANOVA and post-hoc Tukey’s test were used to determine whether there were any statistically significant differences in dentinal tubule diameter. Results: A significant decrease occurred in the mean tubule diameter for dentin disks treated with CLP paste. A decrease was observed from 3.52 ± 0.83 µm to 2.62 ± 0.42 µm right after treatment, further decreasing to 1.71 ± 0.45 µm after immersion in artificial saliva for 14 days (p < 0.05). Conclusions: The results suggest that the CLP based desensitizing paste has remineralization properties and provides instant and lasting effectiveness in dentinal tubule occlusion. PMID:28772594

  4. The mechanisms of renal tubule electrolyte and water absorption, 100 years after Carl Ludwig.

    PubMed

    Greger, R

    1996-01-01

    Some 154 years after Carl Ludwig's Habilitationsschrift "Contributions to the theory of the mechanism of urine secretion" renal physiology has come a long way. The mechanisms of urine formation are now understood as the result of glomerular filtration and tubule absorption of most of the filtrate. The detailed understanding of tubule transport processes has become possible with the invention of several refined techniques such as the micropuncture techniques; the microchemical analysis of nanolitre tubule fluid samples; the in vitro perfusion of isolated tubule segments of defined origin; electrophysiological analysis of electrolyte transport including micropuncture and patch-clamp techniques; transport studies in membrane vesicle preparations; recordings of intracellular electrolyte concentrations and cloning techniques of the individual membrane transport proteins. With this wealth of information we are now starting to build an integrative understanding of the function of the individual nephron segments, the regulatory processes, the integrated function of the nephron and hence the formation of the final urine. Like anatomists of previous centuries we still state that the kidney is an "organum mirable" and we recognize that basic research in this area has fertilized the analysis of the function of a large number of other organs and cells.

  5. Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury

    PubMed Central

    WEINBERG, JOEL M.; VENKATACHALAM, MANJERI A.; ROESER, NANCY F.; SAIKUMAR, POTHANA; DONG, ZHENG; SENTER, RUTH A.; NISSIM, ITZHAK

    2010-01-01

    We have further examined the mechanisms for a severe mitochondrial energetic deficit, deenergization, and impaired respiration in complex I that develop in kidney proximal tubules during hypoxia-reoxygenation, and their prevention and reversal by supplementation with α-ketoglutarate (α-KG) + aspartate. The abnormalities preceded the mitochondrial permeability transition and cytochrome c loss. Anaerobic metabolism of α-KG + aspartate generated ATP and maintained mitochondrial membrane potential. Other citric-acid cycle intermediates that can promote anaerobic metabolism (malate and fumarate) were also effective singly or in combination with α-KG. Succinate, the end product of these anaerobic pathways that can bypass complex I, was not protective when provided only during hypoxia. However, during reoxygenation, succinate also rescued the tubules, and its benefit, like that of α-KG + malate, persisted after the extra substrate was withdrawn. Thus proximal tubules can be salvaged from hypoxia-reoxygenation mitochondrial injury by both anaerobic metabolism of citric-acid cycle intermediates and aerobic metabolism of succinate. These results bear on the understanding of a fundamental mode of mitochondrial dysfunction during tubule injury and on strategies to prevent and reverse it. PMID:11053054

  6. Comparing the effectiveness of four desensitizing toothpastes on dentinal tubule occlusion: A scanning electron microscope analysis.

    PubMed

    Jena, Amit; Kala, Soumik; Shashirekha, Govind

    2017-01-01

    Dentin hypersensitivity (DH) is a sudden short sharp pain best explained by hydrodynamic theory. Several agents are available throughout the market that can treat DH either by blocking the nerves that helps in conducting pain or by blocking the open dentinal tubules. The aim of the present study was to compare the tubule occluding efficacy of four different desensitizing dentifrices under scanning electron microscope (SEM). Sixty-two dentin blocks measuring 5 mm × 5 mm × 3 mm were obtained from extracted human molar teeth and were randomly divided into five groups: Group 1 - no treatment (control, n = 2); Group 2 - Pepsodent Pro-sensitive relief and repair ( n = 15); Group 3 - Sensodyne repair and protect ( n = 15); Group 4 - Remin Pro ( n = 15); Group 5 - Test toothpaste containing 15% nano-hydroxyapatite (n-HA) crystals ( n = 15). The specimens were brushed for 2 min/day for 14 days and stored in artificial saliva. After final brushing, specimens were gold sputtered and viewed under SEM at ×2000 magnification. Results obtained were statistically analyzed using nonparametric Kruskal-Wallis test and least significant difference post hoc test. All test groups showed significant increase in dentin tubule occlusion as compared to control group. The highest percentage of tubules occluded was shown by Group 4 and Group 5 which was significantly different from other groups ( P ≤ 0.05), and there was no significant difference in tubule occlusion among them. Newer desensitizing dentifrices containing 15% n-HA and Remin Pro can provide effective tubule occlusion and thereby reduce the pain and discomfort caused by DH.

  7. Paracellular transport and energy utilization in the renal tubule.

    PubMed

    Yu, Alan S L

    2017-09-01

    Paracellular transport across the tight junction is a general mechanism for transepithelial transport of solutes in epithelia, including the renal tubule. However, why paracellular transport evolved, given the existence of a highly versatile system for transcellular transport, is unknown. Recent studies have identified the paracellular channel, claudin-2, that is responsible for paracellular reabsorption of sodium in the proximal renal tubule. Knockout of claudin-2 in mice impairs proximal sodium and fluid reabsorption but is compensated by upregulation of sodium reabsorption in the loop of Henle. This occurs at the expense of increased renal oxygen consumption, hypoxia of the outer medulla and increased susceptibility to ischemic kidney injury. Paracellular transport can be viewed as a mechanism to exploit the potential energy in existing electrochemical gradients to drive passive transepithelial transport without consuming additional energy. In this way, it enhances the efficiency of energy utilization by transporting epithelia.

  8. Kinetics of solvent supported tubule formation of Lotus (Nelumbo nucifera) wax on highly oriented pyrolytic graphite (HOPG) investigated by atomic force microscopy

    PubMed Central

    Koch, Kerstin; Barthlott, Wilhelm; Wandelt, Klaus

    2018-01-01

    The time dependence of the formation of lotus wax tubules after recrystallization from various chloroform-based solutions on an HOPG surface at room temperature was studied by atomic force microscopy (magnetic AC mode) taking series of consecutive images of the formation process. The growth of the tubules oriented in an upright fashion follows a sequential rodlet→ring→tubule behavior. The influence of a number of factors, e.g., different wax concentration in chloroform, the additional presence of water, or salts [(NH4)2SO4, NH4NO3] or a mixture of salt/water in the solution on the growth rate and orientation of the tubules is also investigated. Different wax concentrations were found to have no effect on the growth rate or the orientation of tubules in none of the solutions. The presence of water, however, considerably increased the growth rate of tubule formation, while the presence of salt was again found to have no effect on growth rate or orientation of tubules. PMID:29515959

  9. The small molecule probe PT-Yellow labels the renal proximal tubules in zebrafish.

    PubMed

    Sander, Veronika; Patke, Shantanu; Sahu, Srikanta; Teoh, Chai Lean; Peng, Zhenzhen; Chang, Young-Tae; Davidson, Alan J

    2015-01-01

    We report the development of a small fluorescent molecule, BDNCA3-D2, herein referred to as PT-Yellow. Soaking zebrafish embryos in PT-Yellow or intraperitoneal injection into adults results in non-toxic in vivo fluorescent labeling of the renal proximal tubules, the major site of blood filtrate reabsorption and a common target of injury in acute kidney injury. We demonstrate the applicability of this new compound as a rapid and simple readout for zebrafish kidney filtration and proximal tubule reabsorption function.

  10. Antidiuretic hormone resistance in the neonatal cortical collecting tubule is mediated in part by elevated phosphodiesterase activity

    PubMed Central

    Quigley, Raymond; Chakravarty, Sumana; Baum, Michel

    2014-01-01

    Neonates cannot concentrate their urine to the same degree as adults. One of the key factors in concentrating the urine is the renal collecting duct osmotic water permeability (Pf) response to antidiuretic hormone (ADH). Neonatal cortical collecting ducts have a blunted Pf response to ADH compared with adult tubules (Pf: 119.0 ± 12.5 vs. 260.1 ± 29.5 µm/s, P < 0.05). We found that the phosphodiesterase activity in the neonatal collecting ducts was higher than that in the adult collecting ducts (3,970 ± 510 vs. 2,440 ± 220 cpm·µg tubular protein−1·20 min−1, P < 0.05). After pretreatment of in vitro microperfused tubules with the nonspecific phosphodiesterase inhibitor IBMX (10−6 M in the bath), the Pf response to ADH in neonatal collecting ducts was 271.4 ± 51.7 µm/s, which was identical to that of the adult collecting duct [315.3 ± 31.3 µm/s, P = not significant (NS)]. Rolipram, a specific type IV phosphodiesterase inhibitor, lowered the elevated phosphodiesterase activity in the neonatal tubules to that in the adult tubules (2,460 ± 210 vs. 2,160 ± 230 cpm·µg tubular protein−1·20 min−1, P = NS). Neonatal tubules pretreated with rolipram (10−5 M) in the bath also had a Pf response to ADH that was comparable to that of the adult tubules (258.2 ± 17.0 vs. 271.4 ± 32.6 µm/s, P = NS). Thus the elevated phosphodiesterase activity in the neonatal tubules appears to be due to an increase in type IV phosphodiesterase activity. Hence, one of the key factors in the decreased ability of neonates to concentrate their urine is overactivity of phosphodiesterase in the cortical collecting duct that blunts the neonatal collecting duct Pf response to ADH. PMID:14644747

  11. A two-hit mechanism for sepsis-induced impairment of renal tubule function

    PubMed Central

    Watts, Bruns A.; George, Thampi; Sherwood, Edward R.

    2013-01-01

    Renal insufficiency is a common and severe complication of sepsis, and the development of kidney dysfunction increases morbidity and mortality in septic patients. Sepsis is associated with a variety of defects in renal tubule function, but the underlying mechanisms are incompletely understood. We used a cecal ligation and puncture (CLP) model to examine mechanisms by which sepsis influences the transport function of the medullary thick ascending limb (MTAL). MTALs from sham and CLP mice were studied in vitro 18 h after surgery. The results show that sepsis impairs the ability of the MTAL to absorb HCO3− through two distinct mechanisms. First, sepsis induces an adaptive decrease in the intrinsic capacity of the tubules to absorb HCO3−. This effect is associated with an increase in ERK phosphorylation in MTAL cells and is prevented by pretreatment of CLP mice with a MEK/ERK inhibitor. The CLP-induced reduction in intrinsic HCO3− absorption rate appears to involve loss of function of basolateral Na+/H+ exchange. Second, sepsis enhances the ability of LPS to inhibit HCO3− absorption, mediated through upregulation of Toll-like receptor 4 (TLR4)-ERK signaling in the basolateral membrane. The two inhibitory mechanisms are additive and thus can function in a two-hit capacity to impair renal tubule function in sepsis. Both effects depend on ERK and are eliminated by interventions that prevent ERK activation. Thus the TLR4 and ERK signaling pathways represent potential therapeutic targets to treat or prevent sepsis-induced renal tubule dysfunction. PMID:23324175

  12. Dentin hypersensitivity treatment by CO2 laser: the influence of the density of dentin tubules and laser-beam incidence

    NASA Astrophysics Data System (ADS)

    Colojoara, Carmen; Gabay, Shimon; van der Meulen, Freerk W.; van Gemert, Martin J. C.; Miron, Mariana I.; Mavrantoni, Androniki

    1997-12-01

    Dentin hypersensitivity is considered to be a consequence of the presence of open dentin tubules on the exposed dentin surface. Various methods and materials used in the treatment of this disease are directed to achieve a tubule's occlusion. The purpose of this study was to evaluate under scanning electron microscopy and clinical method the sealing effects of CO2 laser on dentin tubules of human teeth without any damages of the surrounding tissues. Samples of freshly extracted noncarious 3rd molars were used. The teeth were randomly divided in to two groups A and B. The samples of group A were exposed to laser beam in cervical area, directed parallel to their dentin tubules. The teeth of group B were sectioned through a hypothetical carious lesion and lased perpendicularly or obliquely of the dentin tubules. The CO2 laser, at 10.6 micrometers wavelength, was operated only in pulse mode and provided 6.25 - 350 mJ in a burst of 25 pulses each of 250 microsecond(s) time duration with a 2 ms time interval between successive pulses (repetition rate up to 500 mH). Melting of dentin surface and partial closure of exposed dentin tubules were found for all specimens at 6.25 to 31.25 mJ energy. Our results indicated that using CO2 laser in a parallel orientation of laser beam with dentin tubules, the dentin sensitivity can be reduced without any damages of pulp vitality.

  13. Tubule-Derived Wnts Are Required for Fibroblast Activation and Kidney Fibrosis.

    PubMed

    Zhou, Dong; Fu, Haiyan; Zhang, Lu; Zhang, Ke; Min, Yali; Xiao, Liangxiang; Lin, Lin; Bastacky, Sheldon I; Liu, Youhua

    2017-08-01

    Cell-cell communication via Wnt ligands is necessary in regulating embryonic development and has been implicated in CKD. Because Wnt ligands are ubiquitously expressed, the exact cellular source of the Wnts involved in CKD remains undefined. To address this issue, we generated two conditional knockout mouse lines in which Wntless (Wls), a dedicated cargo receptor that is obligatory for Wnt secretion, was selectively ablated in tubular epithelial cells or interstitial fibroblasts. Blockade of Wnt secretion by genetic deletion of Wls in renal tubules markedly inhibited myofibroblast activation and reduced renal fibrosis after unilateral ureteral obstruction. This effect associated with decreased activation of β -catenin and downstream gene expression and preserved tubular epithelial integrity. In contrast, fibroblast-specific deletion of Wls exhibited little effect on the severity of renal fibrosis after obstructive or ischemia-reperfusion injury. In vitro , incubation of normal rat kidney fibroblasts with tubule-derived Wnts promoted fibroblast proliferation and activation. Furthermore, compared with kidney specimens from patients without CKD, biopsy specimens from patients with CKD also displayed increased expression of multiple Wnt proteins, predominantly in renal tubular epithelium. These results illustrate that tubule-derived Wnts have an essential role in promoting fibroblast activation and kidney fibrosis via epithelial-mesenchymal communication. Copyright © 2017 by the American Society of Nephrology.

  14. Histochemistry and ultrastructure of urocytes in the pupae of the stingless bee Melipona quadrifasciata (Hymenoptera: Meliponini).

    PubMed

    Furtado, Waléria C A; Azevedo, Dihego O; Martins, Gustavo F; Zanuncio, José C; Serrão, José Eduardo

    2013-12-01

    The main cell types of the adult bee fat body are trophocytes and oenocytes; however, in pupae of some newly emerged bees, trophocytes are modified into cells called urocytes, which possibly function as a substitute for Malpighian tubules during metamorphosis when larval tubules are not functional and/or storage of urate salts is required. This study evaluated the morphology of urocytes in the stingless bee Melipona quadrifasciata and the possibility of maintaining these cells in primary culture. The urocytes M. quadrifasciata are white spherical cells with an irregular surface as observed by stereomicroscopy. They may be found individually or in groups associated with tracheae. Urocytes have a single, small, and spherical nucleus and cytoplasm rich in neutral polysaccharides, lipid droplets, protein, and granules containing calcium and urate salts. Our findings suggest that urocytes play a role in storage of neutral polysaccharides and calcium in M. quadrifasciata pupae and that these cells can be cultured for 72 h.

  15. Physiological roles of claudins in kidney tubule paracellular transport.

    PubMed

    Muto, Shigeaki

    2017-01-01

    The paracellular pathways in renal tubular epithelia such as the proximal tubules, which reabsorb the largest fraction of filtered solutes and water and are leaky epithelia, are important routes for transepithelial transport of solutes and water. Movement occurs passively via an extracellular route through the tight junction between cells. The characteristics of paracellular transport vary among different nephron segments with leaky or tighter epithelia. Claudins expressed at tight junctions form pores and barriers for paracellular transport. Claudins are from a multigene family, comprising at least 27 members in mammals. Multiple claudins are expressed at tight junctions of individual nephron segments in a nephron segment-specific manner. Over the last decade, there have been advances in our understanding of the structure and functions of claudins. This paper is a review of our current knowledge of claudins, with special emphasis on their physiological roles in proximal tubule paracellular solute and water transport. Copyright © 2017 the American Physiological Society.

  16. Myosin VI and branched actin filaments mediate membrane constriction and fission of melanosomal tubule carriers.

    PubMed

    Ripoll, Léa; Heiligenstein, Xavier; Hurbain, Ilse; Domingues, Lia; Figon, Florent; Petersen, Karl J; Dennis, Megan K; Houdusse, Anne; Marks, Michael S; Raposo, Graça; Delevoye, Cédric

    2018-06-06

    Vesicular and tubular transport intermediates regulate organellar cargo dynamics. Transport carrier release involves local and profound membrane remodeling before fission. Pinching the neck of a budding tubule or vesicle requires mechanical forces, likely exerted by the action of molecular motors on the cytoskeleton. Here, we show that myosin VI, together with branched actin filaments, constricts the membrane of tubular carriers that are then released from melanosomes, the pigment containing lysosome-related organelles of melanocytes. By combining superresolution fluorescence microscopy, correlative light and electron microscopy, and biochemical analyses, we find that myosin VI motor activity mediates severing by constricting the neck of the tubule at specific melanosomal subdomains. Pinching of the tubules involves the cooperation of the myosin adaptor optineurin and the activity of actin nucleation machineries, including the WASH and Arp2/3 complexes. The fission and release of these tubules allows for the export of components from melanosomes, such as the SNARE VAMP7, and promotes melanosome maturation and transfer to keratinocytes. Our data reveal a new myosin VI- and actin-dependent membrane fission mechanism required for organelle function. © 2018 Ripoll et al.

  17. The Pearling Transition Provides Evidence of Force-Driven Endosomal Tubulation during Salmonella Infection.

    PubMed

    Gao, Yunfeng; Spahn, Christoph; Heilemann, Mike; Kenney, Linda J

    2018-06-19

    Bacterial pathogens exploit eukaryotic pathways for their own end. Upon ingestion, Salmonella enterica serovar Typhimurium passes through the stomach and then catalyzes its uptake across the intestinal epithelium. It survives and replicates in an acidic vacuole through the action of virulence factors secreted by a type three secretion system located on Salmonella pathogenicity island 2 (SPI-2). Two secreted effectors, SifA and SseJ, are sufficient for endosomal tubule formation, which modifies the vacuole and enables Salmonella to replicate within it. Two-color, superresolution imaging of the secreted virulence factor SseJ and tubulin revealed that SseJ formed clusters of conserved size at regular, periodic intervals in the host cytoplasm. Analysis of SseJ clustering indicated the presence of a pearling effect, which is a force-driven, osmotically sensitive process. The pearling transition is an instability driven by membranes under tension; it is induced by hypotonic or hypertonic buffer exchange and leads to the formation of beadlike structures of similar size and regular spacing. Reducing the osmolality of the fixation conditions using glutaraldehyde enabled visualization of continuous and intact tubules. Correlation analysis revealed that SseJ was colocalized with the motor protein kinesin. Tubulation of the endoplasmic reticulum is driven by microtubule motors, and in the present work, we describe how Salmonella has coopted the microtubule motor kinesin to drive the force-dependent process of endosomal tubulation. Thus, endosomal tubule formation is a force-driven process catalyzed by Salmonella virulence factors secreted into the host cytoplasm during infection. IMPORTANCE This study represents the first example of using two-color, superresolution imaging to analyze the secretion of Salmonella virulence factors as they are secreted from the SPI-2 type three secretion system. Previous studies imaged effectors that were overexpressed in the host cytoplasm. The

  18. Effect of Changes in Hydrostatic Pressure in Peritubular Capillaries on the Permeability of the Proximal Tubule

    PubMed Central

    Hayslett, John P.

    1973-01-01

    The effect of increased hydrostatic pressure in the peritubular vessels on net sodium reabsorption from the proximal tubule was examined in the Necturus. An increase in the pressure gradient of 2.0 cm H2O across the wall of the proximal tubule, produced by ligation of the postcaval vein was associated with a marked reduction in net reabsorption and an increased back flux of water and electrolytes. This change was accompanied by a slight, but significant drop in the transepithelial electrical potential but not by an alteration in the steady-state chemical gradient. These studies highlight the importance of changes in the permeability characteristics of the proximal tubule on net sodium transport. Images PMID:4703221

  19. Protein Kinase A Activity Is Necessary for Fission and Fusion of Golgi to Endoplasmic Reticulum Retrograde Tubules

    PubMed Central

    Tenorio, María J.; Luchsinger, Charlotte; Mardones, Gonzalo A.

    2015-01-01

    It is becoming increasingly accepted that together with vesicles, tubules play a major role in the transfer of cargo between different cellular compartments. In contrast to our understanding of the molecular mechanisms of vesicular transport, little is known about tubular transport. How signal transduction molecules regulate these two modes of membrane transport processes is also poorly understood. In this study we investigated whether protein kinase A (PKA) activity regulates the retrograde, tubular transport of Golgi matrix proteins from the Golgi to the endoplasmic reticulum (ER). We found that Golgi-to-ER retrograde transport of the Golgi matrix proteins giantin, GM130, GRASP55, GRASP65, and p115 was impaired in the presence of PKA inhibitors. In addition, we unexpectedly found accumulation of tubules containing both Golgi matrix proteins and resident Golgi transmembrane proteins. These tubules were still attached to the Golgi and were highly dynamic. Our data suggest that both fission and fusion of retrograde tubules are mechanisms regulated by PKA activity. PMID:26258546

  20. Isolation and Characterization of Adhesive Secretion from Cuvierian Tubules of Sea Cucumber Holothuria forskåli (Echinodermata: Holothuroidea)

    PubMed Central

    Baranowska, Malgorzata; Schloßmacher, Ute; McKenzie, J. Douglas; Müller, Werner E. G.; Schröder, Heinz C.

    2011-01-01

    The sea cucumber Holothuria forskåli possesses a specialized system called Cuvierian tubules. During mechanical stimulation white filaments (tubules) are expelled and become sticky upon contact with any object. We isolated a protein with adhesive properties from protein extracts of Cuvierian tubules from H. forskåli. This protein was identified by antibodies against recombinant precollagen D which is located in the byssal threads of the mussel Mytilus galloprovincialis. To find out the optimal procedure for extraction and purification, the identified protein was isolated by several methods, including electroelution, binding to glass beads, immunoprecipitation, and gel filtration. Antibodies raised against the isolated protein were used for localization of the adhesive protein in Cuvierian tubules. Immunostaining and immunogold electron microscopical studies revealed the strongest immunoreactivity in the mesothelium; this tissue layer is involved in adhesion. Adhesion of Cuvierian tubule extracts was measured on the surface of various materials. The extracted protein showed the strongest adhesion to Teflon surface. Increased adhesion was observed in the presence of potassium and EDTA, while cadmium caused a decrease in adhesion. Addition of antibodies and trypsin abolished the adhesive properties of the extract. PMID:22013488

  1. Accumulation of nonesterified fatty acids causes the sustained energetic deficit in kidney proximal tubules after hypoxia-reoxygenation.

    PubMed

    Feldkamp, Thorsten; Kribben, Andreas; Roeser, Nancy F; Senter, Ruth A; Weinberg, Joel M

    2006-02-01

    Kidney proximal tubules exhibit decreased ATP and reduced, but not absent, mitochondrial membrane potential (Deltapsi(m)) during reoxygenation after severe hypoxia. This energetic deficit, which plays a pivotal role in overall cellular recovery, cannot be explained by loss of mitochondrial membrane integrity, decreased electron transport, or compromised F1F0-ATPase and adenine nucleotide translocase activities. Addition of oleate to permeabilized tubules produced concentration-dependent decreases of Deltapsi(m) measured by safranin O uptake (threshold for oleate = 0.25 microM, 1.6 nmol/mg protein; maximal effect = 4 microM, 26 nmol/mg) that were reversed by delipidated BSA (dBSA). Cell nonesterified fatty acid (NEFA) levels increased from <1 to 17.4 nmol/mg protein during 60- min hypoxia and remained elevated at 7.6 nmol/mg after 60 min reoxygenation, at which time ATP had recovered to only 10% of control values. Safranin O uptake in reoxygenated tubules, which was decreased 85% after 60-min hypoxia, was normalized by dBSA, which improved ATP synthesis as well. dBSA also almost completely normalized Deltapsi(m) when the duration of hypoxia was increased to 120 min. In intact tubules, the protective substrate combination of alpha-ketoglutarate + malate (alpha-KG/MAL) increased ATP three- to fourfold, limited NEFA accumulation during hypoxia by 50%, and lowered NEFA during reoxygenation. Notably, dBSA also improved ATP recovery when added to intact tubules during reoxygenation and was additive to the effect of alpha-KG/MAL. We conclude that NEFA overload is the primary cause of energetic failure of reoxygenated proximal tubules and lowering NEFA substantially contributes to the benefit from supplementation with alpha-KG/MAL.

  2. A microperfusion study of sucrose movement across the rat proximal tubule during renal vein constriction

    PubMed Central

    Bank, Norman; Yarger, William E.; Aynedjian, Hagop S.

    1971-01-01

    Constriction of the renal vein has been shown to inhibit net sodium and water reabsorption by the rat proximal tubule. The mechanism is unknown but might be the result of inhibition of the active sodium pump induced by changes in the interstitial fluid compartment of the kidney, or to enhanced passive backflux of sodium and water into the cell or directly into the tubular lumen. Since passive movement of solutes across epithelial membranes is determined in part by the permeability characteristics of the epithelium, an increase in the permeability of the proximal tubule during venous constriction would suggest that enhanced passive flux is involved in the inhibition of reabsorption. In the present experiments, isolated segments of rat proximal convoluted tubules were microperfused in vivo with saline while the animals were receiving 14C-labeled sucrose intravenously. In normal control animals, no sucrose was detected in the majority of the collected tubular perfusates. In rats with renal vein constriction (RVC), however, sucrose consistently appeared in the tubular perfusates. The rate of inflow of sucrose correlated with the length of the perfused segment, estimated by fractional water reabsorption. In another group of animals with renal vein constriction, inulin-14C was given intravenously and the proximal tubules similarly microperfused. Inulin did not appear in the majority of collected perfusates in these animals. These observations indicate that a physiological alteration in the permeability of the proximal tubule occurs during RVC. Such an increase in permeability is consistent with the view that enhanced passive extracellular back-flux plays a role in the reduction of net sodium and water reabsorption in this experimental condition. PMID:5540167

  3. Reduced Insulin Receptor Expression Enhances Proximal Tubule Gluconeogenesis.

    PubMed

    Pandey, Gaurav; Shankar, Kripa; Makhija, Ekta; Gaikwad, Anil; Ecelbarger, Carolyn; Mandhani, Anil; Srivastava, Aneesh; Tiwari, Swasti

    2017-02-01

    Reduced insulin receptor protein levels have been reported in the kidney cortex from diabetic humans and animals. We recently reported that, targeted deletion of insulin receptor (IR) from proximal tubules (PT) resulted in hyperglycemia in non-obese mice. To elucidate the mechanism, we examined human proximal tubule cells (hPTC) and C57BL/6 mice fed with high-fat diet (HFD, 60% fat for 20 weeks). Immunoblotting revealed a significantly lower protein level of IR in HFD compare to normal chow diet (NCD). Furthermore, a blunted rise in p-AKT 308 levels in the kidney cortex of HFD mice was observed in response to acute insulin (0.75 IU/kg body weight, i.p) relative to NCD n = 8/group, P < 0.05). Moreover, we found significantly higher transcript levels of phosphoenolpyruvate carboxykinase (PEPCK, a key gluconeogenic enzyme) in the kidney cortex from HFD, relative to mice on NCD. The higher level of PEPCK in HFD was confirmed by immunoblotting. However, no significant differences were observed in cortical glucose-6-phosphatase (G6Pase) or fructose-1,6, bisphosphosphatase (FBPase) enzyme transcript levels. Furthermore, we demonstrated insulin inhibited glucose production in hPTC treated with cyclic AMP and dexamethasone (cAMP/DEXA) to stimulate gluconeogenesis. Transcript levels of the gluconeogenic enzyme PEPCK were significantly increased in cAMP/DEXA-stimulated hPTC cells (n = 3, P < 0.05), and insulin attenuated this upregulation Furthermore, the effect of insulin on cAMP/DEXA-induced gluconeogenesis and PEPCK induction was significantly attenuated in IR (siRNA) silenced hPTC (n = 3, P < 0.05). Overall the above data indicate a direct role for IR expression as a determinant of PT-gluconeogenesis. Thus reduced insulin signaling of the proximal tubule may contribute to hyperglycemia in the metabolic syndrome via elevated gluconeogenesis. J. Cell. Biochem. 118: 276-285, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Far infrared radiation promotes rabbit renal proximal tubule cell proliferation and functional characteristics, and protects against cisplatin-induced nephrotoxicity.

    PubMed

    Chiang, I-Ni; Pu, Yeong-Shiau; Huang, Chao-Yuan; Young, Tai-Horng

    2017-01-01

    Far infrared radiation, a subdivision of the electromagnetic spectrum, is beneficial for long-term tissue healing, anti-inflammatory effects, growth promotion, sleep modulation, acceleration of microcirculation, and pain relief. We investigated if far infrared radiation is beneficial for renal proximal tubule cell cultivation and renal tissue engineering. We observed the effects of far infrared radiation on renal proximal tubules cells, including its effects on cell proliferation, gene and protein expression, and viability. We also examined the protective effects of far infrared radiation against cisplatin, a nephrotoxic agent, using the human proximal tubule cell line HK-2. We found that daily exposure to far infrared radiation for 30 min significantly increased rabbit renal proximal tubule cell proliferation in vitro, as assessed by MTT assay. Far infrared radiation was not only beneficial to renal proximal tubule cell proliferation, it also increased the expression of ATPase Na+/K+ subunit alpha 1 and glucose transporter 1, as determined by western blotting. Using quantitative polymerase chain reaction, we found that far infrared radiation enhanced CDK5R1, GNAS, NPPB, and TEK expression. In the proximal tubule cell line HK-2, far infrared radiation protected against cisplatin-mediated nephrotoxicity by reducing apoptosis. Renal proximal tubule cell cultivation with far infrared radiation exposure resulted in better cell proliferation, significantly higher ATPase Na+/K+ subunit alpha 1 and glucose transporter 1 expression, and significantly enhanced expression of CDK5R1, GNAS, NPPB, and TEK. These results suggest that far infrared radiation improves cell proliferation and differentiation. In HK-2 cells, far infrared radiation mediated protective effects against cisplatin-induced nephrotoxicity by reducing apoptosis, as indicated by flow cytometry and caspase-3 assay.

  5. The structural genes for three Drosophila glue proteins reside at a single polytene chromosome puff locus.

    PubMed Central

    Crowley, T E; Bond, M W; Meyerowitz, E M

    1983-01-01

    The polytene chromosome puff at 68C on the Drosophila melanogaster third chromosome is thought from genetic experiments to contain the structural gene for one of the secreted salivary gland glue polypeptides, sgs-3. Previous work has demonstrated that the DNA included in this puff contains sequences that are transcribed to give three different polyadenylated RNAs that are abundant in third-larval-instar salivary glands. These have been called the group II, group III, and group IV RNAs. In the experiments reported here, we used the nucleotide sequence of the DNA coding for these RNAs to predict some of the physical and chemical properties expected of their protein products, including molecular weight, amino acid composition, and amino acid sequence. Salivary gland polypeptides with molecular weights similar to those expected for the 68C RNA translation products, and with the expected degree of incorporation of different radioactive amino acids, were purified. These proteins were shown by amino acid sequencing to correspond to the protein products of the 68C RNAs. It was further shown that each of these proteins is a part of the secreted salivary gland glue: the group IV RNA codes for the previously described sgs-3, whereas the group II and III RNAs code for the newly identified glue polypeptides sgs-8 and sgs-7. Images PMID:6406838

  6. Automated tubule nuclei quantification and correlation with oncotype DX risk categories in ER+ breast cancer whole slide images

    NASA Astrophysics Data System (ADS)

    Romo-Bucheli, David; Janowczyk, Andrew; Romero, Eduardo; Gilmore, Hannah; Madabhushi, Anant

    2016-03-01

    Early stage estrogen receptor positive (ER+) breast cancer (BCa) treatment is based on the presumed aggressiveness and likelihood of cancer recurrence. The primary conundrum in treatment and management of early stage ER+ BCa is identifying which of these cancers are candidates for adjuvant chemotherapy and which patients will respond to hormonal therapy alone. This decision could spare some patients the inherent toxicity associated with adjuvant chemotherapy. Oncotype DX (ODX) and other gene expression tests have allowed for distinguishing the more aggressive ER+ BCa requiring adjuvant chemotherapy from the less aggressive cancers benefiting from hormonal therapy alone. However these gene expression tests tend to be expensive, tissue destructive and require physical shipping of tissue blocks for the test to be done. Interestingly breast cancer grade in these tumors has been shown to be highly correlated with the ODX risk score. Unfortunately studies have shown that Bloom-Richardson (BR) grade determined by pathologists can be highly variable. One of the constituent categories in BR grading is the quantification of tubules. The goal of this study was to develop a deep learning neural network classifier to automatically identify tubule nuclei from whole slide images (WSI) of ER+ BCa, the hypothesis being that the ratio of tubule nuclei to overall number of nuclei would correlate with the corresponding ODX risk categories. The performance of the tubule nuclei deep learning strategy was evaluated with a set of 61 high power fields. Under a 5-fold cross-validation, the average precision and recall measures were 0:72 and 0:56 respectively. In addition, the correlation with the ODX risk score was assessed in a set of 7513 high power fields extracted from 174 WSI, each from a different patient (At most 50 high power fields per patient study were used). The ratio between the number of tubule and non-tubule nuclei was computed for each WSI. The results suggests that for BCa

  7. Characterization of injury in isolated rat proximal tubules during cold incubation and rewarming.

    PubMed

    Bienholz, Anja; Walter, Björn; Pless-Petig, Gesine; Guberina, Hana; Kribben, Andreas; Witzke, Oliver; Rauen, Ursula

    2017-01-01

    Organ shortage leads to an increased utilization of marginal organs which are particularly sensitive to storage-associated damage. Cold incubation and rewarming-induced injury is iron-dependent in many cell types. In addition, a chloride-dependent component of injury has been described. This work examines the injury induced by cold incubation and rewarming in isolated rat renal proximal tubules. The tissue storage solution TiProtec® and a chloride-poor modification, each with and without iron chelators, were used for cold incubation. Incubation was performed 4°C for up to 168 h, followed by rewarming in an extracellular buffer (3 h at 37°C). After 48, 120 and 168 h of cold incubation LDH release was lower in solutions containing iron chelators. After rewarming, injury increased especially after cold incubation in chelator-free solutions. Without addition of iron chelators LDH release showed a tendency to be higher in chloride-poor solutions. Following rewarming after 48 h of cold incubation lipid peroxidation was significantly decreased and metabolic activity was tendentially better in tubules incubated with iron chelators. Morphological alterations included mitochondrial swelling and fragmentation being partially reversible during rewarming. ATP content was better preserved in chloride-rich solutions. During rewarming, there was a further decline of ATP content in the so far best conditions and minor alterations under the other conditions, while oxygen consumption was not significantly different compared to non-stored control tubules. Results show an iron-dependent component of preservation injury during cold incubation and rewarming in rat proximal renal tubules and reveal a benefit of chloride for the maintenance of tubular energy state during cold incubation.

  8. Characterization of injury in isolated rat proximal tubules during cold incubation and rewarming

    PubMed Central

    Bienholz, Anja; Walter, Björn; Pless-Petig, Gesine; Guberina, Hana; Kribben, Andreas; Witzke, Oliver; Rauen, Ursula

    2017-01-01

    Organ shortage leads to an increased utilization of marginal organs which are particularly sensitive to storage-associated damage. Cold incubation and rewarming-induced injury is iron-dependent in many cell types. In addition, a chloride-dependent component of injury has been described. This work examines the injury induced by cold incubation and rewarming in isolated rat renal proximal tubules. The tissue storage solution TiProtec® and a chloride-poor modification, each with and without iron chelators, were used for cold incubation. Incubation was performed 4°C for up to 168 h, followed by rewarming in an extracellular buffer (3 h at 37°C). After 48, 120 and 168 h of cold incubation LDH release was lower in solutions containing iron chelators. After rewarming, injury increased especially after cold incubation in chelator-free solutions. Without addition of iron chelators LDH release showed a tendency to be higher in chloride-poor solutions. Following rewarming after 48 h of cold incubation lipid peroxidation was significantly decreased and metabolic activity was tendentially better in tubules incubated with iron chelators. Morphological alterations included mitochondrial swelling and fragmentation being partially reversible during rewarming. ATP content was better preserved in chloride-rich solutions. During rewarming, there was a further decline of ATP content in the so far best conditions and minor alterations under the other conditions, while oxygen consumption was not significantly different compared to non-stored control tubules. Results show an iron-dependent component of preservation injury during cold incubation and rewarming in rat proximal renal tubules and reveal a benefit of chloride for the maintenance of tubular energy state during cold incubation. PMID:28672023

  9. Expression of Cyt-c-Mediated Mitochondrial Apoptosis-Related Proteins in Rat Renal Proximal Tubules during Development.

    PubMed

    Song, Xiao-Feng; Tian, He; Zhang, Ping; Zhang, Zhen-Xing

    2017-01-01

    Apoptosis regulates embryogenesis, organ metamorphosis and tissue homeostasis. Mitochondrial signaling is an apoptotic pathway, in which Cyt-c and Apaf-1 are transformed into an apoptosome, which activates procaspase-9 and triggers apoptosis. This study evaluated Cyt-c, Apaf-1 and caspase-9 expression during renal development. Kidneys from embryonic (E) 16-, 18-, and 20-day-old fetuses and postnatal (P) 1-, 3-, 5-, 7-, 14-, and 21-day-old pups were obtained. Immunohistochemical analysis, dual-labeled immunofluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) technique assay and Western blot were performed in addition to histological analysis. Immunohistochemistry showed that Cyt-c was strongly expressed in proximal and distal tubules (DTs) at all time points. Caspase-9 and Apaf-1 were strongly expressed in proximal tubules (PTs) but only weakly expressed in DTs. Dual-labeled immunofluorescence showed that most tubules expressed both Cyt-c and Apaf-1, except for some tubules that only expressed Cyt-c. The TUNEL assay showed a greater percentage of apoptotic cells in PTs compared to DTs. Apaf-1 and cleaved caspase-9 protein expression gradually increased during the embryonic period and peaked during the early postnatal period but apparently declined from P7. Cyt-c protein expression was weak during the embryonic period but obviously increased after P1. This study showed that PTs are more sensitive to apoptosis than DTs during rat renal development, even though both tubule segments contain a large number of mitochondria. Furthermore, Cyt-c-mediated mitochondrial apoptosis-related proteins play an important role in PTs during the early postnatal kidney development. © 2016 S. Karger AG, Basel.

  10. Osmosis in Cortical Collecting Tubules

    PubMed Central

    Schafer, James A.; Patlak, Clifford S.; Andreoli, Thomas E.

    1974-01-01

    This paper reports a theoretical analysis of osmotic transients and an experimental evaluation both of rapid time resolution of lumen to bath osmosis and of bidirectional steady-state osmosis in isolated rabbit cortical collecting tubules exposed to antidiuretic hormone (ADH). For the case of a membrane in series with unstirred layers, there may be considerable differences between initial and steady-state osmotic flows (i.e., the osmotic transient phenomenon), because the solute concentrations at the interfaces between membrane and unstirred layers may vary with time. A numerical solution of the equation of continuity provided a means for computing these time-dependent values, and, accordingly, the variation of osmotic flow with time for a given set of parameters including: Pf (cm s–1), the osmotic water permeability coefficient, the bulk phase solute concentrations, the unstirred layer thickness on either side of the membrane, and the fractional areas available for volume flow in the unstirred layers. The analyses provide a quantitative frame of reference for evaluating osmotic transients observed in epithelia in series with asymmetrical unstirred layers and indicate that, for such epithelia, Pf determinations from steady-state osmotic flows may result in gross underestimates of osmotic water permeability. In earlier studies, we suggested that the discrepancy between the ADH-dependent values of Pf and PDDw (cm s–1, diffusional water permeability coefficient) was the consequence of cellular constraints to diffusion. In the present experiments, no transients were detectable 20–30 s after initiating ADH-dependent lumen to bath osmosis; and steady-state ADH-dependent osmotic flows from bath to lumen and lumen to bath were linear and symmetrical. An evaluation of these data in terms of the analytical model indicates: First, cellular constraints to diffusion in cortical collecting tubules could be rationalized in terms of a 25-fold reduction in the area of the

  11. Phospholipase Cβ1 induces membrane tubulation and is involved in caveolae formation

    PubMed Central

    Inaba, Takehiko; Kishimoto, Takuma; Murate, Motohide; Tajima, Takuya; Sakai, Shota; Abe, Mitsuhiro; Makino, Asami; Tomishige, Nario; Ishitsuka, Reiko; Ikeda, Yasuo; Takeoka, Shinji; Kobayashi, Toshihide

    2016-01-01

    Lipid membrane curvature plays important roles in various physiological phenomena. Curvature-regulated dynamic membrane remodeling is achieved by the interaction between lipids and proteins. So far, several membrane sensing/sculpting proteins, such as Bin/amphiphysin/Rvs (BAR) proteins, are reported, but there remains the possibility of the existence of unidentified membrane-deforming proteins that have not been uncovered by sequence homology. To identify new lipid membrane deformation proteins, we applied liposome-based microscopic screening, using unbiased-darkfield microscopy. Using this method, we identified phospholipase Cβ1 (PLCβ1) as a new candidate. PLCβ1 is well characterized as an enzyme catalyzing the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2). In addition to lipase activity, our results indicate that PLCβ1 possessed the ability of membrane tubulation. Lipase domains and inositol phospholipids binding the pleckstrin homology (PH) domain of PLCβ1 were not involved, but the C-terminal sequence was responsible for this tubulation activity. Computational modeling revealed that the C terminus displays the structural homology to the BAR domains, which is well known as a membrane sensing/sculpting domain. Overexpression of PLCβ1 caused plasma membrane tubulation, whereas knockdown of the protein reduced the number of caveolae and induced the evagination of caveolin-rich membrane domains. Taken together, our results suggest a new function of PLCβ1: plasma membrane remodeling, and in particular, caveolae formation. PMID:27342861

  12. Basolateral choline transport in isolated rabbit renal proximal tubules.

    PubMed

    Dantzler, W H; Evans, K K; Wright, S H

    1998-11-01

    Choline can undergo both net secretion and net reabsorption by renal proximal tubules, but at physiological plasma levels net reabsorption occurs. During this process, choline enters the cells at the luminal side down an electrochemical gradient via a specific transporter with a high affinity for choline. It appeared likely that choline was then transported out of the cells against an electrochemical gradient at the basolateral membrane by countertransport for another organic cation. This possibility was examined by studying net transepithelial reabsorption and basolateral uptake and efflux of [14C]choline in isolated S2 segments of rabbit renal proximal tubules. Basolateral uptake, which was inhibited by other organic cations such as tetraethylammonium (TEA), appeared to occur by the standard organic cation transport pathway. However, the addition of TEA to the bathing medium not only failed to trans-stimulate net transepithelial reabsorption and basolateral efflux of [14C]choline but it actually inhibited transepithelial reabsorption by @60%. The results do not support the presence of a countertransport step for choline against an electrochemical gradient at the basolateral membrane. Instead, they suggest that choline crosses this membrane by some form of carrier-mediated diffusion even during the reabsorptive process.

  13. Substrate modulation of fatty acid effects on energization and respiration of kidney proximal tubules during hypoxia/reoxygenation.

    PubMed

    Bienholz, Anja; Al-Taweel, Ahmad; Roeser, Nancy F; Kribben, Andreas; Feldkamp, Thorsten; Weinberg, Joel M

    2014-01-01

    Kidney proximal tubules subjected to hypoxia/reoxygenation develop a nonesterified fatty acid-induced energetic deficit characterized by persistent partial mitochondrial deenergization that can be prevented and reversed by citric acid cycle substrates. To further assess the role of competition between fatty acids and substrates on inner membrane substrate carriers in the deenergization and the contribution to deenergization of fatty acid effects on respiratory function, digitonin-permeabilized rabbit and mouse tubules were studied using either addition of exogenous oleate after control normoxic incubation or increases of endogenous fatty acids produced by hypoxia/reoxygenation. The results demonstrated major effects of matrix oxaloacetate accumulation on succinate-supported energization and respiration and their modification by fatty acids. Improvements of energization in the presence of fatty acids by glutamate were shown to result predominantly from lowering matrix oxaloacetate rather than from amelioration of transmembrane cycling of fatty acids and uncoupling. Mouse tubules had 2.5 fold higher rates of succinate utilization, which resulted in stronger effects of oxaloacetate accumulation than rabbit tubules. Hypoxia/reoxygenation induced respiratory inhibition that was more severe for complex I-dependent substrates. Fatty acids themselves did not acutely contribute to this respiratory inhibition, but lowering them during 60 min. reoxygenation to allow recovery of ATP during that period alleviated it. These data clarify the basis for the nonesterified fatty acid-induced mitochondrial energetic deficit in kidney proximal tubules that impairs structural and functional recovery and provide insight into interactions that need to be considered in the design of substrate-based interventions to improve mitochondrial function.

  14. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology

    PubMed Central

    Traynor, Kirsten S.; Andree, Michael; Lichtenberg, Elinor M.; Chen, Yanping; Saegerman, Claude; Cox-Foster, Diana L.

    2017-01-01

    Honey bee (Apis mellifera) colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD) and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions), and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees), we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence) and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and factors

  15. Bombyx mori cecropin A has a high antifungal activity to entomopathogenic fungus Beauveria bassiana.

    PubMed

    Lu, Dingding; Geng, Tao; Hou, Chengxiang; Huang, Yuxia; Qin, Guangxing; Guo, Xijie

    2016-05-25

    A cDNA encoding cecropin A (CecA) was cloned from the larvae of silkworm, Bombyx mori, using RT-PCR. It encodes a protein of 63 amino acids, containing a 22 amino acid signal peptide and a 37 amino acid mat peptide of functional domain. The CecA secondary structure contains two typical amphiphilic α-helices. Real-time qPCR analysis revealed that CecA was expressed in all the tissues tested, including cuticle, fat body, hemocytes, Malpighian tubule, midgut and silk gland in the silkworm larvae with the highest expression in the fat body and hemocytes. The gene expression of B. mori CecA was rapidly induced by Beauveria bassiana challenge and reached maximum levels at 36h after inoculation in third instar larvae. In the fifth instar larvae infected with B. bassiana, the relative expression level of CecA was upregulated in fat body and hemocytes, but not in cuticle, Malpighian tubule, midgut and silk gland. The cDNA segment of the CecA was inserted into the expression plasmid pET-30a(+) to construct a recombinant expression plasmid. Western blot results revealed that his-tagged fusion protein was successfully expressed and purified. Then the mat peptide of CecA was chemically synthesized with C-terminus amidation for in vivo antifungal assay and purity achieved 93.7%. Mass spectrometry and SDS-PAGE showed its molecular weight to be 4046.95Da. Antifungal assays indicated that the B. mori CecA had a high antifungal activity to entomopathogenic fungus B. bassiana both in vitro and in vivo in the silkworm larvae. This is the first report that the CecA is effective to inhibit B. bassiana inside the body of silkworm. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Antioxidant genes of the emerald ash borer (Agrilus planipennis): gene characterization and expression profiles.

    PubMed

    Rajarapu, Swapna Priya; Mamidala, Praveen; Herms, Daniel A; Bonello, Pierluigi; Mittapalli, Omprakash

    2011-06-01

    Phytophagous insects frequently encounter reactive oxygen species (ROS) from exogenous and endogenous sources. To overcome the effect of ROS, insects have evolved a suite of antioxidant defense genes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione peroxidase (GPX). The emerald ash borer (Agrilus planipennis Fairmaire), an exotic invasive insect pest from Asia has killed millions of ash trees and continues to invade North America at a rapid pace. From an on-going expressed sequence tag (EST) project of A. planipennis larval tissues, we identified ESTs coding for a Cu-Zn SOD (ApSOD1), a CAT (ApCAT1) and a GPX (ApGPX1). A multiple sequence alignment of the derived A. planipennis sequences revealed high homology with other insect sequences at the amino acid level. Phylogenetic analysis of ApSOD1 grouped it with Cu-Zn SODs of other insect taxa. Quantitative real time PCR (qRT-PCR) analysis in different larval tissues (midgut, fat body, Malpighian tubule and cuticle) revealed high mRNA levels of ApCAT1 in the midgut. Interestingly, high mRNA levels for both ApSOD1 and ApGPX1 were observed in the Malpighian tubules. Assay of mRNA levels in developmental stages (larva, prepupa and adults) by qRT-PCR indicated high transcript levels of ApCAT1 and ApGPX1 in larval and prepupal stages with a decline in adults. On the other hand, the transcript levels of ApSOD1 were observed to be constitutive in all the developmental stages assayed. Results obtained reflect a plausible role of these A. planipennis antioxidant genes in quenching ROS from both diet (ash allelochemicals) as well as endogenous sources. These studies further help in understanding the adaptation/invasiveness of A. planipennis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology.

    PubMed

    vanEngelsdorp, Dennis; Traynor, Kirsten S; Andree, Michael; Lichtenberg, Elinor M; Chen, Yanping; Saegerman, Claude; Cox-Foster, Diana L

    2017-01-01

    Honey bee (Apis mellifera) colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD) and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions), and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees), we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence) and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and factors

  18. First evidence of epithelial transport in tardigrades: a comparative investigation of organic anion transport.

    PubMed

    Halberg, Kenneth Agerlin; Møbjerg, Nadja

    2012-02-01

    We investigated transport of the organic anion Chlorophenol Red (CPR) in the tardigrade Halobiotus crispae using a new method for quantifying non-fluorescent dyes. We compared the results acquired from the tardigrade with CPR transport data obtained from Malpighian tubules of the desert locust Schistocerca gregaria. CPR accumulated in the midgut lumen of H. crispae, indicating that organic anion transport takes place here. Our results show that CPR transport is inhibited by the mitochondrial un-coupler DNP (1 mmol l(-1); 81% reduction), the Na(+)/K(+)-ATPase inhibitor ouabain (10 mmol l(-1); 21% reduction) and the vacuolar H(+)-ATPase inhibitor bafilomycin (5 μmol l(-1); 21% reduction), and by the organic anions PAH (10 mmol l(-1); 44% reduction) and probenecid (10 mmol l(-1); 61% reduction, concentration-dependent inhibition). Transport by locust Malpighian tubules exhibits a similar pharmacological profile, albeit with markedly higher concentrations of CPR being reached in S. gregaria. Immunolocalization of the Na(+)/K(+)-ATPase α-subunit in S. gregaria revealed that this transporter is abundantly expressed and localized to the basal cell membranes. Immunolocalization data could not be obtained from H. crispae. Our results indicate that organic anion secretion by the tardigrade midgut is transporter mediated with likely candidates for the basolateral entry step being members of the Oat and/or Oatp transporter families. From our results, we cautiously suggest that apical H(+) and possibly basal Na(+)/K(+) pumps provide the driving force for the transport; the exact coupling between electrochemical gradients generated by the pumps and transport of ions, as well as the nature of the apical exit step, are unknown. This study is, to our knowledge, the first to show active epithelial transport in tardigrades.

  19. Ion and solute transport by prestin in Drosophila and Anopheles

    PubMed Central

    Hirata, Taku; Czapar, Anna; Brin, Lauren R.; Haritonova, Alyona; Bondeson, Daniel P.; Linser, Paul J.; Cabrero, Pablo; Dow, Julian A. T.; Romero, Michael F.

    2012-01-01

    The gut and Malpighian tubules of insects are the primary sites of active solute and water transport for controlling hemolymph and urine composition, pH, and osmolarity. These processes depend on ATPase (pumps), channels and solute carriers (Slc proteins). Maturation of genomic databases enables us to identify the putative molecular players for these processes. Anion transporters of the Slc4 family, AE1 and NDAE1, have been reported as HCO3− transporters, but are only part of the story. Here we report Dipteran (Drosophila melanogaster (d) and Anopheles gambiae (Ag)) anion exchangers, belonging to the Slc26 family, which are multi-functional anion exchangers. One Drosophila and two Ag homologues of mammalian Slc26a5 (prestin) and Slc26a6 (aka, PAT1, CFEX) were identified and designated dPrestin, AgPrestinA and AgPrestinB. dPrestin and AgPrestinB show electrogenic anion exchange (Cl−/nHCO3−, Cl−/SO42− and Cl−/oxalate2−) in an oocyte expression system. Since these transporters are the only Dipteran Slc26 proteins whose transport is similar to mammalian Slc26a6, we submit that Dipteran Prestin are functional and even molecular orthologues of mammalian Slc26a6. OSR1 kinase increases dPrestin ion transport, implying another set of physiological processes controlled by WNK/SPAK signaling in epithelia. All of these mRNAs are highly expressed in the gut and Malpighian tubules. Dipteran Prestin proteins appear suited for central roles in bicarbonate, sulfate and oxalate metabolism including generating the high pH conditions measured in the Dipteran midgut lumen. Finally, we present and discuss Drosophila genetic models that integrate these processes. PMID:22321763

  20. BmDJ-1 Is a Key Regulator of Oxidative Modification in the Development of the Silkworm, Bombyx mori

    PubMed Central

    Tabunoki, Hiroko; Ode, Hiroaki; Banno, Yutaka; Katsuma, Susumu; Shimada, Toru; Mita, Kazuei; Yamamoto, Kimiko; Sato, Ryoichi; Ishii-Nozawa, Reiko; Satoh, Jun-ichi

    2011-01-01

    We cloned cDNA for the Bombyx mori DJ-1 protein (BmDJ-1) from the brains of larvae. BmDJ-1 is composed of 190 amino acids and encoded by 672 nucleotides. Northern blot analysis showed that BmDJ-1 is transcribed as a 756-bp mRNA and has one isoform. Reverse transcriptase (RT)-PCR experiments revealed that the BmDJ-1 was present in the brain, fatbody, Malpighian tubule, ovary and testis but present in only low amounts in the silkgland and hemocyte of day 4 fifth instar larvae. Immunological analysis demonstrated the presence of BmDJ-1 in the brain, midgut, fatbody, Malpighian tubule, testis and ovary from the larvae to the adult. We found that BmDJ-1 has a unique expression pattern through the fifth instar larval to adult developmental stage. We assessed the anti-oxidative function of BmDJ-1 using rotenone (ROT) in day 3 fifth instar larvae. Administration of ROT to day 3 fifth instar larvae, together with exogenous (BmNPV-BmDJ-1 infection for 4 days in advance) BmDJ-1, produced significantly lower 24-h mortality in BmDJ-1 groups than in the control. 2D-PAGE revealed an isoelectric point (pI) shift to an acidic form for BmDJ-1 in BmN4 cells upon ROT stimulus. Among the factors examined for their effects on expression level of BmDJ-1 in the hemolymph, nitric oxide (NO) concentration was identified based on dramatic developmental stage-dependent changes. Administration of isosorbide dinitrate (ISDN), which is an NO donor, to BmN4 cells produced increased expression of BmDJ-1 compared to the control. These results suggest that BmDJ-1 might control oxidative stress in the cell due to NO and serves as a development modulation factor in B. mori. PMID:21455296

  1. Birefringent Crystals and Abdominal Discoloration in the Predatory Mite Phytoseiulus persimilis (Acari: Phytoseiidae)

    PubMed

    Bjørnson; Steiner; Keddie

    1997-03-01

    In response to grower complaints of poor performance of Phytoseiulus persimilis, mites from 14 commercial insectaries and research colonies were examined for pathogens. Some were found to have abdominal discolorations, manifested initially as two white stripes along the dorsal sides of the body within the Malpighian tubules. Advanced signs appeared as a large, centrally located, white spot or U-shaped discoloration in the distal opisthosoma within the rectum/anal atrium. White material often accumulated and hardened within the anus and formed a rectal plug that inhibited further excretion. Most affected mites were lethargic. Adults and immatures with abdominal discoloration contained numerous densely packed, birefringent, dumbbell-shaped entities. Though occasionally observed in the colon, they occurred most frequently within the Malpighian tubules and/or rectum and anal atrium. Dumbbells measured 2-4 &mgr;m long and contained prominent concentric rings. When observed by transmission electron microscopy, the entities lacked cellular organelles. Asymptomatic mites contained few or no such entities. Dumbbell-shaped inclusions were observed in P. persimilis from all sources examined. High levels of potassium, low levels of phosphorous and sulfur, and traces of chlorine were detected by energy-dispersive X-ray analysis. Guanine and uric acid, known nitrogenous wastes of arachnids, do not contain these elements. The chemical composition and structure indicate that the dumbbells are crystals. Both asymptomatic mites and those specimens exhibiting abdominal discoloration were examined for pathogens using light and transmission electron microscopy. Microsporidia, virus-like particles, and a rickettsia (genus Wolbachia) were observed in some mites but showed no correlation with white abdominal discoloration or associated crystal formation. Neither were pathogens always detected in symptomatic mites. Although birefringent crystals may be naturally occurring excretory

  2. Disruption of Core Planar Cell Polarity Signaling Regulates Renal Tubule Morphogenesis but Is Not Cystogenic.

    PubMed

    Kunimoto, Koshi; Bayly, Roy D; Vladar, Eszter K; Vonderfecht, Tyson; Gallagher, Anna-Rachel; Axelrod, Jeffrey D

    2017-10-23

    Oriented cell division (OCD) and convergent extension (CE) shape developing renal tubules, and their disruption has been associated with polycystic kidney disease (PKD) genes, the majority of which encode proteins that localize to primary cilia. Core planar cell polarity (PCP) signaling controls OCD and CE in other contexts, leading to the hypothesis that disruption of PCP signaling interferes with CE and/or OCD to produce PKD. Nonetheless, the contribution of PCP to tubulogenesis and cystogenesis is uncertain, and two major questions remain unanswered. Specifically, the inference that mutation of PKD genes interferes with PCP signaling is untested, and the importance of PCP signaling for cystogenic PKD phenotypes has not been examined. We show that, during proliferative stages, PCP signaling polarizes renal tubules to control OCD. However, we find that, contrary to the prevailing model, PKD mutations do not disrupt PCP signaling but instead act independently and in parallel with PCP signaling to affect OCD. Indeed, PCP signaling that is normally downregulated once development is completed is retained in cystic adult kidneys. Disrupting PCP signaling results in inaccurate control of tubule diameter, a tightly regulated parameter with important physiological ramifications. However, we show that disruption of PCP signaling is not cystogenic. Our results suggest that regulating tubule diameter is a key function of PCP signaling but that loss of this control does not induce cysts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Antibacterial properties of silver nanoparticles as a root canal irrigant against Enterococcus faecalis biofilm and infected dentinal tubules.

    PubMed

    Rodrigues, C T; de Andrade, F B; de Vasconcelos, L R S M; Midena, R Z; Pereira, T C; Kuga, M C; Duarte, M A H; Bernardineli, N

    2018-02-03

    To evaluate the antimicrobial action of an irrigant containing silver nanoparticles in an aqueous vehicle (AgNp), sodium hypochlorite and chlorhexidine against Enterococcus faecalis biofilm and infected dentinal tubules. Bovine dentine blocks were used for E. faecalis biofilm development for 21 days and irrigated with 94 ppm AgNp solution, 2.5% NaOCl and 2% chlorhexidine for 5, 15 and 30 min. For infection of dentinal tubules with E. faecalis, dentine specimens from bovine incisors were submitted to a contamination protocol over 5 days, with eight centrifugation cycles on every alternate day, and irrigated with the same solutions and time intervals used for the biofilm. The specimens were stained with the Live/Dead technique and evaluated using a confocal laser scanning microscope (CLSM). The bioImage_L software was used for measurement of the total biovolume of biofilm in μm 3 and percentage of viable bacteria (green cells) in biofilm and in dentinal tubules found after the irrigation. Statistical analyses were performed using Kruskal-Wallis and Dunn's tests for quantification of viable cells in biofilm, the Friedman test for comparisons of viable bacteria in dentinal tubules in different areas of the root canal and the Mann-Whitney U-test to compare the action of the irrigants between the two methods (P < 0.05). The AgNp solution eliminated fewer bacteria, but was able to dissolve more biofilm compared with chlorhexidine (P < 0.05). NaOCl had the greatest antimicrobial activity and biofilm dissolution capacity. AgNp solution had less antimicrobial action in infected dentinal tubules compared with NaOCl (P < 0.05). The AgNp solution after 5 min was more effective in eliminating planktonic bacteria in dentinal tubules than in biofilm, but at 30 min fewer viable bacteria were observed in the biofilm compared with intratubular dentine (P < 0.05). AgNp irrigant was not as effective against E. faecalis compared to solutions commonly used in root canal

  4. Minicollagen-15, a novel minicollagen isolated from Hydra, forms tubule structures in nematocysts.

    PubMed

    Adamczyk, Patrizia; Meier, Sebastian; Gross, Thomas; Hobmayer, Bert; Grzesiek, Stephan; Bächinger, Hans Peter; Holstein, Thomas W; Ozbek, Suat

    2008-02-29

    Minicollagens constitute a family of unusually short collagen molecules isolated from cnidarians. They are restricted to the nematocyst, a cylindrical explosive organelle serving in defense and capture of prey. The nematocyst capsule contains a long tubule inside of its matrix, which is expelled and everted during an ultrafast discharge process. Here, we report the cloning and characterization of a novel minicollagen in Hydra, designated minicollagen-15 (NCol-15). NCol-15, like NCol-3 and NCol-4, shows deviations from the canonical cysteine pattern in its terminal cysteine-rich domains (CRDs). Minicollagens share common domain architectures with a central collagen sequence flanked by polyproline stretches and short N- and C-terminal CRDs. The CRDs are involved in the formation of a highly resistant cysteine network, which constitutes the basic structure of the nematocyst capsule. Unlike NCol-1, which is part of the capsule wall, NCol-15 is localized to tubules, arguing for a functional differentiation of minicollagens within the nematocyst architecture. NMR analysis of the altered C-terminal CRD of NCol-15 showed a novel disulfide-linked structure within the cysteine-containing region exhibiting similar folding kinetics and stability as the canonical CRDs. Our data provide evidence for evolutionary diversification among minicollagens, which probably facilitated alterations in the morphology of the nematocyst wall and tubule.

  5. Relationship between cell volume and ion transport in the early distal tubule of the Amphiuma kidney.

    PubMed

    Guggino, W B; Oberleithner, H; Giebisch, G

    1985-07-01

    The roles of apical and basolateral transport mechanisms in the regulation of cell volume and the hydraulic water permeabilities (Lp) of the individual cell membranes of the Amphiuma early distal tubule (diluting segment) were evaluated using video and optical techniques as well as conventional and Cl-sensitive microelectrodes. The Lp of the apical cell membrane calculated per square centimeter of tubule is less than 3% that of the basolateral cell membrane. Calculated per square centimeter of membrane, the Lp of the apical cell membrane is less than 40% that of the basolateral cell membrane. Thus, two factors are responsible for the asymmetry in the Lp of the early distal tubule: an intrinsic difference in the Lp per square centimeter of membrane area, and a difference in the surface areas of the apical and basolateral cell membranes. Early distal tubule cells do not regulate volume after a reduction in bath osmolality. This cell swelling occurs without a change in the intracellular Cl content or the basolateral cell membrane potential. In contrast, reducing the osmolality of the basolateral solution in the presence of luminal furosemide diminishes the magnitude of the increase in cell volume to a value below that predicted from the change in osmolality. This osmotic swelling is associated with a reduction in the intracellular Cl content. Hence, early distal tubule cells can lose solute in response to osmotic swelling, but only after the apical Na/K/Cl transporter is blocked. Inhibition of basolateral Na/K ATPase with ouabain results in severe cell swelling. This swelling in response to ouabain can be inhibited by the prior application of furosemide, which suggests that the swelling is due to the continued entry of solutes, primarily through the apical cotransport pathway.

