Science.gov

Sample records for mammalian ancestor reconstruction

  1. Genome-wide nucleotide-level mammalian ancestor reconstruction.

    PubMed

    Paten, Benedict; Herrero, Javier; Fitzgerald, Stephen; Beal, Kathryn; Flicek, Paul; Holmes, Ian; Birney, Ewan

    2008-11-01

    Recently attention has been turned to the problem of reconstructing complete ancestral sequences from large multiple alignments. Successful generation of these genome-wide reconstructions will facilitate a greater knowledge of the events that have driven evolution. We present a new evolutionary alignment modeler, called "Ortheus," for inferring the evolutionary history of a multiple alignment, in terms of both substitutions and, importantly, insertions and deletions. Based on a multiple sequence probabilistic transducer model of the type proposed by Holmes, Ortheus uses efficient stochastic graph-based dynamic programming methods. Unlike other methods, Ortheus does not rely on a single fixed alignment from which to work. Ortheus is also more scaleable than previous methods while being fast, stable, and open source. Large-scale simulations show that Ortheus performs close to optimally on a deep mammalian phylogeny. Simulations also indicate that significant proportions of errors due to insertions and deletions can be avoided by not assuming a fixed alignment. We additionally use a challenging hold-out cross-validation procedure to test the method; using the reconstructions to predict extant sequence bases, we demonstrate significant improvements over using closest extant neighbor sequences. Accompanying this paper, a new, public, and genome-wide set of Ortheus ancestor alignments provide an intriguing new resource for evolutionary studies in mammals. As a first piece of analysis, we attempt to recover "fossilized" ancestral pseudogenes. We confidently find 31 cases in which the ancestral sequence had a more complete sequence than any of the extant sequences.

  2. Phylogenomic Reconstruction Indicates Mitochondrial Ancestor Was an Energy Parasite

    PubMed Central

    Wang, Zhang; Wu, Martin

    2014-01-01

    Reconstruction of mitochondrial ancestor has great impact on our understanding of the origin of mitochondria. Previous studies have largely focused on reconstructing the last common ancestor of all contemporary mitochondria (proto-mitochondria), but not on the more informative pre-mitochondria (the last common ancestor of mitochondria and their alphaproteobacterial sister clade). Using a phylogenomic approach and leveraging on the increased taxonomic sampling of alphaproteobacterial and eukaryotic genomes, we reconstructed the metabolisms of both proto-mitochondria and pre-mitochondria. Our reconstruction depicts a more streamlined proto-mitochondrion than these predicted by previous studies, and revealed several novel insights into the mitochondria-derived eukaryotic metabolisms including the lipid metabolism. Most strikingly, pre-mitochondrion was predicted to possess a plastid/parasite type of ATP/ADP translocase that imports ATP from the host, which posits pre-mitochondrion as an energy parasite that directly contrasts with the current role of mitochondria as the cell’s energy producer. In addition, pre-mitochondrion was predicted to encode a large number of flagellar genes and several cytochrome oxidases functioning under low oxygen level, strongly supporting the previous finding that the mitochondrial ancestor was likely motile and capable of oxidative phosphorylation under microoxic condition. PMID:25333787

  3. Virtual ancestor reconstruction: Revealing the ancestor of modern humans and Neandertals.

    PubMed

    Mounier, Aurélien; Mirazón Lahr, Marta

    2016-02-01

    The timing and geographic origin of the common ancestor of modern humans and Neandertals remain controversial. A poor Pleistocene hominin fossil record and the evolutionary complexities introduced by dispersals and regionalisation of lineages have fuelled taxonomic uncertainty, while new ancient genomic data have raised completely new questions. Here, we use maximum likelihood and 3D geometric morphometric methods to predict possible morphologies of the last common ancestor of modern humans and Neandertals from a simplified, fully resolved phylogeny. We describe the fully rendered 3D shapes of the predicted ancestors of humans and Neandertals, and assess their similarity to individual fossils or populations of fossils of Pleistocene age. Our results support models of an Afro-European ancestral population in the Middle Pleistocene (Homo heidelbergensis sensu lato) and further predict an African origin for this ancestral population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Reconstructing a B-cell clonal lineage. I. Statistical inference of unobserved ancestors.

    PubMed

    Kepler, Thomas B

    2013-01-01

    One of the key phenomena in the adaptive immune response to infection and immunization is affinity maturation, during which antibody genes are mutated and selected, typically resulting in a substantial increase in binding affinity to the eliciting antigen. Advances in technology on several fronts have made it possible to clone large numbers of heavy-chain light-chain pairs from individual B cells and thereby identify whole sets of clonally related antibodies. These collections could provide the information necessary to reconstruct their own history - the sequence of changes introduced into the lineage during the development of the clone - and to study affinity maturation in detail. But the success of such a program depends entirely on accurately inferring the founding ancestor and the other unobserved intermediates. Given a set of clonally related immunoglobulin V-region genes, the method described here allows one to compute the posterior distribution over their possible ancestors, thereby giving a thorough accounting of the uncertainty inherent in the reconstruction. I demonstrate the application of this method on heavy-chain and light-chain clones, assess the reliability of the inference, and discuss the sources of uncertainty.

  5. Reconstructing a B-cell clonal lineage. I. Statistical inference of unobserved ancestors

    PubMed Central

    Kepler, Thomas B

    2013-01-01

    One of the key phenomena in the adaptive immune response to infection and immunization is affinity maturation, during which antibody genes are mutated and selected, typically resulting in a substantial increase in binding affinity to the eliciting antigen. Advances in technology on several fronts have made it possible to clone large numbers of heavy-chain light-chain pairs from individual B cells and thereby identify whole sets of clonally related antibodies. These collections could provide the information necessary to reconstruct their own history - the sequence of changes introduced into the lineage during the development of the clone - and to study affinity maturation in detail. But the success of such a program depends entirely on accurately inferring the founding ancestor and the other unobserved intermediates. Given a set of clonally related immunoglobulin V-region genes, the method described here allows one to compute the posterior distribution over their possible ancestors, thereby giving a thorough accounting of the uncertainty inherent in the reconstruction. I demonstrate the application of this method on heavy-chain and light-chain clones, assess the reliability of the inference, and discuss the sources of uncertainty. PMID:24555054

  6. Phylogenetic reconstruction of parental-care systems in the ancestors of birds.

    PubMed Central

    Tullberg, Birgitta S; Ah-King, Malin; Temrin, Hans

    2002-01-01

    Due to the controversy surrounding incipient avian parental care, ancestral parental care systems were reconstructed in a phylogeny including major extant amniote lineages. Using two different resolutions for the basal avian branches, transitions between the states no care, female care, biparental care and male care were inferred for the most basal branches of the tree. Uniparental female care was inferred for the lineage to birds and crocodiles. Using a phylogeny where ratites and tinamous branch off early and an ordered character-state assumption, a transition to biparental care was inferred for the ancestor of birds. This ancestor could be any organism along the lineage leading from the crocodile-bird split up to modern birds, not necessarily the original bird. We discuss the support for alternative avian phylogenies and the homology in parental care between crocodiles and birds. We suggest that the phylogenetic pattern should be used as a starting point for a more detailed analysis of parental care systems in birds and their relatives. PMID:11958694

  7. On the origin and evolution of thermophily: reconstruction of functional precambrian enzymes from ancestors of Bacillus.

    PubMed

    Hobbs, Joanne K; Shepherd, Charis; Saul, David J; Demetras, Nicholas J; Haaning, Svend; Monk, Colin R; Daniel, Roy M; Arcus, Vickery L

    2012-02-01

    Thermophily is thought to be a primitive trait, characteristic of early forms of life on Earth, that has been gradually lost over evolutionary time. The genus Bacillus provides an ideal model for studying the evolution of thermophily as it is an ancient taxon and its contemporary species inhabit a range of thermal environments. The thermostability of reconstructed ancestral proteins has been used as a proxy for ancient thermal adaptation. The reconstruction of ancestral "enzymes" has the added advantages of demonstrable activity, which acts as an internal control for accurate inference, and providing insights into the evolution of enzymatic catalysis. Here, we report the reconstruction of the structurally complex core metabolic enzyme LeuB (3-isopropylmalate dehydrogenase, E. C. 1.1.1.85) from the last common ancestor (LCA) of Bacillus using both maximum likelihood (ML) and Bayesian inference. ML LeuB from the LCA of Bacillus shares only 76% sequence identity with its closest contemporary homolog, yet it is fully functional, thermophilic, and exhibits high values for k(cat), k(cat)/K(M), and ΔG(‡) for unfolding. The Bayesian version of this enzyme is also thermophilic but exhibits anomalous catalytic kinetics. We have determined the 3D structure of the ML enzyme and found that it is more closely aligned with LeuB from deeply branching bacteria, such as Thermotoga maritima, than contemporary Bacillus species. To investigate the evolution of thermophily, three descendents of LeuB from the LCA of Bacillus were also reconstructed. They reveal a fluctuating trend in thermal evolution, with a temporal adaptation toward mesophily followed by a more recent return to thermophily. Structural analysis suggests that the determinants of thermophily in LeuB from the LCA of Bacillus and the most recent ancestor are distinct and that thermophily has arisen in this genus at least twice via independent evolutionary paths. Our results add significant fluctuations to the broad

  8. Reconstructing the genome of the most recent common ancestor of flowering plants.

    PubMed

    Murat, Florent; Armero, Alix; Pont, Caroline; Klopp, Christophe; Salse, Jérôme

    2017-03-13

    We describe here the reconstruction of the genome of the most recent common ancestor (MRCA) of modern monocots and eudicots, accounting for 95% of extant angiosperms, with its potential repertoire of 22,899 ancestral genes conserved in present-day crops. The MRCA provides a starting point for deciphering the reticulated evolutionary plasticity between species (rapidly versus slowly evolving lineages), subgenomes (pre- versus post-duplication blocks), genomic compartments (stable versus labile loci), genes (ancestral versus species-specific genes) and functions (gained versus lost ontologies), the key mutational forces driving the success of polyploidy in crops. The estimation of the timing of angiosperm evolution, based on MRCA genes, suggested that this group emerged 214 million years ago during the late Triassic era, before the oldest recorded fossil. Finally, the MRCA constitutes a unique resource for scientists to dissect major agronomic traits in translational genomics studies extending from model species to crops.

  9. Evolution of life history and behavior in Hominidae: towards phylogenetic reconstruction of the chimpanzee-human last common ancestor.

    PubMed

    Duda, Pavel; Zrzavý, Jan

    2013-10-01

    The origin of the fundamental behavioral differences between humans and our closest living relatives is one of the central issues of evolutionary anthropology. The prominent, chimpanzee-based referential model of early hominin behavior has recently been challenged on the basis of broad multispecies comparisons and newly discovered fossil evidence. Here, we argue that while behavioral data on extant great apes are extremely relevant for reconstruction of ancestral behaviors, these behaviors should be reconstructed trait by trait using formal phylogenetic methods. Using the widely accepted hominoid phylogenetic tree, we perform a series of character optimization analyses using 65 selected life-history and behavioral characters for all extant hominid species. This analysis allows us to reconstruct the character states of the last common ancestors of Hominoidea, Hominidae, and the chimpanzee-human last common ancestor. Our analyses demonstrate that many fundamental behavioral and life-history attributes of hominids (including humans) are evidently ancient and likely inherited from the common ancestor of all hominids. However, numerous behaviors present in extant great apes represent their own terminal autapomorphies (both uniquely derived and homoplastic). Any evolutionary model that uses a single extant species to explain behavioral evolution of early hominins is therefore of limited use. In contrast, phylogenetic reconstruction of ancestral states is able to provide a detailed suite of behavioral, ecological and life-history characters for each hypothetical ancestor. The living great apes therefore play an important role for the confident identification of the traits found in the chimpanzee-human last common ancestor, some of which are likely to represent behaviors of the fossil hominins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Reconstructing Mammalian Sleep Dynamics with Data Assimilation

    PubMed Central

    Sedigh-Sarvestani, Madineh; Schiff, Steven J.; Gluckman, Bruce J.

    2012-01-01

    Data assimilation is a valuable tool in the study of any complex system, where measurements are incomplete, uncertain, or both. It enables the user to take advantage of all available information including experimental measurements and short-term model forecasts of a system. Although data assimilation has been used to study other biological systems, the study of the sleep-wake regulatory network has yet to benefit from this toolset. We present a data assimilation framework based on the unscented Kalman filter (UKF) for combining sparse measurements together with a relatively high-dimensional nonlinear computational model to estimate the state of a model of the sleep-wake regulatory system. We demonstrate with simulation studies that a few noisy variables can be used to accurately reconstruct the remaining hidden variables. We introduce a metric for ranking relative partial observability of computational models, within the UKF framework, that allows us to choose the optimal variables for measurement and also provides a methodology for optimizing framework parameters such as UKF covariance inflation. In addition, we demonstrate a parameter estimation method that allows us to track non-stationary model parameters and accommodate slow dynamics not included in the UKF filter model. Finally, we show that we can even use observed discretized sleep-state, which is not one of the model variables, to reconstruct model state and estimate unknown parameters. Sleep is implicated in many neurological disorders from epilepsy to schizophrenia, but simultaneous observation of the many brain components that regulate this behavior is difficult. We anticipate that this data assimilation framework will enable better understanding of the detailed interactions governing sleep and wake behavior and provide for better, more targeted, therapies. PMID:23209396

  11. Reconstructing mammalian sleep dynamics with data assimilation.

    PubMed

    Sedigh-Sarvestani, Madineh; Schiff, Steven J; Gluckman, Bruce J

    2012-01-01

    Data assimilation is a valuable tool in the study of any complex system, where measurements are incomplete, uncertain, or both. It enables the user to take advantage of all available information including experimental measurements and short-term model forecasts of a system. Although data assimilation has been used to study other biological systems, the study of the sleep-wake regulatory network has yet to benefit from this toolset. We present a data assimilation framework based on the unscented Kalman filter (UKF) for combining sparse measurements together with a relatively high-dimensional nonlinear computational model to estimate the state of a model of the sleep-wake regulatory system. We demonstrate with simulation studies that a few noisy variables can be used to accurately reconstruct the remaining hidden variables. We introduce a metric for ranking relative partial observability of computational models, within the UKF framework, that allows us to choose the optimal variables for measurement and also provides a methodology for optimizing framework parameters such as UKF covariance inflation. In addition, we demonstrate a parameter estimation method that allows us to track non-stationary model parameters and accommodate slow dynamics not included in the UKF filter model. Finally, we show that we can even use observed discretized sleep-state, which is not one of the model variables, to reconstruct model state and estimate unknown parameters. Sleep is implicated in many neurological disorders from epilepsy to schizophrenia, but simultaneous observation of the many brain components that regulate this behavior is difficult. We anticipate that this data assimilation framework will enable better understanding of the detailed interactions governing sleep and wake behavior and provide for better, more targeted, therapies.

  12. Lactococcal bacteriophage p2 receptor-binding protein structure suggests a common ancestor gene with bacterial and mammalian viruses.

    PubMed

    Spinelli, Silvia; Desmyter, Aline; Verrips, C Theo; de Haard, Hans J W; Moineau, Sylvain; Cambillau, Christian

    2006-01-01

    Lactococcus lactis is a Gram-positive bacterium used extensively by the dairy industry for the manufacture of fermented milk products. The double-stranded DNA bacteriophage p2 infects specific L. lactis strains using a receptor-binding protein (RBP) located at the tip of its noncontractile tail. We have solved the crystal structure of phage p2 RBP, a homotrimeric protein composed of three domains: the shoulders, a beta-sandwich attached to the phage; the neck, an interlaced beta-prism; and the receptor-recognition head, a seven-stranded beta-barrel. We used the complex of RBP with a neutralizing llama VHH domain to identify the receptor-binding site. Structural similarity between the recognition-head domain of phage p2 and those of adenoviruses and reoviruses, which invade mammalian cells, suggests that these viruses, despite evolutionary distant targets, lack of sequence similarity and the different chemical nature of their genomes (DNA versus RNA), might have a common ancestral gene.

  13. Whence genes in pieces: reconstruction of the exon-intron gene structures of the last eukaryotic common ancestor and other ancestral eukaryotes.

    PubMed

    Koonin, Eugene V; Csuros, Miklos; Rogozin, Igor B

    2013-01-01

    In eukaryotes, protein-coding sequences are interrupted by non-coding sequences known as introns. During mRNA maturation, introns are excised by the spliceosome and the coding regions, exons, are spliced to form the mature coding region. The intron densities widely differ between eukaryotic lineages, from 6 to 7 introns per kb of coding sequence in vertebrates, some invertebrates and green plants, to only a few introns across the entire genome in many unicellular eukaryotes. Evolutionary reconstructions using maximum likelihood methods suggest intron-rich ancestors for each major group of eukaryotes. For the last common ancestor of animals, the highest intron density of all extant and extinct eukaryotes was inferred, at 120-130% of the human intron density. Furthermore, an intron density within 53-74% of the human values was inferred for the last eukaryotic common ancestor. Accordingly, evolution of eukaryotic genes in all lines of descent involved primarily intron loss, with substantial gain only at the bases of several branches including plants and animals. These conclusions have substantial biological implications indicating that the common ancestor of all modern eukaryotes was a complex organism with a gene architecture resembling those in multicellular organisms. Alternative splicing most likely initially appeared as an inevitable result of splicing errors and only later was employed to generate structural and functional diversification of proteins.

  14. Reconstructed Ancestral Myo-Inositol-3-Phosphate Synthases Indicate That Ancestors of the Thermococcales and Thermotoga Species Were More Thermophilic than Their Descendants

    PubMed Central

    Butzin, Nicholas C.; Lapierre, Pascal; Green, Anna G.; Swithers, Kristen S.; Gogarten, J. Peter; Noll, Kenneth M.

    2013-01-01

    The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants. PMID:24391933

  15. Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants.

    PubMed

    Butzin, Nicholas C; Lapierre, Pascal; Green, Anna G; Swithers, Kristen S; Gogarten, J Peter; Noll, Kenneth M

    2013-01-01

    The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.

  16. Ancestral Reconstruction of a Pre-LUCA Aminoacyl-tRNA Synthetase Ancestor Supports the Late Addition of Trp to the Genetic Code.

    PubMed

    Fournier, G P; Alm, E J

    2015-04-01

    The genetic code was likely complete in its current form by the time of the last universal common ancestor (LUCA). Several scenarios have been proposed for explaining the code's pre-LUCA emergence and expansion, and the relative order of the appearance of amino acids used in translation. One co-evolutionary model of genetic code expansion proposes that at least some amino acids were added to the code by the ancient divergence of aminoacyl-tRNA synthetase (aaRS) families. Of all the amino acids used within the genetic code, Trp is most frequently claimed as a relatively recent addition. We observe that, since TrpRS and TyrRS are paralogous protein families retaining significant sequence similarity, the inferred sequence composition of their ancestor can be used to evaluate this co-evolutionary model of genetic code expansion. We show that ancestral sequence reconstructions of the pre-LUCA paralog ancestor of TyrRS and TrpRS have several sites containing Tyr, yet a complete absence of sites containing Trp. This is consistent with the paralog ancestor being specific for the utilization of Tyr, with Trp being a subsequent addition to the genetic code facilitated by a process of aaRS divergence and neofunctionalization. Only after this divergence could Trp be specifically encoded and incorporated into proteins, including the TyrRS and TrpRS descendant lineages themselves. This early absence of Trp is observed under both homogeneous and non-homogeneous models of ancestral sequence reconstruction. Simulations support that this observed absence of Trp is unlikely to be due to chance or model bias. These results support that the final stages of genetic code evolution occurred well within the "protein world," and that the presence-absence of Trp within conserved sites of ancient protein domains is a likely measure of their relative antiquity, permitting the relative timing of extremely early events within protein evolution before LUCA.

  17. First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes.

    PubMed

    Field, Mark C; Dacks, Joel B

    2009-02-01

    The eukaryotic endomembrane system is responsible for the biosynthesis and transport of proteins and lipids, and for the definition of the major subcellular compartments. Recent work indicates that the endomembrane system is ancient, with near modern complexity predating the radiation of the major eukaryotic lineages. The challenge is to look beyond the last eukaryotic common ancestor and to attempt to deduce the evolutionary steps in the rise of membrane-trafficking complexity. Relationships between the endomembrane coatomer complexes and their evolutionary connection to the nuclear pore complex are emerging. These studies, plus the realization of a role for the ESCRT complex as an alternate, but equally ancient, system for membrane deformation are providing insight into the earliest stages of endomembrane evolution.

  18. Algorithms for improved 3-D reconstruction of live mammalian embryo vasculature from optical coherence tomography data.

    PubMed

    Kulkarni, Prathamesh M; Rey-Villamizar, Nicolas; Merouane, Amine; Sudheendran, Narendran; Wang, Shang; Garcia, Monica; Larina, Irina V; Roysam, Badrinath; Larin, Kirill V

    2015-02-01

    Robust reconstructions of the three-dimensional network of blood vessels in developing embryos imaged by optical coherence tomography (OCT) are needed for quantifying the longitudinal development of vascular networks in live mammalian embryos, in support of developmental cardiovascular research. Past computational methods [such as speckle variance (SV)] have demonstrated the feasibility of vascular reconstruction, but multiple challenges remain including: the presence of vessel structures at multiple spatial scales, thin blood vessels with weak flow, and artifacts resulting from bulk tissue motion (BTM). In order to overcome these challenges, this paper introduces a robust and scalable reconstruction algorithm based on a combination of anomaly detection algorithms and a parametric dictionary based sparse representation of blood vessels from structural OCT data. Validation results using confocal data as the baseline demonstrate that the proposed method enables the detection of vessel segments that are either partially missed or weakly reconstructed using the SV method. Finally, quantitative measurements of vessel reconstruction quality indicate an overall higher quality of vessel reconstruction with the proposed method. Results suggest that sparsity-integrated speckle anomaly detection (SSAD) is potentially a valuable tool for performing accurate quantification of the progression of vascular development in the mammalian embryonic yolk sac as imaged using OCT.

  19. Algorithms for improved 3-D reconstruction of live mammalian embryo vasculature from optical coherence tomography data

    PubMed Central

    Kulkarni, Prathamesh M.; Rey-Villamizar, Nicolas; Merouane, Amine; Sudheendran, Narendran; Wang, Shang; Garcia, Monica; Larina, Irina V.; Roysam, Badrinath

    2015-01-01

    Background Robust reconstructions of the three-dimensional network of blood vessels in developing embryos imaged by optical coherence tomography (OCT) are needed for quantifying the longitudinal development of vascular networks in live mammalian embryos, in support of developmental cardiovascular research. Past computational methods [such as speckle variance (SV)] have demonstrated the feasibility of vascular reconstruction, but multiple challenges remain including: the presence of vessel structures at multiple spatial scales, thin blood vessels with weak flow, and artifacts resulting from bulk tissue motion (BTM). Methods In order to overcome these challenges, this paper introduces a robust and scalable reconstruction algorithm based on a combination of anomaly detection algorithms and a parametric dictionary based sparse representation of blood vessels from structural OCT data. Results Validation results using confocal data as the baseline demonstrate that the proposed method enables the detection of vessel segments that are either partially missed or weakly reconstructed using the SV method. Finally, quantitative measurements of vessel reconstruction quality indicate an overall higher quality of vessel reconstruction with the proposed method. Conclusions Results suggest that sparsity-integrated speckle anomaly detection (SSAD) is potentially a valuable tool for performing accurate quantification of the progression of vascular development in the mammalian embryonic yolk sac as imaged using OCT. PMID:25694962

  20. Ancestors of modern plant crops.

    PubMed

    Salse, Jérôme

    2016-04-01

    Recent accumulation of plant genomic resources offers the opportunity to compare modern genomes and model their evolutionary history from their reconstructed Most Recent Common Ancestors (MRCAs) that can be used as a guide to unveil the forces driving the evolutionary success of angiosperms and ultimately to perform applied translational research from models to crops. This article reviews the current state of art of recent structural comparative genomics studies through ancestral genome reconstruction, that is, the field of in silico paleogenomics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver.

    PubMed

    Bahar Halpern, Keren; Shenhav, Rom; Matcovitch-Natan, Orit; Tóth, Beáta; Lemze, Doron; Golan, Matan; Massasa, Efi E; Baydatch, Shaked; Landen, Shanie; Moor, Andreas E; Brandis, Alexander; Giladi, Amir; Stokar-Avihail, Avigail; David, Eyal; Amit, Ido; Itzkovitz, Shalev

    2017-02-16

    The mammalian liver consists of hexagon-shaped lobules that are radially polarized by blood flow and morphogens. Key liver genes have been shown to be differentially expressed along the lobule axis, a phenomenon termed zonation, but a detailed genome-wide reconstruction of this spatial division of labour has not been achieved. Here we measure the entire transcriptome of thousands of mouse liver cells and infer their lobule coordinates on the basis of a panel of zonated landmark genes, characterized with single-molecule fluorescence in situ hybridization. Using this approach, we obtain the zonation profiles of all liver genes with high spatial resolution. We find that around 50% of liver genes are significantly zonated and uncover abundant non-monotonic profiles that peak at the mid-lobule layers. These include a spatial order of bile acid biosynthesis enzymes that matches their position in the enzymatic cascade. Our approach can facilitate the reconstruction of similar spatial genomic blueprints for other mammalian organs.

  2. The universal ancestor and the ancestor of bacteria were hyperthermophiles.

    PubMed

    Di Giulio, Massimo

    2003-12-01

    The definition of the node of the last universal common ancestor (LUCA) is justified in a topology of the unrooted universal tree. This definition allows previous analyses based on paralogous proteins to be extended to orthologous ones. In particular, the use of a thermophily index (based on the amino acids' propensity to enter the [hyper] thermophile proteins more frequently) and its correlation with the optimal growth temperature of the various organisms allow inferences to be made on the habitat in which the LUCA lived. The reconstruction of ancestral sequences by means of the maximum likelihood method and their attribution to the set of mesophilic or hyperthermophilic sequences have led to the following conclusions: the LUCA was a hyperthermophile "organism," as were the ancestors of the Archaea and Bacteria domains, while the ancestor of the Eukarya domain was a mesophile. These conclusions are independent of the presence of hyperthermophile bacteria in the sample of sequences used in the analysis and are therefore independent of whether or not these are the first lines of divergence in the Bacteria domain, as observed in the topology of the universal tree of ribosomal RNA. These conclusions are thus more easily understood under the hypothesis that the origin of life took place at a high temperature.

  3. Models of gene gain and gene loss for probabilistic reconstruction of gene content in the last universal common ancestor of life.

    PubMed

    Kannan, Lavanya; Li, Hua; Rubinstein, Boris; Mushegian, Arcady

    2013-12-19

    The problem of probabilistic inference of gene content in the last common ancestor of several extant species with completely sequenced genomes is: for each gene that is conserved in all or some of the genomes, assign the probability that its ancestral gene was present in the genome of their last common ancestor. We have developed a family of models of gene gain and gene loss in evolution, and applied the maximum-likelihood approach that uses phylogenetic tree of prokaryotes and the record of orthologous relationships between their genes to infer the gene content of LUCA, the Last Universal Common Ancestor of all currently living cellular organisms. The crucial parameter, the ratio of gene losses and gene gains, was estimated from the data and was higher in models that take account of the number of in-paralogs in genomes than in models that treat gene presences and absences as a binary trait. While the numbers of genes that are placed confidently into LUCA are similar in the ML methods and in previously published methods that use various parsimony-based approaches, the identities of genes themselves are different. Most of the models of either kind treat the genes found in many existing genomes in a similar way, assigning to them high probabilities of being ancestral ("high ancestrality"). The ML models are more likely than others to assign high ancestrality to the genes that are relatively rare in the present-day genomes.

  4. The last common bilaterian ancestor

    NASA Technical Reports Server (NTRS)

    Erwin, Douglas H.; Davidson, Eric H.

    2002-01-01

    Many regulatory genes appear to be utilized in at least superficially similar ways in the development of particular body parts in Drosophila and in chordates. These similarities have been widely interpreted as functional homologies, producing the conventional view of the last common protostome-deuterostome ancestor (PDA) as a complex organism that possessed some of the same body parts as modern bilaterians. Here we discuss an alternative view, in which the last common PDA had a less complex body plan than is frequently conceived. This reconstruction alters expectations for Neoproterozoic fossil remains that could illustrate the pathways of bilaterian evolution.

  5. The last common bilaterian ancestor

    NASA Technical Reports Server (NTRS)

    Erwin, Douglas H.; Davidson, Eric H.

    2002-01-01

    Many regulatory genes appear to be utilized in at least superficially similar ways in the development of particular body parts in Drosophila and in chordates. These similarities have been widely interpreted as functional homologies, producing the conventional view of the last common protostome-deuterostome ancestor (PDA) as a complex organism that possessed some of the same body parts as modern bilaterians. Here we discuss an alternative view, in which the last common PDA had a less complex body plan than is frequently conceived. This reconstruction alters expectations for Neoproterozoic fossil remains that could illustrate the pathways of bilaterian evolution.

  6. Models of gene gain and gene loss for probabilistic reconstruction of gene content in the last universal common ancestor of life

    PubMed Central

    2013-01-01

    Background The problem of probabilistic inference of gene content in the last common ancestor of several extant species with completely sequenced genomes is: for each gene that is conserved in all or some of the genomes, assign the probability that its ancestral gene was present in the genome of their last common ancestor. Results We have developed a family of models of gene gain and gene loss in evolution, and applied the maximum-likelihood approach that uses phylogenetic tree of prokaryotes and the record of orthologous relationships between their genes to infer the gene content of LUCA, the Last Universal Common Ancestor of all currently living cellular organisms. The crucial parameter, the ratio of gene losses and gene gains, was estimated from the data and was higher in models that take account of the number of in-paralogs in genomes than in models that treat gene presences and absences as a binary trait. Conclusion While the numbers of genes that are placed confidently into LUCA are similar in the ML methods and in previously published methods that use various parsimony-based approaches, the identities of genes themselves are different. Most of the models of either kind treat the genes found in many existing genomes in a similar way, assigning to them high probabilities of being ancestral (“high ancestrality”). The ML models are more likely than others to assign high ancestrality to the genes that are relatively rare in the present-day genomes. Reviewers This article was reviewed by Martijn A Huynen, Toni Gabaldón and Fyodor Kondrashov. PMID:24354654

  7. The evolutionary origins of detoxifying enzymes: the mammalian serum paraoxonases (PONs) relate to bacterial homoserine lactonases.

    PubMed

    Bar-Rogovsky, Hagit; Hugenmatter, Adrian; Tawfik, Dan S

    2013-08-16

    Serum paraoxonases (PONs) are detoxifying lactonases that were first identified in mammals. Three mammalian families are known, PON1, 2, and 3 that reside primarily in the liver. They catalyze essentially the same reaction, lactone hydrolysis, but differ in their substrate specificity. Although some members are highly specific, others have a broad specificity profile. The evolutionary origins and substrate specificities of PONs therefore remain poorly understood. Here, we report a newly identified family of bacterial PONs, and the reconstruction of the ancestor of the three families of mammalian PONs. Both the mammalian ancestor and the characterized bacterial PONX_OCCAL were found to efficiently hydrolyze N-acyl homoserine lactones that mediate quorum sensing in many bacteria, including pathogenic ones. The mammalian PONs may therefore relate to a newly identified family of bacterial, PON-like "quorum-quenching" lactonases. The appearance of PONs in metazoa is likely to relate to innate immunity rather than detoxification. Unlike the bacterial PON, the mammalian ancestor also hydrolyzes, with low efficiency, lactones other than homoserine lactones, thus preceding the detoxifying functions that diverged later in two of the three mammalian families. The bifunctionality of the mammalian ancestor and the trade-off between the quorum-quenching and detoxifying lactonase activities explain the broad and overlapping specificities of some mammalian PONs versus the singular specificity of others.

  8. The universal ancestor

    NASA Technical Reports Server (NTRS)

    Woese, C.

    1998-01-01

    A genetic annealing model for the universal ancestor of all extant life is presented; the name of the model derives from its resemblance to physical annealing. The scenario pictured starts when "genetic temperatures" were very high, cellular entities (progenotes) were very simple, and information processing systems were inaccurate. Initially, both mutation rate and lateral gene transfer levels were elevated. The latter was pandemic and pervasive to the extent that it, not vertical inheritance, defined the evolutionary dynamic. As increasingly complex and precise biological structures and processes evolved, both the mutation rate and the scope and level of lateral gene transfer, i.e., evolutionary temperature, dropped, and the evolutionary dynamic gradually became that characteristic of modern cells. The various subsystems of the cell "crystallized," i.e., became refractory to lateral gene transfer, at different stages of "cooling," with the translation apparatus probably crystallizing first. Organismal lineages, and so organisms as we know them, did not exist at these early stages. The universal phylogenetic tree, therefore, is not an organismal tree at its base but gradually becomes one as its peripheral branchings emerge. The universal ancestor is not a discrete entity. It is, rather, a diverse community of cells that survives and evolves as a biological unit. This communal ancestor has a physical history but not a genealogical one. Over time, this ancestor refined into a smaller number of increasingly complex cell types with the ancestors of the three primary groupings of organisms arising as a result.

  9. The universal ancestor

    NASA Technical Reports Server (NTRS)

    Woese, C.