  6. Relationship between cell volume and ion transport in the early distal tubule of the Amphiuma kidney

    PubMed Central

    1985-01-01

    The roles of apical and basolateral transport mechanisms in the regulation of cell volume and the hydraulic water permeabilities (Lp) of the individual cell membranes of the Amphiuma early distal tubule (diluting segment) were evaluated using video and optical techniques as well as conventional and Cl-sensitive microelectrodes. The Lp of the apical cell membrane calculated per square centimeter of tubule is less than 3% that of the basolateral cell membrane. Calculated per square centimeter of membrane, the Lp of the apical cell membrane is less than 40% that of the basolateral cell membrane. Thus, two factors are responsible for the asymmetry in the Lp of the early distal tubule: an intrinsic difference in the Lp per square centimeter of membrane area, and a difference in the surface areas of the apical and basolateral cell membranes. Early distal tubule cells do not regulate volume after a reduction in bath osmolality. This cell swelling occurs without a change in the intracellular Cl content or the basolateral cell membrane potential. In contrast, reducing the osmolality of the basolateral solution in the presence of luminal furosemide diminishes the magnitude of the increase in cell volume to a value below that predicted from the change in osmolality. This osmotic swelling is associated with a reduction in the intracellular Cl content. Hence, early distal tubule cells can lose solute in response to osmotic swelling, but only after the apical Na/K/Cl transporter is blocked. Inhibition of basolateral Na/K ATPase with ouabain results in severe cell swelling. This swelling in response to ouabain can be inhibited by the prior application of furosemide, which suggests that the swelling is due to the continued entry of solutes, primarily through the apical cotransport pathway. PMID:2411847

  7. Phosphoproteomic analysis of AT1 receptor-mediated signaling responses in proximal tubules of angiotensin II-induced hypertensive rats.

    PubMed

    Li, Xiao C; Zhuo, Jia L

    2011-09-01

    The signaling mechanisms underlying the effects of angiotensin II in proximal tubules of the kidney are not completely understood. Here we measured signal protein phosphorylation in isolated proximal tubules using pathway-specific proteomic analysis in rats continuously infused with pressor or non-pressor doses of angiotensin II over a 2-week period. Of the 38 phosphoproteins profiled, 14 were significantly altered by the pressor dose. This included increased phosphorylation of the protein kinase C isoenzymes, PKCα and PKCβII, and the glycogen synthase kinases, GSK3α and GSK3β. Phosphorylation of the cAMP-response element binding protein 1 and PKCδ were decreased, whereas PKCɛ remained unchanged. By contrast, the phosphorylation of only seven proteins was altered by the non-pressor dose, which increased that of PKCα, PKCδ, and GSKα. Phosphorylation of MAP kinases, ERK1/2, was not increased in proximal tubules in vivo by the pressor dose, but was in proximal tubule cells in vitro. Infusion of the pressor dose decreased, whereas the non-pressor dose of angiotensin II increased the phosphorylation of the sodium and hydrogen exchanger 3 (NHE-3) in membrane fractions of proximal tubules. Losartan largely blocked the signaling responses induced by the pressor dose. Thus, PKCα and PKCβII, GSK3α and GSK3β, and cAMP-dependent signaling pathways may have important roles in regulating proximal tubular sodium and fluid transport in Ang II-induced hypertensive rats.

  8. Discerning the role of mechanosensors in regulating proximal tubule function

    PubMed Central

    Weisz, Ora A.

    2015-01-01

    All cells in the body experience external mechanical forces such as shear stress and stretch. These forces are sensed by specialized structures in the cell known as mechanosensors. Cells lining the proximal tubule (PT) of the kidney are continuously exposed to variations in flow rates of the glomerular ultrafiltrate, which manifest as changes in axial shear stress and radial stretch. Studies suggest that these cells respond acutely to variations in flow by modulating their ion transport and endocytic functions to maintain glomerulotubular balance. Conceptually, changes in the axial shear stress in the PT could be sensed by three known structures, namely, the microvilli, the glycocalyx, and primary cilia. The orthogonal component of the force produced by flow exhibits as radial stretch and can cause expansion of the tubule. Forces of stretch are transduced by integrins, by stretch-activated channels, and by cell-cell contacts. This review summarizes our current understanding of flow sensing in PT epithelia, discusses challenges in dissecting the role of individual flow sensors in the mechanosensitive responses, and identifies potential areas of opportunity for new study. PMID:26662200

  9. Phosphatidic acid induces EHD3-containing membrane tubulation and is required for receptor recycling.

    PubMed

    Henmi, Yuji; Oe, Natsuko; Kono, Nozomu; Taguchi, Tomohiko; Takei, Kohji; Tanabe, Kenji

    2016-03-01

    EHD3 is localized on the tubular structures of early endosomes, and it regulates their trafficking pathway. However, the regulatory mechanism of EHD3-containing tubular structures remains poorly understood. An in vitro liposome co-sedimentation assay revealed that EHD3 interacted with phosphatidic acid through its helical domain and this interaction induced liposomal tubulations. Additionally, inhibiting phosphatidic acid synthesis with diacylglycerol kinase inhibitor or lysophosphatidic acid acyltransferase inhibitor significantly reduced the number of EHD3-containing tubules and impaired their trafficking from early endosomes. These results suggest that EHD3 and phosphatidic acid cooperatively regulate membrane deformation and trafficking from early endosomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. New insights on stromules: stroma filled tubules extended by independent plastids.

    PubMed

    Schattat, Martin H; Klösgen, Ralf Bernd; Mathur, Jaideep

    2012-09-01

    The recognition of stromules as sporadically extended stroma filled tubules from all kinds of plastids constitutes one of the major insights that resulted from the direct application of green fluorescent protein aided imaging of living plant cells. Observations of dynamic green fluorescent stromules strongly suggested that plastids frequently interact with each other while photo-bleaching of interconnected plastids indicated that proteins can move within the stroma filled tubules. These observations readily fit into the prevailing concept of the endosymbiogenic origins of plastids and provided stromules the status of conduits for inter-plastid communication and macromolecule transfer. However, experimental evidence obtained recently through the use of photoconvertible protein labeled stromules strongly supports plastid independence rather than their interconnectivity. Additional information on stress conditions inducing stromules and observations on their alignment with other organelles suggests that the major role of stromules is to increase the interactive surface of a plastid with the rest of the cytoplasm.

  11. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes

    PubMed Central

    Maher, Geoffrey J.; McGowan, Simon J.; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O. M.

    2016-01-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39–90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones. PMID:26858415

  12. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes.

    PubMed

    Maher, Geoffrey J; McGowan, Simon J; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O M

    2016-03-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39-90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones.

  13. Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia.

    PubMed

    Majumdar, A; Lun, K; Brand, M; Drummond, I A

    2000-05-01

    Pax genes are important developmental regulators and function at multiple stages of vertebrate kidney organogenesis. In this report, we have used the zebrafish pax2.1 mutant no isthmus to investigate the role for pax2.1 in development of the pronephros. We demonstrate a requirement for pax2.1 in multiple aspects of pronephric development including tubule and duct epithelial differentiation and cloaca morphogenesis. Morphological analysis demonstrates that noi(- )larvae specifically lack pronephric tubules while glomerular cell differentiation is unaffected. In addition, pax2.1 expression in the lateral cells of the pronephric primordium is required to restrict the domains of Wilms' tumor suppressor (wt1) and vascular endothelial growth factor (VEGF) gene expression to medial podocyte progenitors. Ectopic podocyte-specific marker expression in pronephric duct cells correlates with loss of expression of the pronephric tubule and duct-specific markers mAb 3G8 and a Na(+)/K(+) ATPase (&agr;)1 subunit. The results suggest that the failure in pronephric tubule differentiation in noi arises from a patterning defect during differentiation of the pronephric primordium and that mutually inhibitory regulatory interactions play an important role in defining the boundary between glomerular and tubule progenitors in the forming nephron.

  14. Local pH domains regulate NHE3-mediated Na+ reabsorption in the renal proximal tubule

    PubMed Central

    Burford, James L.; McDonough, Alicia A.; Holstein-Rathlou, Niels-Henrik; Peti-Peterdi, Janos

    2014-01-01

    The proximal tubule Na+/H+ exchanger 3 (NHE3), located in the apical dense microvilli (brush border), plays a major role in the reabsorption of NaCl and water in the renal proximal tubule. In response to a rise in blood pressure NHE3 redistributes in the plane of the plasma membrane to the base of the brush border, where NHE3 activity is reduced. This NHE3 redistribution is assumed to provoke pressure natriuresis; however, it is unclear how NHE3 redistribution per se reduces NHE3 activity. To investigate if the distribution of NHE3 in the brush border can change the reabsorption rate, we constructed a spatiotemporal mathematical model of NHE3-mediated Na+ reabsorption across a proximal tubule cell and compared the model results with in vivo experiments in rats. The model predicts that when NHE3 is localized exclusively at the base of the brush border, it creates local pH microdomains that reduce NHE3 activity by >30%. We tested the model's prediction experimentally: the rat kidney cortex was loaded with the pH-sensitive fluorescent dye BCECF, and cells of the proximal tubule were imaged in vivo using confocal fluorescence microscopy before and after an increase of blood pressure by ∼50 mmHg. The experimental results supported the model by demonstrating that a rise of blood pressure induces the development of pH microdomains near the bottom of the brush border. These local changes in pH reduce NHE3 activity, which may explain the pressure natriuresis response to NHE3 redistribution. PMID:25298526

  15. Proximal tubule glutamine synthetase expression is necessary for the normal response to dietary protein restriction.

    PubMed

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E; Verlander, Jill W; Weiner, I David

    2017-07-01

    Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion changes in parallel during changes in dietary protein intake. Dietary protein restriction decreases endogenous acid production and decreases urinary ammonia excretion, a major component of net acid excretion. Glutamine synthetase (GS) catalyzes the reaction of [Formula: see text] and glutamate, which regenerates the essential amino acid glutamine and decreases net ammonia generation. Because renal proximal tubule GS expression increases during dietary protein restriction, this could contribute to the decreased ammonia excretion. The purpose of the current study was to determine the role of proximal tubule GS in the renal response to protein restriction. We generated mice with proximal tubule-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Cre-negative (Control) and PT-GS-KO mice in metabolic cages were provided 20% protein diet for 2 days and were then changed to low-protein (6%) diet for the next 7 days. Additional PT-GS-KO mice were maintained on 20% protein diet. Dietary protein restriction caused a rapid decrease in urinary ammonia excretion in both genotypes, but PT-GS-KO blunted this adaptive response significantly. This occurred despite no significant genotype-dependent differences in urinary pH or in serum electrolytes. There were no significant differences between Control and PT-GS-KO mice in expression of multiple other proteins involved in renal ammonia handling. We conclude that proximal tubule GS expression is necessary for the appropriate decrease in ammonia excretion during dietary protein restriction.

  16. Bicarbonate absorption stimulates active calcium absorption in the rat proximal tubule.

    PubMed Central

    Bomsztyk, K; Calalb, M B

    1988-01-01

    To evaluate the effect of luminal bicarbonate on calcium reabsorption, rat proximal tubules were perfused in vivo. Perfusion solution contained mannitol to reduce water flux to zero. Total Ca concentration was measured by atomic absorption spectrometry, Ca ion concentration in the tubule lumen (CaL2+) and the peritubular capillary (CaP2+), and luminal pH (pHL) with ion-selective microelectrodes and transepithelial voltage (VTE) with conventional microelectrodes. When tubules were perfused with buffer-free Cl-containing solution, net Ca absorption (JCa) averaged 3.33 pmol/min. Even though VTE was 1.64 mV lumen-positive, CaL2+, 1.05 mM, did not fall below the concentration in the capillary blood, 1.07 mM. When 27 mM of Cl was replaced with HCO3, there was luminal fluid acidification. Despite a decrease in VTE and CaL2+, JCa increased to 7.13 pmol/min, indicating that the enhanced JCa could not be accounted for by the reduced electrochemical gradient, delta CCa. When acetazolamide or an analogue of amiloride was added to the HCO3 solution, JCa was not different from the buffer-free solution, suggesting that HCO3-stimulated JCa may be linked to acidification. To further test this hypothesis, we used 27 mM Hepes as the luminal buffer. With Hepes there was luminal fluid acidification and JCa was not different from the buffer-free solution but delta CCa was significantly reduced, indicating enhanced active calcium transport. We conclude from the results of the present study that HCO3 stimulates active Ca absorption, a process that may be linked to acidification-mediated HCO3 absorption. PMID:3366902

  17. Vitality of Enterococcus faecalis inside dentinal tubules after five root canal disinfection methods

    PubMed Central

    Vatkar, Niranjan Ashok; Hegde, Vivek; Sathe, Sucheta

    2016-01-01

    Aim: To compare the vitality of Enterococcus faecalis within dentinal tubules after subjected to five root canal disinfection methods. Materials and Methods: Dentin blocks (n = 60) were colonized with E. faecalis. After 4 weeks of incubation, the dentin blocks were divided into one control and five test groups (n = 10 each). The root canals of test groups were subjected to one of the disinfection methods, namely, normal saline (NS), sodium hypochlorite (NaOCl), chlorhexidine digluconate (CHX), neodymium-doped yttrium aluminum garnet (Nd: YAG) laser, and diode laser. The effect of disinfection methods was assessed by LIVE/DEAD BacLight stain under the confocal laser scanning microscopy to determine the “zone of dead bacteria” (ZDB). Mean values were calculated for ZDB and the difference between groups was established. Results: Penetration of E. faecalis was seen to a depth of >1000 μm. Viable bacteria were detected with NS irrigation. NaOCl and CHX showed partial ZDB. When the root canals were disinfected with Nd: YAG and diode lasers, no viable bacteria were found. Conclusion: E. faecalis has the ability to colonize inside dentinal tubules to a depth of >1000 μm. In contrast to conventional irrigants, both Nd: YAG and diode lasers were effective in eliminating the vitality of E. faecalis. NS, NaOCl, and CHX showed viable bacteria remaining in dentinal tubules. PMID:27656064

  18. Regulatory Forum Opinion Piece*: Dispelling Confusing Pathology Terminology: Recognition and Interpretation of Selected Rodent Renal Tubule Lesions.

    PubMed

    Seely, John Curtis; Frazier, Kendall S

    2015-06-01

    Renal tubule lesions often prove troublesome for toxicologic pathologists because of the diverse nature and interrelated cell types within the kidney and the presence of spontaneous lesions with overlapping morphologies similar to those induced by renal toxicants. Although there are a number of guidance documents available citing straightforward diagnostic criteria of tubule lesions for the pathologist to refer to, most are presented without further advice on the when to or to the why and the why not of diagnosing one lesion over another. Documents presenting diagnostic perspectives and recommendations derived from an author's experience are limited since guidance documents are generally based on descriptive observations. In this Regulatory Forum opinion piece, the authors attempt to dispel confusing renal tubule lesion terminology in laboratory animal species by suggesting histological advice on the recognition and interpretation of these complex entities. © 2015 by The Author(s).

  19. Hazard evaluation of chemicals that cause accumulation of alpha 2u-globulin, hyaline droplet nephropathy, and tubule neoplasia in the kidneys of male rats.

    PubMed Central

    Hard, G C; Rodgers, I S; Baetcke, K P; Richards, W L; McGaughy, R E; Valcovic, L R

    1993-01-01

    This review paper examines the relationship between chemicals inducing excessive accumulation of alpha 2u-globulin (alpha 2u-g) (CIGA) in hyaline droplets in male rat kidneys and the subsequent development of nephrotoxicity and renal tubule neoplasia in the male rat. This dose-responsive hyaline droplet accumulation distinguishes CIGA carcinogens from classical renal carcinogens. CIGA carcinogens also do not appear to react with DNA and are generally negative in short-term tests for genotoxicity, CIGA or their metabolites bind specifically, but reversibly, to male rat alpha 2u-g. The resulting complex appears to be more resistant to hydrolytic degradation in the proximal tubule than native, unbound alpha 2u-g. Single cell necrosis of the tubule epithelium, with associated granular cast formation and papillary mineralization, is followed by sustained regenerative tubule cell proliferation, foci of tubule hyperplasia in the convoluted proximal tubules, and renal tubule tumors. Although structurally similar proteins have been detected in other species, including humans, renal lesions characteristic of alpha 2u-g nephropathy have not been observed. Epidemiologic investigation has not specifically examined the CIGA hypothesis for humans. Based on cancer bioassays, hormone manipulation studies, investigations in an alpha 2u-g-deficient strain of rat, and other laboratory data, an increased proliferative response caused by chemically induced cytotoxicity appears to play a role in the development of renal tubule tumors in male rats. Thus, it is reasonable to suggest that the renal effects induced in male rats by chemicals causing alpha 2u-g accumulation are unlikely to occur in humans. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. FIGURE 8. FIGURE 9. FIGURE 10. FIGURE 11. FIGURE 12. FIGURE 13. PMID:7686485

  20. Appearance of the bona fide spiral tubule of ORF virus is dependent on an intact 10-kilodalton viral protein.

    PubMed

    Spehner, D; De Carlo, S; Drillien, R; Weiland, F; Mildner, K; Hanau, D; Rziha, H-J

    2004-08-01

    Parapoxviruses can be morphologically distinguished from other poxviruses in conventional negative staining electron microscopy (EM) by their ovoid appearance and the spiral tubule surrounding the virion's surface. However, this technique may introduce artifacts. We have examined Orf virus (ORFV; the prototype species of the Parapoxvirus genus) by cryoelectron microscopy (cryo-EM) and cryo-negative staining EM. From these studies we suggest that the shape and unique spiral tubule are authentic features of the parapoxviruses. We also constructed an ORFV mutant deleted of a gene encoding a 10-kDa protein, which is an orthologue of the vaccinia virus (VACV) 14-kDa fusion protein, and investigated its ultrastructure. This mutant virus multiplied slowly in permissive cells and produced infectious but morphologically aberrant particles. Mutant virions lacked the spiral tubule but displayed short disorganized tubules similar to those observed on the surface of VACV. In addition, thin extensions or loop-like structures were appended to the ORFV mutant particles. We suggest that these appended structures arise from a failure of the mutant virus particles to properly seal and that the sealing activity is dependent on the 10-kDa protein.

  1. Calcium sensitivity of dicarboxylate transport in cultured proximal tubule cells

    PubMed Central

    Schiro, Faith R.; Pajor, Ana M.; Hamm, L. Lee

    2011-01-01

    Urinary citrate is an important inhibitor of calcium nephrolithiasis and is primarily determined by proximal tubule reabsorption. The major transporter to reabsorb citrate is Na+-dicarboxylate cotransporter (NaDC1), which transports dicarboxylates, including the divalent form of citrate. We previously found that opossum kidney (OK) proximal tubule cells variably express either divalent or trivalent citrate transport, depending on extracellular calcium. The present studies were performed to delineate the mechanism of the effect of calcium on citrate and succinate transport in these cells. Transport was measured using isotope uptake assays. In some studies, NaDC1 transport was studied in Xenopus oocytes, expressing either the rabbit or opossum ortholog. In the OK cell culture model, lowering extracellular calcium increased both citrate and succinate transport by more than twofold; the effect was specific in that glucose transport was not altered. Citrate and succinate were found to reciprocally inhibit transport at low extracellular calcium (<60 μM), but not at normal calcium (1.2 mM); this mutual inhibition is consistent with dicarboxylate transport. The inhibition varied progressively at intermediate levels of extracellular calcium. In addition to changing the relative magnitude and interaction of citrate and succinate transport, decreasing calcium also increased the affinity of the transport process for various other dicarboxylates. Also, the affinity for succinate, at low concentrations of substrate, was increased by calcium removal. In contrast, in oocytes expressing NaDC1, calcium did not have a similar effect on transport, indicating that NaDC1 could not likely account for the findings in OK cells. In summary, extracellular calcium regulates constitutive citrate and succinate transport in OK proximal tubule cells, probably via a novel transport process that is not NaDC1. The calcium effect on citrate transport parallels in vivo studies that demonstrate the

  2. Evidence for Leydig cell dysfunction in rats with seminiferous tubule damage.

    PubMed

    Rich, K A; Kerr, J B; de Kretser, D M

    1979-02-01

    To study the effects of seminiferous tubule damage on Leydig cell function and morphology, rats were treated by fetal irradiation (to induce Sertoli cell-only syndrome, SCO), 3 months administration of hydroxyurea (HU), or chronic feeding of a vitamin A-deficient diet (VAD). Leydig cell function was assessed by the measurement of serum LH and testosterone and the response of serum testosterone to hCG stimulation, while morphology was studied by electron microscopy after perfusion fixation. Serum LH was significantly elevated in each experimental group, while basal serum testosterone was significantly lower only in SCO rats. In all treatment groups, the serum testosterone response to hCG was significantly decreased when measureed as the area under the response curve. Despite a decreased response to hCG, the Leydig cells were larger than normal and showed striking increases in quantities of smooth endoplasmic reticulum, mitochondria and Golgi complex. Leydig cell dysfunction has been demonstrated in animals with varying degrees of seminiferous tubule damage, but paradoxically the cytological features of the Leydig cells were indicative of hypertrophy.

  3. BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery

    PubMed Central

    Dennis, Megan K.; Mantegazza, Adriana R.; Snir, Olivia L.; Tenza, Danièle; Acosta-Ruiz, Amanda; Delevoye, Cédric; Zorger, Richard; Sitaram, Anand; de Jesus-Rojas, Wilfredo; Ravichandran, Keerthana; Rux, John; Sviderskaya, Elena V.; Bennett, Dorothy C.; Raposo, Graça; Setty, Subba Rao Gangi

    2015-01-01

    Hermansky–Pudlak syndrome (HPS) is a group of disorders characterized by the malformation of lysosome-related organelles, such as pigment cell melanosomes. Three of nine characterized HPS subtypes result from mutations in subunits of BLOC-2, a protein complex with no known molecular function. In this paper, we exploit melanocytes from mouse HPS models to place BLOC-2 within a cargo transport pathway from recycling endosomal domains to maturing melanosomes. In BLOC-2–deficient melanocytes, the melanosomal protein TYRP1 was largely depleted from pigment granules and underwent accelerated recycling from endosomes to the plasma membrane and to the Golgi. By live-cell imaging, recycling endosomal tubules of wild-type melanocytes made frequent and prolonged contacts with maturing melanosomes; in contrast, tubules from BLOC-2–deficient cells were shorter in length and made fewer, more transient contacts with melanosomes. These results support a model in which BLOC-2 functions to direct recycling endosomal tubular transport intermediates to maturing melanosomes and thereby promote cargo delivery and optimal pigmentation. PMID:26008744

  4. Changes of myoid and endothelial cells in the peritubular wall during contraction of the seminiferous tubule.

    PubMed

    Losinno, Antonella D; Sorrivas, Viviana; Ezquer, Marcelo; Ezquer, Fernando; López, Luis A; Morales, Alfonsina

    2016-08-01

    The wall of the seminiferous tubule in rodents consists of an inner layer of myoid cells covered by an outer layer of endothelial cells. Myoid cells are a type of smooth muscle cell containing α-actin filaments arranged in two independent layers that contract when stimulated by endothelin-1. The irregular surface relief of the tubular wall is often considered a hallmark of contraction induced by a variety of stimuli. We examine morphological changes of the rat seminiferous tubule wall during contraction by a combination of light, confocal, transmission and scanning electron microscopy. During ET-1-induced contraction, myoid cells changed from a flat to a conical shape, but their actin filaments remained in independent layers. As a consequence of myoid cell contraction, the basement membrane became wavy, orientation of collagen fibers in the extracellular matrix was altered and the endothelial cell layer became folded. To observe the basement of the myoid cell cone, the endothelial cell monolayer was removed by collagenase digestion prior to SEM study. In contracted tubules, it is possible to distinguish cell relief: myoid cells have large folds on the external surface oriented parallel to the tubular axis, whereas endothelial cells have numerous cytoplasmic projections facing the interstitium. The myoid cell cytoskeleton is unusual in that the actin filaments are arranged in two orthogonal layers, which adopt differing shapes during contraction with myoid cells becoming cone-shaped. This arrangement impacts on other components of the seminiferous tubule wall and affects the propulsion of the tubular contents to the rete testis.

  5. Electrochemical forces for chloride transport in the proximal tubules of the rat kidney.

    PubMed

    Sohtell, M

    1978-08-01

    The electrochemical forces for chloride transport in the proximal tubule of the rat kidney were studied using micropuncture techniques. Electrical transmembrane potentials were recorded in randomly punctured tubules with Ling-Gerhard electrodes. Chloride activities in the luminal, cellular and interstitial compartments were measured with ion selective micro-electrodes. Electrical potential measurements between cell to interstitium and lumen to interstitium were -72.1 +/- 2.6 mV and +0.5 +/- 1.4 mV (mean +/- S.D.) respectively. The calculated chloride concentrations for lumen, cell and interstitium were 133.0 +/- 10.3 mM, 8.5 +/- 1.0 mM and 99.1 +/- 3.2 mM (mean +/- S.D.) respectively. The net electrochemical forces, qualitatively, offer a passive chloride ion pathway through the tubular wall and a chloride equilibrium over the luminal membrane seems to exist.

  6. Immortalization of canine adipose-derived mesenchymal stem cells and their seminiferous tubule transplantation.

    PubMed

    Fang, Jia; Wei, Yudong; Teng, Xin; Zhao, Shanting; Hua, Jinlian

    2018-04-01

    Adipose-derived mesenchymal stem cells (ADSCs) are proven to provide good effects in numerous tissue engineering application and other cell-based therapies. However, the difficulty in the proliferation of ADSCs, known as the "Hayflick limit" in vitro, limits their clinical application. Here, we immortalized canine ADSCs (cADSCs) with SV40 gene and transplanted them into busulfan-induced seminiferous tubules of infertile mice. The proliferation of these immortalized cells was improved significantly. Then, cellular differentiation assays showed that the immortalized cADSCs could differentiate into three-germ-layer cells, osteogenesis, chondrogenesis, adipogenesis phenotypes, and primordial germ cell-like cells (PGCLCs). In addition, the immortalized cADSCs can proliferate in the busulfan-induced seminiferous tubules of infertile mice. These findings confirmed that the immortalized cADSCs maintain the criteria of cADSCs. © 2017 Wiley Periodicals, Inc.

  7. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition

    PubMed Central

    Vallon, Volker; Edwards, Aurélie

    2015-01-01

    The objective of this study was to investigate how physiological, pharmacological, and pathological conditions that alter sodium reabsorption (TNa) in the proximal tubule affect oxygen consumption (QO2) and Na+ transport efficiency (TNa/QO2). To do so, we expanded a mathematical model of solute transport in the proximal tubule of the rat kidney. The model represents compliant S1, S2, and S3 segments and accounts for their specific apical and basolateral transporters. Sodium is reabsorbed transcellularly, via apical Na+/H+ exchangers (NHE) and Na+-glucose (SGLT) cotransporters, and paracellularly. Our results suggest that TNa/QO2 is 80% higher in S3 than in S1–S2 segments, due to the greater contribution of the passive paracellular pathway to TNa in the former segment. Inhibition of NHE or Na-K-ATPase reduced TNa and QO2, as well as Na+ transport efficiency. SGLT2 inhibition also reduced proximal tubular TNa but increased QO2; these effects were relatively more pronounced in the S3 vs. the S1–S2 segments. Diabetes increased TNa and QO2 and reduced TNa/QO2, owing mostly to hyperfiltration. Since SGLT2 inhibition lowers diabetic hyperfiltration, the net effect on TNa, QO2, and Na+ transport efficiency in the proximal tubule will largely depend on the individual extent to which glomerular filtration rate is lowered. PMID:25855513

  8. Primary proximal tubule injury leads to epithelial cell cycle arrest, fibrosis, vascular rarefaction, and glomerulosclerosis

    PubMed Central

    Bonventre, Joseph V

    2014-01-01

    Tubular injury has a major etiological role in fibrosis. For many years, this relationship has been dominated by the perception that epithelial cells are transformed into myofibroblasts that proliferate and generate fibrotic matrix—the so-called epithelial-to-mesenchymal transition. Here we focus on mechanisms by which injury to the tubule results in fibrosis because of paracrine mechanisms. Specific injury to the proximal tubule results in inflammation, reversible injury, and adaptive repair if the insult is mild, self-limited in time, and occurs in a background of a normal kidney. Repeated injury, in contrast, leads to maladaptive repair with sustained tubule injury, chronic inflammation, proliferation of interstitial myofibroblasts, vascular rarefaction, interstitial fibrosis, and glomerular sclerosis. During the maladaptive repair process after the renal insult, many tubular cells become arrested in the G2/M phase of the cell cycle. This results in activation of the DNA repair response with the resultant synthesis and secretion of pro-fibrotic factors. Pharmacologic interventions that enhance the movement through G2/M or facilitate apoptosis of cells that otherwise would be blocked in G2/M may reduce the development of fibrosis after kidney injury and reduce the progression of chronic kidney disease. PMID:26310195

  9. Fabrication and characterization of dendrimer-functionalized nano-hydroxyapatite and its application in dentin tubule occlusion.

    PubMed

    Lin, Xuandong; Xie, Fangfang; Ma, Xueling; Hao, Yuhong; Qin, Hejia; Long, Jindong

    2017-06-01

    The occlusion of dentinal tubules is an effective method to alleviate the symptoms of dentin hypersensitivity. In this paper, we successfully modified nano-hydroxyapatite (n-HAP) with carboxyl-terminated polyamidoamine dendrimers by an aqueous-based chemical method and verified by fourier transform infrared spectroscopy (FTIR) and transmission electron microscope (TEM). Then the demineralization dentin discs were randomly divided into 4 groups, corresponding to subsequent brushing experiments: deionized water and kept in artificial saliva (AS), dendrimer-functionalized n-HAP and stored in AS, n-HAP and saved in AS, dendrimer-functionalized n-HAP and stored in deionized water. After 7 days of simulated brushing, dentin discs followed the in vitro characterization using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy and microhardness test. These data suggested that dendrimer-functionalized n-HAP could crosslink with collagen fibers and resulted in effective dentinal tubule occlusion. Moreover, the new material can induce the HAP formation with the help of superficial carboxyl and fill the spaces in dentinal tubules furtherly. The microhardness of dendrimer-functionalized n-HAP-treated specimens was significantly higher than others. In summary, dendrimer-functionalized n-HAP can be a new therapeutic material for the treatment of dentin hypersensitivity.

  10. In vivo study of transepithelial potential difference (TEPD) in proximal convoluted tubules of rat kidney by synchronization modulation electric field.

    PubMed

    Clausell, Mathis; Fang, Zhihui; Chen, Wei

    2014-07-01

    Synchronization modulation (SM) electric field has been shown to effectively activate function of Na(+)/K(+) pumps in various cells and tissues, including skeletal muscle cells, cardiomyocyte, monolayer of cultured cell line, and peripheral blood vessels. We are now reporting the in vivo studies in application of the SM electric field to kidney of living rats. The field-induced changes in the transepithelial potential difference (TEPD) or the lumen potential from the proximal convoluted tubules were monitored. The results showed that a short time (20 s) application of the SM electric field can significantly increase the magnitude of TEPD from 1-2 mV to about 20 mV. The TEPD is an active potential representing the transport current of the Na/K pumps in epithelial wall of renal tubules. This study showed that SM electric field can increase TEPD by activation of the pump molecules. Considering renal tubules, many active transporters are driven by the Na(+) concentration gradient built by the Na(+)/K(+) pumps, activation of the pump functions and increase in the magnitude of TEPD imply that the SM electric field may improve reabsorption functions of the renal tubules.

  11. Ultrastructural characterization of the tau-immunoreactive tubules in the oligodendroglial perikarya and their inner loop processes in progressive supranuclear palsy.

    PubMed

    Arima, K; Nakamura, M; Sunohara, N; Ogawa, M; Anno, M; Izumiyama, Y; Hirai, S; Ikeda, K

    1997-06-01

    Coiled bodies and interfascicular threads are conspicuous white matter abnormalities of brains of patients with progressive supranuclear palsy (PSP). Both structures are argyrophilic and immunoreactive for the microtubule-binding protein tau. This report concerns the ultrastructural localization of interfascicular threads and their relationship to coiled bodies in five PSP patients. We showed for the first time that abnormal tubules with a 13- to 15-nm diameter and fuzzy outer contours were the common structures of coiled bodies in the oligodendroglial perikarya and of interfascicular threads. Moreover, the tubules were immunolabeled by anti-tau antibodies. The abnormal tau-positive tubules of interfascicular threads were located in the inner loop of the myelin sheath. Our study further indicated that the thread-like structures in the white matter comprised, at least in part, oligodendroglial processes, and that they were also present in gray matter. We consider that the formation of coiled bodies in the perikarya and of interfascicular threads represents a common cytoskeletal abnormality of the oligodendroglia of PSP patients. Moreover, even though the white matter alterations of PSP resemble those of corticobasal degeneration, there are certain ultrastructural differences in the abnormal oligodendroglial tubules of the two diseases.

  12. A Telomerase Immortalized Human Proximal Tubule Cell Line with a Truncation Mutation (Q4004X) in Polycystin-1

    PubMed Central

    Herbert, Brittney-Shea; Grimes, Brenda R.; Xu, Wei Min; Werner, Michael; Ward, Christopher; Rossetti, Sandro; Harris, Peter; Bello-Reuss, Elsa; Ward, Heather H.; Miller, Caroline; Gattone, Vincent H.; Phillips, Carrie L.; Wandinger-Ness, Angela; Bacallao, Robert L.

    2013-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is associated with a variety of cellular phenotypes in renal epithelial cells. Cystic epithelia are secretory as opposed to absorptive, have higher proliferation rates in cell culture and have some characteristics of epithelial to mesenchymal transitions [1], [2]. In this communication we describe a telomerase immortalized cell line that expresses proximal tubule markers and is derived from renal cysts of an ADPKD kidney. These cells have a single detectable truncating mutation (Q4004X) in polycystin-1. These cells make normal appearing but shorter cilia and fail to assemble polycystin-1 in the cilia, and less uncleaved polycystin-1 in membrane fractions. This cell line has been maintained in continuous passage for over 35 passages without going into senescence. Nephron segment specific markers suggest a proximal tubule origin for these cells and the cell line will be useful to study mechanistic details of cyst formation in proximal tubule cells. PMID:23383103

  13. Finite cell lines of turkey sperm storage tubule cells: ultrastructure and protein analysis

    USDA-ARS?s Scientific Manuscript database

    Cell lines of turkey sperm storage tubule (SST) epithelial cells were established. Turkey SSTs were dissected from freshly obtained uterovaginal junction (UVJ) tissue and placed in explants culture on various substrates and media. Primary cultures of SST epithelium only survived and grew from SST ex...

  14. Number and distribution of sperm-storage tubules in four strains of broiler breeders

    USDA-ARS?s Scientific Manuscript database

    Restricted to the utero-vaginal junction (UVJ) in the hen's oviduct are tubular invaginations of the surface epithelium collectively referred to as the sperm-storage tubules (SSTs). One would expect that a larger number of SSTs would be positively correlated with longer, sustained fertility. However...

  15. [Anatomy, physiology and clinical relevance of the connecting tubule].

    PubMed

    Miranda, N; Simeoni, M A; Ciriana, E; Panico, C; Cappello, E; Capasso, G B

    2009-01-01

    The cortical distal nephron is the site of fine regulation of salt and water excretion by peptide and mineralocorticoid hormones and the site for specific actions of diuretics. Some data suggest that sodium reabsorption and potassium secretion in the distal convoluted tubule and the connecting tubule (CNT) are sufficient to maintain the sodium and potassium balance, with little or no contribution of the collecting duct. The homeostatic role of the sodium and potassium transport systems in the collecting duct can be questioned, especially in conditions where dietary sodium intake is high and potassium intake is low compared with the physiological needs of the organism. The functional expression of epithelial sodium channels (ENaC) in the CNT is sufficient for furosemide-stimulated urinary acidification and identifies the CNT as a major segment in electrogenic urinary acidification. In the outer renal cortex, the CNT returns to the glomerular hilus and contacts the renal afferent arterioles (Af-Art). This morphology is compatible with a cross-talk between the CNT and Af-Art. This novel regulatory mechanism of the renal microcirculation may participate in the vasodilatation observed during high salt intake, perhaps by antagonizing tubuloglomerular feedback. In conclusion, the cortical distal nephron appears to be a complex site for several physiological mechanisms; it is mainly involved in salt and fluid homeostasis and in acid-base balance maintenance. Furthermore, the CNT segment appears to promote a CNT-Af-Art feedback loop.

  16. Podocyturia parallels proximal tubule dysfunction in type 2 diabetes mellitus patients independently of albuminuria and renal function decline: A cross-sectional study.

    PubMed

    Petrica, Ligia; Vlad, Mihaela; Vlad, Adrian; Gluhovschi, Gheorghe; Gadalean, Florica; Dumitrascu, Victor; Popescu, Roxana; Gluhovschi, Cristina; Matusz, Petru; Velciov, Silvia; Bob, Flaviu; Ursoniu, Sorin; Vlad, Daliborca

    2017-09-01

    Detection of podocytes in the urine of patients with type 2 diabetes may indicate severe injury to the podocytes. In the course of type 2 diabetes the proximal tubule is involved in urinary albumin processing. We studied the significance of podocyturia in relation with proximal tubule dysfunction in type 2 diabetes. A total of 86 patients with type 2 diabetes (34-normoalbuminuria; 30-microalbuminuria; 22-macroalbuminuria) and 28 healthy subjects were enrolled in the study and assessed concerning urinary podocytes, podocyte-associated molecules, and biomarkers of proximal tubule dysfunction. Urinary podocytes were examined in cell cultures by utilizing monoclonal antibodies against podocalyxin and synaptopodin. Podocytes were detected in the urine of 10% of the healthy controls, 24% of the normoalbuminuric, 40% of the microalbuminuric, and 82% of the macroalbuminuric patients. In multivariate logistic regression analysis, urinary podocytes correlated with urinary albumin:creatinine ratio (p=0.006), urinary nephrin/creat (p=0.001), urinary vascular endothelial growth factor/creat (p=0.001), urinary kidney injury molecule-1/creat (p=0.003), cystatin C (p=0.001), urinary advanced glycation end-products (p=0.002), eGFR (p=0.001). In patients with type 2 diabetes podocyturia parallels proximal tubule dysfunction independently of albuminuria and renal function decline. Advanced glycation end-products may impact the podocytes and the proximal tubule. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A 2D model of axial symmetry for proximal tubule of an average human nephron: indicative results of diffusion, convection and absorption processes

    NASA Astrophysics Data System (ADS)

    Insfrán, J. F.; Ubal, S.; Di Paolo, y. J.

    2016-04-01

    A simplified model of a proximal convoluted tubule of an average human nephron is presented. The model considers the 2D axisymmetric flow of the luminal solution exchanging matter with the tubule walls and the peritubular fluid by means of 0D models for the epithelial cells. The tubule radius is considered to vary along the conduit due to the trans-epithelial pressure difference. The fate of more than ten typical solutes is tracked down by the model. The Navier-Stokes and Reaction-Diffusion-Advection equations (considering the electro-neutrality principle) are solved in the lumen, giving a detailed picture of the velocity, pressure and concentration fields, along with trans-membrane fluxes and tubule deformation, via coupling with the 0D model for the tubule wall. The calculations are carried out numerically by means of the finite element method. The results obtained show good agreement with those published by other authors using models that ignore the diffusive transport and disregard a detailed calculation of velocity, pressure and concentrations. This work should be seen as a first approach towards the development of a more comprehensive model of the filtration process taking place in the kidneys, which ultimately helps in devising a device that can mimic/complement the renal function.

  18. The proximal straight tubule (PST) basolateral cell membrane water channel: selectivity characteristics.

    PubMed

    Gutiérrez, A M; González, E; Echevarría, M; Hernández, C S; Whittembury, G

    1995-02-01

    Proximal straight tubules (PST) were dissected from rabbit kidneys, held by crimping pipettes in a chamber and bathed in a buffered isosmotic (295 mOsm/kg) solution containing 200 mM mannitol (MBS). Changes in tubule diameter were monitored on line with an inverted microscope, TV camera and image processor. The PST were then challenged for 20 sec with MBS made 35 mOsm/kg hyperosmotic by addition of either NaCl, KCl, mannitol (M), glycerol (G), ethylene glycol (E), glycine (g), urea (U), acetamide (A) or formamide (F). With NaCl, KCl, M, G, E, g, U, and A, tubules shrunk osmometrically within 0.5 sec and remained shrunk for as long as 20 sec without recovering their original volume (sometimes A showed some recovery). PST barely shrunk with F and quickly recovered their original volume. The permeability coefficients were 0 microns/sec (NaCl, M, g, E and U), 1 micron/sec (A), 84 microns/sec (F) and 0.02 micron/sec (G). The reflection coefficients sigma = 1.0 (NaCl, KCl, M, G, E, g and U), 0.95 (A) and 0.62 (F). Similar sigma values were obtained by substituting 200 mOsm/kg M in MBS by either NaCl, KCl, G, E, g, U, a or F. The olive oil/water partition coefficients are 5 (M), 15 (U), 85 (A) and 75 (F) (all x 10(-5)). Thus, part of F permeates the cell membrane through the lipid bilayer. The probing molecules van der Waals diameters are 7.4 x 8.2 x 12.0 (M), 3.6 x 5.2 x 5.4 (U), 3.8 x 5.2 x 5.4 (A) and (3.4 x 4.5 x 5.4 (F) A.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. The Leptospira outer membrane protein LipL32 induces tubulointerstitial nephritis-mediated gene expression in mouse proximal tubule cells.

    PubMed

    Yang, Chih-Wei; Wu, Mai-Szu; Pan, Ming-Jeng; Hsieh, Wang-Ju; Vandewalle, Alain; Huang, Chiu-Ching

    2002-08-01

    Tubulointerstitial nephritis is a main renal manifestation caused by pathogenic leptospira that accumulate mostly in the proximal tubules, thereby inducing tubular injury and tubulointerstitial nephritis. To elucidate the role of leptospira outer membrane proteins in tubulointerstitial nephritis, outer membrane proteins from pathogenic Leptospira shermani and nonpathogenic Leptospira patoc extracted by Triton X-114 were administered to cultured mouse proximal tubule cells. A dose-dependent increase of monocyte chemoattractant protein-1 (MCP-1), RANTES, nitrite, and tumor necrosis factor-alpha (TNF-alpha) in the culture supernatant was observed 48 h after incubating Leptospira shermani outer membrane proteins with mouse proximal tubule cells. RT competitive-PCR experiments showed that Leptospira shermani outer membrane proteins (0.2 microg/ml) increased the expression of MCP-1, nitric oxide synthase (iNOS), RANTES, and TNF-alpha mRNA by 3.0-, 9.4-, 2.5-, and 2.5-fold, respectively, when compared with untreated cells. Outer membrane proteins extract from avirulent Leptospira patoc did not induce significant effects. The pathogenic outer membrane proteins extract contain a major component of a 32-kD lipoprotein (LipL32), which is absent in the nonpathogenic leptospira outer membrane. An antibody raised against LipL32 prevented the stimulatory effect of Leptospira shermani outer membrane proteins extract on MCP-1 and iNOS mRNA expression in cultured proximal tubule cells, whereas recombinant LipL32 significantly stimulated the expression of MCP-1 and iNOS mRNAs and augmented nuclear binding of nuclear factor-kappaB (NF-kappaB) and AP-1 transcription factors in proximal tubule cells. An antibody raised against LipL32 also blunted the effects induced by the recombinant LipL32. This study demonstrates that LipL32 is a major component of pathogenic leptospira outer membrane proteins involved in the pathogenesis of tubulointerstitial nephritis.

  20. Functional similarities between pleura and the renal proximal tubule--membrane and cellular considerations.

    PubMed

    Gourgoulianis, Konstantinos I; Hatzoglou, Chryssi; Molyvdas, Paschalis-Adam

    2005-01-01

    The small amount of liquid that, under physiological conditions, is presented in the pleural cavity has been the focus of extensive research for more than a century. However, there are still unanswered questions and considerable controversies about the nature of the forces governing its movement into and out of the pleural cavity. Early in the 20th century has been proposed that pleural fluid turnover is simple based on the balance between hydraulic and colloid osmotic pressures existing across the pleural membranes. This original hypothesis has not been validated by data accumulating over the last 20 years. Pleural tissues and renal proximal tubules present high water permeability, small transepithelial electrical resistance (22.02 Omega cm2) and the same cation transportation such as Na+ channels, Na+-K+ ATPase channels, and Na+-H+ exchanger. In contrast to previous conflicting theories concerning pleura fluid movement, the same functional characteristics suggest the hypothesis that physiology of pleura is similar to proximal tubules.

  1. The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance

    PubMed Central

    MacMillan, Heath A.; Andersen, Jonas L.; Davies, Shireen A.; Overgaard, Johannes

    2015-01-01

    Many insects, including Drosophila, succumb to the physiological effects of chilling at temperatures well above those causing freezing. Low temperature causes a loss of extracellular ion and water homeostasis in such insects, and chill injuries accumulate. Using an integrative and comparative approach, we examined the role of ion and water balance in insect chilling susceptibility/ tolerance. The Malpighian tubules (MT), of chill susceptible Drosophila species lost [Na+] and [K+] selectivity at low temperatures, which contributed to a loss of Na+ and water balance and a deleterious increase in extracellular [K+]. By contrast, the tubules of chill tolerant Drosophila species maintained their MT ion selectivity, maintained stable extracellular ion concentrations, and thereby avoided injury. The most tolerant species were able to modulate ion balance while in a cold-induced coma and this ongoing physiological acclimation process allowed some individuals of the tolerant species to recover from chill coma during low temperature exposure. Accordingly, differences in the ability to maintain homeostatic control of water and ion balance at low temperature may explain large parts of the wide intra- and interspecific variation in insect chilling tolerance. PMID:26678786

  2. Proximal tubule-dominant transfer of AT(1a) receptors induces blood pressure responses to intracellular angiotensin II in AT(1a) receptor-deficient mice.

    PubMed

    Li, Xiao C; Zhuo, Jia L

    2013-04-15

    The role of intracellular ANG II in proximal tubules of the kidney remains poorly understood. We tested the hypothesis that proximal tubule-dominant transfer of AT(1a) receptors in the cortex mediates intracellular ANG II-induced blood pressure responses in AT(1a) receptor-deficient (Agtr1a-/-) mice. A GFP-tagged AT(1a) receptor, AT(1a)R/GFP, and an enhanced cyan fluorescent intracellular ANG II fusion protein, ECFP/ANG II, were expressed in proximal tubules of Agtr1a-/- mouse kidneys via the adenoviral transfer using a sodium and glucose cotransporter 2 promoter. Transfer of AT(1a)R/GFP alone or with ECFP/ANG II induced proximal tubule-dominant expression of AT(1a)R/GFP and/or ECFP/ANG II with a peak response at 2 wk. No significant AT(1a)R/GFP and/or ECFP/ANG II expression was observed in the glomeruli, medulla, or extrarenal tissues. Transfer of AT(1a)R/GFP alone, but not ECFP/ANG II, increased systolic blood pressure by 12 ± 2 mmHg by day 14 (n = 9, P < 0.01). However, cotransfer of AT(1a)R/GFP with ECFP/ANG II increased blood pressure by 18 ± 2 mmHg (n = 12, P < 0.01). Twenty-four hour urinary sodium excretion was decreased by day 7 with proximal tubule-dominant transfer of AT(1a)R/GFP alone (P < 0.01) or with AT(1a)R/GFP and ECFP/ANG II cotransfer (P < 0.01). These responses were associated with twofold increases in phosphorylated ERK1/2, lysate, and membrane NHE-3 proteins in freshly isolated proximal tubules (P < 0.01). By contrast, transfer of control CMV-GFP (a recombinant human adenovirus type 5 expresses enhanced green fluorescent protein under the control of a cytomegalovirus (CMV) promoter), ECFP/ANG II, or a scrambled control ECFP/ANG IIc alone in proximal tubules had no effect on all indices. These results suggest that AT(1a) receptors and intracellular ANG II in proximal tubules of the kidney play an important physiological role in blood pressure regulation.

  3. Comparative Evaluation of Efficacy of Iontophoresis with 0.33% Sodium Fluoride Gel and Diode Laser Alone on Occlusion of Dentinal Tubules.

    PubMed

    Patil, Anup Raghunath; Varma, Siddhartha; Suragimath, Girish; Abbayya, Keshava; Zope, Sameer Anil; Kale, Vishwajeet

    2017-08-01

    Dentinal Hypersensitivity (DH) is one of the most commonly encountered clinical problems. Literature reveals no specific therapy to satisfactorily eliminate dentinal hypersensitivity. The aim of this study was to assess and compare the efficacy of iontophoresis with 0.33% Sodium Fluoride (NaF) gel and diode laser alone in dentinal tubule occlusion. This in vitro study included 20 teeth with intact root surfaces unaltered by extraction procedure for specimen preparation. Each tooth was cleaned, air dried and cut into three sections. Total 60 sections were prepared (30 longitudinal and 30 transverse sections), which were acid etched. In control group, no treatment was carried. In iontophoresis treatment group, samples were inserted into a foam tray containing 0.33 % NaF Gel and subjected to 1.5 mA output current for three minutes. In laser treatment group, specimens were lased with 980 nm diode laser at 0.5 W/PW (62.2J /cm 2 ) in a noncontact mode for 30 seconds. Specimens were evaluated under Scanning Electron Microscope (SEM) at 10KV to 20KV under x 2000, x5000 magnification for surface characteristics and patency of dentinal tubules. Total number of tubules visible, open, completely and partially occluded were recorded in each microphotograph and compared. On comparison, laser group showed the least number of open tubules i.e., 130 (31.1%) followed by iontophoresis group, 155 (51.32%) and control group 417 (100%). Diode laser application provided better results as compared to iontophoresis on occlusion of dentinal tubules. Hence, it can be used to treat the patients with DH.

  4. Serum-free culture of rat proximal tubule cells with enhanced function on chitosan.

    PubMed

    Chang, Shao-Hsuan; Chiang, I-Ni; Chen, Yi-Hsin; Young, Tai-Horng

    2013-11-01

    The proximal tubule performs a variety of important renal functions and is the major site for nutrient reabsorption. The purpose of this study is to culture rat renal proximal tubule cells (PTCs) on chitosan without serum to maintain a transcellular pathway to transport water and ions effectively without loss of highly differentiated cell function. The effect of chitosan, which is structurally similar to glycosaminoglycans, in the absence of serum on the primary cultured PTCs was compared that of collagen with or without serum. Two days after seeding, more tubule fragments and higher PTC viability were observed on chitosan than on collagen with or without serum. Proliferation marker Ki-67 immunostaining and phosphorylated extracellular-regulated kinase (ERK) expression results displayed similar proliferation capability of PTCs established on chitosan without serum and collagen with 2% fetal bovine serum after 4 days of incubation. When grown to confluence, PTCs formed a monolayer with well-organized tight junctions and formation of domes on chitosan without serum. Moreover, evaluation of the transepithelial electrical resistance showed that both chitosan and serum were involved in the modification of water and ion transport in confluent cells. By showing the direct suppression of PTC growth and dome formation treated with heparinase, we demonstrated that the interaction between cell surface heparin sulfate proteoglycan and chitosan played an important role in PTC proliferation and differentiation. A successful primary culture of PTCs has now been produced on chitosan in serum-free culture condition, which offers potential applications for chitosan in renal tissue engineering. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Changes in deciduous and permanent dentinal tubules diameter after several conditioning protocols: In vitro study.

    PubMed

    de Los Angeles Moyaho-Bernal, María; Contreras-Bulnes, Rosalía; Rodríguez-Vilchis, Laura Emma; Rubio-Rosas, Efraín

    2018-05-08

    Innovators conditioning protocols are emerged in permanent dentin, however for deciduous dentin the information is limited; the aim of this study was to evaluate in vitro diameter of deciduous and permanent dentinal tubules after several conditioning protocols. Eighty dentin samples were distributed in sixteen groups (n = 5 p/g) and dentin surface was conditioned as follow: G1D/G1P acid etching; G2D/G2P, self-etch adhesive; G3D/G3P, G4D/G4P, Er: YAG laser irradiation at 200 mJ-25.5 J/cm 2 and 300 mJ-38.2 J/cm 2 , at 10 Hz under water spray respectively; G5D/G5P, G6D/G6P, G7D/G7P, and G8D/G8P were irradiated under the same energy densities followed phosphoric acid or self-etch adhesive conditioning. The sample dentin of deciduous and permanent teeth was analyzed with scanning electron microscopy and tubule diameter was evaluated by Image Tools Scandium program. Data were subjected to one-way analysis ANOVA to compare among groups with a level of significance at p ≤ .05. For deciduous dentin, diameters were from 1.52 ± 0.32 µm in G3D to 3.88 ± 0.37 µm in G1D; narrowest and widest diameter, respectively (p < .000). While permanent dentin tubules exhibited diameters from 1.16 ± 0.16/1.19 ± 0.12 µm in G7P/G8P to 2.76 ± 0.28 µm in G6P; narrowest and widest diameter, respectively (p < .000). All dentin conditioning protocols produced more open dentin tubules (diameter size) in deciduous dentin than permanent, specific conditioning protocols are required for each tissue (deciduous or permanent dentin), since same protocol produced stronger effects on primary dentin, which is important for dental clinical success in children and adolescents. © 2018 Wiley Periodicals, Inc.

  6. Somatic and germinal cells' interrelationship in the course of seminiferous tubule maturation in man.

    PubMed

    Kula, K; Romer, T E; Wlodarczyk, W P

    1980-02-01

    Certain successive phases of seminiferous tubule maturation were observed in a transsection of a Leydig cell adenoma-bearing testis of a boy with precocious puberty. Massively accumulated Leydig cells may stimulate the maturation of Sertoli cells, as indicated by progressive replacement of Sertoli cell precursors by mature Sertoli cells at a distance closer to the adenoma. On the other hand, tubules less advanced in maturation contained a higher number of somatic cells than those more advanced in maturation. Leydig-cell-dependent maturation of Sertoli cells may be in competition with Certoli cell multiplication, or numerous undifferentiated somatic cells may undergo a natural elimination in the course of tubular maturation. An inverse relation between the number of Sertoli cell precursors and the number of meiotic spermatocytes suggests that quantitative reduction of Sertoli cell precursors may be important for the intratubular milieu necessary for the onset of the first meiosis in man.

  7. NMR-based urine analysis in rats: prediction of proximal tubule kidney toxicity and phospholipidosis.

    PubMed

    Lienemann, Kai; Plötz, Thomas; Pestel, Sabine

    2008-01-01

    The aim of safety pharmacology is early detection of compound-induced side-effects. NMR-based urine analysis followed by multivariate data analysis (metabonomics) identifies efficiently differences between toxic and non-toxic compounds; but in most cases multiple administrations of the test compound are necessary. We tested the feasibility of detecting proximal tubule kidney toxicity and phospholipidosis with metabonomics techniques after single compound administration as an early safety pharmacology approach. Rats were treated orally, intravenously, inhalatively or intraperitoneally with different test compounds. Urine was collected at 0-8 h and 8-24 h after compound administration, and (1)H NMR-patterns were recorded from the samples. Variation of post-processing and feature extraction methods led to different views on the data. Support Vector Machines were trained on these different data sets and then aggregated as experts in an Ensemble. Finally, validity was monitored with a cross-validation study using a training, validation, and test data set. Proximal tubule kidney toxicity could be predicted with reasonable total classification accuracy (85%), specificity (88%) and sensitivity (78%). In comparison to alternative histological studies, results were obtained quicker, compound need was reduced, and very importantly fewer animals were needed. In contrast, the induction of phospholipidosis by the test compounds could not be predicted using NMR-based urine analysis or the previously published biomarker PAG. NMR-based urine analysis was shown to effectively predict proximal tubule kidney toxicity after single compound administration in rats. Thus, this experimental design allows early detection of toxicity risks with relatively low amounts of compound in a reasonably short period of time.

  8. Efficacy of 4 Irrigation Protocols in Killing Bacteria Colonized in Dentinal Tubules Examined by a Novel Confocal Laser Scanning Microscope Analysis

    PubMed Central

    Azim, Adham A.; Aksel, Hacer; Zhuang, Tingting; Mashtare, Terry; Babu, Jegdish P.; Huang, George T.-J.

    2016-01-01

    Introduction The aim of this study was to determine the efficiency of 4 irrigation systems in eliminating bacteria in root canals, particularly in dentinal tubules. Methods Roots of human teeth were prepared to 25/04, autoclaved, and inoculated with Enterococcus faecalis for 3 weeks. Canals were then disinfected by (1) standard needle irrigation, (2) sonically agitating with EndoActivator, (3) XP Endo finisher, or (4) erbium:yttrium aluminum garnet laser (PIPS) (15 roots/group). The bacterial reduction in the canal was determined by MTT assays. For measuring live versus dead bacteria in the dentinal tubules (4 teeth/group), teeth were split open and stained with LIVE/DEAD BackLight. Coronal, middle, and apical thirds of the canal dentin were scanned by using a confocal laser scanning microscope (CLSM) to determine the ratio of dead/total bacteria in the dentinal tubules at various depths. Results All 4 irrigation protocols significantly eliminated bacteria in the canal, ranging from 89.6% to 98.2% reduction (P < .001). XP Endo had the greatest bacterial reduction compared with other 3 techniques (P < .05). CLSM analysis showed that XP Endo had the highest level of dead bacteria in the coronal, middle, and apical segments at 50-μm depth. On the other hand, PIPS had the greatest bacterial killing efficiency at the 150-μm depth in all 3 root segments. Conclusions XP Endo appears to be more efficient than other 3 techniques in disinfecting the main canal space and up to 50 μm deep into the dentinal tubules. PIPS appears to be most effective in killing the bacteria deep in the dentinal tubules. PMID:27130334

  9. Comparative Evaluation of Efficacy of Iontophoresis with 0.33% Sodium Fluoride Gel and Diode Laser Alone on Occlusion of Dentinal Tubules

    PubMed Central

    Varma, Siddhartha; Suragimath, Girish; Abbayya, Keshava; Zope, Sameer Anil; Kale, Vishwajeet

    2017-01-01

    Introduction Dentinal Hypersensitivity (DH) is one of the most commonly encountered clinical problems. Literature reveals no specific therapy to satisfactorily eliminate dentinal hypersensitivity. Aim The aim of this study was to assess and compare the efficacy of iontophoresis with 0.33% Sodium Fluoride (NaF) gel and diode laser alone in dentinal tubule occlusion. Materials and Methods This in vitro study included 20 teeth with intact root surfaces unaltered by extraction procedure for specimen preparation. Each tooth was cleaned, air dried and cut into three sections. Total 60 sections were prepared (30 longitudinal and 30 transverse sections), which were acid etched. In control group, no treatment was carried. In iontophoresis treatment group, samples were inserted into a foam tray containing 0.33 % NaF Gel and subjected to 1.5 mA output current for three minutes. In laser treatment group, specimens were lased with 980 nm diode laser at 0.5 W/PW (62.2J /cm2) in a noncontact mode for 30 seconds. Specimens were evaluated under Scanning Electron Microscope (SEM) at 10KV to 20KV under x 2000, x5000 magnification for surface characteristics and patency of dentinal tubules. Total number of tubules visible, open, completely and partially occluded were recorded in each microphotograph and compared. Results On comparison, laser group showed the least number of open tubules i.e., 130 (31.1%) followed by iontophoresis group, 155 (51.32%) and control group 417 (100%). Conclusion Diode laser application provided better results as compared to iontophoresis on occlusion of dentinal tubules. Hence, it can be used to treat the patients with DH. PMID:28969290

  10. Biogenesis of zinc storage granules in Drosophila melanogaster.

    PubMed

    Tejeda-Guzmán, Carlos; Rosas-Arellano, Abraham; Kroll, Thomas; Webb, Samuel M; Barajas-Aceves, Martha; Osorio, Beatriz; Missirlis, Fanis

    2018-03-19

    Membrane transporters and sequestration mechanisms concentrate metal ions differentially into discrete subcellular microenvironments for use in protein cofactors, signalling, storage or excretion. Here we identify zinc storage granules as the insect's major zinc reservoir in principal Malpighian tubule epithelial cells of Drosophila melanogaster The concerted action of Adaptor Protein-3, Rab32, HOPS and BLOC complexes as well as of the white-scarlet (ABCG2-like) and ZnT35C (ZnT2/ZnT3/ZnT8-like) transporters is required for zinc storage granule biogenesis. Due to lysosome-related organelle defects caused by mutations in the homologous human genes, patients with Hermansky-Pudlak syndrome may lack zinc granules in beta pancreatic cells, intestinal paneth cells and presynaptic vesicles of hippocampal mossy fibers. © 2018. Published by The Company of Biologists Ltd.

  11. The fruit fly Drosophila melanogaster as an innovative preclinical ADME model for solute carrier membrane transporters, with consequences for pharmacology and drug therapy.

    PubMed

    Wang, Yiwen; Moussian, Bernard; Schaeffeler, Elke; Schwab, Matthias; Nies, Anne T

    2018-06-08

    Solute carrier membrane transporters (SLCs) control cell exposure to small-molecule drugs, thereby contributing to drug efficacy and failure and/or adverse effects. Moreover, SLCs are genetically linked to various diseases. Hence, in-depth knowledge of SLC function is fundamental for a better understanding of disease pathophysiology and the drug development process. Given that the model organism Drosophila melanogaster (fruit fly) expresses SLCs, such as for the excretion of endogenous and toxic compounds by the hindgut and Malpighian tubules, equivalent to human intestine and kidney, this system appears to be a promising preclinical model to use to study human SLCs. Here, we systematically compare current knowledge of SLCs in Drosophila and humans and describe the Drosophila model as an innovative tool for drug development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. A Molecular Mechanism to Regulate Lysosome Motility for Lysosome Positioning and Tubulation

    PubMed Central

    Li, Xinran; Rydzewski, Nicholas; Hider, Ahmad; Zhang, Xiaoli; Yang, Junsheng; Wang, Wuyang; Gao, Qiong; Cheng, Xiping; Xu, Haoxing

    2016-01-01

    To mediate the degradation of bio-macromolecules, lysosomes must traffic towards cargo-carrying vesicles for subsequent membrane fusion or fission. Mutations of the lysosomal Ca2+ channel TRPML1 cause lysosome storage disease (LSD) characterized by disordered lysosomal membrane trafficking in cells. Here we show that TRPML1 activity is required to promote Ca2+-dependent centripetal movement of lysosomes towards the perinuclear region, where autophagosomes accumulate, upon autophagy induction. ALG-2, an EF-hand-containing protein, serves as a lysosomal Ca2+ sensor that associates physically with the minus-end directed dynactin-dynein motor, while PI(3,5)P2, a lysosome-localized phosphoinositide, acts upstream of TRPML1. Furthermore, the PI(3,5)P2-TRPML1-ALG-2-dynein signaling is necessary for lysosome tubulation and reformation. In contrast, the TRPML1 pathway is not required for the perinuclear accumulation of lysosomes observed in many LSDs, which is instead likely caused by secondary cholesterol accumulation that constitutively activates Rab7-RILP-dependent retrograde transport. Collectively, Ca2+ release from lysosomes provides an on-demand mechanism regulating lysosome motility, positioning, and tubulation. PMID:26950892

  13. The fine structure of the terminal segment of the bovine seminiferous tubule.

    PubMed

    Wrobel, K H; Sinowatz, F; Mademann, R

    1982-01-01

    The intratesticular excurrent duct system of the bull is composed of rete testis, tubuli recti, and the terminal segment of the seminiferous tubules. Each terminal segment is surrounded by a vascular plexus and may be subdivided into a transitional region, middle portion, and terminal plug. The modified supporting cells of the middle portion and the terminal plug no longer display the typical Sertoli-Sertoli junctions seen in the transitional region and the seminiferous tubule proper. In the region of the terminal plug a distinct central lumen is generally not observed: spermatozoa and tubular fluid must pass through an intricate system of communicating clefts between the apices of the closely attached modified supporting cells. Vacuoles in the supranuclear region of the cells in the middle portion indicate strong transepithelial fluid transport. In analogy to the epithelium of rete testis and tubuli recti, the supporting cells of the terminal segment are capable of phagocytosing spermatozoa. The vascular plexus investing the terminal segment serves a dual purpose: it is a regulatory device for fluid and sperm transport, as well as an area of increased diapedesis for white blood cells.