    1998-01-01

    A genetic annealing model for the universal ancestor of all extant life is presented; the name of the model derives from its resemblance to physical annealing. The scenario pictured starts when "genetic temperatures" were very high, cellular entities (progenotes) were very simple, and information processing systems were inaccurate. Initially, both mutation rate and lateral gene transfer levels were elevated. The latter was pandemic and pervasive to the extent that it, not vertical inheritance, defined the evolutionary dynamic. As increasingly complex and precise biological structures and processes evolved, both the mutation rate and the scope and level of lateral gene transfer, i.e., evolutionary temperature, dropped, and the evolutionary dynamic gradually became that characteristic of modern cells. The various subsystems of the cell "crystallized," i.e., became refractory to lateral gene transfer, at different stages of "cooling," with the translation apparatus probably crystallizing first. Organismal lineages, and so organisms as we know them, did not exist at these early stages. The universal phylogenetic tree, therefore, is not an organismal tree at its base but gradually becomes one as its peripheral branchings emerge. The universal ancestor is not a discrete entity. It is, rather, a diverse community of cells that survives and evolves as a biological unit. This communal ancestor has a physical history but not a genealogical one. Over time, this ancestor refined into a smaller number of increasingly complex cell types with the ancestors of the three primary groupings of organisms arising as a result.

  10. The Universal Ancestor

    NASA Astrophysics Data System (ADS)

    Woese, Carl

    1998-06-01

    A genetic annealing model for the universal ancestor of all extant life is presented; the name of the model derives from its resemblance to physical annealing. The scenario pictured starts when ``genetic temperatures'' were very high, cellular entities (progenotes) were very simple, and information processing systems were inaccurate. Initially, both mutation rate and lateral gene transfer levels were elevated. The latter was pandemic and pervasive to the extent that it, not vertical inheritance, defined the evolutionary dynamic. As increasingly complex and precise biological structures and processes evolved, both the mutation rate and the scope and level of lateral gene transfer, i.e., evolutionary temperature, dropped, and the evolutionary dynamic gradually became that characteristic of modern cells. The various subsystems of the cell ``crystallized,'' i.e., became refractory to lateral gene transfer, at different stages of ``cooling,'' with the translation apparatus probably crystallizing first. Organismal lineages, and so organisms as we know them, did not exist at these early stages. The universal phylogenetic tree, therefore, is not an organismal tree at its base but gradually becomes one as its peripheral branchings emerge. The universal ancestor is not a discrete entity. It is, rather, a diverse community of cells that survives and evolves as a biological unit. This communal ancestor has a physical history but not a genealogical one. Over time, this ancestor refined into a smaller number of increasingly complex cell types with the ancestors of the three primary groupings of organisms arising as a result.

  11. The universal ancestor.

    PubMed

    Woese, C

    1998-06-09

    A genetic annealing model for the universal ancestor of all extant life is presented; the name of the model derives from its resemblance to physical annealing. The scenario pictured starts when "genetic temperatures" were very high, cellular entities (progenotes) were very simple, and information processing systems were inaccurate. Initially, both mutation rate and lateral gene transfer levels were elevated. The latter was pandemic and pervasive to the extent that it, not vertical inheritance, defined the evolutionary dynamic. As increasingly complex and precise biological structures and processes evolved, both the mutation rate and the scope and level of lateral gene transfer, i.e., evolutionary temperature, dropped, and the evolutionary dynamic gradually became that characteristic of modern cells. The various subsystems of the cell "crystallized," i.e., became refractory to lateral gene transfer, at different stages of "cooling," with the translation apparatus probably crystallizing first. Organismal lineages, and so organisms as we know them, did not exist at these early stages. The universal phylogenetic tree, therefore, is not an organismal tree at its base but gradually becomes one as its peripheral branchings emerge. The universal ancestor is not a discrete entity. It is, rather, a diverse community of cells that survives and evolves as a biological unit. This communal ancestor has a physical history but not a genealogical one. Over time, this ancestor refined into a smaller number of increasingly complex cell types with the ancestors of the three primary groupings of organisms arising as a result.

  12. Gazing Back: Communing with Our Ancestors

    ERIC Educational Resources Information Center

    Osorio, Jonathan Kay Kamakawiwo'ole

    2004-01-01

    This article is a poignant commentary on the connection of the Native Hawaiian people with the past, the present, and the future. In this article, the author positions himself within the histories of his people. He talks about putting faces to his ancestors by linking them with the people of his day, and he talks about reconstructing the…

  13. Prediction of human miRNA target genes using computationally reconstructed ancestral mammalian sequences

    PubMed Central

    Leclercq, Mickael; Diallo, Abdoulaye Baniré; Blanchette, Mathieu

    2017-01-01

    MicroRNAs (miRNA) are short single-stranded RNA molecules derived from hairpin-forming precursors that play a crucial role as post-transcriptional regulators in eukaryotes and viruses. In the past years, many microRNA target genes (MTGs) have been identified experimentally. However, because of the high costs of experimental approaches, target genes databases remain incomplete. Although several target prediction programs have been developed in the recent years to identify MTGs in silico, their specificity and sensitivity remain low. Here, we propose a new approach called MirAncesTar, which uses ancestral genome reconstruction to boost the accuracy of existing MTGs prediction tools for human miRNAs. For each miRNA and each putative human target UTR, our algorithm makes uses of existing prediction tools to identify putative target sites in the human UTR, as well as in its mammalian orthologs and inferred ancestral sequences. It then evaluates evidence in support of selective pressure to maintain target site counts (rather than sequences), accounting for the possibility of target site turnover. It finally integrates this measure with several simpler ones using a logistic regression predictor. MirAncesTar improves the accuracy of existing MTG predictors by 26% to 157%. Source code and prediction results for human miRNAs, as well as supporting evolutionary data are available at http://cs.mcgill.ca/∼blanchem/mirancestar. PMID:27899600

  14. The universal ancestor

    PubMed Central

    Woese, Carl

    1998-01-01

    A genetic annealing model for the universal ancestor of all extant life is presented; the name of the model derives from its resemblance to physical annealing. The scenario pictured starts when “genetic temperatures” were very high, cellular entities (progenotes) were very simple, and information processing systems were inaccurate. Initially, both mutation rate and lateral gene transfer levels were elevated. The latter was pandemic and pervasive to the extent that it, not vertical inheritance, defined the evolutionary dynamic. As increasingly complex and precise biological structures and processes evolved, both the mutation rate and the scope and level of lateral gene transfer, i.e., evolutionary temperature, dropped, and the evolutionary dynamic gradually became that characteristic of modern cells. The various subsystems of the cell “crystallized,” i.e., became refractory to lateral gene transfer, at different stages of “cooling,” with the translation apparatus probably crystallizing first. Organismal lineages, and so organisms as we know them, did not exist at these early stages. The universal phylogenetic tree, therefore, is not an organismal tree at its base but gradually becomes one as its peripheral branchings emerge. The universal ancestor is not a discrete entity. It is, rather, a diverse community of cells that survives and evolves as a biological unit. This communal ancestor has a physical history but not a genealogical one. Over time, this ancestor refined into a smaller number of increasingly complex cell types with the ancestors of the three primary groupings of organisms arising as a result. PMID:9618502

  15. Pleistocene paleoenvironmental reconstructions and mammalian evolution in South-East Asia: focus on fossil faunas from Thailand

    NASA Astrophysics Data System (ADS)

    Tougard, C.; Montuire, S.

    2006-01-01

    Mammalian faunal studies have provided various clues for a better reconstruction of hominid Quaternary paleoenvironments. In this work, two methods were used: (1) the cenogram method, based on a graphical representation of the mammalian community structure, and (2) the species richness of murine rodents to estimate climatic parameters. These methods were applied to Middle and Late Pleistocene mammalian faunas of South-East Asia, from South China to Indonesia. Special emphasis was laid on a fauna from north-east Thailand dated back to approximately 170,000 years (i.e. a glacial period). This Thai fauna seems characteristic of a slightly open forested environment intermediate between those of present-day central Myanmar and the northern part of South China. In the Thai fauna, the occurrence of both cool-loving mammalian taxa, currently living further north, and species of larger body size than their living counterparts, indicates cooler and probably drier climatic conditions than present-day climates in Thailand. These results are quite consistent with Middle Pleistocene palynological records from South China and eastern Java. From other less well-documented Pleistocene faunas, taken into account in this work, humid climatic conditions of interglacial periods were revealed from large mammalian taxa.

  16. Paleotemperature reconstruction from mammalian phosphate δ18O records - an alternative view on data processing

    NASA Astrophysics Data System (ADS)

    Skrzypek, Grzegorz; Sadler, Rohan; Wiśniewski, Andrzej

    2017-04-01

    The stable oxygen isotope composition of phosphates (δ18O) extracted from mammalian bone and teeth material is commonly used as a proxy for paleotemperature. Historically, several different analytical and statistical procedures for determining air paleotemperatures from the measured δ18O of phosphates have been applied. This inconsistency in both stable isotope data processing and the application of statistical procedures has led to large and unwanted differences between calculated results. This study presents the uncertainty associated with two of the most commonly used regression methods: least squares inverted fit and transposed fit. We assessed the performance of these methods by designing and applying calculation experiments to multiple real-life data sets, calculating in reverse temperatures, and comparing them with true recorded values. Our calculations clearly show that the mean absolute errors are always substantially higher for the inverted fit (a causal model), with the transposed fit (a predictive model) returning mean values closer to the measured values (Skrzypek et al. 2015). The predictive models always performed better than causal models, with 12-65% lower mean absolute errors. Moreover, the least-squares regression (LSM) model is more appropriate than Reduced Major Axis (RMA) regression for calculating the environmental water stable oxygen isotope composition from phosphate signatures, as well as for calculating air temperature from the δ18O value of environmental water. The transposed fit introduces a lower overall error than the inverted fit for both the δ18O of environmental water and Tair calculations; therefore, the predictive models are more statistically efficient than the causal models in this instance. The direct comparison of paleotemperature results from different laboratories and studies may only be achieved if a single method of calculation is applied. Reference Skrzypek G., Sadler R., Wiśniewski A., 2016. Reassessment of

  17. Extensive intron gain in the ancestor of placental mammals.

    PubMed

    Kordiš, Dušan

    2011-11-23

    Genome-wide studies of intron dynamics in mammalian orthologous genes have found convincing evidence for loss of introns but very little for intron turnover. Similarly, large-scale analysis of intron dynamics in a few vertebrate genomes has identified only intron losses and no gains, indicating that intron gain is an extremely rare event in vertebrate evolution. These studies suggest that the intron-rich genomes of vertebrates do not allow intron gain. The aim of this study was to search for evidence of de novo intron gain in domesticated genes from an analysis of their exon/intron structures. A phylogenomic approach has been used to analyse all domesticated genes in mammals and chordates that originated from the coding parts of transposable elements. Gain of introns in domesticated genes has been reconstructed on well established mammalian, vertebrate and chordate phylogenies, and examined as to where and when the gain events occurred. The locations, sizes and amounts of de novo introns gained in the domesticated genes during the evolution of mammals and chordates has been analyzed. A significant amount of intron gain was found only in domesticated genes of placental mammals, where more than 70 cases were identified. De novo gained introns show clear positional bias, since they are distributed mainly in 5' UTR and coding regions, while 3' UTR introns are very rare. In the coding regions of some domesticated genes up to 8 de novo gained introns have been found. Intron densities in Eutheria-specific domesticated genes and in older domesticated genes that originated early in vertebrates are lower than those for normal mammalian and vertebrate genes. Surprisingly, the majority of intron gains have occurred in the ancestor of placentals. This study provides the first evidence for numerous intron gains in the ancestor of placental mammals and demonstrates that adequate taxon sampling is crucial for reconstructing intron evolution. The findings of this comprehensive

  18. Extensive intron gain in the ancestor of placental mammals

    PubMed Central

    2011-01-01

    Background Genome-wide studies of intron dynamics in mammalian orthologous genes have found convincing evidence for loss of introns but very little for intron turnover. Similarly, large-scale analysis of intron dynamics in a few vertebrate genomes has identified only intron losses and no gains, indicating that intron gain is an extremely rare event in vertebrate evolution. These studies suggest that the intron-rich genomes of vertebrates do not allow intron gain. The aim of this study was to search for evidence of de novo intron gain in domesticated genes from an analysis of their exon/intron structures. Results A phylogenomic approach has been used to analyse all domesticated genes in mammals and chordates that originated from the coding parts of transposable elements. Gain of introns in domesticated genes has been reconstructed on well established mammalian, vertebrate and chordate phylogenies, and examined as to where and when the gain events occurred. The locations, sizes and amounts of de novo introns gained in the domesticated genes during the evolution of mammals and chordates has been analyzed. A significant amount of intron gain was found only in domesticated genes of placental mammals, where more than 70 cases were identified. De novo gained introns show clear positional bias, since they are distributed mainly in 5' UTR and coding regions, while 3' UTR introns are very rare. In the coding regions of some domesticated genes up to 8 de novo gained introns have been found. Intron densities in Eutheria-specific domesticated genes and in older domesticated genes that originated early in vertebrates are lower than those for normal mammalian and vertebrate genes. Surprisingly, the majority of intron gains have occurred in the ancestor of placentals. Conclusions This study provides the first evidence for numerous intron gains in the ancestor of placental mammals and demonstrates that adequate taxon sampling is crucial for reconstructing intron evolution. The

  19. The deuterostome ancestor.

    PubMed

    Gerhart, John

    2006-12-01

    Hemichordates, the phylum of bilateral animals closest to chordates, can illuminate the evolutionary origins of various chordate traits to determine whether these were already present in a shared ancestor (the deuterostome ancestor) or were evolved within the chordate line. We find that an anteroposterior map of gene expression domains, representing 42 genes of neural patterning, is closely similar in hemichordates and chordates, though it is restricted to the neural ectoderm in chordates whereas in hemichordates, which have a diffuse nervous system, it encircles the whole body. This map allows an accurate alignment of the anterioposterior axes of members of the two groups. We propose that this map dates back at least to the deuterostome ancestor. The map of dorsoventral expression domains, organized along a Bmp-Chordin developmental axis, is also similar in the two groups in terms of many gene expression domains and for the placement of the gill slits, heart, and post-anal tail. The two groups, however, differ in two major respects along this axis. The nervous system and epidermis are not segregated into distinct territories in hemichordates, as they are in chordates, and furthermore, the mouth is on the Chordin side in hemichordates but the Bmp side in chordates. The dorsoventral dimension has undergone extensive modification in the chordate line, including centralization of the nervous system, segregation of epidermis, derivation of the notochord, perhaps from the gut midline, and relocation of the mouth. Based on the shared domain maps, speculations can be made for the remodeling of the body axis in the chordate line.

  20. The galaxy ancestor problem

    NASA Astrophysics Data System (ADS)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  1. Reconstructing Mammalian Phylogenies: A Detailed Comparison of the Cytochrome b and Cytochrome Oxidase Subunit I Mitochondrial Genes

    PubMed Central

    Tobe, Shanan S.; Kitchener, Andrew C.; Linacre, Adrian M. T.

    2010-01-01

    The phylogeny and taxonomy of mammalian species were originally based upon shared or derived morphological characteristics. However, genetic analyses have more recently played an increasingly important role in confirming existing or establishing often radically different mammalian groupings and phylogenies. The two most commonly used genetic loci in species identification are the cytochrome oxidase I gene (COI) and the cytochrome b gene (cyt b). For the first time this study provides a detailed comparison of the effectiveness of these two loci in reconstructing the phylogeny of mammals at different levels of the taxonomic hierarchy in order to provide a basis for standardizing methodologies in the future. Interspecific and intraspecific variation is assessed and for the first time, to our knowledge, statistical confidence is applied to sequence comparisons. Comparison of the DNA sequences of 217 mammalian species reveals that cyt b more accurately reconstructs their phylogeny and known relationships between species based on other molecular and morphological analyses at Super Order, Order, Family and generic levels. Cyt b correctly assigned 95.85% of mammal species to Super Order, 94.31% to Order and 98.16% to Family compared to 78.34%, 93.36% and 96.93% respectively for COI. Cyt b also gives better resolution when separating species based on sequence data. Using a Kimura 2-parameter p-distance (x100) threshold of 1.5–2.5, cyt b gives a better resolution for separating species with a lower false positive rate and higher positive predictive value than those of COI. PMID:21152400

  2. Redeeming the lost voice of the ancestors.

    PubMed

    Troudart, Michal

    2012-09-01

    The Holocaust of the Jews in World War II involved not only the murder of 6 million Jews but also the traumatic destruction and wipe-out of whole communities, with their rich culture and tradition which had existed for centuries. In places where no one survived, it was almost impossible to reconstruct the collective memory of those communities. The voice of the ancestors was lost. As a daughter of Holocaust survivors, I have always felt the strong presence of the loss, not only of the murdered family members but also of the ancient colourful world of Eastern European Jews. I have always felt compelled to link back to that lost world. In the past three years, my journey to the pre-war past has become more intense. This article describes the double role of my journey: it is both an attempt to reconstruct, redeem and preserve the memory of the lost ancestors, and a personal journey to the echoes of my ancestors' voices within my soul.

  3. Enzymes, embryos, and ancestors.

    PubMed

    Gerhart, John

    2010-01-01

    In the 1950s, cellular regulatory mechanisms were newly recognized; with Arthur Pardee I investigated the initial enzyme of pyrimidine biosynthesis, which he discovered is controlled by feedback inhibition. The protein proved unusual in having separate but interacting sites for substrates and regulators. Howard Schachman and I dissociated the protein into different subunits, one binding regulators and one substrates. The enzyme became an early prime example of allostery. In developmental biology I studied the egg of the frog, Xenopus laevis, characterizing early processes of axis formation. My excellent students and I described cortical rotation, a 30° movement of the egg's cortex over tracks of parallel microtubules anchored to the underlying cytoplasmic core, and we perturbed it to alter Spemann's organizer and effect spectacular phenotypes. The entire sequence of events has been elucidated by others at the molecular level, making Xenopus a prime example of vertebrate axis formation. Marc Kirschner, Christopher Lowe, and I then compared hemichordate (half-chordate) and chordate early development. Despite anatomical-physiological differences, these groups share numerous steps of axis formation, ones that were probably already in use in their pre-Cambrian ancestor. I've thoroughly enjoyed exploring these areas during a 50-year period of great advances in biological sciences by the worldwide research community.

  4. Genomic evidence for large, long-lived ancestors to placental mammals.

    PubMed

    Romiguier, J; Ranwez, V; Douzery, E J P; Galtier, N

    2013-01-01

    It is widely assumed that our mammalian ancestors, which lived in the Cretaceous era, were tiny animals that survived massive asteroid impacts in shelters and evolved into modern forms after dinosaurs went extinct, 65 Ma. The small size of most Mesozoic mammalian fossils essentially supports this view. Paleontology, however, is not conclusive regarding the ancestry of extant mammals, because Cretaceous and Paleocene fossils are not easily linked to modern lineages. Here, we use full-genome data to estimate the longevity and body mass of early placental mammals. Analyzing 36 fully sequenced mammalian genomes, we reconstruct two aspects of the ancestral genome dynamics, namely GC-content evolution and nonsynonymous over synonymous rate ratio. Linking these molecular evolutionary processes to life-history traits in modern species, we estimate that early placental mammals had a life span above 25 years and a body mass above 1 kg. This is similar to current primates, cetartiodactyls, or carnivores, but markedly different from mice or shrews, challenging the dominant view about mammalian origin and evolution. Our results imply that long-lived mammals existed in the Cretaceous era and were the most successful in evolution, opening new perspectives about the conditions for survival to the Cretaceous-Tertiary crisis.

  5. [The mammalian TOR pathway is present in Trypanosoma cruzi. In silico reconstruction and possible functions].

    PubMed

    Digirolamo, Fabio A; Miranda, Mariana R; Bouvier, León A; Cámara, María M; Cánepa, Gaspar E; Pereira, Claudio A

    2012-01-01

    The mammalian TOR pathway ("Target Of Rapamycin") is a regulatory protein network involved in a wide range of processes including cell growth and differentiation, providing a functional switch between anabolic and catabolic cell metabolism. Trypanosoma cruzi, the etiologic agent of Chagas disease, has a complex life cycle with different morphological stages in various hosts. This life cycle implies that parasites have to deal with fluctuations in the extracellular medium that should be detected and counteracted adapting their metabolism. A candidate to be the mediator between the receptors / sensors of the environment and cellular adaptive response is the TOR pathway. In this paper we integrate the bibliographic data of the TOR pathway in trypanosomatids by in silico analysis (computer simulation of biological structures and processes) of the parasite's genome. Possible effectors and processes regulated by this metabolic pathway are also proposed. Given that the information on the mechanisms of signal transduction in trypanosomatids is scarce, we consider the model presented in this work may be a reference for future experimental work.

  6. 3D reconstruction of the glycocalyx structure in mammalian capillaries using electron tomography.

    PubMed

    Arkill, Kenton P; Neal, Chris R; Mantell, Judith M; Michel, Charles C; Qvortrup, Klaus; Rostgaard, Jørgen; Bates, Dave O; Knupp, Carlo; Squire, John M

    2012-05-01

    Visualising the molecular strands making up the glycocalyx in the lumen of small blood vessels has proved to be difficult using conventional transmission electron microscopy techniques. Images obtained from tissue stained in a variety of ways have revealed a regularity in the organisation of the proteoglycan components of the glycocalyx layer (fundamental spacing about 20 nm), but require a large sample number. Attempts to visualise the glycocalyx face-on (i.e. in a direction perpendicular to the endothelial cell layer in the lumen and directly applicable for permeability modelling) has had limited success (e.g. freeze fracture). A new approach is therefore needed. Here we demonstrate the effectiveness of using the relatively novel electron microscopy technique of 3D electron tomography on two differently stained glycocalyx preparations. A tannic acid staining method and a novel staining technique using Lanthanum Dysprosium Glycosamino Glycan adhesion (the LaDy GAGa method). 3D electron tomography reveals details of the architecture of the glycocalyx just above the endothelial cell layer. The LaDy GAGa method visually appears to show more complete coverage and more depth than the Tannic Acid staining method. The tomographic reconstructions show a potentially significant improvement in determining glycocalyx structure over standard transmission electron microscopy. © 2012 John Wiley & Sons Ltd.

  7. Using Isotopes to Reconstruct Mammalian Diet, Migration and Paleoenvironment for Hominin Sites in Indonesia

    NASA Astrophysics Data System (ADS)

    Wershow, H.; Janssen, R.; Vonhof, H.; Lubbe, J. V. D.; Joordens, J. J.; Koutamanis, D. S.; Puspaningrum, M. R.; de Vos, J.; Reijmer, J.

    2015-12-01

    Climate plays a prominent role in ecosystem development in the biodiversity hotspot Sundaland (Malaysia and western Indonesia) throughout the Quaternary. Recurrent isolation and connection of the islands to mainland Asia due to sea level fluctuations has enabled repeated biotic migrations and encouraged genetic speciation. These migration waves also brought Homo erectus to Java. Together with extensive and well-documented collections of other terrestrial species, these hominin fossils form faunal assemblages of which the paleoenvironmental and paleogeographical background is poorly known. Using carbon, oxygen and strontium isotopes, we have reconstructed the paleoenvironmental and paleoecological conditions of several Holocene and Pleistocene fossil sites on Sumatra and Java, Indonesia. Carbon (∂13C) and oxygen (∂18O) isotope analysis of well-preserved herbivore teeth enamel reveals a marked contrast between C3-dominated diets in warmer periods, and C4-dominated diets in cooler periods, reflecting the distinct changes in Sundaland vegetation cover between glacials and interglacials. These isotope patterns allow us to assign the appropriate climatic background to some of the older fossil assemblages from Java, for which dating uncertainty does not allow direct assignment to glacial or interglacial conditions. The stable isotope signatures of herbivores from Trinil and Sangiran, sites well-known for the fossil occurrence of Homo erectus, indicate glacial conditions. The isotope data of several H. erectus fossils from these sites seem to be in line with such an interpretation. Furthermore, we applied strontium (87Sr/86Sr) isotope analyses to a sample subset. The preliminary data show distinct Sr-isotope ratios for different sites, providing clues for the applicability of this isotope technique in detecting climate-related mobility of Sundaland fossil faunas.

  8. The universal ancestor and the ancestors of Archaea and Bacteria were anaerobes whereas the ancestor of the Eukarya domain was an aerobe.

    PubMed

    Di Giulio, M

    2007-03-01

    The use of an oxyphobic index (OI) based on the propensity of amino acids to enter more frequently the proteins of anaerobes makes it possible to make inferences on the environment in which the last universal common ancestor (LUCA) lived. The reconstruction of the ancestral sequences of proteins using a method based on maximum likelihood and their attribution by means of the OI to the set of aerobe or anaerobe sequences has led to the following conclusions: the LUCA was an anaerobic 'organism', as were the ancestors of Archaea and Bacteria, whereas the ancestor of Eukarya was an aerobe. These observations seem to falsify the hypothesis that the LUCA was an aerobe and help to identify better the environment in which the first organisms lived.

  9. Windmills: Ancestors of the wind power generation

    NASA Astrophysics Data System (ADS)

    Rossi, Cesare; Russo, Flavio; Savino, Sergio

    2017-09-01

    A brief description of the windmills from the second millennium BC to the Renaissance is presented. This survey is a part of several studies conducted by the authors on technology in the ancient world. The windmills are the first motor, other than human muscles, and are the ancestors of the modern wind turbines. Some authors' virtual reconstructions of old windmills are also presented. The paper shows that the operating principle of many modern machines had already been conceived in the ancient times by using a technology that was more advanced than expected, but with two main differences, as follows: Similar tasks were accomplished by using much less energy; and the environmental impact was nil or very low. Modern designers should sometimes consider simplicity rather than the use of a large amount of energy.

  10. Windmills: Ancestors of the wind power generation

    NASA Astrophysics Data System (ADS)

    Rossi, Cesare; Russo, Flavio; Savino, Sergio

    2016-12-01

    A brief description of the windmills from the second millennium BC to the Renaissance is presented. This survey is a part of several studies conducted by the authors on technology in the ancient world. The windmills are the first motor, other than human muscles, and are the ancestors of the modern wind turbines. Some authors' virtual reconstructions of old windmills are also presented. The paper shows that the operating principle of many modern machines had already been conceived in the ancient times by using a technology that was more advanced than expected, but with two main differences, as follows: Similar tasks were accomplished by using much less energy; and the environmental impact was nil or very low. Modern designers should sometimes consider simplicity rather than the use of a large amount of energy.

  11. On the Potential Origins of the High Stability of Reconstructed Ancestral Proteins.

    PubMed

    Trudeau, Devin L; Kaltenbach, Miriam; Tawfik, Dan S

    2016-10-01

    Ancestral reconstruction provides instrumental insights regarding the biochemical and biophysical characteristics of past proteins. A striking observation relates to the remarkably high thermostability of reconstructed ancestors. The latter has been linked to high environmental temperatures in the Precambrian era, the era relating to most reconstructed proteins. We found that inferred ancestors of the serum paraoxonase (PON) enzyme family, including the mammalian ancestor, exhibit dramatically increased thermostabilities compared with the extant, human enzyme (up to 30 °C higher melting temperature). However, the environmental temperature at the time of emergence of mammals is presumed to be similar to the present one. Additionally, the mammalian PON ancestor has superior folding properties (kinetic stability)-unlike the extant mammalian PONs, it expresses in E. coli in a soluble and functional form, and at a high yield. We discuss two potential origins of this unexpectedly high stability. First, ancestral stability may be overestimated by a "consensus effect," whereby replacing amino acids that are rare in contemporary sequences with the amino acid most common in the family increases protein stability. Comparison to other reconstructed ancestors indicates that the consensus effect may bias some but not all reconstructions. Second, we note that high stability may relate to factors other than high environmental temperature such as oxidative stress or high radiation levels. Foremost, intrinsic factors such as high rates of genetic mutations and/or of transcriptional and translational errors, and less efficient protein quality control systems, may underlie the high kinetic and thermodynamic stability of past proteins. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Yeast Ancestral Genome Reconstructions: The Possibilities of Computational Methods

    NASA Astrophysics Data System (ADS)

    Tannier, Eric

    In 2006, a debate has risen on the question of the efficiency of bioinformatics methods to reconstruct mammalian ancestral genomes. Three years later, Gordon et al. (PLoS Genetics, 5(5), 2009) chose not to use automatic methods to build up the genome of a 100 million year old Saccharomyces cerevisiae ancestor. Their manually constructed ancestor provides a reference genome to test whether automatic methods are indeed unable to approach confident reconstructions. Adapting several methodological frameworks to the same yeast gene order data, I discuss the possibilities, differences and similarities of the available algorithms for ancestral genome reconstructions. The methods can be classified into two types: local and global. Studying the properties of both helps to clarify what we can expect from their usage. Both methods propose contiguous ancestral regions that come very close (> 95% identity) to the manually predicted ancestral yeast chromosomes, with a good coverage of the extant genomes.

  13. Non-Darwinian estimation: My ancestors, my genes' ancestors

    PubMed Central

    Weiss, Kenneth M.; Long, Jeffrey C.

    2009-01-01

    There is widespread interest in characterizing the organization of human genetic variation around the world from a population perspective. Related to this are attempts to describe the pattern of genetic variation in the human species generally, including “recreational” genomics, the genome-based estimation of the ancestry of individuals. These approaches rest on subtle concepts of variation, time, and ancestry that are perhaps not widely appreciated. They share the idea that there are, or were, discrete panmictic human populations such that every person is either a member of such a population or is an admixed descendant of them. Ancestry fraction estimation is biased by assumptions about past and present human population structure, as when we trace ancestry to hypothetical unmixed ancestral populations, or assign an individual's ancestry to continental populations that are indistinguishable from classical “races.” Attempts to identify even individuals' local subpopulations are less precise than most (geneticists included) expect, because that is usually based on a small portion of a person's ancestry, relative to the much larger pool of comparably related ancestors. It is easier to show that two people have some relationship than to show who or where the actual ancestor was. There is an important distinction between individuals' demographic ancestry and the ancestry of their genes. Despite superficial appearances, these interpretations of genetic data are often based on typological rather than Darwinian thinking, raising important issues about the questions that are actually being asked. PMID:19411595

  14. Evolution of mammalian diving capacity traced by myoglobin net surface charge.

    PubMed

    Mirceta, Scott; Signore, Anthony V; Burns, Jennifer M; Cossins, Andrew R; Campbell, Kevin L; Berenbrink, Michael

    2013-06-14

    Extended breath-hold endurance enables the exploitation of the aquatic niche by numerous mammalian lineages and is accomplished by elevated body oxygen stores and adaptations that promote their economical use. However, little is known regarding the molecular and evolutionary underpinnings of the high muscle myoglobin concentration phenotype of divers. We used ancestral sequence reconstruction to trace the evolution of this oxygen-storing protein across a 130-species mammalian phylogeny and reveal an adaptive molecular signature of elevated myoglobin net surface charge in diving species that is mechanistically linked with maximal myoglobin concentration. This observation provides insights into the tempo and routes to enhanced dive capacity evolution within the ancestors of each major mammalian aquatic lineage and infers amphibious ancestries of echidnas, moles, hyraxes, and elephants, offering a fresh perspective on the evolution of this iconic respiratory pigment.

  15. Tracking the complex flow of chromosome rearrangements from the Hominoidea Ancestor to extant Hylobates and Nomascus Gibbons by high-resolution synteny mapping.

    PubMed

    Misceo, Doriana; Capozzi, Oronzo; Roberto, Roberta; Dell'oglio, Maria P; Rocchi, Mariano; Stanyon, Roscoe; Archidiacono, Nicoletta

    2008-09-01

    In this study we characterized the extension, reciprocal arrangement, and orientation of syntenic chromosomal segments in the lar gibbon (Hylobates lar, HLA) by hybridization of a panel of approximately 1000 human BAC clones. Each lar gibbon rearrangement was defined by a splitting BAC clone or by two overlapping clones flanking the breakpoint. A reconstruction of the synteny arrangement of the last common ancestor of all living lesser apes was made by combining these data with previous results in Nomascus leucogenys, Hoolock hoolock, and Symphalangus syndactylus. The definition of the ancestral synteny organization facilitated tracking the cascade of chromosomal changes from the Hominoidea ancestor to the present day karyotype of Hylobates and Nomascus. Each chromosomal rearrangement could be placed within an approximate phylogenetic and temporal framework. We identified 12 lar-specific rearrangements and five previously undescribed rearrangements that occurred in the Hylobatidae ancestor. The majority of the chromosomal differences between lar gibbons and humans are due to rearrangements that occurred in the Hylobatidae ancestor (38 events), consistent with the hypothesis that the genus Hylobates is the most recently evolved lesser ape genus. The rates of rearrangements in gibbons are 10 to 20 times higher than the mammalian default rate. Segmental duplication may be a driving force in gibbon chromosome evolution, because a consistent number of rearrangements involves pericentromeric regions (10 events) and centromere inactivation (seven events). Both phenomena can be reasonably supposed to have strongly contributed to the euchromatic dispersal of segmental duplications typical of pericentromeric regions. This hypothesis can be more fully tested when the sequence of this gibbon species becomes available. The detailed synteny map provided here will, in turn, substantially facilitate sequence assembly efforts.

  16. Tracking the complex flow of chromosome rearrangements from the Hominoidea Ancestor to extant Hylobates and Nomascus Gibbons by high-resolution synteny mapping

    PubMed Central

    Misceo, Doriana; Capozzi, Oronzo; Roberto, Roberta; Dell’Oglio, Maria P.; Rocchi, Mariano; Stanyon, Roscoe; Archidiacono, Nicoletta

    2008-01-01

    In this study we characterized the extension, reciprocal arrangement, and orientation of syntenic chromosomal segments in the lar gibbon (Hylobates lar, HLA) by hybridization of a panel of ∼1000 human BAC clones. Each lar gibbon rearrangement was defined by a splitting BAC clone or by two overlapping clones flanking the breakpoint. A reconstruction of the synteny arrangement of the last common ancestor of all living lesser apes was made by combining these data with previous results in Nomascus leucogenys, Hoolock hoolock, and Symphalangus syndactylus. The definition of the ancestral synteny organization facilitated tracking the cascade of chromosomal changes from the Hominoidea ancestor to the present day karyotype of Hylobates and Nomascus. Each chromosomal rearrangement could be placed within an approximate phylogenetic and temporal framework. We identified 12 lar-specific rearrangements and five previously undescribed rearrangements that occurred in the Hylobatidae ancestor. The majority of the chromosomal differences between lar gibbons and humans are due to rearrangements that occurred in the Hylobatidae ancestor (38 events), consistent with the hypothesis that the genus Hylobates is the most recently evolved lesser ape genus. The rates of rearrangements in gibbons are 10 to 20 times higher than the mammalian default rate. Segmental duplication may be a driving force in gibbon chromosome evolution, because a consistent number of rearrangements involves pericentromeric regions (10 events) and centromere inactivation (seven events). Both phenomena can be reasonably supposed to have strongly contributed to the euchromatic dispersal of segmental duplications typical of pericentromeric regions. This hypothesis can be more fully tested when the sequence of this gibbon species becomes available. The detailed synteny map provided here will, in turn, substantially facilitate sequence assembly efforts. PMID:18552313

  17. The universal ancestor was a thermophile or a hyperthermophile.

    PubMed

    Di Giulio, M

    2001-12-27

    By exploiting the correlation between the optimal growth temperature of organisms and a thermophily index based on the propensity of amino acids to enter thermophile/hyperthermophile proteins, an analysis is conducted in order to establish whether the last universal common ancestor (LUCA) was a mesophile or a (hyper)thermophile. This objective is reached by using maximum parsimony and maximum likelihood to reconstruct the ancestral sequences of the LUCA for two pairs of sets of paralogous protein sequences by means of the phylogenetic tree topology derived from the small subunit ribosomal RNA, even if this is rooted in all three possible ways. The thermophily index of all the reconstructed ancestral sequences of the LUCA belongs to the set of the thermophile/hyperthermophile sequences, thus supporting the hypotheses that see the LUCA as a thermophile or a hyperthermophile.

  18. Volumetric label-free imaging and 3D reconstruction of mammalian cochlea based on two-photon excitation fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xianzeng; Geng, Yang; Ye, Qing; Zhan, Zhenlin; Xie, Shusen

    2013-11-01

    The visualization of the delicate structure and spatial relationship of intracochlear sensory cells has relied on the laborious procedures of tissue excision, fixation, sectioning and staining for light and electron microscopy. Confocal microscopy is advantageous for its high resolution and deep penetration depth, yet disadvantageous due to the necessity of exogenous labeling. In this study, we present the volumetric imaging of rat cochlea without exogenous dyes using a near-infrared femtosecond laser as the excitation mechanism and endogenous two-photon excitation fluorescence (TPEF) as the contrast mechanism. We find that TPEF exhibits strong contrast, allowing cellular and even subcellular resolution imaging of the cochlea, differentiating cell types, visualizing delicate structures and the radial nerve fiber. Our results further demonstrate that 3D reconstruction rendered with z-stacks of optical sections enables better revealment of fine structures and spatial relationships, and easily performed morphometric analysis. The TPEF-based optical biopsy technique provides great potential for new and sensitive diagnostic tools for hearing loss or hearing disorders, especially when combined with fiber-based microendoscopy.

  19. The Five Ancestors--Book 1: Tiger

    ERIC Educational Resources Information Center

    Stone, Jeff

    2004-01-01

    Losing a job is an awfully low point--until it turns into the opportunity to pursue writing full time, and a book like "The Five Ancestors: Tiger" results. Jeff Stone looks back to his own experience as a young reader and taps that experience to help frame his own writing. An intriguing snapshot of his new book follows.

  20. Apparatus Named after Our Academic Ancestors, III

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2014-01-01

    My academic ancestors in physics have called on me once more to tell you about the apparatus that they devised, and that many of you have used in your demonstrations and labs. This article is about apparatus named after François Arago, Heinrich Helmholtz, Leon Foucault, and James Watt.

  1. Apparatus Named After Our Academic Ancestors, III

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2014-09-01

    My academic ancestors in physics have called on me once more to tell you about the apparatus that they devised, and that many of you have used in your demonstrations and labs. This article is about apparatus named after François Arago, Heinrich Helmholtz, Leon Foucault, and James Watt.

  2. Apparatus Named after Our Academic Ancestors, III

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2014-01-01

    My academic ancestors in physics have called on me once more to tell you about the apparatus that they devised, and that many of you have used in your demonstrations and labs. This article is about apparatus named after François Arago, Heinrich Helmholtz, Leon Foucault, and James Watt.

  3. The Five Ancestors--Book 1: Tiger

    ERIC Educational Resources Information Center

    Stone, Jeff

    2004-01-01

    Losing a job is an awfully low point--until it turns into the opportunity to pursue writing full time, and a book like "The Five Ancestors: Tiger" results. Jeff Stone looks back to his own experience as a young reader and taps that experience to help frame his own writing. An intriguing snapshot of his new book follows.

  4. Archaeal ancestors of eukaryotes: not so elusive any more.

    PubMed

    Koonin, Eugene V

    2015-10-05

    The origin of eukaryotes is one of the hardest problems in evolutionary biology and sometimes raises the ominous specter of irreducible complexity. Reconstruction of the gene repertoire of the last eukaryotic common ancestor (LECA) has revealed a highly complex organism with a variety of advanced features but no detectable evolutionary intermediates to explain their origin. Recently, however, genome analysis of diverse archaea led to the discovery of apparent ancestral versions of several signature eukaryotic systems, such as the actin cytoskeleton and the ubiquitin network, that are scattered among archaea. These findings inspired the hypothesis that the archaeal ancestor of eukaryotes was an unusually complex form with an elaborate intracellular organization. The latest striking discovery made by deep metagenomic sequencing vindicates this hypothesis by showing that in phylogenetic trees eukaryotes fall within a newly identified archaeal group, the Lokiarchaeota, which combine several eukaryotic signatures previously identified in different archaea. The discovery of complex archaea that are the closest living relatives of eukaryotes is most compatible with the symbiogenetic scenario for eukaryogenesis.

  5. Ancient horizontal gene transfer and the last common ancestors.

    PubMed

    Fournier, Gregory P; Andam, Cheryl P; Gogarten, Johann Peter

    2015-04-22

    The genomic history of prokaryotic organismal lineages is marked by extensive horizontal gene transfer (HGT) between groups of organisms at all taxonomic levels. These HGT events have played an essential role in the origin and distribution of biological innovations. Analyses of ancient gene families show that HGT existed in the distant past, even at the time of the organismal last universal common ancestor (LUCA). Most gene transfers originated in lineages that have since gone extinct. Therefore, one cannot assume that the last common ancestors of each gene were all present in the same cell representing the cellular ancestor of all extant life. Organisms existing as part of a diverse ecosystem at the time of LUCA likely shared genetic material between lineages. If these other lineages persisted for some time, HGT with the descendants of LUCA could have continued into the bacterial and archaeal lineages. Phylogenetic analyses of aminoacyl-tRNA synthetase protein families support the hypothesis that the molecular common ancestors of the most ancient gene families did not all coincide in space and time. This is most apparent in the evolutionary histories of seryl-tRNA synthetase and threonyl-tRNA synthetase protein families, each containing highly divergent "rare" forms, as well as the sparse phylogenetic distributions of pyrrolysyl-tRNA synthetase, and the bacterial heterodimeric form of glycyl-tRNA synthetase. These topologies and phyletic distributions are consistent with horizontal transfers from ancient, likely extinct branches of the tree of life. Of all the organisms that may have existed at the time of LUCA, by definition only one lineage is survived by known progeny; however, this lineage retains a genomic record of heterogeneous genetic origins. The evolutionary histories of aminoacyl-tRNA synthetases (aaRS) are especially informative in detecting this signal, as they perform primordial biological functions, have undergone several ancient HGT events, and

  6. An unexpected recent ancestor of unisexual Ambystoma.

    PubMed

    Robertson, Alexander V; Ramsden, Cadhla; Niedzwiecki, John; Fu, Jinzhong; Bogart, James P

    2006-10-01

    Previous research has shown that members of the unisexual hybrid complex of the genus Ambystoma possess a mitochondrial genome that is unrelated to their nuclear parental species, but the origin of this mitochondrion has remained unclear. We used a 744-bp fragment of the mitochondrial gene cytochrome b within a comparative phylogenetic framework to infer the maternal ancestor of this unisexual lineage. By examining a broader range of species than has previously been compared, we were able to uncover a recent maternal ancestor to this complex. Unexpectedly, Ambystoma barbouri, a species whose nuclear DNA has not been identified in the unisexuals, was found to be the recent maternal ancestor of the individuals examined through the discovery of a shared mtDNA haplotype between the unisexuals and A. barbouri. Based on a combination of sequence data and glacial patterning, we estimate that the unisexual lineage probably originated less than 25 000 years ago. In addition, all unisexuals examined showed extremely similar mtDNA sequences and the resultant phylogeny was consistent with a single origin for this lineage. These results confirm previous suggestions that the unisexual Ambystoma complex was formed from a hybridization event in which the nuclear DNA of the original maternal species was subsequently lost.

  7. Mammalian development in space

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  8. Mammalian development in space

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  9. Mammalian development in space.

    PubMed

    Ronca, April E

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  10. The last universal common ancestor (LUCA) and the ancestors of archaea and bacteria were progenotes.

    PubMed

    Di Giulio, Massimo

    2011-01-01

    The tRNA split genes of Nanoarchaeum equitans and the Met-tRNA(fMet) → fMet-tRNA(fMet) pathway, identifiable as ancestral traits, and the late appearance of DNA are used to understand the evolutionary stage at which the progenote → genote transition took place. The arguments are such as to impose that not only was the last universal common ancestor (LUCA) a progenote, but the ancestors of Archaea and Bacteria were too. Therefore, the progenote → genote transition took place in a very advanced stage of the evolution of the tree of life, and only when the ancestors of Archaea and Bacteria were already defined. These conclusions are in disagreement with commonly held beliefs.

  11. The universal ancestor lived in a thermophilic or hyperthermophilic environment.

    PubMed

    Di Giulio, M

    2000-04-07

    Galtier et al. (Science 1999, 283, 220-221) exploit the correlation between the optimal growth temperature in prokaryotes and the G+C content of rRNAs and establish that the last universal common ancestor (LUCA) lived in a mesophilic environment. This result was achieved by estimating the G+C content of the ancestral sequences of the rRNAs of the LUCA through use of a complex Markov model. I have re-analysed their alignments of the rDNAs with maximum parsimony and I have found that their result is not robust and is, in all likelihood, incorrect. In particular, the rRNA ancestral sequences reconstructed with maximum parsimony from these rDNA alignments as well as those reconstructed after eliminating all the sites that turn out to be ambiguous to the parsimony algorithm and to a site-by-site inspection of these alignments, are such as to suggest that the LUCA lived in a thermophilic or hyperthermophilic environment. This finding is also supported by some tRNA ancestral sequences. The main conclusion of this analysis is that if the LUCA was a progenote then the origin of life might have taken place at a high temperature. Copyright 2000 Academic Press.

  12. Single origin of Malagasy Carnivora from an African ancestor.

    PubMed

    Yoder, Anne D; Burns, Melissa M; Zehr, Sarah; Delefosse, Thomas; Veron, Geraldine; Goodman, Steven M; Flynn, John J

    2003-02-13

    The Carnivora are one of only four orders of terrestrial mammals living in Madagascar today. All four (carnivorans, primates, rodents and lipotyphlan insectivores) are placental mammals with limited means for dispersal, yet they occur on a large island that has been surrounded by a formidable oceanic barrier for at least 88 million years, predating the age of origin for any of these groups. Even so, as many as four colonizations of Madagascar have been proposed for the Carnivora alone. The mystery of the island's mammalian origins is confounded by its poor Tertiary fossil record, which leaves us with no direct means for estimating dates of initial diversification. Here we use a multi-gene phylogenetic analysis to show that Malagasy carnivorans are monophyletic and thus the product of a single colonization of Madagascar by an African ancestor. Furthermore, a bayesian analysis of divergence ages for Malagasy carnivorans and lemuriforms indicates that their respective colonizations were temporally separated by tens of millions of years. We therefore conclude that a single event, such as vicariance or common dispersal, cannot explain the presence of both groups in Madagascar.

  13. Sex-biased dispersal of human ancestors.

    PubMed

    Sugiyama, Yukimaru

    2017-07-01

    Some anthropologists and primatologists have argued that, judging by extant chimpanzees and humans, which are female-biased dispersers, the common ancestors of humans and chimpanzees were also female-biased dispersers. It has been thought that sex-biased dispersal patterns have been genetically transmitted for millions of years. However, this character has changed many times with changes in environment and life-form during human evolution and historical times. I examined life-form and social organization of nonhuman primates, among them gatherers (foragers), hunter-gatherers, agriculturalists, industrialists, and modern and extant humans. I conclude that dispersal patterns changed in response to environmental conditions during primate and human evolution. © 2017 Wiley Periodicals, Inc.

  14. [Luca: the last universal common ancestor].

    PubMed

    Forterre, Patrick; Gribaldo, Simonetta; Brochier, Céline

    2005-10-01

    One of the most important outcomes of modern biology has been the demonstration of the unity of life. All living beings are in fact descendants of a unique ancestor commonly referred to as Luca (the Last universal common ancestor). The discovery - nearly 30 years ago by Carl Woese - that present-day life on our planet can be assigned to only three domains: two of prokaryotic nature (Archaea and Bacteria), and one eukaryoyic (Eucarya), has given birth to a new field of investigation aimed at determining the nature of Luca. Today, thanks to the accumulation of genomic data, we can loop back into the past and infer a few characters of Luca by comparing what present-day organisms have in common. For example, it is now clear that Luca was a cellular organism provided with a cytoplasmic membrane, and that it harboured already a quite sophisticated translation apparatus. However, the inference of other characters of Luca from comparative genomics is less straightforward: for instance, a few key molecular mechanisms for DNA replication are non-homologous across the three domains and their distribution is often puzzling. This evidence has been embraced by proponents of the hypothesis that Luca harboured an RNA genome and that its replacement by DNA and the appearance of the corresponding molecular systems would have occurred independently in the three life domains after their divergence. However, an equally likely scenario would be that of a Luca with a DNA genome and of a subsequent replacement of its DNA-replication systems by non-homologous counterparts either in the bacterial or in the archaeal/eukaroytic branch. Nevertheless, including the viral world into the picture of the tree of life may thus provide us with precious insights into our most distant past since the invention and spread potential of viruses may have played a key role in early evolution.

  15. The Last Common Ancestor of Most Bilaterian Animals Possessed at Least Nine Opsins.

    PubMed

    Ramirez, M Desmond; Pairett, Autum N; Pankey, M Sabrina; Serb, Jeanne M; Speiser, Daniel I; Swafford, Andrew J; Oakley, Todd H

    2016-12-01

    The opsin gene family encodes key proteins animals use to sense light and has expanded dramatically as it originated early in animal evolution. Understanding the origins of opsin diversity can offer clues to how separate lineages of animals have repurposed different opsin paralogs for different light-detecting functions. However, the more we look for opsins outside of eyes and from additional animal phyla, the more opsins we uncover, suggesting we still do not know the true extent of opsin diversity, nor the ancestry of opsin diversity in animals. To estimate the number of opsin paralogs present in both the last common ancestor of the Nephrozoa (bilaterians excluding Xenoacoelomorpha), and the ancestor of Cnidaria + Bilateria, we reconstructed a reconciled opsin phylogeny using sequences from 14 animal phyla, especially the traditionally poorly-sampled echinoderms and molluscs. Our analysis strongly supports a repertoire of at least nine opsin paralogs in the bilaterian ancestor and at least four opsin paralogs in the last common ancestor of Cnidaria + Bilateria. Thus, the kernels of extant opsin diversity arose much earlier in animal history than previously known. Further, opsins likely duplicated and were lost many times, with different lineages of animals maintaining different repertoires of opsin paralogs. This phylogenetic information can inform hypotheses about the functions of different opsin paralogs and can be used to understand how and when opsins were incorporated into complex traits like eyes and extraocular sensors.

  16. Markov-chain approach to the distribution of ancestors in species of biparental reproduction

    NASA Astrophysics Data System (ADS)

    Caruso, M.; Jarne, C.

    2014-08-01

    We studied how to obtain a distribution for the number of ancestors in species of sexual reproduction. Present models concentrate on the estimation of distributions repetitions of ancestors in genealogical trees. It has been shown that it is not possible to reconstruct the genealogical history of each species along all its generations by means of a geometric progression. This analysis demonstrates that it is possible to rebuild the tree of progenitors by modeling the problem with a Markov chain. For each generation, the maximum number of possible ancestors is different. This presents huge problems for the resolution. We found a solution through a dilation of the sample space, although the distribution defined there takes smaller values with respect to the initial problem. In order to correct the distribution for each generation, we introduced the invariance under a gauge (local) group of dilations. These ideas can be used to study the interaction of several processes and provide a new approach on the problem of the common ancestor. In the same direction, this model also provides some elements that can be used to improve models of animal reproduction.

  17. The Last Common Ancestor of Most Bilaterian Animals Possessed at Least Nine Opsins

    PubMed Central

    Pairett, Autum N.; Pankey, M. Sabrina; Serb, Jeanne M.; Speiser, Daniel I.; Swafford, Andrew J.

    2016-01-01

    Abstract The opsin gene family encodes key proteins animals use to sense light and has expanded dramatically as it originated early in animal evolution. Understanding the origins of opsin diversity can offer clues to how separate lineages of animals have repurposed different opsin paralogs for different light-detecting functions. However, the more we look for opsins outside of eyes and from additional animal phyla, the more opsins we uncover, suggesting we still do not know the true extent of opsin diversity, nor the ancestry of opsin diversity in animals. To estimate the number of opsin paralogs present in both the last common ancestor of the Nephrozoa (bilaterians excluding Xenoacoelomorpha), and the ancestor of Cnidaria + Bilateria, we reconstructed a reconciled opsin phylogeny using sequences from 14 animal phyla, especially the traditionally poorly-sampled echinoderms and molluscs. Our analysis strongly supports a repertoire of at least nine opsin paralogs in the bilaterian ancestor and at least four opsin paralogs in the last common ancestor of Cnidaria + Bilateria. Thus, the kernels of extant opsin diversity arose much earlier in animal history than previously known. Further, opsins likely duplicated and were lost many times, with different lineages of animals maintaining different repertoires of opsin paralogs. This phylogenetic information can inform hypotheses about the functions of different opsin paralogs and can be used to understand how and when opsins were incorporated into complex traits like eyes and extraocular sensors. PMID:28172965

  18. The universal ancestor was a thermophile or a hyperthermophile: tests and further evidence.

    PubMed

    Di Giulio, Massimo

    2003-04-07

    The existence of a correlation between the optimal growth temperature of various organisms and a thermophily index (based on the propensity of amino acids to enter more frequently into the proteins of thermophiles/hyperthermophiles) allows inferences to be made on the mesophilic or thermophilic nature of the last universal common ancestor (LUCA). By reconstructing the ancestral sequences of the various ancestors using methods based on maximum likelihood and maximum parsimony, these sequences can be attributed to the mesophiles or (hyper)thermophiles and the following conclusions can be drawn. (1) There is no evidence that the LUCA might have been a mesophile and observations seem to imply that the LUCA was a thermophile or a hyperthermophile; (2) The ancestors of the Archaea and Bacteria domains seem to be (hyper)thermophiles while that of the Eukarya domain turns out to be a mesophile. These conclusions are independent of both (i) where the root is located on the topology of the universal tree (based on that of the small subunit ribosomal RNA) and (ii) the presence of hyperthermophile bacteria near the node of the Bacteria domain ancestor. These conclusions are easier to interpret in the light of the hypotheses that see the origin of life taking place at a high temperature. Copyright 2003 Elsevier Science Ltd.

  19. Major fungal lineages are derived from lichen symbiotic ancestors.

    PubMed

    Lutzoni, F; Pagel, M; Reeb, V

    2001-06-21

    About one-fifth of all known extant fungal species form obligate symbiotic associations with green algae, cyanobacteria or with both photobionts. These symbioses, known as lichens, are one way for fungi to meet their requirement for carbohydrates. Lichens are widely believed to have arisen independently on several occasions, accounting for the high diversity and mixed occurrence of lichenized and non-lichenized (42 and 58%, respectively) fungal species within the Ascomycota. Depending on the taxonomic classification chosen, 15-18 orders of the Ascomycota include lichen-forming taxa, and 8-11 of these orders (representing about 60% of the Ascomycota species) contain both lichenized and non-lichenized species. Here we report a phylogenetic comparative analysis of the Ascomycota, a phylum that includes greater than 98% of known lichenized fungal species. Using a Bayesian phylogenetic tree sampling methodology combined with a statistical model of trait evolution, we take into account uncertainty about the phylogenetic tree and ancestral state reconstructions. Our results show that lichens evolved earlier than believed, and that gains of lichenization have been infrequent during Ascomycota evolution, but have been followed by multiple independent losses of the lichen symbiosis. As a consequence, major Ascomycota lineages of exclusively non-lichen-forming species are derived from lichen-forming ancestors. These species include taxa with important benefits and detriments to humans, such as Penicillium and Aspergillus.

  20. The physiology and habitat of the last universal common ancestor.

    PubMed

    Weiss, Madeline C; Sousa, Filipa L; Mrnjavac, Natalia; Neukirchen, Sinje; Roettger, Mayo; Nelson-Sathi, Shijulal; Martin, William F

    2016-07-25

    The concept of a last universal common ancestor of all cells (LUCA, or the progenote) is central to the study of early evolution and life's origin, yet information about how and where LUCA lived is lacking. We investigated all clusters and phylogenetic trees for 6.1 million protein coding genes from sequenced prokaryotic genomes in order to reconstruct the microbial ecology of LUCA. Among 286,514 protein clusters, we identified 355 protein families (∼0.1%) that trace to LUCA by phylogenetic criteria. Because these proteins are not universally distributed, they can shed light on LUCA's physiology. Their functions, properties and prosthetic groups depict LUCA as anaerobic, CO2-fixing, H2-dependent with a Wood-Ljungdahl pathway, N2-fixing and thermophilic. LUCA's biochemistry was replete with FeS clusters and radical reaction mechanisms. Its cofactors reveal dependence upon transition metals, flavins, S-adenosyl methionine, coenzyme A, ferredoxin, molybdopterin, corrins and selenium. Its genetic code required nucleoside modifications and S-adenosyl methionine-dependent methylations. The 355 phylogenies identify clostridia and methanogens, whose modern lifestyles resemble that of LUCA, as basal among their respective domains. LUCA inhabited a geochemically active environment rich in H2, CO2 and iron. The data support the theory of an autotrophic origin of life involving the Wood-Ljungdahl pathway in a hydrothermal setting.

  1. The evolutionary history of protein fold families and proteomes confirms that the archaeal ancestor is more ancient than the ancestors of other superkingdoms.

    PubMed

    Kim, Kyung Mo; Caetano-Anollés, Gustavo

    2012-01-27

    The entire evolutionary history of life can be studied using myriad sequences generated by genomic research. This includes the appearance of the first cells and of superkingdoms Archaea, Bacteria, and Eukarya. However, the use of molecular sequence information for deep phylogenetic analyses is limited by mutational saturation, differential evolutionary rates, lack of sequence site independence, and other biological and technical constraints. In contrast, protein structures are evolutionary modules that are highly conserved and diverse enough to enable deep historical exploration. Here we build phylogenies that describe the evolution of proteins and proteomes. These phylogenetic trees are derived from a genomic census of protein domains defined at the fold family (FF) level of structural classification. Phylogenomic trees of FF structures were reconstructed from genomic abundance levels of 2,397 FFs in 420 proteomes of free-living organisms. These trees defined timelines of domain appearance, with time spanning from the origin of proteins to the present. Timelines are divided into five different evolutionary phases according to patterns of sharing of FFs among superkingdoms: (1) a primordial protein world, (2) reductive evolution and the rise of Archaea, (3) the rise of Bacteria from the common ancestor of Bacteria and Eukarya and early development of the three superkingdoms, (4) the rise of Eukarya and widespread organismal diversification, and (5) eukaryal diversification. The relative ancestry of the FFs shows that reductive evolution by domain loss is dominant in the first three phases and is responsible for both the diversification of life from a universal cellular ancestor and the appearance of superkingdoms. On the other hand, domain gains are predominant in the last two phases and are responsible for organismal diversification, especially in Bacteria and Eukarya. The evolution of functions that are associated with corresponding FFs along the timeline reveals

  2. A Detailed History of Intron-rich Eukaryotic Ancestors Inferred from a Global Survey of 100 Complete Genomes

    PubMed Central

    Csuros, Miklos; Rogozin, Igor B.; Koonin, Eugene V.

    2011-01-01

    Protein-coding genes in eukaryotes are interrupted by introns, but intron densities widely differ between eukaryotic lineages. Vertebrates, some invertebrates and green plants have intron-rich genes, with 6–7 introns per kilobase of coding sequence, whereas most of the other eukaryotes have intron-poor genes. We reconstructed the history of intron gain and loss using a probabilistic Markov model (Markov Chain Monte Carlo, MCMC) on 245 orthologous genes from 99 genomes representing the three of the five supergroups of eukaryotes for which multiple genome sequences are available. Intron-rich ancestors are confidently reconstructed for each major group, with 53 to 74% of the human intron density inferred with 95% confidence for the Last Eukaryotic Common Ancestor (LECA). The results of the MCMC reconstruction are compared with the reconstructions obtained using Maximum Likelihood (ML) and Dollo parsimony methods. An excellent agreement between the MCMC and ML inferences is demonstrated whereas Dollo parsimony introduces a noticeable bias in the estimations, typically yielding lower ancestral intron densities than MCMC and ML. Evolution of eukaryotic genes was dominated by intron loss, with substantial gain only at the bases of several major branches including plants and animals. The highest intron density, 120 to 130% of the human value, is inferred for the last common ancestor of animals. The reconstruction shows that the entire line of descent from LECA to mammals was intron-rich, a state conducive to the evolution of alternative splicing. PMID:21935348

  3. A detailed history of intron-rich eukaryotic ancestors inferred from a global survey of 100 complete genomes.

    PubMed

    Csuros, Miklos; Rogozin, Igor B; Koonin, Eugene V

    2011-09-01

    Protein-coding genes in eukaryotes are interrupted by introns, but intron densities widely differ between eukaryotic lineages. Vertebrates, some invertebrates and green plants have intron-rich genes, with 6-7 introns per kilobase of coding sequence, whereas most of the other eukaryotes have intron-poor genes. We reconstructed the history of intron gain and loss using a probabilistic Markov model (Markov Chain Monte Carlo, MCMC) on 245 orthologous genes from 99 genomes representing the three of the five supergroups of eukaryotes for which multiple genome sequences are available. Intron-rich ancestors are confidently reconstructed for each major group, with 53 to 74% of the human intron density inferred with 95% confidence for the Last Eukaryotic Common Ancestor (LECA). The results of the MCMC reconstruction are compared with the reconstructions obtained using Maximum Likelihood (ML) and Dollo parsimony methods. An excellent agreement between the MCMC and ML inferences is demonstrated whereas Dollo parsimony introduces a noticeable bias in the estimations, typically yielding lower ancestral intron densities than MCMC and ML. Evolution of eukaryotic genes was dominated by intron loss, with substantial gain only at the bases of several major branches including plants and animals. The highest intron density, 120 to 130% of the human value, is inferred for the last common ancestor of animals. The reconstruction shows that the entire line of descent from LECA to mammals was intron-rich, a state conducive to the evolution of alternative splicing.

  4. The existence and abundance of ghost ancestors in biparental populations.

    PubMed

    Gravel, Simon; Steel, Mike

    2015-05-01

    In a randomly-mating biparental population of size N there are, with high probability, individuals who are genealogical ancestors of every extant individual within approximately log2(N) generations into the past. We use this result of J. Chang to prove a curious corollary under standard models of recombination: there exist, with high probability, individuals within a constant multiple of log2(N) generations into the past who are simultaneously (i) genealogical ancestors of each of the individuals at the present, and (ii) genetic ancestors to none of the individuals at the present. Such ancestral individuals-ancestors of everyone today that left no genetic trace-represent 'ghost' ancestors in a strong sense. In this short note, we use simple analytical argument and simulations to estimate how many such individuals exist in finite Wright-Fisher populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The Hunt for Dwarf Galaxies' Ancestors

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Dwarf galaxies are typically very faint, and are therefore hard to find. Given that, what are our chances of finding their distant ancestors, located billions of light-years away? A recent study aims to find out.Ancient CounterpartsDwarf galaxies are a hot topic right now, especially as we discover more and more of them nearby. Besides being great places to investigate a variety of astrophysical processes, local group dwarf galaxies are also representative of the most common type of galaxy in the universe. For many of these dwarf galaxies, their low masses and typically old stellar populations suggest that most of their stars were formed early in the universes history, and further star formation was suppressed when the universe was reionized at redshifts of z ~ 610. If this is true, most dwarf galaxies are essentially fossils: theyve evolved little since that point.To test this theory, wed like to find counterparts to our local group dwarf galaxies at these higher redshifts of z = 6 or 7. But dwarf galaxies, since they dont exhibit lots of active star formation, have very low surface brightnesses making them very difficult to detect. What are the chances that current or future telescope sensitivities will allow us to detect these? Thats the question Anna Patej and Abraham Loeb, two theorists at Harvard University, have addressed in a recent study.Entering a New RegimeThe surface brightness vs. size for 73 local dwarf galaxies scaled back to redshifts of z=6 (top) and z=7 (bottom). So far weve been able to observe high-redshift galaxies within the boxed region of the parameter space. JWST will open the shaded region of the parameter space, which includes some of the dwarf galaxies. [Patej Loeb 2015]Starting from observational data for 87 Local-Group dwarf galaxies, Patej and Loeb used a stellar population synthesis code to evolve the galaxies backward in time to redshifts of z = 6 and 7. Next, they narrowed this sample to only those dwarfs for which most star

  6. In pursuit of our ancestors' hand laterality.

    PubMed

    Bargalló, Amèlia; Mosquera, Marina; Lozano, Sergi

    2017-10-01

    The aim of this paper is to apply a previously published method (Bargalló and Mosquera, 2014) to the archaeological record, allowing us to identify the hand laterality of our ancestors and determine when and how this feature, which is exhibited most strongly in humans, appeared in our evolutionary history. The method focuses on identifying handedness by looking at the technical features of the flakes produced by a single knapper, and discovering how many flakes are required to ascertain their hand preference. This method can potentially be applied to the majority of archaeological sites, since flakes are the most abundant stone tools, and stone tools are the most widespread and widely-preserved remains from prehistory. For our study, we selected two Spanish sites: Gran Dolina-TD10.1 (Atapuerca) and Abric Romaní (Barcelona), which were occupied by pre-Neanderthal and Neanderthal populations, respectively. Our analyses indicate that a minimum number of eight flakes produced by the same knapper is required to ascertain their hand preference. Even though this figure is relatively low, it is quite difficult to obtain from many archaeological sites. In addition, there is no single technical feature that provides information about handedness, instead there is a combination of eight technical features, localised on the striking platforms and ventral surfaces. The raw material is not relevant where good quality rocks are used, in this case quartzite and flint, since most of them retain the technical features required for the analysis. Expertise is not an issue either, since the technical features analysed here only correlate with handedness (Bargalló and Mosquera, 2014). Our results allow us to tentatively identify one right-handed knapper among the pre-Neanderthals of level TD10.1 at Gran Dolina (Atapuerca), while four of the five Neanderthals analysed from Abric Romaní were right-handed. The hand preference of the fifth knapper from that location (AR5) remains unclear

  7. Mammalian pheromones.

    PubMed

    Liberles, Stephen D

    2014-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors.

  8. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  9. Mammalian skin evolution: a reevaluation.

    PubMed

    Maderson, P F A

    2003-06-01

    A 1972 model for the evolutionary origin of hair suggested a primary mechanoreceptor role improving behavioral thermoregulation contributed to the success of late Paleozoic mammal-like reptiles. An insulatory role appeared secondarily subsequent to protohair multiplication. That model is updated in light of new data on (a) palaeoecology of mammalian ancestors; (b) involvement of HRPs in keratinization; (c) lipogenic lamellar bodies that form the barrier to cutaneous water loss; and (d) growth factors involved in hair follicle embryogenesis and turnover. It is now proposed that multiplication of sensory protohairs caused by mutations in patterning genes initially protected the delicate barrier tissues and eventually produced the minimal morphology necessary for an insulatory pelage. The latter permitted Mesozoic mammals to occupy the nocturnal niche 'in the shadow of dinosaurs'. When the giant reptiles became extinct, mammals underwent rapid radiation and reemerged as the dominant terrestrial vertebrates.