  14. Role of the Na+/H+ antiporter in rat proximal tubule bicarbonate absorption.

    PubMed Central

    Preisig, P A; Ives, H E; Cragoe, E J; Alpern, R J; Rector, F C

    1987-01-01

    Amiloride and the more potent amiloride analog, 5-(N-t-butyl) amiloride (t-butylamiloride), were used to examine the role of the Na+/H+ antiporter in bicarbonate absorption in the in vivo microperfused rat proximal convoluted tubule. Bicarbonate absorption was inhibited 29, 46, and 47% by 0.9 mM or 4.3 mM amiloride, or 1 mM t-butylamiloride, respectively. Sensitivity of the Na+/H+ antiporter to these compounds in vivo was examined using fluorescent measurements of intracellular pH with (2', 7')-bis(carboxyethyl)-(5,6)-carboxyfluorescein (BCECF). Amiloride and t-butylamiloride were shown to be as potent against the antiporter in vivo as in brush border membrane vesicles. A model of proximal tubule bicarbonate absorption was used to correct for changes in the luminal profiles for pH and inhibitor concentration, and for changes in luminal flow rate in the various series. We conclude that the majority of apical membrane proton secretion involved in transepithelial bicarbonate absorption is mediated by the Na+-dependent, amiloride-sensitive Na+H+ antiporter. However, a second mechanism of proton secretion contributes significantly to bicarbonate absorption. This mechanism is Na+-independent and amiloride-insensitive. PMID:2888788

  15. 50 Years of renal physiology from one man and the perfused tubule: Maurice B. Burg.

    PubMed

    Hamilton, Kirk L; Moore, Antoni B

    2016-08-01

    Technical advancements in research techniques in science are made in slow increments. Even so, large advances from insight and hard work of an individual with a single technique can have astonishing ramifications. Here, we examine the impact of Dr. Maurice B. Burg and the isolated perfused renal tubule technique and celebrate the 50th anniversary of the publication by Dr. Burg and his colleagues of their landmark paper in the American Journal of Physiology in 1966. In this study, we have taken a scientific visualization approach to study the scientific contributions of Dr. Burg and the isolated perfused tubule preparation as determining research impact by the number of research students, postdoctoral fellows, visiting scientists, and national and international collaborators. Additionally, we have examined the research collaborations (first and second generation scientists), established the migrational visualization of the first generation scientists who worked directly with Dr. Burg, quantified the metrics indices, identified and quantified the network of coauthorship of the first generation scientists with their second generation links, and determined the citations analyses of outputs of Dr. Burg and/or his first generation collaborators as coauthors. We also review the major advances in kidney physiology that have been made with the isolated perfused tubule technique. Finally, we are all waiting for the discoveries that the isolated perfused preparation technique will bring during the next 50 years. Copyright © 2016 the American Physiological Society.

  16. Effect and Stability of Poly(Amido Amine)-Induced Biomineralization on Dentinal Tubule Occlusion

    PubMed Central

    Gao, Yuan; Liang, Kunneng; Li, Jianshu; Yuan, He; Liu, Hongling; Duan, Xiaolei; Li, Jiyao

    2017-01-01

    In recent years, scientists have developed various biomaterials to remineralize human teeth to treat dentine hypersensitivity. Poly(amido amine) (PAMAM) dendrimers have become a research focus in this field. It has been demonstrated that PAMAM is able to create precipitates both on the surface of and within the dentinal tubules, however, there is little information about its effect on reducing dentine permeability in vitro. This study aimed to evaluate the in vitro effectiveness and stability of the fourth generation amine-terminated PAMAM on dentinal tubule occlusion, especially on dentine permeability. Sodium fluoride (NaF), which has been widely used as a desensitizing agent, is regarded as positive control. Demineralized sensitive dentine samples were coated with PAMAM or sodium fluoride solutions and soaked in artificial saliva (AS) at 37 °C for different periods. Four weeks later, samples in each group were then equally split into two subgroups for testing using a brushing challenge and an acid challenge. Dentine permeability of each specimen was measured before and after each challenge using a fluid filtration system. Dentine morphology and surface deposits were characterized by scanning electron microscope (SEM) and analyzed with Image-Pro Plus software. Data were evaluated through multifactorial ANOVA with repeated measures and pair-wise comparisons at a level of 5%. The results showed that PAMAM and NaF significantly reduced dentine permeability to 25.1% and 20.7%. Both of them created precipitates on dentine surfaces after AS immersion for 28 days. PAMAM-induced biomineralization not only on dentine surfaces, but also deeper in dentinal tubules, significantly reduced dentine permeability. Moreover, PAMAM-induced biomineralization elicited excellent stable occlusion effects after acid challenge. In conclusion, PAMAM demonstrated a strong ability to resist acid and showed great potential to be used in the treatment of dentine hypersensitivity in future

  17. cAMP-dependent chloride secretion mediates tubule enlargement and cyst formation by cultured mammalian collecting duct cells.

    PubMed

    Montesano, Roberto; Ghzili, Hafida; Carrozzino, Fabio; Rossier, Bernard C; Féraille, Eric

    2009-02-01

    Polycystic kidney diseases result from disruption of the genetically defined program that controls the size and geometry of renal tubules. Cysts which frequently arise from the collecting duct (CD) result from cell proliferation and fluid secretion. From mCCD(cl1) cells, a differentiated mouse CD cell line, we isolated a clonal subpopulation (mCCD-N21) that retains morphogenetic capacity. When grown in three-dimensional gels, mCCD-N21 cells formed highly organized tubular structures consisting of a palisade of polarized epithelial cells surrounding a cylindrical lumen. Subsequent addition of cAMP-elevating agents (forskolin or cholera toxin) or of membrane-permeable cAMP analogs (CPT-cAMP) resulted in rapid and progressive dilatation of existing tubules, leading to the formation of cystlike structures. When grown on filters, mCCD-N21 cells exhibited a high transepithelial resistance as well as aldosterone- and/or vasopressin-induced amiloride-sensitive and -insensitive current. The latter was in part inhibited by Na(+)-K(+)-2Cl(-) cotransporter (bumetanide) and chloride channel (NPPB) inhibitors. Real-time PCR analysis confirmed the expression of NKCC1, the ubiquitous Na(+)-K(+)-2Cl(-) cotransporter and cystic fibrosis transmembrane regulator (CFTR) in mCCD-N21 cells. Tubule enlargement and cyst formation were prevented by inhibitors of Na(+)-K(+)-2Cl(-) cotransporters (bumetanide or ethacrynic acid) or CFTR (NPPB or CFTR inhibitor-172). These results further support the notion that cAMP signaling plays a key role in renal cyst formation, at least in part by promoting chloride-driven fluid secretion. This new in vitro model of tubule-to-cyst conversion affords a unique opportunity for investigating the molecular mechanisms that govern the architecture of epithelial tubes, as well as for dissecting the pathophysiological processes underlying cystic kidney diseases.

  18. Genetic and cytogenetic analysis of the fruit fly Rhagoletis cerasi (Diptera: Tephritidae).

    PubMed

    Kounatidis, Ilias; Papadopoulos, Nikolaos; Bourtzis, Kostas; Mavragani-Tsipidou, Penelope

    2008-07-01

    The European cherry fruit fly, Rhagoletis cerasi, is a major agricultural pest for which biological, genetic, and cytogenetic information is limited. We report here a cytogenetic analysis of 4 natural Greek populations of R. cerasi, all of them infected with the endosymbiotic bacterium Wolbachia pipientis. The mitotic karyotype and detailed photographic maps of the salivary gland polytene chromosomes of this pest species are presented here. The mitotic metaphase complement consists of 6 pairs of chromosomes, including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the salivary gland polytene complement has shown a total of 5 long chromosomes (10 polytene arms) that correspond to the 5 autosomes of the mitotic nuclei and a heterochromatic mass corresponding to the sex chromosomes. The most prominent landmarks of each polytene chromosome, the "weak points", and the unusual asynapsis of homologous pairs of polytene chromosomes at certain regions of the polytene elements are also presented and discussed.

  19. Reconstruction of Mouse Testicular Cellular Microenvironments in Long-Term Seminiferous Tubule Culture

    PubMed Central

    Mäkelä, Juho-Antti; Toppari, Jorma; Rivero-Müller, Adolfo; Ventelä, Sami

    2014-01-01

    Research on spermatogonia is hampered by complex architecture of the seminiferous tubule, poor viability of testicular tissue ex vivo and lack of physiologically relevant long-term culture systems. Therefore there is a need for an in vitro model that would enable long term survival and propagation of spermatogonia. We aimed at the most simplified approach to enable all different cell types within the seminiferous tubules to contribute to the creation of a niche for spermatogonia. In the present study we describe the establishment of a co-culture of mouse testicular cells that is based on proliferative and migratory activity of seminiferous tubule cells and does not involve separation, purification or differential plating of individual cell populations. The co-culture is composed of the constituents of testicular stem cell niche: Sertoli cells [identified by expression of Wilm's tumour antigen 1 (WT1) and secretion of glial cell line-derived neurotrophic factor, GDNF], peritubular myoid cells (expressing alpha smooth muscle actin, αSMA) and spermatogonia [expressing MAGE-B4, PLZF (promyelocytic leukaemia zinc finger), LIN28, Gpr125 (G protein-coupled receptor 125), CD9, c-Kit and Nanog], and can be maintained for at least five weeks. GDNF was found in the medium at a sufficient concentration to support proliferating spermatogonial stem cells (SSCs) that were able to start spermatogenic differentiation after transplantation to an experimentally sterile recipient testis. Gdnf mRNA levels were elevated by follicle-stimulating hormone (FSH) which shows that the Sertoli cells in the co-culture respond to physiological stimuli. After approximately 2–4 weeks of culture a spontaneous formation of cord-like structures was monitored. These structures can be more than 10 mm in length and branch. They are formed by peritubular myoid cells, Sertoli cells, fibroblasts and spermatogonia as assessed by gene expression profiling. In conclusion, we have managed to establish in

  20. Renal proximal tubule function is preserved in Cftrtm2camΔF508 cystic fibrosis mice

    PubMed Central

    Kibble, J D; Balloch, K J D; Neal, A M; Hill, C; White, S; Robson, L; Green, R; Taylor, C J

    2001-01-01

    Changes in proximal tubule function have been reported in cystic fibrosis patients. The aim of this study was to investigate proximal tubule function in the Cftrtm2camΔF508 cystic fibrosis (CF) mouse model. A range of techniques were used including renal clearance studies, in situ microperfusion, RT-PCR and whole-cell patch clamping. Renal Na+ clearance was similar in wild-type (1.4 ± 0.3 μl min−1, number of animals, N= 12) and CF mice (1.6 ± 0.4 μl min−1, N= 7) under control conditions. Acute extracellular volume expansion resulted in significant natriuresis in wild-type (7.0 ± 0.8 μl min−1, N= 8) and CF mice (9.3 ± 1.4 μl min−1, N= 9); no difference between genotypes was observed. In situ microperfusion revealed that fluid absorptive rate (Jv) was similar under control conditions between wild-type (2.2 ± 0.4 nl mm−1 min−1, n= 10) and CF mice (1.9 ± 0.3 nl mm−1 min−1, n= 11). Addition of a forskolin-dibutyryl cAMP (db-cAMP) cocktail to the perfusate caused no significant change in Jv in either wild-type (2.6 ± 0.7 nl mm−1 min−1, n= 10) or Cftrtm2camΔF508 mice (2.0 ± 0.5 nl mm−1 min−1, n= 10). CFTR expression was confirmed in samples of outer cortex using RT-PCR. However, no evidence for functional CFTR was obtained when outer cortical cells were stimulated with protein kinase A or forskolin-db-cAMP using whole-cell patch clamping. In conclusion, no functional deficit in proximal tubule function was found in Cftrtm2camΔF508 mice. This may be a consequence of a lack of whole-cell cAMP-dependent Cl− conductance in mouse proximal tubule cells. PMID:11306663

  1. Immune changes during reproduction in sperm storage tubules of the domestic turkey Meleagris gallopavo

    USDA-ARS?s Scientific Manuscript database

    The storage of sperm in the female reproductive tract is a biological feature of numerous species including birds. The domestic turkey, Meleagris gallopavo, is unique among avian species in that sperm residing in the hen's sperm storage tubules (SST) retain fertilizing ability for up to 10 weeks af...

  2. In vitro remineralization of enamel subsurface lesions and assessment of dentine tubule occlusion from NaF dentifrices with and without calcium.

    PubMed

    Prabhakar, A R; Manojkumar, A Jaiswal; Basappa, N

    2013-01-01

    Currently, fluoride is the most effective preventive treatment for remineralization of incipient carious lesions and dentinal hypersensitivity due to wasting disorders. The products containing fluoride, calcium and phosphate are also claim to remineralize early, non-cavitated enamel demineralization. The aim of this study was to investigate and compare the efficacy of two such products, Tooth Mousse and Clinpro tooth crème on remineralization and tubule occluding ability with 5000ppm fluoride-containing toothpaste. Thirty third molar teeth were placed in demineralizing solution for 5 days such that only a window of 1mm x 5mm was exposed to the environment to produce artificial caries-like lesions and randomly assigned to three groups: Group I, 5000ppm sodium fluoride; Group II, GC MI paste plus and Group III, Clinpro tooth crème. Axial longitudinal sections of 140-160 μm of each tooth which included the artificial carious lesion taken and were photographed under polarized light microscope. The demineralized areas were then quantified with a computerized imaging system. The experimental materials were applied onto the tooth sections as a topical coating and subjected to pH-cycling for 28 days. To evaluate tubule occlusion ability, thirty dentin specimens of 2mm thickness were obtained from cervical third of sound third molars. Specimens were ultrasonicated and etched with 6% citric acid for 2 minutes to simulate the hypersensitive dentin. Specimens were randomly divided into above mentioned three groups (n=10). The test agents were brushed over the specimens with an electric toothbrush, prepared and observed under Scanning Electron Microscope for calculation of the percentage of occluded tubules. Group I showed a significantly greater percentage of remineralization than Group III and Group II. Comparison of the remineralization potential between group II and group III were not significant.In case of dentine hypersensitivity, Group I and group III showed greater

  3. Segmental sodium reabsorption by the renal tubule in prenatally programmed hypertension in the rat.

    PubMed

    Alwasel, Saleh H; Ashton, Nick

    2012-02-01

    Hypertension and renal dysfunction can be programmed in the rat by prenatal exposure to a low-protein (LP) diet. Expression of the renal thick ascending limb (TAL) sodium transporter NKCC2 is up-regulated, which has been predicted to result in greater sodium reabsorption. However, we have shown that LP rats excrete more not less sodium. The aim of this study was to determine whether the increased abundance of sodium:potassium:chloride (Na(+):K(+):2Cl(-)) co-transporter (NKCC2) leads to enhanced sodium uptake by the TAL. Pregnant Wistar rats were fed a control (18%) or LP (9%) diet. Amiloride (AM), bendroflumethiazide (BF), and furosemide (FUR) were administered acutely to male offspring at 4 weeks of age. Fractional excretion of sodium (FE(Na)) was significantly greater in vehicle-infused LP rats (3.0 ± 0.3%) compared with controls (1.7 ± 0.5, P < 0.01). FE(Na) by the LP proximal tubule did not differ from controls, whereas FE(Na) by the distal tubule was significantly greater (P < 0.01). These differences were abolished by the administration of AM + BF (equivalent to the outflow from the TAL) and AM + BF + FUR (equivalent to the outflow from the proximal tubule), suggesting that the increase in NKCC2 expression was not functional. However, during acute salt loading, the LP rat pressure natriuresis curve was shifted rightward, implying that raised systemic blood pressure is required to match urinary sodium excretion with dietary intake. These data suggest that renal sodium handling is impaired in the LP rat but that this is not due to increased NKCC2 expression.

  4. Epiphany sealer penetration into dentinal tubules: Confocal laser scanning microscopic study.

    PubMed

    Ravi, S V; Nageswar, Rao; Swapna, Honwad; Sreekant, Puthalath; Ranjith, Madhavan; Mahidhar, Surabhi

    2014-03-01

    The aim of the following study was to evaluate the percentage and average depth of epiphany sealer penetration into dentinal tubules among the coronal, middle and apical thirds of the root using the confocal laser scanning microscopy (CLSM). A total of 10 maxillary central incisors were prepared and obturated with Resilon-Epiphany system. Sealer was mixed with fluorescent rhodamine B isothiyocyanate dye for visibility under confocal microscope. Teeth were cross-sectioned into coronal, middle and apical sections-2 mm thick. Sections were observed under CLSM. Images were analyzed for percentage and average depth of sealer penetration into dentinal tubules using the lasso tool in Adobe Photoshop CS3 (Adobe systems incorporated, San jose, CA) and laser scanning microscopy (LSM 5) image analyzer. One-way analysis of variance with Student Neuman Keuls post hoc tests, Kruskal-Wallis test and Wilcoxon signed-rank post hoc tests. The results showed that a higher percentage of sealer penetration in coronal section-89.23%, followed by middle section-84.19% and the apical section-64.9%. Average depth of sealer penetration for coronal section was 526.02 μm, middle-385.26 μm and apical-193.49 μm. Study concluded that there was higher epiphany sealer penetration seen in coronal followed by middle and least at apical third of the roots.

  5. The cation transporters rOCT1 and rOCT2 interact with bicarbonate but play only a minor role for amantadine uptake into rat renal proximal tubules.

    PubMed

    Goralski, Kerry B; Lou, Ganlu; Prowse, Matthew T; Gorboulev, Valentin; Volk, Christopher; Koepsell, Hermann; Sitar, Daniel S

    2002-12-01

    In renal proximal tubules, the organic cation transporters rOCT1 and rOCT2 are supposed to mediate the first step in organic cation secretion. We investigated whether previously described differences in amantadine and tetraethylammonium (TEA) uptake into isolated renal proximal tubules could be explained by differences in their transport by rOCT1 and rOCT2. By expressing rOCT1 and rOCT2 in Xenopus oocytes and HEK 293 cells, we demonstrated that both transporters translocated amantadine. In Xenopus oocytes, the inhibitory potency of several rOCT1/2 inhibitors was similar for amantadine compared to TEA uptake and supports amantadine transport by rOCT1 and rOCT2. In proximal tubules, procainamide, quinine, cyanine(863), choline, and guanidine in concentrations that inhibit rOCT1/2-mediated TEA or amantadine uptake in Xenopus oocytes exhibited no effect on amantadine uptake. At variance, these inhibitors blocked TEA uptake into proximal tubules. Amantadine and TEA transport were sensitive to modulation by 25 mM bicarbonate. The effect of bicarbonate on organic cation transport was dependent on substrate (amantadine or TEA), cell system (oocytes, HEK 293 cells, or proximal tubules), and transporter (rOCT1 or rOCT2). In proximal tubules, only amantadine uptake was stimulated by bicarbonate. The data suggested that rat renal proximal tubules contain an organic cation transporter in addition to rOCT1 and rOCT2 that mediates amantadine uptake and requires bicarbonate for optimal function. TEA uptake by the basolateral membrane may be mediated mainly by rOCT1 and rOCT2, but these transporters may be in a different functional or regulatory state when expressed in cells or oocytes compared with expression in vivo.

  6. Equivalent complex conductivities representing the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by external-electrode method

    NASA Astrophysics Data System (ADS)

    Sekine, Katsuhisa

    2017-12-01

    In order to represent the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by the external-electrode method, analytical relations for the equivalent complex conductivities of hypothetical smooth surface membranes were derived. In the relations, the effects of each tubule were represented by the admittance of a straight cable. The effects of the folding of a surface membrane were represented by the increased area of surface membranes. The equivalent complex conductivities were represented as summation of these effects, and the effects of the T-tubules were different between the transversal and longitudinal directions. The validity of the equivalent complex conductivities was supported by the results of finite-difference method (FDM) calculations made using three-dimensional models in which T-tubules and folded surface membranes were represented explicitly. FDM calculations using the equivalent complex conductivities suggested that the electrically inhomogeneous structure due to the existence of muscle cells with T-tubules was sufficient for explaining the experimental results previously obtained using the external-electrode method. Results of FDM calculations in which the structural changes caused by muscle contractions were taken into account were consistent with the reported experimental results.

  7. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Senyan; Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, NY 12201; Yao, Yunyi

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity withmore » the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity.« less

  8. Partitioning-Defective 1a/b Depletion Impairs Glomerular and Proximal Tubule Development.

    PubMed

    Akchurin, Oleh; Du, Zhongfang; Ramkellawan, Nadira; Dalal, Vidhi; Han, Seung Hyeok; Pullman, James; Müsch, Anne; Susztak, Katalin; Reidy, Kimberly J

    2016-12-01

    The kidney is a highly polarized epithelial organ that develops from undifferentiated mesenchyme, although the mechanisms that regulate the development of renal epithelial polarity are incompletely understood. Partitioning-defective 1 (Par1) proteins have been implicated in cell polarity and epithelial morphogenesis; however, the role of these proteins in the developing kidney has not been established. Therefore, we studied the contribution of Par1a/b to renal epithelial development. We examined the renal phenotype of newborn compound mutant mice carrying only one allele of Par1a or Par1b. Loss of three out of four Par1a/b alleles resulted in severe renal hypoplasia, associated with impaired ureteric bud branching. Compared with kidneys of newborn control littermates, kidneys of newborn mutant mice exhibited dilated proximal tubules and immature glomeruli, and the renal proximal tubular epithelia lacked proper localization of adhesion complexes. Furthermore, Par1a/b mutants expressed low levels of renal Notch ligand Jag1, activated Notch2, and Notch effecter Hes1. Together, these data demonstrate that Par1a/b has a key role in glomerular and proximal tubule development, likely via modulation of Notch signaling. Copyright © 2016 by the American Society of Nephrology.

  9. Fluid reabsorption in proximal convoluted tubules of mice with gene deletions of claudin-2 and/or aquaporin1

    PubMed Central

    Huang, Yuning; Mizel, Diane

    2013-01-01

    Deletions of claudin-2 (Cldn2) and aquaporin1 (AQP1) reduce proximal fluid reabsorption (PFR) by about 30% and 50%, respectively. Experiments were done to replicate these observations and to determine in AQP1/claudin-2 double knockout mice (DKO) if the effects of deletions of these established water pores are additive. PFR was determined in inactin/ketamine-anesthetized mice by free-flow micropuncture using single-nephron I125-iothalamate (io) clearance. Animal means of PFR [% of glomerular filtration rate (GFR)] derived from TF/Piothalamate ratios in 12 mice in each of four groups [wild type (WT), Cldn2−/−, AQP1−/−, and DKO) were 45.8 ± 0.85 (51 tubules), 35.4 ± 1 (54 tubules; P < 0.01 vs. WT), 36.8 ± 1 (63 tubules; P < 0.05 vs. WT), and 33.9 ± 1.4 (69 tubules; P < 0.01 vs. WT). Kidney and single-nephron GFRs (SNGFR) were significantly reduced in all mutant strains. The direct relationship between PFR and SNGFR was maintained in mutant mice, but the slope of this relationship was reduced in the absence of Cldn2 and/or AQP1. Transtubular osmotic pressure differences were not different between WT and Cldn2−/− mice, but markedly increased in DKO. In conclusion, the deletion of Cldn2, AQP1, or of both Cldn2 and AQP1 reduces PFR by 22.7%, 19.6%, and 26%, respectively. Our data are consistent with an up to 25% paracellular contribution to PFR. The reduced osmotic water permeability caused by absence of AQP1 augments luminal hypotonicity. Aided by a fall in filtered load, the capacity of non-AQP1-dependent transcellular reabsorption is sufficient to maintain PFR without AQP1 and claudin-2 at 75% of control. PMID:24049145

  10. Mechanisms of Cadmium-Induced Proximal Tubule Injury: New Insights with Implications for Biomonitoring and Therapeutic Interventions

    PubMed Central

    Edwards, Joshua R.

    2012-01-01

    Cadmium is an important industrial agent and environmental pollutant that is a major cause of kidney disease. With chronic exposure, cadmium accumulates in the epithelial cells of the proximal tubule, resulting in a generalized reabsorptive dysfunction characterized by polyuria and low-molecular-weight proteinuria. The traditional view has been that as cadmium accumulates in proximal tubule cells, it produces a variety of relatively nonspecific toxic effects that result in the death of renal epithelial cells through necrotic or apoptotic mechanisms. However, a growing volume of evidence suggests that rather than merely being a consequence of cell death, the early stages of cadmium-induced proximal tubule injury may involve much more specific changes in cell-cell adhesion, cellular signaling pathways, and autophagic responses that occur well before the onset of necrosis or apoptosis. In this commentary, we summarize these recent findings, and we offer our own perspectives as to how they relate to the toxic actions of cadmium in the kidney. In addition, we highlight recent findings, suggesting that it may be possible to detect the early stages of cadmium toxicity through the use of improved biomarkers. Finally, some of the therapeutic implications of these findings will be considered. Because cadmium is, in many respects, a model cumulative nephrotoxicant, these insights may have broader implications regarding the general mechanisms through which a variety of drugs and toxic chemicals damage the kidney. PMID:22669569

  11. The Influence of Concentration and Temperature on the Formation of γ-Oryzanol + β-Sitosterol Tubules in Edible Oil Organogels

    PubMed Central

    Venema, Paul; Bot, Arjen; Flöter, Eckhard; van der Linden, Erik

    2010-01-01

    The gelation process of mixtures of γ-oryzanol and sitosterol structurants in sunflower oil was studied using light scattering, rheology, and micro-scanning calorimetry (Micro-DSC). The relation between temperature and the critical aggregation concentration (CAC) of tubule formation of γ-oryzanol and sitosterol was determined using these techniques. The temperature dependence of the CAC was used to estimate the binding energy and enthalpic and entropic contribution to the tubular formation process. The binding energy calculated at the corresponding temperatures and CACs were relatively low, in order of 2 RT (4.5 kJ mol−1), which is in accord with the reversibility of the tubular formation process. The formation of the tubules was associated with negative (exothermic) enthalpy change (ΔH0) compared with positive entropy term (−T ΔS0 >0), indicating that the aggregation into tubules is an enthalpy-driven process. The oryzanol–sitosterol ratio affected the aggregation process; solutions with ratio of (60 oryzanol–40 sitosterol) started aggregation at higher temperature compared with other ratios. PMID:21423326

  12. The Influence of Concentration and Temperature on the Formation of γ-Oryzanol + β-Sitosterol Tubules in Edible Oil Organogels.

    PubMed

    Sawalha, Hassan; Venema, Paul; Bot, Arjen; Flöter, Eckhard; van der Linden, Erik

    2011-03-01

    The gelation process of mixtures of γ-oryzanol and sitosterol structurants in sunflower oil was studied using light scattering, rheology, and micro-scanning calorimetry (Micro-DSC). The relation between temperature and the critical aggregation concentration (CAC) of tubule formation of γ-oryzanol and sitosterol was determined using these techniques. The temperature dependence of the CAC was used to estimate the binding energy and enthalpic and entropic contribution to the tubular formation process. The binding energy calculated at the corresponding temperatures and CACs were relatively low, in order of 2 RT (4.5 kJ mol(-1)), which is in accord with the reversibility of the tubular formation process. The formation of the tubules was associated with negative (exothermic) enthalpy change (ΔH(0)) compared with positive entropy term (-T ΔS(0) >0), indicating that the aggregation into tubules is an enthalpy-driven process. The oryzanol-sitosterol ratio affected the aggregation process; solutions with ratio of (60 oryzanol-40 sitosterol) started aggregation at higher temperature compared with other ratios.

  13. Nonequilibrium thermodynamic model of the rat proximal tubule epithelium.

    PubMed Central

    Weinstein, A M

    1983-01-01

    The rat proximal tubule epithelium is represented as well-stirred, compliant cellular and paracellular compartments bounded by mucosal and serosal bathing solutions. With a uniform pCO2 throughout the epithelium, the model variables include the concentrations of Na, K, Cl, HCO3, H2PO4, HPO4, and H, as well as hydrostatic pressure and electrical potential. Except for a metabolically driven Na-K exchanger at the basolateral cell membrane, all membrane transport within the epithelium is passive and is represented by the linear equations of nonequilibrium thermodynamics. In particular, this includes the cotransport of Na-Cl and Na-H2PO4 and countertransport of Na-H at the apical cell membrane. Experimental constraints on the choice of ionic conductivities are satisfied by allowing K-Cl cotransport at the basolateral membrane. The model equations include those for mass balance of the nonreacting species, as well as chemical equilibrium for the acidification reactions. Time-dependent terms are retained to permit the study of transient phenomena. In the steady state the energy dissipation is computed and verified equal to the sum of input from the Na-K exchanger plus the Gibbs free energy of mass addition to the system. The parameter dependence of coupled water transport is studied and shown to be consistent with the predictions of previous analytical models of the lateral intercellular space. Water transport in the presence of an end-proximal (HCO3-depleted) luminal solution is investigated. Here the lower permeability and higher reflection coefficient of HCO3 enhance net sodium and water transport. Due to enhanced flux across the tight junction, this process may permit proximal tubule Na transport to proceed with diminished energy dissipation. PMID:6652211

  14. Mutant p53 expression in kidney tubules adjacent to renal cell carcinoma: evidence of a precursor lesion.

    PubMed

    Lai, R; el Dabbagh, L; Mourad, W A

    1996-06-01

    Neoplastic transformation can be associated with mutations of the p53 gene. This leads to stabilization of its protein product and to its accumulation, which allows immunohistochemical detection. Mutant p53 expression has been seen in many neoplasms, including renal cell carcinoma (RCC). We recently described putative precursor lesions of RCC. The lesions were defined as intratubular epithelial dysplasia (IED) of kidney tubules adjacent to RCC. They were seen in one-third of the cases studied. The findings were based only on light microscopic analysis. We hypothesized that neoplastic transformation would be manifested by mutant p53 expression in the kidney tubules adjacent to RCC and not in nonneoplastic kidneys. Immunohistochemical staining for p53 in 24 cases of RCC with adjacent kidneys was performed. We used the DO-7 monoclonal antibody reactive for the N-terminal of the p53 protein on formalin-fixed paraffin-embedded tissue. Sections from 14 kidneys resected for nonneoplastic conditions were used as controls. Twenty-one (87%) of the 24 cases of RCC had nuclear p53 expression in the tumor cells. This included 14 cases (58%) with intense reactivity and 7 cases (29%) with weaker p53 immunoreactivity. Of the 24 cases of RCC, IED was identified in 13 cases (54%). Immunoreactivity for p53 was focally seen in tubules of all the lesions, as well as in the nonlesional areas. Six of the lesions exhibited intense nuclear staining. The kidneys adjacent to the RCC, with no evidence of IED, showed focally intense positive p53 nuclear staining in four cases. None of the control specimens showed p53 expression. Our findings provide supportive evidence that previously described IED in kidneys adjacent to RCC are most likely precursor lesions of the neoplasm. Aberrant expression of p53 in areas without evidence of IED may suggest that neoplastic transformation manifested by p53 mutation in kidney tubules may be seen before the development of the morphologic features of

  15. [Study on the role of the tubule in renal vasoconstriction induced by cyclosporine].

    PubMed

    Camaño Páez, S; Lázaro Fernández, A; Callejas Martínez, R; Lázaro Manero, J A; Castilla Barba, M; Martín-Vasallo, P; Martínez Escandell, A; Tejedor Jorge, A

    2008-01-01

    Cyclosporine (CyA) has proved to induce cell apoptosis on cultured proximal tubule cells. However, there is no much data about the in vivo functional consequences of this injury or the long time observed CyA-induced renal vasoconstriction. In a swine model of subacute CyA nephrotoxicity (10 mg/ Kg. dx 15 days), we performed a right nephrectomy, followed by left renal artery, vein and ureter catheterisati8n. After inducing water diuresis, three clearance periods of 15 minutes were performed before and after a furosemide 1 mg/kg infusion. Plasma and urine electrolytes, blood gas, acid excretion, plasma renin activity and aldosterone concentration, GFR, RPF, RBF, intra-renal vascular resistances, glomerular filtration pressure, distal Cl- delivery, water clearance and TTKG were measured or estimated on 7 control and 7 treated animals. Right kidney was processed for NaKATPase activity and immunostaining. Treated animals presented detaching proximal cells, luminal blebbing and loss of tight junctions. Cortical but not medullar sodium pump was internalised and partially inactive. Treated animals showed much lower fractional excretions of Na+, with significantly higher distal fractional reabsorption of Cl. Distal shift in fluid load resulted in a significant rise in renal O2 consumption, and modifications in the global renal estequiometry of Na+ transport/O2 uptake. Several consequences followed this situation: preglomerular resistances increased 3 times with only minor changes in postglomerular resistances and renal blood and plasma flow were significantly reduced. Furosemide partially reversed these effects. A slight increase in fractional filtration prevented GFR differences to become statistically significant. subacute CyA treatment even al doses not modifying GFR, may cause proximal tubule Na+ transport impairment, resulting in increased rates of distal delivery and absorption of fluid load. Renal uptake of O2 may be increased and tubule glomerular feedback should be

  16. The digestive system of the "stick bug" Cladomorphus phyllinus (Phasmida, Phasmatidae): a morphological, physiological and biochemical analysis.

    PubMed

    Monteiro, Emiliano C; Tamaki, Fábio K; Terra, Walter R; Ribeiro, Alberto F

    2014-03-01

    This work presents a detailed morphofunctional study of the digestive system of a phasmid representative, Cladomorphus phyllinus. Cells from anterior midgut exhibit a merocrine secretion, whereas posterior midgut cells show a microapocrine secretion. A complex system of midgut tubules is observed in the posterior midgut which is probably related to the luminal alkalization of this region. Amaranth dye injection into the haemolymph and orally feeding insects with dye indicated that the anterior midgut is water-absorbing, whereas the Malpighian tubules are the main site of water secretion. Thus, a putative counter-current flux of fluid from posterior to anterior midgut may propel enzyme digestive recycling, confirmed by the low rate of enzyme excretion. The foregut and anterior midgut present an acidic pH (5.3 and 5.6, respectively), whereas the posterior midgut is highly alkaline (9.1) which may be related to the digestion of hemicelluloses. Most amylase, trypsin and chymotrypsin activities occur in the foregut and anterior midgut. Maltase is found along the midgut associated with the microvillar glycocalix, while aminopeptidase occurs in the middle and posterior midgut in membrane bound forms. Both amylase and trypsin are secreted mainly by the anterior midgut through an exocytic process as revealed by immunocytochemical data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Mechanism of increased clearance of glycated albumin by proximal tubule cells

    PubMed Central

    Wagner, Mark C.; Myslinski, Jered; Pratap, Shiv; Flores, Brittany; Rhodes, George; Campos-Bilderback, Silvia B.; Sandoval, Ruben M.; Kumar, Sudhanshu; Patel, Monika; Ashish

    2016-01-01

    Serum albumin is the most abundant plasma protein and has a long half-life due to neonatal Fc receptor (FcRn)-mediated transcytosis by many cell types, including proximal tubule cells of the kidney. Albumin also interacts with, and is modified by, many small and large molecules. Therefore, the focus of the present study was to address the impact of specific known biological albumin modifications on albumin-FcRn binding and cellular handling. Binding at pH 6.0 and 7.4 was performed since FcRn binds albumin strongly at acidic pH and releases it after transcytosis at physiological pH. Equilibrium dissociation constants were measured using microscale thermophoresis. Since studies have shown that glycated albumin is excreted in the urine at a higher rate than unmodified albumin, we studied glucose and methylgloxal modified albumins (21 days). All had reduced affinity to FcRn at pH 6.0, suggesting these albumins would not be returned to the circulation via the transcytotic pathway. To address why modified albumin has reduced affinity, we analyzed the structure of the modified albumins using small-angle X-ray scattering. This analysis showed significant structural changes occurring to albumin with glycation, particularly in the FcRn-binding region, which could explain the reduced affinity to FcRn. These results offer an explanation for enhanced proximal tubule-mediated sorting and clearance of abnormal albumins. PMID:26887834

  18. Characterization and functional assay of a fatty acyl-CoA reductase gene in the scale insect, Ericerus pela Chavannes (Hemiptera: Coccoidae).

    PubMed

    Hu, Yan-Hong; Chen, Xiao-Ming; Yang, Pu; Ding, Wei-Feng

    2018-04-01

    Ericerus pela Chavannes (Hemiptera: Coccoidae) is an economically important scale insect because the second instar males secrete a harvestable wax-like substance. In this study, we report the molecular cloning of a fatty acyl-CoA reductase gene (EpFAR) of E. pela. We predicted a 520-aa protein with the FAR family features from the deduced amino acid sequence. The EpFAR mRNA was expressed in five tested tissues, testis, alimentary canal, fat body, Malpighian tubules, and mostly in cuticle. The EpFAR protein was localized by immunofluorescence only in the wax glands and testis. EpFAR expression in High Five insect cells documented the recombinant EpFAR reduced 26-0:(S) CoA and to its corresponding alcohol. The data illuminate the molecular mechanism for fatty alcohol biosynthesis in a beneficial insect, E. pela. © 2017 Wiley Periodicals, Inc.

  19. Unikaryon phyllotretae sp. n. (Protista, Microspora), a new microsporidian pathogen of Phyllotreta undulata (Coleoptera; Chrysomelidae).

    PubMed

    Yaman, Mustafa; Radek, Renate; Weiser, Jaroslav; Toguebaye, Bhen Sikina

    2010-01-01

    The microsporidium Unikaryon phyllotretae sp. n., a new pathogen of Phyllotreta undulata, is described based on light microscopic and ultrastructural characteristics. Microscopic examination of parasitized individuals revealed two types of spores. The majority of the spores were of the first type, which are oval and measured 2.74+/-0.17 x 1.93+/-0.17 microm when fresh. Fresh spores of the second type (very rare) are elongated and measured 4.39+/-0.18 x 1.61+/-0.20 microm. All life stages have single nuclei. Sporogony ends with uninucleate single sporoblasts and spores. The spores were only observed in Malpighian tubules. The isofilar polar filament of the parasite has six to eight coils, and a well-developed polaroplast was of the lamellated type, with closely packed anterior lamellae and loosely packed posterior lamellae. Copyright (c) 2009. Published by Elsevier GmbH.

  20. Regulation of the mitochondrial permeability transition in kidney proximal tubules and its alteration during hypoxia-reoxygenation

    PubMed Central

    Feldkamp, Thorsten; Park, Jeong Soon; Pasupulati, Ratna; Amora, Daniela; Roeser, Nancy F.; Venkatachalam, M. A.

    2009-01-01

    Development of the mitochondrial permeability transition (MPT) can importantly contribute to lethal cell injury from both necrosis and apoptosis, but its role varies considerably with both the type of cell and type of injury, and it can be strongly opposed by the normally abundant endogenous metabolites ADP and Mg2+. To better characterize the MPT in kidney proximal tubule cells and assess its contribution to injury to them, we have refined and validated approaches to follow the process in whole kidney proximal tubules and studied its regulation in normoxic tubules and after hypoxia-reoxygenation (H/R). Physiological levels of ADP and Mg2+ greatly decreased sensitivity to the MPT. Inhibition of cyclophilin D by cyclosporine A (CsA) effectively opposed the MPT only in the presence of ADP and/or Mg2+. Nonesterified fatty acids (NEFA) had a large role in the decreased resistance to the MPT seen after H/R irrespective of the available substrate or the presence of ADP, Mg2+, or CsA, but removal of NEFA was less effective at restoring normal resistance to the MPT in the presence of electron transport complex I-dependent substrates than with succinate. The data indicate that the NEFA accumulation that occurs during both hypoxia in vitro and ischemic acute kidney injury in vivo is a critical sensitizing factor for the MPT that overcomes the antagonistic effect of endogenous metabolites and cyclophilin D inhibition, particularly in the presence of complex I-dependent substrates, which predominate in vivo. PMID:19741014

  1. Effect of generation 4.0 polyamidoamine dendrimer on the mineralization of demineralized dentinal tubules in vitro.

    PubMed

    Jia, Ru; Lu, Yi; Yang, Chang-Wei; Luo, Xiao; Han, Ying

    2014-10-01

    Dentine hypersensitivity is a type of clinical oral disease, which is highly prevalent worldwide. Although there are many materials to treat dentine hypersensitivity, their long-term therapeutic effects are not satisfactory. Therefore, the aim of this research was to observe and identify the biological mineralization of the generation 4.0 polyamidoamine dendrimer on the demineralized dentinal tubules at different time points. 2mm-thick slices were obtained from the cemento-enamel junction of 36 third molar teeth that simulated the condition of sensitivity with acid etching. Slices were treated with generation 4.0 polyamidoamine dendrimer and peptide bond condensing agent, while no treatment was applied on the slices of the control group. Following immersion in artificial saliva for 2, 4, 6, and 8 weeks respectively, the mineralization condition of dentine slices was observed using the scanning electron microscope (SEM). In addition, the differences in the samples of dental slices between the 2 groups were also detected using the microhardness test. SEM results showed that the average diameter and density of the dentinal tubules in the experimental group were significantly lower than those in the control group (P<0.001). The microhardness test exhibited a similar result, which suggested that the microhardness of the experimental group was significantly higher than the control group (P<0.001). Generation 4.0 polyamidoamine dendrimer promotes the biomineralization of demineralized dentinal tubules. Moreover, this result also suggests that the 4.0th generation polyamidoamine dendrimer has the potential value for dentine hypersensitivity treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. SGLT2 mediates glucose reabsorption in the early proximal tubule.

    PubMed

    Vallon, Volker; Platt, Kenneth A; Cunard, Robyn; Schroth, Jana; Whaley, Jean; Thomson, Scott C; Koepsell, Hermann; Rieg, Timo

    2011-01-01

    Mutations in the gene encoding for the Na(+)-glucose co-transporter SGLT2 (SLC5A2) associate with familial renal glucosuria, but the role of SGLT2 in the kidney is incompletely understood. Here, we determined the localization of SGLT2 in the mouse kidney and generated and characterized SGLT2-deficient mice. In wild-type (WT) mice, immunohistochemistry localized SGLT2 to the brush border membrane of the early proximal tubule. Sglt2(-/-) mice had glucosuria, polyuria, and increased food and fluid intake without differences in plasma glucose concentrations, GFR, or urinary excretion of other proximal tubular substrates (including amino acids) compared with WT mice. SGLT2 deficiency did not associate with volume depletion, suggested by similar body weight, BP, and hematocrit; however, plasma renin concentrations were modestly higher and plasma aldosterone levels were lower in Sglt2(-/-) mice. Whole-kidney clearance studies showed that fractional glucose reabsorption was significantly lower in Sglt2(-/-) mice compared with WT mice and varied in Sglt2(-/-) mice between 10 and 60%, inversely with the amount of filtered glucose. Free-flow micropuncture revealed that for early proximal collections, 78 ± 6% of the filtered glucose was reabsorbed in WT mice compared with no reabsorption in Sglt2(-/-) mice. For late proximal collections, fractional glucose reabsorption was 93 ± 1% in WT and 21 ± 6% in Sglt2(-/-) mice, respectively. These results demonstrate that SGLT2 mediates glucose reabsorption in the early proximal tubule and most of the glucose reabsorption by the kidney, overall. This mouse model mimics and explains the glucosuric phenotype of individuals carrying SLC5A2 mutations.

  3. A protein with anion exchange properties found in the kidney proximal tubule.

    PubMed

    Soleimani, M; Bizal, G L; Anderson, C C

    1993-09-01

    One important mechanism for reabsorption of chloride in the kidney proximal tubule involves anion exchange of chloride for a base. Anion exchange transport systems in general demonstrate sensitivity to inhibition by disulfonic stilbenes, probenecid, furosemide, and the arginyl amino group modifier phenylglyoxal. Using disulfonic stilbene affinity chromatography, we have identified and partially purified a protein with anion exchanger properties in luminal membrane vesicles isolated from rabbit kidney cortex. This protein has a molecular weight of 162 kD. The binding of the 162 kD protein to the stilbene affinity matrix is inhibited by disulfonic stilbenes, probenecid, furosemide, and phenylglyoxal. Reconstitution of the proteins eluted from the affinity matrix into liposomes demonstrates anion exchange activity as assayed by radiolabeled chloride influx. Deletion of the 162 kD protein from the eluted mixture by probenecid diminishes the anion exchanger activity in the reconstituted liposomes. Further purification of the disulfonic stilbene column eluant by Econo-Pac Q ion exchange chromatography resulted in significant enrichment in 162 kD protein abundance and also anion exchange activity in reconstituted liposomes. The results of the above experiments strongly suggest that the 162 kD protein is an anion exchanger. Insight into the functional and molecular characteristics of this protein should provide important information about the mechanism(s) of chloride reabsorption in the kidney proximal tubule.

  4. In vitro studies with renal proximal tubule cells show direct cytotoxicity of Androctonus australis hector scorpion venom triggered by oxidative stress, caspase activation and apoptosis

    PubMed Central

    Saidani, Chanez; Hammoudi-Triki, Djelila; Laraba-Djebari, Fatima; Taub, Mary

    2016-01-01

    Scorpion envenomation injures a number of organs, including the kidney. Mechanisms proposed to explain the renal tubule injury include direct effects of venom on tubule epithelial cells, as well as indirect effects of the autonomic nervous system, and inflammation. Here, we report direct effects of Androctonus australis hector (Aah) scorpion venom on the viability of Renal Proximal Tubule (RPT) cells in vitro, unlike distal tubule and collecting duct cells. Extensive NucGreen nuclear staining was observed in immortalized rabbit RPT cells following treatment with Aah venom, consistent with cytotoxicity. The involvement of oxidative stress is supported by the observations that 1) anti-oxidants mitigated the Aah venom-induced decrease in the number of viable RPT cells, and 2) Aah venom-treated RPT cells were intensively stained with the CellROX® Deep Red reagent, an indicator of Reactive Oxygen Species (ROS). Relevance to normal RPT cells is supported by the red fluorescence observed in Aah venom treated primary rabbit RPT cell cultures following their incubation with the Flica reagent (indicative of caspase activation and apoptosis), and the green fluorescence of Sytox Green (indicative of dead cells). PMID:27470530

  5. Efficacy of 4 Irrigation Protocols in Killing Bacteria Colonized in Dentinal Tubules Examined by a Novel Confocal Laser Scanning Microscope Analysis.

    PubMed

    Azim, Adham A; Aksel, Hacer; Zhuang, Tingting; Mashtare, Terry; Babu, Jegdish P; Huang, George T-J

    2016-06-01

    The aim of this study was to determine the efficiency of 4 irrigation systems in eliminating bacteria in root canals, particularly in dentinal tubules. Roots of human teeth were prepared to 25/04, autoclaved, and inoculated with Enterococcus faecalis for 3 weeks. Canals were then disinfected by (1) standard needle irrigation, (2) sonically agitating with EndoActivator, (3) XP Endo finisher, or (4) erbium:yttrium aluminum garnet laser (PIPS) (15 roots/group). The bacterial reduction in the canal was determined by MTT assays. For measuring live versus dead bacteria in the dentinal tubules (4 teeth/group), teeth were split open and stained with LIVE/DEAD BackLight. Coronal, middle, and apical thirds of the canal dentin were scanned by using a confocal laser scanning microscope (CLSM) to determine the ratio of dead/total bacteria in the dentinal tubules at various depths. All 4 irrigation protocols significantly eliminated bacteria in the canal, ranging from 89.6% to 98.2% reduction (P < .001). XP Endo had the greatest bacterial reduction compared with other 3 techniques (P < .05). CLSM analysis showed that XP Endo had the highest level of dead bacteria in the coronal, middle, and apical segments at 50-μm depth. On the other hand, PIPS had the greatest bacterial killing efficiency at the 150-μm depth in all 3 root segments. XP Endo appears to be more efficient than other 3 techniques in disinfecting the main canal space and up to 50 μm deep into the dentinal tubules. PIPS appears to be most effective in killing the bacteria deep in the dentinal tubules. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. N-domain angiotensin-I converting enzyme is expressed in immortalized mesangial, proximal tubule and collecting duct cells.

    PubMed

    Mei Wang, Pamella Huey; Andrade, Maria Claudina; Quinto, Beata Marie Redublo; Di Marco, Giovana; Mortara, Renato Arruda; Vio, Carlos P; Casarini, Dulce Elena

    2015-01-01

    Somatic ACE (sACE) is found in glomerulus, proximal tubule and excreted in urine. We hypothesized that N-domain ACE can also be found at these sites. ACE profile was analyzed in mesangial (IMC), proximal (LLC-PK1), distal tubule (MDCK) and collecting duct (IMCD) cells. Cell lysate and culture medium were submitted to gel filtration chromatography, which separated two peaks with ACE activity from cells and medium, except from distal tubule. The first had a high molecular weight and the second, a lower one (65 kDa; N-domain ACE). We focused on N-domain ACE purification and characterization from LLC-PK1. Total LLC-PK1 N-domain ACE purification was achieved by ion-exchange chromatography, which presented only one peak with ACE activity, denominated ACE(int2A). ACE(int2A) activity was influenced by pH, NaCl and temperature. The purified enzyme was inhibited by Captopril and hydrolyzed AngI, Ang1-7 and AcSDKP. Its ability to hydrolyze AcSDKP characterized it as an N-domain ACE. ACE(int2A) also presented high amino acid sequence homology with the N-terminal part of sACE from mouse, rat, human and rabbit. The presence of secreted and intracellular N-domain ACE and sACE in IMC, LLC-PK1 and IMCD cells confirmed our studies along the nephron. We identified, purified and characterized N-domain ACE from LLC-PK1. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Proteomic profiling and pathway analysis of the response of rat renal proximal convoluted tubules to metabolic acidosis

    PubMed Central

    Schauer, Kevin L.; Freund, Dana M.; Prenni, Jessica E.

    2013-01-01

    Metabolic acidosis is a relatively common pathological condition that is defined as a decrease in blood pH and bicarbonate concentration. The renal proximal convoluted tubule responds to this condition by increasing the extraction of plasma glutamine and activating ammoniagenesis and gluconeogenesis. The combined processes increase the excretion of acid and produce bicarbonate ions that are added to the blood to partially restore acid-base homeostasis. Only a few cytosolic proteins, such as phosphoenolpyruvate carboxykinase, have been determined to play a role in the renal response to metabolic acidosis. Therefore, further analysis was performed to better characterize the response of the cytosolic proteome. Proximal convoluted tubule cells were isolated from rat kidney cortex at various times after onset of acidosis and fractionated to separate the soluble cytosolic proteins from the remainder of the cellular components. The cytosolic proteins were analyzed using two-dimensional liquid chromatography and tandem mass spectrometry (MS/MS). Spectral counting along with average MS/MS total ion current were used to quantify temporal changes in relative protein abundance. In all, 461 proteins were confidently identified, of which 24 exhibited statistically significant changes in abundance. To validate these techniques, several of the observed abundance changes were confirmed by Western blotting. Data from the cytosolic fractions were then combined with previous proteomic data, and pathway analyses were performed to identify the primary pathways that are activated or inhibited in the proximal convoluted tubule during the onset of metabolic acidosis. PMID:23804448

  8. Evaluation of penetration depth of 2% chlorhexidine digluconate into root dentinal tubules using confocal laser scanning microscope.

    PubMed

    Vadhana, Sekar; Latha, Jothi; Velmurugan, Natanasabapathy

    2015-05-01

    This study evaluated the penetration depth of 2% chlorhexidine digluconate (CHX) into root dentinal tubules and the influence of passive ultrasonic irrigation (PUI) using a confocal laser scanning microscope (CLSM). Twenty freshly extracted anterior teeth were decoronated and instrumented using Mtwo rotary files up to size 40, 4% taper. The samples were randomly divided into two groups (n = 10), that is, conventional syringe irrigation (CSI) and PUI. CHX was mixed with Rhodamine B dye and was used as the final irrigant. The teeth were sectioned at coronal, middle and apical levels and viewed under CLSM to record the penetration depth of CHX. The data were statistically analyzed using Kruskal-Wallis and Mann-Whitney U tests. The mean penetration depths of 2% CHX in coronal, middle and apical thirds were 138 µm, 80 µm and 44 µm in CSI group, respectively, whereas the mean penetration depths were 209 µm, 138 µm and 72 µm respectively in PUI group. Statistically significant difference was present between CSI group and PUI group at all three levels (p < 0.01 for coronal third and p < 0.001 for middle and apical thirds). On intragroup analysis, both groups showed statistically significant difference among three levels (p < 0.001). Penetration depth of 2% CHX into root dentinal tubules is deeper in coronal third when compared to middle and apical third. PUI aided in deeper penetration of 2% CHX into dentinal tubules when compared to conventional syringe irrigation at all three levels.

  9. Direct physical contact between intercalated cells in the distal convoluted tubule and the afferent arteriole in mouse kidneys.

    PubMed

    Ren, Hao; Liu, Ning-Yu; Andreasen, Arne; Thomsen, Jesper S; Cao, Liu; Christensen, Erik I; Zhai, Xiao-Yue

    2013-01-01

    Recent physiological studies in the kidney proposed the existence of a secondary feedback mechanism termed 'crosstalk' localized after the macula densa. This newly discovered crosstalk contact between the nephron tubule and its own afferent arteriole may potentially revolutionize our understanding of renal vascular resistance and electrolyte regulation. However, the nature of such a crosstalk mechanism is still debated due to a lack of direct and comprehensive morphological evidence. Its exact location along the nephron, its prevalence among the different types of nephrons, and the type of cells involved are yet unknown. To address these issues, computer assisted 3-dimensional nephron tracing was applied in combination with direct immunohistochemistry on plastic sections and electron microscopy. 'Random' contacts in the cortex were identified by the tracing and excluded. We investigated a total of 168 nephrons from all cortical regions. The results demonstrated that the crosstalk contact existed, and that it was only present in certain nephrons (90% of the short-looped and 75% of the long-looped nephrons). The crosstalk contacts always occurred at a specific position--the last 10% of the distal convoluted tubule. Importantly, we demonstrated, for the first time, that the cells found in the tubule wall at the contact site were always type nonA-nonB intercalated cells. In conclusion, the present work confirmed the existence of a post macula densa physical crosstalk contact.

  10. Angiotensin II stimulates calcineurin activity in proximal tubule epithelia through AT-1 receptor-mediated tyrosine phosphorylation of the PLC-gamma1 isoform.

    PubMed

    Lea, Janice P; Jin, Shao G; Roberts, Brian R; Shuler, Michael S; Marrero, Mario B; Tumlin, James A

    2002-07-01

    Angiotensin II (AngII) contributes to the maintenance of extracellular fluid volume by regulating sodium transport in the nephron. In nonepithelial cells, activation of phospholipase C (PLC) by AT-1 receptors stimulates the generation of 1,4,5-trisphosphate (IP(3)) and the release of intracellular calcium. Calcineurin, a serine-threonine phosphatase, is activated by calcium and calmodulin, and both PLC and calcineurin have been linked to sodium transport in the proximal tubule. An examination of whether AngII activates calcineurin in a model of proximal tubule epithelia (LLC-PK1 cells) was performed; AngII increased calcineurin activity within 30 s. An examination of whether AngII activates PLC in proximal tubule epithelia was also performed after first showing that all three families of PLC isoforms are present in LLC-PK1 cells. Application of AngII increased IP(3) generation by 60% within 15 s, which coincided with AngII-induced tyrosine phosphorylation of the PLC-gamma1 isoform also observed at 15 s. AngII-induced tyrosine phosphorylation was blocked by the AT-1 receptor antagonist, Losartan. Subsequently, an inhibitor of tyrosine phosphorylation blocked the AngII-induced activation of calcineurin, as did coincubation with an inhibitor of PLC activity and with an antagonist of the AT-1 receptor. It is therefore concluded that AngII stimulates calcineurin phosphatase activity in proximal tubule epithelial cells through a mechanism involving AT-1 receptor-mediated tyrosine phosphorylation of the PLC isoform.

  11. In Vitro Ability of a Novel Nanohydroxyapatite Oral Rinse to Occlude Dentine Tubules

    PubMed Central

    Hill, Robert G.; Chen, Xiaohui; Gillam, David G.

    2015-01-01

    Objectives. The aim of the study was to investigate the ability of a novel nanohydroxyapatite (nHA) desensitizing oral rinse to occlude dentine tubules compared to selected commercially available desensitizing oral rinses. Methods. 25 caries-free extracted molars were sectioned into 1 mm thick dentine discs. The dentine discs (n = 25) were etched with 6% citric acid for 2 minutes and rinsed with distilled water, prior to a 30-second application of test and control oral rinses. Evaluation was by (1) Scanning Electron Microscopy (SEM) of the dentine surface and (2) fluid flow measurements through a dentine disc. Results. Most of the oral rinses failed to adequately cover the dentine surface apart from the nHa oral rinse. However the hydroxyapatite, 1.4% potassium oxalate, and arginine/PVM/MA copolymer oral rinses, appeared to be relatively more effective than the nHA test and negative control rinses (potassium nitrate) in relation to a reduction in fluid flow measurements. Conclusions. Although the novel nHA oral rinse demonstrated the ability to occlude the dentine tubules and reduce the fluid flow measurements, some of the other oral rinses appeared to demonstrate a statistically significant reduction in fluid flow through the dentine disc, in particular the arginine/PVM/MA copolymer oral rinse. PMID:26161093

  12. Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans

    PubMed Central

    Grussendorf, Kelly A.; Trezza, Christopher J.; Salem, Alexander T.; Al-Hashimi, Hikmat; Mattingly, Brendan C.; Kampmeyer, Drew E.; Khan, Liakot A.; Hall, David H.; Göbel, Verena; Ackley, Brian D.; Buechner, Matthew

    2016-01-01

    Determination of luminal diameter is critical to the function of small single-celled tubes. A series of EXC proteins, including EXC-1, prevent swelling of the tubular excretory canals in Caenorhabditis elegans. In this study, cloning of exc-1 reveals it to encode a homolog of mammalian IRG proteins, which play roles in immune response and autophagy and are associated with Crohn’s disease. Mutants in exc-1 accumulate early endosomes, lack recycling endosomes, and exhibit abnormal apical cytoskeletal structure in regions of enlarged tubules. EXC-1 interacts genetically with two other EXC proteins that also affect endosomal trafficking. In yeast two-hybrid assays, wild-type and putative constitutively active EXC-1 binds to the LIM-domain protein EXC-9, whose homolog, cysteine-rich intestinal protein, is enriched in mammalian intestine. These results suggest a model for IRG function in forming and maintaining apical tubule structure via regulation of endosomal recycling. PMID:27334269

  13. Uric acid upregulates the adiponectin-adiponectin receptor 1 pathway in renal proximal tubule epithelial cells

    PubMed Central

    Yang, Qingmei; Fu, Chensheng; Xiao, Jing; Ye, Zhibin

    2018-01-01

    Adiponectin (APN) is a protein hormone that is primarily derived from adipocytes. It can also be secreted by renal cells. Hypoadiponectinemia has been documented in patients with hyperuricemia, however, whether soluble uric acid (SUA) regulates the expression of APN and APN receptor 1 (AdipoR1) in renal proximal tubule epithelial cells (PTECs) remains to be elucidated. The present study investigated the expression of APN and AdipoR1 in cultured PTECs that were exposed to SUA through immunofluorescence and western blot analysis. In addition, Sprague-Dawley rats with oxonic acid-induced hyperuricemia (HUA) with or without febuxostat treatment were employed as an animal model to measure 24 h urine protein, serum creatinine, urea nitrogen, uric acid and homeostasis model assessment of insulin resistance. Renal pathology was evaluated using hematoxylin and eosin and immunohistochemical staining. APN and AdipoR1 expression in the renal cortex were evaluated by western blotting. The results demonstrated that, in PTECs, the expression of APN and AdipoR1 was constant and increased upon SUA exposure. Similar observations were made within the proximal renal tubules of rats, and the oxonic acid-induced increases in APN and AdipoR1 were offset by febuxostat treatment. Furthermore, SUA-treated PTECs exhibited an increase in the expression of NLR family pyrin domain-containing (NLRP) 3, which was dose-dependent. NLRP3 expression was also significantly increased in the renal cortex of HUA rats compared with control and febuxostat-treated rats. In conclusion, SUA enhanced the expression of APN and AdipoR1 in PTECs, which was associated with an increase in NLRP3 expression. The APN-AdipoR1 pathway was demonstrated to have an important role in in vitro and in vivo models of renal proximal tubule inflammatory injury. Therefore, this pathway may be a potential therapy target in urate nephropathy. PMID:29359786

  14. High glucose induces apoptosis via upregulation of Bim expression in proximal tubule epithelial cells.

    PubMed

    Zhang, Xiao-Qian; Dong, Jian-Jun; Cai, Tian; Shen, Xue; Zhou, Xiao-Jun; Liao, Lin

    2017-04-11

    Diabetic nephropathy is the primary cause of end-stage renal disease. Apoptosis of tubule epithelial cells is a major feature of diabetic nephropathy. The mechanisms of high glucose (HG) induced apoptosis are not fully understood. Here we demonstrated that, HG induced apoptosis via upregulating the expression of proapoptotic Bcl-2 homology domain 3 (BH3)-only protein Bim protein, but not bring a significant change in the baseline level of autophagy in HK2 cells. The increase of Bim expression was caused by the ugregulation of transcription factors, FOXO1 and FOXO3a. Bim expression initiates BAX/BAK-mediated mitochondria-dependent apoptosis. Silence of Bim by siRNA in HK2 cells prevented HG-induced apoptosis and also sensitized HK2 cells to autophagy during HG treatment. The autophagy inhibitor 3-MA increased the injury in Bim knockdown HK2 cells by retriggering apoptosis. The above results suggest a Bim-independent apoptosis pathway in HK2 cells, which normally could be inhibited by autophagy. Overall, our results indicate that HG induces apoptosis via up-regulation of Bim expression in proximal tubule epithelial cells.

  15. In vitro studies with renal proximal tubule cells show direct cytotoxicity of Androctonus australis hector scorpion venom triggered by oxidative stress, caspase activation and apoptosis.