  10. LXRα and LXRβ Nuclear Receptors Evolved in the Common Ancestor of Gnathostomes

    PubMed Central

    Fonseca, Elza; Ruivo, Raquel; Lopes-Marques, Mónica; Zhang, Huixian; Santos, Miguel M.; Venkatesh, Byrappa

    2017-01-01

    Nuclear receptors (NRs) regulate numerous aspects of the endocrine system. They mediate endogenous and exogenous cues, ensuring a homeostatic control of development and metabolism. Gene duplication, loss and mutation have shaped the repertoire and function of NRs in metazoans. Here, we examine the evolution of a pivotal orchestrator of cholesterol metabolism in vertebrates, the liver X receptors (LXRs). Previous studies suggested that LXRα and LXRβ genes emerged in the mammalian ancestor. However, we show through genome analysis and functional assay that bona fide LXRα and LXRβ orthologues are present in reptiles, coelacanth and chondrichthyans but not in cyclostomes. These findings show that LXR duplicated before gnathostome radiation, followed by asymmetric paralogue loss in some lineages. We suggest that a tighter control of cholesterol levels in vertebrates was achieved through the exploitation of a wider range of oxysterols, an ability contingent on ligand-binding pocket remodeling. PMID:28057729

  11. Proposed Ancestors of Phage Nucleic Acid Packaging Motors (and Cells)

    PubMed Central

    Serwer, Philip

    2011-01-01

    I present a hypothesis that begins with the proposal that abiotic ancestors of phage RNA and DNA packaging systems (and cells) include mobile shells with an internal, molecule-transporting cavity. The foundations of this hypothesis include the conjecture that current nucleic acid packaging systems have imprints from abiotic ancestors. The abiotic shells (1) initially imbibe and later also bind and transport organic molecules, thereby providing a means for producing molecular interactions that are links in the chain of events that produces ancestors to the first molecules that are both information carrying and enzymatically active, and (2) are subsequently scaffolds on which proteins assemble to form ancestors common to both shells of viral capsids and cell membranes. Emergence of cells occurs via aggregation and merger of shells and internal contents. The hypothesis continues by using proposed imprints of abiotic and biotic ancestors to deduce an ancestral thermal ratchet-based DNA packaging motor that subsequently evolves to integrate a DNA packaging ATPase that provides a power stroke. PMID:21994778

  12. Distribution of repetitions of ancestors in genealogical trees

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard; Manrubia, Susanna C.; Zanette, Damián H.

    2000-06-01

    We calculate the probability distribution of repetitions of ancestors in a genealogical tree for simple neutral models of a closed population with sexual reproduction and non-overlapping generations. Each ancestor at generation g in the past has a weight w which is (up to a normalization) the number of times this ancestor appears in the genealogical tree of an individual at present. The distribution Pg( w) of these weights reaches a stationary shape P∞( w), for large g, i.e., for a large number of generations back in the past. For small w, P ∞(w) is a power law ( P∞( w)∼ wβ), with a non-trivial exponent β which can be computed exactly using a standard procedure of the renormalization group approach. Some extensions of the model are discussed and the effect of these variants on the shape of P∞( w) are analysed.

  13. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  14. The Ancestor Project: Aboriginal Computer Education through Storytelling

    ERIC Educational Resources Information Center

    Weston, Marla; Biin, Dianne

    2013-01-01

    The goal of the ANCESTOR program is to use digital storytelling as a means of promoting an interest in technology careers for Aboriginal learners, as well as increasing cultural literacy. A curriculum was developed and first tested with Aboriginal students at the LÁU,WELNEW Tribal School near Victoria, British Columbia, Canada. Based on feedback…

  15. Trigonometric Transforms for Image Reconstruction

    DTIC Science & Technology

    1998-06-01

    applying trigo - nometric transforms to image reconstruction problems. Many existing linear image reconstruc- tion techniques rely on knowledge of...ancestors. The research performed for this dissertation represents the first time the symmetric convolution-multiplication property of trigo - nometric...Fourier domain. The traditional representation of these filters will be similar to new trigo - nometric transform versions derived in later chapters

  16. The mitochondrial ancestor of bonobos and the origin of their major haplogroups.

    PubMed

    Takemoto, Hiroyuki; Kawamoto, Yoshi; Higuchi, Shoko; Makinose, Emiko; Hart, John A; Hart, Térese B; Sakamaki, Tetsuya; Tokuyama, Nahoko; Reinartz, Gay E; Guislain, Patrick; Dupain, Jef; Cobden, Amy K; Mulavwa, Mbangi N; Yangozene, Kumugo; Darroze, Serge; Devos, Céline; Furuichi, Takeshi

    2017-01-01

    We report here where the most recent common ancestor (MRCA) of bonobos (Pan paniscus) ranged and how they dispersed throughout their current habitat. Mitochondrial DNA (mtDNA) molecular dating to analyze the time to MRCA (TMRCA) and the major mtDNA haplogroups of wild bonobos were performed using new estimations of divergence time of bonobos from other Pan species to investigate the dispersal routes of bonobos over the forest area of the Congo River's left bank. The TMRCA of bonobos was estimated to be 0.64 or 0.95 million years ago (Ma). Six major haplogroups had very old origins of 0.38 Ma or older. The reconstruction of the ancestral area revealed the mitochondrial ancestor of the bonobo populations ranged in the eastern area of the current bonobos' habitat. The haplogroups may have been formed from either the riparian forests along the Congo River or the center of the southern Congo Basin. Fragmentation of the forest refugia during the cooler periods may have greatly affected the formation of the genetic structure of bonobo populations.

  17. The mitochondrial ancestor of bonobos and the origin of their major haplogroups

    PubMed Central

    Takemoto, Hiroyuki; Kawamoto, Yoshi; Higuchi, Shoko; Makinose, Emiko; Furuichi, Takeshi

    2017-01-01

    We report here where the most recent common ancestor (MRCA) of bonobos (Pan paniscus) ranged and how they dispersed throughout their current habitat. Mitochondrial DNA (mtDNA) molecular dating to analyze the time to MRCA (TMRCA) and the major mtDNA haplogroups of wild bonobos were performed using new estimations of divergence time of bonobos from other Pan species to investigate the dispersal routes of bonobos over the forest area of the Congo River’s left bank. The TMRCA of bonobos was estimated to be 0.64 or 0.95 million years ago (Ma). Six major haplogroups had very old origins of 0.38 Ma or older. The reconstruction of the ancestral area revealed the mitochondrial ancestor of the bonobo populations ranged in the eastern area of the current bonobos’ habitat. The haplogroups may have been formed from either the riparian forests along the Congo River or the center of the southern Congo Basin. Fragmentation of the forest refugia during the cooler periods may have greatly affected the formation of the genetic structure of bonobo populations. PMID:28467422

  18. Evolutionary paths to mammalian cochleae.

    PubMed

    Manley, Geoffrey A

    2012-12-01

    Evolution of the cochlea and high-frequency hearing (>20 kHz; ultrasonic to humans) in mammals has been a subject of research for many years. Recent advances in paleontological techniques, especially the use of micro-CT scans, now provide important new insights that are here reviewed. True mammals arose more than 200 million years (Ma) ago. Of these, three lineages survived into recent geological times. These animals uniquely developed three middle ear ossicles, but these ossicles were not initially freely suspended as in modern mammals. The earliest mammalian cochleae were only about 2 mm long and contained a lagena macula. In the multituberculate and monotreme mammalian lineages, the cochlea remained relatively short and did not coil, even in modern representatives. In the lineage leading to modern therians (placental and marsupial mammals), cochlear coiling did develop, but only after a period of at least 60 Ma. Even Late Jurassic mammals show only a 270 ° cochlear coil and a cochlear canal length of merely 3 mm. Comparisons of modern organisms, mammalian ancestors, and the state of the middle ear strongly suggest that high-frequency hearing (>20 kHz) was not realized until the early Cretaceous (~125 Ma). At that time, therian mammals arose and possessed a fully coiled cochlea. The evolution of modern features of the middle ear and cochlea in the many later lineages of therians was, however, a mosaic and different features arose at different times. In parallel with cochlear structural evolution, prestins in therian mammals evolved into effective components of a new motor system. Ultrasonic hearing developed quite late-the earliest bat cochleae (~60 Ma) did not show features characteristic of those of modern bats that are sensitive to high ultrasonic frequencies.

  19. Reconstruction and evolutionary history of eutherian chromosomes.

    PubMed

    Kim, Jaebum; Farré, Marta; Auvil, Loretta; Capitanu, Boris; Larkin, Denis M; Ma, Jian; Lewin, Harris A

    2017-07-03

    Whole-genome assemblies of 19 placental mammals and two outgroup species were used to reconstruct the order and orientation of syntenic fragments in chromosomes of the eutherian ancestor and six other descendant ancestors leading to human. For ancestral chromosome reconstructions, we developed an algorithm (DESCHRAMBLER) that probabilistically determines the adjacencies of syntenic fragments using chromosome-scale and fragmented genome assemblies. The reconstructed chromosomes of the eutherian, boreoeutherian, and euarchontoglires ancestor each included >80% of the entire length of the human genome, whereas reconstructed chromosomes of the most recent common ancestor of simians, catarrhini, great apes, and humans and chimpanzees included >90% of human genome sequence. These high-coverage reconstructions permitted reliable identification of chromosomal rearrangements over ∼105 My of eutherian evolution. Orangutan was found to have eight chromosomes that were completely conserved in homologous sequence order and orientation with the eutherian ancestor, the largest number for any species. Ruminant artiodactyls had the highest frequency of intrachromosomal rearrangements, and interchromosomal rearrangements dominated in murid rodents. A total of 162 chromosomal breakpoints in evolution of the eutherian ancestral genome to the human genome were identified; however, the rate of rearrangements was significantly lower (0.80/My) during the first ∼60 My of eutherian evolution, then increased to greater than 2.0/My along the five primate lineages studied. Our results significantly expand knowledge of eutherian genome evolution and will facilitate greater understanding of the role of chromosome rearrangements in adaptation, speciation, and the etiology of inherited and spontaneously occurring diseases.

  20. A proposal of the proteome before the last universal common ancestor (LUCA)

    NASA Astrophysics Data System (ADS)

    de Farias, Sávio Torres; Rêgo, Thais Gaudêncio; José, Marco V.

    2016-01-01

    The search for understanding the biological nature of the last universal common ancestor (LUCA) has been a theoretical challenge and has sparked intense debate in the scientific community. We reconstructed the ancestral sequences of tRNAs in order to test the hypothesis that these molecules originated the first genes. The results showed that the proteome before LUCA may have been composed of basal energy metabolism, namely, compounds with three carbons in the glycolytic pathway, which operated as a distribution centre of substrates for the development of metabolic pathways of nucleotides, lipids and amino acids. Thus, we present a proposal for metabolism in organisms before LUCA that was the initial core for the assembly of further metabolic pathways.

  1. A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages.

    PubMed

    Gueidan, C; Villaseñor, C R; de Hoog, G S; Gorbushina, A A; Untereiner, W A; Lutzoni, F

    2008-01-01

    Rock surfaces are unique terrestrial habitats in which rapid changes in the intensity of radiation, temperature, water supply and nutrient availability challenge the survival of microbes. A specialised, but diverse group of free-living, melanised fungi are amongst the persistent settlers of bare rocks. Multigene phylogenetic analyses were used to study relationships of ascomycetes from a variety of substrates, with a dataset including a broad sampling of rock dwellers from different geographical locations. Rock-inhabiting fungi appear particularly diverse in the early diverging lineages of the orders Chaetothyriales and Verrucariales. Although these orders share a most recent common ancestor, their lifestyles are strikingly different. Verrucariales are mostly lichen-forming fungi, while Chaetothyriales, by contrast, are best known as opportunistic pathogens of vertebrates (e.g. Cladophialophora bantiana and Exophiala dermatitidis, both agents of fatal brain infections) and saprophytes. The rock-dwelling habit is shown here to be key to the evolution of these two ecologically disparate orders. The most recent common ancestor of Verrucariales and Chaetothyriales is reconstructed as a non-lichenised rock-inhabitant. Ancestral state reconstructions suggest Verrucariales as one of the independent ascomycetes group where lichenisation has evolved on a hostile rock surface that might have favored this shift to a symbiotic lifestyle. Rock-inhabiting fungi are also ancestral to opportunistic pathogens, as they are found in the early diverging lineages of Chaetothyriales. In Chaetothyriales and Verrucariales, specific morphological and physiological traits (here referred to as extremotolerance) evolved in response to stresses in extreme conditions prevailing on rock surfaces. These factors facilitated colonisation of various substrates including the brains of vertebrates by opportunistic fungal pathogens, as well as helped establishment of a stable lichen symbiosis.

  2. A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages

    PubMed Central

    Gueidan, C.; Villaseñor, C. R.; de Hoog, G. S.; Gorbushina, A. A.; Untereiner, W. A.; Lutzoni, F.

    2008-01-01

    Rock surfaces are unique terrestrial habitats in which rapid changes in the intensity of radiation, temperature, water supply and nutrient availability challenge the survival of microbes. A specialised, but diverse group of free-living, melanised fungi are amongst the persistent settlers of bare rocks. Multigene phylogenetic analyses were used to study relationships of ascomycetes from a variety of substrates, with a dataset including a broad sampling of rock dwellers from different geographical locations. Rock-inhabiting fungi appear particularly diverse in the early diverging lineages of the orders Chaetothyriales and Verrucariales. Although these orders share a most recent common ancestor, their lifestyles are strikingly different. Verrucariales are mostly lichen-forming fungi, while Chaetothyriales, by contrast, are best known as opportunistic pathogens of vertebrates (e.g. Cladophialophora bantiana and Exophiala dermatitidis, both agents of fatal brain infections) and saprophytes. The rock-dwelling habit is shown here to be key to the evolution of these two ecologically disparate orders. The most recent common ancestor of Verrucariales and Chaetothyriales is reconstructed as a non-lichenised rock-inhabitant. Ancestral state reconstructions suggest Verrucariales as one of the independent ascomycetes group where lichenisation has evolved on a hostile rock surface that might have favored this shift to a symbiotic lifestyle. Rock-inhabiting fungi are also ancestral to opportunistic pathogens, as they are found in the early diverging lineages of Chaetothyriales. In Chaetothyriales and Verrucariales, specific morphological and physiological traits (here referred to as extremotolerance) evolved in response to stresses in extreme conditions prevailing on rock surfaces. These factors facilitated colonisation of various substrates including the brains of vertebrates by opportunistic fungal pathogens, as well as helped establishment of a stable lichen symbiosis. PMID

  3. [Comparative embryology and mammalian cloning].

    PubMed

    Sakharova, N Iu; Chaĭlakhian, L M

    2010-01-01

    A hypothesis has been advanced that logically combines "contradictory" facts concerning the early mammalian development and shows a natural relationship between the embryos developing from a fertilized ovum and from cells of the inner cell mass of blastocyst. When studying the theoretical questions of cloning, it is necessary to take into consideration the peculiarities of prenatal mammalian ontogenesis, which make themselves evident upon comparison with other animals. The absence of yolk in the mammalian ovum defines sharp differences in the early development between mammals and other Amniota. The whole asynchronic cleavage results in the formation of the morula followed by the blastocyst, which hatches from zona pellucida and is implanted into the uterus tissue. This fact allows us to consider the blastocyst as a mammalian larva, which is fed thanks to maternal organism. It is known that, in the body of a larva (blastocyst), a new embryo develops from some somatic cells. This process is known as a polyembryony, which is typical for the development of some parasitic insects. The polyembryony in turn is a variant of somatic embryogenesis, which is a form of asexual reproduction. Thus, two different embryos, "conceptus" and "embryo proper", have different origin: the first forms by the sexual way and the second, by the asexual. The investigation of the mechanisms of somatic embryogenesis in mammals will help us to find conditions necessary for the full reprograming of donor somatic nuclei and provide the successful development of reconstructed embryos.

  4. Deciding Termination for Ancestor Match- Bounded String Rewriting Systems

    NASA Technical Reports Server (NTRS)

    Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes

    2005-01-01

    Termination of a string rewriting system can be characterized by termination on suitable recursively defined languages. This kind of termination criteria has been criticized for its lack of automation. In an earlier paper we have shown how to construct an automated termination criterion if the recursion is aligned with the rewrite relation. We have demonstrated the technique with Dershowitz's forward closure criterion. In this paper we show that a different approach is suitable when the recursion is aligned with the inverse of the rewrite relation. We apply this idea to Kurth's ancestor graphs and obtain ancestor match-bounded string rewriting systems. Termination is shown to be decidable for this class. The resulting method improves upon those based on match-boundedness or inverse match-boundedness.

  5. Reconstruction of the ancestral marsupial karyotype from comparative gene maps

    PubMed Central

    2013-01-01

    Background The increasing number of assembled mammalian genomes makes it possible to compare genome organisation across mammalian lineages and reconstruct chromosomes of the ancestral marsupial and therian (marsupial and eutherian) mammals. However, the reconstruction of ancestral genomes requires genome assemblies to be anchored to chromosomes. The recently sequenced tammar wallaby (Macropus eugenii) genome was assembled into over 300,000 contigs. We previously devised an efficient strategy for mapping large evolutionarily conserved blocks in non-model mammals, and applied this to determine the arrangement of conserved blocks on all wallaby chromosomes, thereby permitting comparative maps to be constructed and resolve the long debated issue between a 2n = 14 and 2n = 22 ancestral marsupial karyotype. Results We identified large blocks of genes conserved between human and opossum, and mapped genes corresponding to the ends of these blocks by fluorescence in situ hybridization (FISH). A total of 242 genes was assigned to wallaby chromosomes in the present study, bringing the total number of genes mapped to 554 and making it the most densely cytogenetically mapped marsupial genome. We used these gene assignments to construct comparative maps between wallaby and opossum, which uncovered many intrachromosomal rearrangements, particularly for genes found on wallaby chromosomes X and 3. Expanding comparisons to include chicken and human permitted the putative ancestral marsupial (2n = 14) and therian mammal (2n = 19) karyotypes to be reconstructed. Conclusions Our physical mapping data for the tammar wallaby has uncovered the events shaping marsupial genomes and enabled us to predict the ancestral marsupial karyotype, supporting a 2n = 14 ancestor. Futhermore, our predicted therian ancestral karyotype has helped to understand the evolution of the ancestral eutherian genome. PMID:24261750

  6. Possible involvement of SINEs in mammalian-specific brain formation.

    PubMed

    Sasaki, Takeshi; Nishihara, Hidenori; Hirakawa, Mika; Fujimura, Koji; Tanaka, Mikiko; Kokubo, Nobuhiro; Kimura-Yoshida, Chiharu; Matsuo, Isao; Sumiyama, Kenta; Saitou, Naruya; Shimogori, Tomomi; Okada, Norihiro

    2008-03-18

    Retroposons, such as short interspersed elements (SINEs) and long interspersed elements (LINEs), are the major constituents of higher vertebrate genomes. Although there are many examples of retroposons' acquiring function, none has been implicated in the morphological innovations specific to a certain taxonomic group. We previously characterized a SINE family, AmnSINE1, members of which constitute a part of conserved noncoding elements (CNEs) in mammalian genomes. We proposed that this family acquired genomic functionality or was exapted after retropositioning in a mammalian ancestor. Here we identified 53 new AmnSINE1 loci and refined 124 total loci, two of which were further analyzed. Using a mouse enhancer assay, we demonstrate that one SINE locus, AS071, 178 kbp from the gene FGF8 (fibroblast growth factor 8), is an enhancer that recapitulates FGF8 expression in two regions of the developing forebrain, namely the diencephalon and the hypothalamus. Our gain-of-function analysis revealed that FGF8 expression in the diencephalon controls patterning of thalamic nuclei, which act as a relay center of the neocortex, suggesting a role for FGF8 in mammalian-specific forebrain patterning. Furthermore, we demonstrated that the locus, AS021, 392 kbp from the gene SATB2, controls gene expression in the lateral telencephalon, which is thought to be a signaling center during development. These results suggest important roles for SINEs in the development of the mammalian neuronal network, a part of which was initiated with the exaptation of AmnSINE1 in a common mammalian ancestor.

  7. Ancestor reverence and mental health in South Africa.

    PubMed

    Berg, Astrid

    2003-06-01

    The great majority of South Africa's people consult traditional healers. The deeper meaning of much traditional healing centres on ancestor reverence. This belief system and its accompanying rituals may positively influence the mental health of the individual and the community. Among traditional Xhosa-speaking peoples, the relationship with the ancestors is given expression in life cycle rituals that have much in common with Western psychotherapeutic principles and practices. The common thread that underpins many rituals is that of making links via concrete, literal means. Examples include the participation of the community in the healing of the individual; the linking of body and mind through dancing and drumming. Dreams form an essential connection between conscious life and the unconscious. Understanding the psychological depth of these practices is important so that a respectful relationship between Western-trained professionals and traditional healers can develop. Analytical psychology, with its notion of the collective unconscious has a particular contribution to make to cross-cultural understanding. The ancestors may be understood as archetypal representations of the collective unconscious.

  8. Aplacophoran Mollusks Evolved from Ancestors with Polyplacophoran-like Features

    PubMed Central

    Scherholz, Maik; Redl, Emanuel; Wollesen, Tim; Todt, Christiane; Wanninger, Andreas

    2013-01-01

    Summary Mollusca is an animal phylum with vast morphological diversity and includes worm-shaped aplacophorans, snails, bivalves, and the complex cephalopods [1]. The interrelationships of these class-level taxa are still contentious [2, 3], but recent phylogenomic analyses suggest a dichotomy at the base of Mollusca, resulting in a monophyletic Aculifera (comprising the shell-less, sclerite-bearing aplacophorans and the eight-shelled polyplacophorans) and Conchifera (all other, primarily univalved groups) [4, 5]. The Aculifera concept has recently gained support via description of the fossil Kulindroplax, which shows both aplacophoran- and polyplacophoran-like features and suggests that the aplacophorans originated from a shelled ancestor [6], but the overall morphology of the last common aculiferan ancestor remains obscure. Here we show that larvae of the aplacophoran Wirenia argentea have several sets of muscles previously known only from polyplacophoran mollusks. Most of these are lost during metamorphosis, and we interpret them as ontogenetic remnants of an ancestor with a complex, polyplacophoran-like musculature. Moreover, we find that the first seven pairs of dorsoventral muscles develop synchronously in Wirenia, similar to juvenile polyplacophorans [7], which supports the conclusions based on the seven-shelled Kulindroplax. Accordingly, we argue that the simple body plan of recent aplacophorans is the result of simplification and does not represent a basal molluscan condition. PMID:24139743

  9. Brucella spp. of amphibians comprise genomically diverse motile strains competent for replication in macrophages and survival in mammalian hosts

    PubMed Central

    Al Dahouk, Sascha; Köhler, Stephan; Occhialini, Alessandra; Jiménez de Bagüés, María Pilar; Hammerl, Jens Andre; Eisenberg, Tobias; Vergnaud, Gilles; Cloeckaert, Axel; Zygmunt, Michel S.; Whatmore, Adrian M.; Melzer, Falk; Drees, Kevin P.; Foster, Jeffrey T.; Wattam, Alice R.; Scholz, Holger C.

    2017-01-01

    Twenty-one small Gram-negative motile coccobacilli were isolated from 15 systemically diseased African bullfrogs (Pyxicephalus edulis), and were initially identified as Ochrobactrum anthropi by standard microbiological identification systems. Phylogenetic reconstructions using combined molecular analyses and comparative whole genome analysis of the most diverse of the bullfrog strains verified affiliation with the genus Brucella and placed the isolates in a cluster containing B. inopinata and the other non-classical Brucella species but also revealed significant genetic differences within the group. Four representative but molecularly and phenotypically diverse strains were used for in vitro and in vivo infection experiments. All readily multiplied in macrophage-like murine J774-cells, and their overall intramacrophagic growth rate was comparable to that of B. inopinata BO1 and slightly higher than that of B. microti CCM 4915. In the BALB/c murine model of infection these strains replicated in both spleen and liver, but were less efficient than B. suis 1330. Some strains survived in the mammalian host for up to 12 weeks. The heterogeneity of these novel strains hampers a single species description but their phenotypic and genetic features suggest that they represent an evolutionary link between a soil-associated ancestor and the mammalian host-adapted pathogenic Brucella species. PMID:28300153

  10. Akaryotes and Eukaryotes are independent descendants of a universal common ancestor.

    PubMed

    Harish, Ajith; Kurland, Charles G

    2017-07-01

    We reconstructed a global tree of life (ToL) with non-reversible and non-stationary models of genome evolution that root trees intrinsically. We implemented Bayesian model selection tests and compared the statistical support for four conflicting ToL hypotheses. We show that reconstructions obtained with a Bayesian implementation (Klopfstein et al., 2015) are consistent with reconstructions obtained with an empirical Sankoff parsimony (ESP) implementation (Harish et al., 2013). Both are based on the genome contents of coding sequences for protein domains (superfamilies) from hundreds of genomes. Thus, we conclude that the independent descent of Eukaryotes and Akaryotes (archaea and bacteria) from the universal common ancestor (UCA) is the most probable as well as the most parsimonious hypothesis for the evolutionary origins of extant genomes. Reconstructions of ancestral proteomes by both Bayesian and ESP methods suggest that at least 70% of unique domain-superfamilies known in extant species were present in the UCA. In addition, identification of a vast majority (96%) of the mitochondrial superfamilies in the UCA proteome precludes a symbiotic hypothesis for the origin of eukaryotes. Accordingly, neither the archaeal origin of eukaryotes nor the bacterial origin of mitochondria is supported by the data. The proteomic complexity of the UCA suggests that the evolution of cellular phenotypes in the two primordial lineages, Akaryotes and Eukaryotes, was driven largely by duplication of common superfamilies as well as by loss of unique superfamilies. Finally, innovation of novel superfamilies has played a surprisingly small role in the evolution of Akaryotes and only a marginal role in the evolution of Eukaryotes. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. Diet and the evolution of the earliest human ancestors.

    PubMed

    Teaford, M F; Ungar, P S

    2000-12-05

    Over the past decade, discussions of the evolution of the earliest human ancestors have focused on the locomotion of the australopithecines. Recent discoveries in a broad range of disciplines have raised important questions about the influence of ecological factors in early human evolution. Here we trace the cranial and dental traits of the early australopithecines through time, to show that between 4.4 million and 2.3 million years ago, the dietary capabilities of the earliest hominids changed dramatically, leaving them well suited for life in a variety of habitats and able to cope with significant changes in resource availability associated with long-term and short-term climatic fluctuations.

  12. Gene content of LUCA, the last universal common ancestor.

    PubMed

    Mushegian, Arcady

    2008-05-01

    Comparative genomics and modern phylogenetic approaches allow us to infer the gene content of LUCA, the Last Universal Common Ancestor of all known currently living cellular organisms. Most of the estimates produce a putative LUCA with 500-1000 protein-coding genes and biochemically coherent metabolism, if the average rates of gene gains (gene emergence plus horizontal gene transfer) and gene losses per family are allowed to be close to each other. This estimate is not strongly sensitive to the topology of the Tree of Life, but the identity of the genes that are placed in LUCA may depend on the position of the deep branches and the root of the tree.

  13. Fossil hominin shoulders support an African ape-like last common ancestor of humans and chimpanzees.

    PubMed

    Young, Nathan M; Capellini, Terence D; Roach, Neil T; Alemseged, Zeresenay

    2015-09-22

    Reconstructing the behavioral shifts that drove hominin evolution requires knowledge of the timing, magnitude, and direction of anatomical changes over the past ∼6-7 million years. These reconstructions depend on assumptions regarding the morphotype of the Homo-Pan last common ancestor (LCA). However, there is little consensus for the LCA, with proposed models ranging from African ape to orangutan or generalized Miocene ape-like. The ancestral state of the shoulder is of particular interest because it is functionally associated with important behavioral shifts in hominins, such as reduced arboreality, high-speed throwing, and tool use. However, previous morphometric analyses of both living and fossil taxa have yielded contradictory results. Here, we generated a 3D morphospace of ape and human scapular shape to plot evolutionary trajectories, predict ancestral morphologies, and directly test alternative evolutionary hypotheses using the hominin fossil evidence. We show that the most parsimonious model for the evolution of hominin shoulder shape starts with an African ape-like ancestral state. We propose that the shoulder evolved gradually along a single morphocline, achieving modern human-like configuration and function within the genus Homo. These data are consistent with a slow, progressive loss of arboreality and increased tool use throughout human evolution.

  14. Fossil hominin shoulders support an African ape-like last common ancestor of humans and chimpanzees

    PubMed Central

    Young, Nathan M.; Capellini, Terence D.; Roach, Neil T.; Alemseged, Zeresenay

    2015-01-01

    Reconstructing the behavioral shifts that drove hominin evolution requires knowledge of the timing, magnitude, and direction of anatomical changes over the past ∼6–7 million years. These reconstructions depend on assumptions regarding the morphotype of the Homo–Pan last common ancestor (LCA). However, there is little consensus for the LCA, with proposed models ranging from African ape to orangutan or generalized Miocene ape-like. The ancestral state of the shoulder is of particular interest because it is functionally associated with important behavioral shifts in hominins, such as reduced arboreality, high-speed throwing, and tool use. However, previous morphometric analyses of both living and fossil taxa have yielded contradictory results. Here, we generated a 3D morphospace of ape and human scapular shape to plot evolutionary trajectories, predict ancestral morphologies, and directly test alternative evolutionary hypotheses using the hominin fossil evidence. We show that the most parsimonious model for the evolution of hominin shoulder shape starts with an African ape-like ancestral state. We propose that the shoulder evolved gradually along a single morphocline, achieving modern human-like configuration and function within the genus Homo. These data are consistent with a slow, progressive loss of arboreality and increased tool use throughout human evolution. PMID:26351685

  15. Origin and Evolution of Water Oxidation before the Last Common Ancestor of the Cyanobacteria

    PubMed Central

    Cardona, Tanai; Murray, James W.; Rutherford, A. William

    2015-01-01

    Photosystem II, the water oxidizing enzyme, altered the course of evolution by filling the atmosphere with oxygen. Here, we reconstruct the origin and evolution of water oxidation at an unprecedented level of detail by studying the phylogeny of all D1 subunits, the main protein coordinating the water oxidizing cluster (Mn4CaO5) of Photosystem II. We show that D1 exists in several forms making well-defined clades, some of which could have evolved before the origin of water oxidation and presenting many atypical characteristics. The most ancient form is found in the genome of Gloeobacter kilaueensis JS-1 and this has a C-terminus with a higher sequence identity to D2 than to any other D1. Two other groups of early evolving D1 correspond to those expressed under prolonged far-red illumination and in darkness. These atypical D1 forms are characterized by a dramatically different Mn4CaO5 binding site and a Photosystem II containing such a site may assemble an unconventional metal cluster. The first D1 forms with a full set of ligands to the Mn4CaO5 cluster are grouped with D1 proteins expressed only under low oxygen concentrations and the latest evolving form is the dominant type of D1 found in all cyanobacteria and plastids. In addition, we show that the plastid ancestor had a D1 more similar to those in early branching Synechococcus. We suggest each one of these forms of D1 originated from transitional forms at different stages toward the innovation and optimization of water oxidation before the last common ancestor of all known cyanobacteria. PMID:25657330

  16. Origin and Evolution of Water Oxidation before the Last Common Ancestor of the Cyanobacteria.

    PubMed

    Cardona, Tanai; Murray, James W; Rutherford, A William

    2015-05-01

    Photosystem II, the water oxidizing enzyme, altered the course of evolution by filling the atmosphere with oxygen. Here, we reconstruct the origin and evolution of water oxidation at an unprecedented level of detail by studying the phylogeny of all D1 subunits, the main protein coordinating the water oxidizing cluster (Mn4CaO5) of Photosystem II. We show that D1 exists in several forms making well-defined clades, some of which could have evolved before the origin of water oxidation and presenting many atypical characteristics. The most ancient form is found in the genome of Gloeobacter kilaueensis JS-1 and this has a C-terminus with a higher sequence identity to D2 than to any other D1. Two other groups of early evolving D1 correspond to those expressed under prolonged far-red illumination and in darkness. These atypical D1 forms are characterized by a dramatically different Mn4CaO5 binding site and a Photosystem II containing such a site may assemble an unconventional metal cluster. The first D1 forms with a full set of ligands to the Mn4CaO5 cluster are grouped with D1 proteins expressed only under low oxygen concentrations and the latest evolving form is the dominant type of D1 found in all cyanobacteria and plastids. In addition, we show that the plastid ancestor had a D1 more similar to those in early branching Synechococcus. We suggest each one of these forms of D1 originated from transitional forms at different stages toward the innovation and optimization of water oxidation before the last common ancestor of all known cyanobacteria. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Reptiles and Mammals Have Differentially Retained Long Conserved Noncoding Sequences from the Amniote Ancestor

    PubMed Central

    Janes, D.E.; Chapus, C.; Gondo, Y.; Clayton, D.F.; Sinha, S.; Blatti, C.A.; Organ, C.L.; Fujita, M.K.; Balakrishnan, C.N.; Edwards, S.V.