    PubMed

    Saidani, Chanez; Hammoudi-Triki, Djelila; Laraba-Djebari, Fatima; Taub, Mary

    2016-09-15

    Scorpion envenomation injures a number of organs, including the kidney. Mechanisms proposed to explain the renal tubule injury include direct effects of venom on tubule epithelial cells, as well as indirect effects of the autonomic nervous system, and inflammation. Here, we report direct effects of Androctonus australis hector (Aah) scorpion venom on the viability of Renal Proximal Tubule (RPT) cells in vitro, unlike distal tubule and collecting duct cells. Extensive NucGreen nuclear staining was observed in immortalized rabbit RPT cells following treatment with Aah venom, consistent with cytotoxicity. The involvement of oxidative stress is supported by the observations that 1) anti-oxidants mitigated the Aah venom-induced decrease in the number of viable RPT cells, and 2) Aah venom-treated RPT cells were intensively stained with the CellROX(®) Deep Red reagent, an indicator of Reactive Oxygen Species (ROS). Relevance to normal RPT cells is supported by the red fluorescence observed in Aah venom treated primary rabbit RPT cell cultures following their incubation with the Flica reagent (indicative of caspase activation and apoptosis), and the green fluorescence of Sytox Green (indicative of dead cells). Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Prenatal programming of rat cortical collecting tubule sodium transport.

    PubMed

    Cheng, Chih-Jen; Lozano, German; Baum, Michel

    2012-03-15

    Prenatal insults have been shown to lead to elevated blood pressure in offspring when they are studied as adults. Prenatal administration of dexamethasone and dietary protein deprivation have demonstrated that there is an increase in transporter abundance for a number of nephron segments but not the subunits of the epithelial sodium channel (ENaC) in the cortical collecting duct. Recent studies have shown that aldosterone is elevated in offspring of protein-deprived mothers when studied as adults, but the physiological importance of the increase in serum aldosterone is unknown. As an indirect measure of ENaC activity, we compared the natriuretic response to benzamil in offspring of mothers who ate a low-protein diet (6%) with those who ate a normal diet (20%) for the last half of pregnancy. The natriuretic response to benzamil was greater in the 6% group (821.1 ± 161.0 μmol/24 h) compared with the 20% group (279.1 ± 137.0 μmol/24 h), consistent with greater ENaC activity in vivo (P < 0.05). In this study, we also directly studied cortical collecting tubule function from adult rats using in vitro microperfusion. There was no difference in basal or vasopressin-stimulated osmotic water permeability. However, while cortical collecting ducts of adult offspring whose mothers ate a 20% protein diet had no sodium transport (-1.9 ± 3.1 pmol·mm(-1)·min(-1)), the offspring of rats that ate a 6% protein diet during the last half of pregnancy had a net sodium flux of 10.7 ± 2.6 pmol·mm(-1)·min(-1) (P = 0.01) in tubules perfused in vitro. Sodium transport was measured using ion-selective electrodes, a novel technique allowing measurement of sodium in nanoliter quantities of fluid. Thus we directly demonstrate that there is prenatal programming of cortical collecting duct sodium transport.

  17. Mechanisms of connecting tubule glomerular feedback enhancement by aldosterone

    PubMed Central

    Ren, YiLin; Janic, Branislava; Kutskill, Kristopher; Peterson, Edward L.

    2016-01-01

    Connecting tubule glomerular feedback (CTGF) is a mechanism where an increase in sodium (Na) concentration in the connecting tubule (CNT) causes the afferent arteriole (Af-Art) to dilate. We recently reported that aldosterone within the CNT lumen enhances CTGF via a nongenomic effect involving GPR30 receptors and sodium/hydrogen exchanger (NHE), but the signaling pathways of this mechanism are unknown. We hypothesize that aldosterone enhances CTGF via cAMP/protein kinase A (PKA) pathway that activates protein kinase C (PKC) and stimulates superoxide (O2−) production. Rabbit Af-Arts and their adherent CNTs were microdissected and simultaneously perfused. Two consecutive CTGF curves were elicited by increasing the CNT luminal NaCl. We found that the main effect of aldosterone was to sensitize CTGF and we analyzed data by comparing NaCl concentration in the CNT perfusate needed to achieve half of the maximal response (EC50). During the control period, the NaCl concentration that elicited a half-maximal response (EC50) was 37.0 ± 2.0 mmol/l; addition of aldosterone (10−8 mol/l) to the CNT lumen decreased EC50 to 19.3 ± 1.3 mmol/l (P ≤ 0.001 vs. Control). The specific adenylyl cyclase inhibitor 2′,3′-dideoxyadenosine (ddA; 2 × 10−4 mol/l) and the PKA inhibitor H-89 dihydrochloride hydrate (H-89; 2 × 10−6 mol/l) prevented the aldosterone effect. The selective PKC inhibitor GF109203X (10−8 mol/l) also prevented EC50 reduction caused by aldosterone. CNT intraluminal addition of O2− scavenger tempol (10−4 mol/l) blocked the aldosterone effect. We conclude that aldosterone inside the CNT lumen enhances CTGF via a cAMP/PKA/PKC pathway and stimulates O2− generation and this process may contribute to renal damage by increasing glomerular capillary pressure. PMID:27413197

  18. Static analysis of masonry kilns built with fictile tubules bricks

    NASA Astrophysics Data System (ADS)

    Olivito, Renato S.; Scuro, Carmelo; Codispoti, Rosamaria

    2016-12-01

    Industrial archeology is a branch that studies all the testimony (tangible and intangible, direct and indirect) related to the process of industrialization since its origins. This technical field is based on an interdisciplinary approach, it has the task of deepening the story, understanding the technological development made by man over the centuries. The present work focused attention on the study and analysis of a masonry kiln, built with the technique of hollow clay fictile tubules. The study, in particular, has been carried out analyzing the stress state caused by the wind on the structure. The kiln is constituted by a particular geometric configuration that develops in height due to the presence of chimney over the dome.

  19. Silver ion (Ag+)-induced increases in cell membrane K+ and Na+ permeability in the renal proximal tubule: reversal by thiol reagents.

    PubMed

    Kone, B C; Kaleta, M; Gullans, S R

    1988-04-01

    The initial mechanisms of injury to the proximal tubule following exposure to nephrotoxic heavy metals are not well established. We studied the immediate effects of silver (Ag+) on K+ transport and respiration with extracellular K+ and O2 electrodes in suspensions of renal cortical tubules. Addition of silver nitrate (AgNO3) to tubules suspended in bicarbonate Ringer's solution caused a rapid, dose-dependent net K+ efflux (Km = 10(-4) M, Vmax = 379 nmol K+/min/mg protein) which was not inhibited by furosemide, barium chloride, quinine, tetraethylammonium, or tolbutamide. An increase in the ouabain-sensitive oxygen consumption rate (QO2) (13.9 +/- 1.1 to 25.7 +/- 4.4 nmol O2/min/mg, P less than 0.001), was observed 19 sec after the K+ efflux induced by AgNO3 (10(-4) M), suggesting a delayed increase in Na+ entry into the cell. Ouabain-insensitive QO2, nystatin-stimulated QO2, and CCCP-uncoupled QO2 were not significantly affected, indicating preserved function of the Na+,K+-ATPase and mitochondria. External addition of the thiol reagents dithiothreitol (1 mM) and reduced glutathione (1 mM) prevented and/or immediately reversed the effects on K+ transport and QO2. We conclude that Ag+ causes early changes in the permeability of the cell membrane to K+ and then to Na+ at concentrations that do not limit Na+,K+-ATPase activity or mitochondrial function. These alterations are likely the result of a reversible interaction of Ag+ with sulfhydryl groups of cell membrane proteins and may represent initial cytotoxic effects common to other sulfhydryl-reactive heavy metals on the proximal tubule.

  20. Cystogenesis and elongated primary cilia in Tsc1-deficient distal convoluted tubules

    PubMed Central

    Armour, Eric A.; Carson, Robert P.

    2012-01-01

    Tuberous sclerosis complex (TSC) is a multiorgan hamartomatous disease caused by loss of function mutations of either the TSC1 or TSC2 genes. Neurological symptoms of TSC predominate in younger patients, but renal pathologies are a serious aspect of the disease in older children and adults. To study TSC pathogenesis in the kidney, we inactivated the mouse Tsc1 gene in the distal convoluted tubules (DCT). At young ages, Tsc1 conditional knockout (CKO) mice have enlarged kidneys and mild cystogenesis with increased mammalian target of rapamycin complex (mTORC)1 but decreased mTORC2 signaling. Treatment with the mTORC1 inhibitor rapamycin reduces kidney size and cystogenesis. Rapamycin withdrawal led to massive cystogenesis involving both distal as well as proximal tubules. To assess the contribution of decreased mTORC2 signaling in kidney pathogenesis, we also generated Rictor CKO mice. These animals did not have any detectable kidney pathology. Finally, we examined primary cilia in the DCT. Cilia were longer in Tsc1 CKO mice, and rapamycin treatment returned cilia length to normal. Rictor CKO mice had normal cilia in the DCT. Overall, our findings suggest that loss of the Tsc1 gene in the DCT is sufficient for renal cystogenesis. This cytogenesis appears to be mTORC1 but not mTORC2 dependent. Intriguingly, the mechanism may be cell autonomous as well as non-cell autonomous and possibly involves the length and function of primary cilia. PMID:22674026

  1. Cystogenesis and elongated primary cilia in Tsc1-deficient distal convoluted tubules.

    PubMed

    Armour, Eric A; Carson, Robert P; Ess, Kevin C

    2012-08-15

    Tuberous sclerosis complex (TSC) is a multiorgan hamartomatous disease caused by loss of function mutations of either the TSC1 or TSC2 genes. Neurological symptoms of TSC predominate in younger patients, but renal pathologies are a serious aspect of the disease in older children and adults. To study TSC pathogenesis in the kidney, we inactivated the mouse Tsc1 gene in the distal convoluted tubules (DCT). At young ages, Tsc1 conditional knockout (CKO) mice have enlarged kidneys and mild cystogenesis with increased mammalian target of rapamycin complex (mTORC)1 but decreased mTORC2 signaling. Treatment with the mTORC1 inhibitor rapamycin reduces kidney size and cystogenesis. Rapamycin withdrawal led to massive cystogenesis involving both distal as well as proximal tubules. To assess the contribution of decreased mTORC2 signaling in kidney pathogenesis, we also generated Rictor CKO mice. These animals did not have any detectable kidney pathology. Finally, we examined primary cilia in the DCT. Cilia were longer in Tsc1 CKO mice, and rapamycin treatment returned cilia length to normal. Rictor CKO mice had normal cilia in the DCT. Overall, our findings suggest that loss of the Tsc1 gene in the DCT is sufficient for renal cystogenesis. This cytogenesis appears to be mTORC1 but not mTORC2 dependent. Intriguingly, the mechanism may be cell autonomous as well as non-cell autonomous and possibly involves the length and function of primary cilia.

  2. Molecular characterization of sodium/proton exchanger 3 (NHE3) from the yellow fever vector, Aedes aegypti.

    PubMed

    Pullikuth, Ashok K; Aimanova, Karlygash; Kang'ethe, Wanyoike; Sanders, Heather R; Gill, Sarjeet S

    2006-09-01

    Transport across insect epithelia is thought to depend on the activity of a vacuolar-type proton ATPase (V-ATPase) that energizes ion transport through a secondary proton/cation exchanger. Although several of the subunits of the V-ATPase have been cloned, the molecular identity of the exchanger has not been elucidated. Here, we present the identification of sodium/proton exchanger isoform 3 (NHE3) from yellow fever mosquito, Aedes aegypti (AeNHE3). AeNHE3 localizes to the basal plasma membrane of Malpighian tubule, midgut and the ion-transporting sector of gastric caeca. Midgut expression of NHE3 shows a different pattern of enrichment between larval and adult stages, implicating it in the maintenance of regional pH in the midgut during the life cycle. In all tissues examined, NHE3 predominantly localizes to the basal membrane. In addition the limited expression in intracellular vesicles in the median Malpighian tubules may reflect a potential functional versatility of NHE3 in a tissue-specific manner. The localization of V-ATPase and NHE3, and exclusion of Na+/K+-ATPase from the distal ion-transporting sector of caeca, indicate that the role of NHE3 in ion and pH regulation is intricately associated with functions of V-ATPase. The AeNHE3 complements yeast mutants deficient in yeast NHEs, NHA1 and NHX1. To further examine the functional property of AeNHE3, we expressed it in NHE-deficient fibroblast cells. AeNHE3 expressing cells were capable of recovering intracellular pH following an acid load. The recovery was independent of the large cytoplasmic region of AeNHE3, implying this domain to be dispensable for NHE3 ion transport function. 22Na+ uptake studies indicated that AeNHE3 is relatively insensitive to amiloride and EIPA and is capable of Na+ transport in the absence of the cytoplasmic tail. Thus, the core domain containing the transmembrane regions of NHE3 is sufficient for pH recovery and ion transport. The present data facilitate refinement of the

  3. Interaction of resident sperm with sperm-storage tubule (SST) epithelial cell microvilli in the turkey breeder hen

    USDA-ARS?s Scientific Manuscript database

    Interaction of resident sperm with sperm-storage tubule (SST) epithelial cell microvilli in the turkey breeder hen M.R. Bakst*1 and C. Murphy2, 1Animal Biosciences and Biotechnology Laboratory, 2Electron & Confocal Microscopy Unit, Beltsville Area, ARS, USDA, Beltsville MD Sustained fertilization o...

  4. Expression and function of CLC and cystic fibrosis transmembrane conductance regulator chloride channels in renal epithelial tubule cells: pathophysiological implications.

    PubMed

    Vandewalle, Alain

    2007-01-01

    Cl(-) channels play important roles in the regulation of a variety of functions, including electrical excitability, cell volume regulation, transepithelial transport and acidification of cellular organelles. They are expressed in plasma membranes or reside in intracellular organelles. A large number of Cl(-) channels with different functions have been identified. Some of them are highly expressed in the kidney. They include members of the CLC Cl(-) channel family: ClC-K1 (or ClC-Ka), ClC-K2 (or ClC-Kb) and ClC-5. The identification of mutations responsible for human inherited diseases (Bartter syndrome for ClC-Kb and Dent's disease for ClC-5) and studies on knockout mice models have evidenced the physiological importance of these CLC Cl(-) channels, permitting better understanding on their functions in renal tubule epithelial cells. The cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel, also expressed in renal tubule epithelial cells, is involved in the transepithelial transport of Cl(-) in the distal nephron. This short review focuses on intrarenal distribution, subcellular localization and function of the ClK(-1), ClC-K2 and ClC-5 Cl(-) channels in renal tubule epithelial cells, and the role of the CFTR Cl(-) channel in chloride fluxes elicited by vasopressin in the distal nephron.

  5. Heterogeneity of transverse-axial tubule system in mouse atria: Remodeling in atrial-specific Na+-Ca2+ exchanger knockout mice.

    PubMed

    Yue, Xin; Zhang, Rui; Kim, Brian; Ma, Aiqun; Philipson, Kenneth D; Goldhaber, Joshua I

    2017-07-01

    Transverse-axial tubules (TATs) are commonly assumed to be sparse or absent in atrial myocytes from small animals. Atrial myocytes from rats, cats and rabbits lack TATs, which results in a characteristic "V"-shaped Ca release pattern in confocal line-scan recordings due to the delayed rise of Ca in the center of the cell. To examine TAT expression in isolated mouse atrial myocytes, we loaded them with the membrane dye Di-4-ANEPPS to label TATs. We found that >80% of atrial myocytes had identifiable TATs. Atria from male mice had a higher TAT density than female mice, and TAT density correlated with cell width. Using the fluorescent Ca indicator Fluo-4-AM and confocal imaging, we found that wild type (WT) mouse atrial myocytes generate near-synchronous Ca transients, in contrast to the "V"-shaped pattern typically reported in other small animals such as rat. In atrial-specific Na-Ca exchanger (NCX) knockout (KO) mice, which develop sinus node dysfunction and atrial hypertrophy with dilation, we found a substantial loss of atrial TATs in isolated atrial myocytes. There was a greater loss of transverse tubules compared to axial tubules, resulting in a dominance of axial tubules. Consistent with the overall loss of TATs, NCX KO atrial myocytes displayed a "V"-shaped Ca transient with slower and reduced central (CT) Ca release and uptake in comparison to subsarcolemmal (SS) Ca release. We compared chemically detubulated (DT) WT cells to KO, and found similar slowing of CT Ca release and uptake. However, SS Ca transients in the WT DT cells had faster uptake kinetics than KO cells, consistent with the presence of NCX and normal sarcolemmal Ca efflux in the WT DT cells. We conclude that the remodeling of NCX KO atrial myocytes is accompanied by a loss of TATs leading to abnormal Ca release and uptake that could impact atrial contractility and rhythm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Dentinal tubule occluding capability of nano-hydroxyapatite; The in-vitro evaluation.

    PubMed

    Baglar, Serdar; Erdem, Umit; Dogan, Mustafa; Turkoz, Mustafa

    2018-04-29

    In this in-vitro study, the effectiveness of experimental pure nano-hydroxyapatite (nHAP) and 1%, 2%, and 3% F¯ doped nano-HAp on dentine tubule occlusion was investigated. And also, the cytotoxicity of materials used in the experiment was evaluated. Nano-HAp types were synthesized by the precipitation method. Forty dentin specimens were randomly divided into five groups of; 1-no treatment (control), 2-specimens treated with 10% pure nano-HAp and 3, 4, 5 specimens treated with 1%, 2%, and 3% F - doped 10% nano-HAp, respectively. To evaluate the effectiveness of the materials used; pH, FTIR, and scanning electron microscopy evaluations were performed before and after degredation in simulated body fluid. To determine cytotoxicity of the materials, MTT assay was performed. Statistical evaluations were performed with F and t tests. All of the nano-HAp materials used in this study built up an effective covering layer on the dentin surfaces even with plugs in tubules. It was found that this layer had also a resistance to degradation. None of the evaluated nano-HAp types were have toxicity. Fluoride doping showed a positive effect on physical and chemical stability until a critical value of 1% F - . The all evaluated nano-HAp types may be effectively used in dentin hypersensitivity treatment. The formed nano-HAp layers were seem to resistant to hydrolic deletion. The pure and 1% F - doped nano-HAp showed the highest biocompatibility thus it was assessed that pure and 1% F - doped materials may be used as an active ingredient in dentin hypersensitivity agents. © 2018 Wiley Periodicals, Inc.

  7. Taenia crassiceps: infections of male mice lead to severe disruption of seminiferous tubule cells and increased apoptosis.

    PubMed

    Zepeda, Nadia; Copitin, Natalia; Solano, Sandra; González, Maricarmen; Fernández, Ana M; Tato, Patricia; Molinari, José L

    2011-01-01

    This research was carried out to study the effects of infection with Taenia crassiceps cysticerci on the seminiferous epithelium histoarchitecture in the testes of male mice. Our results showed a severe disruption of the histoarchitecture of the testis epithelium in infected mice. In these animals, a significant infiltration of macrophages within seminiferous tubules was observed (P < 0.001). Generalized apoptosis of germ cells within the seminiferous tubules was observed, as assessed by TUNEL assay and apoptotic nuclei were quantified. The total number of fluorescent objects (DNA) (including clusters, singles, and objects in clusters) was significantly higher in the infected cells than in the control group (P = 0.0286). Observation of the interstitial tissue showed disorder and deterioration of many Leydig cells of infected mice, as well as intense vacuolization and destruction of their inter-cellular junctions. Several ultrastructural abnormalities were observed through electron microscopy as well. The observed pathology could lead to a state of infertility. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Effectiveness of different final irrigation techniques and placement of endodontic sealer into dentinal tubules.

    PubMed

    Oliveira, Kauhanna Vianna de; Silva, Bruno Marques da; Leonardi, Denise Piotto; Crozeta, Bruno Monguilhott; Sousa-Neto, Manoel Damião de; Baratto-Filho, Flares; Gabardo, Marilisa Carneiro Leão

    2017-12-18

    The aim of this study was to compare two irrigation techniques and four devices for endodontic sealer placement into the dentinal tubules. Ninety-nine single-rooted human teeth were instrumented and allocated to either the control (CO) (n=11) or experimental groups according to the irrigation method: syringe and NaveTip needle (NT) (n=44), and EndoActivator (EA) (n=44). These groups were subdivided according to sealer placement into K-File (KF), lentulo spiral (LS), Easy Clean (EC), and EndoActivator (EA) subgroups. Moreover, the distances of 5 mm and 2 mm from the apex were analyzed. The teeth were obturated with AH Plus and GuttaCore X3. Analyses were performed by scanning electron microscopy associated to cathodoluminescence. The percentage and maximum depth of sealer penetration were measured. Data were evaluated by three-way analysis of variance (ANOVA) and Games-Howell test (p<0.05). EA was superior to NT in percentage of sealer penetration. EC was significantly superior to EA (subgroup) for sealer penetration, and both improved the percentage of sealer penetration when compared to LS. Better sealer penetration was observed at the distance of 5 mm from the apex. Sealer penetration into the dentinal tubules was significantly improved by sonic irrigant activation.

  9. Effect of tetracalcium phosphate/monetite toothpaste on dentin remineralization and tubule occlusion in vitro.

    PubMed

    Medvecky, L; Stulajterova, R; Giretova, M; Mincik, J; Vojtko, M; Balko, J; Briancin, J

    2018-03-01

    To investigate the tubule occlusion and remineralization potential of a novel toothpaste with active tetracalcium phosphate/monetite mixtures under de/remineralization cycling. Dentin de/remineralization cycling protocol consisted of demineralization in 1% citric acid at pH 4.6 with following remineralization with toothpastes and soaking in artificial saliva. Effectiveness of toothpastes to promote remineralization was evaluated by measurement of microhardness recovery, analysis of surface roughness, thickness of coating and scanning electron microscopy. The novel tetracalcium phosphate/monetite dentifrice had comparable remineralization potential as commercial calcium silicate/phosphate (SENSODYNE ® ) and magnesium aluminum silicate (Colgate ® ) toothpastes and significantly higher than control saliva (p<0.02). Surface roughness was significantly lower after treatment with prepared and SENSODYNE ® dentifirice (p<0.05). The coatings on dentin surfaces was significantly thicker after applying toothpastes as compared to negative control (p<0.001). The new fluoride toothpaste formulation with bioactive tetracalcium phosphate/monetite calcium phosphate mixture effectively occluded dentin tubules and showed good dentin remineralization potential under de/remineralization cycling. It could replace professional powder preparation based on this mixture. It was demonstrated that prepared dentifrice had comparable properties with commercial fluoride calcium silicate/phosphate or magnesium aluminum silicate dentifrices. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Phosphorylation of rat kidney Na-K pump at Ser938 is required for rapid angiotensin II-dependent stimulation of activity and trafficking in proximal tubule cells

    PubMed Central

    Massey, Katherine J.; Li, Quanwen; Rossi, Noreen F.; Keezer, Susan M.; Mattingly, Raymond R.

    2015-01-01

    How angiotensin (ANG) II acutely stimulates the Na-K pump in proximal tubules is only partially understood, limiting insight into how ANG II increases blood pressure. First, we tested whether ANG II increases the number of pumps in plasma membranes of native rat proximal tubules under conditions of rapid activation. We found that exposure to 100 pM ANG II for 2 min, which was previously shown to increase affinity of the Na-K pump for Na and stimulate activity threefold, increased the amount of the Na-K pump in plasma membranes of native tubules by 33%. Second, we tested whether previously observed increases in phosphorylation of the Na-K pump at Ser938 were part of the stimulatory mechanism. These experiments were carried out in opossum kidney cells, cultured proximal tubules stably coexpressing the ANG type 1 (AT1) receptor, and either wild-type or a S938A mutant of rat kidney Na-K pump under conditions found by others to stimulate activity. We found that 10 min of incubation in 10 pM ANG II stimulated activity of wild-type pumps from 2.3 to 3.5 nmol K·mg protein−1·min−1 and increased the amount of the pump in the plasma membrane by 80% but had no effect on cells expressing the S938A mutant. We conclude that acute stimulation of Na-K pump activity in native rat proximal tubules includes increased trafficking to the plasma membrane and that phosphorylation at Ser938 is part of the mechanism by which ANG II directly stimulates activity and trafficking of the rat kidney Na-K pump in opossum kidney cells. PMID:26582472

  11. Polarity and transport properties of rabbit kidney proximal tubule cells on collagen IV-coated porous membranes.

    PubMed

    Genestie, I; Morin, J P; Vannier, B; Lorenzon, G

    1995-07-01

    A high degree of functional polarity has been obtained in primary cultures of rabbit kidney proximal tubule cells grown on collagen IV-coated porous membranes. Tight confluency was attained 6 days after seeding and maintained for at least 6 more days, as shown by analysis of paracellular inulin diffusion. From day 6 onward, L-lactate, ammonia, and D-glucose concentration gradient and a pH difference of approximately 1 unit developed between the two nutrient medium compartments. Confluent monolayers expressed organic ion transport properties higher than those formerly reported for other cell models. Transcellular transport of 20 microM tetraethylammonium was directed from basal to apical compartment and was specifically inhibited by mepiperphenidol (1 mM). Unidirectional transport of 2.4 microM p-aminohippurate also occurred from basal to apical compartment, was saturable, and specifically inhibited by probenecid (1 mM). These results suggest that rabbit kidney proximal tubule cells, cultured under the experimental conditions described here, may be a useful model for the in vitro study of highly polarized renal transport processes.

  12. Immunogold Localization of Key Metabolic Enzymes in the Anammoxosome and on the Tubule-Like Structures of Kuenenia stuttgartiensis.

    PubMed

    de Almeida, Naomi M; Neumann, Sarah; Mesman, Rob J; Ferousi, Christina; Keltjens, Jan T; Jetten, Mike S M; Kartal, Boran; van Niftrik, Laura

    2015-07-01

    Anaerobic ammonium-oxidizing (anammox) bacteria oxidize ammonium with nitrite as the terminal electron acceptor to form dinitrogen gas in the absence of oxygen. Anammox bacteria have a compartmentalized cell plan with a central membrane-bound "prokaryotic organelle" called the anammoxosome. The anammoxosome occupies most of the cell volume, has a curved membrane, and contains conspicuous tubule-like structures of unknown identity and function. It was suggested previously that the catalytic reactions of the anammox pathway occur in the anammoxosome, and that proton motive force was established across its membrane. Here, we used antibodies raised against five key enzymes of the anammox catabolism to determine their cellular location. The antibodies were raised against purified native hydroxylamine oxidoreductase-like protein kustc0458 with its redox partner kustc0457, hydrazine dehydrogenase (HDH; kustc0694), hydroxylamine oxidase (HOX; kustc1061), nitrite oxidoreductase (NXR; kustd1700/03/04), and hydrazine synthase (HZS; kuste2859-61) of the anammox bacterium Kuenenia stuttgartiensis. We determined that all five protein complexes were exclusively located inside the anammoxosome matrix. Four of the protein complexes did not appear to form higher-order protein organizations. However, the present data indicated for the first time that NXR is part of the tubule-like structures, which may stretch the whole length of the anammoxosome. These findings support the anammoxosome as the locus of catabolic reactions of the anammox pathway. Anammox bacteria are environmentally relevant microorganisms that contribute significantly to the release of fixed nitrogen in nature. Furthermore, the anammox process is applied for nitrogen removal from wastewater as an environment-friendly and cost-effective technology. These microorganisms feature a unique cellular organelle, the anammoxosome, which was proposed to contain the energy metabolism of the cell and tubule-like structures with

  13. Interaction of chloride and bicarbonate transport across the basolateral membrane of rabbit proximal straight tubule. Evidence for sodium coupled chloride/bicarbonate exchange.

    PubMed Central

    Sasaki, S; Yoshiyama, N

    1988-01-01

    The existence of chloride/bicarbonate exchange across the basolateral membrane and its physiologic significance were examined in rabbit proximal tubules. S2 segments of the proximal straight tubule were perfused in vitro and changes in intracellular pH (pHi) and chloride activity (aCli) were monitored by double-barreled microelectrodes. Total peritubular chloride replacement with gluconate increased pHi by 0.8, and this change was inhibited by a pretreatment with an anion transport inhibitor, SITS. Peritubular bicarbonate reduction increased aCli, and most of this increase was lost when ambient sodium was totally removed. The reduction rates of pHi induced by a peritubular bicarbonate reduction or sodium removal were attenuated by 20% by withdrawal of ambient chloride. SITS application to the bath in the control condition quickly increased pHi, but did not change aCli. However, the aCli slightly decreased in response to SITS when the basolateral bicarbonate efflux was increased by reducing peritubular bicarbonate concentration. It is concluded that sodium coupled chloride/bicarbonate exchange is present in parallel with sodium-bicarbonate cotransport in the basolateral membrane of the rabbit proximal tubule, and it contributes to the basolateral bicarbonate and chloride transport. PMID:2450891

  14. Inner Segment Remodeling and Mitochondrial Translocation in Cone Photoreceptors in Age-Related Macular Degeneration With Outer Retinal Tubulation.

    PubMed

    Litts, Katie M; Messinger, Jeffrey D; Freund, K Bailey; Zhang, Yuhua; Curcio, Christine A

    2015-04-01

    To quantify impressions of mitochondrial translocation in degenerating cones and to determine the nature of accumulated material in the subretinal space with apparent inner segment (IS)-like features by examining cone IS ultrastructure. Human donor eyes with advanced age-related macular degeneration (AMD) were screened for outer retinal tubulation (ORT) in macula-wide, high-resolution digital sections. Degenerating cones inside ORT (ORT cones) and outside ORT (non-ORT cones) from AMD eyes and unaffected cones in age-matched control eyes were imaged using transmission electron microscopy. The distances of mitochondria to the external limiting membrane (ELM), cone IS length, and cone IS width at the ELM were measured. Outer retinal tubulation and non-ORT cones lose outer segments (OS), followed by shortening of IS and mitochondria. In non-ORT cones, IS broaden. Outer retinal tubulation and non-ORT cone IS myoids become undetectable due to mitochondria redistribution toward the nucleus. Some ORT cones were found lacking IS and containing mitochondria in the outer fiber (between soma and ELM). Unlike long, thin IS mitochondria in control cones, ORT and non-ORT IS mitochondria are ovoid or reniform. Shed IS, some containing mitochondria, were found in the subretinal space. In AMD, macula cones exhibit loss of detectable myoid due to IS shortening in addition to OS loss, as described. Mitochondria shrink and translocate toward the nucleus. As reflectivity sources, translocating mitochondria may be detectable using in vivo imaging to monitor photoreceptor degeneration in retinal disorders. These results improve the knowledge basis for interpreting high-resolution clinical retinal imaging.

  15. The Single Kinin Receptor Signals to Separate and Independent Physiological Pathways in Malpighian Tubules of the Yellow Fever Mosquito

    DTIC Science & Technology

    2010-06-10

    Felix Tiburcy3, Ronald J. Nachman4, Peter M. Piermarini1 and Klaus W. Beyenbach1 1Department of Biomedical Sciences, VRT 8004, Cornell...Dept. of Biomedical Sciences VRT 8004 Cornell University Ithaca, NY 14853 Voice: (607) 253-3482 FAX: (607) 253-3851 Email: KWB1@CORNELL.EDU...University,Department of Biomedical Sciences, VRT 8004,Ithaca,NY,14853 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND

  16. Expression of kidney injury molecule-1 (Kim-1) in relation to necrosis and apoptosis during the early stages of Cd-induced proximal tubule injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prozialeck, Walter C.; Edwards, Joshua R.; Lamar, Peter C.

    2009-08-01

    Cadmium (Cd) is a nephrotoxic industrial and environmental pollutant that causes a generalized dysfunction of the proximal tubule. Kim-1 is a transmembrane glycoprotein that is normally not detectable in non-injured kidney, but is up-regulated and shed into the urine during the early stages of Cd-induced proximal tubule injury. The objective of the present study was to examine the relationship between the Cd-induced increase in Kim-1 expression and the onset of necrotic and apoptotic cell death in the proximal tubule. Adult male Sprague-Dawley rats were treated with 0.6 mg (5.36 {mu}mol) Cd/kg, subcutaneously, 5 days per week for up to 12more » weeks. Urine samples were analyzed for levels of Kim-1 and the enzymatic markers of cell death, lactate dehydrogenase (LDH) and alpha-glutathione-S-transferase ({alpha}-GST). In addition, necrotic cells were specifically labeled by perfusing the kidneys in situ with ethidium homodimer using a procedure that has been recently developed and validated in the Prozialeck laboratory. Cryosections of the kidneys were also processed for the immunofluorescent visualization of Kim-1 and the identification of apoptotic cells by TUNEL labeling. Results showed that significant levels of Kim-1 began to appear in the urine after 6 weeks of Cd treatment, whereas the levels of total protein, {alpha}-GST and LDH were not increased until 8-12 weeks. Results of immunofluorescence labeling studies showed that after 6 weeks and 12 weeks, Kim-1 was expressed in the epithelial cells of the proximal tubule, but that there was no increase in the number of necrotic cells, and only a modest increase in the number of apoptotic cells at 12 weeks. These results indicate that the Cd-induced increase in Kim-1 expression occurs before the onset of necrosis and at a point where there is only a modest level of apoptosis in the proximal tubule.« less

  17. Regulation of K transport in a mathematical model of the cortical collecting tubule.

    PubMed

    Strieter, J; Weinstein, A M; Giebisch, G; Stephenson, J L

    1992-12-01

    The effect of luminal flow rate and peritubular pH on Na and K transport is investigated in a mathematical model of the rabbit cortical collecting tubule. The model is used to simulate a 0.4-cm segment of tubule comprised of principal cell, alpha- and beta-intercalated cells, and lateral interspace. Calculations produce luminal profiles of Na, K, Cl, HCO3, and phosphate, as well as of electrical potential and pH. Parameter sets are developed that permit representation of both unstimulated and deoxycorticosterone acetate-stimulated tubules. A series of simulations is performed in which initial luminal flow rate is varied over the range of values between 0.1 and 30 nl/min. A marked flow-dependent enhancement of Na reabsorption and K secretion is seen, especially at lower flows, while Cl and HCO3 transport remain relatively constant. In experimental studies, it has been observed that metabolic alkalosis stimulates and metabolic acidosis inhibits K secretion, while leaving Na transport relatively unaffected [B. A. Stanton and G. Giebisch. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F544-F551, 1982; K. Tabei, S. Muto, Y. Ando, Y. Sakairi, and Y. Asano. J. Am. Soc. Nephrol. 1: 693, 1990; and K. Tabei, S. Muto, H. Furuya, and Y. Asano. J. Am. Soc. Nephrol. 2: 752, 1991]. Model calculations indicate that, when ion permeabilities are fixed and not dependent on pH, the impact of peritubular HCO3 on K secretion cannot be simulated. When junctional Cl permeability decreases with increasing interspace pH (E. M. Wright and J. M. Diamond. Biochim. Biophys. Acta 163: 57-74, 1968) in the model, there is a marked stimulation of K secretion with alkalosis and inhibition with acidosis. Furthermore, inclusion of a pH-dependent apical Na permeability [L. G. Palmer and G. Frindt. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F333-F339, 1987] that increases with increasing principal cell pH significantly reduces the change in Na+ reabsorption seen with the p

  18. Characterization and comparison of proteins in the sperm storage tubules of female chickens to bovine epididymal fluid

    USDA-ARS?s Scientific Manuscript database

    Female birds are able to store sperm in crypts called sperm storage tubules (SSTs) in their reproductive tracts for between two and six weeks. Comparatively, sperm in a cow’s reproductive tract remain viable for between 18 and 24 hours. The objective of this experiment was to try to identify and co...

  19. Caulimoviridae Tubule-Guided Transport Is Dictated by Movement Protein Properties ▿

    PubMed Central

    Sánchez-Navarro, Jesús; Fajardo, Thor; Zicca, Stefania; Pallás, Vicente; Stavolone, Livia

    2010-01-01

    Plant viruses move through plasmodesmata (PD) either as nucleoprotein complexes (NPCs) or as tubule-guided encapsidated particles with the help of movement proteins (MPs). To explore how and why MPs specialize in one mechanism or the other, we tested the exchangeability of MPs encoded by DNA and RNA virus genomes by means of an engineered alfalfa mosaic virus (AMV) system. We show that Caulimoviridae (DNA genome virus) MPs are competent for RNA virus particle transport but are unable to mediate NPC movement, and we discuss this restriction in terms of the evolution of DNA virus MPs as a means of mediating DNA viral genome entry into the RNA-trafficking PD pathway. PMID:20130061

  20. Localization of Secondary Metabolites in Marine Invertebrates: Contribution of MALDI MSI for the Study of Saponins in Cuvierian Tubules of H. forskali

    PubMed Central

    Meriaux, Céline; Bonnel, David; Salzet, Michel; Fournier, Isabelle; Wisztorski, Maxence

    2010-01-01

    Background Several species of sea cucumbers of the family Holothuriidae possess a particular mechanical defense system called the Cuvierian tubules (Ct). It is also a chemical defense system as triterpene glycosides (saponins) appear to be particularly concentrated in Ct. In the present study, the precise localization of saponins in the Ct of Holothuria forskali is investigated. Classical histochemical labeling using lectin was firstly performed but did not generate any conclusive results. Thus, MALDI mass spectrometry Imaging (MALDI-MSI) was directly applied and completed by statistical multivariate tests. A comparison between the tubules of relaxed and stressed animals was realized. Results These analyses allowed the detection of three groups of ions, corresponding to the isomeric saponins of the tubules. Saponins detected at m/z 1287 and 1303 were the most abundant and were apparently localized in the connective tissue of the tubules of both relaxed and stressed individuals. Saponins at m/z 1125 and 1141 were detected in lower amount and were present in tissues of relaxed animals. Finally, saponin ions at 1433, 1449, 1463 and 1479 were observed in some Ct of stressed holothuroids in the outer part of the connective tissue. The saponin group m/z 14xx seems therefore to be stress-specific and could originate from modifications of the saponins with m/z of 11xx. Conclusions All the results taken together indicate a complex chemical defense mechanism with, for a single organ, different sets of saponins originating from different cell populations and presenting different responses to stress. The present study also reflects that MALDI-MSI is a valuable tool for chemical ecology studies in which specific chemical signalling molecules like allelochemicals or pheromones have to be tracked. This report represents one of the very first studies using these tools to provide a functional and ecological understanding of the role of natural products from marine invertebrates

  1. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia–reperfusion injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funk, Jason A., E-mail: funkj@musc.edu; Schnellmann, Rick G., E-mail: schnell@musc.edu; Ralph H. Johnson VA Medical Center, Charleston, SC 29401

    Kidney ischemia–reperfusion (I/R) injury elicits cellular injury in the proximal tubule, and mitochondrial dysfunction is a pathological consequence of I/R. Promoting mitochondrial biogenesis (MB) as a repair mechanism after injury may offer a unique strategy to restore both mitochondrial and organ function. Rats subjected to bilateral renal pedicle ligation for 22 min were treated once daily with the SIRT1 activator SRT1720 (5 mg/kg) starting 24 h after reperfusion until 72 h–144 h. SIRT1 expression was elevated in the renal cortex of rats after I/R + vehicle treatment (IRV), but was associated with less nuclear localization. SIRT1 expression was even furthermore » augmented and nuclear localization was restored in the kidneys of rats after I/R + SRT1720 treatment (IRS). PGC-1α was elevated at 72 h–144 h in IRV and IRS kidneys; however, SRT1720 treatment induced deacetylation of PGC-1α, a marker of activation. Mitochondrial proteins ATP synthase β, COX I, and NDUFB8, as well as mitochondrial respiration, were diminished 24 h–144 h in IRV rats, but were partially or fully restored in IRS rats. Urinary kidney injury molecule-1 (KIM-1) was persistently elevated in both IRV and IRS rats; however, KIM-1 tissue expression was attenuated in IRS rats. Additionally, sustained loss of Na{sup +},K{sup +}–ATPase expression and basolateral localization and elevated vimentin in IRV rats was normalized in IRS rats, suggesting restoration of a differentiated, polarized tubule epithelium. The results suggest that SRT1720 treatment expedited recovery of mitochondrial protein expression and function by enhancing MB, which was associated with faster proximal tubule repair. Targeting MB may offer unique therapeutic strategy following ischemic injury. - Highlights: • We examined recovery of mitochondrial and renal function after ischemia–reperfusion. • SRT1720 treatment after I/R induced mitochondrial biogenesis via SIRT1/PGC-1α. • Recovery of mitochondrial

  2. Visualization of Calcium Dynamics in Kidney Proximal Tubules

    PubMed Central

    Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Csohány, Rózsa; Prókai, Ágnes; Kis-Petik, Katalin; Szabó, Attila; Bősze, Zsuzsanna; Bender, Balázs; Tóvári, József; Enyedi, Ágnes; Orbán, Tamás I.

    2015-01-01

    Intrarenal changes in cytoplasmic calcium levels have a key role in determining pathologic and pharmacologic responses in major kidney diseases. However, cell-specific delivery of calcium-sensitive probes in vivo remains problematic. We generated a transgenic rat stably expressing the green fluorescent protein-calmodulin–based genetically encoded calcium indicator (GCaMP2) predominantly in the kidney proximal tubules. The transposon-based method used allowed the generation of homozygous transgenic rats containing one copy of the transgene per allele with a defined insertion pattern, without genetic or phenotypic alterations. We applied in vitro confocal and in vivo two-photon microscopy to examine basal calcium levels and ligand- and drug-induced alterations in these levels in proximal tubular epithelial cells. Notably, renal ischemia induced a transient increase in cellular calcium, and reperfusion resulted in a secondary calcium load, which was significantly decreased by systemic administration of specific blockers of the angiotensin receptor and the Na-Ca exchanger. The parallel examination of in vivo cellular calcium dynamics and renal circulation by fluorescent probes opens new possibilities for physiologic and pharmacologic investigations. PMID:25788535

  3. Effects of lead intoxication on intercellular junctions and biochemical alterations of the renal proximal tubule cells.

    PubMed

    Navarro-Moreno, L G; Quintanar-Escorza, M A; González, S; Mondragón, R; Cerbón-Solorzáno, J; Valdés, J; Calderón-Salinas, J V

    2009-10-01

    Lead intoxication is a worldwide health problem which frequently affects the kidney. In this work, we studied the effects of chronic lead intoxication (500 ppm of Pb in drinking water during seven months) on the structure, function and biochemical properties of rat proximal tubule cells. Lead-exposed animals showed increased lead concentration in kidney, reduction of calcium and amino acids uptake, oxidative damage and glucosuria, proteinuria, hematuria and reduced urinary pH. These biochemical and physiological alterations were related to striking morphological modifications in the structure of tubule epithelial cells and in the morphology of their mitochondria, nuclei, lysosomes, basal and apical membranes. Interestingly, in addition to the nuclei, inclusion bodies were found in the cytoplasm and in mitochondria. The epithelial cell structure modifications included an early loss of the apical microvillae, followed by a decrement of the luminal space and the respective apposition and proximity of apical membranes, resulting in the formation of atypical intercellular contacts and adhesion structures. Similar but less marked alterations were observed in subacute lead intoxication as well. Our work contributes in the understanding of the physiopathology of lead intoxication on the structure of renal tubular epithelial cell-cell contacts in vivo.

  4. Protective Effect of Urtica dioica L. (Urticaceae) on Morphometric and Morphologic Alterations of Seminiferous Tubules in STZ Diabetic Rats.

    PubMed

    Golalipour, Mohammad Jafar; Kabiri Balajadeh, Babak; Ghafari, Soraya; Azarhosh, Ramin; Khori, Vahid

    2011-09-01

    Urtica dioica L. has been known as a medicinal plant in the world. This study was conducted to determine the effects of the hydroalcoholic extract of Urtica dioica leaves on seminiferous tubules of diabetic rats. Animals were allocated to control, diabetic and protective groups. Treated animals received extract of U. dioica (100 mg/ kg/ day) IP for the first 5 days and STZ injection on the 6th day. After 5 weeks, testes removed and stained with H&E technique. Tubular cell disintegration, sertoli and spermatogonia cell vacuolization, and decrease in sperm concentration observed in diabetic in comparison with control and protective groups. External seminiferous tubular diameter and seminiferous epithelial height significantly reduced (P< 0.05) in diabetic compared with controls, and these parameters increased (P< 0.05) in the treated compared with diabetics. Hydroalcoholic extract of U. dioica, before induction of diabetes; has protective role on seminiferous tubules alterations.

  5. Prazosin induced lysosomal tubulation interferes with cytokinesis and the endocytic sorting of the tumour antigen CD98hc.

    PubMed

    Fuchs, Robert; Stracke, Anika; Holzmann, Viktoria; Luschin-Ebengreuth, Gerfried; Meier-Allard, Nathalie; Ebner, Nadine; Lassacher, Teresa Maria; Absenger-Novak, Markus; Fröhlich, Eleonore; Schittmayer, Matthias; Cano Crespo, Sara; Palacin, Manuel; Rinner, Beate; Birner-Gruenberger, Ruth

    2018-06-15

    The quinazoline based drug prazosin (PRZ) is a potent inducer of apoptosis in human cancer cells. We recently reported that PRZ enters cells via endocytosis and induces tubulation of the endolysosomal system. In a proteomics approach aimed at identifying potential membrane proteins with binding affinity to quinazolines, we detected the oncoprotein CD98hc. We confirmed shuttling of CD98hc towards lysosomes and upregulation of CD98hc expression in PRZ treated cells. Gene knockout (KO) experiments revealed that endocytosis of PRZ still occurs in the absence of CD98hc - suggesting that PRZ does not enter the cell via CD98hc but misroutes the protein towards tubular lysosomes. Lysosomal tubulation interfered with completion of cytokinesis and provoked endoreplication. CD98hc KO cells showed reduced endoreplication capacity and lower sensitivity towards PRZ induced apoptosis than wild type cells. Thus, loss of CD98hc does not affect endocytosis of PRZ and lysosomal tubulation, but the ability for endoreplication and survival of cells. Furthermore, we found that glutamine, lysomototropic agents - namely chloroquine and NH 4 Cl - as well as inhibition of v-ATPase, interfere with the intracellular transport of CD98hc. In summary, our study further emphasizes lysosomes as target organelles to inhibit proliferation and to induce cell death in cancer. Most importantly, we demonstrate for the first time that the intracellular trafficking of CD98hc can be modulated by small molecules. Since CD98hc is considered as a potential drug target in several types of human malignancies, our study possesses translational significance suggesting, that old drugs are able to act on a novel target. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Mitochondrial aquaporin-8 in renal proximal tubule cells: evidence for a role in the response to metabolic acidosis.

    PubMed

    Molinas, Sara M; Trumper, Laura; Marinelli, Raúl A

    2012-08-01

    Mitochondrial ammonia synthesis in proximal tubules and its urinary excretion are key components of the renal response to maintain acid-base balance during metabolic acidosis. Since aquaporin-8 (AQP8) facilitates transport of ammonia and is localized in inner mitochondrial membrane (IMM) of renal proximal cells, we hypothesized that AQP8-facilitated mitochondrial ammonia transport in these cells plays a role in the response to acidosis. We evaluated whether mitochondrial AQP8 (mtAQP8) knockdown by RNA interference is able to impair ammonia excretion in the human renal proximal tubule cell line, HK-2. By RT-PCR and immunoblotting, we found that AQP8 is expressed in these cells and is localized in IMM. HK-2 cells were transfected with short-interfering RNA targeting human AQP8. After 48 h, the levels of mtAQP8 protein decreased by 53% (P < 0.05). mtAQP8 knockdown decreased the rate of ammonia released into culture medium in cells grown at pH 7.4 (-31%, P < 0.05) as well as in cells exposed to acid (-90%, P < 0.05). We also evaluated mtAQP8 protein expression in HK-2 cells exposed to acidic medium. After 48 h, upregulation of mtAQP8 (+74%, P < 0.05) was observed, together with higher ammonia excretion rate (+73%, P < 0.05). In vivo studies in NH(4)Cl-loaded rats showed that mtAQP8 protein expression was also upregulated after 7 days of acidosis in renal cortex (+51%, P < 0.05). These data suggest that mtAQP8 plays an important role in the adaptive response of proximal tubule to acidosis possibly facilitating mitochondrial ammonia transport.

  7. Akt Links Insulin Signaling to Albumin Endocytosis in Proximal Tubule Epithelial Cells

    PubMed Central

    Coffey, Sam; Costacou, Tina; Orchard, Trevor; Erkan, Elif

    2015-01-01

    Diabetes mellitus (DM) has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA) has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt) in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160) and cytoplasmic tail of megalin. Mice with type 1 DM (T1D) displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications) study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN) at an earlier stage. PMID:26465605

  8. Localization of the Calcium Regulated Citrate Transport Process in Proximal Tubule Cells

    PubMed Central

    Hering-Smith, Kathleen S.; Mao, Weibo; Schiro, Faith R.; Coleman-Barnett, Joycelynn; Pajor, Ana M.; Hamm, L. Lee

    2014-01-01

    Urinary citrate is an important inhibitor of calcium stone formation. Most of citrate reabsorption in the proximal tubule is thought to occur via a dicarboxylate transporter NaDC1 located in the apical membrane. OK cells, an established opossum kidney proximal tubule cell line, transport citrate but the characteristics change with extracellular calcium such that low calcium solutions stimulate total citrate transport as well as increase the apparent affinity for transport. The present studies address several fundamental properties of this novel process: the polarity of the transport process, the location of the calcium-sensitivity and whether NaDC1 is present in OK cells. OK cells grown on permeable supports exhibited apical > basolateral citrate transport. Apical transport of both citrate and succinate was sensitive to extracellular calcium whereas basolateral transport was not. Apical calcium, rather than basolateral, was the predominant determinant of changes in transport. Also 2,3-dimethylsuccinate, previously identified as an inhibitor of basolateral dicarboxylate transport, inhibited apical citrate uptake. Although the calcium-sensitive transport process in OK cells is functionally not typical NaDC1, NaDC1 is present in OK cells by Western blot and PCR. By immunolocalization studies, NaDC1 was predominantly located in discrete apical membrane or subapical areas. However by biotinylation, apical NaDC1 decreases in the apical membrane with lowering calcium. In sum, OK cells express a calcium-sensitive/regulated dicarboxylate process at the apical membrane which responds to variations in apical calcium. Despite the functional differences of this process compared to NaDC1, NaDC1 is present in these cells, but predominantly in subapical vesicles. PMID:24652587

  9. Constitutively Active SPAK Causes Hyperkalemia by Activating NCC and Remodeling Distal Tubules.

    PubMed

    Grimm, P Richard; Coleman, Richard; Delpire, Eric; Welling, Paul A

    2017-09-01

    Aberrant activation of with no lysine (WNK) kinases causes familial hyperkalemic hypertension (FHHt). Thiazide diuretics treat the disease, fostering the view that hyperactivation of the thiazide-sensitive sodium-chloride cotransporter (NCC) in the distal convoluted tubule (DCT) is solely responsible. However, aberrant signaling in the aldosterone-sensitive distal nephron (ASDN) and inhibition of the potassium-excretory renal outer medullary potassium (ROMK) channel have also been implicated. To test these ideas, we introduced kinase-activating mutations after Lox-P sites in the mouse Stk39 gene, which encodes the terminal kinase in the WNK signaling pathway, Ste20-related proline-alanine-rich kinase (SPAK). Renal expression of the constitutively active (CA)-SPAK mutant was specifically targeted to the early DCT using a DCT-driven Cre recombinase. CA-SPAK mice displayed thiazide-treatable hypertension and hyperkalemia, concurrent with NCC hyperphosphorylation. However, thiazide-mediated inhibition of NCC and consequent restoration of sodium excretion did not immediately restore urinary potassium excretion in CA-SPAK mice. Notably, CA-SPAK mice exhibited ASDN remodeling, involving a reduction in connecting tubule mass and attenuation of epithelial sodium channel (ENaC) and ROMK expression and apical localization. Blocking hyperactive NCC in the DCT gradually restored ASDN structure and ENaC and ROMK expression, concurrent with the restoration of urinary potassium excretion. These findings verify that NCC hyperactivity underlies FHHt but also reveal that NCC-dependent changes in the driving force for potassium secretion are not sufficient to explain hyperkalemia. Instead, a DCT-ASDN coupling process controls potassium balance in health and becomes aberrantly activated in FHHt. Copyright © 2017 by the American Society of Nephrology.

  10. Qualitative analysis of precipitate formation on the surface and in the tubules of dentin irrigated with sodium hypochlorite and a final rinse of chlorhexidine or QMiX.

    PubMed

    Kolosowski, Kamil P; Sodhi, Rana N S; Kishen, Anil; Basrani, Bettina R

    2014-12-01

    Interaction of sodium hypochlorite (NaOCl) mixed with chlorhexidine (CHX) produces a brown precipitate containing para-chloroaniline (PCA). When QMiX is mixed with NaOCl, no precipitate forms, but color change occurs. The aim of this study was to qualitatively assess the formation of precipitate and PCA on the surface and in the tubules of dentin irrigated with NaOCl, followed either by EDTA, NaOCl, and CHX or by saline and QMiX by using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Dentin blocks were obtained from human maxillary molars, embedded in resin, and cross-sectioned to expose dentin. Specimens in group 1 were immersed in 2.5% NaOCl, followed by 17% EDTA, 2.5% NaOCl, and 2% CHX. Specimens in group 2 were immersed in 2.5% NaOCl, followed by saline and QMiX. The dentin surfaces were subjected to TOF-SIMS spectra analysis. Longitudinal sections of dentin blocks were then exposed and subjected to TOF-SIMS analysis. All samples and analysis were performed in triplicate for confirmation. TOF-SIMS analysis of group 1 revealed an irregular precipitate, containing PCA and CHX breakdown products, on the dentin surfaces, occluding and extending into the tubules. In TOF-SIMS analysis of group 2, no precipitates, including PCA, were detected on the dentin surface or in the tubules. Within the limitations of this study, precipitate containing PCA was formed in the tubules of dentin irrigated with NaOCl followed by CHX. No precipitates or PCA were detected in the tubules of dentin irrigated with NaOCl followed by saline and QMiX. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Evolutionary change in the structure of the regulatory region that drives tissue and temporally regulated expression of alcohol dehydrogenase gene in Drosophila funebris.

    PubMed

    Amador, A; Papaceit, M; Juan, E

    2001-06-01

    The Adh locus of Drosophilidae is organized as a single gene transcribed from two spatially and temporally regulated promoters except in species of the repleta group, which have two single promoter genes. Here we show that in Drosophila funebris the Adh gene is transcribed from a single promoter, in both larva and adult, with qualitative and quantitative species specific-differences in tissue distribution. The gene is expressed in larval fat body but in other tissues such as gastric caeca, midgut and Malpighian tubules its expression is reduced compared to most Drosophilidae species, and in adults it is almost limited to the fat body. The comparative analysis of gene expression of two strains, which differ by a duplication, indicates that the cis elements necessary for this pattern of expression in larvae are included in the region of 1.55 kb upstream of the transcription initiation site. This new organization reveals the evolution of a different regulatory strategy to express the Adh gene in the subgenus Drosophila.

  12. Potential of the Lectin/Inhibitor Isolated from Crataeva tapia Bark (CrataBL) for Controlling Callosobruchus maculatus Larva Development.

    PubMed

    Nunes, Natalia N S; Ferreira, Rodrigo S; Silva-Lucca, Rosemeire A; de Sá, Leonardo F R; de Oliveira, Antônia Elenir A; Correia, Maria Tereza dos S; Paiva, Patrícia Maria G; Wlodawer, Alexander; Oliva, Maria Luiza V

    2015-12-09

    Callosobruchus maculatus is an important predator of cowpeas. Due to infestation during storage, this insect affects the quality of seed and crop yield. This study aimed to investigate the effects of CrataBL, a multifunction protein isolated from Crataeva tapia bark, on C. maculatus larva development. The protein, which is stable even in extreme pH conditions, showed toxic activity, reducing the larval mass 45 and 70% at concentrations of 0.25 and 1.0% (w/w), respectively. Acting as an inhibitor, CrataBL decreased by 39% the activity of cysteine proteinases from larval gut. Conversely, the activity of serine proteinases was increased about 8-fold. The toxic properties of CrataBL may also be attributed to its capacity of binding to glycoproteins or glycosaminoglycans. Such binding interferes with larval metabolism, because CrataBL-FITC was found in the fat body, Malpighian tubules, and feces of larvae. These results demonstrate the potential of this protein for controlling larva development.

  13. In vivo 3D PIXE-micron-CT imaging of Drosophila melanogaster using a contrast agent

    NASA Astrophysics Data System (ADS)

    Matsuyama, Shigeo; Hamada, Naoki; Ishii, Keizo; Nozawa, Yuichiro; Ohkura, Satoru; Terakawa, Atsuki; Hatori, Yoshinobu; Fujiki, Kota; Fujiwara, Mitsuhiro; Toyama, Sho

    2015-04-01

    In this study, we developed a three-dimensional (3D) computed tomography (CT) in vivo imaging system for imaging small insects with micrometer resolution. The 3D CT imaging system, referred to as 3D PIXE-micron-CT (PIXEμCT), uses characteristic X-rays produced by ion microbeam bombardment of a metal target. PIXEμCT was used to observe the body organs and internal structure of a living Drosophila melanogaster. Although the organs of the thorax were clearly imaged, the digestive organs in the abdominal cavity could not be clearly discerned initially, with the exception of the rectum and the Malpighian tubule. To enhance the abdominal images, a barium sulfate powder radiocontrast agent was added. For the first time, 3D images of the ventriculus of a living D. melanogaster were obtained. Our results showed that PIXEμCT can provide in vivo 3D-CT images that reflect correctly the structure of individual living organs, which is expected to be very useful in biological research.

  14. Efficacy of Modified Bioactive Glass for Dentin Remineralization and Obstruction of Dentinal Tubules.

    PubMed

    Saffarpour, Mahshid; Mohammadi, Maryam; Tahriri, Mohammadreza; Zakerzadeh, Azadeh

    2017-07-01

    This study assessed the efficacy of modified bioactive glass (MBG) for dentin remineralization and obstruction of dentinal tubules. Thirty-six dentin discs were made from 20 third molars and were stored in 12% lactic acid solution for two weeks to induce demineralization. The samples were divided into three groups (n=12): 1- BG, 2- BG modified with 5% strontium (Sr) and 3- BG modified with 10% Sr. After applying the BG, the samples were stored in artificial saliva for 7, 14 and 21 days. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray Diffraction (XRD) analysis, Scanning Electron Microscopy (SEM), and Energy-Dispersive X-ray (EDX) analysis were used to assess remineralization. Also, 6 dentin discs were divided into three groups of BG, BG modified with 5% Sr and BG modified with 10% Sr, to examine tubular occlusion. The discs were etched using 0.5M of EDTA for two minutes and were stored in artificial saliva for 7 days. Changes in dentin surface morphology were evaluated under SEM. Group 3 showed high rates of remineralization at days 7 and 14, although the rate decreased at day 21. Group 2 exhibited high rates of remineralization at days 7, 14 and 21. Dentinal tubules were partially occluded by BG and BG modified with 5% Sr, while they were almost completely obstructed after the use of BG modified with 10% Sr. Strontium increases remineralization. Addition of 10% Sr to BG enhances apatite formation; however, the apatite dissolves over time. Addition of 5% Sr to BG stabilizes the apatite lattice and increases the remineralization.

  15. Protective Effect of Urtica dioica L. (Urticaceae) on Morphometric and Morphologic Alterations of Seminiferous Tubules in STZ Diabetic Rats

    PubMed Central

    Golalipour, Mohammad Jafar; Kabiri Balajadeh, Babak; Ghafari, Soraya; Azarhosh, Ramin; Khori, Vahid

    2011-01-01

    Objective(s) Urtica dioica L. has been known as a medicinal plant in the world. This study was conducted to determine the effects of the hydroalcoholic extract of Urtica dioica leaves on seminiferous tubules of diabetic rats. Materials and Methods Animals were allocated to control, diabetic and protective groups. Treated animals received extract of U. dioica (100 mg/ kg/ day) IP for the first 5 days and STZ injection on the 6th day. After 5 weeks, testes removed and stained with H&E technique. Results Tubular cell disintegration, sertoli and spermatogonia cell vacuolization, and decrease in sperm concentration observed in diabetic in comparison with control and protective groups. External seminiferous tubular diameter and seminiferous epithelial height significantly reduced (P< 0.05) in diabetic compared with controls, and these parameters increased (P< 0.05) in the treated compared with diabetics. Conclusion Hydroalcoholic extract of U. dioica, before induction of diabetes; has protective role on seminiferous tubules alterations. PMID:23493848

  16. Chloride secretagogues stimulate inositol phosphate formation in shark rectal gland tubules cultured in suspension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecay, T.W.; Valentich, J.D.

    1991-03-01

    Neuroendocrine activation of transepithelial chloride secretion by shark rectal gland cells is associated with increases in cellular cAMP, cGMP, and free calcium concentrations. We report here on the effects of several chloride secretagogues on inositol phosphate formation in cultured rectal gland tubules. Vasoactive intestinal peptide (VIP), atriopeptin (AP), and ionomycin increase the total inositol phosphate levels of cultured tubules, as measured by ion exchange chromatography. Forskolin, a potent chloride secretagogue, has no effect on inositol phosphate formation. The uptake of {sup 3}H-myo-inositol into phospholipids is very slow, preventing the detection of increased levels of inositol trisphosphate. However, significant increases inmore » inositol monophosphate (IP1) and inositol biphosphate (IP2) were measured. The time course of VIP- and AP-stimulated IP1 and IP2 formation is similar to the effects of these agents on the short-circuit current responses of rectal gland monolayer cultures. In addition, aluminum fluoride, an artificial activator of guanine nucleotide-binding proteins, stimulates IP1 and IP2 formation. We conclude that rectal gland cells contain VIP and AP receptors coupled to the activation of phospholipase C. Coupling may be mediated by G-proteins. Receptor-stimulated increases in inositol phospholipid metabolism is one mechanism leading to increased intracellular free calcium concentrations, an important regulatory event in the activation of transepithelial chloride secretion by shark rectal gland epithelial cells.« less

  17. Morphology of the kidney of adult bowfin, Amia calva, with emphasis on "renal chloride cells" in the tubule.

    PubMed

    Youson, J H; Butler, D G

    1988-05-01

    The nephron of adult bowfin, Amia calva, was described using light and electron microscopic techniques. The kidney of the bowfin possesses an abundant supply of renal corpuscles with each consisting of a glomerulus and a Bowman's capsule of visceral (podocyte) and parietal layers. No juxtaglomerular apparatus is present. The epithelium of the tubule is continuous with the parietal epithelium and is divisible in descending order into neck, first proximal, second proximal, first distal, second distal, and collecting segments. The tubules drain into a complex system of collecting ducts that ultimately unite with the main excretory duct, the archinephric duct. Mucous cells are the dominant cell throughout the entire ductular system. Nephrostomes are dispersed along the kidney capsule. The neck segment has a ciliated epithelium, and while both proximal segments possess a prominent brush border, the fine structure of the first implies involvement in protein absorption and the second in the transport and reabsorption of solutes. The cells of the first distal segment are characterized by deep infolding of the plasma membrane and a rich supply of mitochondria suggesting the presence of a mechanism for ion transport. The second distal segment is composed of cells resembling the chloride cells of fishes and these cells are present in progressively decreasing numbers in the collecting segment and duct system so that only a few are present in the epithelium of the archinephric duct. The "renal chloride cells" possess an abundant network of smooth tubules and numerous mitochondria with a rich supply of cristae. Glycogen is also a conspicuous component of these cells. The presence of "renal chloride cells" in this freshwater holostean, in other relatively primitive freshwater teleosts, and in larval and adult lampreys is discussed with reference to both phylogeny and the need for a special mechanism for renal ion conservation through absorption.