    2011-01-01

    Many noncoding regions of genomes appear to be essential to genome function. Conservation of large numbers of noncoding sequences has been reported repeatedly among mammals but not thus far among birds and reptiles. By searching genomes of chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and green anole (Anolis carolinensis), we quantified the conservation among birds and reptiles and across amniotes of long, conserved noncoding sequences (LCNS), which we define as sequences ≥500 bp in length and exhibiting ≥95% similarity between species. We found 4,294 LCNS shared between chicken and zebra finch and 574 LCNS shared by the two birds and Anolis. The percent of genomes comprised by LCNS in the two birds (0.0024%) is notably higher than the percent in mammals (<0.0003% to <0.001%), differences that we show may be explained in part by differences in genome-wide substitution rates. We reconstruct a large number of LCNS for the amniote ancestor (ca. 8,630) and hypothesize differential loss and substantial turnover of these sites in descendent lineages. By contrast, we estimated a small role for recruitment of LCNS via acquisition of novel functions over time. Across amniotes, LCNS are significantly enriched with transcription factor binding sites for many developmental genes, and 2.9% of LCNS shared between the two birds show evidence of expression in brain expressed sequence tag databases. These results show that the rate of retention of LCNS from the amniote ancestor differs between mammals and Reptilia (including birds) and that this may reflect differing roles and constraints in gene regulation. PMID:21183607

  18. Reptiles and mammals have differentially retained long conserved noncoding sequences from the amniote ancestor.

    PubMed

    Janes, D E; Chapus, C; Gondo, Y; Clayton, D F; Sinha, S; Blatti, C A; Organ, C L; Fujita, M K; Balakrishnan, C N; Edwards, S V

    2011-01-01

    Many noncoding regions of genomes appear to be essential to genome function. Conservation of large numbers of noncoding sequences has been reported repeatedly among mammals but not thus far among birds and reptiles. By searching genomes of chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and green anole (Anolis carolinensis), we quantified the conservation among birds and reptiles and across amniotes of long, conserved noncoding sequences (LCNS), which we define as sequences ≥500 bp in length and exhibiting ≥95% similarity between species. We found 4,294 LCNS shared between chicken and zebra finch and 574 LCNS shared by the two birds and Anolis. The percent of genomes comprised by LCNS in the two birds (0.0024%) is notably higher than the percent in mammals (<0.0003% to <0.001%), differences that we show may be explained in part by differences in genome-wide substitution rates. We reconstruct a large number of LCNS for the amniote ancestor (ca. 8,630) and hypothesize differential loss and substantial turnover of these sites in descendent lineages. By contrast, we estimated a small role for recruitment of LCNS via acquisition of novel functions over time. Across amniotes, LCNS are significantly enriched with transcription factor binding sites for many developmental genes, and 2.9% of LCNS shared between the two birds show evidence of expression in brain expressed sequence tag databases. These results show that the rate of retention of LCNS from the amniote ancestor differs between mammals and Reptilia (including birds) and that this may reflect differing roles and constraints in gene regulation.

  19. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time.

    PubMed

    Groussin, Mathieu; Mazel, Florent; Sanders, Jon G; Smillie, Chris S; Lavergne, Sébastien; Thuiller, Wilfried; Alm, Eric J

    2017-02-23

    Whether mammal-microbiome interactions are persistent and specific over evolutionary time is controversial. Here we show that host phylogeny and major dietary shifts have affected the distribution of different gut bacterial lineages and did so on vastly different bacterial phylogenetic resolutions. Diet mostly influences the acquisition of ancient and large microbial lineages. Conversely, correlation with host phylogeny is mostly seen among more recently diverged bacterial lineages, consistent with processes operating at similar timescales to host evolution. Considering microbiomes at appropriate phylogenetic scales allows us to model their evolution along the mammalian tree and to infer ancient diets from the predicted microbiomes of mammalian ancestors. Phylogenetic analyses support co-speciation as having a significant role in the evolution of mammalian gut microbiome compositions. Highly co-speciating bacterial genera are also associated with immune diseases in humans, laying a path for future studies that probe these co-speciating bacteria for signs of co-evolution.

  20. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time

    PubMed Central

    Groussin, Mathieu; Mazel, Florent; Sanders, Jon G.; Smillie, Chris S.; Lavergne, Sébastien; Thuiller, Wilfried; Alm, Eric J.

    2017-01-01

    Whether mammal–microbiome interactions are persistent and specific over evolutionary time is controversial. Here we show that host phylogeny and major dietary shifts have affected the distribution of different gut bacterial lineages and did so on vastly different bacterial phylogenetic resolutions. Diet mostly influences the acquisition of ancient and large microbial lineages. Conversely, correlation with host phylogeny is mostly seen among more recently diverged bacterial lineages, consistent with processes operating at similar timescales to host evolution. Considering microbiomes at appropriate phylogenetic scales allows us to model their evolution along the mammalian tree and to infer ancient diets from the predicted microbiomes of mammalian ancestors. Phylogenetic analyses support co-speciation as having a significant role in the evolution of mammalian gut microbiome compositions. Highly co-speciating bacterial genera are also associated with immune diseases in humans, laying a path for future studies that probe these co-speciating bacteria for signs of co-evolution. PMID:28230052

  1. Evolutionary tree reconstruction

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Kanefsky, Bob

    1990-01-01

    It is described how Minimum Description Length (MDL) can be applied to the problem of DNA and protein evolutionary tree reconstruction. If there is a set of mutations that transform a common ancestor into a set of the known sequences, and this description is shorter than the information to encode the known sequences directly, then strong evidence for an evolutionary relationship has been found. A heuristic algorithm is described that searches for the simplest tree (smallest MDL) that finds close to optimal trees on the test data. Various ways of extending the MDL theory to more complex evolutionary relationships are discussed.

  2. Diet and the evolution of the earliest human ancestors

    PubMed Central

    Teaford, Mark F.; Ungar, Peter S.

    2000-01-01

    Over the past decade, discussions of the evolution of the earliest human ancestors have focused on the locomotion of the australopithecines. Recent discoveries in a broad range of disciplines have raised important questions about the influence of ecological factors in early human evolution. Here we trace the cranial and dental traits of the early australopithecines through time, to show that between 4.4 million and 2.3 million years ago, the dietary capabilities of the earliest hominids changed dramatically, leaving them well suited for life in a variety of habitats and able to cope with significant changes in resource availability associated with long-term and short-term climatic fluctuations. PMID:11095758

  3. Ontogeny of the maxilla in Neanderthals and their ancestors.

    PubMed

    Lacruz, Rodrigo S; Bromage, Timothy G; O'Higgins, Paul; Arsuaga, Juan-Luis; Stringer, Chris; Godinho, Ricardo Miguel; Warshaw, Johanna; Martínez, Ignacio; Gracia-Tellez, Ana; de Castro, José María Bermúdez; Carbonell, Eudald

    2015-12-07

    Neanderthals had large and projecting (prognathic) faces similar to those of their putative ancestors from Sima de los Huesos (SH) and different from the retracted modern human face. When such differences arose during development and the morphogenetic modifications involved are unknown. We show that maxillary growth remodelling (bone formation and resorption) of the Devil's Tower (Gibraltar 2) and La Quina 18 Neanderthals and four SH hominins, all sub-adults, show extensive bone deposition, whereas in modern humans extensive osteoclastic bone resorption is found in the same regions. This morphogenetic difference is evident by ∼5 years of age. Modern human faces are distinct from those of the Neanderthal and SH fossils in part because their postnatal growth processes differ markedly. The growth remodelling identified in these fossil hominins is shared with Australopithecus and early Homo but not with modern humans suggesting that the modern human face is developmentally derived.

  4. Looking for the Last Universal Common Ancestor (LUCA).

    PubMed

    Koskela, Minna; Annila, Arto

    2012-01-09

    Genomic sequences across diverse species seem to align towards a common ancestry, eventually implying that eons ago some universal antecedent organism would have lived on the face of Earth. However, when evolution is understood not only as a biological process but as a general thermodynamic process, it becomes apparent that the quest for the last universal common ancestor is unattainable. Ambiguities in alignments are unavoidable because the driving forces and paths of evolution cannot be separated from each other. Thus tracking down life's origin is by its nature a non-computable task. The thermodynamic tenet clarifies that evolution is a path-dependent process of least-time consumption of free energy. The natural process is without a demarcation line between animate and inanimate.

  5. node.dating: dating ancestors in phylogenetic trees in R.

    PubMed

    Jones, Bradley R; Poon, Art F Y

    2017-03-15

    Phylogenetic trees encode the evolutionary distances between species or populations. With sufficient information, these evolutionary distances can be rescaled over time to provide estimates of the dates of the most recent ancestors of the species. Here we present the R program node.dating, divergence-time analysis software, which uses a maximum-likelihood method to estimate the dates of the internal nodes of a phylogenetic tree. node.dating is available as a part of the R v3.30 package ape v4.0 (cran.r-project.org). node.dating is also available in the GitHub repository: https://github.com/brj1/node.dating , along with supplementary software and tests. brj1@sfu.ca. Supplementary data are available at Bioinformatics online.

  6. Palaeogenomics of plants: synteny-based modelling of extinct ancestors.

    PubMed

    Abrouk, Michael; Murat, Florent; Pont, Caroline; Messing, Joachim; Jackson, Scott; Faraut, Thomas; Tannier, Eric; Plomion, Christophe; Cooke, Richard; Feuillet, Catherine; Salse, Jérôme

    2010-09-01

    In the past ten years, international initiatives have led to the development of large sets of genomic resources that allow comparative genomic studies between plant genomes at a high level of resolution. Comparison of map-based genomic sequences revealed shared intra-genomic duplications, providing new insights into the evolution of flowering plant genomes from common ancestors. Plant genomes can be presented as concentric circles, providing a new reference for plant chromosome evolutionary relationships and an efficient tool for gene annotation and cross-genome markers development. Recent palaeogenomic data demonstrate that whole-genome duplications have provided a motor for the evolutionary success of flowering plants over the last 50-70 million years. 2010 Elsevier Ltd. All rights reserved.

  7. Palaeogenomics in cereals: modeling of ancestors for modern species improvement.

    PubMed

    Salse, Jérôme; Feuillet, Catherine

    2011-03-01

    During the last decade, technological improvements led to the development of large sets of plant genomic resources permitting the emergence of high-resolution comparative genomic studies. Synteny-based identification of seven shared duplications in cereals led to the modeling of a common ancestral genome structure of 33.6 Mb structured in five protochromosomes containing 9138 protogenes and provided new insights into the evolution of cereal genomes from their extinct ancestors. Recent palaeogenomic data indicate that whole genome duplications were a driving force in the evolutionary success of cereals over the last 50 to 70 millions years. Finally, detailed synteny and duplication relationships led to an improved representation of cereal genomes in concentric circles, thus providing a new reference tool for improved gene annotation and cross-genome markers development. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  8. Ontogeny of the maxilla in Neanderthals and their ancestors

    PubMed Central

    Lacruz, Rodrigo S.; Bromage, Timothy G.; O'Higgins, Paul; Arsuaga, Juan-Luis; Stringer, Chris; Godinho, Ricardo Miguel; Warshaw, Johanna; Martínez, Ignacio; Gracia-Tellez, Ana; de Castro, José María Bermúdez; Carbonell, Eudald

    2015-01-01

    Neanderthals had large and projecting (prognathic) faces similar to those of their putative ancestors from Sima de los Huesos (SH) and different from the retracted modern human face. When such differences arose during development and the morphogenetic modifications involved are unknown. We show that maxillary growth remodelling (bone formation and resorption) of the Devil's Tower (Gibraltar 2) and La Quina 18 Neanderthals and four SH hominins, all sub-adults, show extensive bone deposition, whereas in modern humans extensive osteoclastic bone resorption is found in the same regions. This morphogenetic difference is evident by ∼5 years of age. Modern human faces are distinct from those of the Neanderthal and SH fossils in part because their postnatal growth processes differ markedly. The growth remodelling identified in these fossil hominins is shared with Australopithecus and early Homo but not with modern humans suggesting that the modern human face is developmentally derived. PMID:26639346

  9. Chemostratigraphic reconstruction of biofacies: Molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors

    NASA Astrophysics Data System (ADS)

    Moldowan, J. Michael; Dahl, Jeremy; Jacobson, Stephen R.; Huizinga, Bradley J.; Fago, Frederick J.; Shetty, Rupa; Watt, David S.; Peters, Kenneth E.

    1996-02-01

    New data from numerous detailed mass-spectrometric studies have detected triaromatic dinosteroids in Precambrian to Cenozoic rock samples. Triaromatic dinosteroids are organic geochemicals derived from dinosterols, compounds known in modern organisms to be the nearly exclusive widely occurring products of dinoflagellates. We observed the ubiquitous occurrence of these dinosteroids in 49 Late Triassic through Cretaceous marine source rocks and the absence of them in 13 Permian-Carboniferous source rocks synergistic with the dinoflagellate cyst record. However, finding dinosteroids in lower Paleozoic and Precambrian strata presents challenging results for molecular paleontologists, evolutionary biologists, palynologists, and especially for those concerned with the food web at various times of biological crisis. Other than the few species known as parasites and symbionts, many other dinoflagellate species are important as primary producers. The presence of Precambrian to Devonian triaromatic dinosteroids gives chemostratigraphic evidence of dinoflagellates (or other organisms with similar chemosynthetic capabilities) in rocks significantly older than the oldest undisputed dinoflagellate fossils (dinoflagellate cysts from the Middle Triassic, ˜ 240 Ma), and older than the putative Silurian ˜ 420 Ma) dinocyst,Arpylorus antiquus (Calandra) Sargent, from Tunisia. This systematic chemostratigraphic approach can shed light not only on lineages of dinoflagellates and their precursors, but potentially on many other lineages, especially bacteria, algae, plants, and possibly some metazoans.

  10. Reconstructing pedigrees: a combinatorial perspective.

    PubMed

    Steel, Mike; Hein, Jotun

    2006-06-07

    A pedigree is a directed graph that displays the relationship between individuals according to their parentage. We derive a combinatorial result that shows how any pedigree-up to individuals who have no extant (present-day) ancestors-can be reconstructed from (sex-labelled) pedigrees that describe the ancestry of single extant individuals and pairs of extant individuals. Furthermore, this reconstruction can be done in polynomial time. We also provide an example to show that the corresponding reconstruction result does not hold for pedigrees that are not sex-labelled. We then show how any pedigree can also be reconstructed from two functions that just describe certain circuits in the pedigree. Finally, we obtain an enumeration result for pedigrees that is relevant to the question of how many segregating sites are needed to reconstruct pedigrees.

  11. The facial skeleton of the chimpanzee-human last common ancestor

    PubMed Central

    Cobb, Samuel N

    2008-01-01

    This review uses the current morphological evidence to evaluate the facial morphology of the hypothetical last common ancestor (LCA) of the chimpanzee/bonobo (panin) and human (hominin) lineages. Some of the problems involved in reconstructing ancestral morphologies so close to the formation of a lineage are discussed. These include the prevalence of homoplasy and poor phylogenetic resolution due to a lack of defining derived features. Consequently the list of hypothetical features expected in the face of the LCA is very limited beyond its hypothesized similarity to extant Pan. It is not possible to determine with any confidence whether the facial morphology of any of the current candidate LCA taxa (Ardipithecus kadabba, Ardipithecus ramidus, Orrorin tugenensis and Sahelanthropus tchadensis) is representative of the LCA, or a stem hominin, or a stem panin or, in some cases, a hominid predating the emergence of the hominin lineage. The major evolutionary trends in the hominin lineage subsequent to the LCA are discussed in relation to the dental arcade and dentition, subnasal morphology and the size, position and prognathism of the facial skeleton. PMID:18380866

  12. Crops gone wild: evolution of weeds and invasives from domesticated ancestors

    PubMed Central

    Ellstrand, Norman C; Heredia, Sylvia M; Leak-Garcia, Janet A; Heraty, Joanne M; Burger, Jutta C; Yao, Li; Nohzadeh-Malakshah, Sahar; Ridley, Caroline E

    2010-01-01

    The evolution of problematic plants, both weeds and invasives, is a topic of increasing interest. Plants that have evolved from domesticated ancestors have certain advantages for study. Because of their economic importance, domesticated plants are generally well-characterized and readily available for ecogenetic comparison with their wild descendants. Thus, the evolutionary history of crop descendants has the potential to be reconstructed in some detail. Furthermore, growing crop progenitors with their problematic descendants in a common environment allows for the identification of significant evolutionary differences that correlate with weediness or invasiveness. We sought well-established examples of invasives and weeds for which genetic and/or ethnobotanical evidence has confirmed their evolution from domesticates. We found surprisingly few cases, only 13. We examine our list for generalizations and then some selected cases to reveal how plant pests have evolved from domesticates. Despite their potential utility, crop descendants remain underexploited for evolutionary study. Promising evolutionary research opportunities for these systems are abundant and worthy of pursuit. PMID:25567942

  13. The facial skeleton of the chimpanzee-human last common ancestor.

    PubMed

    Cobb, Samuel N

    2008-04-01

    This review uses the current morphological evidence to evaluate the facial morphology of the hypothetical last common ancestor (LCA) of the chimpanzee/bonobo (panin) and human (hominin) lineages. Some of the problems involved in reconstructing ancestral morphologies so close to the formation of a lineage are discussed. These include the prevalence of homoplasy and poor phylogenetic resolution due to a lack of defining derived features. Consequently the list of hypothetical features expected in the face of the LCA is very limited beyond its hypothesized similarity to extant Pan. It is not possible to determine with any confidence whether the facial morphology of any of the current candidate LCA taxa (Ardipithecus kadabba, Ardipithecus ramidus, Orrorin tugenensis and Sahelanthropus tchadensis) is representative of the LCA, or a stem hominin, or a stem panin or, in some cases, a hominid predating the emergence of the hominin lineage. The major evolutionary trends in the hominin lineage subsequent to the LCA are discussed in relation to the dental arcade and dentition, subnasal morphology and the size, position and prognathism of the facial skeleton.

  14. Scapular shape of extant hominoids and the African ape/modern human last common ancestor.

    PubMed

    Green, David J; Spiewak, Ted A; Seitelman, Brielle; Gunz, Philipp

    2016-05-01

    Newly discovered early hominin fossil scapulae have bolstered investigations of scapular shape, which have long been used to interpret behavioral variation among primates. However, unexpected similarities between Pongo and Homo - particularly in scapular spine orientation - have raised questions about the functional utility of scapular morphology and its phylogenetic context in the hominin lineage. Not surprisingly, significant disagreement surrounds disparate morphological reconstructions of the modern human/African ape last common ancestor (LCA). Our study utilizes geometric morphometric (GM) approaches - two employing homologous, anatomical landmarks and a "spine-free" alternative using 98 sliding semilandmarks along the boundary of the subscapular fossa. The landmark-based "wireframe" GM analysis principally sorted groups by spine orientation: Homo and Pongo were similar to one another with more transversely-oriented spines as compared to Hylobates and the African apes. In contrast, Homo and Gorilla clustered together in our semilandmark analysis with superoinferiorly broad blades. Pan scapulae were similar, but had more mediolaterally compressed blades and laterally-positioned superior angles. Hylobates was superoinferiorly narrow, yet obliquely expanded relative to the vertebral border. Pongo scapulae were unique among hominoids in being nearly as broad as they were long. Previously documented 'convergence' of Homo and Pongo scapulae appears to be principally driven by similarities in spine orientation, rather than overall blade shape. Therefore, we contend that it is more parsimonious to reconstruct the African ape/Homo LCA scapula as being Gorilla-like, especially in light of similar characterizations of certain fossil hominin scapulae. Accordingly, the evolution of Pan (highly oblique spine and laterally-situated superior angle) and Homo (transversely-oriented spine) scapular morphology would have involved relatively minor shifts from this ancestral

  15. Possible involvement of SINEs in mammalian-specific brain formation

    PubMed Central

    Sasaki, Takeshi; Nishihara, Hidenori; Hirakawa, Mika; Fujimura, Koji; Tanaka, Mikiko; Kokubo, Nobuhiro; Kimura-Yoshida, Chiharu; Matsuo, Isao; Sumiyama, Kenta; Saitou, Naruya; Shimogori, Tomomi; Okada, Norihiro

    2008-01-01

    Retroposons, such as short interspersed elements (SINEs) and long interspersed elements (LINEs), are the major constituents of higher vertebrate genomes. Although there are many examples of retroposons' acquiring function, none has been implicated in the morphological innovations specific to a certain taxonomic group. We previously characterized a SINE family, AmnSINE1, members of which constitute a part of conserved noncoding elements (CNEs) in mammalian genomes. We proposed that this family acquired genomic functionality or was exapted after retropositioning in a mammalian ancestor. Here we identified 53 new AmnSINE1 loci and refined 124 total loci, two of which were further analyzed. Using a mouse enhancer assay, we demonstrate that one SINE locus, AS071, 178 kbp from the gene FGF8 (fibroblast growth factor 8), is an enhancer that recapitulates FGF8 expression in two regions of the developing forebrain, namely the diencephalon and the hypothalamus. Our gain-of-function analysis revealed that FGF8 expression in the diencephalon controls patterning of thalamic nuclei, which act as a relay center of the neocortex, suggesting a role for FGF8 in mammalian-specific forebrain patterning. Furthermore, we demonstrated that the locus, AS021, 392 kbp from the gene SATB2, controls gene expression in the lateral telencephalon, which is thought to be a signaling center during development. These results suggest important roles for SINEs in the development of the mammalian neuronal network, a part of which was initiated with the exaptation of AmnSINE1 in a common mammalian ancestor. PMID:18334644

  16. Algal ancestor of land plants was preadapted for symbiosis.

    PubMed

    Delaux, Pierre-Marc; Radhakrishnan, Guru V; Jayaraman, Dhileepkumar; Cheema, Jitender; Malbreil, Mathilde; Volkening, Jeremy D; Sekimoto, Hiroyuki; Nishiyama, Tomoaki; Melkonian, Michael; Pokorny, Lisa; Rothfels, Carl J; Sederoff, Heike Winter; Stevenson, Dennis W; Surek, Barbara; Zhang, Yong; Sussman, Michael R; Dunand, Christophe; Morris, Richard J; Roux, Christophe; Wong, Gane Ka-Shu; Oldroyd, Giles E D; Ané, Jean-Michel

    2015-10-27

    Colonization of land by plants was a major transition on Earth, but the developmental and genetic innovations required for this transition remain unknown. Physiological studies and the fossil record strongly suggest that the ability of the first land plants to form symbiotic associations with beneficial fungi was one of these critical innovations. In angiosperms, genes required for the perception and transduction of diffusible fungal signals for root colonization and for nutrient exchange have been characterized. However, the origin of these genes and their potential correlation with land colonization remain elusive. A comprehensive phylogenetic analysis of 259 transcriptomes and 10 green algal and basal land plant genomes, coupled with the characterization of the evolutionary path leading to the appearance of a key regulator, a calcium- and calmodulin-dependent protein kinase, showed that the symbiotic signaling pathway predated the first land plants. In contrast, downstream genes required for root colonization and their specific expression pattern probably appeared subsequent to the colonization of land. We conclude that the most recent common ancestor of extant land plants and green algae was preadapted for symbiotic associations. Subsequent improvement of this precursor stage in early land plants through rounds of gene duplication led to the acquisition of additional pathways and the ability to form a fully functional arbuscular mycorrhizal symbiosis.

  17. Protein superfamily evolution and the last universal common ancestor (LUCA).

    PubMed

    Ranea, Juan A G; Sillero, Antonio; Thornton, Janet M; Orengo, Christine A

    2006-10-01

    By exploiting three-dimensional structure comparison, which is more sensitive than conventional sequence-based methods for detecting remote homology, we have identified a set of 140 ancestral protein domains using very restrictive criteria to minimize the potential error introduced by horizontal gene transfer. These domains are highly likely to have been present in the Last Universal Common Ancestor (LUCA) based on their universality in almost all of 114 completed prokaryotic (Bacteria and Archaea) and eukaryotic genomes. Functional analysis of these ancestral domains reveals a genetically complex LUCA with practically all the essential functional systems present in extant organisms, supporting the theory that life achieved its modern cellular status much before the main kingdom separation (Doolittle 2000). In addition, we have calculated different estimations of the genetic and functional versatility of all the superfamilies and functional groups in the prokaryote subsample. These estimations reveal that some ancestral superfamilies have been more versatile than others during evolution allowing more genetic and functional variation. Furthermore, the differences in genetic versatility between protein families are more attributable to their functional nature rather than the time that they have been evolving. These differences in tolerance to mutation suggest that some protein families have eroded their phylogenetic signal faster than others, hiding in many cases, their ancestral origin and suggesting that the calculation of 140 ancestral domains is probably an underestimate.

  18. Cassava genome from a wild ancestor to cultivated varieties

    PubMed Central

    Wang, Wenquan; Feng, Binxiao; Xiao, Jingfa; Xia, Zhiqiang; Zhou, Xincheng; Li, Pinghua; Zhang, Weixiong; Wang, Ying; Møller, Birger Lindberg; Zhang, Peng; Luo, Ming-Cheng; Xiao, Gong; Liu, Jingxing; Yang, Jun; Chen, Songbi; Rabinowicz, Pablo D.; Chen, Xin; Zhang, Hong-Bin; Ceballos, Henan; Lou, Qunfeng; Zou, Meiling; Carvalho, Luiz J.C.B.; Zeng, Changying; Xia, Jing; Sun, Shixiang; Fu, Yuhua; Wang, Haiyan; Lu, Cheng; Ruan, Mengbin; Zhou, Shuigeng; Wu, Zhicheng; Liu, Hui; Kannangara, Rubini Maya; Jørgensen, Kirsten; Neale, Rebecca Louise; Bonde, Maya; Heinz, Nanna; Zhu, Wenli; Wang, Shujuan; Zhang, Yang; Pan, Kun; Wen, Mingfu; Ma, Ping-An; Li, Zhengxu; Hu, Meizhen; Liao, Wenbin; Hu, Wenbin; Zhang, Shengkui; Pei, Jinli; Guo, Anping; Guo, Jianchun; Zhang, Jiaming; Zhang, Zhengwen; Ye, Jianqiu; Ou, Wenjun; Ma, Yaqin; Liu, Xinyue; Tallon, Luke J.; Galens, Kevin; Ott, Sandra; Huang, Jie; Xue, Jingjing; An, Feifei; Yao, Qingqun; Lu, Xiaojing; Fregene, Martin; López-Lavalle, L. Augusto Becerra; Wu, Jiajie; You, Frank M.; Chen, Meili; Hu, Songnian; Wu, Guojiang; Zhong, Silin; Ling, Peng; Chen, Yeyuan; Wang, Qinghuang; Liu, Guodao; Liu, Bin; Li, Kaimian; Peng, Ming

    2014-01-01

    Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology. PMID:25300236

  19. Mexican papita viroid: putative ancestor of crop viroids.

    PubMed Central

    Martínez-Soriano, J P; Galindo-Alonso, J; Maroon, C J; Yucel, I; Smith, D R; Diener, T O

    1996-01-01

    The potato spindle tuber disease was first observed early in the 20th century in the northeastern United States and shown, in 1971, to be incited by a viroid, potato spindle tuber viroid (PSTVd). No wild-plant PSTVd reservoirs have been identified; thus, the initial source of PSTVd infecting potatoes has remained a mystery. Several variants of a novel viroid, designated Mexican papita viroid (MPVd), have now been isolated from Solanum cardiophyllum Lindl. (papita güera, cimantli) plants growing wild in the Mexican state of Aguascalientes. MPVd's nucleotide sequence is most closely related to those of the tomato planta macho viroid (TPMVd) and PSTVd. From TPMVd, MPVd may be distinguished on the basis of biological properties, such as replication and symptom formation in certain differential hosts. Phylogenetic and ecological data indicate that MPVd and certain viroids now affecting crop plants, such as TPMVd, PSTVd, and possibly others, have a common ancestor. We hypothesize that commercial potatoes grown in the United States have become viroid-infected by chance transfer of MPVd or a similar viroid from endemically infected wild solanaceous plants imported from Mexico as germplasm, conceivably from plants known to have been introduced from Mexico to the United States late in the 19th century in efforts to identify genetic resistance to the potato late blight fungus, Phytophthora infestans. Images Fig. 1 PMID:8790341

  20. Cassava genome from a wild ancestor to cultivated varieties.

    PubMed

    Wang, Wenquan; Feng, Binxiao; Xiao, Jingfa; Xia, Zhiqiang; Zhou, Xincheng; Li, Pinghua; Zhang, Weixiong; Wang, Ying; Møller, Birger Lindberg; Zhang, Peng; Luo, Ming-Cheng; Xiao, Gong; Liu, Jingxing; Yang, Jun; Chen, Songbi; Rabinowicz, Pablo D; Chen, Xin; Zhang, Hong-Bin; Ceballos, Henan; Lou, Qunfeng; Zou, Meiling; Carvalho, Luiz J C B; Zeng, Changying; Xia, Jing; Sun, Shixiang; Fu, Yuhua; Wang, Haiyan; Lu, Cheng; Ruan, Mengbin; Zhou, Shuigeng; Wu, Zhicheng; Liu, Hui; Kannangara, Rubini Maya; Jørgensen, Kirsten; Neale, Rebecca Louise; Bonde, Maya; Heinz, Nanna; Zhu, Wenli; Wang, Shujuan; Zhang, Yang; Pan, Kun; Wen, Mingfu; Ma, Ping-An; Li, Zhengxu; Hu, Meizhen; Liao, Wenbin; Hu, Wenbin; Zhang, Shengkui; Pei, Jinli; Guo, Anping; Guo, Jianchun; Zhang, Jiaming; Zhang, Zhengwen; Ye, Jianqiu; Ou, Wenjun; Ma, Yaqin; Liu, Xinyue; Tallon, Luke J; Galens, Kevin; Ott, Sandra; Huang, Jie; Xue, Jingjing; An, Feifei; Yao, Qingqun; Lu, Xiaojing; Fregene, Martin; López-Lavalle, L Augusto Becerra; Wu, Jiajie; You, Frank M; Chen, Meili; Hu, Songnian; Wu, Guojiang; Zhong, Silin; Ling, Peng; Chen, Yeyuan; Wang, Qinghuang; Liu, Guodao; Liu, Bin; Li, Kaimian; Peng, Ming

    2014-10-10

    Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology.

  1. Multiple origins of viral capsid proteins from cellular ancestors

    PubMed Central

    Koonin, Eugene V.

    2017-01-01

    Viruses are the most abundant biological entities on earth and show remarkable diversity of genome sequences, replication and expression strategies, and virion structures. Evolutionary genomics of viruses revealed many unexpected connections but the general scenario(s) for the evolution of the virosphere remains a matter of intense debate among proponents of the cellular regression, escaped genes, and primordial virus world hypotheses. A comprehensive sequence and structure analysis of major virion proteins indicates that they evolved on about 20 independent occasions, and in some of these cases likely ancestors are identifiable among the proteins of cellular organisms. Virus genomes typically consist of distinct structural and replication modules that recombine frequently and can have different evolutionary trajectories. The present analysis suggests that, although the replication modules of at least some classes of viruses might descend from primordial selfish genetic elements, bona fide viruses evolved on multiple, independent occasions throughout the course of evolution by the recruitment of diverse host proteins that became major virion components. PMID:28265094

  2. Algal ancestor of land plants was preadapted for symbiosis

    PubMed Central

    Delaux, Pierre-Marc; Radhakrishnan, Guru V.; Jayaraman, Dhileepkumar; Cheema, Jitender; Malbreil, Mathilde; Volkening, Jeremy D.; Sekimoto, Hiroyuki; Nishiyama, Tomoaki; Melkonian, Michael; Pokorny, Lisa; Rothfels, Carl J.; Sederoff, Heike Winter; Stevenson, Dennis W.; Surek, Barbara; Zhang, Yong; Sussman, Michael R.; Dunand, Christophe; Morris, Richard J.; Roux, Christophe; Wong, Gane Ka-Shu; Oldroyd, Giles E. D.; Ané, Jean-Michel

    2015-01-01

    Colonization of land by plants was a major transition on Earth, but the developmental and genetic innovations required for this transition remain unknown. Physiological studies and the fossil record strongly suggest that the ability of the first land plants to form symbiotic associations with beneficial fungi was one of these critical innovations. In angiosperms, genes required for the perception and transduction of diffusible fungal signals for root colonization and for nutrient exchange have been characterized. However, the origin of these genes and their potential correlation with land colonization remain elusive. A comprehensive phylogenetic analysis of 259 transcriptomes and 10 green algal and basal land plant genomes, coupled with the characterization of the evolutionary path leading to the appearance of a key regulator, a calcium- and calmodulin-dependent protein kinase, showed that the symbiotic signaling pathway predated the first land plants. In contrast, downstream genes required for root colonization and their specific expression pattern probably appeared subsequent to the colonization of land. We conclude that the most recent common ancestor of extant land plants and green algae was preadapted for symbiotic associations. Subsequent improvement of this precursor stage in early land plants through rounds of gene duplication led to the acquisition of additional pathways and the ability to form a fully functional arbuscular mycorrhizal symbiosis. PMID:26438870

  3. Accelerated Evolution of Enhancer Hotspots in the Mammal Ancestor

    PubMed Central

    Holloway, Alisha K.; Bruneau, Benoit G.; Sukonnik, Tatyana; Rubenstein, John L.; Pollard, Katherine S.