  18. Effect of a novel bioactive glass-ceramic on dentinal tubule occlusion: an in vitro study.

    PubMed

    Zhong, Y; Liu, J; Li, X; Yin, W; He, T; Hu, D; Liao, Y; Yao, X; Wang, Y

    2015-03-01

    This in vitro study aimed to assess the ability and efficacy of HX-BGC, a novel bioactive glass-ceramic (SiO2-P2 O5-CaO-Na2 O-SrO), to reduce dentine tubule permeability. Dentine discs from human third molars were etched and randomly allocated into five groups: Group 1--distilled water; Group 2--Sensodyne Repair toothpaste (containing NovaMin®); Group 3--HX-BGC toothpaste (containing 7.5% HX-BGC); Group 4--control toothpaste (without HX-BGC); and Group 5--HX-BGC powder. Specimens were treated daily by brushing with an electric toothbrush for 20 seconds. Between daily treatments (7 days total), specimens were immersed in artificial saliva for 24 hours. Dentine permeability was measured at baseline, after the first treatment, after the first 24-hour immersion in artificial saliva and at the end of day 7. Dentine morphology and surface deposits were observed by scanning electron microscopy after one day and 7 days of treatment, respectively. Sensodyne Repair and bioactive glass-ceramic toothpaste significantly and immediately lowered dentine permeability. The HX-BGC powder group showed the highest reduction in dentine permeability after 7 days of treatment. The novel bioactive glass-ceramic material HX-BGC is effective in reducing dentine permeability by occluding open dentine tubules, indicating that HX-BGC may be a potential treatment for dentine hypersensitivity. © 2015 Australian Dental Association.

  19. Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin

    NASA Astrophysics Data System (ADS)

    Shinno, Yuko; Ishimoto, Takuya; Saito, Mitsuru; Uemura, Reo; Arino, Masumi; Marumo, Keishi; Nakano, Takayoshi; Hayashi, Mikako

    2016-01-01

    In clinical dentistry, since fracture is a major cause of tooth loss, better understanding of mechanical properties of teeth structures is important. Dentin, the major hard tissue of teeth, has similar composition to bone. In this study, we investigated the mechanical properties of human dentin not only in terms of mineral density but also using structural and quality parameters as recently accepted in evaluating bone strength. Aged crown and root dentin (age ≥ 40) exhibited significantly lower flexural strength and toughness than young dentin (age < 40). Aged dentin, in which the dentinal tubules were occluded with calcified material, recorded the highest mineral density; but showed significantly lower flexural strength than young dentin. Dentin with strong alignment of the c-axis in hydroxyapatite exhibited high fracture strength, possibly because the aligned apatite along the collagen fibrils may reinforce the intertubular dentin. Aged dentin, showing a high advanced glycation end-products (AGEs) level in its collagen, recorded low flexural strength. We first comprehensively identified significant factors, which affected the inferior mechanical properties of aged dentin. The low mechanical strength of aged dentin is caused by the high mineral density resulting from occlusion of dentinal tubules and accumulation of AGEs in dentin collagen.

  20. High doses of nandrolone decanoate reduce volume of testis and length of seminiferous tubules in rats.

    PubMed

    Noorafshan, Ali; Karbalay-Doust, Saied; Ardekani, Fakhrodin Mesbah

    2005-02-01

    Anabolic-androgenic steroid (AAS) compounds rank among the drugs most widely abused with the goal of improving athletic ability, appearance, or muscle mass. It has been shown that these compounds have adverse effects on human and animal physiology and sperm quality, but quantitative structural changes of the testis have received less attention. The present study was conducted to evaluate the effects of nandrolone decanoate, which is one of the AAS compounds, on testis weight and volume, diameter and length of seminiferous tubules in rats by unbiased stereological methods. Adult rats were divided into three groups. The first comprised control rats; the second and third groups received low and high doses of nandrolone decanoate for 14 weeks. The rats were then left untreated for 14 weeks. After removal of the testis, stereological study of these tissues showed that the mean volume of testis and length of the seminiferous tubules in the animals that received high doses of nandrolone decanoate were reduced approximately 32% (p<0.01) and approximately 31% (p<0.04), respectively, in comparison with the control group. It can be concluded that the high doses of nandrolone decanoate produce structural changes in the rat testis that remain 14 weeks after stopping injection of the drug.

  1. Effect of Nd:YAG Laser Irradiation on the Number of Open Dentinal Tubules and Their Diameter with and without Smear of Graphite: An in Vitro Study

    PubMed Central

    Maleki-pour, Mohammad Reza; Birang, Reza; Khoshayand, Maryam; Naghsh, Narges

    2015-01-01

    Introduction: Dentin hypersensitivity (DH) is characterized by tooth pain arising from exposure of dental roots. In this study the efficiency of neodymium yttrium-aluminum-garnet (Nd:YAG) laser in association with graphite on dentinal surface changes as the alternative to the treatment of DH was evaluated. Methods: Sixteen noncarious human third molars were collected and sectioned into 5 parts from cementoenamel junction (CEJ) to the furcation area. The prepared samples were randomly assigned into five groups (Gs) of each 16: Control (G1), treated by Nd:YAG laser at 0.5 W (G2), irradiation of Nd:YAG with a 0.25 W output power(G3), smeared with graphite and then using Nd:YAG laser at output powers of 0.5 W (G4) and 0.25 W (G5). For all groups the parameters were 15 Hz, 60 s, at two stages and with a right angle irradiation. The number and diameter of dentinal tubules (DT) were compared and analyzed by SPSS software, One way ANOVA and Post hoc LSD tests. Results:The number of open dentinal tubules varied significantly between all groups except among G1 with G3 and G2 with G5. Multiple comparison tests also exhibited significant differences regarding the diameter of tubules between the groups two by two except among G2 with G5. Conclusion: Nd:YAG laser used at 0.25 W and 0.5 W with application of graphite smear was able to reduce the number and diameter of dentinal tubules. PMID:25699166

  2. Novel cystine transporter in renal proximal tubule identified as a missing partner of cystinuria-related plasma membrane protein rBAT/SLC3A1.

    PubMed

    Nagamori, Shushi; Wiriyasermkul, Pattama; Guarch, Meritxell Espino; Okuyama, Hirohisa; Nakagomi, Saya; Tadagaki, Kenjiro; Nishinaka, Yumiko; Bodoy, Susanna; Takafuji, Kazuaki; Okuda, Suguru; Kurokawa, Junko; Ohgaki, Ryuichi; Nunes, Virginia; Palacín, Manuel; Kanai, Yoshikatsu

    2016-01-19

    Heterodimeric amino acid transporters play crucial roles in epithelial transport, as well as in cellular nutrition. Among them, the heterodimer of a membrane protein b(0,+)AT/SLC7A9 and its auxiliary subunit rBAT/SLC3A1 is responsible for cystine reabsorption in renal proximal tubules. The mutations in either subunit cause cystinuria, an inherited amino aciduria with impaired renal reabsorption of cystine and dibasic amino acids. However, an unsolved paradox is that rBAT is highly expressed in the S3 segment, the late proximal tubules, whereas b(0,+)AT expression is highest in the S1 segment, the early proximal tubules, so that the presence of an unknown partner of rBAT in the S3 segment has been proposed. In this study, by means of coimmunoprecipitation followed by mass spectrometry, we have found that a membrane protein AGT1/SLC7A13 is the second partner of rBAT. AGT1 is localized in the apical membrane of the S3 segment, where it forms a heterodimer with rBAT. Depletion of rBAT in mice eliminates the expression of AGT1 in the renal apical membrane. We have reconstituted the purified AGT1-rBAT heterodimer into proteoliposomes and showed that AGT1 transports cystine, aspartate, and glutamate. In the apical membrane of the S3 segment, AGT1 is suggested to locate itself in close proximity to sodium-dependent acidic amino acid transporter EAAC1 for efficient functional coupling. EAAC1 is proposed to take up aspartate and glutamate released into luminal fluid by AGT1 due to its countertransport so that preventing the urinary loss of aspartate and glutamate. Taken all together, AGT1 is the long-postulated second cystine transporter in the S3 segment of proximal tubules and a possible candidate to be involved in isolated cystinuria.

  3. Efficacy of Modified Bioactive Glass for Dentin Remineralization and Obstruction of Dentinal Tubules

    PubMed Central

    Saffarpour, Mahshid; Tahriri, Mohammadreza; Zakerzadeh, Azadeh

    2017-01-01

    Objectives: This study assessed the efficacy of modified bioactive glass (MBG) for dentin remineralization and obstruction of dentinal tubules. Materials and Methods: Thirty-six dentin discs were made from 20 third molars and were stored in 12% lactic acid solution for two weeks to induce demineralization. The samples were divided into three groups (n=12): 1- BG, 2- BG modified with 5% strontium (Sr) and 3- BG modified with 10% Sr. After applying the BG, the samples were stored in artificial saliva for 7, 14 and 21 days. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray Diffraction (XRD) analysis, Scanning Electron Microscopy (SEM), and Energy-Dispersive X-ray (EDX) analysis were used to assess remineralization. Also, 6 dentin discs were divided into three groups of BG, BG modified with 5% Sr and BG modified with 10% Sr, to examine tubular occlusion. The discs were etched using 0.5M of EDTA for two minutes and were stored in artificial saliva for 7 days. Changes in dentin surface morphology were evaluated under SEM. Results: Group 3 showed high rates of remineralization at days 7 and 14, although the rate decreased at day 21. Group 2 exhibited high rates of remineralization at days 7, 14 and 21. Dentinal tubules were partially occluded by BG and BG modified with 5% Sr, while they were almost completely obstructed after the use of BG modified with 10% Sr. Conclusions: Strontium increases remineralization. Addition of 10% Sr to BG enhances apatite formation; however, the apatite dissolves over time. Addition of 5% Sr to BG stabilizes the apatite lattice and increases the remineralization. PMID:29285031

  4. From single molecule to single tubules

    NASA Astrophysics Data System (ADS)

    Guo, Chin-Lin

    2012-02-01

    Biological systems often make decisions upon conformational changes and assembly of single molecules. In vivo, epithelial cells (such as the mammary gland cells) can respond to extracellular matrix (ECM) molecules, type I collagen (COL), and switch their morphology from a lobular lumen (100-200 micron) to a tubular lumen (1mm-1cm). However, how cells make such a morphogenetic decision through interactions with each other and with COL is unclear. Using a temporal control of cell-ECM interaction, we find that epithelial cells, in response to a fine-tuned percentage of type I collagen (COL) in ECM, develop various linear patterns. Remarkably, these patterns allow cells to self-assemble into a tubule of length ˜ 1cm and diameter ˜ 400 micron in the liquid phase (i.e., scaffold-free conditions). In contrast with conventional thought, the linear patterns arise through bi-directional transmission of traction force, but not through diffusible biochemical factors secreted by cells. In turn, the transmission of force evokes a long-range (˜ 600 micron) intercellular mechanical interaction. A feedback effect is encountered when the mechanical interaction modifies cell positioning and COL alignment. Micro-patterning experiments further reveal that such a feedback is a novel cell-number-dependent, rich-get-richer process, which allows cells to integrate mechanical interactions into long-range (> 1mm) linear coordination. Our results suggest a mechanism cells can use to form and coordinate long-range tubular patterns, independent of those controlled by diffusible biochemical factors, and provide a new strategy to engineer/regenerate epithelial organs using scaffold-free self-assembly methods.

  5. Tissue Localization and Variation of Major Symbionts in Haemaphysalis longicornis, Rhipicephalus haemaphysaloides, and Dermacentor silvarum in China.

    PubMed

    Wang, Mengfei; Zhu, Dan; Dai, Jianfeng; Zhong, Zhengwei; Zhang, Yi; Wang, Jingwen

    2018-05-15

    Ticks are important disease vectors, as they transmit a variety of human and animal pathogens worldwide. Symbionts that coevolved with ticks confer crucial benefits to their host in nutrition metabolism, fecundity, and vector competence. Although over 100 tick species have been identified in China, general information on tick symbiosis is limited. Here, we visualized the tissue distribution of Coxiella sp. and Rickettsia sp. in lab-reared Haemaphysalis longicornis and Rhipicephalus haemaphysaloides by fluorescent in situ hybridization. We found that Coxiella sp. colonized exclusively the Malpighian tubules and ovaries of H. longicornis , while Rickettsia sp. additionally colonized the midgut of R. haemaphysaloides We also investigated the population structure of microbiota in Dermacentor silvarum ticks collected from Inner Mongolia, China, and found that Coxiella , Rickettsia , and Pseudomonas are the three dominant genera. No significant difference in microbiota composition was found between male and female D. silvarum ticks. We again analyzed the tissue localization of Coxiella sp. and Rickettsia sp. and found that they displayed tissue tropisms similar to those in R. haemaphysaloides , except that Rickettsia sp. colonized the nuclei of spermatids instead of ovaries in D. silvarum Altogether, our results suggest that Coxiella sp. and Rickettsia sp. are the main symbionts in the three ticks and reside primarily in midgut, Malpighian tubules, and reproductive tissues, but their tissue distribution varies in association with species and sexes. IMPORTANCE Tick-borne diseases constitute a major public health burden, as they are increasing in frequency and severity worldwide. The presence of symbionts helps ticks to metabolize nutrients, promotes fecundity, and influences pathogen infections. Increasing numbers of tick-borne pathogens have been identified in China; however, knowledge of native ticks, especially tick symbiosis, is limited. In this study, we analyze the

  6. Dysferlin, annexin A1, and mitsugumin 53 are upregulated in muscular dystrophy and localize to longitudinal tubules of the T-system with stretch.

    PubMed

    Waddell, Leigh B; Lemckert, Frances A; Zheng, Xi F; Tran, Jenny; Evesson, Frances J; Hawkes, Joanne M; Lek, Angela; Street, Neil E; Lin, Peihui; Clarke, Nigel F; Landstrom, Andrew P; Ackerman, Michael J; Weisleder, Noah; Ma, Jianjie; North, Kathryn N; Cooper, Sandra T

    2011-04-01

    Mutations in dysferlin cause an inherited muscular dystrophy because of defective membrane repair. Three interacting partners of dysferlin are also implicated in membrane resealing: caveolin-3 (in limb girdle muscular dystrophy type 1C), annexin A1, and the newly identified protein mitsugumin 53 (MG53). Mitsugumin 53 accumulates at sites of membrane damage, and MG53-knockout mice display a progressive muscular dystrophy. This study explored the expression and localization of MG53 in human skeletal muscle, how membrane repair proteins are modulated in various forms of muscular dystrophy, and whether MG53 is a primary cause of human muscle disease. Mitsugumin 53 showed variable sarcolemmal and/or cytoplasmic immunolabeling in control human muscle and elevated levels in dystrophic patients. No pathogenic MG53 mutations were identified in 50 muscular dystrophy patients, suggesting that MG53 is unlikely to be a common cause of muscular dystrophy in Australia. Western blot analysis confirmed upregulation of MG53, as well as of dysferlin, annexin A1, and caveolin-3 to different degrees, in different muscular dystrophies. Importantly, MG53, annexin A1, and dysferlin localize to the t-tubule network and show enriched labeling at longitudinal tubules of the t-system in overstretch. Our results suggest that longitudinal tubules of the t-system may represent sites of physiological membrane damage targeted by this membrane repair complex.

  7. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia-reperfusion injury.

    PubMed

    Funk, Jason A; Schnellmann, Rick G

    2013-12-01

    Kidney ischemia-reperfusion (I/R) injury elicits cellular injury in the proximal tubule, and mitochondrial dysfunction is a pathological consequence of I/R. Promoting mitochondrial biogenesis (MB) as a repair mechanism after injury may offer a unique strategy to restore both mitochondrial and organ function. Rats subjected to bilateral renal pedicle ligation for 22 min were treated once daily with the SIRT1 activator SRT1720 (5mg/kg) starting 24h after reperfusion until 72h-144 h. SIRT1 expression was elevated in the renal cortex of rats after I/R+vehicle treatment (IRV), but was associated with less nuclear localization. SIRT1 expression was even further augmented and nuclear localization was restored in the kidneys of rats after I/R+SRT1720 treatment (IRS). PGC-1α was elevated at 72 h-144 h in IRV and IRS kidneys; however, SRT1720 treatment induced deacetylation of PGC-1α, a marker of activation. Mitochondrial proteins ATP synthase β, COX I, and NDUFB8, as well as mitochondrial respiration, were diminished 24h-144 h in IRV rats, but were partially or fully restored in IRS rats. Urinary kidney injury molecule-1 (KIM-1) was persistently elevated in both IRV and IRS rats; however, KIM-1 tissue expression was attenuated in IRS rats. Additionally, sustained loss of Na(+),K(+)-ATPase expression and basolateral localization and elevated vimentin in IRV rats was normalized in IRS rats, suggesting restoration of a differentiated, polarized tubule epithelium. The results suggest that SRT1720 treatment expedited recovery of mitochondrial protein expression and function by enhancing MB, which was associated with faster proximal tubule repair. Targeting MB may offer unique therapeutic strategy following ischemic injury. © 2013. Published by Elsevier Inc. All rights reserved.

  8. Objectives, Outlines, and Preparation for the Resist Tubule Space Experiment to Understand the Mechanism of Gravity Resistance in Plants

    NASA Astrophysics Data System (ADS)

    Hoson, Takayuki; Akamatsu, Haruhiko; Soga, Kouichi; Wakabayashi, Kazuyuki; Hashimoto, Hirofumi; Yamashita, Masamichi; Hasegawa, Katsuya; Yano, Sachiko; Omori, Katsunori; Ishioka, Noriaki; Matsumoto, Shohei; Kasahara, Haruo; Shimazu, Toru; A. Baba, Shoji; Hashimoto, Takashi

    Gravity resistance is a principal graviresponse in plants. In resistance to hypergravity, the gravity signal may be perceived by the mechanoreceptors located on the plasma membrane, and then transformed and transduced via the structural continuum or physiological continuity of cortical microtubules-plasma membrane-cell wall, leading to an increase in the cell wall rigidity as the final response. The Resist Tubule experiment, which will be conducted in the Kibo Module on the International Space Station, aims to confirm that this hypothesis is applicable to resistance to 1 G gravity. There are two major objectives in the Resist Tubule experiment. One is to quantify the contributions of cortical microtubules to gravity resistance using Arabidopsis tubulin mutants with different degrees of defects. Another objective is to analyze the modifications to dynamics of cortical microtubules and membrane rafts under microgravity conditions on-site by observing green fluorescent protein (GFP)-expressing Arabidopsis lines with the fluorescence microscope in the Kibo. We have selected suitable mutants, developed necessary hardware, and fixed operation procedure for the experiment.

  9. Antagonistic actions of renal dopamine and 5-hydroxytryptamine: increase in Na+, K(+)-ATPase activity in renal proximal tubules via activation of 5-HT1A receptors.

    PubMed Central

    Soares-da-Silva, P.; Pinto-do-O, P. C.; Bertorello, A. M.

    1996-01-01

    1. 5-Hydroxytryptamine (5-HT) is antinatriuretic. Since this effect of 5-HT is not accomplished by changes in glomerular haemodynamics, we have examined in this study whether 5-HT may influence sodium excretion by affecting the Na+, K(+)-ATPase activity in renal cortical tubules. 2. Na+, K(+)-ATPase activity was determined as the rate of [32P]-ATP hydrolysis in renal cortical tubules in suspension. Basal Na+, K(+)-ATPase activity in renal tubules was 4.8 +/- 0.4 mumol Pi mg-1 protein h-1 (n = 8). The 5-HT1A receptor agonist, (+/-)-8-hydroxy-2-(di-n-propylamino) tetraline (8-OH-DPAT) (10 to 3000 nM) induced a concentration-dependent increase (P < 0.05) in Na+, K(+)-ATPase activity with an EC50 value of 355 nM (95% confidence limits: 178, 708). Maximal stimulation elicited by 3000 nM of 8-OH-DPAT was antagonized by the selective 5-HT1A receptor antagonist, (+)-WAY 100135 10 to 1000 nM) with an IC50 value of 20 nM (14, 29); 0.3 microM (+)-WAY 100135 completely abolished (P < 0.01) the stimulatory effect of 8-OH-DPAT. The stimulatory effect of 8-OH-DPAT was found to be time-dependent (15 +/- 2% and 66 +/- 7% increase at 2.5 and 5.0 min, respectively). The 5-HT2 receptor agonist alpha-methyl-5-HT (100 to 3000 nM) did not induce any significant changes in Na+, K(+)-ATPase activity (5.0 +/- 1.5 mumol Pi mg-1 protein h-1; n = 4). 3. The stimulatory effect 8-OH-DPAT was absent when homogenates were used. Stimulation occurred at a Vmax concentration (70 mM) of sodium supporting the notion that stimulation occurs independently of increasing sodium permeability. 4. The inhibitory effect of dopamine (P < 0.05) on Na+, K(+)-ATPase activity was blunted by co-incubation with 8-OH-DPAT (0.5 microM). 5. It is concluded that activation of 5-HT1A receptors increases Na+, K(+)-ATPase activity in renal cortical tubules; this effect may represent an important cellular mechanism, at the tubule level, responsible for the antinatriuretic effect of 5-HT. Images Figure 4 PMID:8882616

  10. Proximal tubule proteins are significantly elevated in bladder urine of patients with ureteropelvic junction obstruction and may represent novel biomarkers: A pilot study.

    PubMed

    Gerber, Claire; Harel, Miriam; Lynch, Miranda L; Herbst, Katherine W; Ferrer, Fernando A; Shapiro, Linda H

    2016-04-01

    Ureteropelvic junction obstruction (UPJO) is the major cause of hydronephrosis in children and may lead to renal injury and early renal dysfunction. However, diagnosis of the degree of obstruction and severity of renal injury relies on invasive and often inconclusive renal scans. Biomarkers from voided urine that detect early renal injury are highly desirable because of their noninvasive collection and their potential to assist in earlier and more reliable diagnosis of the severity of obstruction. Early in response to UPJO, increased intrarenal pressure directly impacts the proximal tubule brush border. We hypothesize that single-pass, apically expressed proximal tubule brush border proteins will be shed into the urine early and rapidly and will be reliable noninvasive urinary biomarkers, providing the tools for a more reliable stratification of UPJO patients. We performed a prospective cohort study at Connecticut Children's Medical Center. Bladder urine samples from 12 UPJO patients were obtained prior to surgical intervention. Control urine samples were collected from healthy pediatric patients presenting with primary nocturnal enuresis. We determined levels of NGAL, KIM-1 (previously identified biomarkers), CD10, CD13, and CD26 (potentially novel biomarkers) by ELISA in control and experimental urine samples. Urinary creatinine levels were used to normalize the urinary protein levels measured by ELISA. Each of the proximal tubule proteins outperformed the previously published biomarkers. No differences in urinary NGAL and KIM-1 levels were observed between control and obstructed patients (p = 0.932 and p = 0.799, respectively). However, levels of CD10, CD13, and CD26 were significantly higher in the voided urine of obstructed individuals when compared with controls (p = 0.002, p = 0.024, and p = 0.007, respectively) (Figure). Targeted identification of reliable, noninvasive biomarkers of renal injury is critical to aid in diagnosing patients at risk, guiding

  11. Lipids in the proximal convoluted tubule of the cat kidney and the reabsorption of cholesterol.

    PubMed

    Bargmann, W; Krisch, B; Leonhardt, H

    1977-02-14

    Lipid deposits in the cat kidney are mainly located in the epithelium of the proximal tubuli contorti, particularly in the pars contorta. As the amount of fatty acids in the blood of renal arteries is higher than in renal veins, the lipid inclusions are likely to be formed in the proximal convoluted tubule. Whether fat occurring in the urine has been released from the nephron epithelium and the mode of this release remains obscure. The structural equivalent of lipid extrusion into the tubules has not been observed. Components of the tubular lipids include triglycerides, phosphoglycerides and cholesterol. The results of the digitonin-cholesterol reaction favour the assumption that cholesterol is eliminated in the glomeruli and pinocytotically reabsorbed by the brush border cells, this process possibly serving recycling of this compound. The dilated basal labyrinth and intercellular space contain perpendicularly oriented lipid accumulations that reach the basal lamina. The ultrastructure of the lipid storing cells of pars contorta reacting positively for phosphoglyceride and cholesterol is characterised mainly by bodies with marginal plates. As far as can be judged from their morphology, these bodies are interpreted as large peroxisomes. A special feature of the pars recta are dumbbell shaped bodies and elongated or cup-like mitochondria concentrically surrounding cytoplasmic areas, as well as a well-developed smooth ER. In what way the organelles of the brush border cells are involved in catabolic and anabolic processes as far as renal lipid metabolism is concerned remains to be answered.

  12. Hydromechanics in dentine: role of dentinal tubules and hydrostatic pressure on mechanical stress-strain distribution.

    PubMed

    Kishen, A; Vedantam, S

    2007-10-01

    This investigation is to understand the role of free water in the dentinal tubules on the mechanical integrity of bulk dentine. Three different experiments were conducted in this study. In experiment 1, three-dimensional models of dentine with gradient elastic modulus, homogenous elastic modulus, and with and without hydrostatic pressure were simulated using the finite element method. Static compressive loads of 15, 50 and 100 N were applied and the distribution of the principal stresses, von Mises stresses, and strains in loading direction were determined. In experiment 2, experimental compression testing of fully hydrated and partially dehydrated dentine (21 degrees C for 72 h) was conducted using a Universal testing machine. In experiment 3, Fourier transform infrared spectroscopic analysis of hydrated and partially dehydrated dentine was carried out. The finite element analysis revealed that the dentine model with simulated hydrostatic pressure displayed residual tensile stresses and strains in the inner region adjacent to the root canal. When external compressive loads were applied to the model, the residual stresses and strains counteracted the applied loads. Similarly the hydrated specimens subjected to experimental compression loads showed greater toughness when compared to the partially dehydrated specimens. The stress at fracture was significantly higher in partially dehydrated specimens (p=0.014), while the strain at fracture was significantly higher in hydrated dentine specimens (p=0.037). These experiments highlighted the distinct role of free water in the dentinal tubules and hydrostatic pressure on the stress-strain distribution within the bulk dentine.

  13. Apical blebs on sperm-storage tubule epithelial cell microvilli: their release and interaction with resident sperm in the turkey hen oviduct

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract: Located at the anterior end of the turkey hen vagina are numerous discrete tubular invaginations of the surface epithelium, collectively referred to as the sperm-storage tubules (SSTs). Following mating or artificial insemination, sperm ascend the vagina, enter the SSTs, and ove...

  14. Effects of Dentifrice Containing Hydroxyapatite on Dentinal Tubule Occlusion and Aqueous Hexavalent Chromium Cations Sorption: A Preliminary Study

    PubMed Central

    Liu, Jing; Hou, Yarong; Zhu, Manqun; Huang, Jiansheng; Xu, Pingping

    2012-01-01

    In order to endow environmental protection features to dentifrice, hydroxyapatite (HA) was added to ordinary dentifrice. The effects on dentinal tubule occlusion and surface mineralization were compared after brushing dentine discs with dentifrice with or without HA. The two types of dentifrice were then added to 100 µg/ml of hexavalent chromium cation (Cr6+) solution in order to evaluate their capacities of adsorbing Cr6+ from water. Our results showed that the dentifrice containing HA was significantly better than the ordinary dentifrice in occluding the dentinal tubules with a plugging rate greater than 90%. Moreover, the effect of the HA dentifrice was persistent and energy-dispersive spectrometer (EDS) revealed that the atomic percentages of calcium and phosphorus on the surface of dentine discs increased significantly. Adding HA to ordinary dentifrice significantly enhanced the ability of dentifrice to adsorb Cr6+ from water with the removal rate up to 52.36%. In addition, the sorption was stable. Our study suggests that HA can be added to ordinary dentifrice to obtain dentifrice that has both relieving dentin hypersensitivity benefits and also helps to control environmental pollution. PMID:23300511

  15. The Effects of CO2 Laser with or without Nanohydroxyapatite Paste in the Occlusion of Dentinal Tubules

    PubMed Central

    Al-maliky, Mohammed Abbood; Mahmood, Ali Shukur; Al-karadaghi, Tamara Sardar; Kurzmann, Christoph; Laky, Markus; Franz, Alexander; Moritz, Andreas

    2014-01-01

    The aim of this study was to evaluate a new treatment modality for the occlusion of dentinal tubules (DTs) via the combination of 10.6 µm carbon dioxide (CO2) laser and nanoparticle hydroxyapatite paste (n-HAp). Forty-six sound human molars were used in the current experiment. Ten of the molars were used to assess the temperature elevation during lasing. Thirty were evaluated for dentinal permeability test, subdivided into 3 groups: the control group (C), laser only (L−), and laser plus n-HAp (L+). Six samples, two per group, were used for surface and cross section morphology, evaluated through scanning electron microscope (SEM). The temperature measurement results showed that the maximum temperature increase was 3.2°C. Morphologically groups (L−) and (L+) presented narrower DTs, and almost a complete occlusion of the dentinal tubules for group (L+) was found. The Kruskal-Wallis nonparametric test for permeability test data showed statistical differences between the groups (P < 0.05). For intergroup comparison all groups were statistically different from each other, with group (L+) showing significant less dye penetration than the control group. We concluded that CO2 laser in moderate power density combined with n-HAp seems to be a good treatment modality for reducing the permeability of dentin. PMID:25386616

  16. Genetic and cytogenetic analysis of the American cherry fruit fly, Rhagoletis cingulata (Diptera: Tephritidae).

    PubMed

    Drosopoulou, Elena; Augustinos, Antonios A; Nakou, Ifigeneia; Koeppler, Kirsten; Kounatidis, Ilias; Vogt, Heidrun; Papadopoulos, Nikolaos T; Bourtzis, Kostas; Mavragani-Tsipidou, Penelope

    2011-12-01

    The American eastern cherry fruit fly, Rhagoletis cingulata, a pest of cherries in the western hemisphere, invaded Europe in 1983, and since then dispersed to several European countries. Information on the genetics and cytogenetics of this pest is very scarce. The mitotic karyotype and detailed photographic maps of the salivary gland polytene chromosomes of R. cingulata are presented here. The mitotic metaphase complement consists of six pairs of chromosomes with the sex chromosomes being very small and similar in size. The analysis of the salivary gland polytene complement shows a total number of five long chromosomes (10 polytene arms), which correspond to the five autosomes of the mitotic nuclei and an extrachromosomal heterochromatic mass, which corresponds to the sex chromosomes. The banding patterns and the most characteristic features and prominent landmarks of each polytene chromosome are presented and discussed. Chromosomal homologies between R. cingulata, R. completa and R. cerasi are also proposed, based on the comparison of chromosome banding patterns. Furthermore, the detection and characterization of Wolbachia pipientis in the R. cingulata population studied is presented and the potential correlation with the asynaptic phenomena found in its polytene complement is discussed. In addition, 10 out of 24 microsatellite markers developed for other Rhagoletis species are cross-amplified, evaluated and proposed as useful markers for population and genetic studies in R. cingulata.

  17. Transport of water in proximal kidney tubules from whole tubules to single channels: length and section of the selectivity filter of aquaporin-1.

    PubMed

    Whittembury, G; González, E; Hernández, C S; Gutiérrez, A M; Echevarría, M

    1997-06-27

    Proximal straight tubule (PST) were dissected from rabbit kidneys, held with crimping pipettes in a chamber bathed in a buffered mannitol isosmotic solution (MBS, 295 mOsm/kg). Tubule cell volume changes with time (dV/Adt) after steps in MBS osmolality (delta Cs) were monitored on line with an inverted microscope, a TV camera and an image processor. Reflection coefficients sigma and osmotic permeability coefficients, Pos, for several solutes were measured using two methods. Method 1: sigma was calculated from the delta Csiso of impermeant and permeant solutes at which (dV/Adt)t-->0 = 0 (i.e., by a null point method). It is denoted as sigma 1. sigma 1 = 1.00 for mannitol (M), raffinose (R), sucrose (S), glycerol (G), acetamide (A) and urea (U). With formamide (F), sigma 1, Formamide = 0.62 +/- 0.05. These findings confirm our previous value of dp = 4.5 A for the diameter of the selectivity filter of the basolateral PST cell membrane water channel AQP1. Method 2: PST were exposed for 20 s to MBS made hyperosmotic by addition of a delta Cs of 35 mOsm/kg of R, S, M, G, A and U. Cells shrunk within 500 ms of t = 0 to their osmometric volume and remained shrunk for the 20 s of the osmotic challenge. Pos was measured from the shrinking curves. P(os) = 3000 +/- 25 microns/s with R, S, M, G, A and U. Method 2 also allowed to calculate sigma, denoted as sigma 2. sigma 2 = 1.00 for R, S, M, G, A and U. By contrast, the shrinking curve produced by a delta Cs of 35 mOsm/kg F was 1/5th to 1/6th slower and smaller (i.e., subosmometric) than that produced by a delta Cs of 35 mOsm/kg R, S, M, G, A and U. Furthermore, with F cells did not remain shrunk but recovered their original volume within 3 s. P(os) (measured with F) is denoted as P(os)*, P(os)* = 480 +/- 30 microns/s. sigma 2, Formamide = 0.16 +/- 0.01. Use of sigma 1, sigma 2 and P(os)* values in Hill's equations for the bimodal theory of osmosis leads to n = 2-9. Where n is the number of water molecules single filling

  18. Aldosterone sensitizes connecting tubule glomerular feedback via the aldosterone receptor GPR30

    PubMed Central

    Ren, YiLin; D'Ambrosio, Martin A.; Garvin, Jeffrey L.; Leung, Pablo; Kutskill, Kristopher; Wang, Hong; Peterson, Edward L.

    2014-01-01

    Increasing Na delivery to epithelial Na channels (ENaC) in the connecting tubule (CNT) dilates the afferent arteriole (Af-Art), a process we call connecting tubule glomerular feedback (CTGF). We hypothesize that aldosterone sensitizes CTGF via a nongenomic mechanism that stimulates CNT ENaC via the aldosterone receptor GPR30. Rabbit Af-Arts and their adherent CNTs were microdissected and simultaneously perfused. Two consecutive CTGF curves were elicited by increasing luminal NaCl in the CNT. During the control period, the concentration of NaCl that elicited a half-maximal response (EC50) was 37.0 ± 2.0 mmol/l; addition of aldosterone 10−8 mol/l to the CNT lumen caused a left-shift (decrease) in EC50 to 19.3 ± 1.3 mmol/l (P = 0.001 vs. control; n = 6). Neither the transcription inhibitor actinomycin D nor the translation inhibitor cycloheximide prevented the effect of aldosterone (control EC50 = 34.7 ± 1.9 mmol/l; aldosterone+actinomycin D EC50 = 22.6 ± 1.6 mmol/l; P < 0.001 and control EC50 = 32.4 ± 4.3 mmol/l; aldosterone+cycloheximide EC50 = 17.4 ± 3.3 mmol/l; P < 0.001). The aldosterone antagonist eplerenone prevented the sensitization of CTGF by aldosterone (control EC50 = 33.2 ± 1.7 mmol/l; aldosterone+eplerenone EC50 = 33.5 ± 1.3 mmol/l; n = 7). The GPR30 receptor blocker G-36 blocked the sensitization of CTGF by aldosterone (aldosterone EC50 = 16.5 ± 1.9 mmol/l; aldosterone+G-36 EC50 = 29.0 ± 2.1 mmol/l; n = 7; P < 0.001). Finally, we found that the sensitization of CTGF by aldosterone was mediated, at least in part, by the sodium/hydrogen exchanger (NHE). We conclude that aldosterone in the CNT lumen sensitizes CTGF via a nongenomic effect involving GPR30 receptors and NHE. Sensitized CTGF induced by aldosterone may contribute to renal damage by increasing Af-Art dilation and glomerular capillary pressure (glomerular barotrauma). PMID:24966088

  19. Renal distal tubule proliferation and increased aquaporin 2 level but decreased urine osmolality in db/db mouse: treatment with chromium picolinate.

    PubMed

    Mozaffari, Mahmood S; Abdelsayed, Rafik; Liu, Jun Yao; Zakhary, Ibrahim; Baban, Babak

    2012-02-01

    Hallmark features of type 2 diabetes mellitus include glucosuria and polyuria. Further, renal aquaporin 2 is pivotal to regulation of fluid excretion and urine osmolality. Accordingly, we tested the hypothesis that the db/db mouse displays increased glucosuria and fluid excretion but reduced urine osmolality in association with decreased renal aquaporin 2 level. In addition, we examined the effect of chromium picolinate (Cr(pic)3) which is purported to improve glycemic control. The db/db mice excreted more urine in association with marked glucose excretion but lower urine osmolality than db/m control group. Light microscopic examination of renal tissue revealed proliferation of tubular structures in db/db compared to the db/m mice, a feature validated with Ki67 immunostaining. Further, these tubules showed generally similar immunostaining intensity and pattern for aquaporin 2 indicating that proliferated tubules are of distal origin. On the other hand, renal aquaporin 2 protein level was significantly higher in the db/db than db/m group. Treatment of db/db mice with Cr(pic)3 reduced plasma glucose and hemoglobin A1c (~15-17%, p<0.05) and Ki67 positive cells but other parameters were similar to their untreated counterparts. Collectively, these findings suggest that proliferation of renal distal tubules and increased aquaporin 2 level likely represent an adaptive mechanism to regulate fluid excretion to prevent dehydration in the setting of marked glucosuria in the db/db mouse, features not affected by Cr(pic)3 treatment. These observations are of relevance to increasing interest in developing therapeutic agents that facilitate renal glucose elimination. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Renal distal tubule proliferation and increased aquaporin 2 level but decreased urine osmolality in db/db mouse: treatment with chromium picolinate

    PubMed Central

    Mozaffari, Mahmood S.; Abdelsayed, Rafik; Liu, Jun Yao; Zakhary, Ibrahim; Baban, Babak

    2011-01-01

    Hallmark features of type 2 diabetes mellitus include glucosuria and polyuria. Further, renal aquaporin 2 is pivotal to regulation of fluid excretion and urine osmolality. Accordingly, we tested the hypothesis that the db/db mouse displays increased glucosuria and fluid excretion but reduced urine osmolality in association with decreased renal aquaporin 2 level. In addition, we examined the effect of chromium picolinate (Cr(pic)3) which is purported to improve glycemic control. The db/db mice excreted more urine in association with marked glucose excretion but lower urine osmolality than db/m control group. Light microscopic examination of renal tissue revealed proliferation of tubular structures in db/db compared to the db/m mice, a feature validated with Ki67 immunostaining. Further, these tubules showed generally similar immunostaining intensity and pattern for aquaporin 2 indicating that proliferated tubules are of distal origin. On the other hand, renal aquaporin 2 protein level was significantly higher in the db/db than db/m group. Treatment of db/db mice with Cr(pic)3 reduced plasma glucose and hemoglobin A1c (~ 15–17%, p<0.05) and Ki67 positive cells but other parameters were similar to their untreated counterparts. Collectively, these findings suggest that proliferation of renal distal tubules and increased aquaporin 2 level likely represent an adaptive mechanism to regulate fluid excretion to prevent dehydration in the setting of marked glucosuria in the db/db mouse, features not affected by Cr(pic)3 treatment. These observations are of relevance to increasing interest in developing therapeutic agents that facilitate renal glucose elimination. PMID:21983138

  1. Electrophysiology of sodium-coupled transport in proximal renal tubules.

    PubMed

    Lang, F; Messner, G; Rehwald, W

    1986-06-01

    Effects of sodium-coupled transport on intracellular electrolytes and electrical properties of proximal renal tubule cells are described in this review. Simultaneous with addition of substrate for sodium-coupled transport to luminal perfusates, both cell membranes depolarize. The luminal cell membrane depolarizes due to opening of sodium-cotransport pathways. The depolarization of the peritubular cell membrane during sodium-coupled transport is primarily due to a circular current reentering the lumen via the paracellular pathway. The depolarization leads to a transient decrease of basolateral potassium conductance that in turn amplifies the depolarization. However, within 5-10 min of continued exposure to substrate, potassium conductance increases again, and peritubular cell membrane repolarizes. During depolarization the driving force of peritubular bicarbonate exit is reduced. As a result net alkalinization of the cell prevails despite an increase of intracellular sodium activity, which reduces the driving force for the sodium-hydrogen ion exchanger and would thus have been expected to acidify the cell. No evidence is obtained for regulatory inhibition of sodium-coupled transport by intracellular sodium or calcium. Rather, luminal cotransport is altered by the change of driving forces.

  2. Podocyte-derived microparticles promote proximal tubule fibrotic signaling via p38 MAPK and CD36

    PubMed Central

    Munkonda, Mercedes N.; Akbari, Shareef; Landry, Chloe; Sun, Suzy; Xiao, Fengxia; Turner, Maddison; Holterman, Chet E.; Nasrallah, Rania; Hébert, Richard L.; Kennedy, Christopher R. J.; Burger, Dylan

    2018-01-01

    ABSTRACT Tubulointerstitial fibrosis is a hallmark of advanced diabetic kidney disease that is linked to a decline in renal function, however the pathogenic mechanisms are poorly understood. Microparticles (MPs) are 100–1000 nm vesicles shed from injured cells that are implicated in intercellular signalling. Our lab recently observed the formation of MPs from podocytes and their release into urine of animal models of type 1 and 2 diabetes and in humans with type 1 diabetes. The purpose of the present study was to examine the role of podocyte MPs in tubular epithelial cell fibrotic responses. MPs were isolated from the media of differentiated, untreated human podocytes (hPODs) and administered to cultured human proximal tubule epithelial cells (PTECs). Treatment with podocyte MPs increased p38 and Smad3 phosphorylation and expression of the extracellular matrix (ECM) proteins fibronectin and collagen type IV. MP-induced responses were attenuated by co-treatment with the p38 inhibitor SB202190. A transforming growth factor beta (TGF-β) receptor inhibitor (LY2109761) blocked MP-induced Smad3 phosphorylation and ECM protein expression but not p38 phosphorylation suggesting that these responses occurred downstream of p38. Finally, blockade of the class B scavenger receptor CD36 completely abrogated MP-mediated p38 phosphorylation, downstream Smad3 activation and fibronectin/collagen type IV induction. Taken together our results suggest that podocyte MPs interact with proximal tubule cells and induce pro-fibrotic responses. Such interactions may contribute to the development of tubular fibrosis in glomerular disease. PMID:29435202

  3. Post-hypoxic cellular disintegration in glycine-preserved renal tubules is attenuated by hydroxyl radical scavengers and iron chelators.

    PubMed

    Moussavian, Mohammed R; Slotta, Jan E; Kollmar, Otto; Menger, Michael D; Gronow, Gernot; Schilling, Martin K

    2008-05-01

    Cellular stress during reoxygenation is a common phenomenon in solid organ transplantation and is characterized by production of reactive oxygen species. Herein, we studied in isolated tubular segments of rat kidney cortex the impact of oxygen radical scavengers and an iron chelator on post-hypoxic recovery. Tubules, suspended in Ringer's solution containing 5 mM glycine, underwent 30 min hypoxia and 60 min reoxygenation. Untreated tubules served as controls. Hypoxia-reoxygenation injury was measured by membrane leakage, lipid peroxidation and cellular functions. In hypoxia-reoxygenated-isolated tubular segments, protective effects of different scavengers and of the iron chelator deferoxamine on hypoxia-reoxygenation injury were analyzed. Scavengers protected isolated tubular segments from hypoxia-reoxygenation-induced cellular disintegration and dysfunction. Deferoxamine was found to exert the most distinct protection. It was further found to exert a dose-dependent protection on hypoxia-reoxygenation damage in isolated tubular segments, which was critically mediated by chelating tissue and bond iron. Our data demonstrate that radical scavengers effectively protect from hypoxia-reoxygenation injury in isolated tubular segments and that the iron chelator deferoxamine is especially a potent inhibitor of iron ion-mediated hypoxia-reoxygenation damage. Thus, inclusion of this iron chelator in organ storage solutions might improve post-transplant organ function and protect from reperfusion injury.

  4. pH and external Ca(2+) regulation of a small conductance Cl(-) channel in kidney distal tubule.

    PubMed

    Sauvé, R; Cai, S; Garneau, L; Klein, H; Parent, L

    2000-12-20

    A single channel characterization of the Cl(-) channels in distal nephron was undertaken using vesicles prepared from plasma membranes of isolated rabbit distal tubules. The presence in this vesicle preparation of ClC-K type Cl(-) channels was first established by immunodetection using an antibody raised against ClC-K isoforms. A ClC-K1 based functional characterization was next performed by investigating the pH and external Ca(2+) regulation of a small conductance Cl(-) channel which we identified previously by channel incorporation experiments. Acidification of the cis (external) solution from pH 7.4 to 6.5 led to a dose-dependent inhibition of the channel open probability P(O). Similarly, changing the trans pH from 7.4 to 6.8 resulted in a 4-fold decrease of the channel P(O) with no effect on the channel conductance. Channel activity also appeared to be regulated by cis (external) Ca(2+) concentration, with a dose-dependent increase in channel activity as a function of the cis Ca(2+) concentration. It is concluded on the basis of these results that the small conductance Cl(-) channel present in rabbit distal tubules is functionally equivalent to the ClC-K1 channel in the rat. In addition, the present work constitutes the first single channel evidence for a chloride channel regulated by external Ca(2+).

  5. Neurohormones implicated in the control of Malpighian tubule secretion in plant sucking Heteropterans: The stink bugs Acrosternum hilare and Nezara viridula

    USDA-ARS?s Scientific Manuscript database

    Plant sucking heteropteran bugs feed regularly on small amounts of K+rich plant material, in contrast to their hematophagous relatives which imbibe large volumes of Na+-rich blood. It was anticipated that this would be reflected in the endocrine control of MT secretion. To explore this, neuroendocri...

  6. Neuropeptide action in insects and crustaceans.

    PubMed

    Mykles, Donald L; Adams, Michael E; Gäde, Gerd; Lange, Angela B; Marco, Heather G; Orchard, Ian

    2010-01-01

    Physiological processes are regulated by a diverse array of neuropeptides that coordinate organ systems. The neuropeptides, many of which act through G protein-coupled receptors, affect the levels of cyclic nucleotides (cAMP and cGMP) and Ca(2+) in target tissues. In this perspective, their roles in molting, osmoregulation, metabolite utilization, and cardiovascular function are highlighted. In decapod crustaceans, inhibitory neuropeptides (molt-inhibiting hormone and crustacean hyperglycemic hormone) suppress the molting gland through cAMP- and cGMP-mediated signaling. In insects, the complex movements during ecdysis are controlled by ecdysis-triggering hormone and a cascade of downstream neuropeptides. Adipokinetic/hypertrehalosemic/hyperprolinemic hormones mobilize energy stores in response to increased locomotory activity. Crustacean cardioacceleratory (cardioactive) peptide, proctolin, and FMRFamide-related peptides act on the heart, accessory pulsatile organs, and excurrent ostia to control hemolymph distribution to tissues. The osmoregulatory challenge of blood gorging in Rhodnius prolixus requires the coordinated release of serotonin and diuretic and antidiuretic hormones acting on the midgut and Malpighian tubules. These studies illustrate how multiple neuropeptides allow for flexibility in response to physiological challenges.

  7. Glucose transporter 8 (GLUT8) from the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae).

    PubMed

    Chen, Mei-Er; Holmes, Steven P; Pietrantonio, Patricia V

    2006-06-01

    We have cloned the fire ant glucose transporter 8 (GLUT8) cDNA providing the first molecular characterization of a GLUT8 in insects. Glucose is a poly-alcohol and, due to its high hydrophilicity, cannot move across cell membranes. GLUT8 is a putative facilitative transporter for the cellular import and export of glucose. The complete 2,974-bp cDNA encodes a 501-residue protein with a predicted molecular mass of 54.8 kDa. Transcripts were detected in the brain, midgut, hindgut, Malpighian tubule, fat body, ovary, and testis. The highest transcriptional expression was found in fat body. Northern blot analysis revealed different transcript sizes in mated queen brains, alate female ovaries, and male testes. We propose that four other sequences obtained from insect genome projects from the honey bee Apis mellifera (ENSAPMP00000006624), the malaria mosquito Anopheles gambiae (EAA11842), and the fruit fly Drosophila melanogaster (AAQ23604 and AAM52591) are likely the orthologues of the fire ant GLUT8. Phylogenetic relationships in insect glucose transporters are presented.

  8. Presence of the storage seed protein vicilin in internal organs of larval Callosobruchus maculatus (Coleoptera: Bruchidae).

    PubMed

    Uchôa, Adriana F; DaMatta, Renato A; Retamal, Claudio A; Albuquerque-Cunha, José M; Souza, Sheila M; Samuels, Richard I; Silva, Carlos P; Xavier-Filho, José

    2006-02-01

    Variant vicilins (7S storage globulins) of cowpea seeds (Vigna unguiculata) are considered as the main resistance factor present in some African genotypes against the bruchid Callosobruchus maculatus. It has been suggested that the toxic properties of vicilins may be related to their recognition and interaction with glycoproteins and other membrane constituents along the digestive tract of the insect. However, the possibility of a systemic effect has not yet been investigated. The objective of this work was to study the fate of 7S storage globulins of V. unguiculata in several organs of larvae of the cowpea weevil C. maculatus. Results demonstrated binding of vicilins to brush border membrane vesicles, suggesting the existence of specific receptors. Vicilins were detected in the haemolymph, in the midgut, and in internal organs, such as fat body and malpighian tubules. There is evidence of accumulation of vicilins in the fat body of both larvae and adults. The absorption of vicilins and their presence in insect tissues parallels classical sequestration of secondary compounds.

  9. Stem cells in the Drosophila digestive system.

    PubMed

    Zeng, Xiankun; Chauhan, Chhavi; Hou, Steven X

    2013-01-01

    Adult stem cells maintain tissue homeostasis by continuously replenishing damaged, aged and dead cells in any organism. Five types of region and organ-specific multipotent adult stem cells have been identified in the Drosophila digestive system: intestinal stem cells (ISCs) in the posterior midgut; hindgut intestinal stem cells (HISCs) at the midgut/hindgut junction; renal and nephric stem cells (RNSCs) in the Malpighian Tubules; type I gastric stem cells (GaSCs) at foregut/midgut junction; and type II gastric stem cells (GSSCs) at the middle of the midgut. Despite the fact that each type of stem cell is unique to a particular organ, they share common molecular markers and some regulatory signaling pathways. Due to the simpler tissue structure, ease of performing genetic analysis, and availability of abundant mutants, Drosophila serves as an elegant and powerful model system to study complex stem cell biology. The recent discoveries, particularly in the Drosophila ISC system, have greatly advanced our understanding of stem cell self-renewal, differentiation, and the role of stem cells play in tissue homeostasis/regeneration and adaptive tissue growth.

  10. A transferrin gene associated with development and 2-tridecanone tolerance in Helicoverpa armigera

    PubMed Central

    Zhang, L; Shang, Q; Lu, Y; Zhao, Q; Gao, X

    2015-01-01

    The full-length cDNA (2320 bp) encoding a putative iron-binding transferrin protein from Helicoverpa armigera was cloned and named HaTrf. The putative HaTrf sequence included 670 amino acids with a molecular mass of approximately 76 kDa. Quantitative PCR results demonstrated that the transcriptional level of HaTrf was significantly higher in the sixth instar and pupa stages as compared with other developmental stages. HaTrf transcripts were more abundant in fat bodies and in the epidermis than in malpighian tubules. Compared with the control, the expression of HaTrf increased dramatically 24 h after treatment with 2-tridecanone. Apparent growth inhibition with a dramatic body weight decrease was observed in larvae fed with HaTrf double-stranded RNA (dsRNA), as compared with those fed with green fluorescent protein dsRNA. RNA interference of HaTrf also significantly increased the susceptibility of larvae to 2-tridecanone. These results indicate the possible involvement of HaTrf in tolerance to plant secondary chemicals. PMID:25430818

  11. Urinary and proximal tubule acidification during reduction of renal blood flow in the rat.

    PubMed Central

    Jaramillo-Juárez, F; Aires, M M; Malnic, G

    1990-01-01

    1. The effects of reduction in renal blood flow (RBF) on urinary acidification and proximal tubule H+ ion secretion were studied after partial aortic clamping in rats. 2. Acute reduction of the renal perfusion pressure (from 109 +/- 3.88 to 77.4 +/- 1.05 mmHg) decreased both inulin and PAH (p-aminohippurate) clearances to about one-third of their control values. Absolute levels of urinary sodium excretion also decreased markedly, but fractional sodium excretion did not change significantly. 3. Urine pH and bicarbonate levels were not affected, but titratable acidity increased significantly from 0.12 +/- 0.011 to 0.25 +/- 0.042 muequiv min-1 ml-1 glomerular filtration rate (GFR). During aortic clamping, cortical PCO2 as determined by means of Severinghaus microelectrodes was reduced by a mean value of 7.0 +/- 1.5 mmHg. 4. Proximal tubule acidification kinetics were studied by stationary microperfusion techniques in which the time course of pH changes was monitored by pH microelectrodes. Steady-state pH fell from a mean control value of 6.77 +/- 0.03 to 6.65 +/- 0.02, and stationary bicarbonate concentrations from 4.70 +/- 0.27 to 2.84 +/- 0.18 mM. Acidification half-time decreased from 5.07 +/- 0.30 to 4.39 +/- 0.19 s, and net bicarbonate reabsorption increased from 1.63 +/- 0.14 to 1.99 +/- 0.12 nmol cm-2 s-1, these changes being statistically significant. 5. The experiments demonstrate that both overall acid excretion and proximal acid secretion are not compromised by a large decrease of RBF to about one-third of the control value; titratable acid excretion and proximal net bicarbonate reabsorption were even moderately increased under these conditions. PMID:2348400

  12. The Genetics of a Small Autosomal Region of DROSOPHILA MELANOGASTER Containing the Structural Gene for Alcohol Dehydrogenase. I. Characterization of Deficiencies and Mapping of ADH and Visible Mutations

    PubMed Central

    Woodruff, R. C.; Ashburner, M.

    1979-01-01

    The position of the structural gene coding for alcohol dehydrogenase (ADH) in Drosophila melanogaster has been shown to be within polytene chromosome bands 35B1 and 35B3, most probably within 35B2. The genetic and cytological properties of twelve deficiencies in polytene chromosome region 34–35 have been characterized, eleven of which include Adh. Also mapped cytogenetically are seven other recessive visible mutant loci. Flies heterozygous for overlapping deficiencies that include both the Adh locus and that for the outspread mutant (osp: a recessive wing phenotype) are homozygous viable and show a complete ADH negative phenotype and strong osp phenotype. These deficiencies probably include two polytene chromosome bands, 35B2 and 35B3. PMID:115743

  13. Osmosis in Cortical Collecting Tubules

    PubMed Central

    Schafer, James A.; Troutman, Susan L.; Andreoli, Thomas E.

    1974-01-01

    The present experiments were designed to evaluate the effects of varying the osmolality of luminal solutions on the antidiuretic hormone (ADH)-independent water and solute permeability properties of isolated rabbit cortical collecting tubules. In the absence of ADH, the osmotic water permeability coefficient (cm s–1) Pfl→b, computed from volume flows from hypotonic lumen to isotonic bath, was 20 ± 4 x 10–4 (SEM); the value of Pfb→l in the absence of ADH, computed from volume flows from isotonic bath to hypertonic lumen, was 88 ± 15 x 10–4 cm s–1. We also measured apparent urea permeability coefficients (cm s–1) from 14C-urea fluxes from lumen to bath (P DDurea l→b) and from bath to lumen (P DDurea b→l). For hypotonic luminal solutions and isotonic bathing solutions, P DDurea l→b was 0.045 ± 0.004 x 10–4 and was unaffected by ADH. The ADH-independent values of P DDurea l→b and P urea b→l were, respectively, 0.216 ± 0.022 x 10–4 cm s–1 and 0.033 ± 0.002 x 10–4 cm s–1 for isotonic bathing solutions and luminal solutions made hypertonic with urea, i.e., there was an absolute increase in urea permeability and asymmetry of urea fluxes. Significantly, P DDurea l→b did not rise when luminal hypertonicity was produced by sucrose; and, bathing fluid hypertonicity did not alter tubular permeability to water or to urea. We interpret these data to indicate that luminal hypertonicity increased the leakiness of tight junctions to water and urea but not sucrose. Since the value of Pfb→l in the absence of ADH, when tight junctions were open to urea, was approximately half of the value of Pfl→b in the presence of ADH, when tight junctions were closed to urea, we conclude that tight junctions are negligible paracellular shunts for lumen to bath osmosis with ADH. These findings, together with those in the preceding paper, are discussed in terms of a solubility-diffusion model for water permeation in which ADH increases water solubility in

  14. Human kidney proximal tubule cells are vulnerable to the effects of Rauwolfia serpentina.

    PubMed

    Mossoba, Miriam E; Flynn, Thomas J; Vohra, Sanah; Wiesenfeld, Paddy L; Sprando, Robert L

    2015-12-01

    Rauwolfia serpentina (or Snake root plant) is a botanical dietary supplement marketed in the USA for maintaining blood pressure. Very few studies have addressed the safety of this herb, despite its wide availability to consumers. Its reported pleiotropic effects underscore the necessity for evaluating its safety. We used a human kidney cell line to investigate the possible negative effects of R. serpentina on the renal system in vitro, with a specific focus on the renal proximal tubules. We evaluated cellular and mitochondrial toxicity, along with a variety of other kidney-specific toxicology biomarkers. We found that R. serpentina was capable of producing highly detrimental effects in our in vitro renal cell system. These results suggest more studies are needed to investigate the safety of this dietary supplement in both kidney and other target organ systems.

  15. FlnA binding to PACSIN2 F-BAR domain regulates membrane tubulation in megakaryocytes and platelets.

    PubMed

    Begonja, Antonija Jurak; Pluthero, Fred G; Suphamungmee, Worawit; Giannini, Silvia; Christensen, Hilary; Leung, Richard; Lo, Richard W; Nakamura, Fumihiko; Lehman, William; Plomann, Markus; Hoffmeister, Karin M; Kahr, Walter H A; Hartwig, John H; Falet, Hervé

    2015-07-02

    Bin-Amphiphysin-Rvs (BAR) and Fes-CIP4 homology BAR (F-BAR) proteins generate tubular membrane invaginations reminiscent of the megakaryocyte (MK) demarcation membrane system (DMS), which provides membranes necessary for future platelets. The F-BAR protein PACSIN2 is one of the most abundant BAR/F-BAR proteins in platelets and the only one reported to interact with the cytoskeletal and scaffold protein filamin A (FlnA), an essential regulator of platelet formation and function. The FlnA-PACSIN2 interaction was therefore investigated in MKs and platelets. PACSIN2 associated with FlnA in human platelets. The interaction required FlnA immunoglobulin-like repeat 20 and the tip of PACSIN2 F-BAR domain and enhanced PACSIN2 F-BAR domain membrane tubulation in vitro. Most human and wild-type mouse platelets had 1 to 2 distinct PACSIN2 foci associated with cell membrane GPIbα, whereas Flna-null platelets had 0 to 4 or more foci. Endogenous PACSIN2 and transfected enhanced green fluorescent protein-PACSIN2 were concentrated in midstage wild-type mouse MKs in a well-defined invagination of the plasma membrane reminiscent of the initiating DMS and dispersed in the absence of FlnA binding. The DMS appeared less well defined, and platelet territories were not readily visualized in Flna-null MKs. We conclude that the FlnA-PACSIN2 interaction regulates membrane tubulation in MKs and platelets and likely contributes to DMS formation. © 2015 by The American Society of Hematology.

  16. Effects of a human recombinant alkaline phosphatase during impaired mitochondrial function in human renal proximal tubule epithelial cells.

    PubMed

    Peters, Esther; Schirris, Tom; van Asbeck, Alexander H; Gerretsen, Jelle; Eymael, Jennifer; Ashikov, Angel; Adjobo-Hermans, Merel J W; Russel, Frans; Pickkers, Peter; Masereeuw, Rosalinde

    2017-02-05

    Sepsis-associated acute kidney injury is a multifactorial syndrome in which inflammation and renal microcirculatory dysfunction play a profound role. Subsequently, renal tubule mitochondria reprioritize cellular functions to prevent further damage. Here, we investigated the putative protective effects of human recombinant alkaline phosphatase (recAP) during inhibition of mitochondrial respiration in conditionally immortalized human proximal tubule epithelial cells (ciPTEC). Full inhibition of mitochondrial oxygen consumption was obtained after 24h antimycin A treatment, which did not affect cell viability. While recAP did not affect the antimycin A-induced decreased oxygen consumption and increased hypoxia-inducible factor-1α or adrenomedullin gene expression levels, the antimycin A-induced increase of pro-inflammatory cytokines IL-6 and IL-8 was attenuated. Antimycin A tended to induce the release of detrimental purines ATP and ADP, which reached statistical significance when antimycin A was co-incubated with lipopolysaccharide, and were completely converted into cytoprotective adenosine by recAP. As the adenosine A 2A receptor was up-regulated after antimycin A exposure, an adenosine A 2A receptor knockout ciPTEC cell line was generated in which recAP still provided protection. Together, recAP did not affect oxygen consumption but attenuated the inflammatory response during impaired mitochondrial function, an effect suggested to be mediated by dephosphorylating ATP and ADP into adenosine. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. DIBROMOACETIC ACID, A PREVALENT BY-PRODUCT OF DRINKING WATER DISINFECTION, COMPROMISES THE SYNTHESIS OF SPECIFIC SEMINFEROUS TUBULE PROTEINS FOLLOWING BOTH IN VIVO AND IN VITRO EXPOSURES

    EPA Science Inventory

    ABSTRACT
    Dibromoacetic acid(DBA) is a byproduct of drinking water disinfection that alters spermatogenesis in adult male rats. To identify a mechanism by which DBA alters spermatogenesis, seminiferous tubules representing specific groups of spermatogenic stages were expos...

  18. Dancing with the Stars: Using Image Analysis to Study the Choreography of the Endoplasmic Reticulum and Its Partners and of Movement Within Its Tubules.

    PubMed

    Griffing, Lawrence R

    2018-01-01

    In this chapter, approaches to the image analysis of the choreography of the plant endoplasmic reticulum (ER) labeled with fluorescent fusion proteins ("stars," if you wish) are presented. The approaches include the analyses of those parts of the ER that are attached through membrane contact sites to moving or nonmoving partners (other "stars"). Image analysis is also used to understand the nature of the tubular polygonal network, the hallmark of this organelle, and how the polygons change over time due to tubule sliding or motion. Furthermore, the remodeling polygons of the ER interact with regions of fundamentally different topology, the ER cisternae, and image analysis can be used to separate the tubules from the cisternae. ER cisternae, like polygons and tubules, can be motile or stationary. To study which parts are attached to nonmoving partners, such as domains of the ER that form membrane contact sites with the plasma membrane/cell wall, an image analysis approach called persistency mapping has been used. To study the domains of the ER that are moving rapidly and streaming through the cell, the image analysis of optic flow has been used. However, optic flow approaches confuse the movement of the ER itself with the movement of proteins within the ER. As an overall measure of ER dynamics, optic flow approaches are of value, but their limitation as to what exactly is "flowing" needs to be specified. Finally, there are important imaging approaches that directly address the movement of fluorescent proteins within the ER lumen or in the membrane of the ER. Of these, fluorescence recovery after photobleaching (FRAP), inverse FRAP (iFRAP), and single particle tracking approaches are described.

  19. pH-responsive, gluconeogenic renal epithelial LLC-PK1-FBPase+cells: a versatile in vitro model to study renal proximal tubule metabolism and function

    PubMed Central

    Curthoys, Norman P.