    2016-01-01

    Mammals have evolved remarkably different sensory, reproductive, metabolic, and skeletal systems. To explore the genetic basis for these differences, we developed a comparative genomics approach to scan whole-genome multiple sequence alignments to identify regions that evolved rapidly in an ancestral lineage but are conserved within extant species. This pattern suggests that ancestral changes in function were maintained in descendants. After applying this test to therian mammals, we identified 4,797 accelerated regions, many of which are noncoding and located near developmental transcription factors. We then used mouse transgenic reporter assays to test if noncoding accelerated regions are enhancers and to determine how therian-specific substitutions affect their activity in vivo. We discovered enhancers with expression specific to the therian version in brain regions involved in the hormonal control of milk ejection, uterine contractions, blood pressure, temperature, and visual processing. This work underscores the idea that changes in developmental gene expression are important for mammalian evolution, and it pinpoints candidate genes for unique aspects of mammalian biology. PMID:26715627

  4. Accelerated Evolution of Enhancer Hotspots in the Mammal Ancestor.

    PubMed

    Holloway, Alisha K; Bruneau, Benoit G; Sukonnik, Tatyana; Rubenstein, John L; Pollard, Katherine S

    2016-04-01

    Mammals have evolved remarkably different sensory, reproductive, metabolic, and skeletal systems. To explore the genetic basis for these differences, we developed a comparative genomics approach to scan whole-genome multiple sequence alignments to identify regions that evolved rapidly in an ancestral lineage but are conserved within extant species. This pattern suggests that ancestral changes in function were maintained in descendants. After applying this test to therian mammals, we identified 4,797 accelerated regions, many of which are noncoding and located near developmental transcription factors. We then used mouse transgenic reporter assays to test if noncoding accelerated regions are enhancers and to determine how therian-specific substitutions affect their activity in vivo. We discovered enhancers with expression specific to the therian version in brain regions involved in the hormonal control of milk ejection, uterine contractions, blood pressure, temperature, and visual processing. This work underscores the idea that changes in developmental gene expression are important for mammalian evolution, and it pinpoints candidate genes for unique aspects of mammalian biology. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Reconstructing the Auditory Apparatus of Therapsids by Means of Neutron Tomography

    NASA Astrophysics Data System (ADS)

    Laaß, Michael; Schillinger, Burkhard

    The internal cranial structure of mammalian ancestors, i.e. the therapsids or ;mammal-like reptiles;, is crucial for understanding the early mammalian evolution. In the past therapsid skulls were investigated by mechanical sectioning or serial grinding, which was a very time-consuming and destructive process and could only be applied to non-valuable or poorly preserved specimens. As most therapsid skulls are embedded in terrestrial iron-rich sediments of Late Permian or Triassic age, i.e. so called ;Red beds;, a successful investigation with X-Rays is often not possible. We successfully investigated therapsid skulls by means of neutron tomography at the facility ANTARES at FRM II in Munich using cold neutron radiation. This kind of radiation is able to penetrate iron-rich substances in the range between 5 and 15 cm and produces a good contrast between matrix and bones, which enables segmentation of internal cranial structures such as bones, cavities and canals of nerves and blood vessels. In particular, neutron tomography combined with methods of 3D modeling was used here for the investigation and reconstruction of the auditory apparatus of therapsids.

  6. Structure–Function Relationships of Glycoprotein Hormones and Their Subunits’ Ancestors

    PubMed Central

    Cahoreau, Claire; Klett, Danièle; Combarnous, Yves

    2015-01-01

    Glycoprotein hormones (GPHs) are the most complex molecules with hormonal activity. They exist only in vertebrates but the genes encoding their subunits’ ancestors are found in most vertebrate and invertebrate species although their roles are still unknown. In the present report, we review the available structural and functional data concerning GPHs and their subunits’ ancestors. PMID:25767463

  7. The Malthusian parameter of ascents: What prevents the exponential increase of one’s ancestors?

    PubMed Central

    Ohno, Susumu

    1996-01-01

    The reason that the indefinite exponential increase in the number of one’s ancestors does not take place is found in the law of sibling interference, which can be expressed by the following simple equation:\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\begin{matrix}{\\mathit{N}}_{{\\mathit{n}}} \\enskip & \\\\ {\\mathit{{\\blacksquare}}} \\enskip & \\\\ {\\mathit{ASZ}} \\enskip & \\end{matrix} {\\mathrm{\\hspace{.167em}{\\times}\\hspace{.167em}2\\hspace{.167em}=\\hspace{.167em}}}{\\mathit{N_{n+1},}}\\end{equation*}\\end{document} where Nn is the number of ancestors in the nth generation, ASZ is the average sibling size of these ancestors, and Nn+1 is the number of ancestors in the next older generation (n + 1). Accordingly, the exponential increase in the number of one’s ancestors is an initial anomaly that occurs while ASZ remains at 1. Once ASZ begins to exceed 1, the rate of increase in the number of ancestors is progressively curtailed, falling further and further behind the exponential increase rate. Eventually, ASZ reaches 2, and at that point, the number of ancestors stops increasing for two generations. These two generations, named AN SA and AN SA + 1, are the most critical in the ancestry, for one’s ancestors at that point come to represent all the progeny-produced adults of the entire ancestral population. Thereafter, the fate of one’s ancestors becomes the fate of the entire population. If the population to which one belongs is a successful, slowly expanding one, the number of ancestors would slowly decline as you move toward the remote past. This is because ABZ would exceed 2. Only when ABZ is less than 2 would the number of ancestors increase beyond the AN SA and AN SA + 1 generations. Since the above is an indication of a failing population on the way to

  8. Some problems in proving the existence of the universal common ancestor of life on Earth.

    PubMed

    Yonezawa, Takahiro; Hasegawa, Masami

    2012-01-01

    Although overwhelming circumstantial evidence supports the existence of the universal common ancestor of all extant life on Earth, it is still an open question whether the universal common ancestor existed or not. Theobald (Nature 465, 219-222 (2010)) recently challenged this problem with a formal statistical test applied to aligned sequences of conservative proteins sampled from all domains of life and concluded that the universal common ancestor hypothesis holds. However, we point out that there is a fundamental flaw in Theobald's method which used aligned sequences. We show that the alignment gives a strong bias for the common ancestor hypothesis, and we provide an example that Theobald's method supports a common ancestor hypothesis for two apparently unrelated families of protein-encoding sequences (cytb and nd2 of mitochondria). This arouses suspicion about the effectiveness of the "formal" test.

  9. Population genetics of foxtail millet and its wild ancestor.

    PubMed

    Wang, Chunfang; Chen, Jinfeng; Zhi, Hui; Yang, Lu; Li, Wei; Wang, Yongfang; Li, Haiquan; Zhao, Baohua; Chen, Mingsheng; Diao, Xianmin

    2010-10-11

    Foxtail millet (Setaria italica (L.) P. Beauv.), one of the most ancient domesticated crops, is becoming a model system for studying biofuel crops and comparative genomics in the grasses. However, knowledge on the level of genetic diversity and linkage disequilibrium (LD) is very limited in this crop and its wild ancestor, green foxtail (Setaria viridis (L.) P. Beauv.). Such information would help us to understand the domestication process of cultivated species and will allow further research in these species, including association mapping and identification of agricultural significant genes involved in domestication. In this study, we surveyed DNA sequence for nine loci across 50 accessions of cultivated foxtail millet and 34 of its wild progenitor. We found a low level of genetic diversity in wild green foxtail (θ = 0.0059), θ means Watterson's estimator of θ. Despite of a 55% loss of its wild diversity, foxtail millet still harbored a considerable level of diversity (θ = 0.0027) when compared to rice and sorghum (θ = 0.0024 and 0.0034, respectively). The level of LD in the domesticated foxtail millet extends to 1 kb, while it decayed rapidly to a negligible level within 150 bp in wild green foxtail. Using coalescent simulation, we estimated the bottleneck severity at k = 0.6095 when ρ/θ = 1. These results indicated that the domestication bottleneck of foxtail millet was more severe than that of maize but slightly less pronounced than that of rice. The results in this study establish a general framework for the domestication history of foxtail millet. The low level of genetic diversity and the increased level of LD in foxtail millet are mainly caused by a population bottleneck, although gene flow from foxtail millet to green foxtail is another factor that may have shaped the pattern of genetic diversity of these two related gene pools. The knowledge provided in this study will benefit future population based studies in foxtail millet.

  10. Experimental Evolution of a Facultative Thermophile from a Mesophilic Ancestor

    PubMed Central

    Blaby, Ian K.; Lyons, Benjamin J.; Wroclawska-Hughes, Ewa; Phillips, Grier C. F.; Pyle, Tyler P.; Chamberlin, Stephen G.; Benner, Steven A.; Lyons, Thomas J.

    2012-01-01

    Experimental evolution via continuous culture is a powerful approach to the alteration of complex phenotypes, such as optimal/maximal growth temperatures. The benefit of this approach is that phenotypic selection is tied to growth rate, allowing the production of optimized strains. Herein, we demonstrate the use of a recently described long-term culture apparatus called the Evolugator for the generation of a thermophilic descendant from a mesophilic ancestor (Escherichia coli MG1655). In addition, we used whole-genome sequencing of sequentially isolated strains throughout the thermal adaptation process to characterize the evolutionary history of the resultant genotype, identifying 31 genetic alterations that may contribute to thermotolerance, although some of these mutations may be adaptive for off-target environmental parameters, such as rich medium. We undertook preliminary phenotypic analysis of mutations identified in the glpF and fabA genes. Deletion of glpF in a mesophilic wild-type background conferred significantly improved growth rates in the 43-to-48°C temperature range and altered optimal growth temperature from 37°C to 43°C. In addition, transforming our evolved thermotolerant strain (EVG1064) with a wild-type allele of glpF reduced fitness at high temperatures. On the other hand, the mutation in fabA predictably increased the degree of saturation in membrane lipids, which is a known adaptation to elevated temperature. However, transforming EVG1064 with a wild-type fabA allele had only modest effects on fitness at intermediate temperatures. The Evolugator is fully automated and demonstrates the potential to accelerate the selection for complex traits by experimental evolution and significantly decrease development time for new industrial strains. PMID:22020511

  11. Evolution and divergence of the mammalian SAMD9/SAMD9L gene family.

    PubMed

    Lemos de Matos, Ana; Liu, Jia; McFadden, Grant; Esteves, Pedro J

    2013-06-12

    The physiological functions of the human Sterile Alpha Motif Domain-containing 9 (SAMD9) gene and its chromosomally adjacent paralogue, SAMD9-like (SAMD9L), currently remain unknown. However, the direct links between the deleterious mutations or deletions in these two genes and several human disorders, such as inherited inflammatory calcified tumors and acute myeloid leukemia, suggest their biological importance. SAMD9 and SAMD9L have also recently been shown to play key roles in the innate immune responses to stimuli such as viral infection. We were particularly interested in understanding the mammalian evolutionary history of these two genes. The phylogeny of SAMD9 and SAMD9L genes was reconstructed using the Maximum Likelihood method. Furthermore, six different methods were applied to detect SAMD9 and SAMD9L codons under selective pressure: the site-specific model M8 implemented in the codeml program in PAML software and five methods available on the Datamonkey web server, including the Single Likelihood Ancestor Counting method, the Fixed Effect Likelihood method, the Random Effect Likelihood method, the Mixed Effects Model of Evolution method and the Fast Unbiased Bayesian AppRoximation method. Additionally, the house mouse (Mus musculus) genome has lost the SAMD9 gene, while keeping SAMD9L intact, prompting us to investigate whether this loss is a unique event during evolution. Our evolutionary analyses suggest that SAMD9 and SAMD9L arose through an ancestral gene duplication event after the divergence of Marsupialia from Placentalia. Additionally, selection analyses demonstrated that both genes have been subjected to positive evolutionary selection. The absence of either SAMD9 or SAMD9L genes from some mammalian species supports a partial functional redundancy between the two genes. To the best of our knowledge, this work is the first study on the evolutionary history of mammalian SAMD9 and SAMD9L genes. We conclude that evolutionary selective pressure has

  12. Phylogenetic analysis of a newfound bat-borne hantavirus supports a laurasiatherian host association for ancestral mammalian hantaviruses.

    PubMed

    Witkowski, Peter T; Drexler, Jan F; Kallies, René; Ličková, Martina; Bokorová, Silvia; Mananga, Gael D; Szemes, Tomáš; Leroy, Eric M; Krüger, Detlev H; Drosten, Christian; Klempa, Boris

    2016-07-01

    Until recently, hantaviruses (family Bunyaviridae) were believed to originate from rodent reservoirs. However, genetically distinct hantaviruses were lately found in shrews and moles, as well as in bats from Africa and Asia. Bats (order Chiroptera) are considered important reservoir hosts for emerging human pathogens. Here, we report on the identification of a novel hantavirus, provisionally named Makokou virus (MAKV), in Noack's Roundleaf Bat (Hipposideros ruber) in Gabon, Central Africa. Phylogenetic analysis of the genomic l-segment showed that MAKV was the most closely related to other bat-borne hantaviruses and shared a most recent common ancestor with the Asian hantaviruses Xuan Son and Laibin. Breakdown of the virus load in a bat animal showed that MAKV resembles rodent-borne hantaviruses in its organ distribution in that it predominantly occurred in the spleen and kidney; this provides a first insight into the infection pattern of bat-borne hantaviruses. Ancestral state reconstruction based on a tree of l gene sequences of all relevant hantavirus lineages was combined with phylogenetic fossil host hypothesis testing, leading to a statistically significant rejection of the mammalian superorder Euarchontoglires (including rodents) but not the superorder Laurasiatheria (including shrews, moles, and bats) as potential hosts of ancestral hantaviruses at most basal tree nodes. Our data supports the emerging concept of bats as previously overlooked hantavirus reservoir hosts.

  13. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution

    PubMed Central

    Emerling, Christopher A.; Huynh, Hieu T.; Nguyen, Minh A.; Meredith, Robert W.; Springer, Mark S.

    2015-01-01

    Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage. PMID:26582021

  14. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution.

    PubMed

    Emerling, Christopher A; Huynh, Hieu T; Nguyen, Minh A; Meredith, Robert W; Springer, Mark S

    2015-11-22

    Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage.

  15. Molecular paleontology and complexity in the last eukaryotic common ancestor.

    PubMed

    Koumandou, V Lila; Wickstead, Bill; Ginger, Michael L; van der Giezen, Mark; Dacks, Joel B; Field, Mark C

    2013-01-01

    Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself.

  16. Molecular paleontology and complexity in the last eukaryotic common ancestor

    PubMed Central

    Koumandou, V. Lila; Wickstead, Bill; Ginger, Michael L.; van der Giezen, Mark; Dacks, Joel B.

    2013-01-01

    Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself. PMID:23895660

  17. Characterization of a Putative Ancestor of Coxsackievirus B5 ▿

    PubMed Central

    Gullberg, Maria; Tolf, Conny; Jonsson, Nina; Mulders, Mick N.; Savolainen-Kopra, Carita; Hovi, Tapani; Van Ranst, Marc; Lemey, Philippe; Hafenstein, Susan; Lindberg, A. Michael

    2010-01-01

    Like other RNA viruses, coxsackievirus B5 (CVB5) exists as circulating heterogeneous populations of genetic variants. In this study, we present the reconstruction and characterization of a probable ancestral virion of CVB5. Phylogenetic analyses based on capsid protein-encoding regions (the VP1 gene of 41 clinical isolates and the entire P1 region of eight clinical isolates) of CVB5 revealed two major cocirculating lineages. Ancestral capsid sequences were inferred from sequences of these contemporary CVB5 isolates by using maximum likelihood methods. By using Bayesian phylodynamic analysis, the inferred VP1 ancestral sequence dated back to 1854 (1807 to 1898). In order to study the properties of the putative ancestral capsid, the entire ancestral P1 sequence was synthesized de novo and inserted into the replicative backbone of an infectious CVB5 cDNA clone. Characterization of the recombinant virus in cell culture showed that fully functional infectious virus particles were assembled and that these viruses displayed properties similar to those of modern isolates in terms of receptor preferences, plaque phenotypes, growth characteristics, and cell tropism. This is the first report describing the resurrection and characterization of a picornavirus with a putative ancestral capsid. Our approach, including a phylogenetics-based reconstruction of viral predecessors, could serve as a starting point for experimental studies of viral evolution and might also provide an alternative strategy for the development of vaccines. PMID:20631132

  18. NaChBac: The Long Lost Sodium Channel Ancestor

    PubMed Central

    2011-01-01

    In excitable cells, the main mediators of sodium conductance across membranes are voltage-gated sodium channels (NaVs). Eukaryotic NaVs are essential elements in neuronal signaling and muscular contraction and in humans have been causally related to a variety of neurological and cardiovascular channelopathies. They are complex heavily glycosylated intrinsic membrane proteins present in only trace quantities that have proven to be challenging objects of study. However, in recent years, a number of simpler prokaryotic sodium channels have been identified, with NaChBac from Bacillus halodurans being the most well-characterized to date. The availability of a bacterial NaV that is amenable to heterologous expression and functional characterization in both bacterial and mammalian systems has provided new opportunities for structure–function studies. This review describes features of NaChBac as an exemplar of this class of bacterial channels, compares prokaryotic and eukaryotic NaVs with respect to their structural organization, pharmacological profiling, and functional kinetics, and discusses how voltage-gated ion channels may have evolved to deal with the complex functional demands of higher organisms. PMID:21770445

  19. Opossum carboxylesterases: sequences, phylogeny and evidence for CES gene duplication events predating the marsupial-eutherian common ancestor

    PubMed Central

    2008-01-01

    residues previously reported for human CES1 involved in catalysis, ligand binding, tertiary structure and organelle localization. Phylogenetic studies indicated the gene duplication events which generated ancestral mammalian CES genes predated the common ancestor for marsupial and eutherian mammals, and appear to coincide with the early diversification of tetrapods. PMID:18289373

  20. Opossum carboxylesterases: sequences, phylogeny and evidence for CES gene duplication events predating the marsupial-eutherian common ancestor.

    PubMed

    Holmes, Roger S; Chan, Jeannie; Cox, Laura A; Murphy, William J; VandeBerg, John L

    2008-02-20

    involved in catalysis, ligand binding, tertiary structure and organelle localization. Phylogenetic studies indicated the gene duplication events which generated ancestral mammalian CES genes predated the common ancestor for marsupial and eutherian mammals, and appear to coincide with the early diversification of tetrapods.

  1. The proteomic complexity and rise of the primordial ancestor of diversified life

    PubMed Central

    2011-01-01

    Background The last universal common ancestor represents the primordial cellular organism from which diversified life was derived. This urancestor accumulated genetic information before the rise of organismal lineages and is considered to be either a simple 'progenote' organism with a rudimentary translational apparatus or a more complex 'cenancestor' with almost all essential biological processes. Recent comparative genomic studies support the latter model and propose that the urancestor was similar to modern organisms in terms of gene content. However, most of these studies were based on molecular sequences, which are fast evolving and of limited value for deep evolutionary explorations. Results Here we engage in a phylogenomic study of protein domain structure in the proteomes of 420 free-living fully sequenced organisms. Domains were defined at the highly conserved fold superfamily (FSF) level of structural classification and an iterative phylogenomic approach was used to reconstruct max_set and min_set FSF repertoires as upper and lower bounds of the urancestral proteome. While the functional make up of the urancestral sets was complex, they represent only 5-11% of the 1,420 FSFs of extant proteomes and their make up and reuse was at least 5 and 3 times smaller than proteomes of free-living organisms, repectively. Trees of proteomes reconstructed directly from FSFs or from molecular functions, which included the max_set and min_set as articial taxa, showed that urancestors were always placed at their base and rooted the tree of life in Archaea. Finally, a molecular clock of FSFs suggests the min_set reflects urancestral genetic make up more reliably and confirms diversified life emerged about 2.9 billion years ago during the start of planet oxygenation. Conclusions The minimum urancestral FSF set reveals the urancestor had advanced metabolic capabilities, was especially rich in nucleotide metabolism enzymes, had pathways for the biosynthesis of membrane sn1

  2. Redox proteins in mammalian cell death: an evolutionarily conserved function in mitochondria and prokaryotes.

    PubMed

    Punj, Vasu; Chakrabarty, A M

    2003-04-01

    Mammalian cell mitochondria are believed to have prokaryotic ancestry. Mitochondria are not only the powerhouse of energy generation within the eukaryotic cell but they also play a major role in inducing apoptotic cell death through release of redox proteins such as cytochrome c and the apoptosis-inducing factor (AIF), a flavoprotein with NADH oxidase activity. Recent evidence indicates that some present day prokaryotes release redox proteins that induce apoptosis in mammalian cells through stabilization of the tumour suppressor protein p53. p53 interacts with mitochondria either directly or through activation of the genes for pro-apoptotic proteins such as Bax or NOXA or genes that encode redox enzymes responsible for the production of reactive oxygen species (ROS). The analogy between the ancient ancestors of present day bacteria, the mitochondria, and the present day bacteria with regard to their ability to release redox proteins for triggering mammalian cell death is an interesting example of functional conservation during the hundreds of millions of years of evolution. It is possible that the ancestors of the present day prokaryotes released redox proteins to kill the ancestors of the eukaryotes. During evolution of the mitochondria from prokaryotes as obligate endosymbionts, the mitochondria maintained the same functions to programme their own host cell death.

  3. History of studies on mammalian middle ear evolution: a comparative morphological and developmental biology perspective.

    PubMed

    Takechi, Masaki; Kuratani, Shigeru

    2010-09-15

    The mammalian middle ear represents one of the most fundamental morphological features that define this class of vertebrates. Its skeletal pattern differs conspicuously from those of other amniotes and has attracted the attention of comparative zoologists for about 200 years. To reconcile this morphological inconsistency, early comparative morphologists suggested that the mammalian middle ear was derived from elements of the jaw joint of nonmammalian amniotes. Fossils of mammalian ancestors also implied a transition in skeletal morphology that resulted in the mammalian state. During the latter half of the 20th century, developmental mechanisms controlling the formation of the jaw skeleton became the subject of studies in developmental biology and molecular genetics. Mammalian middle ear evolution can now be interpreted as a series of changes in the developmental program of the pharyngeal arches. In this review, we summarize the history of middle ear research, highlight some of the remaining problems, and suggest possible future directions. We propose that to understand mammalian middle ear evolution, it is essential to identify the critical developmental events underlying the particular mammalian anatomy and to describe the evolutionary sequence of changes in developmental and molecular terms. We also discuss the degree of consistency between the developmental explanation of the mammalian middle ear based on molecular biology and morphological changes in the fossil record.

  4. The dispersed archaeal eukaryome and the complex archaeal ancestor of eukaryotes.

    PubMed

    Koonin, Eugene V; Yutin, Natalya

    2014-04-01

    The ancestral set of eukaryotic genes is a chimera composed of genes of archaeal and bacterial origins thanks to the endosymbiosis event that gave rise to the mitochondria and apparently antedated the last common ancestor of the extant eukaryotes. The proto-mitochondrial endosymbiont is confidently identified as an α-proteobacterium. In contrast, the archaeal ancestor of eukaryotes remains elusive, although evidence is accumulating that it could have belonged to a deep lineage within the TACK (Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota) superphylum of the Archaea. Recent surveys of archaeal genomes show that the apparent ancestors of several key functional systems of eukaryotes, the components of the archaeal "eukaryome," such as ubiquitin signaling, RNA interference, and actin-based and tubulin-based cytoskeleton structures, are identifiable in different archaeal groups. We suggest that the archaeal ancestor of eukaryotes was a complex form, rooted deeply within the TACK superphylum, that already possessed some quintessential eukaryotic features, in particular, a cytoskeleton, and perhaps was capable of a primitive form of phagocytosis that would facilitate the engulfment of potential symbionts. This putative group of Archaea could have existed for a relatively short time before going extinct or undergoing genome streamlining, resulting in the dispersion of the eukaryome. This scenario might explain the difficulty with the identification of the archaeal ancestor of eukaryotes despite the straightforward detection of apparent ancestors to many signature eukaryotic functional systems.

  5. The Dispersed Archaeal Eukaryome and the Complex Archaeal Ancestor of Eukaryotes

    PubMed Central

    Koonin, Eugene V.; Yutin, Natalya

    2014-01-01

    The ancestral set of eukaryotic genes is a chimera composed of genes of archaeal and bacterial origins thanks to the endosymbiosis event that gave rise to the mitochondria and apparently antedated the last common ancestor of the extant eukaryotes. The proto-mitochondrial endosymbiont is confidently identified as an α-proteobacterium. In contrast, the archaeal ancestor of eukaryotes remains elusive, although evidence is accumulating that it could have belonged to a deep lineage within the TACK (Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota) superphylum of the Archaea. Recent surveys of archaeal genomes show that the apparent ancestors of several key functional systems of eukaryotes, the components of the archaeal “eukaryome,” such as ubiquitin signaling, RNA interference, and actin-based and tubulin-based cytoskeleton structures, are identifiable in different archaeal groups. We suggest that the archaeal ancestor of eukaryotes was a complex form, rooted deeply within the TACK superphylum, that already possessed some quintessential eukaryotic features, in particular, a cytoskeleton, and perhaps was capable of a primitive form of phagocytosis that would facilitate the engulfment of potential symbionts. This putative group of Archaea could have existed for a relatively short time before going extinct or undergoing genome streamlining, resulting in the dispersion of the eukaryome. This scenario might explain the difficulty with the identification of the archaeal ancestor of eukaryotes despite the straightforward detection of apparent ancestors to many signature eukaryotic functional systems. PMID:24691961

  6. Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species

    PubMed Central

    Rosselló, Ricardo Antonio; Chen, Chun-Chun; Dai, Rui; Howard, Jason T; Hochgeschwender, Ute; Jarvis, Erich D

    2013-01-01

    Cells are fundamental units of life, but little is known about evolution of cell states. Induced pluripotent stem cells (iPSCs) are once differentiated cells that have been re-programmed to an embryonic stem cell-like state, providing a powerful platform for biology and medicine. However, they have been limited to a few mammalian species. Here we found that a set of four mammalian transcription factor genes used to generate iPSCs in mouse and humans can induce a partially reprogrammed pluripotent stem cell (PRPSCs) state in vertebrate and invertebrate model organisms, in mammals, birds, fish, and fly, which span 550 million years from a common ancestor. These findings are one of the first to show cross-lineage stem cell-like induction, and to generate pluripotent-like cells for several of these species with in vivo chimeras. We suggest that the stem-cell state may be highly conserved across a wide phylogenetic range. DOI: http://dx.doi.org/10.7554/eLife.00036.001 PMID:24015354

  7. A memory already like an elephant's? The advanced brain morphology of the last common ancestor of Afrotheria (Mammalia).

    PubMed

    Benoit, Julien; Crumpton, Nick; Mérigeaud, Samuel; Tabuce, Rodolphe

    2013-01-01

    Virtually reconstructed and natural endocranial casts are used in the study of brain evolution through geological time. We here present work investigating the paleoneurological evolution of afrotherian mammals. Using microCT-generated endocasts we show that, with the exception of the subfamilies Macroscelidinae and Tenrecoidea, most Afroinsectiphilia display a more or less gyrencephalic and ventrally expanded neopallium, two derived features that are unexpected for these insectivore-grade afrotherians. This implies that the endocranial cast morphology at the root of the afrotherian clade may have been more advanced than previously thought. The reconstructed endocranial morphology of the Afrotheria's last common ancestor reaches the level of complexity of some early Cenozoic archaic ungulates. Our result gives support to the hypothesis of an ungulate-like ancestral body plan for Afrotheria. It also implies that the a priori 'primitive' suite of traits evident in the brain of Afroinsectivora, especially in the tenrecs, may have been secondarily acquired. Implications on the overestimation of the divergence age of Afrotheria are discussed. Copyright © 2013 S. Karger AG, Basel.

  8. Phylogenetic Analysis of Genome Rearrangements among Five Mammalian Orders

    PubMed Central

    Luo, Haiwei; Arndt, William; Zhang, Yiwei; Shi, Guanqun; Alekseyev, Max; Tang, Jijun; Hughes, Austin L.; Friedman, Robert

    2015-01-01

    Evolutionary relationships among placental mammalian orders have been controversial. Whole genome sequencing and new computational methods offer opportunities to resolve the relationships among 10 genomes belonging to the mammalian orders Primates, Rodentia, Carnivora, Perissodactyla and Artiodactyla. By application of the double cut and join distance metric, where gene order is the phylogenetic character, we computed genomic distances among the sampled mammalian genomes. With a marsupial outgroup, the gene order tree supported a topology in which Rodentia fell outside the cluster of Primates, Carnivora, Perissodactyla, and Artiodactyla. Results of breakpoint reuse rate and synteny block length analyses were consistent with the prediction of random breakage model, which provided a diagnostic test to support use of gene order as an appropriate phylogenetic character in this study. We the influence of rate differences among lineages and other factors that may contribute to different resolutions of mammalian ordinal relationships by different methods of phylogenetic reconstruction. PMID:22929217

  9. Chasing ghosts: Allopolyploid origin of Oxyria sinensis (Polygonaceae) from its only diploid congener and an unknown ancestor.

    PubMed

    Luo, Xin; Hu, Quanjun; Zhou, Pingping; Zhang, Dan; Wang, Qian; Abbott, Richard J; Liu, Jianquan

    2017-03-12

    Reconstructing the origin of a polyploid species is particularly challenging when an ancestor has become extinct. Under such circumstances the extinct donor of a genome found in the polyploid may be treated as a 'ghost' species in that its prior existence is recognised through the presence of its genome in the polyploid. In this study, we aimed to determine the polyploid origin of Oxyria sinensis (2n=40) for which only one congeneric species is known, i.e. diploid O. digyna (2n=14). Genomic in situ hybridization (GISH), transcriptome, phylogenetic and demographic analyses, and ecological niche modeling were conducted for this purpose. GISH revealed that O. sinensis comprised 14 chromosomes from O. digyna and 26 chromosomes from an unknown ancestor. Transcriptome analysis indicated that following divergence from O. digyna, involving genome duplication around 12 million years ago (Ma), a second genome duplication occurred approximately 6 Ma to give rise to O. sinensis. Oxyria sinensis was shown to contain homologous gene sequences divergent from those present in O. digyna in addition to a set that clustered with those in O. digyna. Coalescent simulations indicated that O. sinensis expanded its distribution approximately 6-7 Ma, possibly following the second polyploidization event, whereas O. digyna expanded its range much later. It was also indicated that the distributions of both species contracted and re-expanded during the Pleistocene climatic oscillations. Ecological niche modeling similarly suggested that both species experienced changes in their distributional ranges in response to Quaternary climatic changes. The extinction of the unknown 'ghost' tetraploid species implicated in the origin of O. sinensis could have resulted from superior adaptation of O. sinensis to repeated climatic changes in the region where it now occurs. This article is protected by copyright. All rights reserved.

  10. Mammalian touch catches up

    PubMed Central

    Walsh, Carolyn M.; Bautista, Diana M.; Lumpkin, Ellen A.

    2015-01-01

    An assortment of touch receptors innervate the skin and encode different tactile features of the environment. Compared with invertebrate touch and other sensory systems, our understanding of the molecular and cellular underpinnings of mammalian touch lags behind. Two recent breakthroughs have accelerated progress. First, an arsenal of cell-type-specific molecular markers allowed the functional and anatomical properties of sensory neurons to be matched, thereby unraveling a cellular code for touch. Such markers have also revealed key roles of non-neuronal cell types, such as Merkel cells and keratinocytes, in touch reception. Second, the discovery of Piezo genes as a new family of mechanically activated channels has fueled the discovery of molecular mechanisms that mediate and mechanotransduction in mammalian touch receptors. PMID:26100741

  11. Inbreeding, Pedigree Size, and the Most Recent Common Ancestor of Humanity

    PubMed Central

    Lachance, Joseph

    2009-01-01

    How many generations ago did the common ancestor of all present-day individuals live, and how does inbreeding affect this estimate? The number of ancestors within family trees determines the timing of the most recent common ancestor of humanity. However, mating is often non-random and inbreeding is ubiquitous in natural populations. Rates of pedigree growth are found for multiple types of inbreeding. This data is then combined with models of global population structure to estimate biparental coalescence times. When pedigrees for regular systems of mating are constructed, the growth rates of inbred populations contain Fibonacci n-step constants. The timing of the most recent common ancestor depends on global population structure, the mean rate of pedigree growth, mean fitness, and current population size. Inbreeding reduces the number of ancestors in a pedigree, pushing back global common ancestry times. These results are consistent with the remarkable findings of previous studies: all humanity shares common ancestry in the recent past. PMID:19679139

  12. Comparative analysis of the primate X-inactivation center region and reconstruction of the ancestral primate XIST locus

    PubMed Central

    Horvath, Julie E.; Sheedy, Christina B.; Merrett, Stephanie L.; Diallo, Abdoulaye Banire; Swofford, David L.; NISC Comparative Sequencing Program; Green, Eric D.; Willard, Huntington F.

    2011-01-01

    Here we provide a detailed comparative analysis across the candidate X-Inactivation Center (XIC) region and the XIST locus in the genomes of six primates and three mammalian outgroup species. Since lemurs and other strepsirrhine primates represent the sister lineage to all other primates, this analysis focuses on lemurs to reconstruct the ancestral primate sequences and to gain insight into the evolution of this region and the genes within it. This comparative evolutionary genomics approach reveals significant expansion in genomic size across the XIC region in higher primates, with minimal size alterations across the XIST locus itself. Reconstructed primate ancestral XIC sequences show that the most dramatic changes during the past 80 million years occurred between the ancestral primate and the lineage leading to Old World monkeys. In contrast, the XIST locus compared between human and the primate ancestor does not indicate any dramatic changes to exons or XIST-specific repeats; rather, evolution of this locus reflects small incremental changes in overall sequence identity and short repeat insertions. While this comparative analysis reinforces that the region around XIST has been subject to significant genomic change, even among primates, our data suggest that evolution of the XIST sequences themselves represents only small lineage-specific changes across the past 80 million years. PMID:21518738

  13. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer

    PubMed Central

    2012-01-01

    Background Collections of Clusters of Orthologous Genes (COGs) provide indispensable tools for comparative genomic analysis, evolutionary reconstruction and functional annotation of new genomes. Initially, COGs were made for all complete genomes of cellular life forms that were available at the time. However, with the accumulation of thousands of complete genomes, construction of a comprehensive COG set has become extremely computationally demanding and prone to error propagation, necessitating the switch to taxon-specific COG collections. Previously, we reported the collection of COGs for 41 genomes of Archaea (arCOGs). Here we present a major update of the arCOGs and describe evolutionary reconstructions to reveal general trends in the evolution of Archaea. Results The updated version of the arCOG database incorporates 91% of the pangenome of 120 archaea (251,032 protein-coding genes altogether) into 10,335 arCOGs. Using this new set of arCOGs, we performed maximum likelihood reconstruction of the genome content of archaeal ancestral forms and gene gain and loss events in archaeal evolution. This reconstruction shows that the last Common Ancestor of the extant Archaea was an organism of greater complexity than most of the extant archaea, probably with over 2,500 protein-coding genes. The subsequent evolution of almost all archaeal lineages was apparently dominated by gene loss resulting in genome streamlining. Overall, in the evolution of Archaea as well as a representative set of bacteria that was similarly analyzed for comparison, gene losses are estimated to outnumber gene gains at least 4 to 1. Analysis of specific patterns of gene gain in Archaea shows that, although some groups, in particular Halobacteria, acquire substantially more genes than others, on the whole, gene exchange between major groups of Archaea appears to be largely random, with no major ‘highways’ of horizontal gene transfer. Conclusions The updated collection of arCOGs is expected to

  14. Mammalian Evolution May not Be Strictly Bifurcating

    PubMed Central

    Hallström, Björn M.; Janke, Axel

    2010-01-01

    The massive amount of genomic sequence data that is now available for analyzing evolutionary relationships among 31 placental mammals reduces the stochastic error in phylogenetic analyses to virtually zero. One would expect that this would make it possible to finally resolve controversial branches in the placental mammalian tree. We analyzed a 2,863,797 nucleotide-long alignment (3,364 genes) from 31 placental mammals for reconstructing their evolution. Most placental mammalian relationships were resolved, and a consensus of their evolution is emerging. However, certain branches remain difficult or virtually impossible to resolve. These branches are characterized by short divergence times in the order of 1–4 million years. Computer simulations based on parameters from the real data show that as little as about 12,500 amino acid sites could be sufficient to confidently resolve short branches as old as about 90 million years ago (Ma). Thus, the amount of sequence data should no longer be a limiting factor in resolving the relationships among placental mammals. The timing of the early radiation of placental mammals coincides with a period of climate warming some 100–80 Ma and with continental fragmentation. These global processes may have triggered the rapid diversification of placental mammals. However, the rapid radiations of certain mammalian groups complicate phylogenetic analyses, possibly due to incomplete lineage sorting and introgression. These speciation-related processes led to a mosaic genome and conflicting phylogenetic signals. Split network methods are ideal for visualizing these problematic branches and can therefore depict data conflict and possibly the true evolutionary history better than strictly bifurcating trees. Given the timing of tectonics, of placental mammalian divergences, and the fossil record, a Laurasian rather than Gondwanan origin of placental mammals seems the most parsimonious explanation. PMID:20591845

  15. Globin-coupled sensors, protoglobins, and the last universal common ancestor.

    PubMed

    Freitas, Tracey Allen K; Saito, Jennifer A; Hou, Shaobin; Alam, Maqsudul

    2005-01-01

    The strategy for detecting oxygen, carbon monoxide, nitric oxide, and sulfides is predominantly through heme-based sensors utilizing either a globin domain or a PAS domain. Whereas PAS domains bind various cofactors, globins bind only heme. Globin-coupled sensors (GCSs) were first described as regulators of the aerotactic responses in Bacillus subtilis and Halobacterium salinarum. GCSs were also identified in diverse microorganisms that appear to have roles in regulating gene expression. Functional and evolutionary analyses of the GCSs, their protoglobin ancestor, and their relationship to the last universal common ancestor (LUCA) are discussed in the context of globin-based signal transduction.

  16. Mammalian glycosylation in immunity.

    PubMed

    Marth, Jamey D; Grewal, Prabhjit K

    2008-11-01

    Glycosylation produces a diverse and abundant repertoire of glycans, which are collectively known as the glycome. Glycans are one of the four fundamental macromolecular components of all cells, and are highly regulated in the immune system. Their diversity reflects their multiple biological functions that encompass ligands for proteinaceous receptors known as lectins. Since the discovery that selectins and their glycan ligands are important for the regulation of leukocyte trafficking, it has been shown that additional features of the vertebrate immune system are also controlled by endogenous cellular glycosylation. This Review focuses on the emerging immunological roles of the mammalian glycome.

  17. Structural reconstruction of protein ancestry.

    PubMed

    Rouet, Romain; Langley, David B; Schofield, Peter; Christie, Mary; Roome, Brendan; Porebski, Benjamin T; Buckle, Ashley M; Clifton, Ben E; Jackson, Colin J; Stock, Daniela; Christ, Daniel

    2017-03-29

    Ancestral protein reconstruction allows the resurrection and characterization of ancient proteins based on computational analyses of sequences of modern-day proteins. Unfortunately, many protein families are highly divergent and not suitable for sequence-based reconstruction approaches. This limitation is exemplified by the antigen receptors of jawed vertebrates (B- and T-cell receptors), heterodimers formed by pairs of Ig domains. These receptors are believed to have evolved from an extinct homodimeric ancestor through a process of gene duplication and diversification; however molecular evidence has so far remained elusive. Here, we use a structural approach and laboratory evolution to reconstruct such molecules and characterize their interaction with antigen. High-resolution crystal structures of reconstructed homodimeric receptors in complex with hen-egg white lysozyme demonstrate how nanomolar affinity binding of asymmetrical antigen is enabled through selective recruitment and structural plasticity within the receptor-binding site. Our results provide structural evidence in support of long-held theories concerning the evolution of antigen receptors, and provide a blueprint for the experimental reconstruction of protein ancestry in the absence of phylogenetic evidence.

  18. Mammalian sperm morphometry.

    PubMed Central

    Gage, M J

    1998-01-01

    Understanding the adaptive significance of sperm form and function has been a challenge to biologists because sperm are highly specialized cells operating at a microscopic level in a complex environment. A fruitful course of investigation has been to use the comparative approach. This comparative study attempts to address some fundamental questions of the evolution of mammalian sperm morphometry. Data on sperm morphometry for 445 mammalian species were collated from published sources. I use contemporary phylogenetic analysis to control for the inherent non-independence of species and explore relationships between the morphometric dimensions of the three essential spermatozoal components: head, mid-piece and flagellum. Energy for flagellar action is metabolized by the mitochondrial-dense mid-piece and these combine to propel the sperm head, carrying the male haplotype, to the ovum. I therefore search for evolutionary associations between sperm morphometry and body mass, karyotype and the duration of oestrus. In contrast to previous findings, there is no inverse correlation between body weight and sperm length. Sperm mid-piece and flagellum lengths are positively associated with both head length and area, and the slopes of these relationships are discussed. Flagellum length is positively associated with mid-piece length but, in contrast to previous research and after phylogenetic control, I find no relationship between flagellum length and the volume of the mitochondrial sheath. Sperm head dimensions are not related to either genome mass or chromosome number, and there are no relationships between sperm morphometry and the duration of oestrus. PMID:9474794

  19. Mammalian Molecular Clocks

    PubMed Central

    Kwon, Ilmin; Choe, Han Kyoung; Son, Gi Hoon

    2011-01-01

    As a consequence of the Earth's rotation, almost all organisms experience day and night cycles within a 24-hr period. To adapt and synchronize biological rhythms to external daily cycles, organisms have evolved an internal time-keeping system. In mammals, the master circadian pacemaker residing in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus generates circadian rhythmicity and orchestrates numerous subsidiary local clocks in other regions of the brain and peripheral tissues. Regardless of their locations, these circadian clocks are cell-autonomous and self-sustainable, implicating rhythmic oscillations in a variety of biochemical and metabolic processes. A group of core clock genes provides interlocking molecular feedback loops that drive the circadian rhythm even at the single-cell level. In addition to the core transcription/translation feedback loops, post-translational modifications also contribute to the fine regulation of molecular circadian clocks. In this article, we briefly review the molecular mechanisms and post-translational modifications of mammalian circadian clock regulation. We also discuss the organization of and communication between central and peripheral circadian oscillators of the mammalian circadian clock. PMID:22110358

  20. No known hominin species matches the expected dental morphology of the last common ancestor of Neanderthals and modern humans

    PubMed Central

    Gómez-Robles, Aida; Bermúdez de Castro, José María; Arsuaga, Juan-Luis; Carbonell, Eudald; Polly, P. David

    2013-01-01

    A central problem in paleoanthropology is the identity of the last common ancestor of Neanderthals and modern humans ([N-MH]LCA). Recently developed analytical techniques now allow this problem to be addressed using a probabilistic morphological framework. This study provides a quantitative reconstruction of the expected dental morphology of the [N-MH]LCA and an assessment of whether known fossil species are compatible with this ancestral position. We show that no known fossil species is a suitable candidate for being the [N-MH]LCA and that all late Early and Middle Pleistocene taxa from Europe have Neanderthal dental affinities, pointing to the existence of a European clade originated around 1 Ma. These results are incongruent with younger molecular divergence estimates and suggest at least one of the following must be true: (i) European fossils and the [N-MH]LCA selectively retained primitive dental traits; (ii) molecular estimates of the divergence between Neanderthals and modern humans are underestimated; or (iii) phenotypic divergence and speciation between both species were decoupled such that phenotypic differentiation, at least in dental morphology, predated speciation. PMID:24145426

  1. A minimal estimate for the gene content of the last universal common ancestor--exobiology from a terrestrial perspective.

    PubMed

    Ouzounis, Christos A; Kunin, Victor; Darzentas, Nikos; Goldovsky, Leon

    2006-01-01

    Using an algorithm for ancestral state inference of gene content, given a large number of extant genome sequences and a phylogenetic tree, we aim to reconstruct the gene content of the last universal common ancestor (LUCA), a hypothetical life form that presumably was the progenitor of the three domains of life. The method allows for gene loss, previously found to be a major factor in shaping gene content, and thus the estimate of LUCA's gene content appears to be substantially higher than that proposed previously, with a typical number of over 1000 gene families, of which more than 90% are also functionally characterized. More precisely, when only prokaryotes are considered, the number varies between 1006 and 1189 gene families while when eukaryotes are also included, this number increases to between 1344 and 1529 families depending on the underlying phylogenetic tree. Therefore, the common belief that the hypothetical genome of LUCA should resemble those of the smallest extant genomes of obligate parasites is not supported by recent advances in computational genomics. Instead, a fairly complex genome similar to those of free-living prokaryotes, with a variety of functional capabilities including metabolic transformation, information processing, membrane/transport proteins and complex regulation, shared between the three domains of life, emerges as the most likely progenitor of life on Earth, with profound repercussions for planetary exploration and exobiology.

  2. An entity evolving into a community: defining the common ancestor and evolutionary trajectory of chronic lymphocytic leukemia stereotyped subset #4.

    PubMed

    Sutton, Lesley-Ann; Papadopoulos, Giorgos; Hadzidimitriou, Anastasia; Papadopoulos, Stavros; Kostareli, Efterpi; Rosenquist, Richard; Tzovaras, Dimitrios; Stamatopoulos, Kostas

    2015-04-02

    Patients with chronic lymphocytic leukemia (CLL) assigned to stereotyped subset #4 express highly homologous B-cell receptor immunoglobulin (BcR IG) sequences with intense intraclonal diversification (ID) in the context of ongoing somatic hypermutation (SHM). Their remarkable biological and clinical similarities strongly support derivation from a common ancestor. We here revisited ID in subset #4 CLL to reconstruct their evolutionary history as a community of related clones. To this end, using specialized bioinformatics tools we assessed both IGHV-IGHD-IGHJ rearrangements (n = 511) and IGKV-IGKJ rearrangements (n = 397) derived from eight subset #4 cases. Due to high sequence relatedness, a number of subclonal clusters from different cases lay very close to one another, forming a core from which clusters exhibiting greater variation stemmed. Minor subclones from individual cases were mutated to such an extent that they now resembled the sequences of another patient. Viewing the entire subset #4 data set as a single entity branching through diversification enabled inference of a common sequence representing the putative ancestral BcR IG expressed by their still elusive common progenitor. These results have implications for improved understanding of the ontogeny of CLL subset #4, as well as the design of studies concerning the antigenic specificity of the clonotypic BcR IGs.

  3. Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya

    PubMed Central

    2012-01-01

    Background The discovery of giant viruses with genome and physical size comparable to cellular organisms, remnants of protein translation machinery and virus-specific parasites (virophages) have raised intriguing questions about their origin. Evidence advocates for their inclusion into global phylogenomic studies and their consideration as a distinct and ancient form of life. Results Here we reconstruct phylogenies describing the evolution of proteomes and protein domain structures of cellular organisms and double-stranded DNA viruses with medium-to-very-large proteomes (giant viruses). Trees of proteomes define viruses as a ‘fourth supergroup’ along with superkingdoms Archaea, Bacteria, and Eukarya. Trees of domains indicate they have evolved via massive and primordial reductive evolutionary processes. The distribution of domain structures suggests giant viruses harbor a significant number of protein domains including those with no cellular representation. The genomic and structural diversity embedded in the viral proteomes is comparable to the cellular proteomes of organisms with parasitic lifestyles. Since viral domains are widespread among cellular species, we propose that viruses mediate gene transfer between cells and crucially enhance biodiversity. Conclusions Results call for a change in the way viruses are perceived. They likely represent a distinct form of life that either predated or coexisted with the last universal common ancestor (LUCA) and constitute a very crucial part of our planet’s biosphere. PMID:22920653

  4. Phylogenomic evidence for the presence of a flagellum and cbb(3) oxidase in the free-living mitochondrial ancestor.

    PubMed

    Sassera, Davide; Lo, Nathan; Epis, Sara; D'Auria, Giuseppe; Montagna, Matteo; Comandatore, Francesco; Horner, David; Peretó, Juli; Luciano, Alberto Maria; Franciosi, Federica; Ferri, Emanuele; Crotti, Elena; Bazzocchi, Chiara; Daffonchio, Daniele; Sacchi, Luciano; Moya, Andres; Latorre, Amparo; Bandi, Claudio

    2011-12-01

    The initiation of the intracellular symbiosis that would give rise to mitochondria and eukaryotes was a major event in the history of life on earth. Hypotheses to explain eukaryogenesis fall into two broad and competing categories: those proposing that the host was a phagocytotic proto-eukaryote that preyed upon the free-living mitochondrial ancestor (hereafter FMA), and those proposing that the host was an archaebacterium that engaged in syntrophy with the FMA. Of key importance to these hypotheses are whether the FMA was motile or nonmotile, and the atmospheric conditions under which the FMA thrived. Reconstructions of the FMA based on genome content of Rickettsiales representatives-generally considered to be the closest living relatives of mitochondria-indicate that it was nonmotile and aerobic. We have sequenced the genome of Candidatus Midichloria mitochondrii, a novel and phylogenetically divergent member of the Rickettsiales. We found that it possesses unique gene sets found in no other Rickettsiales, including 26 genes associated with flagellar assembly, and a cbb(3)-type cytochrome oxidase. Phylogenomic analyses show that these genes were inherited in a vertical fashion from an ancestral α-proteobacterium, and indicate that the FMA possessed a flagellum, and could undergo oxidative phosphorylation under both aerobic and microoxic conditions. These results indicate that the FMA played a more active and potentially parasitic role in eukaryogenesis than currently appreciated and provide an explanation for how the symbiosis could have evolved under low levels of oxygen.

  5. Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya.

    PubMed

    Nasir, Arshan; Kim, Kyung Mo; Caetano-Anolles, Gustavo

    2012-08-24

    The discovery of giant viruses with genome and physical size comparable to cellular organisms, remnants of protein translation machinery and virus-specific parasites (virophages) have raised intriguing questions about their origin. Evidence advocates for their inclusion into global phylogenomic studies and their consideration as a distinct and ancient form of life. Here we reconstruct phylogenies describing the evolution of proteomes and protein domain structures of cellular organisms and double-stranded DNA viruses with medium-to-very-large proteomes (giant viruses). Trees of proteomes define viruses as a 'fourth supergroup' along with superkingdoms Archaea, Bacteria, and Eukarya. Trees of domains indicate they have evolved via massive and primordial reductive evolutionary processes. The distribution of domain structures suggests giant viruses harbor a significant number of protein domains including those with no cellular representation. The genomic and structural diversity embedded in the viral proteomes is comparable to the cellular proteomes of organisms with parasitic lifestyles. Since viral domains are widespread among cellular species, we propose that viruses mediate gene transfer between cells and crucially enhance biodiversity. Results call for a change in the way viruses are perceived. They likely represent a distinct form of life that either predated or coexisted with the last universal common ancestor (LUCA) and constitute a very crucial part of our planet's biosphere.

  6. Common circuit design in fly and mammalian motion vision.

    PubMed

    Borst, Alexander; Helmstaedter, Moritz

    2015-08-01

    Motion-sensitive neurons have long been studied in both the mammalian retina and the insect optic lobe, yet striking similarities have become obvious only recently. Detailed studies at the circuit level revealed that, in both systems, (i) motion information is extracted from primary visual information in parallel ON and OFF pathways; (ii) in each pathway, the process of elementary motion detection involves the correlation of signals with different temporal dynamics; and (iii) primary motion information from both pathways converges at the next synapse, resulting in four groups of ON-OFF neurons, selective for the four cardinal directions. Given that the last common ancestor of insects and mammals lived about 550 million years ago, this general strategy seems to be a robust solution for how to compute the direction of visual motion with neural hardware.

  7. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut

    USDA-ARS?s Scientific Manuscript database

    Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of total size ~2.7 Gb. This makes assembly of chromosomal pseudomolecules very challenging. Here we report genome sequences of cultivated peanut’s diploid ancestors (A. duranensis and A. ipaënsis). We show they...

  8. Evolution of the most recent common ancestor of a population with no selection

    NASA Astrophysics Data System (ADS)

    Simon, Damien; Derrida, Bernard

    2006-05-01

    We consider the evolution of a population of fixed size with no selection. The number of generations G to reach the first common ancestor evolves in time. This evolution can be described by a simple Markov process, which allows one to calculate several characteristics of the time dependence of G. We also study how G is correlated to the genetic diversity.

  9. Analyzing the Rate at Which Languages Lose the Influence of a Common Ancestor

    ERIC Educational Resources Information Center

    Rafferty, Anna N.; Griffiths, Thomas L.; Klein, Dan

    2014-01-01

    Analyzing the rate at which languages change can clarify whether similarities across languages are solely the result of cognitive biases or might be partially due to descent from a common ancestor. To demonstrate this approach, we use a simple model of language evolution to mathematically determine how long it should take for the distribution over…

  10. Genome sequence and annotation of Trichoderma parareesei, the ancestor of the cellulase producer Trichoderma reesei

    DOE PAGES

    Yang, Dongqing; Pomraning, Kyle; Kopchinskiy, Alexey; ...

    2015-08-13

    The filamentous fungus Trichoderma parareesei is the asexually reproducing ancestor of Trichoderma reesei, the holomorphic industrial producer of cellulase and hemicellulase. Here, we present the genome sequence of the T. parareesei type strain CBS 125925, which contains genes for 9,318 proteins.

  11. Analyzing the Rate at Which Languages Lose the Influence of a Common Ancestor

    ERIC Educational Resources Information Center

    Rafferty, Anna N.; Griffiths, Thomas L.; Klein, Dan

    2014-01-01

    Analyzing the rate at which languages change can clarify whether similarities across languages are solely the result of cognitive biases or might be partially due to descent from a common ancestor. To demonstrate this approach, we use a simple model of language evolution to mathematically determine how long it should take for the distribution over…

  12. Combining information from ancestors and personal experiences to predict individual differences in developmental trajectories.

    PubMed

    Stamps, Judy A; Krishnan, V V

    2014-11-01

    A persistent question in biology is how information from ancestors combines with personal experiences over the lifetime to affect the developmental trajectories of phenotypic traits. We address this question by modeling individual differences in behavioral developmental trajectories on the basis of two assumptions: (1) differences among individuals in the behavior expressed at birth or hatching are based on information from their ancestors (via genes, epigenes, and prenatal maternal effects), and (2) information from ancestors is combined with information from personal experiences over ontogeny via Bayesian updating. The model predicts relationships between the means and the variability of the behavior expressed by neonates and the subsequent developmental trajectories of their behavior when every individual is reared under the same environmental conditions. Several predictions of the model are supported by data from previous studies of behavioral development, for example, that the temporal stability of personality will increase with age and that the intercepts and slopes of developmental trajectories for boldness will be negatively correlated across individuals or genotypes when subjects are raised in safe environments. We describe how other specific predictions of the model can be used to test the hypothesis that information from ancestors and information from personal experiences are combined via nonadditive, Bayesian-like processes.

  13. Effect of reference population size and available ancestor genotypes on imputation of Mexican Holstein genotypes

    USDA-ARS?s Scientific Manuscript database

    The effects of reference population size and the availability of information from genotyped ancestors on the accuracy of imputation of single nucleotide polymorphisms (SNPs) were investigated for Mexican Holstein cattle. Three scenarios for reference population size were examined: (1) a local popula...

  14. The compact Brachypodium genome conserves centromeric regions of a common ancestor with wheat and rice

    USDA-ARS?s Scientific Manuscript database

    The evolution of five chromosomes of Brachypodium distachyon from a 12-chromosome ancestor of all grasses by dysploidy raises an interesting question about the fate of redundant centromeres. Three independent but complementary approaches were pursued to study centromeric region homologies among the ...

  15. Integration of Morphological Data into Molecular Phylogenetic Analysis: Toward the Identikit of the Stylasterid Ancestor

    PubMed Central

    Puce, Stefania; Pica, Daniela; Schiaparelli, Stefano; Negrisolo, Enrico

    2016-01-01

    Stylasteridae is a hydroid family including 29 worldwide-distributed genera, all provided with a calcareous skeleton. They are abundant in shallow and deep waters and represent an important component of marine communities. In the present paper, we studied the evolution of ten morphological characters, currently used in stylasterid taxonomy, using a phylogenetic approach. Our results indicate that stylasterid morphology is highly plastic and that many events of independent evolution and reversion have occurred. Our analysis also allows sketching a possible identikit of the stylasterid ancestor. It had calcareous skeleton, reticulate-granular coenosteal texture, polyps randomly arranged, gastrostyle, and dactylopore spines, while lacking a gastropore lip and dactylostyles. If the ancestor had single or double/multiple chambered gastropore tube is uncertain. These data suggest that the ancestor was similar to the extant genera Cyclohelia and Stellapora. Our investigation is the first attempt to integrate molecular and morphological information to clarify the stylasterid evolutionary scenario and represents the first step to infer the stylasterid ancestor morphology. PMID:27537333

  16. Breast Reconstruction

    MedlinePlus

    ... rebuild the shape of the breast. Instead of breast reconstruction, you could choose to wear a breast form ... one woman may not be right for another. Breast reconstruction may be done at the same time as ...

  17. The evolutionary history of the hominin hand since the last common ancestor of Pan and Homo

    PubMed Central

    Tocheri, Matthew W; Orr, Caley M; Jacofsky, Marc C; Marzke, Mary W

    2008-01-01

    Molecular evidence indicates that the last common ancestor of the genus Pan and the hominin clade existed between 8 and 4 million years ago (Ma). The current fossil record indicates the Pan-Homo last common ancestor existed at least 5 Ma and most likely between 6 and 7 Ma. Together, the molecular and fossil evidence has important consequences for interpreting the evolutionary history of the hand within the tribe Hominini (hominins). Firstly, parsimony supports the hypothesis that the hand of the last common ancestor most likely resembled that of an extant great ape overall (Pan, Gorilla, and Pongo), and that of an African ape in particular. Second, it provides a context for interpreting the derived changes to the hand that have evolved in various hominins. For example, the Australopithecus afarensis hand is likely derived in comparison with that of the Pan–Homo last common ancestor in having shorter fingers relative to thumb length and more proximo-distally oriented joints between its capitate, second metacarpal, and trapezium. This evidence suggests that these derived features evolved prior to the intensification of stone tool-related hominin behaviors beginning around 2.5 Ma. However, a majority of primitive features most likely present in the Pan-Homo last common ancestor are retained in the hands of Australopithecus, Paranthropus/early Homo, and Homo floresiensis. This evidence suggests that further derived changes to the hands of other hominins such as modern humans and Neandertals did not evolve until after 2.5 Ma and possibly even later than 1.5 Ma, which is currently the earliest evidence of Acheulian technology. The derived hands of modern humans and Neandertals may indicate a morphological commitment to tool-related manipulative behaviors beyond that observed in other hominins, including those (e.g. H. floresiensis) which may be descended from earlier tool-making species. PMID:18380869

  18. The mammalian blastocyst.

    PubMed

    Frankenberg, Stephen R; de Barros, Flavia R O; Rossant, Janet; Renfree, Marilyn B

    2016-01-01

    The blastocyst is a mammalian invention that carries the embryo from cleavage to gastrulation. For such a simple structure, it exhibits remarkable diversity in its mode of formation, morphology, longevity, and intimacy with the uterine endometrium. This review explores this diversity in the light of the evolution of viviparity, comparing the three main groups of mammals: monotremes, marsupials, and eutherians. The principal drivers in blastocyst evolution were loss of yolk coupled with evolution of the placenta. An important outcome of blastocyst development is differentiation of two extraembryonic lineages (trophoblast and hypoblast) that contribute to the placenta. While in many species trophoblast segregation is often coupled with blastocyst formation, in marsupials and at least some Afrotherians, these events do not coincide. Thus, many questions regarding the conservation of molecular mechanisms controlling these events are of great interest but currently unresolved. For further resources related to this article, please visit the WIREs website.

  19. Mammalian phospholipase C.

    PubMed

    Kadamur, Ganesh; Ross, Elliott M

    2013-01-01

    Phospholipase C (PLC) converts phosphatidylinositol 4,5-bisphosphate (PIP(2)) to inositol 1,4,5-trisphosphate (IP(3)) and diacylglycerol (DAG). DAG and IP(3) each control diverse cellular processes and are also substrates for synthesis of other important signaling molecules. PLC is thus central to many important interlocking regulatory networks. Mammals express six families of PLCs, each with both unique and overlapping controls over expression and subcellular distribution. Each PLC also responds acutely to its own spectrum of activators that includes heterotrimeric G protein subunits, protein tyrosine kinases, small G proteins, Ca(2+), and phospholipids. Mammalian PLCs are autoinhibited by a region in the catalytic TIM barrel domain that is the target of much of their acute regulation. In combination, the PLCs act as a signaling nexus that integrates numerous signaling inputs, critically governs PIP(2) levels, and regulates production of important second messengers to determine cell behavior over the millisecond to hour timescale.

  20. New Mammalian Expression Systems.

    PubMed

    Zhu, Jie; Hatton, Diane

    2017-06-06

    There are an increasing number of recombinant antibodies and proteins in preclinical and clinical development for therapeutic applications. Mammalian expression systems are key to enabling the production of these molecules, and Chinese hamster ovary (CHO) cell platforms continue to be central to delivery of the stable cell lines required for large-scale production. Increasing pressure on timelines and efficiency, further innovation of molecular formats and the shift to new production systems are driving developments of these CHO cell line platforms. The availability of genome and transcriptome data coupled with advancing gene editing tools are increasing the ability to design and engineer CHO cell lines to meet these challenges. This chapter aims to give an overview of the developments in CHO expression systems and some of the associated technologies over the past few years.

  1. The evolution and development of mammalian flight.

    PubMed

    Cooper, Lisa Noelle; Cretekos, Chris J; Sears, Karen E

    2012-01-01

    Mammals have evolved a stunning diversity of limb morphologies (e.g., wings, flippers, hands, and paws) that allowed access to a wide range of habitats. Over 50 million years ago, bats (Order Chiroptera) evolved a wing (composed of a thin membrane encasing long digits) and thereby achieved powered flight. Unfortunately, the fossil record currently lacks any transitional fossils between a rodent-like ancestor and a winged bat. To reconstruct how this important evolutionary transition occurred, researchers have begun to employ an evolutionary developmental approach. This approach has revealed some of the embryological and molecular changes that have contributed to the evolution of the bat wing. For example, bat and mouse forelimb morphologies are similar during earliest limb development. Despite this, some key signaling centers for limb development are already divergent in bat and mouse at these early stages. Bat and mouse limb development continues to diverge, such that at later stages many differences are apparent. For example, at these later stages bats redeploy expression of toolkit genes (i.e., Fgf, Shh, Bmp, Grem) in a novel expression domain to inhibit apoptosis of the interdigital tissues. When results are taken together, a broad picture of the developmental changes that drove the transition from a hand to a wing over 50 million years ago is beginning to take shape. Moreover, studies seem to suggest that small changes in gene regulation during organogenesis can generate large evolutionary changes in phenotype.

  2. One ancestor for two codes viewed from the perspective of two complementary modes of tRNA aminoacylation

    PubMed Central

    Rodin, Andrei S; Szathmáry, Eörs; Rodin, Sergei N

    2009-01-01

    Background The genetic code is brought into action by 20 aminoacyl-tRNA synthetases. These enzymes are evenly divided into two classes (I and II) that recognize tRNAs from the minor and major groove sides of the acceptor stem, respectively. We have reported recently that: (1) ribozymic precursors of the synthetases seem to have used the same two sterically mirror modes of tRNA recognition, (2) having these two modes might have helped in preventing erroneous aminoacylation of ancestral tRNAs with complementary anticodons, yet (3) the risk of confusion for the presumably earliest pairs of complementarily encoded amino acids had little to do with anticodons. Accordingly, in this communication we focus on the acceptor stem. Results Our main result is the emergence of a palindrome structure for the acceptor stem's common ancestor, reconstructed from the phylogenetic trees of Bacteria, Archaea and Eukarya. In parallel, for pairs of ancestral tRNAs with complementary anticodons, we present updated evidence of concerted complementarity of the second bases in the acceptor stems. These two results suggest that the first pairs of "complementary" amino acids that were engaged in primordial coding, such as Gly and Ala, could have avoided erroneous aminoacylation if and only if the acceptor stems of their adaptors were recognized from the same, major groove, side. The class II protein synthetases then inherited this "primary preference" from isofunctional ribozymes. Conclusion Taken together, our results support the hypothesis that the genetic code per se (the one associated with the anticodons) and the operational code of aminoacylation (associated with the acceptor) diverged from a common ancestor that probably began developing before translation. The primordial advantage of linking some amino acids (most likely glycine and alanine) to the ancestral acceptor stem may have been selective retention in a protocell surrounded by a leaky membrane for use in nucleotide and coenzyme

  3. Karyotype and gene order evolution from reconstructed extinct ancestors highlight contrasts in genome plasticity of modern rosid crops.

    PubMed

    Murat, Florent; Zhang, Rongzhi; Guizard, Sébastien; Gavranović, Haris; Flores, Raphael; Steinbach, Delphine; Quesneville, Hadi; Tannier, Eric; Salse, Jérôme

    2015-01-29

    We used nine complete genome sequences, from grape, poplar, Arabidopsis, soybean, lotus, apple, strawberry, cacao, and papaya, to investigate the paleohistory of rosid crops. We characterized an ancestral rosid karyotype, structured into 7/21 protochomosomes, with a minimal set of 6,250 ordered protogenes and a minimum physical coding gene space of 50 megabases. We also proposed ancestral karyotypes for the Caricaceae, Brassicaceae, Malvaceae, Fabaceae, Rosaceae, Salicaceae, and Vitaceae families with 9, 8, 10, 6, 12, 9, 12, and 19 protochromosomes, respectively. On the basis of these ancestral karyotypes and present-day species comparisons, we proposed a two-step evolutionary scenario based on allohexaploidization involving the newly characterized A, B, and C diploid progenitors leading to dominant (stable) and sensitive (plastic) genomic compartments in any modern rosid crops. Finally, a new user-friendly online tool, "DicotSyntenyViewer" (available from http://urgi.versailles.inra.fr/synteny-dicot), has been made available for accurate translational genomics in rosids. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Karyotype and Gene Order Evolution from Reconstructed Extinct Ancestors Highlight Contrasts in Genome Plasticity of Modern Rosid Crops

    PubMed Central

    Murat, Florent; Zhang, Rongzhi; Guizard, Sébastien; Gavranović, Haris; Flores, Raphael; Steinbach, Delphine; Quesneville, Hadi; Tannier, Eric; Salse, Jérôme

    2015-01-01

    We used nine complete genome sequences, from grape, poplar, Arabidopsis, soybean, lotus, apple, strawberry, cacao, and papaya, to investigate the paleohistory of rosid crops. We characterized an ancestral rosid karyotype, structured into 7/21 protochomosomes, with a minimal set of 6,250 ordered protogenes and a minimum physical coding gene space of 50 megabases. We also proposed ancestral karyotypes for the Caricaceae, Brassicaceae, Malvaceae, Fabaceae, Rosaceae, Salicaceae, and Vitaceae families with 9, 8, 10, 6, 12, 9, 12, and 19 protochromosomes, respectively. On the basis of these ancestral karyotypes and present-day species comparisons, we proposed a two-step evolutionary scenario based on allohexaploidization involving the newly characterized A, B, and C diploid progenitors leading to dominant (stable) and sensitive (plastic) genomic compartments in any modern rosid crops. Finally, a new user-friendly online tool, “DicotSyntenyViewer” (available from http://urgi.versailles.inra.fr/synteny-dicot), has been made available for accurate translational genomics in rosids. PMID:25637221

  5. Adrenomedullin in mammalian embryogenesis.

    PubMed

    Garayoa, Mercedes; Bodegas, Elena; Cuttitta, Frank; Montuenga, Luis M

    2002-04-01

    Here are summarized data supporting that adrenomedullin (AM) is a multifunctional factor involved in the complex regulatory mechanisms of mammalian development. During rodent embryogenesis, AM is first expressed in the heart, followed by a broader but also defined spatio-temporal pattern of expression in vascular, neural, and skeletal-forming tissues as well as in the main embryonic internal organs. AM pattern of expression is suggestive of its involvement in the control of embryonic invasion, proliferation, and differentiation processes, probably through autocrine or paracrine modes of action. AM levels in fetoplacental tissues, uterus, maternal and umbilical plasma are highly increased during normal gestation. These findings in addition to other physiological and gene targeting studies support the importance of AM as a vasorelaxant factor implicated in the regulation of maternal vascular adaptation to pregnancy, as well as of fetal and fetoplacental circulations. AM is also present in amniotic fluid and milk, which is suggestive of additional functions in the maturation and immunological protection of the fetus. Altered expression of AM has been found in some gestational pathologies, although it is not yet clear whether this corresponds to causative or compensatory mechanisms. Future studies in regard to the distribution and expression levels of the molecules known to function as AM receptors, together with data on the action of complement factor H (an AM binding protein), may help to better define the roles of AM during embryonic development. Copyright 2002 Wiley-Liss, Inc.