    2014-01-01

    Ammoniagenesis and gluconeogenesis are prominent metabolic features of the renal proximal convoluted tubule that contribute to maintenance of systemic acid-base homeostasis. Molecular analysis of the mechanisms that mediate the coordinate regulation of the two pathways required development of a cell line that recapitulates these features in vitro. By adapting porcine renal epithelial LLC-PK1 cells to essentially glucose-free medium, a gluconeogenic subline, termed LLC-PK1-FBPase+ cells, was isolated. LLC-PK1-FBPase+ cells grow in the absence of hexoses and pentoses and exhibit enhanced oxidative metabolism and increased levels of phosphate-dependent glutaminase. The cells also express significant levels of the key gluconeogenic enzymes, fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK). Thus the altered phenotype of LLC-PK1-FBPase+ cells is pleiotropic. Most importantly, when transferred to medium that mimics a pronounced metabolic acidosis (9 mM HCO3−, pH 6.9), the LLC-PK1-FBPase+ cells exhibit a gradual increase in NH4+ ion production, accompanied by increases in glutaminase and cytosolic PEPCK mRNA levels and proteins. Therefore, the LLC-PK1-FBPase+ cells retained in culture many of the metabolic pathways and pH-responsive adaptations characteristic of renal proximal tubules. The molecular mechanisms that mediate enhanced expression of the glutaminase and PEPCK in LLC-PK1-FBPase+ cells have been extensively reviewed. The present review describes novel properties of this unique cell line and summarizes the molecular mechanisms that have been defined more recently using LLC-PK1-FBPase+ cells to model the renal proximal tubule. It also identifies future studies that could be performed using these cells. PMID:24808535

  20. Estrogen directly and specifically downregulates NaPi-IIa through the activation of both estrogen receptor isoforms (ERα and ERβ) in rat kidney proximal tubule.

    PubMed

    Burris, Dara; Webster, Rose; Sheriff, Sulaiman; Faroqui, Rashma; Levi, Moshe; Hawse, John R; Amlal, Hassane

    2015-03-15

    We have previously demonstrated that estrogen (E2) downregulates phosphate transporter NaPi-IIa and causes phosphaturia and hypophosphatemia in ovariectomized rats. In the present study, we examined whether E2 directly targets NaPi-IIa in the proximal tubule (PT) and studied the respective roles of estrogen receptor isoforms (ERα and ERβ) in the downregulation of NaPi-IIa using both in vivo and an in vitro expression systems. We found that estrogen specifically downregulates NaPi-IIa but not NaPi-IIc or Pit2 in the kidney cortex. Proximal tubules incubated in a "shake" suspension with E2 for 24 h exhibited a dose-dependent decrease in NaPi-IIa protein abundance. Results from OVX rats treated with specific agonists for either ERα [4,4',4″;-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol, PPT] or ERβ [4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol, DPN] or both (PPT + DPN), indicated that only the latter caused a sharp downregulation of NaPi-IIa, along with significant phosphaturia and hypophosphatemia. Lastly, heterologous expression studies demonstrated that estrogen downregulated NaPi-IIa only in U20S cells expressing both ERα and ERβ, but not in cells expressing either receptor alone. In conclusion, these studies demonstrate that rat PT cells express both ERα and ERβ and that E2 induces phosphaturia by directly and specifically targeting NaPi-IIa in the PT cells. This effect is mediated via a mechanism involving coactivation of both ERα and ERβ, which likely form a functional heterodimer complex in the rat kidney proximal tubule. Copyright © 2015 the American Physiological Society.

  1. Estrogen directly and specifically downregulates NaPi-IIa through the activation of both estrogen receptor isoforms (ERα and ERβ) in rat kidney proximal tubule

    PubMed Central

    Burris, Dara; Webster, Rose; Sheriff, Sulaiman; Faroqui, Rashma; Levi, Moshe; Hawse, John R.

    2015-01-01

    We have previously demonstrated that estrogen (E2) downregulates phosphate transporter NaPi-IIa and causes phosphaturia and hypophosphatemia in ovariectomized rats. In the present study, we examined whether E2 directly targets NaPi-IIa in the proximal tubule (PT) and studied the respective roles of estrogen receptor isoforms (ERα and ERβ) in the downregulation of NaPi-IIa using both in vivo and an in vitro expression systems. We found that estrogen specifically downregulates NaPi-IIa but not NaPi-IIc or Pit2 in the kidney cortex. Proximal tubules incubated in a “shake” suspension with E2 for 24 h exhibited a dose-dependent decrease in NaPi-IIa protein abundance. Results from OVX rats treated with specific agonists for either ERα [4,4′,4″;-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol, PPT] or ERβ [4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol, DPN] or both (PPT + DPN), indicated that only the latter caused a sharp downregulation of NaPi-IIa, along with significant phosphaturia and hypophosphatemia. Lastly, heterologous expression studies demonstrated that estrogen downregulated NaPi-IIa only in U20S cells expressing both ERα and ERβ, but not in cells expressing either receptor alone. In conclusion, these studies demonstrate that rat PT cells express both ERα and ERβ and that E2 induces phosphaturia by directly and specifically targeting NaPi-IIa in the PT cells. This effect is mediated via a mechanism involving coactivation of both ERα and ERβ, which likely form a functional heterodimer complex in the rat kidney proximal tubule. PMID:25608964

  2. Differential patterns of injury to the proximal tubule of renal cortical slices following in vitro exposure to mercuric chloride, potassium dichromate, or hypoxic conditions.

    PubMed

    Ruegg, C E; Gandolfi, A J; Nagle, R B; Brendel, K

    1987-09-15

    The innate susceptibility of renal cell types to these agents was investigated using precision-cut rabbit renal cortical slices made perpendicular to the cortical-papillary axis. Slices were incubated in DME/F12 medium containing 10 microM, 100 microM, or 1 mM concentrations of either metal for 12 hr or in Krebs-Hepes buffer gassed with nitrogen (100%) for 0.75 to 5 hr of hypoxic exposure. To simulate postischemic reperfusion, some slices were transferred to vessels gassed with oxygen after an initial hypoxic period. Mercuric chloride (100 microM) exposure resulted in damage to the straight regions of proximal tubules by 12 hr leaving convoluted regions unaffected. Hypoxia (2.25 hr) and potassium dichromate (100 microM for 12 hr) both caused injury to the convoluted proximal tubules without affecting straight proximal tubular regions. Mercury concentrations of 10 microM and 1 mM had no effect or injured all cell types within the slice, respectively. Similar results were observed for hypoxic periods less than 1.5 hr or greater than 3 hr of exposure. Potassium dichromate had no measurable affect at 10 microM, but at 1 mM focal lesions were observed after 4 hr of exposure, and by 12 hr all cell types within the slice were affected. Intracellular potassium content normalized to DNA correlated well, but always preceded the pathological lesions observed. These results demonstrate that injury to specific regions of the proximal tubule by these agents relates to an innate susceptibility of the intoxicated cell type independent of physiologic feedback or blood delivery patterns proposed as mechanisms of selective injury from in vivo studies.

  3. Acute renal proximal tubule alterations during induced metabolic crises in a mouse model of glutaric aciduria type 1.

    PubMed

    Thies, Bastian; Meyer-Schwesinger, Catherine; Lamp, Jessica; Schweizer, Michaela; Koeller, David M; Ullrich, Kurt; Braulke, Thomas; Mühlhausen, Chris

    2013-10-01

    The metabolic disorder glutaric aciduria type 1 (GA1) is caused by deficiency of the mitochondrial glutaryl-CoA dehydrogenase (GCDH), leading to accumulation of the pathologic metabolites glutaric acid (GA) and 3-hydroxyglutaric acid (3OHGA) in blood, urine and tissues. Affected patients are prone to metabolic crises developing during catabolic conditions, with an irreversible destruction of striatal neurons and a subsequent dystonic-dyskinetic movement disorder. The pathogenetic mechanisms mediated by GA and 3OHGA have not been fully characterized. Recently, we have shown that GA and 3OHGA are translocated through membranes via sodium-dependent dicarboxylate cotransporter (NaC) 3, and organic anion transporters (OATs) 1 and 4. Here, we show that induced metabolic crises in Gcdh(-/-) mice lead to an altered renal expression pattern of NaC3 and OATs, and the subsequent intracellular GA and 3OHGA accumulation. Furthermore, OAT1 transporters are mislocalized to the apical membrane during metabolic crises accompanied by a pronounced thinning of proximal tubule brush border membranes. Moreover, mitochondrial swelling and increased excretion of low molecular weight proteins indicate functional tubulopathy. As the data clearly demonstrate renal proximal tubule alterations in this GA1 mouse model during induced metabolic crises, we propose careful evaluation of renal function in GA1 patients, particularly during acute crises. Further studies are needed to investigate if these findings can be confirmed in humans, especially in the long-term outcome of affected patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Ultrastructural studies on the boundary tissue of the seminiferous tubules of different mammals.

    PubMed

    Cieciura, L; Jaszczuk-Jarosz, B; Pietrzkowska, K

    1988-01-01

    The aims of our studies were to compare the ultrastructure of the boundary tissue of seminiferous tubules of various mammals (rat, mouse, hamster, guinea pig, rabbit, ram, bull and man). Visual analysis of electron micrographs revealed the similarity of structure of all layers at investigated animals. The boundary tissue consists of 4 layers: 1) amorphous inner lamina, 2) cellular inner lamina, 3) amorphous outer lamina, 4) cellular outer lamina. The outer lamina of boundary tissue of rat, mouse and hamster revealed in histochemical reactions meshes resembling honey-combs. The wall of seminiferous canalicules of bull and ram consists of more bigger and different structure than one at the other laboratory animals. The most different structure of boundary tissue in man was observed. The capillary vessels penetrate in the myofibroblastic layer, when comparted to that found in other mammals on the surface of the wall.

  5. Arabidopsis dynamin-related protein 1A polymers bind, but do not tubulate, liposomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backues, Steven K.; Bednarek, Sebastian Y., E-mail: sybednar@wisc.edu

    2010-03-19

    The Arabidopsis dynamin-related protein 1A (AtDRP1A) is involved in endocytosis and cell plate maturation in Arabidopsis. Unlike dynamin, AtDRP1A does not have any recognized membrane binding or protein-protein interaction domains. We report that GTPase active AtDRP1A purified from Escherichia coli as a fusion to maltose binding protein forms homopolymers visible by negative staining electron microscopy. These polymers interact with protein-free liposomes whose lipid composition mimics that of the inner leaflet of the Arabidopsis plasma membrane, suggesting that lipid-binding may play a role in AtDRP1A function. However, AtDRP1A polymers do not appear to assemble and disassemble in a dynamic fashion andmore » do not have the ability to tubulate liposomes in vitro, suggesting that additional factors or modifications are necessary for AtDRP1A's in vivo function.« less

  6. Isolation and in vitro binding of mating type plus fertilization tubules from Chlamydomonas.

    PubMed

    Wilson, Nedra F

    2008-01-01

    During fertilization in Chlamydomonas, adhesion and fusion of gametes occur at the tip of specialized regions of the plasma membrane, known as mating structures. The mating type minus (mt[-]) structure is a slightly raised dome-shaped region located at the apical end of the cell body. In contrast, the activated mating type plus (mt[+]) structure is an actin-filled, microvillouslike organelle. Interestingly, a similar type of "fusion organelle" is conserved across diverse groups. Chlamydomonas provides an ideal model system for studying the process of gametic cell fusion in that it is amenable to genetic manipulations as well as cell and molecular biological approaches. Moreover, the ease of culturing Chlamydomonas combined with the ability to isolate the mt(+) fertilization tubule and the development of in vitro assays for adhesion makes it an ideal system for biochemical studies focused on dissecting the molecular mechanisms that underlie the complex process of gametic cell fusion.

  7. 'Special K' and a Loss of Cell-To-Cell Adhesion in Proximal Tubule-Derived Epithelial Cells: Modulation of the Adherens Junction Complex by Ketamine

    PubMed Central

    Hills, Claire E.; Jin, Tianrong; Siamantouras, Eleftherios; Liu, Issac K-K; Jefferson, Kieran P.; Squires, Paul E.

    2013-01-01

    Ketamine, a mild hallucinogenic class C drug, is the fastest growing ‘party drug’ used by 16–24 year olds in the UK. As the recreational use of Ketamine increases we are beginning to see the signs of major renal and bladder complications. To date however, we know nothing of a role for Ketamine in modulating both structure and function of the human renal proximal tubule. In the current study we have used an established model cell line for human epithelial cells of the proximal tubule (HK2) to demonstrate that Ketamine evokes early changes in expression of proteins central to the adherens junction complex. Furthermore we use AFM single-cell force spectroscopy to assess if these changes functionally uncouple cells of the proximal tubule ahead of any overt loss in epithelial cell function. Our data suggests that Ketamine (24–48 hrs) produces gross changes in cell morphology and cytoskeletal architecture towards a fibrotic phenotype. These physical changes matched the concentration-dependent (0.1–1 mg/mL) cytotoxic effect of Ketamine and reflect a loss in expression of the key adherens junction proteins epithelial (E)- and neural (N)-cadherin and β-catenin. Down-regulation of protein expression does not involve the pro-fibrotic cytokine TGFβ, nor is it regulated by the usual increase in expression of Slug or Snail, the transcriptional regulators for E-cadherin. However, the loss in E-cadherin can be partially rescued pharmacologically by blocking p38 MAPK using SB203580. These data provide compelling evidence that Ketamine alters epithelial cell-to-cell adhesion and cell-coupling in the proximal kidney via a non-classical pro-fibrotic mechanism and the data provides the first indication that this illicit substance can have major implications on renal function. Understanding Ketamine-induced renal pathology may identify targets for future therapeutic intervention. PMID:24009666

  8. Activation of an ATP-dependent K(+) conductance in Xenopus oocytes by expression of adenylate kinase cloned from renal proximal tubules.

    PubMed

    Brochiero, E; Coady, M J; Klein, H; Laprade, R; Lapointe, J Y

    2001-02-09

    In rabbit proximal convoluted tubules, an ATP-sensitive K(+) (K(ATP)) channel has been shown to be involved in membrane cross-talk, i.e. the coupling (most likely mediated through intracellular ATP) between transepithelial Na(+) transport and basolateral K(+) conductance. This K(+) conductance is inhibited by taurine. We sought to isolate this K(+) channel by expression cloning in Xenopus oocytes. Injection of renal cortex mRNA into oocytes induced a K(+) conductance, largely inhibited by extracellular Ba(2+) and intracellular taurine. Using this functional test, we isolated from our proximal tubule cDNA library a unique clone, which induced a large K(+) current which was Ba(2+)-, taurine- and glibenclamide-sensitive. Surprisingly, this clone is not a K(+) channel but an adenylate kinase protein (AK3), known to convert NTP+AMP into NDP+ADP (N could be G, I or A). AK3 expression resulted in a large ATP decrease and activation of the whole-cell currents including a previously unknown, endogenous K(+) current. To verify whether ATP decrease was responsible for the current activation, we demonstrated that inhibition of glycolysis greatly reduces oocyte ATP levels and increases an inwardly rectifying K(+) current. The possible involvement of AK in the K(ATP) channel's regulation provides a means of explaining their observed activity in cytosolic environments characterized by high ATP concentrations.

  9. Exposure to low-dose bisphenol A impairs meiosis in the rat seminiferous tubule culture model: a physiotoxicogenomic approach.

    PubMed

    Ali, Sazan; Steinmetz, Gérard; Montillet, Guillaume; Perrard, Marie-Hélène; Loundou, Anderson; Durand, Philippe; Guichaoua, Marie-Roberte; Prat, Odette

    2014-01-01

    Bisphenol A (BPA) is one of the most widespread chemicals in the world and is suspected of being responsible for male reproductive impairments. Nevertheless, its molecular mode of action on spermatogenesis is unclear. This work combines physiology and toxicogenomics to identify mechanisms by which BPA affects the timing of meiosis and induces germ-cell abnormalities. We used a rat seminiferous tubule culture model mimicking the in vivo adult rat situation. BPA (1 nM and 10 nM) was added to the culture medium. Transcriptomic and meiotic studies were performed on the same cultures at the same exposure times (days 8, 14, and 21). Transcriptomics was performed using pangenomic rat microarrays. Immunocytochemistry was conducted with an anti-SCP3 antibody. The gene expression analysis showed that the total number of differentially expressed transcripts was time but not dose dependent. We focused on 120 genes directly involved in the first meiotic prophase, sustaining immunocytochemistry. Sixty-two genes were directly involved in pairing and recombination, some of them with high fold changes. Immunocytochemistry indicated alteration of meiotic progression in the presence of BPA, with increased leptotene and decreased diplotene spermatocyte percentages and partial meiotic arrest at the pachytene checkpoint. Morphological abnormalities were observed at all stages of the meiotic prophase. The prevalent abnormalities were total asynapsis and apoptosis. Transcriptomic analysis sustained immunocytological observations. We showed that low doses of BPA alter numerous genes expression, especially those involved in the reproductive system, and severely impair crucial events of the meiotic prophase leading to partial arrest of meiosis in rat seminiferous tubule cultures.

  10. Treatment of dentinal tubules by Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Chmelíčkova, Hana; Zapletalova, Zdeňka; Peřina, Jan, Jr.; Novotný, Radko; Kubínek, Roman; Stranyánek, Martin

    2005-08-01

    Symptom of cervical dentine hypersensitivity attacks from 10% to 15% of population and causes an uncomfortable pain during contact with any matter. Sealing of open dentinal tubules is one of the methods to reach insensibility. Laser as a source of coherent radiation is used to melt dentine surface layers. Melted dentine turns to hard mass with a smooth, non-porous surface. Simulation of this therapy was made in vitro by means of LASAG Nd:YAG pulsed laser system KLS 246-102. Eighty human extracted teeth were cut horizontally to obtain samples from 2 mm to 3 mm thick. First experiments were done on cross section surfaces to find an optimal range of laser parameters. A wide range of energies from 30 mJ to 210 mJ embedded in 0,3 ms long pulse was tested. Motion in X and Y axes was ensured by a CNC driven table and the pulse frequency 15 Hz was chosen to have a suitable overlap of laser spots. Some color agents were examined with the aim to improve surface absorption. Scanning Electron Microscopy was used to evaluate all samples and provided optimal values of energies around 50 J.cm-2. Next experiments were done with the beam oriented perpendicularly to a root surface, close to the real situation. Optical fibers with the diameter of 0,6 mm and 0,2 mm were used to guide a laser beam to teeth surfaces. Laser processing heads with lens F = 100 mm and F = 50 mm were used. The best samples were investigated by means of the Atomic Force Microscopy.

  11. A new model of the distal convoluted tubule

    PubMed Central

    Ko, Benjamin; Mistry, Abinash C.; Hanson, Lauren; Mallick, Rickta; Cooke, Leslie L.; Hack, Bradley K.; Cunningham, Patrick

    2012-01-01

    The Na+-Cl− cotransporter (NCC) in the distal convoluted tubule (DCT) of the kidney is a key determinant of Na+ balance. Disturbances in NCC function are characterized by disordered volume and blood pressure regulation. However, many details concerning the mechanisms of NCC regulation remain controversial or undefined. This is partially due to the lack of a mammalian cell model of the DCT that is amenable to functional assessment of NCC activity. Previously reported investigations of NCC regulation in mammalian cells have either not attempted measurements of NCC function or have required perturbation of the critical without a lysine kinase (WNK)/STE20/SPS-1-related proline/alanine-rich kinase regulatory pathway before functional assessment. Here, we present a new mammalian model of the DCT, the mouse DCT15 (mDCT15) cell line. These cells display native NCC function as measured by thiazide-sensitive, Cl−-dependent 22Na+ uptake and allow for the separate assessment of NCC surface expression and activity. Knockdown by short interfering RNA confirmed that this function was dependent on NCC protein. Similar to the mammalian DCT, these cells express many of the known regulators of NCC and display significant baseline activity and dimerization of NCC. As described in previous models, NCC activity is inhibited by appropriate concentrations of thiazides, and phorbol esters strongly suppress function. Importantly, they display release of WNK4 inhibition of NCC by small hairpin RNA knockdown. We feel that this new model represents a critical tool for the study of NCC physiology. The work that can be accomplished in such a system represents a significant step forward toward unraveling the complex regulation of NCC. PMID:22718890

  12. Effects of advanced glycation end products on ezrin-dependent functions in LLC-PK1 proximal tubule cells.

    PubMed

    Bach, Leon A; Gallicchio, Marisa A; McRobert, E Anne; Tikoo, Anjali; Cooper, Mark E

    2005-06-01

    We have recently shown that advanced glycation products (AGEs) bind to the ERM (ezrin, radixin, moesin) family of proteins. ERM proteins act as cross-linkers between cell membrane proteins and the actin cytoskeleton. They are also involved in signal transduction pathways. They therefore have a critical role in normal cell processes, including modulation of cell shape, adhesion, and motility. We postulate that AGEs may contribute to diabetic complications by disrupting ERM function. In support of this hypothesis, AGEs inhibit ezrin-dependent tubulogenesis of proximal tubule cells. Phosphorylation is an important activating mechanism for ERM proteins, and AGEs inhibit ezrin phosphorylation mediated by the epidermal growth factor receptor.

  13. Perinatal Case of Fatal Simpson-Golabi-Behmel Syndrome with Hyperplasia of Seminiferous Tubules.

    PubMed

    Zimmermann, Nives; Stanek, Jerzy

    2017-06-10

    BACKGROUND Simpson-Golabi-Behmel syndrome (SGBS) is a rare X-linked recessive syndrome characterized by fetal overgrowth. CASE REPORT We present a case of a male infant with SGBS. Abnormal prenatal ultrasound (including congenital diaphragmatic hernia) prompted microarray testing of amniotic fluid cells, which showed deletion on chromosome Xq26.2 affecting the glypican-3 gene consistent with SGBS type I. The infant died six hours after birth and at autopsy showed features of SGBS, including macrosomia, organomegaly, diaphragmatic hernia with consequent pulmonary hypoplasia, cleft palate, large tongue with a midline groove, a supernumerary nipple, Meckel's diverticulum, and abnormal phalanges. Additionally, we observed features that have previously not been described in SGBS, including testes with hyperplastic seminiferous tubules and Mullerian remnants, and placenta with incipient fetal thrombotic vasculopathy. CONCLUSIONS While most patients with SGBS type I survive into childhood or even adulthood, the severe course in our patient was ascribed to pulmonary hypoplasia secondary to the bilateral diaphragmatic hernia.

  14. The influence of filling technique on depth of tubule penetration by root canal sealer: a study using light microscopy and digital image processing.

    PubMed

    De Deus, Gustavo A; Gurgel-Filho, Eduardo Diogo; Maniglia-Ferreira, Cláudio; Coutinho-Filho, Tauby

    2004-04-01

    The purpose of this study was to compare the depth of sealer penetration into dentinal tubules by three root-filling techniques using light microscopy and digital image processing. Thirty-two maxillary central incisors were prepared. Two teeth were separated for the control group. The rest were divided into three equal groups and obturated as following--G1: lateral condensation; G2: warm vertical compaction of gutta-percha and G3: Thermafil system. Each sample was sectioned longitudinally and prepared for microscopic analysis. A sequence of photomicrographs with magnifications of X50, X200 and X500 were taken. Through digital image analysis and processing, measurements for each field were obtained. A non-parametric ANOVA Kruskal-Wallis analysis was used to determine whether there were significant differences among the groups. Significant differences between G2 and G1 (p = 0.034) and between G3 and G1 (p = 0.021) were identified. There were no significant differences between G2 and G3 (p > 0.05). The results of this research suggest that samples root-filled by thermoplasticised gutta-percha techniques lead to deeper penetration of the root canal sealer into the dentinal tubules.

  15. Comparisons of Sperm Storage Tubule Distribution and Number in Four Strains of Mature Broiler Breeders and in Turkey Hens Before and After the Onset of Photostimulation

    USDA-ARS?s Scientific Manuscript database

    The biological basis of sustained fertility in broiler and turkey hens is their capacity to store sperm in the oviductal sperm storage tubules (SSTs) located in the uterovaginal junction. The objectives of this study were to determine if the numbers of SST varied between four strains of broiler bre...

  16. 3'-phosphoadenosine-5'-phosphosulphate synthesis and involvement in sulphotransferase reactions in the insect, Spodoptera littoralis.

    PubMed Central

    Isaac, R E; Phua, K K; Rees, H H

    1982-01-01

    1. Synthesis of 3'-phosphoadenosine-5'-phosphosulphate from ATP and 35SO4(-2) was demonstrated by homogenates of gut. Malpighian tubules and fat body of Spodoptera littoralis. 2. The enzyme system was most active in the gut tissue, and was primarily located in the cytosol fraction of the cell. Gut cytosol preparations were used as a source of the 3'-phosphoadenosine-5'-phosphosulphate generating system for more detailed studies. 3. Maximum synthesis required an incubation mixture containing Tris/HCl buffer (pH 7.5), ATP (20 mM), MgCl2 (13.0 mM) and K2SO4 (3 mM). 4. The specific activity of 3'-phosphoadenosine-5'-phosphosulphate synthesizing activity in gut cytosol increased during development of the sixth instar larva, reaching a peak at day 4. A sudden fall in specific activity was observed in the prepupal stage. 5. 3'-Phosphoadenosine-5'-phosphosulphate formation is the rate limiting process in the overall sulphation of p-nitrophenol in the gut cytosol preparations from S. littoralis. 6. It is concluded that the properties of the sulphate-activating system in this insect are similar to those reported for vertebrates. PMID:6956335

  17. Localization and Visualization of a Coxiella-Type Symbiont within the Lone Star Tick, Amblyomma americanum▿ †

    PubMed Central

    Klyachko, Olga; Stein, Barry D.; Grindle, Nathan; Clay, Keith; Fuqua, Clay

    2007-01-01

    A Coxiella-type microbe occurs at 100% frequency in all Amblyomma americanum ticks thus far tested. Using laboratory-reared ticks free of other microbes, we identified the Amblyomma-associated Coxiella microbe in several types of tissue and at various stages of the life cycle of A. americanum by 16S rRNA gene sequencing and diagnostic PCR. We visualized Amblyomma-associated Coxiella through the use of a diagnostic fluorescence in situ hybridization (FISH) assay supplemented with PCR-based detection, nucleic acid fluorescent staining, wide-field epifluorescence and confocal microscopy, and transmission electron microscopy (TEM). Specific fluorescent foci were observed in several tick tissues, including the midgut and the Malpighian tubules, but particularly bright signals were observed in the granular acini of salivary gland clusters and in both small and large oocytes. TEM confirmed intracellular bacterial structures in the same tissues. The presence of Amblyomma-associated Coxiella within oocytes is consistent with the vertical transmission of these endosymbionts. Further, the presence of the Amblyomma-associated Coxiella symbiont in other tissues such as salivary glands could potentially lead to interactions with horizontally acquired pathogens. PMID:17720830

  18. Molecular and functional characterization of the first tick CAP2b (periviscerokinin) receptor from Rhipicephalus (Boophilus) microplus (Acari: Ixodidae).

    PubMed

    Yang, Yunlong; Bajracharya, Prati; Castillo, Paula; Nachman, Ronald J; Pietrantonio, Patricia V

    2013-12-01

    The cDNA of the receptor for CAP(2b)/periviscerokinin (PVK) neuropeptides, designated Rhimi-CAP(2b)-R, was cloned from synganglia of tick Rhipicephalus (Boophilus) microplus. This receptor is the ortholog of the insect CAP(2b)/PVK receptor, as concluded from analyses of the predicted protein sequence, phylogenetics and functional expression. Expression analyses of synganglion, salivary gland, Malpighian tubule, and ovary revealed Rhimi-CAP(2b)-R transcripts. The expression in mammalian cells of the open reading frame of Rhimi-CAP(2b)-R cDNA fused with a hemagglutinin tag at the receptor N-terminus was confirmed by immunocytochemistry. In a calcium bioluminescence assay the recombinant receptor was activated by the tick Ixodes scapularis CAP(2b)/PVK and a PVK analog with EC₅₀s of 64 nM and 249 nM, respectively. Tick pyrokinins were not active. This is the first report on the functional characterization of the CAP(2b)/PVK receptor from any tick species which will now permit the discovery of the physiological roles of these neuropeptides in ticks, as neurohormones, neuromodulators and/or neurotransmitters. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Ultrastructural and genetic evidence of a reptilian tick, Aponomma hydrosauri, as a host of Rickettsia honei in Australia: possible transovarial transmission.

    PubMed

    Whitworth, Ted; Popov, Vsevolod; Han, Violet; Bouyer, Donald; Stenos, John; Graves, Stephen; Ndip, Lucy; Walker, David

    2003-06-01

    In 1993, a novel rickettsia was isolated from the blood of inhabitants of Flinders Island, Australia, with acute febrile illnesses. This rickettsia was found to be a new species of spotted fever group (SFG) rickettsia, eventually named Rickettsia honei. The suspected ectoparasite vector of this rickettsia has yet to be identified. The purpose of this study was to evaluate the presence of this rickettsial species in a suspected tick vector, Aponomma hydrosauri, by DNA sequencing and electron microscopy (EM). Ticks collected from an Australian blue-tongued lizard on Flinders Island and a copperhead snake in Tasmania were demonstrated to be infected with R. honei by PCR, DNA sequencing, and EM. Rickettsiae were found in ultrathin sections of salivary glands, malpighian tubules, and midgut epithelial cells. In a previous study with a R. honei-infected tick from Flinders Island, rickettsiae were found in the nuclei of midgut epithelial cells, and EM also revealed the presence of rickettsiae in the cytosol of oocytes and immature eggs, suggesting transovarial transmission. These results implicate A. hydrosauri as a possible host of R. honei on Flinders Island and Tasmania and also provide evidence favoring transovarial maintenance of R. honei.

  20. A Coxiella mutualist symbiont is essential to the development of Rhipicephalus microplus.

    PubMed

    Guizzo, Melina Garcia; Parizi, Luís Fernando; Nunes, Rodrigo Dutra; Schama, Renata; Albano, Rodolpho M; Tirloni, Lucas; Oldiges, Daiane Patrícia; Vieira, Ricardo Pilz; Oliveira, Wanderson Henrique Cruz; Leite, Milane de Souza; Gonzales, Sergio A; Farber, Marisa; Martins, Orlando; Vaz, Itabajara da Silva; Oliveira, Pedro L

    2017-12-14

    The cattle tick Rhipicephalus microplus is a hematophagous ectoparasite that causes important economic losses in livestock. Different species of ticks harbor a symbiont bacterium of the genus Coxiella. It was showed that a Coxiella endosymbiont from R. microplus (CERM) is a vertically transmitted mutualist symbiont, comprising 98% of the 16S rRNA sequences in both eggs and larvae. Sequencing of the bacterial genome revealed genes for biosynthetic pathways for several vitamins and key metabolic cofactors that may provide a nutritional complement to the tick host. The CERM was abundant in ovary and Malpighian tubule of fully engorged female. Tetracycline treatment of either the tick or the vertebrate host reduced levels of bacteria in progeny in 74% for eggs and 90% for larvae without major impact neither on the reproductive fitness of the adult female or on embryo development. However, CERM proved to be essential for the tick to reach the adult life stage, as under antibiotic treatment no tick was able to progress beyond the metanymph stage. Data presented here suggest that interference in the symbiotic CERM-R. microplus relationship may be useful to the development of alternative control methods, highlighting the interdependence between ticks and their endosymbionts.

  1. Links between Osmoregulation and Nitrogen-Excretion in Insects and Crustaceans.

    PubMed

    Weihrauch, Dirk; O'Donnell, Michael J

    2015-11-01

    The epithelia involved in ionoregulation and detoxification in crustaceans and insects are quite distinct: the gills, hepatopancreas, and antennal gland serve these functions in crustaceans, whereas the Malpighian tubules, hindgut, and, to some extent, the midgut, are involved in insects. This article compares the means by which the Na(+)/K(+)-ATPase and the vacuolar type H(+)-ATPase are used to energize ionoregulatory processes in both groups. The vacuolar H(+)-ATPase is particularly important as a generator of both H(+) gradients and transmembrane electrical gradients that can be used to energize electroneutral or electrogenic exchange of Na(+) and/or K(+) for H(+). In addition to cation:proton antiporters, epithelia in both groups depend upon the activity of Na(+):K(+):2Cl(-) cotransporters, Cl(-)/[Formula: see text] exchangers, and channels for K(+) and Cl(-) for transepithelial ion transport. This article also contrasts the dominant role of ammonia as the primary nitrogenous waste in crustaceans, with the excretion of ammonia, uric acid, or both in insects. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  2. Molecular characterization of a peritrophic membrane protein from the silkworm, Bombyx mori.

    PubMed

    Hu, Xiaolong; Chen, Lin; Yang, Rui; Xiang, Xingwei; Wu, Xiaofeng

    2013-02-01

    The peritrophic membrane lines the gut of most insects at one or more stages of their life cycles. It facilitates the digestive processes in the guts and protects from invasion by pathogens or food particles. In the current study, a novel PM protein, designated as BmMtch, was identified from the silkworm, Bombyx mori. The open reading frame of BmMtch is 888 bp in length, encoding 295 amino acid residues consisting of two domains (Mito_carr domains) and three transmembrane regions. They are localized on the 11th chromosome as single copy with one exon only. Quantitative real time PCR analysis (qRT-PCR) revealed that BmMtch was mainly expressed in larval fat bodies, Malpighian tubules, testis and ovaries, and could be detected through all stages of the life cycle of silkworm. Immuno-fluorescence analysis indicated that BmMtch was localized within the goblet cell of larval midgut. Western blotting analysis showed that BmMtch were detected in total proteins of PM and larval midgut. The characteristics of BmMtch indicated that BmMtch represents a novel member of insect PM proteins, without chitin-binding domains.

  3. Changes is genes coding for laccases 1 and 2 may contribute to deformation and reduction of wings in apollo butterfly (Parnassius apollo, Lepidoptera: Papilionidae) from the isolated population in Pieniny National Park (Poland).

    PubMed

    Łukasiewicz, Kinga; Węgrzyn, Grzegorz

    2016-01-01

    An isolated population of apollo butterfly (Parnassius apollo, Lepidoptera: Papilionidae) occurs in Pieniny National Park (Poland). Deformations and reductions of wings in a relatively large number of individuals from this population is found, yet the reasons for these defects are unknown. During studies devoted to identify cause(s) of this phenomenon, we found that specific regions of genes coding of enzymes laccases 1 and 2 could not be amplified from DNA samples isolated from large fractions of malformed insects while expected PCR products were detected in almost all (with one exception) normal butterflies. Laccases (p-diphenol:dioxygen oxidoreductases) are oxidases containing several copper atoms. They catalyse single-electron oxidations of phenolic or other compounds with concomitant reduction of oxygen to water. In insects, their enzymatic activities were found previously in epidermis, midgut, Malpighian tubules, salivary glands, and reproductive tissues. Therefore, we suggest that defects in genes coding for laccases might contribute to deformation and reduction of wings in apollo butterflies, though it seems obvious that deficiency in these enzymes could not be the sole cause of these developmental improperties in P. apollo from Pieniny National Park.

  4. Roles of CD34+ cells and ALK5 signaling in the reconstruction of seminiferous tubule-like structures in 3-D re-aggregate culture of dissociated cells from neonatal mouse testes.

    PubMed

    Abe, Shin-Ichi; Abe, Kazuko; Zhang, Jidong; Harada, Tomoaki; Mizumoto, Go; Oshikawa, Hiroki; Akiyama, Haruhiko; Shimamura, Kenji

    2017-01-01

    Tissue reconstruction in vitro can provide, if successful, a refined and simple system to analyze the underlying mechanisms that drive the morphogenesis and maintain the ordered structure. We have recently succeeded in reconstruction of seminiferous cord-like and tubule-like structures using 3-D re-aggregate culture of dissociated testicular cells. In testis formation, endothelial cells that migrated from mesonephroi to embryonic gonads have been shown to be critical for development of testis cords, but how endothelial cells contribute to testis cord formation remains unknown. To decipher the roles of endothelial and peritubular cells in the reconstruction of cord-like and tubule-like structures, we investigated the behavior of CD34+ endothelial and p75+ cells, and peritubular myoid cells (PTMCs) in 3-D re-aggregate cultures of testicular cells. The results showed that these 3 types of cells had the capacity of re-aggregation on their own and with each other, and of segregation into 3 layers in a re-aggregate, which were very similar to interstitial and peritubular tissues in vivo. Observation of behaviors of fluorescent Sertoli cells and other non-fluorescent types of cells using testes from Sox9-EGFP transgenic mice showed dynamic cell movement and segregation in re-aggregate cultures. Cultures of testicular cells deprived of interstitial and peritubular cells resulted in dysmorphic structures, but re-addition of them restored tubule-like structures. Purified CD34+ cells in culture differentiated into p75+ cells and PTMCs. These results indicate that CD34+ cells differentiate into p75+ cells, which then differentiate into PTMCs. TGFβ signaling inhibitors, SB431542 and ALK5i, disturbed the reconstruction of cord-like and tubule-like structures, and the latter compromised re-construction of interstitial-like and peritubular-like structures, as well as the proliferation of CD34+, p75+, PTMCs, and Sertoli cells, and their movement and differentiation. These results

  5. Effect of photon-initiated photoacoustic streaming, passive ultrasonic, and sonic irrigation techniques on dentinal tubule penetration of irrigation solution: a confocal microscopic study.

    PubMed

    Akcay, Merve; Arslan, Hakan; Mese, Merve; Durmus, Nazlı; Capar, Ismail Davut

    2017-09-01

    The aim of this in vitro study was to evaluate the efficacy of different irrigation techniques including laser-activated irrigation using an erbium:yttrium-aluminum-garnet (Er:YAG) laser with a novel tip design (photon-induced photoacoustic streaming (PIPS)), Er:YAG laser with Preciso tip, sonic activation, and passive ultrasonic activation on the final irrigation solution penetration into dentinal tubules by using a laser scanning confocal microscope. In this study, 65 extracted single-rooted human mandibular premolars were instrumented up to size 40 and randomly divided into 5 groups (n = 13) based on the activation technique of the final irrigation solution as follows: conventional irrigation (control group), sonic activation, passive ultrasonic activation, Er:YAG-PIPS tip activation, and Er:YAG-Preciso tip activation. In each group, 5 mL of 5% NaOCl labeled with fluorescent dye was used during the activation as the final irrigation solution. Specimens were sectioned at 2.5 and 8 mm from the apex and then examined under a confocal microscope to calculate the dentinal tubule penetration area. Data were analyzed using two-way analysis of variance (ANOVA) and Tukey's post hoc tests (P = 0.05). Both Er:YAG laser (Preciso/PIPS) activations exhibited a significantly higher penetration area than the other groups (P < 0.05). Additionally, passive ultrasonic activation had significantly higher penetration than the sonic activation group and the control group. Statistically significant differences were also found between each root canal third (coronal > middle > apical) (P < 0.001). The results from the present study support the use of Er:YAG laser activation (Preciso/PIPS) to improve the effectiveness of the final irrigation procedure by increasing the irrigant penetration area into the dentinal tubules. The activation of the irrigant and the creation of the streaming with the Er:YAG laser have a positive effect on the irrigant penetration.

  6. Proximal Tubules Have the Capacity to Regulate Uptake of Albumin.

    PubMed

    Wagner, Mark C; Campos-Bilderback, Silvia B; Chowdhury, Mahboob; Flores, Brittany; Lai, Xianyin; Myslinski, Jered; Pandit, Sweekar; Sandoval, Ruben M; Wean, Sarah E; Wei, Yuan; Satlin, Lisa M; Wiggins, Roger C; Witzmann, Frank A; Molitoris, Bruce A

    2016-02-01

    Evidence from multiple studies supports the concept that both glomerular filtration and proximal tubule (PT) reclamation affect urinary albumin excretion rate. To better understand these roles of glomerular filtration and PT uptake, we investigated these processes in two distinct animal models. In a rat model of acute exogenous albumin overload, we quantified glomerular sieving coefficients (GSC) and PT uptake of Texas Red-labeled rat serum albumin using two-photon intravital microscopy. No change in GSC was observed, but a significant decrease in PT albumin uptake was quantified. In a second model, loss of endogenous albumin was induced in rats by podocyte-specific transgenic expression of diphtheria toxin receptor. In these albumin-deficient rats, exposure to diphtheria toxin induced an increase in albumin GSC and albumin filtration, resulting in increased exposure of the PTs to endogenous albumin. In this case, PT albumin reabsorption was markedly increased. Analysis of known albumin receptors and assessment of cortical protein expression in the albumin overload model, conducted to identify potential proteins and pathways affected by acute protein overload, revealed changes in the expression levels of calreticulin, disabled homolog 2, NRF2, angiopoietin-2, and proteins involved in ATP synthesis. Taken together, these results suggest that a regulated PT cell albumin uptake system can respond rapidly to different physiologic conditions to minimize alterations in serum albumin level. Copyright © 2016 by the American Society of Nephrology.

  7. Proximal Tubules Have the Capacity to Regulate Uptake of Albumin

    PubMed Central

    Wagner, Mark C.; Campos-Bilderback, Silvia B.; Chowdhury, Mahboob; Flores, Brittany; Lai, Xianyin; Myslinski, Jered; Pandit, Sweekar; Sandoval, Ruben M.; Wean, Sarah E.; Wei, Yuan; Satlin, Lisa M.; Wiggins, Roger C.; Witzmann, Frank A.

    2016-01-01

    Evidence from multiple studies supports the concept that both glomerular filtration and proximal tubule (PT) reclamation affect urinary albumin excretion rate. To better understand these roles of glomerular filtration and PT uptake, we investigated these processes in two distinct animal models. In a rat model of acute exogenous albumin overload, we quantified glomerular sieving coefficients (GSC) and PT uptake of Texas Red-labeled rat serum albumin using two-photon intravital microscopy. No change in GSC was observed, but a significant decrease in PT albumin uptake was quantified. In a second model, loss of endogenous albumin was induced in rats by podocyte-specific transgenic expression of diphtheria toxin receptor. In these albumin-deficient rats, exposure to diphtheria toxin induced an increase in albumin GSC and albumin filtration, resulting in increased exposure of the PTs to endogenous albumin. In this case, PT albumin reabsorption was markedly increased. Analysis of known albumin receptors and assessment of cortical protein expression in the albumin overload model, conducted to identify potential proteins and pathways affected by acute protein overload, revealed changes in the expression levels of calreticulin, disabled homolog 2, NRF2, angiopoietin-2, and proteins involved in ATP synthesis. Taken together, these results suggest that a regulated PT cell albumin uptake system can respond rapidly to different physiologic conditions to minimize alterations in serum albumin level. PMID:26054544

  8. Plasticity of the transverse tubules following denervation and subsequent reinnervation in rat slow and fast muscle fibres.

    PubMed

    Takekura, Hiroaki; Tamaki, Hiroyuki; Nishizawa, Tomie; Kasuga, Norikatsu

    2003-01-01

    We have studied the effects of short term denervation followed by reinnervation on the ultrastructure of the membrane systems and on the content of and distribution of key proteins involved in calcium regulation of fast-twitch (FT) extensor digitorum longus (EDL) and slow-twitch (ST) soleus (SOL) muscle fibres. Ischiadic nerve freezing resulted in total lack of neuromuscular transmission for 3 days followed by a slow recovery, but no decline in twitch force elicited by direct stimulation. The latter measurements indicate no significant atrophy within this time frame. The membrane systems of skeletal muscle fibres were visualized using Ca92+)-K3Fe(CN)6-OsO4 techniques and observed using a high voltage electron microscope. [3H]nitrendipine binding was used to detect levels of dihydropyridine receptor (DHPR) expression. The Ca2+ pumping free sarcoplasmic reticulum domains were not affected by the denervation, but the Ca2+ release domains were dramatically increased, particularly in the FT-EDL muscle fibres. The increase is evidenced by a doubling up of the areas of contacts between SR and transverse (t-) tubules, so that in place of the normal triadic arrangement, pentadic and heptadic junctions, formed by multiple interacting layers of ST and t-tubules are seen. Frequency of pentads and heptads increases and declines in parallel to the denervation and reinnervation but with a delay. Immunofluorecence and electron microscopy observations show presence of DHPR and ryanodine receptor clusters at pentads and heptads junctions. A significant (P < 0.01) positive correlation between the level of [3H]nitrendipine binding component and the frequency pentads and heptads was observed in both the FT-EDL and ST-SOL muscle fibres indicating that overexpression of DHPRs accompanies the build up extra junctional contacts. The results indicate that denervation reversibly affects the domains of the membrane systems involved in excitation-contraction coupling.

  9. Sodium, phosphate, glucose, bicarbonate, and alanine interactions in the isolated proximal convoluted tubule of the rabbit kidney.

    PubMed

    Dennis, V W; Brazy, P C

    1978-08-01

    Interactions among the transport systems involved with sodium, bicarbonate, glucose, phosphate, and alanine absorption in isolated segments of the rabbit proximal convoluted tubule were examined with radioisotopic techniques to measure glucose, phosphate, and fluid absorption rates. The composition of the perfusate and bath varied from normal, physiological fluids to fluids deficient in a single solute. The deletion of glucose from the perfusate increased the lumen-to-bath flux of phosphate from 5.51 +/- 1.15 to 8.32 +/- 1.34 pmol/mm-min (P less than 0.01). Similar changes occurred when glucose transport was inhibited by phlorizin 10 micron in the perfusate, The deletion of alanine from the perfusate increased the lumen-to-bath flux of phosphate from 6.55 +/- 1.08 to 9.00 +/- 1.30 pmol/mm-min (P less than 0.01) but did not affect glucose transport significantly, 80.1 +/- 10.1 vs. 72.5 +/- 5.4 pmol/mm-min. Replacement of intraluminal sodium with choline, elimination of potassium from the bath, and removal of bicarbonate from the lumen and bath each reduced glucose, phosphate, and fluid absorption. These data indicate that the proximal absorptive processes for glucose and for phosphate include elements that are dependent upon some function of sodium transport. Additionally, the effects on phosphate transport of deleting glucose or alanine occur independent of any changes in net sodium transport and are opposite the effects of deleting bicarbonate. These differences may relate to the observations that the transport of glucose and alanine is electrogenic while that of bicarbonate is not. Regardless of possible mechanisms, the data demonstrate that important changes in the absorption rates of different solutes handled significantly by the proximal convoluted tubule may occur in response to changes in specific components of proximal sodium transport.

  10. Sodium, phosphate, glucose, bicarbonate, and alanine interactions in the isolated proximal convoluted tubule of the rabbit kidney.

    PubMed Central

    Dennis, V W; Brazy, P C

    1978-01-01

    Interactions among the transport systems involved with sodium, bicarbonate, glucose, phosphate, and alanine absorption in isolated segments of the rabbit proximal convoluted tubule were examined with radioisotopic techniques to measure glucose, phosphate, and fluid absorption rates. The composition of the perfusate and bath varied from normal, physiological fluids to fluids deficient in a single solute. The deletion of glucose from the perfusate increased the lumen-to-bath flux of phosphate from 5.51 +/- 1.15 to 8.32 +/- 1.34 pmol/mm-min (P less than 0.01). Similar changes occurred when glucose transport was inhibited by phlorizin 10 micron in the perfusate, The deletion of alanine from the perfusate increased the lumen-to-bath flux of phosphate from 6.55 +/- 1.08 to 9.00 +/- 1.30 pmol/mm-min (P less than 0.01) but did not affect glucose transport significantly, 80.1 +/- 10.1 vs. 72.5 +/- 5.4 pmol/mm-min. Replacement of intraluminal sodium with choline, elimination of potassium from the bath, and removal of bicarbonate from the lumen and bath each reduced glucose, phosphate, and fluid absorption. These data indicate that the proximal absorptive processes for glucose and for phosphate include elements that are dependent upon some function of sodium transport. Additionally, the effects on phosphate transport of deleting glucose or alanine occur independent of any changes in net sodium transport and are opposite the effects of deleting bicarbonate. These differences may relate to the observations that the transport of glucose and alanine is electrogenic while that of bicarbonate is not. Regardless of possible mechanisms, the data demonstrate that important changes in the absorption rates of different solutes handled significantly by the proximal convoluted tubule may occur in response to changes in specific components of proximal sodium transport. PMID:670399

  11. Antenatal betamethasone attenuates the angiotensin-(1-7)-Mas receptor-nitric oxide axis in isolated proximal tubule cells.

    PubMed

    Su, Yixin; Bi, Jianli; Pulgar, Victor M; Chappell, Mark C; Rose, James C

    2017-06-01

    We previously reported a sex-specific effect of antenatal treatment with betamethasone (Beta) on sodium (Na + ) excretion in adult sheep whereby treated males but not females had an attenuated natriuretic response to angiotensin-(1-7) [Ang-(1-7)]. The present study determined the Na + uptake and nitric oxide (NO) response to low-dose Ang-(1-7) (1 pM) in renal proximal tubule cells (RPTC) from adult male and female sheep antenatally exposed to Beta or vehicle. Data were expressed as percentage of basal uptake or area under the curve for Na + or percentage of control for NO. Male Beta RPTC exhibited greater Na + uptake than male vehicle cells (433 ± 28 vs. 330 ± 26%; P < 0.05); however, Beta exposure had no effect on Na + uptake in the female cells (255 ± 16 vs. 255 ± 14%; P > 0.05). Ang-(1-7) significantly inhibited Na + uptake in RPTC from vehicle male (214 ± 11%) and from both vehicle (190 ± 14%) and Beta (209 ± 11%) females but failed to attenuate Na + uptake in Beta male cells. Beta exposure also abolished stimulation of NO by Ang-(1-7) in male but not female RPTC. Both the Na + and NO responses to Ang-(1-7) were blocked by Mas receptor antagonist d-Ala 7 -Ang-(1-7). We conclude that the tubular Ang-(1-7)-Mas-NO pathway is attenuated in males and not females by antenatal Beta exposure. Moreover, since primary cultures of RPTC retain both the sex and Beta-induced phenotype of the adult kidney in vivo they appear to be an appropriate cell model to examine the effects of fetal programming on Na + handling by the renal tubules. Copyright © 2017 the American Physiological Society.

  12. Stable chromosome condensation revealed by chromosome conformation capture

    PubMed Central

    Eagen, Kyle P.; Hartl, Tom A.; Kornberg, Roger D.

    2015-01-01

    SUMMARY Chemical cross-linking and DNA sequencing have revealed regions of intra-chromosomal interaction, referred to as topologically associating domains (TADs), interspersed with regions of little or no interaction, in interphase nuclei. We find that TADs and the regions between them correspond with the bands and interbands of polytene chromosomes of Drosophila. We further establish the conservation of TADs between polytene and diploid cells of Drosophila. From direct measurements on light micrographs of polytene chromosomes, we then deduce the states of chromatin folding in the diploid cell nucleus. Two states of folding, fully extended fibers containing regulatory regions and promoters, and fibers condensed up to ten-fold containing coding regions of active genes, constitute the euchromatin of the nuclear interior. Chromatin fibers condensed up to 30-fold, containing coding regions of inactive genes, represent the heterochromatin of the nuclear periphery. A convergence of molecular analysis with direct observation thus reveals the architecture of interphase chromosomes. PMID:26544940

  13. Acute Slices of Mice Testis Seminiferous Tubules Unveil Spontaneous and Synchronous Ca2+ Oscillations in Germ Cell Clusters1

    PubMed Central

    Sánchez-Cárdenas, Claudia; Guerrero, Adán; Treviño, Claudia Lydia; Hernández-Cruz, Arturo; Darszon, Alberto

    2012-01-01

    ABSTRACT Spermatogenic cell differentiation involves changes in the concentration of cytoplasmic Ca2+ ([Ca2+]i); however, very few studies exist on [Ca2+]i dynamics in these cells. Other tissues display Ca2+ oscillations involving multicellular functional arrangements. These phenomena have been studied in acute slice preparations that preserve tissue architecture and intercellular communications. Here we report the implementation of intracellular Ca2+ imaging in a sliced seminiferous tubule (SST) preparation to visualize [Ca2+]i changes of living germ cells in situ within the SST preparation. Ca2+ imaging revealed that a subpopulation of male germ cells display spontaneous [Ca2+]i fluctuations resulting from Ca2+ entry possibly throughout CaV3 channels. These [Ca2+]i fluctuation patterns are also present in single acutely dissociated germ cells, but they differ from those recorded from germ cells in the SST preparation. Often, spontaneous Ca2+ fluctuations of spermatogenic cells in the SST occur synchronously, so that clusters of cells can display Ca2+ oscillations for at least 10 min. Synchronous Ca2+ oscillations could be mediated by intercellular communication via gap junctions, although intercellular bridges could also be involved. We also observed an increase in [Ca2+]i after testosterone application, suggesting the presence of functional Sertoli cells in the SST. In summary, we believe that the SST preparation is suitable to explore the physiology of spermatogenic cells in their natural environment, within the seminiferous tubules, in particular Ca2+ signaling phenomena, functional cell-cell communication, and multicellular functional arrangements. PMID:22914313

  14. Proximal tubule sphingosine kinase-1 has a critical role in A1 adenosine receptor-mediated renal protection from ischemia

    PubMed Central

    Park, Sang Won; Kim, Mihwa; Kim, Joo Yun; Brown, Kevin M.; Haase, Volker H.; D’Agati, Vivette D.; Lee, H. Thomas

    2012-01-01

    Renal ischemia reperfusion injury is a major cause of acute kidney injury. We previously found that renal A1 adenosine receptor (A1AR) activation attenuated multiple cell death pathways including necrosis, apoptosis and inflammation. Here, we tested whether induction of cytoprotective sphingosine kinase (SK)-1 and sphingosine-1 phosphate (S1P) synthesis might be the mechanism of protection. A selective A1AR agonist (CCPA) increased the synthesis of S1P and selectively induced SK-1 in mouse kidney and HK-2 cells. This agonist failed to protect SK1-knockout but protected SK2-knockout mice against renal ischemia reperfusion injury indicating a critical role of SK1 in A1AR-mediated renal protection. Inhibition of SK prevented A1AR-mediated defense against necrosis and apoptosis in HK-2 cells. A selective S1P1R antagonist (W146) and global in vivo gene knockdown of S1P1Rs with small interfering RNA completely abolished the renal protection provided by CCPA. Mice selectively deficient in renal proximal tubule S1P1Rs (S1P1Rflox/flox PEPCKCre/−) were not protected against renal ischemia reperfusion injury by CCPA. Mechanistically, CCPA increased nuclear translocation of hypoxia inducible factor-1α in HK-2 cells and selective hypoxia inducible factor-1α inhibition blocked A1AR-mediated induction of SK1. Thus, proximal tubule SK-1 has a critical role in A1AR-mediated protection against renal ischemia reperfusion injury. PMID:22695326

  15. Human cardiomyocyte calcium handling and transverse tubules in mid-stage of post-myocardial-infarction heart failure.

    PubMed

    Høydal, Morten Andre; Kirkeby-Garstad, Idar; Karevold, Asbjørn; Wiseth, Rune; Haaverstad, Rune; Wahba, Alexander; Stølen, Tomas L; Contu, Riccardo; Condorelli, Gianluigi; Ellingsen, Øyvind; Smith, Godfrey L; Kemi, Ole J; Wisløff, Ulrik

    2018-06-01

    Cellular processes in the heart rely mainly on studies from experimental animal models or explanted hearts from patients with terminal end-stage heart failure (HF). To address this limitation, we provide data on excitation contraction coupling, cardiomyocyte contraction and relaxation, and Ca 2+ handling in post-myocardial-infarction (MI) patients at mid-stage of HF. Nine MI patients and eight control patients without MI (non-MI) were included. Biopsies were taken from the left ventricular myocardium and processed for further measurements with epifluorescence and confocal microscopy. Cardiomyocyte function was progressively impaired in MI cardiomyocytes compared with non-MI cardiomyocytes when increasing electrical stimulation towards frequencies that simulate heart rates during physical activity (2 Hz); at 3 Hz, we observed almost total breakdown of function in MI. Concurrently, we observed impaired Ca 2+ handling with more spontaneous Ca 2+ release events, increased diastolic Ca 2+ , lower Ca 2+ amplitude, and prolonged time to diastolic Ca 2+ removal in MI (P < 0.01). Significantly reduced transverse-tubule density (-35%, P < 0.01) and sarcoplasmic reticulum Ca 2+ adenosine triphosphatase 2a (SERCA2a) function (-26%, P < 0.01) in MI cardiomyocytes may explain the findings. Reduced protein phosphorylation of phospholamban (PLB) serine-16 and threonine-17 in MI provides further mechanisms to the reduced function. Depressed cardiomyocyte contraction and relaxation were associated with impaired intracellular Ca 2+ handling due to impaired SERCA2a activity caused by a combination of alteration in the PLB/SERCA2a ratio and chronic dephosphorylation of PLB as well as loss of transverse tubules, which disrupts normal intracellular Ca 2+ homeostasis and handling. This is the first study that presents these mechanisms from viable and intact cardiomyocytes isolated from the left ventricle of human hearts at mid-stage of post-MI HF. © 2018 The Authors. ESC Heart

  16. Effect of water on self-assembled tubules in β-sitosterol + γ-oryzanol-based organogels

    NASA Astrophysics Data System (ADS)

    den Adel, Ruud; Heussen, Patricia C. M.; Bot, Arjen

    2010-10-01

    Mixtures of β-sitosterol and γ-oryzanol form a network in triglyceride oil that may serve as an alternative to the network of small crystallites of triglycerides occurring in regular oil structuring. The present x-ray diffraction study investigates the relation between the crystal forms of the individual compounds and the mixture in oil, water and emulsion. β-Sitosterol and γ-oryzanol form normal crystals in oil, in water, or in emulsions. The crystals are sensitive to the presence of water. The mixture of β-sitosterol + γ-oryzanol forms crystals in water and emulsions that can be traced back to the crystals of the pure compounds. Only in oil, a completely different structure emerges in the mixture of β-sitosterol + γ-oryzanol, which bears no relation to the structures that are formed by both individual compounds, and which can be identified as a self-assembled tubule (diameter 7.2±0.1 nm, wall thickness 0.8±0.2 nm).

  17. The Endocytic Receptor Megalin and its Associated Proteins in Proximal Tubule Epithelial Cells

    PubMed Central

    De, Shankhajit; Kuwahara, Shoji; Saito, Akihiko

    2014-01-01

    Receptor-mediated endocytosis in renal proximal tubule epithelial cells (PTECs) is important for the reabsorption and metabolization of proteins and other substances, including carrier-bound vitamins and trace elements, in glomerular filtrates. Impairment of this endocytic process results in the loss of such substances and development of proteinuria, which is an important clinical indicator of kidney diseases and is also a risk marker for cardiovascular disease. Megalin, a member of the low-density lipoprotein receptor gene family, is a multiligand receptor expressed in the apical membrane of PTECs and plays a central role in the endocytic process. Megalin interacts with various intracellular adaptor proteins for intracellular trafficking and cooperatively functions with other membrane molecules, including the cubilin-amnionless complex. Evidence suggests that megalin and the cubilin-amnionless complex are involved in the uptake of toxic substances into PTECs, which leads to the development of kidney disease. Studies of megalin and its associated molecules will be useful for future development of novel strategies for the diagnosis and treatment of kidney diseases. PMID:25019425

  18. 5-Lypoxygenase products are involved in renal tubulointerstitial injury induced by albumin overload in proximal tubules in mice.

    PubMed

    Landgraf, Sharon Schilling; Silva, Leandro Souza; Peruchetti, Diogo Barros; Sirtoli, Gabriela Modenesi; Moraes-Santos, Felipe; Portella, Viviane Gomes; Silva-Filho, João Luiz; Pinheiro, Carla Silva; Abreu, Thiago Pereira; Takiya, Christina Maeda; Benjamin, Claudia Farias; Pinheiro, Ana Acacia Sá; Canetti, Claudio; Caruso-Neves, Celso

    2014-01-01

    The role of albumin overload in proximal tubules (PT) in the development of tubulointerstitial injury and, consequently, in the progression of renal disease has become more relevant in recent years. Despite the importance of leukotrienes (LTs) in renal disease, little is known about their role in tubulointerstitial injury. The aim of the present work was to investigate the possible role of LTs on tubulointerstitial injury induced by albumin overload. An animal model of tubulointerstitial injury challenged by bovine serum albumin was developed in SV129 mice (wild-type) and 5-lipoxygenase-deficient mice (5-LO(-/-)). The changes in glomerular morphology and nestin expression observed in wild-type mice subjected to kidney insult were also observed in 5-LO(-/-) mice. The levels of urinary protein observed in the 5-LO(-/-) mice subjected or not to kidney insult were lower than those observed in respective wild-type mice. Furthermore, the increase in lactate dehydrogenase activity, a marker of tubule damage, observed in wild-type mice subjected to kidney insult did not occur in 5-LO(-/-) mice. LTB4 and LTD4, 5-LO products, decreased the uptake of albumin in LLC-PK1 cells, a well-characterized porcine PT cell line. This effect correlated with activation of protein kinase C and inhibition of protein kinase B. The level of proinflammatory cytokines, tumor necrosis factor-α and interleukin (IL)-6, increased in mice subjected to kidney insult but this effect was not modified in 5-LO(-/-) mice. However, 5-LO(-/-) mice subjected to kidney insult presented lower macrophage infiltration and higher levels of IL-10 than wild-type mice. Our results reveal that LTs have an important role in tubulointerstitial disease induced by albumin overload.

  19. 5-Lypoxygenase Products Are Involved in Renal Tubulointerstitial Injury Induced by Albumin Overload in Proximal Tubules in Mice

    PubMed Central

    Landgraf, Sharon Schilling; Silva, Leandro Souza; Peruchetti, Diogo Barros; Sirtoli, Gabriela Modenesi; Moraes-Santos, Felipe; Portella, Viviane Gomes; Silva-Filho, João Luiz; Pinheiro, Carla Silva; Abreu, Thiago Pereira; Takiya, Christina Maeda; Benjamin, Claudia Farias; Pinheiro, Ana Acacia Sá; Canetti, Claudio; Caruso-Neves, Celso

    2014-01-01

    The role of albumin overload in proximal tubules (PT) in the development of tubulointerstitial injury and, consequently, in the progression of renal disease has become more relevant in recent years. Despite the importance of leukotrienes (LTs) in renal disease, little is known about their role in tubulointerstitial injury. The aim of the present work was to investigate the possible role of LTs on tubulointerstitial injury induced by albumin overload. An animal model of tubulointerstitial injury challenged by bovine serum albumin was developed in SV129 mice (wild-type) and 5-lipoxygenase-deficient mice (5-LO–/–). The changes in glomerular morphology and nestin expression observed in wild-type mice subjected to kidney insult were also observed in 5-LO–/– mice. The levels of urinary protein observed in the 5-LO–/– mice subjected or not to kidney insult were lower than those observed in respective wild-type mice. Furthermore, the increase in lactate dehydrogenase activity, a marker of tubule damage, observed in wild-type mice subjected to kidney insult did not occur in 5-LO–/– mice. LTB4 and LTD4, 5-LO products, decreased the uptake of albumin in LLC-PK1 cells, a well-characterized porcine PT cell line. This effect correlated with activation of protein kinase C and inhibition of protein kinase B. The level of proinflammatory cytokines, tumor necrosis factor-α and interleukin (IL)-6, increased in mice subjected to kidney insult but this effect was not modified in 5-LO–/– mice. However, 5-LO–/– mice subjected to kidney insult presented lower macrophage infiltration and higher levels of IL-10 than wild-type mice. Our results reveal that LTs have an important role in tubulointerstitial disease induced by albumin overload. PMID:25302946

  20. Development of a living membrane comprising a functional human renal proximal tubule cell monolayer on polyethersulfone polymeric membrane.

    PubMed

    Schophuizen, Carolien M S; De Napoli, Ilaria E; Jansen, Jitske; Teixeira, Sandra; Wilmer, Martijn J; Hoenderop, Joost G J; Van den Heuvel, Lambert P W; Masereeuw, Rosalinde; Stamatialis, Dimitrios

    2015-03-01

    The need for improved renal replacement therapies has stimulated innovative research for the development of a cell-based renal assist device. A key requirement for such a device is the formation of a "living membrane", consisting of a tight kidney cell monolayer with preserved functional organic ion transporters on a suitable artificial membrane surface. In this work, we applied a unique conditionally immortalized proximal tubule epithelial cell (ciPTEC) line with an optimized coating strategy on polyethersulfone (PES) membranes to develop a living membrane with a functional proximal tubule epithelial cell layer. PES membranes were coated with combinations of 3,4-dihydroxy-l-phenylalanine and human collagen IV (Coll IV). The optimal coating time and concentrations were determined to achieve retention of vital blood components while preserving high water transport and optimal ciPTEC adhesion. The ciPTEC monolayers obtained were examined through immunocytochemistry to detect zona occludens 1 tight junction proteins. Reproducible monolayers were formed when using a combination of 2 mg ml(-1) 3,4-dihydroxy-l-phenylalanine (4 min coating, 1h dissolution) and 25 μg ml(-1) Coll IV (4 min coating). The successful transport of (14)C-creatinine through the developed living membrane system was used as an indication for organic cation transporter functionality. The addition of metformin or cimetidine significantly reduced the creatinine transepithelial flux, indicating active creatinine uptake in ciPTECs, most likely mediated by the organic cation transporter, OCT2 (SLC22A2). In conclusion, this study shows the successful development of a living membrane consisting of a reproducible ciPTEC monolayer on PES membranes, an important step towards the development of a bioartificial kidney. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Application of a free-energy-landscape approach to study tension-dependent bilayer tubulation mediated by curvature-inducing proteins.

    PubMed

    Tourdot, Richard W; Ramakrishnan, N; Baumgart, Tobias; Radhakrishnan, Ravi

    2015-10-01

    We investigate the phenomenon of protein-induced tubulation of lipid bilayer membranes within a continuum framework using Monte Carlo simulations coupled with the Widom insertion technique to compute excess chemical potentials. Tubular morphologies are spontaneously formed when the density and the curvature-field strength of the membrane-bound proteins exceed their respective thresholds and this transition is marked by a sharp drop in the excess chemical potential. We find that the planar to tubular transition can be described by a micellar model and that the corresponding free-energy barrier increases with an increase in the curvature-field strength (i.e., of protein-membrane interactions) and also with an increase in membrane tension.

  2. Changes in gene expression in human renal proximal tubule cells exposed to low concentrations of S-(1,2-dichlorovinyl)-L-cysteine, a metabolite of trichloroethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lock, Edward A.; Barth, Jeremy L.; Argraves, Scott W.

    2006-10-15

    Epidemiology studies suggest that there may be a weak association between high level exposure to trichloroethylene (TCE) and renal tubule cell carcinoma. Laboratory animal studies have shown an increased incidence of renal tubule carcinoma in male rats but not mice. TCE can undergo metabolism via glutathione (GSH) conjugation to form metabolites that are known to be nephrotoxic. The GSH conjugate, S-(1,2-dichlorovinyl)glutathione (DCVG), is processed further to the cysteine conjugate, S-(1,2-dichlorovinyl)-L-cysteine (DCVC), which is the penultimate nephrotoxic species. We have cultured human renal tubule cells (HRPTC) in serum-free medium under a variety of different culture conditions and observed growth, respiratory controlmore » and glucose transport over a 20 day period in medium containing low glucose. Cell death was time- and concentration-dependent, with the EC{sub 5} for DCVG being about 3 {mu}M and for DCVC about 7.5 {mu}M over 10 days. Exposure of HRPTC to sub-cytotoxic doses of DCVC (0.1 {mu}M and 1 {mu}M for 10 days) led to a small number of changes in gene expression, as determined by transcript profiling with Affymetrix human genome chips. Using the criterion of a mean 2-fold change over control for the four samples examined, 3 genes at 0.1 {mu}M DCVC increased, namely, adenosine kinase, zinc finger protein X-linked and an enzyme with lyase activity. At 1 {mu}M DCVC, two genes showed a >2-fold decrease, N-acetyltransferase 8 and complement factor H. At a lower stringency (1.5-fold change), a total of 63 probe sets were altered at 0.1 {mu}M DCVC and 45 at 1 {mu}M DCVC. Genes associated with stress, apoptosis, cell proliferation and repair and DCVC metabolism were altered, as were a small number of genes that did not appear to be associated with the known mode of action of DCVC. Some of these genes may serve as molecular markers of TCE exposure and effects in the human kidney.« less

  3. An angiotensin-(1–7) peptidase in the kidney cortex, proximal tubules, and human HK-2 epithelial cells that is distinct from insulin-degrading enzyme

    PubMed Central

    Wilson, Bryan A.; Cruz-Diaz, Nildris; Marshall, Allyson C.; Pirro, Nancy T.; Su, Yixin; Gwathmey, TanYa M.; Rose, James C.

    2015-01-01

    Angiotensin 1–7 [ANG-(1–7)] is expressed within the kidney and exhibits renoprotective actions that antagonize the inflammatory, fibrotic, and pro-oxidant effects of ANG II. We previously identified an peptidase that preferentially metabolized ANG-(1–7) to ANG-(1–4) in the brain medulla and cerebrospinal fluid (CSF) of sheep (Marshall AC, Pirro NT, Rose JC, Diz DI, Chappell MC. J Neurochem 130: 313–323, 2014); thus the present study established the expression of the peptidase in the kidney. Utilizing a sensitive HPLC-based approach, we demonstrate a peptidase activity that hydrolyzed ANG-(1–7) to ANG-(1–4) in the sheep cortex, isolated tubules, and human HK-2 renal epithelial cells. The peptidase was markedly sensitive to the metallopeptidase inhibitor JMV-390; human HK-2 cells expressed subnanomolar sensitivity (IC50 = 0.5 nM) and the highest specific activity (123 ± 5 fmol·min−1·mg−1) compared with the tubules (96 ± 12 fmol·min−1·mg−1) and cortex (107 ± 9 fmol·min−1·mg−1). The peptidase was purified 41-fold from HK-2 cells; the activity was sensitive to JMV-390, the chelator o-phenanthroline, and the mercury-containing compound p-chloromercuribenzoic acid (PCMB), but not to selective inhibitors against neprilysin, neurolysin and thimet oligopeptidase. Both ANG-(1–7) and its endogenous analog [Ala1]-ANG-(1–7) (alamandine) were preferentially hydrolyzed by the peptidase compared with ANG II, [Asp1]-ANG II, ANG I, and ANG-(1–12). Although the ANG-(1–7) peptidase and insulin-degrading enzyme (IDE) share similar inhibitor characteristics of a metallothiolendopeptidase, we demonstrate marked differences in substrate specificity, which suggest these peptidases are distinct. We conclude that an ANG-(1–7) peptidase is expressed within the renal proximal tubule and may play a potential role in the renal renin-angiotensin system to regulate ANG-(1–7) tone. PMID:25568136

  4. The Bactrocera dorsalis species complex: comparative cytogenetic analysis in support of Sterile Insect Technique applications

    PubMed Central

    2014-01-01

    Background The Bactrocera dorsalis species complex currently harbors approximately 90 different members. The species complex has undergone many revisions in the past decades, and there is still an ongoing debate about the species limits. The availability of a variety of tools and approaches, such as molecular-genomic and cytogenetic analyses, are expected to shed light on the rather complicated issues of species complexes and incipient speciation. The clarification of genetic relationships among the different members of this complex is a prerequisite for the rational application of sterile insect technique (SIT) approaches for population control. Results Colonies established in the Insect Pest Control Laboratory (IPCL) (Seibersdorf, Vienna), representing five of the main economic important members of the Bactrocera dorsalis complex were cytologically characterized. The taxa under study were B. dorsalis s.s., B. philippinensis, B. papayae, B. invadens and B. carambolae. Mitotic and polytene chromosome analyses did not reveal any chromosomal characteristics that could be used to distinguish between the investigated members of the B. dorsalis complex. Therefore, their polytene chromosomes can be regarded as homosequential with the reference maps of B. dorsalis s.s.. In situ hybridization of six genes further supported the proposed homosequentiallity of the chromosomes of these specific members of the complex. Conclusions The present analysis supports that the polytene chromosomes of the five taxa under study are homosequential. Therefore, the use of the available polytene chromosome maps for B. dorsalis s.s. as reference maps for all these five biological entities is proposed. Present data provide important insight in the genetic relationships among the different members of the B. dorsalis complex, and, along with other studies in the field, can facilitate SIT applications targeting this complex. Moreover, the availability of 'universal' reference polytene chromosome

  5. Regulation of transport in the connecting tubule and cortical collecting duct.

    PubMed

    Staruschenko, Alexander

    2012-04-01

    The central goal of this overview article is to summarize recent findings in renal epithelial transport,focusing chiefly on the connecting tubule (CNT) and the cortical collecting duct (CCD).Mammalian CCD and CNT are involved in fine-tuning of electrolyte and fluid balance through reabsorption and secretion. Specific transporters and channels mediate vectorial movements of water and solutes in these segments. Although only a small percent of the glomerular filtrate reaches the CNT and CCD, these segments are critical for water and electrolyte homeostasis since several hormones, for example, aldosterone and arginine vasopressin, exert their main effects in these nephron sites. Importantly, hormones regulate the function of the entire nephron and kidney by affecting channels and transporters in the CNT and CCD. Knowledge about the physiological and pathophysiological regulation of transport in the CNT and CCD and particular roles of specific channels/transporters has increased tremendously over the last two decades.Recent studies shed new light on several key questions concerning the regulation of renal transport.Precise distribution patterns of transport proteins in the CCD and CNT will be reviewed, and their physiological roles and mechanisms mediating ion transport in these segments will also be covered. Special emphasis will be given to pathophysiological conditions appearing as a result of abnormalities in renal transport in the CNT and CCD. © 2012 American Physiological Society. Compr Physiol 2:1491-1539, 2012.

  6. Regulation of transport in the connecting tubule and cortical collecting duct

    PubMed Central

    Staruschenko, Alexander

    2012-01-01

    The central goal of this overview article is to summarize recent findings in renal epithelial transport, focusing chiefly on the connecting tubule (CNT) and the cortical collecting duct (CCD). Mammalian CCD and CNT are involved in fine tuning of electrolyte and fluid balance through reabsorption and secretion. Specific transporters and channels mediate vectorial movements of water and solutes in these segments. Although only a small percent of the glomerular filtrate reaches the CNT and CCD, these segments are critical for water and electrolyte homeostasis since several hormones, e.g. aldosterone and arginine vasopressin, exert their main effects in these nephron sites. Importantly, hormones regulate the function of the entire nephron and kidney by affecting channels and transporters in the CNT and CCD. Knowledge about the physiological and pathophysiological regulation of transport in the CNT and CCD and particular roles of specific channels/transporters has increased tremendously over the last two decades. Recent studies shed new light on several key questions concerning the regulation of renal transport. Precise distribution patterns of transport proteins in the CCD and CNT will be reviewed, and their physiological roles and mechanisms mediating ion transport in these segments will be also covered. Special emphasis will be given to pathophysiological conditions appearing as a result of abnormalities in renal transport in the CNT and CCD. PMID:23227301

  7. Regulation of intracellular pH in the rabbit cortical collecting tubule.

    PubMed Central

    Weiner, I D; Hamm, L L

    1990-01-01

    The cortical collecting tubule (CCT) is an important nephron segment for Na+, K+, water and acid-base transport. Differential loading characteristics of the pH sensitive dye 2',7'-bis-(2-carboxyethyl)-5(and-6)carboxyfluorescein (BCECF) and basolateral Cl- removal were used to identify and study intracellular pH (pHi) regulation in each of three cell types involved in this transport. Both principal cells and beta-intercalated cells were found to have a basolateral Na+/H+ exchanger based on the Na+ and amiloride sensitivity of pHi recovery from acid loads. Intercalated cells demonstrated abrupt pHi changes with basolateral Cl- removal. alpha-intercalated cells alkalinized; beta-intercalated cells acidified. In the beta-intercalated cells, luminal Cl- removal blocked changes in pHi in response to changes in luminal HCO3- or peritubular Cl-, providing direct evidence for a luminal Cl-/HCO3- exchanger. In principal cells, brief removal of either peritubular or luminal Cl- resulted in no change in pHi; however, return of peritubular Cl- after prolonged removal resulted in a rapid fall in pHi consistent with a basolateral Cl-/HCO3- exchanger, which may be relatively inactive under baseline conditions. Therefore, Cl-/HCO3- exchange is present in all three cell types but varies in location and activity. PMID:2153152

  8. Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury

    PubMed Central

    Zarjou, Abolfazl; Bolisetty, Subhashini; Joseph, Reny; Traylor, Amie; Apostolov, Eugene O.; Arosio, Paolo; Balla, Jozsef; Verlander, Jill; Darshan, Deepak; Kuhn, Lukas C.; Agarwal, Anupam

    2013-01-01

    Ferritin plays a central role in iron metabolism and is made of 24 subunits of 2 types: heavy chain and light chain. The ferritin heavy chain (FtH) has ferroxidase activity that is required for iron incorporation and limiting toxicity. The purpose of this study was to investigate the role of FtH in acute kidney injury (AKI) and renal iron handling by using proximal tubule–specific FtH-knockout mice (FtHPT–/– mice). FtHPT–/– mice had significant mortality, worse structural and functional renal injury, and increased levels of apoptosis in rhabdomyolysis and cisplatin-induced AKI, despite significantly higher expression of heme oxygenase-1, an antioxidant and cytoprotective enzyme. While expression of divalent metal transporter-1 was unaffected, expression of ferroportin (FPN) was significantly lower under both basal and rhabdomyolysis-induced AKI in FtHPT–/– mice. Apical localization of FPN was disrupted after AKI to a diffuse cytosolic and basolateral pattern. FtH, regardless of iron content and ferroxidase activity, induced FPN. Interestingly, urinary levels of the iron acceptor proteins neutrophil gelatinase–associated lipocalin, hemopexin, and transferrin were increased in FtHPT–/– mice after AKI. These results underscore the protective role of FtH and reveal the critical role of proximal tubule FtH in iron trafficking in AKI. PMID:24018561

  9. Preventive effect of a high fluoride toothpaste and arginine-carbonate toothpaste on dentinal tubules exposure followed by acid challenge: a dentine permeability evaluation

    PubMed Central

    2014-01-01

    Background Considering the current high use of high fluoride toothpastes, the aim of the study was to quantify alterations in the root dentine permeability submitted to treatment with a high fluoride toothpaste and 8% arginine, calcium carbonate, sodium monofluorophosphate toothpaste as a preventive treatment for dentinal tubules exposure followed by acid challenge. Methods Thirty-third molars were sectioned below the cementoenamel. The root segments were connected to a hydraulic pressure apparatus to measure dentine permeability after the following sequential steps (n = 10 per group): I) Baseline; II) treatment with phosphoric acid for 30 s (maximum permeability); III) Toothbrushing (1 min) according to the experimental groups (G1- control; G2- 5000 ppm fluoride toothpaste; G3- 8% arginine-calcium carbonate toothpaste); IV) acid challenge for 5 min (orange juice). The data were converted into percentage, considering stage II as 100%. Results The results have shown a statistically significant decreasing on dentine permeability after treatment with toothpaste (Friedman test and Dunn’s post hoc test). Comparison among groups demonstrated a high increasing on dentine permeability when acid challenge was performed after toothbrushing with distilled water (control group) (Kruskal-Wallis and Dunn’s post hoc test). Conclusion The toothpaste treatment may provide sufficient resistance on dentine surface, preventing dentinal tubules exposure after acid challenge. PMID:24958423

  10. Dentine Tubule Occlusion by Novel Bioactive Glass-Based Toothpastes

    PubMed Central

    Hill, Robert G.; Chen, Xiaojing

    2018-01-01

    There are numerous over-the-counter (OTC) and professionally applied (in-office) products and techniques currently available for the treatment of dentine hypersensitivity (DH), but more recently, the use of bioactive glasses in toothpaste formulations have been advocated as a possible solution to managing DH. Aim. The aim of the present study, therefore, was to compare several bioactive glass formulations to investigate their effectiveness in an established in vitro model. Materials and Methods. A 45S5 glass was synthesized in the laboratory together with several other glass formulations: (1) a mixed glass (fluoride and chloride), (2) BioMinF, (3) a chloride glass, and (4) an amorphous chloride glass. The glass powders were formulated into five different toothpaste formulations. Dentine discs were sectioned from extracted human teeth and prepared for the investigation by removing the cutting debris (smear layer) following sectioning using a 6% citric acid solution for 2 minutes. Each disc was halved to provide test and control halves for comparison following the brushing of the five toothpaste formulations onto the test halves for each toothpaste group. Following the toothpaste application, the test discs were immersed in either artificial saliva or exposed to an acid challenge. Results. The dentine samples were analyzed using scanning electron microscopy (SEM), and observation of the SEM images indicated that there was good surface coverage following artificial saliva immersion. Furthermore, although the acid challenge removed the hydroxyapatite layer on the dentine surface for most of the samples, except for the amorphous chloride glass, there was evidence of tubular occlusion in the dentine tubules. Conclusions. The conclusions from the study would suggest that the inclusion of bioactive glass into a toothpaste formulation may be an effective approach to treat DH. PMID:29849637

  11. Short term exposure to elevated levels of leptin reduces proximal tubule cell metabolic activity.

    PubMed

    Briffa, Jessica F; Grinfeld, Esther; McAinch, Andrew J; Poronnik, Philip; Hryciw, Deanne H

    2014-01-25

    Leptin plays a pathophysiological role in the kidney, however, its acute effects on the proximal tubule cells (PTCs) are unknown. In opossum kidney (OK) cells in vitro, Western blot analysis identified that exposure to leptin increases the phosphorylation of the mitogen-activated protein kinase (MAPK) p44/42 and the mammalian target of rapamycin (mTOR). Importantly leptin (0.05, 0.10, 0.25 and 0.50 μg/ml) significantly reduced the metabolic activity of PTCs, and significantly decreased protein content per cell. Investigation of the role of p44/42 and mTOR on metabolic activity and protein content per cell, demonstrated that in the presence of MAPK inhibitor U0126 and mTOR inhibitor Ku-63794, that the mTOR pathway is responsible for the reduction in PTC metabolic activity in response to leptin. However, p44/42 and mTOR play no role the reduced protein content per cell in OKs exposed to leptin. Therefore, leptin modulates metabolic activity in PTCs via an mTOR regulated pathway. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Effect of chitosan nanoparticle, QMix, and EDTA on TotalFill BC sealers' dentinal tubule penetration: a confocal laser scanning microscopy study.

    PubMed

    Aydın, Zeliha Uğur; Özyürek, Taha; Keskin, Büşra; Baran, Talat

    2018-04-12

    The aim of the present study was to compare the effect of chitosan nanoparticle, QMix, and 17% EDTA on the penetrability of a calcium silicate-based sealer into dentinal tubules using a confocal laser scanning microscope (CLSM). Sixty mandibular premolar teeth were selected and randomly divided into three groups (n = 20) before root canal preparation according to the solution used in the final rinse protocol: chitosan, QMix, and EDTA groups. Twenty teeth of each group were filled with a TotalFill BC sealers' single gutta-percha cone and with 0.1% rhodamine B. The specimens were horizontally sectioned at 3 and 5 mm from the apex, and the slices were analyzed in CLSM (4×). Total percentage and maximum depth of sealer penetration were measured using confocal laser scanning microscopy with using Image J analysis software. Dentinal tubule's penetration depth, percentage, and area were measured using imaging software. Kruskal-Wallis test was used for statistical analysis. The level of significance was set at 5%. Results of Kruskal-Wallis analysis showed that there was a significant difference in the percentage and depth of sealer penetration among all groups at 3 and 5 mm level sections (P < 0.05). Within the groups, the minimum sealer penetration depth was recorded for chitosan nanoparticle group. Greater depth of sealer penetration was recorded at 5 mm as compared to 3 mm in all the groups. Within the limitation of the present study, it can be concluded that QMix and EDTA promoted sealer penetration superior to that achieved by chitosan nanoparticle.

  13. Sealer penetration into dentinal tubules in the presence or absence of smear layer: a confocal laser scanning microscopic study.

    PubMed

    Kuçi, Astrit; Alaçam, Tayfun; Yavaş, Ozer; Ergul-Ulger, Zeynep; Kayaoglu, Guven

    2014-10-01

    The aim of this study was to test the dentinal tubule penetration of AH26 (Dentsply DeTrey, Konstanz, Germany) and MTA Fillapex (Angelus, Londrina, PR, Brazil) in instrumented root canals obturated by using cold lateral compaction or warm vertical compaction techniques in either the presence or absence of the smear layer. Forty-five extracted single-rooted human mandibular premolar teeth were used. The crowns were removed, and the root canals were instrumented by using the Self-Adjusting File (ReDent-Nova, Ra'anana, Israel) with continuous sodium hypochlorite (2.6%) irrigation. Final irrigation was either with 5% EDTA or with sodium hypochlorite. The canals were dried and obturated by using rhodamine B-labeled AH26 or MTA Fillapex in combination with the cold lateral compaction or the warm vertical compaction technique. After setting, the roots were sectioned horizontally at 4-, 8-, and 12-mm distances from the apical tip. On each section, sealer penetration in the dentinal tubules was measured by using confocal laser scanning microscopy. Regardless of the usage of EDTA, MTA Fillapex, compared with AH26, was associated with greater sealer penetration when used with the cold lateral compaction technique, and, conversely, AH26, compared with MTA Fillapex, was associated with greater sealer penetration when used with the warm vertical compaction technique (P < .05). Removal of the smear layer increased the penetration depth of MTA Fillapex used with the cold lateral compaction technique (P < .05); however, it had no significant effect on the penetration depth of AH26. Greater sealer penetration could be achieved with either the MTA Fillapex-cold lateral compaction combination or with the AH26-warm vertical compaction combination. Smear layer removal was critical for the penetration of MTA Fillapex; however, the same did not hold for AH26. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Identification and functional characterization of a novel locust peptide belonging to the family of insect growth blocking peptides.

    PubMed

    Duressa, Tewodros Firdissa; Boonen, Kurt; Hayakawa, Yoichi; Huybrechts, Roger

    2015-12-01

    Growth blocking peptides (GBPs) are recognized as insect cytokines that take part in multifaceted functions including immune system activation and growth retardation. The peptides induce hemocyte spreading in vitro, which is considered as the initial step in hemocyte activation against infection in many insect species. Therefore, in this study, we carried out a series of in vitro bioassay driven fractionations of Locusta migratoria hemolymph combined with mass spectrometry to identify locust hemocyte activation factors belonging to the family of insect GBPs. We identified the locust hemocyte spreading peptide (locust GBP) as a 28-mer peptide encoded at the C-terminus of a 64 amino acid long precursor polypeptide. As demonstrated by QRT-PCR, the gene encoding the locust GBP precursor (proGBP) was expressed in large quantities in diverse locust tissues including fat body, endocrine glands, central nervous system, reproductive tissues and flight muscles. In contrary, hemocytes, gut tissues and Malpighian tubules displayed little expression of the proGBP transcript. The bioactive peptide induces transient depletion of hemocytes in vivo and when injected in last instar nymphs it extends the larval growth phase and postpones adult molting. In addition, we identified a functional homologous hemocyte spreading peptide in Schistocerca gregaria. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The plasticity of extracellular fluid homeostasis in insects.

    PubMed

    Beyenbach, Klaus W

    2016-09-01

    In chemistry, the ratio of all dissolved solutes to the solution's volume yields the osmotic concentration. The present Review uses this chemical perspective to examine how insects deal with challenges to extracellular fluid (ECF) volume, solute content and osmotic concentration (pressure). Solute/volume plots of the ECF (hemolymph) reveal that insects tolerate large changes in all three of these ECF variables. Challenges beyond those tolerances may be 'corrected' or 'compensated'. While a correction simply reverses the challenge, compensation accommodates the challenge with changes in the other two variables. Most insects osmoregulate by keeping ECF volume and osmotic concentration within a wide range of tolerance. Other insects osmoconform, allowing the ECF osmotic concentration to match the ambient osmotic concentration. Aphids are unique in handling solute and volume loads largely outside the ECF, in the lumen of the gut. This strategy may be related to the apparent absence of Malpighian tubules in aphids. Other insects can suspend ECF homeostasis altogether in order to survive extreme temperatures. Thus, ECF homeostasis in insects is highly dynamic and plastic, which may partly explain why insects remain the most successful class of animals in terms of both species number and biomass. © 2016. Published by The Company of Biologists Ltd.

  16. Insect capa neuropeptides impact desiccation and cold tolerance

    PubMed Central

    Terhzaz, Selim; Teets, Nicholas M.; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G.; Nachman, Ronald J.; Dow, Julian A. T.; Denlinger, David L.; Davies, Shireen-A.

    2015-01-01

    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. PMID:25730885

  17. Molecular characterization and localization of the first tyramine receptor of the American cockroach (Periplaneta americana).

    PubMed

    Rotte, C; Krach, C; Balfanz, S; Baumann, A; Walz, B; Blenau, W

    2009-09-15

    The phenolamines octopamine and tyramine control, regulate, and modulate many physiological and behavioral processes in invertebrates. Vertebrates possess only small amounts of both substances, and thus, octopamine and tyramine, together with other biogenic amines, are referred to as "trace amines." Biogenic amines evoke cellular responses by activating G-protein-coupled receptors. We have isolated a complementary DNA (cDNA) that encodes a biogenic amine receptor from the American cockroach Periplaneta americana, viz., Peatyr1, which shares high sequence similarity to members of the invertebrate tyramine-receptor family. The PeaTYR1 receptor was stably expressed in human embryonic kidney (HEK) 293 cells, and its ligand response has been examined. Receptor activation with tyramine reduces adenylyl cyclase activity in a dose-dependent manner (EC(50) approximately 350 nM). The inhibitory effect of tyramine is abolished by co-incubation with either yohimbine or chlorpromazine. Receptor expression has been investigated by reverse transcription polymerase chain reaction and immunocytochemistry. The mRNA is present in various tissues including brain, salivary glands, midgut, Malpighian tubules, and leg muscles. The effect of tyramine on salivary gland acinar cells has been investigated by intracellular recordings, which have revealed excitatory presynaptic actions of tyramine. This study marks the first comprehensive molecular, pharmacological, and functional characterization of a tyramine receptor in the cockroach.

  18. Cotesia vestalis parasitization suppresses expression of a Plutella xylostella thioredoxin.

    PubMed

    Shi, M; Zhao, S; Wang, Z-H; Stanley, D; Chen, X-X

    2016-12-01

    Thioredoxins (Trxs) are a family of small, highly conserved and ubiquitous proteins involved in protecting organisms against toxic reactive oxygen species. In this study, a typical thioredoxin gene, PxTrx, was isolated from Plutella xylostella. The full-length cDNA sequence is composed of 959 bp containing a 321 bp open reading frame that encodes a predicted protein of 106 amino acids, a predicted molecular weight of 11.7 kDa and an isoelectric point of 5.03. PxTrx was mainly expressed in larval Malpighian tubules and the fat body. An enriched recombinant PxTrx had insulin disulphide reductase activity and stimulated Human Embryonic Kidney 293 (HEK293) cell proliferation. It also protected supercoiled DNA and living HEK293 cells from H 2 O 2 -induced damage. Parasitization by Cotesia vestalis and injections of 0.05 and 0.01 equivalents of C. vestalis Bracovirus (CvBv), the symbiotic virus carried by the parasitoid, led to down-regulation of PxTrx expression in host fat body. Taken together, our results indicate that PxTrx contributes to the maintenance of P. xylostella cellular haemostasis. Host fat body expression of PxTrx is strongly attenuated by parasitization and by injections of CvBv. © 2016 The Royal Entomological Society.

  19. Molecular Cloning and Characterization of a P-Glycoprotein from the Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae)

    PubMed Central

    Tian, Lixia; Yang, Jiaqiang; Hou, Wenjie; Xu, Baoyun; Xie, Wen; Wang, Shaoli; Zhang, Youjun; Zhou, Xuguo; Wu, Qingjun

    2013-01-01

    Macrocyclic lactones such as abamectin and ivermectin constitute an important class of broad-spectrum insecticides. Widespread resistance to synthetic insecticides, including abamectin and ivermectin, poses a serious threat to the management of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), a major pest of cruciferous plants worldwide. P-glycoprotein (Pgp), a member of the ABC transporter superfamily, plays a crucial role in the removal of amphiphilic xenobiotics, suggesting a mechanism for drug resistance in target organisms. In this study, PxPgp1, a putative Pgp gene from P. xylostella, was cloned and characterized. The open reading frame (ORF) of PxPgp1 consists of 3774 nucleotides, which encodes a 1257-amino acid peptide. The deduced PxPgp1 protein possesses structural characteristics of a typical Pgp, and clusters within the insect ABCB1. PxPgp1 was expressed throughout all developmental stages, and showed the highest expression level in adult males. PxPgp1 was highly expressed in midgut, malpighian tubules and testes. Elevated expression of PxPgp1 was observed in P. xylostella strains after they were exposed to the abamectin treatment. In addition, the constitutive expressions of PxPgp1 were significantly higher in laboratory-selected and field-collected resistant strains in comparison to their susceptible counterpart. PMID:24264038

  20. Drosophila Melanogaster as an Emerging Translational Model of Human Nephrolithiasis

    PubMed Central

    Miller, Joe; Chi, Thomas; Kapahi, Pankaj; Kahn, Arnold J.; Kim, Man Su; Hirata, Taku; Romero, Michael F.; Dow, Julian A.T.; Stoller, Marshall L.

    2013-01-01

    Purpose The limitations imposed by human clinical studies and mammalian models of nephrolithiasis have hampered the development of effective medical treatments and preventative measures for decades. The simple but elegant Drosophila melanogaster is emerging as a powerful translational model of human disease, including nephrolithiasis and may provide important information essential to our understanding of stone formation. We present the current state of research using D. melanogaster as a model of human nephrolithiasis. Materials and Methods A comprehensive review of the English language literature was performed using PUBMED. When necessary, authoritative texts on relevant subtopics were consulted. Results The genetic composition, anatomic structure and physiologic function of Drosophila Malpighian tubules are remarkably similar to those of the human nephron. The direct effects of dietary manipulation, environmental alteration, and genetic variation on stone formation can be observed and quantified in a matter of days. Several Drosophila models of human nephrolithiasis, including genetically linked and environmentally induced stones, have been developed. A model of calcium oxalate stone formation is among the most recent fly models of human nephrolithiasis. Conclusions The ability to readily manipulate and quantify stone formation in D. melanogaster models of human nephrolithiasis presents the urologic community with a unique opportunity to increase our understanding of this enigmatic disease. PMID:23500641

  1. Metabolic changes associated with active water vapour absorption in the mealworm Tenebrio molitor L. (Coleoptera, Tenebrionidae): a microcalorimetric study.

    PubMed

    Hansen, Lars L; Westh, Peter; Wright, Jonathan C; Ramløv, Hans

    2006-03-01

    Water vapour absorption (WVA) is an important mechanism for water gain in several xeric insects. Theoretical calculations indicate that the energetic cost of WVA should be small (5-10% of standard metabolic rate) assuming realistic efficiencies. In this study we explored the relationship between WVA, metabolic heat flux (HFmet.) and CO2 release in larvae of Tenebrio molitor using microcalorimetry. By comparing metabolic heat flux with the catabolic rate estimated from VCO2 , we were able to differentiate anabolic and catabolic rates prior to and during WVA, while simultaneously monitoring water exchange. Three to four hours before the onset of WVA, larvae showed clear increases in HFmet. and catabolic flux, and a simultaneous decrease in anabolic flux. Following the onset of WVA, HFmet. decreased again until indistinguishable from control (non-absorbing) values. Possible factors contributing to the "preparatory phase" are discussed, including mobilization of Malpighian tubule transporters and muscular activity in the rectum. Absorbing larvae reduced the water activity of the calorimetric cell to 0.906, agreeing with gravimetric estimates of the critical equilibrium activity. Periods of movement during WVA coincided with decreased uptake fluxes, consistent with the animal's hydrostatic skeleton and the need to close the anus to generate pressure increases in the haemocoel.

  2. Chromosome rearrangements induce both variegated and reduced, uniform expression of heterochromatic genes in a development-specific manner.

    PubMed Central

    Weiler, K S; Wakimoto, B T

    1998-01-01

    In Drosophila melanogaster, chromosome rearrangements that juxtapose euchromatin and heterochromatin can result in position effect variegation (PEV), the variable expression of heterochromatic and euchromatic genes in the vicinity of the novel breakpoint. We examined PEV of the heterochromatic light (lt) and concertina (cta) genes in order to investigate potential tissue or developmental differences in chromosome structure that might be informative for comparing the mechanisms of PEV of heterochromatic and euchromatic genes. We employed tissue pigmentation and in situ hybridization to RNA to assess expression of lt in individual cells of multiple tissues during development. Variegation of lt was induced in the adult eye, larval salivary glands and larval Malpighian tubules for each of three different chromosome rearrangements. The relative severity of the effect in these tissues was not tissue-specific but rather was characteristic of each rearrangement. Surprisingly, larval imaginal discs did not exhibit variegated lt expression. Instead, a uniform reduction of the lt transcript was observed, which correlated in magnitude with the degree of variegation. The same results were obtained for cta expression. These two distinct effects of rearrangements on heterochromatic gene expression correlated with the developmental stage of the tissue. These results have implications for models of heterochromatin formation and the nuclear organization of chromosomes during development and differentiation. PMID:9649533

  3. External solution driving forces for isotonic fluid absorption in proximal tubules.

    PubMed

    Andreoli, T E; Schafer, J A

    1979-02-01

    We have explored evidence that suggests that lateral intercellular spaces is the mammalian proximal nephron do not serve as a hypertonic "central compartment" driving volume absorption. A primary consideration is the very low transepithelial resistance of this tissue as demonstrated by several laboratories. By making the reasonable assumption that passive ion permeation occurs via a paracellular route, we have concluded that the diffusion resistance of the spaces in insufficient to allow the development of a significant compositional difference between the spaces and the peritubular medium. This conclusion led us to look for potential osmotic gradients existing between the luminal and peritubular solutions. From the perfusion rate dependence of osmotic volume flow in the absence of active transport in isolated convoluted and straight proximal tubules, we calculated that both segments have very high hydraulic conductances, on the order of 3,000-5,000 micron/sec. Consequently, slight differences in the effective osmolality of the external solutions are sufficient to explain net volume absorption both in vivo and in vitro. We have provided evidence for two such driving forces. First, the development of asymmetrical anion concentration differences along the length of the proximal nephron due to preferential reabsorption of HCO-3 provides a driving force if the reflection coefficient for HCO-3 exceeds that for Cl-. Second, slight luminal hypotonicity may develop as a consequence of active solute absorption. Although both mechanisms probably occur simultaneously in vivo, we consider the former to be quantitatively the most important.

  4. A bradykinin-potentiating peptide (BPP-10c) from Bothrops jararaca induces changes in seminiferous tubules.

    PubMed

    Gilio, Joyce M; Portaro, Fernanda Cv; Borella, Maria I; Lameu, Claudiana; Camargo, Antonio Cm; Alberto-Silva, Carlos

    2013-11-06

    The testis-specific isoform of angiotensin-converting enzyme (tACE) is exclusively expressed in germ cells during spermatogenesis. Although the exact role of tACE in male fertility is unknown, it clearly plays a critical function in spermatogenesis. The dipeptidase domain of tACE is identical to the C-terminal catalytic domain of somatic ACE (sACE). Bradykinin potentiating peptides (BPPs) from snake venoms are the first natural sACE inhibitors described and their structure-activity relationship studies were the basis for the development of antihypertensive drugs such as captopril. In recent years, it has been showed that a number of BPPs - including BPP-10c - are able to distinguish between the N- and C-active sites of sACE, what is not applicable to captopril. Considering the similarity between tACE and sACE (and since BPPs are able to distinguish between the two active sites of sACE), the effects of the BPP-10c and captopril on the structure and function of the seminiferous epithelium were characterized in the present study. BPP-10c and captopril were administered in male Swiss mice by intraperitoneal injection (4.7 μmol/kg for 15 days) and histological sections of testes were analyzed. Classification of seminiferous tubules and stage analysis were carried out for quantitative evaluation of germ cells of the seminiferous epithelium. The blood-testis barrier (BTB) permeability and distribution of claudin-1 in the seminiferous epithelium were analyzed by hypertonic fixative method and immunohistochemical analyses of testes, respectively. The morphology of seminiferous tubules from animals treated with BPP-10c showed an intense disruption of the epithelium, presence of atypical multinucleated cells in the lumen and degenerated germ cells in the adluminal compartment. BPP-10c led to an increase in the number of round spermatids and total support capacity of Sertoli cell in stages I, V, VII/VIII of the seminiferous epithelium cycle, without affecting BTB permeability

  5. A bradykinin-potentiating peptide (BPP-10c) from Bothrops jararaca induces changes in seminiferous tubules

    PubMed Central

    2013-01-01

    Background The testis-specific isoform of angiotensin-converting enzyme (tACE) is exclusively expressed in germ cells during spermatogenesis. Although the exact role of tACE in male fertility is unknown, it clearly plays a critical function in spermatogenesis. The dipeptidase domain of tACE is identical to the C-terminal catalytic domain of somatic ACE (sACE). Bradykinin potentiating peptides (BPPs) from snake venoms are the first natural sACE inhibitors described and their structure–activity relationship studies were the basis for the development of antihypertensive drugs such as captopril. In recent years, it has been showed that a number of BPPs – including BPP-10c – are able to distinguish between the N- and C-active sites of sACE, what is not applicable to captopril. Considering the similarity between tACE and sACE (and since BPPs are able to distinguish between the two active sites of sACE), the effects of the BPP-10c and captopril on the structure and function of the seminiferous epithelium were characterized in the present study. BPP-10c and captopril were administered in male Swiss mice by intraperitoneal injection (4.7 μmol/kg for 15 days) and histological sections of testes were analyzed. Classification of seminiferous tubules and stage analysis were carried out for quantitative evaluation of germ cells of the seminiferous epithelium. The blood-testis barrier (BTB) permeability and distribution of claudin-1 in the seminiferous epithelium were analyzed by hypertonic fixative method and immunohistochemical analyses of testes, respectively. Results The morphology of seminiferous tubules from animals treated with BPP-10c showed an intense disruption of the epithelium, presence of atypical multinucleated cells in the lumen and degenerated germ cells in the adluminal compartment. BPP-10c led to an increase in the number of round spermatids and total support capacity of Sertoli cell in stages I, V, VII/VIII of the seminiferous epithelium cycle, without

  6. Cellular Action of Vasopressin in Medullary Tubules of Mice with Hereditary Nephrogenic Diabetes Insipidus

    PubMed Central

    Jackson, Brian A.; Edwards, Richard M.; Valtin, Heinz; Dousa, Thomas P.

    1980-01-01

    Our previous studies (1974. J. Clin. Invest.54: 753-762.) suggested that impaired metabolism of cyclic AMP (cAMP) may be involved in the renal unresponsiveness to vasopressin (VP) in mice with hereditary nephrogenic diabetes insipidus (NDI). To localize such a defect to specific segments of the nephron, we studied the activities of VP-sensitive adenylate cyclase, cAMP phosphodiesterase (cAMP-PDIE), as well as accumulation of cAMP in medullary collecting tubules (MCT) and in medullary thick ascending limbs of Henle's loop (MAL) microdissected from control mice with normal concentrating ability and from mice with hereditary NDI. Adenylate cyclase activity stimulated by VP or by NaF was only slightly lower (−24%) in MCT from NDI mice, compared with controls. In MAL of NDI mice, basal, VP-sensitive, and NaF-sensitive adenylate cyclase was markedly (> −60%) lower compared with MAL of controls. The specific activity of cAMP-PDIE was markedly higher in MCT of NDI mice compared with controls, but was not different between MAL of control and NDI mice. Under present in vitro conditions, incubation of intact MCT from control mice with VP caused a striking increase in cAMP levels (>10), but VP failed to elicit a change in cAMP levels in MCT from NDI mice. When the cAMP-PDIE inhibitor 1-methyl-3-isobutyl xanthine (MIX) was added to the above incubation, VP caused a significant increase in cAMP levels in MCT from both NDI mice and control mice. Under all tested conditions, cAMP levels in MCT of NDI mice were lower than corresponding values in control MCT. Under the present experimental setting, VP and other stimulating factors (MIX, cholera toxin) did not change cAMP levels in MAL from either control mice or from NDI mice. The results of the present in vitro experiments suggest that the functional unresponsiveness of NDI mice to VP is perhaps mainly the result of the inability of collecting tubules to increase intracellular cAMP levels in response to VP. In turn, this

  7. A pharmacologically-based array to identify targets of cyclosporine A-induced toxicity in cultured renal proximal tubule cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarró, Eduard, E-mail: eduard.sarro@vhir.org; Renal Physiopathology, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute; Jacobs-Cachá, Conxita, E-mail: conxita.jacobs@vhir.org

    2012-01-15

    Mechanisms of cyclosporine A (CsA)-induced nephrotoxicity were generally thought to be hemodynamic in origin; however, there is now accumulating evidence of a direct tubular effect. Although genomic and proteomic experiments by our group and others provided overall information on genes and proteins up- or down-regulated by CsA in proximal tubule cells (PTC), a comprehensive view of events occurring after CsA exposure remains to be described. For this purpose, we applied a pharmacologic approach based on the use of known activities of a large panel of potentially protective compounds and evaluated their efficacy in preventing CsA toxicity in cultured mouse PTC.more » Our results show that compounds that blocked protein synthesis and apoptosis, together with the CK2 inhibitor DMAT and the PI3K inhibitor apigenin, were the most efficient in preventing CsA toxicity. We also identified GSK3, MMPs and PKC pathways as potential targets to prevent CsA damage. Additionally, heparinase-I and MAPK inhibitors afforded partial but significant protection. Interestingly, antioxidants and calcium metabolism-related compounds were unable to ameliorate CsA-induced cytotoxicity. Subsequent experiments allowed us to clarify the hierarchical relationship of targeted pathways after CsA treatment, with ER stress identified as an early effector of CsA toxicity, which leads to ROS generation, phenotypical changes and cell death. In summary, this work presents a novel experimental approach to characterizing cellular responses to cytotoxics while pointing to new targets to prevent CsA-induced toxicity in proximal tubule cells. Highlights: ► We used a novel pharmacological approach to elucidate cyclosporine (CsA) toxicity. ► The ability of a broad range of compounds to prevent CsA toxicity was evaluated. ► CsA toxicity was monitored using LDH release assay and PARP cleavage. ► Protein synthesis, PI3K, GSK3, MMP, PKC and caspase inhibitors prevented CsA toxicity. ► We also

  8. Inhibition property of green tea extract in relation to reserpine-induced ribosomal strips of rough endoplasmic reticulum (rER) of the rat kidney proximal tubule cells.

    PubMed

    Abdel-Majeed, Safer; Mohammad, Afzal; Shaima, Al-Bloushi; Mohammad, Rafique; Mousa, Shaker A

    2009-12-01

    The aim of this study was to evaluate the effect of green tea in inhibiting and reversing the nephrotoxicity of reserpine--a potent oxidative stress inducer--which induced cellular kidney damage. Serum biochemical parameters, antioxidant enzyme levels, thiobarbituric acid reactive substances (TBARS) and serum transaminases (glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT)) values and histopathology were systematically evaluated. Reserpine exposure led to increase the oxidative stress and organ injury was significantly observed through biochemical parameters and ultrastructural evaluation. Sprague-Dawely (S.D.) rats were intraperitonealy administered reserpine to induce oxidative kidney damage. Experimental rats were given green tea extract according to the protocol given below. Sixty rats were randomly divided into six groups, with 10 rats in each group. Reserpine was found to cause kidney proximal tubule damage, such as stripping and clustering of ribosomes from the rough endoplasmic reticulum (rER) and demolishing of mitochondrial christae with elevated level of oxidative stress markers, such as TBARS. While the ultrastructural study showed a revival of kidney proximal tubule cells as a result of the administration of green tea extract to rats. We suggest that green tea might elevate antioxidant defense system, clean up free radicals, lessen oxidative damages and protect kidney against reserpine-induced toxicity and thus had a potential protective effect.

  9. Coenzyme Q10 protects renal proximal tubule cells against nicotine-induced apoptosis through induction of p66shc-dependent antioxidant responses.

    PubMed

    Arany, Istvan; Carter, Anthony; Hall, Samuel; Fulop, Tibor; Dixit, Mehul

    2017-02-01

    Chronic nicotine exposure (via smoking, E-cigarettes) increases oxidative stress in the kidney that sensitizes it to additional injury in experimental models and in the renal patient. The pro-apoptotic p66 shc protein-via serine36 phosphorylation that facilitates its mitochondrial translocation and therein cytochrome c binding-generates oxidative stress that leads to injury of renal proximal tubule cells during chronic nicotine exposure. Coenzyme Q10-a clinically safe antioxidant-has been used against nicotine/smoke extract-associated oxidative stress in various non-renal cells. This study explored the anti-oxidant/anti-apoptotic effect of Coenzyme Q10 on nicotine-induced oxidative stress and its impact on p66shc in cultured rat renal proximal tubule cells (NRK52E). We studied the anti-oxidant effect of 10 µM Coenzyme Q10 using various mutants of the p66shc gene and also determined the induction of selected anti-oxidant entities (antioxidant response element, promoter of the manganese superoxide dismutase gene) in reporter luciferase assay during oxidative stress induced by 200 µM nicotine. Our studies revealed that Coenzyme Q10 strongly inhibits nicotine-mediated production of reactive oxygen species and consequent apoptosis that requires serine36 phosphorylation but not mitochondrial translocation/cytochrome c binding of p66 shc . While both nicotine and Coenzyme Q10 stimulates the p66shc promoter, only nicotine exposure results in mitochondrial translocation of p66 shc . In contrast, the Coenzyme Q10-stimulated and non-mitochondrial p66 shc activates the anti-oxidant manganese superoxide dismutase promoter via the antioxidant response elements and hence, rescues cells from nicotine-induced oxidative stress and consequent apoptosis.

  10. Mechanism of basolateral membrane H+/OH-/HCO-3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process

    PubMed Central

    1985-01-01

    In order to examine the mechanism of basolateral membrane H+/OH-/HCO-3 transport, a method was developed for the measurement of cell pH in the vivo doubly microperfused rat proximal convoluted tubule. A pH- sensitive fluorescein derivative, (2',7')-bis(carboxyethyl)-(5,6)- carboxyfluorescein, was loaded into cells and relative changes in fluorescence at two excitation wavelengths were followed. Calibration was accomplished using nigericin with high extracellular potassium concentrations. When luminal and peritubular fluids were pH 7.32, cell pH was 7.14 +/- 0.01. Decreasing peritubular pH from 7.32 to 6.63 caused cell pH to decrease from 7.16 +/- 0.02 to 6.90 +/- 0.03. This effect occurred at an initial rate of 2.4 +/- 0.3 pH units/min, and was inhibited by 0.5 mM SITS. Lowering the peritubular sodium concentration from 147 to 25 meq/liter caused cell pH to decrease from 7.20 +/- 0.03 to 6.99 +/- 0.01. The effect of peritubular sodium concentration on cell pH was inhibited by 0.5 mM SITS, but was unaffected by 1 mM amiloride. In addition, when peritubular pH was decreased in the total absence of luminal and peritubular sodium, the rate of cell acidification was 0.2 +/- 0.1 pH units/min, a greater than 90% decrease from that in the presence of sodium. Cell depolarization achieved by increasing the peritubular potassium concentration caused cell pH to increase, an effect that was blocked by peritubular barium or luminal and peritubular sodium removal. Lowering the peritubular chloride concentration from 128 to 0 meq/liter did not affect cell pH. These results suggest the existence of an electrogenic, sodium-coupled H+/OH- /HCO-3 transport mechanism on the basolateral membrane of the rat proximal convoluted tubule. PMID:2999293

  11. Distinct mechanisms underlie adaptation of proximal tubule Na+/H+ exchanger isoform 3 in response to chronic metabolic and respiratory acidosis.

    PubMed

    Silva, Pedro Henrique Imenez; Girardi, Adriana Castello Costa; Neri, Elida Adalgisa; Rebouças, Nancy Amaral

    2012-04-01

    The Na(+/)H(+) exchanger isoform 3 (NHE3) is essential for HCO(3)(-) reabsorption in renal proximal tubules. The expression and function of NHE3 must adapt to acid-base conditions. The goal of this study was to elucidate the mechanisms responsible for higher proton secretion in proximal tubules during acidosis and to evaluate whether there are differences between metabolic and respiratory acidosis with regard to NHE3 modulation and, if so, to identify the relevant parameters that may trigger these distinct adaptive responses. We achieved metabolic acidosis by lowering HCO(3)(-) concentration in the cell culture medium and respiratory acidosis by increasing CO(2) tension in the incubator chamber. We found that cell-surface NHE3 expression was increased in response to both forms of acidosis. Mild (pH 7.21 ± 0.02) and severe (6.95 ± 0.07) metabolic acidosis increased mRNA levels, at least in part due to up-regulation of transcription, whilst mild (7.11 ± 0.03) and severe (6.86 ± 0.01) respiratory acidosis did not up-regulate NHE3 expression. Analyses of the Nhe3 promoter region suggested that the regulatory elements sensitive to metabolic acidosis are located between -466 and -153 bp, where two consensus binding sites for SP1, a transcription factor up-regulated in metabolic acidosis, were localised. We conclude that metabolic acidosis induces Nhe3 promoter activation, which results in higher mRNA and total protein level. At the plasma membrane surface, NHE3 expression was increased in metabolic and respiratory acidosis alike, suggesting that low pH is responsible for NHE3 displacement to the cell surface.

  12. Culturing immobilized plant cells for the TUBUL space experiments on the DELTA and 12S Missions

    NASA Astrophysics Data System (ADS)

    Sieberer, Björn J.; Emons, Anne Mie C.; Vos, Jan W.

    2007-09-01

    For the TUBUL experiments during the DELTA mission in April 2004 and 12S mission in March/April 2006 on board the Soyuz capsule and the International Space Station we developed a method to culture and chemically fix plant suspension culture cells. The aim of the ten day experiment was to investigate the effect of microgravity on single plant cells. Fully automated experiment cassettes (Plunger Box Units) were developed by Centre for Concepts in Mechatronics (Nuenen, the Netherlands). Tobacco BY- 2 cells were immobilized in a semi- solid agarose matrix that was reinforced by a nylon mesh. This assembly allowed liquid medium refreshment, oxygen supply and chemical fixation, including a post- fixative wash. The method was optimized for post- flight analysis of cell structure, shape and size, cell division, and the microtubule cytoskeleton. The viability of cells in the agarose matrix was similar to cells grown in liquid medium under laboratory conditions, only the stationary growth phase was reached six days later.

  13. Proximal tubule-specific glutamine synthetase deletion alters basal and acidosis-stimulated ammonia metabolism

    PubMed Central

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E.; Lamers, Wouter H.; Chaudhry, Farrukh A.; Verlander, Jill W.

    2016-01-01

    Glutamine synthetase (GS) catalyzes the recycling of NH4+ with glutamate to form glutamine. GS is highly expressed in the renal proximal tubule (PT), suggesting ammonia recycling via GS could decrease net ammoniagenesis and thereby limit ammonia available for net acid excretion. The purpose of the present study was to determine the role of PT GS in ammonia metabolism under basal conditions and during metabolic acidosis. We generated mice with PT-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Under basal conditions, PT-GS-KO increased urinary ammonia excretion significantly. Increased ammonia excretion occurred despite decreased expression of key proteins involved in renal ammonia generation. After the induction of metabolic acidosis, the ability to increase ammonia excretion was impaired significantly by PT-GS-KO. The blunted increase in ammonia excretion occurred despite greater expression of multiple components of ammonia generation, including SN1 (Slc38a3), phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and Na+-coupled electrogenic bicarbonate cotransporter. We conclude that 1) GS-mediated ammonia recycling in the PT contributes to both basal and acidosis-stimulated ammonia metabolism and 2) adaptive changes in other proteins involved in ammonia metabolism occur in response to PT-GS-KO and cause an underestimation of the role of PT GS expression. PMID:27009341

  14. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.

    PubMed

    Chichger, Havovi; Cleasby, Mark E; Srai, Surjit K; Unwin, Robert J; Debnam, Edward S; Marks, Joanne

    2016-06-01

    What is the central question of this study? Although SGLT2 inhibitors represent a promising treatment for patients suffering from diabetic nephropathy, the influence of metabolic disruption on the expression and function of glucose transporters is largely unknown. What is the main finding and its importance? In vivo models of metabolic disruption (Goto-Kakizaki type II diabetic rat and junk-food diet) demonstrate increased expression of SGLT1, SGLT2 and GLUT2 in the proximal tubule brush border. In the type II diabetic model, this is accompanied by increased SGLT- and GLUT-mediated glucose uptake. A fasted model of metabolic disruption (high-fat diet) demonstrated increased GLUT2 expression only. The differential alterations of glucose transporters in response to varying metabolic stress offer insight into the therapeutic value of inhibitors. SGLT2 inhibitors are now in clinical use to reduce hyperglycaemia in type II diabetes. However, renal glucose reabsorption across the brush border membrane (BBM) is not completely understood in diabetes. Increased consumption of a Western diet is strongly linked to type II diabetes. This study aimed to investigate the adaptations that occur in renal glucose transporters in response to experimental models of diet-induced insulin resistance. The study used Goto-Kakizaki type II diabetic rats and normal rats rendered insulin resistant using junk-food or high-fat diets. Levels of protein kinase C-βI (PKC-βI), GLUT2, SGLT1 and SGLT2 were determined by Western blotting of purified renal BBM. GLUT- and SGLT-mediated d-[(3) H]glucose uptake by BBM vesicles was measured in the presence and absence of the SGLT inhibitor phlorizin. GLUT- and SGLT-mediated glucose transport was elevated in type II diabetic rats, accompanied by increased expression of GLUT2, its upstream regulator PKC-βI and SGLT1 protein. Junk-food and high-fat diet feeding also caused higher membrane expression of GLUT2 and its upstream regulator PKC

  15. Profilin is associated with transcriptionally active genes

    PubMed Central

    Söderberg, Emilia; Hessle, Viktoria; von Euler, Anne; Visa, Neus

    2012-01-01

    We have raised antibodies against the profilin of Chironomus tentans to study the location of profilin relative to chromatin and to active genes in salivary gland polytene chromosomes. We show that a fraction of profilin is located in the nucleus, where profilin is highly concentrated in the nucleoplasm and at the nuclear periphery. Moreover, profilin is associated with multiple bands in the polytene chromosomes. By staining salivary glands with propidium iodide, we show that profilin does not co-localize with dense chromatin. Profilin associates instead with protein-coding genes that are transcriptionally active, as revealed by co-localization with hnRNP and snRNP proteins. We have performed experiments of transcription inhibition with actinomycin D and we show that the association of profilin with the chromosomes requires ongoing transcription. However, the interaction of profilin with the gene loci does not depend on RNA. Our results are compatible with profilin regulating actin polymerization in the cell nucleus. However, the association of actin with the polytene chromosomes of C. tentans is sensitive to RNase, whereas the association of profilin is not, and we propose therefore that the chromosomal location of profilin is independent of actin. PMID:22572953

  16. Human proximal tubule epithelial cells cultured on hollow fibers: living membranes that actively transport organic cations

    PubMed Central

    Jansen, J.; De Napoli, I. E; Fedecostante, M.; Schophuizen, C. M. S.; Chevtchik, N. V.; Wilmer, M. J.; van Asbeck, A. H.; Croes, H. J.; Pertijs, J. C.; Wetzels, J. F. M.; Hilbrands, L. B.; van den Heuvel, L. P.; Hoenderop, J. G.; Stamatialis, D.; Masereeuw, R.

    2015-01-01

    The bioartificial kidney (BAK) aims at improving dialysis by developing ‘living membranes’ for cells-aided removal of uremic metabolites. Here, unique human conditionally immortalized proximal tubule epithelial cell (ciPTEC) monolayers were cultured on biofunctionalized MicroPES (polyethersulfone) hollow fiber membranes (HFM) and functionally tested using microfluidics. Tight monolayer formation was demonstrated by abundant zonula occludens-1 (ZO-1) protein expression along the tight junctions of matured ciPTEC on HFM. A clear barrier function of the monolayer was confirmed by limited diffusion of FITC-inulin. The activity of the organic cation transporter 2 (OCT2) in ciPTEC was evaluated in real-time using a perfusion system by confocal microscopy using 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+) as a fluorescent substrate. Initial ASP+ uptake was inhibited by a cationic uremic metabolites mixture and by the histamine H2-receptor antagonist, cimetidine. In conclusion, a ‘living membrane’ of renal epithelial cells on MicroPES HFM with demonstrated active organic cation transport was successfully established as a first step in BAK engineering. PMID:26567716

  17. Uromodulin retention in thick ascending limb of Henle's loop affects SCD1 in neighboring proximal tubule: renal transcriptome studies in mouse models of uromodulin-associated kidney disease.

    PubMed

    Horsch, Marion; Beckers, Johannes; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabě de Angelis, Martin; Rathkolb, Birgit; Wolf, Eckhard; Aigner, Bernhard; Kemter, Elisabeth

    2014-01-01

    Uromodulin-associated kidney disease (UAKD) is a hereditary progressive renal disease which can lead to renal failure and requires renal replacement therapy. UAKD belongs to the endoplasmic reticulum storage diseases due to maturation defect of mutant uromodulin and its retention in the enlarged endoplasmic reticulum in the cells of the thick ascending limb of Henle's loop (TALH). Dysfunction of TALH represents the key pathogenic mechanism of UAKD causing the clinical symptoms of this disease. However, the molecular alterations underlying UAKD are not well understood. In this study, transcriptome profiling of whole kidneys of two mouse models of UAKD, UmodA227T and UmodC93F, was performed. Genes differentially abundant in UAKD affected kidneys of both Umod mutant lines at different disease stages were identified and verified by RT-qPCR. Additionally, differential protein abundances of SCD1 and ANGPTL7 were validated by immunohistochemistry and Western blot analysis. ANGPTL7 expression was down-regulated in TALH cells of Umod mutant mice which is the site of the mutant uromodulin maturation defect. SCD1 was expressed selectively in the S3 segment of proximal tubule cells, and SCD1 abundance was increased in UAKD affected kidneys. This finding demonstrates that a cross talk between two functionally distinct tubular segments of the kidney, the TALH segment and the S3 segment of proximal tubule, exists.

  18. Regulation of net bicarbonate transport in rabbit cortical collecting tubule by peritubular pH, carbon dioxide tension, and bicarbonate concentration.

    PubMed Central

    Breyer, M D; Kokko, J P; Jacobson, H R

    1986-01-01

    The effects of changes in peritubular pH, carbon dioxide tension (PCO2), and HCO3- concentration on net HCO3- transport was examined in in vitro perfused cortical collecting tubules (CCTs) from unpretreated New Zealand white rabbits. Lowering peritubular HCO3- concentration and pH by reciprocal replacement of HCO3- with Cl-, significantly stimulated net HCO3- absorption. Lowering peritubular HCO3- concentration and pH, by substitution of HCO3- with gluconate, while keeping Cl- concentration constant, also stimulated net HCO3- absorption. Raising peritubular HCO3- concentration and pH, by reciprocal replacement of Cl- with HCO3-, inhibited net HCO3- absorption (or stimulated net HCO3- secretion). When the tubule was cooled, raising peritubular HCO3- concentration had no effect on net HCO3- transport, suggesting these results are not due to the passive flux of HCO3- down its concentration gradient. The effect of changes in ambient PCO2 on net HCO3- transport were also studied. Increasing the ambient PCO2 from 40 mmHg to either 80 or 120 mmHg, allowing pH to fall, had no effect on net HCO3- transport. Similarly, lowering ambient PCO2 to 14 mmHg had no effect on net HCO3- transport. Simultaneously increasing peritubular HCO3- concentration and PCO2, without accompanying changes in peritubular pH, i.e., isohydric changes, stimulated net HCO3- secretion to the same degree as nonisohydric increases in peritubular HCO3- concentration. Likewise, isohydric lowering of peritubular HCO3- concentration and PCO2 stimulated net HCO3- absorption. We conclude that: acute changes in peritubular HCO3- concentration regulate acidification in the CCT and these effects are mediated by a transcellular process; acute changes in ambient PCO2 within the physiologic range have no effect on HCO3- transport in the in vitro perfused CCT; and acute in vitro regulation of CCT acidification is independent of peritubular pH. PMID:3084564

  19. Genomic imprinting in Drosophila has properties of both mammalian and insect imprinting.

    PubMed

    Anaka, Matthew; Lynn, Audra; McGinn, Patrick; Lloyd, Vett K

    2009-02-01

    Genomic imprinting is a process that marks DNA, causing a change in gene or chromosome behavior, depending on the sex of the transmitting parent. In mammals, most examples of genomic imprinting affect the transcription of individual or small clusters of genes whereas in insects, genomic imprinting tends to silence entire chromosomes. This has been interpreted as evidence of independent evolutionary origins for imprinting. To investigate how these types of imprinting are related, we performed a phenotypic, molecular, and cytological analysis of an imprinted chromosome in Drosophila melanogaster. Analysis of this chromosome reveals that the imprint results in transcriptional silencing. Yet, the domain of transcriptional silencing is very large, extending at least 1.2 Mb and encompassing over 100 genes, and is associated with decreased somatic polytenization of the entire chromosome. We propose that repression of somatic replication in polytenized cells, as a secondary response to the imprint, acts to extend the size of the imprinted domain to an entire chromosome. Thus, imprinting in Drosophila has properties of both typical mammalian and insect imprinting which suggests that genomic imprinting in Drosophila and mammals is not fundamentally different; imprinting is manifest as transcriptional silencing of a few genes or silencing of an entire chromosome depending on secondary processes such as differences in gene density and polytenization.

  20. Cadherin Expression, Vectorial Active Transport, and Metallothionein Isoform 3 Mediated EMT/MET Responses in Cultured Primary and Immortalized Human Proximal Tubule Cells

    PubMed Central

    Slusser, Andrea; Bathula, Chandra S.; Sens, Donald A.; Somji, Seema; Sens, Mary Ann; Zhou, Xu Dong; Garrett, Scott H.

    2015-01-01

    Background Cultures of human proximal tubule cells have been widely utilized to study the role of EMT in renal disease. The goal of this study was to define the role of growth media composition on classic EMT responses, define the expression of E- and N-cadherin, and define the functional epitope of MT-3 that mediates MET in HK-2 cells. Methods Immunohistochemistry, microdissection, real-time PCR, western blotting, and ELISA were used to define the expression of E- and N-cadherin mRNA and protein in HK-2 and HPT cell cultures. Site-directed mutagenesis, stable transfection, measurement of transepithelial resistance and dome formation were used to define the unique amino acid sequence of MT-3 associated with MET in HK-2 cells. Results It was shown that both E- and N-cadherin mRNA and protein are expressed in the human renal proximal tubule. It was shown, based on the pattern of cadherin expression, connexin expression, vectorial active transport, and transepithelial resistance, that the HK-2 cell line has already undergone many of the early features associated with EMT. It was shown that the unique, six amino acid, C-terminal sequence of MT-3 is required for MT-3 to induce MET in HK-2 cells. Conclusions The results show that the HK-2 cell line can be an effective model to study later stages in the conversion of the renal epithelial cell to a mesenchymal cell. The HK-2 cell line, transfected with MT-3, may be an effective model to study the process of MET. The study implicates the unique C-terminal sequence of MT-3 in the conversion of HK-2 cells to display an enhanced epithelial phenotype. PMID:25803827

  1. An in-vitro evaluation of the effect of 980 nm diode laser irradiation on intra-canal dentin surface and dentinal tubule openings after biomechanical preparation: Scanning electron microscopic study

    PubMed Central

    Jhingan, Pulkit; Sandhu, Meera; Jindal, Garima; Goel, Deepti; Sachdev, Vinod

    2015-01-01

    Context: Very recently, diode laser has been used for disinfecting the root canals in endodontic treatment and increasing its success rate and longevity utilizing the thermal effect of laser on surrounding tissues. Aims: The aim of this study is to evaluate the effect of 980 nm laser irradiation on intra-canal dentin surface – scanning electron microscopic (SEM) - in-vitro study. Methods: A total of 40 single-rooted freshly extracted permanent teeth were collected. Teeth were sectioned at the cemento-enamel junction using diamond disc. Root canals of all samples were prepared using hand ProTaper, which were randomly assigned into two groups (n = 20 each). Group 1: Receiving no treatment after biomechanical preparation; Group 2: 980 nm diode laser-treated root canals. Teeth were prepared for SEM analysis to check the size of intra-canal dentinal tubule openings. Statistical Analysis Used: Data were analyzed using SPSS V.16 software and compared using Levene's and independent t-test. Results: On statistical analysis, width of intracanal dentinal tubule openings in Group 1 (control) was significantly higher than those observed in Group 2 (diode laser-treated) (P < 0.001). Conclusion: This study showed that the application of 980 nm diode laser on intra-radicular dentin resulted in ultrastructural alterations resulting in melting of dentin. PMID:26097338

  2. Mechanism of bicarbonate exit across basolateral membrane of rabbit proximal straight tubule.

    PubMed

    Sasaki, S; Shiigai, T; Yoshiyama, N; Takeuchi, J

    1987-01-01

    To clarify the mechanism(s) of HCO3- (or related base) transport across the basolateral membrane, rabbit proximal straight tubules were perfused in vitro, and intracellular pH (pHi) and Na+ activity (aiNa) were measured by double-barreled ion-selective microelectrodes. Lowering bath HCO3- from 25 to 5 mM at constant PCO2 depolarized basolateral membrane potential (Vbl), and reduced pHi. Most of these changes were inhibited by adding 1 mM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) to the bath. Total replacement of bath Na+ with choline also depolarized Vbl and reduced pHi, and these changes were also inhibited by SITS. Reduction in aiNa was observed when bath HCO3- was lowered. Taken together, these findings suggest that HCO3- exists the basolateral membrane with Na+ and negative charge. Calculation of the electrochemical driving forces suggests that the stoichiometry of HCO3-/Na+ must be larger than two for maintaining HCO3- efflux. Total replacement of bath Cl- with isethionate depolarized Vbl gradually and increased pHi slightly, implying the existence of a Cl(-)-related HCO3- exit mechanism. The rate of decrease in pHi induced by lowering bath HCO3- was slightly reduced (20%) by the absence of bath Cl-. Therefore, the importance of Cl(-)-related HCO3- transport is small relative to total basolateral HCO3- exit. Accordingly, these data suggest that most of HCO3- exits the basolateral membrane through the rheogenic Na+/HCO3- cotransport mechanism with a stoichiometry of HCO3-/Na+ of more than two.

  3. A mutualism without honeydew: what benefits for Melissotarsus emeryi ants and armored scale insects (Diaspididae)?

    PubMed

    Peeters, Christian; Foldi, Imre; Matile-Ferrero, Danièle; Fisher, Brian L

    2017-01-01

    Mutualisms between ants and sap-sucking insects generally involve clear benefits for both partners: the ants provide protection in exchange for honeydew. However, a single ant genus associates with armoured scale insects (Diaspididae) that do not excrete honeydew. We studied three colonies of Melissotarsus emeryi ants from two localities in Mozambique. Vast numbers of the diaspidid Morganella conspicua occupied galleries dug by the ants under the bark of living trees. Unlike free-living M. conspicua and other diaspidids, M. conspicua living with ants are known to lack shields, likely because they gain protection against enemies and desiccation. Nevertheless, we documented the occurrence of rare individuals with shields inside ant galleries, indicating that their glands continue to secrete wax and proteins as building material. This is likely to constitute a significant portion of the ants' diet, in addition to diaspidid exuviae and excretions from the Malpighian tubules. Indeed, Melissotarsus workers cannot walk outside the galleries due to modified middle legs, forcing them to obtain all nourishment within the tree. Melissotarsus founding queens, however, must locate a suitable host tree while flying, and acquire diaspidid crawlers. This mutualism involves ants that are highly specialised to chew through living wood, and diaspidids that can also live freely outside the bark. It is extremely widespread in Africa and Madagascar, recorded from 20 tree families, and harmful effects on plant hosts require rapid study.

  4. Identification, functional characterization and expression patterns of a water-specific aquaporin in the brown dog tick, Rhipicephalus sanguineus.

    PubMed

    Ball, Andrew; Campbell, Ewan M; Jacob, Jimmy; Hoppler, Stefan; Bowman, Alan S

    2009-02-01

    Much is known about the physiology of tick salivation, but nothing is known about the movement of water through the cell membranes of salivary glands, a phenomenon usually associated with water channels or aquaporins (AQPs). An AQP, RsAQP1, was identified in a salivary gland cDNA library of Rhipicephalus sanguineus. In the first functional characterization of an acarine AQP, Xenopus oocytes expressing RsAQP1 became water permeable, whereas RsAQP1 did not transport glycerol or urea. RsAQP1 was inhibited by Hg(2+) but not by triethylammonium. Treatment with a protein kinase A activator (cAMP) had no effect on RsAQP1 transport, whereas treatment with a protein kinase C activator (phorbol 12,13-dibutyrate) reduced water flux by 60%. RsAQP1 transcript was present in unfed larvae, nymphs and adult R. sanguineus, but absent in embryos. Partially fed female R. sanguineus expressed RsAQP1 in gut, Malpighian tubules and was particularly abundant in salivary gland tissue, but absent in ovary and synganglion tissues. Because of the importance of water management in tick biology for both the off-host and on-host phases of the life cycle, our findings on tick AQP1 represent a major advancement in our understanding of tick osmoregulation that could potentially be exploited in tick control.

  5. A neurotransmitter transporter encoded by the Drosophila inebriated gene

    PubMed Central

    Soehnge, Holly; Huang, Xi; Becker, Marie; Whitley, Penn; Conover, Diana; Stern, Michael

    1996-01-01

    Behavioral and electrophysiological studies on mutants defective in the Drosophila inebriated (ine) gene demonstrated increased excitability of the motor neuron. In this paper, we describe the cloning and sequence analysis of ine. Mutations in ine were localized on cloned DNA by restriction mapping and restriction fragment length polymorphism (RFLP) mapping of ine mutants. DNA from the ine region was then used to isolate an ine cDNA. In situ hybridization of ine transcripts to developing embryos revealed expression of this gene in several cell types, including the posterior hindgut, Malpighian tubules, anal plate, garland cells, and a subset of cells in the central nervous system. The ine cDNA contains an open reading frame of 658 amino acids with a high degree of sequence similarity to members of the Na+/Cl−-dependent neurotransmitter transporter family. Members of this family catalyze the rapid reuptake of neurotransmitters released into the synapse and thereby play key roles in controlling neuronal function. We conclude that ine mutations cause increased excitability of the Drosophila motor neuron by causing the defective reuptake of the substrate neurotransmitter of the ine transporter and thus overstimulation of the motor neuron by this neurotransmitter. From this observation comes a unique opportunity to perform a genetic dissection of the regulation of excitability of the Drosophila motor neuron. PMID:8917579

  6. Functional characterization of NADPH-cytochrome P450 reductase from Bactrocera dorsalis: Possible involvement in susceptibility to malathion

    PubMed Central

    Huang, Yong; Lu, Xue-Ping; Wang, Luo-Luo; Wei, Dong; Feng, Zi-Jiao; Zhang, Qi; Xiao, Lin-Fan; Dou, Wei; Wang, Jin-Jun

    2015-01-01

    NADPH cytochrome P450 reductase (CPR) is essential for cytochrome P450 catalysis, which is important in the detoxification and activation of xenobiotics. In this study, two transcripts of Bactrocera dorsalis CPR (BdCPR) were cloned, and the deduced amino-acid sequence had an N-terminus membrane anchor for BdCPR-X1 and three conserved binding domains (FMN, FAD, and NADP), as well as an FAD binding motif and catalytic residues for both BdCPR-X1 and BdCPR-X2. BdCPR-X1 was detected to have the high expression levels in adults and in Malpighian tubules, fat bodies, and midguts of adults, but BdCPR-X2 expressed lowly in B. dorsalis. The levels of BdCPRs were similar in malathion-resistant strain compared to susceptible strain. However, injecting adults with double-stranded RNA against BdCPR significantly reduced the transcript levels of the mRNA, and knockdown of BdCPR increased adult susceptibility to malathion. Expressing complete BdCPR-X1 cDNA in Sf9 cells resulted in high activity determined by cytochrome c reduction and these cells had higher viability after exposure to malathion than control. The results suggest that BdCPR could affect the susceptibility of B. dorsalis to malathion and eukaryotic expression of BdCPR would lay a solid foundation for further investigation of P450 in B. dorsalis. PMID:26681597

  7. A mutualism without honeydew: what benefits for Melissotarsus emeryi ants and armored scale insects (Diaspididae)?

    PubMed Central

    Foldi, Imre; Matile-Ferrero, Danièle; Fisher, Brian L.

    2017-01-01

    Mutualisms between ants and sap-sucking insects generally involve clear benefits for both partners: the ants provide protection in exchange for honeydew. However, a single ant genus associates with armoured scale insects (Diaspididae) that do not excrete honeydew. We studied three colonies of Melissotarsus emeryi ants from two localities in Mozambique. Vast numbers of the diaspidid Morganella conspicua occupied galleries dug by the ants under the bark of living trees. Unlike free-living M. conspicua and other diaspidids, M. conspicua living with ants are known to lack shields, likely because they gain protection against enemies and desiccation. Nevertheless, we documented the occurrence of rare individuals with shields inside ant galleries, indicating that their glands continue to secrete wax and proteins as building material. This is likely to constitute a significant portion of the ants’ diet, in addition to diaspidid exuviae and excretions from the Malpighian tubules. Indeed, Melissotarsus workers cannot walk outside the galleries due to modified middle legs, forcing them to obtain all nourishment within the tree. Melissotarsus founding queens, however, must locate a suitable host tree while flying, and acquire diaspidid crawlers. This mutualism involves ants that are highly specialised to chew through living wood, and diaspidids that can also live freely outside the bark. It is extremely widespread in Africa and Madagascar, recorded from 20 tree families, and harmful effects on plant hosts require rapid study. PMID:28761787

  8. γ-glutamyl transpeptidase 1 specifically suppresses green-light avoidance via GABAA receptors in Drosophila.

    PubMed

    Liu, Jiangqu; Gong, Zhefeng; Liu, Li

    2014-08-01

    Drosophila larvae innately show light avoidance behavior. Compared with robust blue-light avoidance, larvae exhibit relatively weaker green-light responses. In our previous screening for genes involved in larval light avoidance, compared with control w(1118) larvae, larvae with γ-glutamyl transpeptidase 1 (Ggt-1) knockdown or Ggt-1 mutation were found to exhibit higher percentage of green-light avoidance which was mediated by Rhodopsin6 (Rh6) photoreceptors. However, their responses to blue light did not change significantly. By adjusting the expression level of Ggt-1 in different tissues, we found that Ggt-1 in malpighian tubules was both necessary and sufficient for green-light avoidance. Our results showed that glutamate levels were lower in Ggt-1 null mutants compared with controls. Feeding Ggt-1 null mutants glutamate can normalize green-light avoidance, indicating that high glutamate concentrations suppressed larval green-light avoidance. However, rather than directly, glutamate affected green-light avoidance indirectly through GABA, the level of which was also lower in Ggt-1 mutants compared with controls. Mutants in glutamate decarboxylase 1, which encodes GABA synthase, and knockdown lines of the GABAA receptor, both exhibit elevated levels of green-light avoidance. Thus, our results elucidate the neurobiological mechanisms mediating green-light avoidance, which was inhibited in wild-type larvae. © 2014 International Society for Neurochemistry.

  9. TmCactin plays an important role in Gram-negative and -positive bacterial infection by regulating expression of 7 AMP genes in Tenebrio molitor

    PubMed Central

    Jo, Yong Hun; Jung Kim, Yu; Beom Park, Ki; Hwan Seong, Jeong; Gon Kim, Soo; Park, Soyi; Young Noh, Mi; Seok Lee, Yong; Soo Han, Yeon

    2017-01-01

    Cactin was originally identified as an interactor of the Drosophila IκB factor Cactus and shown to play a role in controlling embryonic polarity and regulating the NF-κB signaling pathway. While subsequent studies have identified the roles for Cactin in the mammalian immune response, the immune function of Cactin in insects has not been described yet. Here, we identified a Cactin gene from the mealworm beetle, Tenebrio molitor (TmCactin) and characterized its functional role in innate immunity. TmCactin was highly expressed in prepupa to last instar stages, and its expression was high in the integument and Malpighian tubules of last instar larvae and adults. TmCactin was induced in larvae after infection with different pathogens and detectable within 3 hours of infection. The highest levels of TmCactin expression were detected at 9 hours post infection. TmCactin RNAi significantly decreased the survival rates of larvae after challenge with Escherichia coli and Staphylococcus aureus, but had no significant effect after challenge with Candida albicans. Furthermore, TmCactin RNAi significantly reduced the expression of seven antimicrobial peptide genes (AMPs) after bacterial challenge. Our results suggest that TmCactin may serve as an important regulator of innate immunity, mediating AMP responses against both Gram-positive and Gram-negative bacteria in T. molitor. PMID:28418029

  10. Fine structure of the transitional zone of the rat seminiferous tubule.

    PubMed

    Nykänen, M

    1979-05-25

    An electron microscopic study was made on the structure of the testicular transitional zone (TZ) in the adult rat. The TZ proper consists of modified Sertoli cellss, with only a few spermatogonia and macrophages, surrounding distally a very narrow lumen. The TZ Sertoli cells have nuclei with a somewhat coarser matrix and more peripheral heterochromatin than Sertoli cell nuclei of the nearby seminiferous tubules, and the electron density of the cytoplasm varies from cell to cell. Smooth endoplasmic reticulum is abundant, but usually there are also scattered ribosomal rosettes and an occasional profile of rough endoplasmic reticulum. Microtubules are very numerous in the columnar portion of the cell, and laminar structures seemingly joining the cell surfaces are sometimes seen. Lipid droplets and lysosmal structures are frequent cellular components in proximal TZ Sertoli cells. Empty intracellular vacuoles are abundant, sometimes arranged around areas of smooth endoplasmic reticulum. Occasionally, membrane-limited fine granules and vacuoles are seen within Sertoli cells and also in the TZ lumen, suggesting a possible secretory activity by these cells. The apical processes of the Sertoli cells form large vacuolar structures, and in the basal parts of the epithelium vacuoles with capillary-like appearance are frequently seen. Phagocytosis of germinal cells by the Sertoli cells occurs in the proximal region of the TZ. Round waste bodies in contact with the Sertoli cell apices protruding into the tubulus rectus, are also common. The tunica propria of the TZ is thickened and somewhat wrinkled, and in the proximal region the myoid cell layer loses its continuity and is replaced by fibroblasts. The epithelium of the tubulus rectus adjacent to the TZ consists of several overlapping epithelial cells. The typical junctional complexes between TZ Sertoli cells appear to be impermeable to the lanthanum tracer.

  11. In vitro antimicrobial activity of Sodium hypochlorite, Chlorhexidine gluconate and Octenidine Dihydrochloride in elimination of microor- ganisms within dentinal tubules of primary and permanent teeth

    PubMed Central

    Bodur, Haluk; Ece, Gülden

    2012-01-01

    The aim of this study was to evaluate the effectiveness of different irrigation solutions at different time intervals for the elimination of E.faecalis and C.albicans penetrated into the dentine tubules of primary and permanent teeth in vitro. The 4 mm primary and permanent teeth sections were sterilized and contaminated with a mixture of E.faecalis and C.albicans strains. After the application of different irrigation solutions (Sodium hypochlorite, Chlorhexidine gluconate, Octenidine Dihydrochloride, saline) to the contaminated tooth sections according to study groups, neutralizers were applied for inactivation of the solutions after 30 sec, 1 min and 5 min. Dentine shavings were placed into TSB and 10µL from each tube was inoculated on agar plates, followed by an incubation period of 24h at 37°C. The colonies were counted macroscopically. The results were compared by using Kruskal-Wallis and Mann Whitney U tests, with a significance level at p<0.05. Among the irrigation solutions that were tested against E.faecalis on primary and permanent teeth, the most effective one was found as 5-minute application of 0.1% Octenidine Dihydrochloride. The antibacterial effects of the tested solutions on the same time periods against C.albicans revealed no significant difference. There were no statistically significant differences between primary and permanent teeth with respect to the antimicrobial activity of the tested solutions. Moreover, Octenidine Dihydrochloride may be used as an alternative endodontic irrigant. Key words:Chlorhexidine gluconate, dentine tubules, irrigation solutions, Octenidine Dihydrochloride, Sodium hypochlorite. PMID:22143724

  12. Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics.

    PubMed

    Wilmes, Anja; Bielow, Chris; Ranninger, Christina; Bellwon, Patricia; Aschauer, Lydia; Limonciel, Alice; Chassaigne, Hubert; Kristl, Theresa; Aiche, Stephan; Huber, Christian G; Guillou, Claude; Hewitt, Philipp; Leonard, Martin O; Dekant, Wolfgang; Bois, Frederic; Jennings, Paul

    2015-12-25

    Cisplatin is one of the most widely used chemotherapeutic agents for the treatment of solid tumours. The major dose-limiting factor is nephrotoxicity, in particular in the proximal tubule. Here, we use an integrated omics approach, including transcriptomics, proteomics and metabolomics coupled to biokinetics to identify cell stress response pathways induced by cisplatin. The human renal proximal tubular cell line RPTEC/TERT1 was treated with sub-cytotoxic concentrations of cisplatin (0.5 and 2 μM) in a daily repeat dose treating regime for up to 14 days. Biokinetic analysis showed that cisplatin was taken up from the basolateral compartment, transported to the apical compartment, and accumulated in cells over time. This is in line with basolateral uptake of cisplatin via organic cation transporter 2 and bioactivation via gamma-glutamyl transpeptidase located on the apical side of proximal tubular cells. Cisplatin affected several pathways including, p53 signalling, Nrf2 mediated oxidative stress response, mitochondrial processes, mTOR and AMPK signalling. In addition, we identified novel pathways changed by cisplatin, including eIF2 signalling, actin nucleation via the ARP/WASP complex and regulation of cell polarization. In conclusion, using an integrated omic approach together with biokinetics we have identified both novel and established mechanisms of cisplatin toxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. DNA intermediates and telomere addition during genome reorganization in Euplotes crassus.

    PubMed

    Roth, M; Prescott, D M

    1985-06-01

    Three gene-sized molecules cloned intact from macronuclear DNA served as hybridization probes to study excision of these molecules from chromosomes and their processing during macronuclear development in the hypotrich Euplotes crassus. These molecules occur in integrated forms within polytene chromosomal DNA during macronuclear developmental. After transection of the polytene chromosomes, the three molecules occur in intermediate forms. One of the three molecules first appeared in a large intermediate that was subsequently replaced by a second intermediate, approximately 140 bp larger than the final molecule. The other two macronuclear molecules were detected only in intermediates approximately 140 bp larger than the mature form. These penultimate intermediates are larger by virtue of oversized telomeres, which are pared to yield the mature gene-sized molecules.

  14. Effect of acute acid-base disturbances on the phosphorylation of phospholipase C-γ1 and Erk1/2 in the renal proximal tubule

    PubMed Central

    Skelton, Lara A; Boron, Walter F

    2015-01-01

    The renal proximal tubule (PT) plays a major role in whole-body pH homeostasis by secreting H+ into the tubule lumen. Previous work demonstrated that PTs respond to basolateral changes in [CO2] and [] by appropriately altering H+ secretion—responses blocked by the ErbB inhibitor PD168393, or by eliminating signaling through AT1 angiotensin receptors. In the present study, we analyze phosphorylation of three downstream targets of both ErbBs and AT1: phospholipase C-γ1 (PLC-γ1), extracellular-regulated kinase 1 (Erk1), and Erk2. We expose rabbit PT suspensions for 5 and 20 min to our control (Ctrl) condition (5% CO2, 22 mmol/L , pH 7.40) or one of several conditions that mimic acid-base disturbances. We found that each disturbance produces characteristic phosphorylation patterns in the three enzymes. For example, respiratory acidosis (elevated [CO2], normal []) at 20 min decreases PLC-γ1 phosphorylation at tyrosine-783 (relative to Ctrl). Metabolic acidosis (normal [CO2], decreased []) for 5 min increases Erk1 phosphorylation (p-Erk1) but not p-Erk2, whereas metabolic alkalosis (normal [CO2], elevated []) for 5 min decreases p-Erk1 and p-Erk2. In the presence of CO2/, PD168393 blocks only two of eight induced decreases in phosphorylation. In two cases in which disturbances have no remarkable effects on phosphorylation, PD168393 unmasks decreases and in two others, increases. These drug effects provide insight into the roles of PD168393-sensitive kinases. Our results indicate that PLC-γ1.pY783, p-Erk1, and p-Erk2 in the PT change in characteristic ways in response to acute acid-base disturbances, and thus presumably contribute to the transduction of acid-base signals. PMID:25780091

  15. Spatial variability in T-tubule and electrical remodeling of left ventricular epicardium in mouse hearts with transgenic Gαq overexpression-induced pathological hypertrophy

    PubMed Central

    Tao, Wen; Shi, Jianjian; Dorn, Gerald W.; Wei, Lei; Rubart, Michael

    2012-01-01

    Pathological left ventricular hypertrophy (LVH) is consistently associated with prolongation of the ventricular action potentials. A number of previous studies, employing various experimental models of hypertrophy, have revealed marked differences in the effects of hypertrophy on action potential duration (APD) between myocytes from endocardial and epicardial layers of the LV free wall. It is not known, however, whether pathological LVH is also accompanied by redistribution of APD among myocytes from the same layer in the LV free wall. In the experiments here, LV epicardial action potential remodeling was examined in a mouse model of decompensated LVH, produced by cardiac-restricted transgenic Gαq overexpression. Confocal linescanning-based optical recordings of propagated action potentials from individual in situ cardiomyocytes across the outer layer of the anterior LV epicardium demonstrated spatially non-uniform action potential prolongation in transgenic hearts, giving rise to alterations in spatial dispersion of epicardial repolarization. Local density and distribution of anti-Cx43 mmune reactivity in Gαq hearts were unchanged compared to wild-type hearts, suggesting preservation of intercellular coupling. Confocal microscopy also revealed heterogeneous disorganization of T-tubules in epicardial cardiomyocytes in situ. These data provide evidence of the existence of significant electrical and structural heterogeneity within the LV epicardial layer of hearts with transgenic Gαq overexpression-induced hypertrophy, and further support the notion that a small portion of electrically well connected LV tissue can maintain dispersion of action potential duration through heterogeneity in the activities of sarcolemmal ionic currents that control repolarization. It remains to be examined whether other experimental models of pathological LVH, including pressure overload LVH, similarly exhibit alterations in T-tubule organization and/or dispersion of repolarization

  16. Evaluation of “Dream Herb,” Calea zacatechichi, for Nephrotoxicity Using Human Kidney Proximal Tubule Cells

    PubMed Central

    Flynn, Thomas J.; Vohra, Sanah; Wiesenfeld, Paddy; Sprando, Robert L.

    2016-01-01

    A recent surge in the use of dietary supplements, including herbal remedies, necessitates investigations into their safety profiles. “Dream herb,” Calea zacatechichi, has long been used in traditional folk medicine for a variety of purposes and is currently being marketed in the US for medicinal purposes, including diabetes treatment. Despite the inherent vulnerability of the renal system to xenobiotic toxicity, there is a lack of safety studies on the nephrotoxic potential of this herb. Additionally, the high frequency of diabetes-associated kidney disease makes safety screening of C. zacatechichi for safety especially important. We exposed human proximal tubule HK-2 cells to increasing doses of this herb alongside known toxicant and protectant control compounds to examine potential toxicity effects of C. zacatechichi relative to control compounds. We evaluated both cellular and mitochondrial functional changes related to toxicity of this dietary supplement and found that even at low doses evidence of cellular toxicity was significant. Moreover, these findings correlated with significantly elevated levels of nephrotoxicity biomarkers, lending further support for the need to further scrutinize the safety of this herbal dietary supplement. PMID:27703475

  17. Junctophilin-2 is necessary for T-tubule maturation during mouse heart development

    PubMed Central

    Reynolds, Julia O.; Chiang, David Y.; Wang, Wei; Beavers, David L.; Dixit, Sayali S.; Skapura, Darlene G.; Landstrom, Andrew P.; Song, Long-Sheng; Ackerman, Michael J.; Wehrens, Xander H.T.

    2013-01-01

    Aims Transverse tubules (TTs) provide the basic subcellular structures that facilitate excitation–contraction (EC) coupling, the essential process that underlies normal cardiac contractility. Previous studies have shown that TTs develop within the first few weeks of life in mammals but the molecular determinants of this development have remained elusive. This study aims to elucidate the role of junctophilin-2 (JPH2), a junctional membrane complex protein, in the maturation of TTs in cardiomyocytes. Methods and results Using a novel cardiac-specific short-hairpin-RNA-mediated JPH2 knockdown mouse model (Mus musculus; αMHC-shJPH2), we assessed the effects of the loss of JPH2 on the maturation of the ventricular TT structure. Between embryonic day (E) 10.5 and postnatal day (P) 10, JPH2 mRNA and protein levels were reduced by >70% in αMHC-shJPH2 mice. At P8 and P10, knockdown of JPH2 significantly inhibited the maturation of TTs, while expression levels of other genes implicated in TT development remained mostly unchanged. At the same time, intracellular Ca2+ handling was disrupted in ventricular myocytes from αMHC- shJPH2 mice, which developed heart failure by P10 marked by reduced ejection fraction, ventricular dilation, and premature death. In contrast, JPH2 transgenic mice exhibited accelerated TT maturation by P8. Conclusion Our findings suggest that JPH2 is necessary for TT maturation during postnatal cardiac development in mice. In particular, JPH2 may be critical in anchoring the invaginating sarcolemma to the sarcoplasmic reticulum, thereby enabling the maturation of the TT network. PMID:23715556

  18. Photoinduced anticancer activity studies of iridium(III) complexes targeting mitochondria and tubules.

    PubMed

    Zhang, Wen-Yao; Yi, Qian-Yan; Wang, Yang-Jie; Du, Fan; He, Miao; Tang, Bing; Wan, Dan; Liu, Yun-Jun; Huang, Hong-Liang

    2018-05-10

    Three new iridium (III) complexes [Ir (ppy) 2 (ipbc)](PF 6 ) (1), [Ir (bzq) 2 (ipbc)](PF 6 ) (2) and [Ir (piq) 2 (ipbc)](PF 6 ) (3) were designed and synthesized. All the complexes were tested for anticancer activity using 3-(4,5-dimethylthiazole)-2,5-diphenyltetraazolium bromide (MTT) method. The complexes show no cytotoxic activity toward cancer BEL-7402, SGC-7901, Eca-109, A549, HeLa and HepG2 cells. However, upon irradiation with white light, the complexes display high cytotoxicity against BEL-7402 cells with an IC 50 value of 5.5 ± 0.8, 7.3 ± 1.3 and 11.5 ± 1.6 μM for 1, 2 and 3, respectively. AO/EB staining and comet assay show that the complexes can induce apoptosis in BEL-7402 cells. The complexes can increase intracellular ROS and Ca 2+ levels and cause a decrease in the mitochondrial membrane potential. Autophagic assays exhibit that the complexes can induce autophagy and regulate the expression of Beclin-1 and LC3 proteins. The cell cycle distribution in BEL-7402 cells was carried out by flow cytometry. The expression of Bcl-2 family proteins was studied by western blot. Additionally, the complexes can release cytochrome c and inhibit the polymerization of α-tubulin. Our study reveals that the complexes inhibit the cell growth in BEL-7402 cells through an ROS-mediated mitochondria dysfunction and targeting tubules pathways. These complexes are a promising new entity for the development of multi-target anticancer drugs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Revisiting point FRAP to quantitatively characterize anomalous diffusion in live cells.

    PubMed

    Daddysman, Matthew K; Fecko, Christopher J

    2013-02-07

    Fluorescence recovery after photobleaching (FRAP) is widely used to interrogate diffusion and binding of proteins in live cells. Herein, we apply two-photon excited FRAP with a diffraction limited bleaching and observation volume to study anomalous diffusion of unconjugated green fluorescence protein (GFP) in vitro and in cells. Experiments performed on dilute solutions of GFP reveal that reversible fluorophore bleaching can be mistakenly interpreted as anomalous diffusion. We derive a reaction-diffusion FRAP model that includes reversible photobleaching, and demonstrate that it properly accounts for these photophysics. We then apply this model to investigate the diffusion of GFP in HeLa cells and polytene cells of Drosophila larval salivary glands. GFP exhibits anomalous diffusion in the cytoplasm of both cell types and in HeLa nuclei. Polytene nuclei contain optically resolvable chromosomes, permitting FRAP experiments that focus separately on chromosomal or interchrosomal regions. We find that GFP exhibits anomalous diffusion in chromosomal regions but diffuses normally in regions devoid of chromatin. This observation indicates that obstructed transport through chromatin and not crowding by macromolecules is a source of anomalous diffusion in polytene nuclei. This behavior is likely true in other cells, so it will be important to account for this type of transport physics and for reversible photobleaching to properly interpret future FRAP experiments on DNA-binding proteins.

  20. Role of NF-κB in oxidative stress-induced defective dopamine D1 receptor signaling in the renal proximal tubules of Sprague Dawley rats

    PubMed Central

    Fardoun, Riham Zein; Asghar, Mohammad; Lokhandwala, Mustafa

    2009-01-01

    Dopamine promotes sodium excretion, in part, via activation of D1 receptors in renal proximal tubules (PT) and subsequent inhibition of Na, K-ATPase. Recently, we have reported that oxidative stress causes D1 receptors-G-protein uncoupling via mechanisms involving Protein Kinase C (PKC) and G-protein Coupled Receptor Kinase 2 (GRK2) in the primary culture of renal PT of Sprague Dawley (SD) rats. There are reports suggesting that redox-sensitive nuclear transcription factor, NF-κB, is activated in conditions associated with oxidative stress. This study was designed to identify the role of NF-κB in oxidative stress–induced defective renal D1 receptor –G-protein coupling and function. Treatment of the PT with hydrogen peroxide (H2O2, 50 μM/20 min) induced the nuclear translocation of NF-κB, increased PKC activity, and triggered the translocation of GRK2 to the proximal tubular membranes. This was accompanied by hyperphosphorylation of D1 receptors and defective D1 receptor-G-protein coupling. The functional consequence of these changes was decreased D1 receptor activation-mediated inhibition of Na, K-ATPase activity. Interestingly, pre-treatment with pyrrolidine dithiocarbamate (PDTC, 25 μM/10min), an NF-κB inhibitor, blocked the H2O2-induced nuclear translocation of NF-κB, increase in PKC activity, as well as GRK2 translocation and hyperphosphorylation of D1 receptors in the proximal tubular membranes. Furthermore, PDTC restored D1 receptor G-protein coupling and D1 receptor agonist-mediated inhibition of the Na, KATPase activity. Therefore, we suggest that oxidative stress causes nuclear translocation of NF-κB in the renal proximal tubules, which contributes to defective D1-receptor-G-protein coupling and function via mechanism involving PKC, membranous translocation of GRK 2, and subsequent phosphorylation of dopamine D1 receptors. PMID:17320758

  1. 17β-Estradiol regulates cyclin A1 and cyclin B1 gene expression in adult rat seminiferous tubules.

    PubMed

    Bois, Camille; Delalande, Christelle; Bouraïma-Lelong, Hélène; Durand, Philippe; Carreau, Serge

    2012-04-01

    Spermatogenesis, which is the fundamental mechanism allowing male gamete production, is controlled by several factors, and among them, estrogens are likely concerned. In order to enlighten the potential role of estrogen in rat spermatogenesis, seminiferous tubules (ST) from two groups of seminiferous epithelium stages (II-VIII and IX-I) were treated with either 17β-estradiol (E(2)) agonists or antagonists for estrogen receptors (ESRs). In this study, we show that cyclin A1 and cyclin B1 gene expression is controlled by E(2) at a concentration of 10(-9) M only in stages IX-I. This effect is mimicked by a treatment with the G-protein coupled estrogen receptor (GPER) agonist G1 and is abolished by treatment with the ESR antagonist ICI 182 780. Moreover, using letrozole, a drug that blocks estrogen synthesis, we demonstrate that these genes are under the control of E(2) within rat ST. Thus, germ cell differentiation may be regulated by E(2) which acts through ESRs and GPER, expressed in adult rat ST.

  2. Multicomponent hollow tubules formed using phytosterol and gamma-oryzanol-based compounds: an understanding of their molecular embrace.

    PubMed

    Rogers, Michael A; Bot, Arjen; Lam, Ricky Sze Ho; Pedersen, Tor; May, Tim

    2010-08-19

    The formation kinetics of self-assembling tubules composed of phytosterol:gamma-oryzanol mixtures were investigated at the Canadian Light Source on the mid-IR beamline using synchrotron radiation and Fourier transform infrared spectroscopy (FT-IR). The Avrami model was fitted to the changing hydrogen bonding density occurring at 3450 cm(-1). The nucleation process was found to be highly dependent on the molecular structure of the phytosterol. The nucleation event for cholesterol:gamma-oryzanol was determined to be sporadic whereas 5alpha-cholestan-3beta-ol:gamma-oryzanol and beta-sitosterol:gamma-oryzanol underwent instantaneous nucleation. One-dimensional growth occurred for each phytosterol:gamma-oryzanol mixture and involved the evolution of highly specific intermolecular hydrogen bonds. More detailed studies on the cholesterol:gamma-oryzanol system indicated that the nucleation activation energy, determined from multiple rate constants, obtained using the Avrami model, was at a minimum when the two compounds were at a 1:1 weight ratio. This resulted in drastic differences to the microscopic structures and affected the macroscopic properties such as turbidity. The formation of the phytosterol:gamma-oryzanol complex was due to intermolecular hydrogen bonding, which was in agreement with the infrared spectroscopic evidence.

  3. Dual Regulation of Gluconeogenesis by Insulin and Glucose in the Proximal Tubules of the Kidney.

    PubMed

    Sasaki, Motohiro; Sasako, Takayoshi; Kubota, Naoto; Sakurai, Yoshitaka; Takamoto, Iseki; Kubota, Tetsuya; Inagi, Reiko; Seki, George; Goto, Moritaka; Ueki, Kohjiro; Nangaku, Masaomi; Jomori, Takahito; Kadowaki, Takashi

    2017-09-01

    Growing attention has been focused on the roles of the proximal tubules (PTs) of the kidney in glucose metabolism, including the mechanism of regulation of gluconeogenesis. In this study, we found that PT-specific insulin receptor substrate 1/2 double-knockout mice, established by using the newly generated sodium-glucose cotransporter 2 (SGLT2)-Cre transgenic mice, exhibited impaired insulin signaling and upregulated gluconeogenic gene expression and renal gluconeogenesis, resulting in systemic insulin resistance. In contrast, in streptozotocin-treated mice, although insulin action was impaired in the PTs, the gluconeogenic gene expression was unexpectedly downregulated in the renal cortex, which was restored by administration of an SGLT1/2 inhibitor. In the HK-2 cells, the gluconeogenic gene expression was suppressed by insulin, accompanied by phosphorylation and inactivation of forkhead box transcription factor 1 (FoxO1). In contrast, glucose deacetylated peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), a coactivator of FoxO1, via sirtuin 1, suppressing the gluconeogenic gene expression, which was reversed by inhibition of glucose reabsorption. These data suggest that both insulin signaling and glucose reabsorption suppress the gluconeogenic gene expression by inactivation of FoxO1 and PGC1α, respectively, providing insight into novel mechanisms underlying the regulation of gluconeogenesis in the PTs. © 2017 by the American Diabetes Association.

  4. Exploring photoreceptor reflectivity via multimodal imaging of outer retinal tubulation in advanced age-related macular degeneration

    PubMed Central

    Litts, Katie M.; Wang, Xiaolin; Clark, Mark E.; Owsley, Cynthia; Freund, K. Bailey; Curcio, Christine A.; Zhang, Yuhua

    2016-01-01

    Purpose To investigate the microscopic structure of outer retinal tubulation (ORT) and optical properties of cone photoreceptors in vivo, we studied ORT appearance by multimodal imaging, including spectral domain optical coherence tomography (SD-OCT) and adaptive optics scanning laser ophthalmoscopy (AOSLO). Methods Four eyes of 4 subjects with advanced AMD underwent color fundus photography, infrared reflectance imaging, SD-OCT, and AOSLO with a high-resolution research instrument. ORT was identified in closely spaced (11 μm) SD-OCT volume scans. Results ORT in cross-sectional and en face SD-OCT was a hyporeflective area representing a lumen surrounded by a hyperreflective border consisting of cone photoreceptor mitochondria and external limiting membrane, per previous histology. In contrast, ORT by AOSLO was a hyporeflective structure of the same shape as in en face SD-OCT but lacking visualizable cone photoreceptors. Conclusion Lack of ORT cone reflectivity by AOSLO indicates that cones have lost their normal directionality and waveguiding property due to loss of outer segments and subsequent retinal remodeling. Reflective ORT cones by SD-OCT, in contrast, may depend partly on mitochondria as light scatterers within inner segments of these degenerating cells, a phenomenon enhanced by coherent imaging. Multimodal imaging of ORT provides insight into cone degeneration and reflectivity sources in OCT. PMID:27584549

  5. Urinary Excretion of Tetrodotoxin Modeled in a Porcine Renal Proximal Tubule Epithelial Cell Line, LLC-PK₁.

    PubMed

    Matsumoto, Takuya; Ishizaki, Yui; Mochizuki, Keika; Aoyagi, Mitsuru; Mitoma, Yoshiharu; Ishizaki, Shoichiro; Nagashima, Yuji

    2017-07-17

    This study examined the urinary excretion of tetrodotoxin (TTX) modeled in a porcine renal proximal tubule epithelial cell line, LLC-PK₁. Time course profiles of TTX excretion and reabsorption across the cell monolayers at 37 °C showed that the amount of TTX transported increased linearly for 60 min. However, at 4 °C, the amount of TTX transported was approximately 20% of the value at 37 °C. These results indicate that TTX transport is both a transcellular and carrier-mediated process. Using a transport inhibition assay in which cell monolayers were incubated with 50 µM TTX and 5 mM of a transport inhibitor at 37 °C for 30 min, urinary excretion was significantly reduced by probenecid, tetraethylammonium (TEA), l-carnitine, and cimetidine, slightly reduced by p -aminohippuric acid (PAH), and unaffected by 1-methyl-4-phenylpyridinium (MPP+), oxaliplatin, and cefalexin. Renal reabsorption was significantly reduced by PAH, but was unaffected by probenecid, TEA and l-carnitine. These findings indicate that TTX is primarily excreted by organic cation transporters (OCTs) and organic cation/carnitine transporters (OCTNs), partially transported by organic anion transporters (OATs) and multidrug resistance-associated proteins (MRPs), and negligibly transported by multidrug and toxic compound extrusion transporters (MATEs).

  6. Novel Hg2+-Induced Nephropathy in Rats and Mice Lacking Mrp2: Evidence of Axial Heterogeneity in the Handling of Hg2+ Along the Proximal Tubule

    PubMed Central

    Zalups, Rudolfs K.; Joshee, Lucy; Bridges, Christy C.

    2014-01-01

    The role of the multi-resistance protein 2 (Mrp2) in the nephropathy induced by inorganic mercuric mercury (Hg2+) was studied in rats (TR−) and mice (Mrp2−/−), which lack functional Mrp2, and control animals. Animals were exposed to nephrotoxic doses of HgCl2. Forty-eight or 24 hours after exposure, tissues were harvested and analyzed for Hg content and markers of injury. Histological analyses revealed that the proximal tubular segments affected pathologically by Hg2+ were significantly different between Mrp2-deficient animals and controls. In the absence of Mrp2, cellular injury localized almost exclusively in proximal tubular segments in the subcapsular (S1) to midcortical regions (early S2) of the kidney. In control animals, cellular death occurred mainly in the proximal tubular segments in the inner cortex (late S2) and outer stripe of the outer medulla (S3). These differences in renal pathology indicate that axial heterogeneity exists along the proximal tubule with respect to how mercuric ions are handled. Total renal and hepatic accumulation of mercury was also greater in animals lacking Mrp2 than in controls, indicating that Mrp2 normally plays a significant role in eliminating mercuric ions from within proximal tubular cells and hepatocytes. Analyses of plasma creatinine, BUN, and renal expression of Kim-1 and Ngal tend to support the severity of the nephropathies detected histologically. Collectively, our findings indicate that a fraction of mercuric ions is normally secreted by Mrp2 in early portions of proximal tubules into the lumen and then is absorbed downstream in straight portions, where mercuric species typically induce toxic effects. PMID:25145654

  7. Extracellular K+ rapidly controls NaCl cotransporter phosphorylation in the native distal convoluted tubule by Cl−‐dependent and independent mechanisms

    PubMed Central

    Penton, David; Czogalla, Jan; Wengi, Agnieszka; Himmerkus, Nina; Loffing‐Cueni, Dominique; Carrel, Monique; Rajaram, Renuga Devi; Staub, Olivier; Bleich, Markus; Schweda, Frank

    2016-01-01

    Key points High dietary potassium (K+) intake dephosphorylates and inactivates the NaCl cotransporter (NCC) in the renal distal convoluted tubule (DCT).Using several ex vivo models, we show that physiological changes in extracellular K+, similar to those occurring after a K+ rich diet, are sufficient to promote a very rapid dephosphorylation of NCC in native DCT cells.Although the increase of NCC phosphorylation upon decreased extracellular K+ appears to depend on cellular Cl− fluxes, the rapid NCC dephosphorylation in response to increased extracellular K+ is not Cl−‐dependent.The Cl−‐dependent pathway involves the SPAK/OSR1 kinases, whereas the Cl− independent pathway may include additional signalling cascades. Abstract A high dietary potassium (K+) intake causes a rapid dephosphorylation, and hence inactivation, of the thiazide‐sensitive NaCl cotransporter (NCC) in the renal distal convoluted tubule (DCT). Based on experiments in heterologous expression systems, it was proposed that changes in extracellular K+ concentration ([K+]ex) modulate NCC phosphorylation via a Cl−‐dependent modulation of the with no lysine (K) kinases (WNK)‐STE20/SPS‐1‐44 related proline‐alanine‐rich protein kinase (SPAK)/oxidative stress‐related kinase (OSR1) kinase pathway. We used the isolated perfused mouse kidney technique and ex vivo preparations of mouse kidney slices to test the physiological relevance of this model on native DCT. We demonstrate that NCC phosphorylation inversely correlates with [K+]ex, with the most prominent effects occurring around physiological plasma [K+]. Cellular Cl− conductances and the kinases SPAK/OSR1 are involved in the phosphorylation of NCC under low [K+]ex. However, NCC dephosphorylation triggered by high [K+]ex is neither blocked by removing extracellular Cl−, nor by the Cl− channel blocker 4,4′‐diisothiocyano‐2,2′‐stilbenedisulphonic acid. The response to [K+]ex on a low extracellular chloride

  8. Multicopper oxidase-1 is a ferroxidase essential for iron homeostasis in Drosophila melanogaster

    PubMed Central

    Lang, Minglin; Braun, Caroline L.; Kanost, Michael R.; Gorman, Maureen J.

    2012-01-01

    Multicopper ferroxidases catalyze the oxidation of ferrous iron to ferric iron. In yeast and algae, they participate in cellular uptake of iron; in mammals, they facilitate cellular efflux. The mechanisms of iron metabolism in insects are still poorly understood, and insect multicopper ferroxidases have not been identified. In this paper, we present evidence that Drosophila melanogaster multicopper oxidase-1 (MCO1) is a functional ferroxidase. We identified candidate iron-binding residues in the MCO1 sequence and found that purified recombinant MCO1 oxidizes ferrous iron. An association between MCO1 function and iron homeostasis was confirmed by two observations: RNAi-mediated knockdown of MCO1 resulted in decreased iron accumulation in midguts and whole insects, and weak knockdown increased the longevity of flies fed a toxic concentration of iron. Strong knockdown of MCO1 resulted in pupal lethality, indicating that MCO1 is an essential gene. Immunohistochemistry experiments demonstrated that MCO1 is located on the basal surfaces of the digestive system and Malpighian tubules. We propose that MCO1 oxidizes ferrous iron in the hemolymph and that the resulting ferric iron is bound by transferrin or melanotransferrin, leading to iron storage, iron withholding from pathogens, regulation of oxidative stress, and/or epithelial maturation. These proposed functions are distinct from those of other known ferroxidases. Given that MCO1 orthologues are present in all insect genomes analyzed to date, this discovery is an important step toward understanding iron metabolism in insects. PMID:22847425

  9. Orthologs of Human Disease Associated Genes and RNAi Analysis of Silencing Insulin Receptor Gene in Bombyx mori

    PubMed Central

    Zhang, Zan; Teng, Xiaolu; Chen, Maohua; Li, Fei

    2014-01-01

    The silkworm, Bombyx mori L., is an important economic insect that has been domesticated for thousands of years to produce silk. It is our great interest to investigate the possibility of developing the B. mori as human disease model. We searched the orthologs of human disease associated genes in the B. mori by bi-directional best hits of BLAST and confirmed by searching the OrthoDB. In total, 5006 genes corresponding to 1612 kinds of human diseases had orthologs in the B. mori, among which, there are 25 genes associated with diabetes mellitus. Of these, we selected the insulin receptor gene of the B. mori (Bm-INSR) to study its expression in different tissues and at different developmental stages and tissues. Quantitative PCR showed that Bm-INSR was highly expressed in the Malpighian tubules but expressed at low levels in the testis. It was highly expressed in the 3rd and 4th instar larvae, and adult. We knocked down Bm-INSR expression using RNA interference. The abundance of Bm-INSR transcripts were dramatically reduced to ~4% of the control level at 6 days after dsRNA injection and the RNAi-treated B. mori individuals showed apparent growth inhibition and malformation such as abnormal body color in black, which is the typical symptom of diabetic patients. Our results demonstrate that B. mori has potential use as an animal model for diabetic mellitus research. PMID:25302617

  10. Gene expression analysis and enzyme assay reveal a potential role of the carboxylesterase gene CpCE-1 from Cydia pomonella in detoxification of insecticides.

    PubMed

    Yang, Xue-Qing

    2016-05-01

    Carboxylesterases (CarEs) are responsible for metabolism of xenobiotics including insecticides in insects. Understanding the expression patterns of a such detoxifying gene and effect of insecticides on its enzyme activity are important to clarify the function of this gene relevant to insecticides-detoxifying process, but little information is available in the codling moth Cydia pomonella (L.). In this study, we investigated the expression profiles of CarE gene CpCE-1 at different developmental stages and in different tissues of C. pomonella, as well as the larvae exposed to chlorpyrifos-ethyl and lambda-cyhalothrin by using absolute real-time quantitative PCR (absolute RT-qPCR). Results indicated that CpCE-1 expression was significantly altered during C. pomonella development stages, and this expression differed between sexes, with a higher transcript in females than males. Meanwhile, CpCE-1 is overexpressed in cuticle, midgut and head than silk gland, fat body and Malpighian tubules. Exposure of third instar larvae to a non-lethal dosage of chlorpyrifos-ethyl and lambda-cyhalothrin resulted in induction of CpCE-1 transcript. The total carboxylesterase enzyme activity was inhibited by chlorpyrifos-ethyl in vivo; in contrast, the activity of Escherichia coli produced recombinant CpCE-1 was significantly inhibited by both lambda-cyhalothrin and chlorpyrifos-ethyl in vitro. These results suggested that CpCE-1 in C. pomonella is potentially involved in the development and in detoxification of chlorpyrifos-ethyl and lambda-cyhalothrin.

  11. Multiple glutathione S-transferase genes: identification and expression in oriental fruit fly, Bactrocera dorsalis.

    PubMed

    Hu, Fei; Dou, Wei; Wang, Jing-Jing; Jia, Fu-Xian; Wang, Jin-Jun

    2014-02-01

    The oriental fruit fly, Bactrocera dorsalis (Hendel), is widely distributed in Asia-Pacific regions, where it is a serious pest of a wide range of tropical and subtropical fruit and vegetable crops. In this study, 17 cDNA encoding glutathione S-transferases (GSTs) in B. dorsalis were sequenced and characterised. Phylogenetic analysis revealed that 16 GSTs belonged to five different cytosolic classes, including four in delta, eight in epsilon, two in omega, one in theta, and one in zeta. The remaining GST (BdGSTu1) was unclassified. RT-qPCR assay showed that the relative expression levels of five GST genes were significantly higher in larval stages than in adulthood. Tissue-specific expression analysis found that BdGSTe3, BdGSTe9 and BdGSTd5 were expressed highly in the midgut, BdGSTe4, BdGSTe6, BdGSTd6 and BdGSTz2 were higher in the fat body, and six GSTs were higher in Malpighian tubules. RT-qPCR confirmed that the expressions of nine GST genes were increased by malathion exposure at various times and doses, while BdGSTe4, BdGSTe9 and BdGSTt1 were increased by β-cypermethrin exposure. The increases in GST gene expression levels after malathion and β-cypermethrin exposure in B. dorsalis might increase the ability of this species to detoxify other insecticides and xenobiotics. © 2013 Society of Chemical Industry.

  12. The killing speed of egt-inactivated Bombyx mori nucleopolyhedrovirus depends on the developmental stage of B. mori larvae.

    PubMed

    Katsuma, Susumu; Shimada, Toru

    2015-03-01

    Several lines of evidence have shown that the deletion of the ecdysteroid UDP-glucosyltransferase gene (egt) from the nucleopolyhedrovirus (NPV) genome increases the killing speed of host lepidopteran larvae. However, it has not been investigated in detail whether the effects of egt deletion depend on the larval stages of the host insect. In this study, we performed bioassays using 10 continuous larval stages of the 4th- or 5th-instar Bombyx mori larvae and B. mori NPV egt mutants. The fast-killing phenotype was observed in the egt mutants only when the infection process progressed through larval-larval transition. All day-2 4th-instar larvae infected with the egt mutants entered the molting stage and died much earlier than wild-type-infected larvae. Bodies of egt mutant-infected larvae were filled with excessive fluid immediately after head capsule slippage, owing presumably to the degeneration of Malpighian tubules. Fourth- or 5th-instar larvae infected with the egt mutants at early stages of each instar died similarly to those infected with the wild-type virus. Under infection in the middle stages of the 5th-instar, the survival time of egt mutant-infected larvae was significantly longer than that of the wild-type virus-infected larvae. These results clearly show that the effects of egt deletion on killing speed of NPV are largely dependent on the developmental stage of the host larvae infected by the virus. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Cytochrome P450s from the fall armyworm (Spodoptera frugiperda): responses to plant allelochemicals and pesticides.

    PubMed

    Giraudo, M; Hilliou, F; Fricaux, T; Audant, P; Feyereisen, R; Le Goff, G

    2015-02-01

    Spodoptera frugiperda is a polyphagous lepidopteran pest that encounters a wide range of toxic plant metabolites in its diet. The ability of this insect to adapt to its chemical environment might be explained by the action of major detoxification enzymes such as cytochrome P450s (or CYP). Forty-two sequences coding for P450s were identified and most of the transcripts were found to be expressed in the midgut, Malpighian tubules and fat body of S. frugiperda larvae. Relatively few P450s were expressed in the established cell line Sf9. In order to gain information on how these genes respond to different chemical compounds, larvae and Sf9 cells were exposed to plant secondary metabolites (indole, indole-3-carbinol, quercetin, 2-tridecanone and xanthotoxin), insecticides (deltamethrin, fipronil, methoprene, methoxyfenozide) or model inducers (clofibrate and phenobarbital). Several genes were induced by plant chemicals such as P450s from the 6B, 321A and 9A subfamilies. Only a few genes responded to insecticides, belonging principally to the CYP9A family. There was little overlap between the response in vivo measured in the midgut and the response in vitro in Sf9 cells. In addition, regulatory elements were detected in the promoter region of these genes. In conclusion, several P450s were identified that could potentially be involved in the adaptation of S. frugiperda to its chemical environment. © 2014 The Royal Entomological Society.

  14. CD8+ T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension.

    PubMed

    Liu, Yunmeng; Rafferty, Tonya M; Rhee, Sung W; Webber, Jessica S; Song, Li; Ko, Benjamin; Hoover, Robert S; He, Beixiang; Mu, Shengyu

    2017-01-09

    Recent studies suggest a role for T lymphocytes in hypertension. However, whether T cells contribute to renal sodium retention and salt-sensitive hypertension is unknown. Here we demonstrate that T cells infiltrate into the kidney of salt-sensitive hypertensive animals. In particular, CD8 + T cells directly contact the distal convoluted tubule (DCT) in the kidneys of DOCA-salt mice and CD8 + T cell-injected mice, leading to up-regulation of the Na-Cl co-transporter NCC, p-NCC and the development of salt-sensitive hypertension. Co-culture with CD8 + T cells upregulates NCC in mouse DCT cells via ROS-induced activation of Src kinase, up-regulation of the K + channel Kir4.1, and stimulation of the Cl - channel ClC-K. The last event increases chloride efflux, leading to compensatory chloride influx via NCC activation at the cost of increasing sodium retention. Collectively, these findings provide a mechanism for adaptive immunity involvement in the kidney defect in sodium handling and the pathogenesis of salt-sensitive hypertension.

  15. CD8+ T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension

    PubMed Central

    Liu, Yunmeng; Rafferty, Tonya M.; Rhee, Sung W.; Webber, Jessica S.; Song, Li; Ko, Benjamin; Hoover, Robert S.; He, Beixiang; Mu, Shengyu

    2017-01-01

    Recent studies suggest a role for T lymphocytes in hypertension. However, whether T cells contribute to renal sodium retention and salt-sensitive hypertension is unknown. Here we demonstrate that T cells infiltrate into the kidney of salt-sensitive hypertensive animals. In particular, CD8+ T cells directly contact the distal convoluted tubule (DCT) in the kidneys of DOCA-salt mice and CD8+ T cell-injected mice, leading to up-regulation of the Na-Cl co-transporter NCC, p-NCC and the development of salt-sensitive hypertension. Co-culture with CD8+ T cells upregulates NCC in mouse DCT cells via ROS-induced activation of Src kinase, up-regulation of the K+ channel Kir4.1, and stimulation of the Cl− channel ClC-K. The last event increases chloride efflux, leading to compensatory chloride influx via NCC activation at the cost of increasing sodium retention. Collectively, these findings provide a mechanism for adaptive immunity involvement in the kidney defect in sodium handling and the pathogenesis of salt-sensitive hypertension. PMID:28067240

  16. Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules

    PubMed Central

    Lawrence, Marlon G.; Altenburg, Michael K.; Sanford, Ryan; Willett, Julian D.; Bleasdale, Benjamin; Ballou, Byron; Wilder, Jennifer; Li, Feng; Miner, Jeffrey H.; Berg, Ulla B.; Smithies, Oliver

    2017-01-01

    How the kidney prevents urinary excretion of plasma proteins continues to be debated. Here, using unfixed whole-mount mouse kidneys, we show that fluorescent-tagged proteins and neutral dextrans permeate into the glomerular basement membrane (GBM), in general agreement with Ogston's 1958 equation describing how permeation into gels is related to molecular size. Electron-microscopic analyses of kidneys fixed seconds to hours after injecting gold-tagged albumin, negatively charged gold nanoparticles, and stable oligoclusters of gold nanoparticles show that permeation into the lamina densa of the GBM is size-sensitive. Nanoparticles comparable in size with IgG dimers do not permeate into it. IgG monomer-sized particles permeate to some extent. Albumin-sized particles permeate extensively into the lamina densa. Particles traversing the lamina densa tend to accumulate upstream of the podocyte glycocalyx that spans the slit, but none are observed upstream of the slit diaphragm. At low concentrations, ovalbumin-sized nanoparticles reach the primary filtrate, are captured by proximal tubule cells, and are endocytosed. At higher concentrations, tubular capture is saturated, and they reach the urine. In mouse models of Pierson’s or Alport’s proteinuric syndromes resulting from defects in GBM structural proteins (laminin β2 or collagen α3 IV), the GBM is irregularly swollen, the lamina densa is absent, and permeation is increased. Our observations indicate that size-dependent permeation into the lamina densa of the GBM and the podocyte glycocalyx, together with saturable tubular capture, determines which macromolecules reach the urine without the need to invoke direct size selection by the slit diaphragm. PMID:28246329

  17. A Microperfusion Study of Bicarbonate Accumulation in the Proximal Tubule of the Rat Kidney*

    PubMed Central

    Bank, Norman; Aynedjian, Hagop S.

    1967-01-01

    In order to determine whether HCO3- gains access to the proximal tubular lumen from a source other than the glomerular filtrate, we carried out microperfusion experiments on isolated segments of rat proximal tubules in vivo. The perfusion fluid was essentially free of HCO3- and of a composition that prevented net absorption of sodium and water. It was found that when plasma HCO3- concentration and CO2 tension (PCO2) were normal, the HCO3- concentration in the collected perfusate rose to about 3 mEq per L. Inhibition of renal carbonic anhydrase did not produce an appreciable change in this value in normal rats, but when the enzyme was inhibited in acutely alkalotic rats, a mean concentration of 15 mEq per L was recovered in the perfusate. Addition of HCO3- to the tubular lumen might occur by either intraluminal generation of HCO3- from CO2 and OH- or by influx of ionic bicarbonate from the plasma or tubular cells. Because of the marked increase in HCO3- found when intraluminal carbonic anhydrase was inhibited, generation of new HCO3- from CO2 and OH- seems unlikely. We conclude, therefore, that influx of ionic bicarbonate occurred, either across the luminal membrane or through extracellular aqueous channels. These observations suggest that the proximal epithelium has a finite degree of permeability to HCO3- and that influx of this ion may be a component of the over-all handling of HCO3- by the kidney. PMID:4959907

  18. Chromosomal localization of actin genes in the malaria mosquito Anopheles darlingi

    PubMed Central

    BRIDI, L. C.; SHARAKHOVA, M. V.; SHARAKHOV, I. V.; CORDEIRO, J.; AZEVEDO, G. M.; TADEI, W. P.; RAFAEL, M. S.

    2012-01-01

    Physical and genetic maps have been used for chromosomal localization of genes in vectors of infectious diseases. The availability of polytene chromosomes in malaria mosquitoes provides a unique opportunity to precisely map genes of interest. We report physical mapping of two actin genes on polytene chromosomes of the major malaria vector in Amazon Anopheles darlingi. The clones with the actin genes sequences were obtained from a cDNA library constructed from RNA isolated from adult females and males of An. darlingi. Each of the two clones was mapped to a unique site on the chromosomal arm 2L in subdivisions 21A (clone pl05-A04) and 23B (clone pl17-G06). The obtained results together with previous mapping data provide a suitable basis for comparative genomics and for establishing chromosomal homologies among major malaria vectors. PMID:22804344

  19. Role of WNK4 and kidney-specific WNK1 in mediating the effect of high dietary K+ intake on ROMK channel in the distal convoluted tubule.

    PubMed

    Wu, Peng; Gao, Zhong-Xiuzi; Su, Xiao-Tong; Ellison, David H; Hadchouel, Juliette; Teulon, Jacques; Wang, Wen-Hui

    2018-04-18

    With-no-lysine kinase 4 (WNK4) and kidney-Specific (KS)-WNK1 regulate ROMK (Kir1.1) channels in a variety of cell models. We now explore the role of WNK4 and KS-WNK1 in regulating ROMK in the native distal convoluted tubule (DCT)/connecting tubule (CNT) by measuring TPNQ (ROMK inhibitor)-sensitive K+ currents with whole-cell recording. TPNQ-sensitive K+ currents in DCT2/CNT of KS-WNK1-/- and WNK4-/- mice were significantly smaller than that of WT mice. In contrast, the basolateral K+ channels (a Kir4.1/5.1 heterotetramer) in the DCT were not inhibited. Moreover, WNK4-/- mice were hypokalemic while KS-WNK1-/- mice had normal plasma K+ level. High K+ (HK) intake significantly increased TPNQ-sensitive K+ currents in DCT2/CNT of WT and WNK4-/- mice but not in KS-WNK1-/- mice. However, TPNQ-sensitive K+ currents in the cortical collecting duct (CCD) were normal not only under control conditions but also significantly increased in response to HK in KS-WNK1-/- mice. This suggests that the deletion of KS-WNK1-induced inhibition of ROMK occurs only in the DCT2/CNT. Renal clearance study further demonstrated that the deletion of KS-WNK1 did not affect the renal ability of K+ excretion under control conditions and during increasing K+ intake. Also, HK intake did not cause hyperkalemia in KS-WNK1-/- mice. We conclude that KS-WNK1 but not WNK4 is required for HK-intake-induced stimulation of ROMK activity in DCT2/CNT. However, KS-WNK1 is not essential for HK-induced stimulation of ROMK in the CCD and the lack of KS-WNK1 does not affect net renal K+ excretion.

  20. Fluoride-associated ultrastructural changes and apoptosis in human renal tubule: a pilot study.

    PubMed

    Quadri, J A; Sarwar, S; Sinha, A; Kalaivani, M; Dinda, A K; Bagga, A; Roy, T S; Das, T K; Shariff, A

    2018-01-01

    The susceptibility of the kidneys to fluoride toxicity can largely be attributed to its anatomy and function. As the filtrate moves along the complex tubular structure of each nephron, it is concentrated in the proximal and distal tubules and collecting duct. It has been frequently observed that the children suffering from renal impairments also have some symptoms of dental and skeletal fluorosis. The findings suggest that fluoride somehow interferes with renal anatomy and physiology, which may lead to renal pathogenesis. The aim of this study was to evaluate the fluoride-associated nephrotoxicity. A total of 156 patients with childhood nephrotic syndrome were screened and it was observed that 32 of them had significantly high levels ( p ≤ 0.05) of fluoride in urine (4.01 ± 1.83 ppm) and serum (0.1 ± 0.013 ppm). On the basis of urinary fluoride concentration, patients were divided into two groups, namely group 1 (G-1) ( n = 32) containing normal urine fluoride (0.61 ± 0.17 ppm) and group 2 (G-2) ( n = 32) having high urine fluoride concentration (4.01 ± 1.83 ppm). Age-matched healthy subjects ( n = 33) having normal levels of urinary fluoride (0.56 ± 0.15 ppm) were included in the study as control (group 0 (G-0)). Kidney biopsies were taken from G-1 and G-2 only, who were subjected to ultrastructural (transmission electron microscopy) and apoptotic (terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling) analysis. Various subcellular ultrastructural changes including nuclear disintegration, chromosome condensation, cytoplasmic ground substance lysis, and endoplasmic reticulum blebbing were observed. Increased levels of apoptosis were observed in high fluoride group (G-2) compared to normal fluoride group (G-1). Various degrees of fluoride-associated damages to the architecture of tubular epithelia, such as cell swelling and lysis, cytoplasmic vacuolation, nuclear condensation, apoptosis, and necrosis, were observed.