  6. The Mammalian Septin Interactome

    PubMed Central

    Neubauer, Katharina; Zieger, Barbara

    2017-01-01

    Septins are GTP-binding and membrane-interacting proteins with a highly conserved domain structure involved in various cellular processes, including cytoskeleton organization, cytokinesis, and membrane dynamics. To date, 13 different septin genes have been identified in mammals (SEPT1 to SEPT12 and SEPT14), which can be classified into four distinct subgroups based on the sequence homology of their domain structure (SEPT2, SEPT3, SEPT6, and SEPT7 subgroup). The family members of these subgroups have a strong affinity for other septins and form apolar tri-, hexa-, or octameric complexes consisting of multiple septin polypeptides. The first characterized core complex is the hetero-trimer SEPT2-6-7. Within these complexes single septins can be exchanged in a subgroup-specific manner. Hexamers contain SEPT2 and SEPT6 subgroup members and SEPT7 in two copies each whereas the octamers additionally comprise two SEPT9 subgroup septins. The various isoforms seem to determine the function and regulation of the septin complex. Septins self-assemble into higher-order structures, including filaments and rings in orders, which are typical for different cell types. Misregulation of septins leads to human diseases such as neurodegenerative and bleeding disorders. In non-dividing cells such as neuronal tissue and platelets septins have been associated with exocytosis. However, many mechanistic details and roles attributed to septins are poorly understood. We describe here some important mammalian septin interactions with a special focus on the clinically relevant septin interactions. PMID:28224124

  7. Mammalian clock output mechanisms.

    PubMed

    Kalsbeek, Andries; Yi, Chun-Xia; Cailotto, Cathy; la Fleur, Susanne E; Fliers, Eric; Buijs, Ruud M

    2011-06-30

    In mammals many behaviours (e.g. sleep-wake, feeding) as well as physiological (e.g. body temperature, blood pressure) and endocrine (e.g. plasma corticosterone concentration) events display a 24 h rhythmicity. These 24 h rhythms are induced by a timing system that is composed of central and peripheral clocks. The highly co-ordinated output of the hypothalamic biological clock not only controls the daily rhythm in sleep-wake (or feeding-fasting) behaviour, but also exerts a direct control over many aspects of hormone release and energy metabolism. First, we present the anatomical connections used by the mammalian biological clock to enforce its endogenous rhythmicity on the rest of the body, especially the neuro-endocrine and energy homoeostatic systems. Subsequently, we review a number of physiological experiments investigating the functional significance of this neuro-anatomical substrate. Together, this overview of experimental data reveals a highly specialized organization of connections between the hypothalamic pacemaker and neuro-endocrine system as well as the pre-sympathetic and pre-parasympathetic branches of the autonomic nervous system.

  8. The Mammalian Septin Interactome.

    PubMed

    Neubauer, Katharina; Zieger, Barbara

    2017-01-01

    Septins are GTP-binding and membrane-interacting proteins with a highly conserved domain structure involved in various cellular processes, including cytoskeleton organization, cytokinesis, and membrane dynamics. To date, 13 different septin genes have been identified in mammals (SEPT1 to SEPT12 and SEPT14), which can be classified into four distinct subgroups based on the sequence homology of their domain structure (SEPT2, SEPT3, SEPT6, and SEPT7 subgroup). The family members of these subgroups have a strong affinity for other septins and form apolar tri-, hexa-, or octameric complexes consisting of multiple septin polypeptides. The first characterized core complex is the hetero-trimer SEPT2-6-7. Within these complexes single septins can be exchanged in a subgroup-specific manner. Hexamers contain SEPT2 and SEPT6 subgroup members and SEPT7 in two copies each whereas the octamers additionally comprise two SEPT9 subgroup septins. The various isoforms seem to determine the function and regulation of the septin complex. Septins self-assemble into higher-order structures, including filaments and rings in orders, which are typical for different cell types. Misregulation of septins leads to human diseases such as neurodegenerative and bleeding disorders. In non-dividing cells such as neuronal tissue and platelets septins have been associated with exocytosis. However, many mechanistic details and roles attributed to septins are poorly understood. We describe here some important mammalian septin interactions with a special focus on the clinically relevant septin interactions.

  9. The one ancestor per generation rule and three other rules of mitochondrial inheritance.

    PubMed

    Ohno, S

    1997-07-22

    In mammals, at least, a species-specific mechanism exists that eliminates sperm-derived mitochondrial DNA from a fertilized egg. The result is the "one female ancestor per generation" rule and three other rules of mitochondrial inheritance. The second, third, and fourth rules are as follows. (ii) Sublineages of a given mitochondrial line can be generated only during the parallel descents from ancestral sisters. (iii) In a static population in which the production of one female progeny per mated pair per generation has been a rule, several ancient mitochondrial lineages harking back to the female founders of the speciation may persist side by side. (iv) Two or more individuals not related to each other in the recent past may share the identical or nearly identical mitochondrial genome derived from the common female ancestor or ancestral sisters of many generations ago.

  10. Deciphering voltage-gated Na(+) and Ca(2+) channels by studying prokaryotic ancestors.

    PubMed

    Catterall, William A; Zheng, Ning

    2015-09-01

    Voltage-gated sodium channels (NaVs) and calcium channels (CaVs) are involved in electrical signaling, contraction, secretion, synaptic transmission, and other physiological processes activated in response to depolarization. Despite their physiological importance, the structures of these closely related proteins have remained elusive because of their size and complexity. Bacterial NaVs have structures analogous to a single domain of eukaryotic NaVs and CaVs and are their likely evolutionary ancestor. Here we review recent work that has led to new understanding of NaVs and CaVs through high-resolution structural studies of their prokaryotic ancestors. New insights into their voltage-dependent activation and inactivation, ion conductance, and ion selectivity provide realistic structural models for the function of these complex membrane proteins at the atomic level. Published by Elsevier Ltd.

  11. Evidence for the existence of a common ancestor of scorpion toxins affecting ion channels.

    PubMed

    Zhijian, Cao; Yingliang, Wu; Jiqun, Sheng; Wanhong, Liu; Fan, Xiao; Xin, Mao; Hui, Liu; Dahe, Jiang; Wenxin, Li

    2003-01-01

    All scorpion toxins from different 30 species are simply reviewed. A new classification system of scorpion toxins is first proposed: scorpion toxins are classified into three families (long-chain scorpion toxins with 4 disulfide bridges, short-chain scorpion toxins with 3 disulfide bridges, and intermediate-type scorpion toxins with 3 or 4 disulfide bridges). Intermediate-type scorpion toxins provide a strong proof for the conclusion that channel toxins from scorpion venoms evolve from a common ancestor. Common organization of precursor nucleotides and genomic sequence, similar 3-dimensional structure, and the existence of intermediate type scorpion toxins and functionally intercrossing scorpion toxins show that all scorpion toxins affecting ion channels evolve from the common ancestor, which produce millions of scorpion toxins with function-diversity. Copyright 2003 Wiley Periodicals, Inc. J Biochem Mol Toxicol 17:235-238, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.10083

  12. Sequencing Y Chromosomes Resolves Discrepancy in Time to Common Ancestor of Males versus Females

    PubMed Central

    Poznik, G. David; Henn, Brenna M.; Yee, Muh-Ching; Sliwerska, Elzbieta; Euskirchen, Ghia M.; Lin, Alice A.; Snyder, Michael; Quintana-Murci, Lluis; Kidd, Jeffrey M.; Underhill, Peter A.; Bustamante, Carlos D.

    2014-01-01

    The Y chromosome and the mitochondrial genome (mtDNA) have been used to estimate when the common patrilineal and matrilineal ancestors of humans lived. We sequenced the genomes of 69 males from nine populations, including two in which we find basal branches of the Y chromosome tree. We identify ancient phylogenetic structure within African haplogroups and resolve a long-standing ambiguity deep within the tree. Applying equivalent methodologies to the Y and mtDNA, we estimate the time to the most recent common ancestor (TMRCA) of the Y chromosome to be 120–156 thousand years and the mtDNA TMRCA to be 99–148 ky. Our findings suggest that, contrary to prior claims, male lineages do not coalesce significantly more recently than female lineages. PMID:23908239

  13. A Rosetta stone of mammalian genetics.

    PubMed

    Nadeau, J H; Grant, P L; Mankala, S; Reiner, A H; Richardson, J E; Eppig, J T

    1995-01-26

    The Mammalian Comparative Database provides genetic maps of mammalian species. Comparative maps are valuable aids for predicting linkages, developing animal models and studying genome organization and evolution.

  14. Stem Cells in Mammalian Gonads.

    PubMed

    Wu, Ji; Ding, Xinbao; Wang, Jian

    Stem cells have great value in clinical application because of their ability to self-renew and their potential to differentiate into many different cell types. Mammalian gonads, including testes for males and ovaries for females, are composed of germline and somatic cells. In male mammals, spermatogonial stem cells maintain spermatogenesis which occurs continuously in adult testis. Likewise, a growing body of evidence demonstrated that female germline stem cells could be found in mammalian ovaries. Meanwhile, prior studies have shown that somatic stem cells exist in both testes and ovaries. In this chapter, we focus on mammalian gonad stem cells and discuss their characteristics as well as differentiation potentials.

  15. Effect of reference population size and available ancestor genotypes on imputation of Mexican Holstein genotypes.

    PubMed

    García-Ruiz, A; Ruiz-Lopez, F J; Wiggans, G R; Van Tassell, C P; Montaldo, H H

    2015-05-01

    The effects of reference population size and the availability of information from genotyped ancestors on the accuracy of imputation of single nucleotide polymorphisms (SNP) were investigated for Mexican Holstein cattle. Three scenarios for reference population size were examined: (1) a local population of 2,011 genotyped Mexican Holsteins, (2) animals in scenario 1 plus 866 Holsteins in the US genotype database (GDB) with genotyped Mexican daughters, and (3) animals in scenario 1 and all US GDB Holsteins (338,073). Genotypes from 4 chip densities (2 low density, 1 mid density, and 1 high density) were imputed using findhap (version 3) to the 45,195 markers on the mid-density chip. Imputation success was determined by comparing the numbers of SNP with 1 or 2 alleles missing and the numbers of differently predicted SNP (conflicts) among the 3 scenarios. Imputation accuracy improved as chip density and numbers of genotyped ancestors increased, and the percentage of SNP with 1 missing allele was greater than that for 2 missing alleles for all scenarios. The largest numbers of conflicts were found between scenarios 1 and 3. The inclusion of information from direct ancestors (dam or sire) with US GDB genotypes in the imputation of Mexican Holstein genotypes increased imputation accuracy by 1 percentage point for low-density genotypes and by 0.5 percentage points for high-density genotypes, which was about half the gain found with information from all US GDB Holsteins. A larger reference population and the availability of genotyped ancestors improved imputation; animals with genotyped parents in a large reference population had higher imputation accuracy than those with no or few genotyped relatives in a small reference population. For small local populations, including genotypes from other related populations can aid in improving imputation accuracy.

  16. RNase MRP and the RNA processing cascade in the eukaryotic ancestor

    PubMed Central

    Woodhams, Michael D; Stadler, Peter F; Penny, David; Collins, Lesley J

    2007-01-01

    Background Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor. Results We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution. Conclusion We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches. PMID:17288571

  17. Penile Reconstruction

    PubMed Central

    Salgado, Christopher J.; Chim, Harvey; Tang, Jennifer C.; Monstrey, Stan J.; Mardini, Samir

    2011-01-01

    A variety of surgical options exists for penile reconstruction. The key to success of therapy is holistic management of the patient, with attention to the psychological aspects of treatment. In this article, we review reconstructive modalities for various types of penile defects inclusive of partial and total defects as well as the buried penis, and also describe recent basic science advances, which may promise new options for penile reconstruction. PMID:22851914

  18. Transmission between Archaic and Modern Human Ancestors during the Evolution of the Oncogenic Human Papillomavirus 16.

    PubMed

    Pimenoff, Ville N; de Oliveira, Cristina Mendes; Bravo, Ignacio G

    2017-01-01

    Every human suffers through life a number of papillomaviruses (PVs) infections, most of them asymptomatic. A notable exception are persistent infections by Human papillomavirus 16 (HPV16), the most oncogenic infectious agent for humans and responsible for most infection-driven anogenital cancers. Oncogenic potential is not homogeneous among HPV16 lineages, and genetic variation within HPV16 exhibits some geographic structure. However, an in-depth analysis of the HPV16 evolutionary history was still wanting. We have analyzed extant HPV16 diversity and compared the evolutionary and phylogeographical patterns of humans and of HPV16. We show that codivergence with modern humans explains at most 30% of the present viral geographical distribution. The most explanatory scenario suggests that ancestral HPV16 already infected ancestral human populations and that viral lineages co-diverged with the hosts in parallel with the split between archaic Neanderthal-Denisovans and ancestral modern human populations, generating the ancestral HPV16A and HPV16BCD viral lineages, respectively. We propose that after out-of-Africa migration of modern human ancestors, sexual transmission between human populations introduced HPV16A into modern human ancestor populations. We hypothesize that differential coevolution of HPV16 lineages with different but closely related ancestral human populations and subsequent host-switch events in parallel with introgression of archaic alleles into the genomes of modern human ancestors may be largely responsible for the present-day differential prevalence and association with cancers for HPV16 variants.

  19. The common ancestor of archaea and eukarya was not an archaeon.

    PubMed

    Forterre, Patrick

    2013-01-01

    It is often assumed that eukarya originated from archaea. This view has been recently supported by phylogenetic analyses in which eukarya are nested within archaea. Here, I argue that these analyses are not reliable, and I critically discuss archaeal ancestor scenarios, as well as fusion scenarios for the origin of eukaryotes. Based on recognized evolutionary trends toward reduction in archaea and toward complexity in eukarya, I suggest that their last common ancestor was more complex than modern archaea but simpler than modern eukaryotes (the bug in-between scenario). I propose that the ancestors of archaea (and bacteria) escaped protoeukaryotic predators by invading high temperature biotopes, triggering their reductive evolution toward the "prokaryotic" phenotype (the thermoreduction hypothesis). Intriguingly, whereas archaea and eukarya share many basic features at the molecular level, the archaeal mobilome resembles more the bacterial than the eukaryotic one. I suggest that selection of different parts of the ancestral virosphere at the onset of the three domains played a critical role in shaping their respective biology. Eukarya probably evolved toward complexity with the help of retroviruses and large DNA viruses, whereas similar selection pressure (thermoreduction) could explain why the archaeal and bacterial mobilomes somehow resemble each other.

  20. The great divides: Ardipithecus ramidus reveals the postcrania of our last common ancestors with African apes.

    PubMed

    Lovejoy, C Owen; Suwa, Gen; Simpson, Scott W; Matternes, Jay H; White, Tim D

    2009-10-02

    Genomic comparisons have established the chimpanzee and bonobo as our closest living relatives. However, the intricacies of gene regulation and expression caution against the use of these extant apes in deducing the anatomical structure of the last common ancestor that we shared with them. Evidence for this structure must therefore be sought from the fossil record. Until now, that record has provided few relevant data because available fossils were too recent or too incomplete. Evidence from Ardipithecus ramidus now suggests that the last common ancestor lacked the hand, foot, pelvic, vertebral, and limb structures and proportions specialized for suspension, vertical climbing, and knuckle-walking among extant African apes. If this hypothesis is correct, each extant African ape genus must have independently acquired these specializations from more generalized ancestors who still practiced careful arboreal climbing and bridging. African apes and hominids acquired advanced orthogrady in parallel. Hominoid spinal invagination is an embryogenetic mechanism that reoriented the shoulder girdle more laterally. It was unaccompanied by substantial lumbar spine abbreviation, an adaptation restricted to vertical climbing and/or suspension. The specialized locomotor anatomies and behaviors of chimpanzees and gorillas therefore constitute poor models for the origin and evolution of human bipedality.

  1. The Common Ancestor of Archaea and Eukarya Was Not an Archaeon

    PubMed Central

    Forterre, Patrick

    2013-01-01

    It is often assumed that eukarya originated from archaea. This view has been recently supported by phylogenetic analyses in which eukarya are nested within archaea. Here, I argue that these analyses are not reliable, and I critically discuss archaeal ancestor scenarios, as well as fusion scenarios for the origin of eukaryotes. Based on recognized evolutionary trends toward reduction in archaea and toward complexity in eukarya, I suggest that their last common ancestor was more complex than modern archaea but simpler than modern eukaryotes (the bug in-between scenario). I propose that the ancestors of archaea (and bacteria) escaped protoeukaryotic predators by invading high temperature biotopes, triggering their reductive evolution toward the “prokaryotic” phenotype (the thermoreduction hypothesis). Intriguingly, whereas archaea and eukarya share many basic features at the molecular level, the archaeal mobilome resembles more the bacterial than the eukaryotic one. I suggest that selection of different parts of the ancestral virosphere at the onset of the three domains played a critical role in shaping their respective biology. Eukarya probably evolved toward complexity with the help of retroviruses and large DNA viruses, whereas similar selection pressure (thermoreduction) could explain why the archaeal and bacterial mobilomes somehow resemble each other. PMID:24348094

  2. Heterokont Predator Develorapax marinus gen. et sp. nov. – A Model of the Ochrophyte Ancestor

    PubMed Central

    Aleoshin, Vladimir V.; Mylnikov, Alexander P.; Mirzaeva, Gulnara S.; Mikhailov, Kirill V.; Karpov, Sergey A.

    2016-01-01

    Heterotrophic lineages of Heterokonta (or stramenopiles), in contrast to a single monophyletic group of autotrophs, Ochrophyta, form several clades that independently branch off the heterokont stem lineage. The nearest neighbors of Ochrophyta in the phylogenetic tree appear to be almost exclusively bacterivorous, whereas the hypothesis of plastid acquisition by the ancestors of the ochrophyte lineage suggests an ability to engulf eukaryotic alga. In line with this hypothesis, the heterotrophic predator at the base of the ochrophyte lineage may be regarded as a model for the ochrophyte ancestor. Here, we present a new genus and species of marine free-living heterotrophic heterokont Develorapax marinus, which falls into an isolated heterokont cluster, along with the marine flagellate Developayella elegans, and is able to engulf eukaryotic cells. Together with environmental sequences D. marinus and D. elegans form a class-level clade Developea nom. nov. represented by species adapted to different environmental conditions and with a wide geographical distribution. The position of Developea among Heterokonta in large-scale phylogenetic tree is discussed. We propose that members of the Developea clade represent a model for transition from bacterivory to a predatory feeding mode by selection for larger prey. Presumably, such transition in the grazing strategy is possible in the presence of bacterial biofilms or aggregates expected in eutrophic environment, and has likely occurred in the ochrophyte ancestor. PMID:27536283

  3. Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals.

    PubMed Central

    Lo, Nathan; Watanabe, Hirofumi; Sugimura, Masahiro

    2003-01-01

    Until recently, the textbook view of cellulose hydrolysis in animals was that gut-resident symbiotic organisms such as bacteria or unicellular eukaryotes are responsible for the cellulases produced. This view has been challenged by the characterization and sequencing of endogenous cellulase genes from some invertebrate animals, including plant-parasitic nematodes, arthropods and a mollusc. Most of these genes are completely unrelated in terms of sequence, and their evolutionary origins remain unclear. In the case of plant-parasitic nematodes, it has been suggested that their ancestor obtained a cellulase gene via horizontal gene transfer from a prokaryote, and similar suggestions have been made about a cellulase gene recently discovered in a sea squirt. To improve understanding about the evolution of animal cellulases, we searched for all known types of these enzymes in GenBank, and performed phylogenetic comparisons. Low phylogenetic resolution was found among most of the sequences examined, however, positional identity in the introns of cellulase genes from a termite, a sea squirt and an abalone provided compelling evidence that a similar gene was present in the last common ancestor of protostomes and deuterostomes. In a different enzyme family, cellulases from beetles and plant-parasitic nematodes were found to cluster together. This result questions the idea of lateral gene transfer into the ancestors of the latter, although statistical tests did not allow this possibility to be ruled out. Overall, our results suggest that at least one family of endogenous cellulases may be more widespread in animals than previously thought. PMID:12952640

  4. Evolutionary history and metabolic insights of ancient mammalian uricases

    PubMed Central

    Kratzer, James T.; Lanaspa, Miguel A.; Murphy, Michael N.; Cicerchi, Christina; Graves, Christina L.; Tipton, Peter A.; Ortlund, Eric A.; Johnson, Richard J.; Gaucher, Eric A.

    2014-01-01

    Uricase is an enzyme involved in purine catabolism and is found in all three domains of life. Curiously, uricase is not functional in some organisms despite its role in converting highly insoluble uric acid into 5-hydroxyisourate. Of particular interest is the observation that apes, including humans, cannot oxidize uric acid, and it appears that multiple, independent evolutionary events led to the silencing or pseudogenization of the uricase gene in ancestral apes. Various arguments have been made to suggest why natural selection would allow the accumulation of uric acid despite the physiological consequences of crystallized monosodium urate acutely causing liver/kidney damage or chronically causing gout. We have applied evolutionary models to understand the history of primate uricases by resurrecting ancestral mammalian intermediates before the pseudogenization events of this gene family. Resurrected proteins reveal that ancestral uricases have steadily decreased in activity since the last common ancestor of mammals gave rise to descendent primate lineages. We were also able to determine the 3D distribution of amino acid replacements as they accumulated during evolutionary history by crystallizing a mammalian uricase protein. Further, ancient and modern uricases were stably transfected into HepG2 liver cells to test one hypothesis that uricase pseudogenization allowed ancient frugivorous apes to rapidly convert fructose into fat. Finally, pharmacokinetics of an ancient uricase injected in rodents suggest that our integrated approach provides the foundation for an evolutionarily-engineered enzyme capable of treating gout and preventing tumor lysis syndrome in human patients. PMID:24550457

  5. Mammalian Interphase Cdks

    PubMed Central

    2012-01-01

    Cyclin-dependent kinases (Cdks) drive cell cycle progression in all eukaryotes. Yeasts have a single major Cdk that mediates distinct cell cycle transitions via association with different cyclins. The closest homolog in mammals, Cdk1, drives mitosis. Mammals have additional Cdks—Cdk2, Cdk4, and Cdk6—that represent the major Cdks activated during interphase (iCdks). A large body of evidence has accrued that suggests that activation of iCdks dictates progression though interphase. In apparent contradiction, deficiency in each individual iCdk, respectively, in knockout mice proved to be compatible with live birth and in some instances fertility. Moreover, murine embryos could be derived with Cdk1 as the only functional Cdk. Thus, none of the iCdks is strictly essential for mammalian cell cycle progression, raising the possibility that Cdk1 is the dominant regulator in interphase. However, an absence of iCdks has been accompanied by major shifts in cyclin association to Cdk1, suggesting gain in function. After considerable tweaking, a chemical genetic approach has recently been able to examine the impact of acute inhibition of Cdk2 activity without marked distortion of cyclin/Cdk complex formation. The results suggest that, when expressed at its normal levels, Cdk2 performs essential roles in driving human cells into S phase and maintaining genomic stability. These new findings appear to have restored order to the cell cycle field, bringing it full circle to the view that iCdks indeed play important roles. They also underscore the caveat in knockdown and knockout approaches that protein underexpression can significantly perturb a protein interaction network. We discuss the implications of the new synthesis for future cell cycle studies and anti–Cdk-based therapy of cancer and other diseases. PMID:23634250

  6. Mammalian DNA Repair. Final Report

    SciTech Connect

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  7. Maturation of the mammalian secretome

    PubMed Central

    Simpson, Jeremy C; Mateos, Alvaro; Pepperkok, Rainer

    2007-01-01

    A recent use of quantitative proteomics to determine the constituents of the endoplasmic reticulum and Golgi complex is discussed in the light of other available methodologies for cataloging the proteins associated with the mammalian secretory pathway. PMID:17472737

  8. A Comparative Study of Airflow and Odorant Deposition in the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Richter, Joseph; Rumple, Christopher; Ranslow, Allison; Quigley, Andrew; Pang, Benison; Neuberger, Thomas; Krane, Michael; van Valkenburgh, Blaire; Craven, Brent

    2013-11-01

    The complex structure of the mammalian nasal cavity provides a tortuous airflow path and a large surface area for respiratory air conditioning, filtering of inspired contaminants, and olfaction. Due to the small and contorted structure of the nasal turbinals, nasal anatomy and function remains poorly understood in most mammals. Here, we utilize high-resolution MRI scans to reconstruct anatomically-accurate models of the mammalian nasal cavity. These data are used to compare the form and function of the mammalian nose. High-fidelity computational fluid dynamics (CFD) simulations of nasal airflow and odorant deposition are presented and used to compare olfactory function across species (primate, rodent, canine, feline, ungulate).

  9. Mitochondria, the Cell Cycle, and the Origin of Sex via a Syncytial Eukaryote Common Ancestor.

    PubMed

    Garg, Sriram G; Martin, William F

    2016-07-02

    Theories for the origin of sex traditionally start with an asexual mitosing cell and add recombination, thereby deriving meiosis from mitosis. Though sex was clearly present in the eukaryote common ancestor, the order of events linking the origin of sex and the origin of mitosis is unknown. Here, we present an evolutionary inference for the origin of sex starting with a bacterial ancestor of mitochondria in the cytosol of its archaeal host. We posit that symbiotic association led to the origin of mitochondria and gene transfer to host's genome, generating a nucleus and a dedicated translational compartment, the eukaryotic cytosol, in which-by virtue of mitochondria-metabolic energy was not limiting. Spontaneous protein aggregation (monomer polymerization) and Adenosine Tri-phosphate (ATP)-dependent macromolecular movement in the cytosol thereby became selectable, giving rise to continuous microtubule-dependent chromosome separation (reduction division). We propose that eukaryotic chromosome division arose in a filamentous, syncytial, multinucleated ancestor, in which nuclei with insufficient chromosome numbers could complement each other through mRNA in the cytosol and generate new chromosome combinations through karyogamy. A syncytial (or coenocytic, a synonym) eukaryote ancestor, or Coeca, would account for the observation that the process of eukaryotic chromosome separation is more conserved than the process of eukaryotic cell division. The first progeny of such a syncytial ancestor were likely equivalent to meiospores, released into the environment by the host's vesicle secretion machinery. The natural ability of archaea (the host) to fuse and recombine brought forth reciprocal recombination among fusing (syngamy and karyogamy) progeny-sex-in an ancestrally meiotic cell cycle, from which the simpler haploid and diploid mitotic cell cycles arose. The origin of eukaryotes was the origin of vertical lineage inheritance, and sex was required to keep vertically

  10. Mitochondria, the Cell Cycle, and the Origin of Sex via a Syncytial Eukaryote Common Ancestor

    PubMed Central

    Garg, Sriram G.; Martin, William F.

    2016-01-01

    Theories for the origin of sex traditionally start with an asexual mitosing cell and add recombination, thereby deriving meiosis from mitosis. Though sex was clearly present in the eukaryote common ancestor, the order of events linking the origin of sex and the origin of mitosis is unknown. Here, we present an evolutionary inference for the origin of sex starting with a bacterial ancestor of mitochondria in the cytosol of its archaeal host. We posit that symbiotic association led to the origin of mitochondria and gene transfer to host’s genome, generating a nucleus and a dedicated translational compartment, the eukaryotic cytosol, in which—by virtue of mitochondria—metabolic energy was not limiting. Spontaneous protein aggregation (monomer polymerization) and Adenosine Tri-phosphate (ATP)-dependent macromolecular movement in the cytosol thereby became selectable, giving rise to continuous microtubule-dependent chromosome separation (reduction division). We propose that eukaryotic chromosome division arose in a filamentous, syncytial, multinucleated ancestor, in which nuclei with insufficient chromosome numbers could complement each other through mRNA in the cytosol and generate new chromosome combinations through karyogamy. A syncytial (or coenocytic, a synonym) eukaryote ancestor, or Coeca, would account for the observation that the process of eukaryotic chromosome separation is more conserved than the process of eukaryotic cell division. The first progeny of such a syncytial ancestor were likely equivalent to meiospores, released into the environment by the host’s vesicle secretion machinery. The natural ability of archaea (the host) to fuse and recombine brought forth reciprocal recombination among fusing (syngamy and karyogamy) progeny—sex—in an ancestrally meiotic cell cycle, from which the simpler haploid and diploid mitotic cell cycles arose. The origin of eukaryotes was the origin of vertical lineage inheritance, and sex was required to keep

  11. Penile reconstruction

    PubMed Central

    Garaffa, Giulio; Sansalone, Salvatore; Ralph, David J

    2013-01-01

    During the most recent years, a variety of new techniques of penile reconstruction have been described in the literature. This paper focuses on the most recent advances in male genital reconstruction after trauma, excision of benign and malignant disease, in gender reassignment surgery and aphallia with emphasis on surgical technique, cosmetic and functional outcome. PMID:22426595

  12. Ligament reconstruction.

    PubMed

    Glickel, Steven Z; Gupta, Salil

    2006-05-01

    Volar ligament reconstruction is an effective technique for treating symptomatic laxity of the CMC joint of the thumb. The laxity may bea manifestation of generalized ligament laxity,post-traumatic, or metabolic (Ehler-Danlos). There construction reduces the shear forces on the joint that contribute to the development and persistence of inflammation. Although there have been only a few reports of the results of volar ligament reconstruction, the use of the procedure to treat Stage I and Stage II disease gives good to excellent results consistently. More advanced stages of disease are best treated by trapeziectomy, with or without ligament reconstruction.

  13. Intolerable human suffering and the role of the ancestor: literary criticism as a means of analysis.

    PubMed

    Harrison, E

    2000-09-01

    Intolerable human suffering and the role of the ancestor: literary criticism as a means of analysis This essay explores the experience of intolerable human suffering in Toni Cade Bambara's novel, The Salt Eaters. The method of analysis is literary criticism, a technique that shares many of the same goals as other types of inquiry. It employs close reading to illuminate the novel's meaning(s), thereby revealing information about the nature of intolerable human suffering. Morrison's characteristics of black art is the literary and cultural framework that guides the analysis of Bambara's novel. The paradigm has broad application for nursing. The purpose of this analysis was to describe the role of the ancestral system as a predictor of the trajectory of suffering. The results extend Morrison's paradigm and her notion of ancestor to include traditions and other non-corporeal factors that are essential for well-being and survival. The protagonist in Bambara's novel, Velma Henry, is the patient and exemplar who does not succumb to intolerable suffering because of its cumulative weight, but because she has lost touch with the traditions of her people, an essential component of her ancestral system. The ancestral system is a rich and complex network of individuals, groups, customs and beliefs that are instructive, protective and benevolent. Ancestors are also timeless and provide wisdom, but when the ancestral system is weak or absent, the trajectory of suffering is not favourable. Nurses must learn to recognize intolerable human suffering, to identify the patient's ancestral system, and to work within that system to keep suffering patients from harm.

  14. Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes

    PubMed Central

    Rozema, Jelte; Cornelisse, Danny; Zhang, Yuancheng; Li, Hongxiu; Bruning, Bas; Katschnig, Diana; Broekman, Rob; Ji, Bin; van Bodegom, Peter

    2015-01-01

    Salt tolerance of higher plants is determined by a complex set of traits, the timing and rate of evolution of which are largely unknown. We compared the salt tolerance of cultivars of sugar beet and their ancestor, sea beet, in hydroponic studies and evaluated whether traditional domestication and more recent breeding have changed salt tolerance of the cultivars relative to their ancestor. Our comparison of salt tolerance of crop cultivars is based on values of the relative growth rate (RGR) of the entire plant at various salinity levels. We found considerable salt tolerance of the sea beet and slightly, but significantly, reduced salt tolerance of the sugar beet cultivars. This indicates that traditional domestication by selection for morphological traits such as leaf size, beet shape and size, enhanced productivity, sugar content and palatability slightly affected salt tolerance of sugar beet cultivars. Salt tolerance among four sugar beet cultivars, three of which have been claimed to be salt tolerant, did not differ. We analysed the components of RGR to understand the mechanism of salt tolerance at the whole-plant level. The growth rate reduction at higher salinity was linked with reduced leaf area at the whole-plant level (leaf area ratio) and at the individual leaf level (specific leaf area). The leaf weight fraction was not affected by increased salinity. On the other hand, succulence and leaf thickness and the net assimilation per unit of leaf area (unit leaf rate) increased in response to salt treatment, thus partially counteracting reduced capture of light by lower leaf area. This compensatory mechanism may form part of the salt tolerance mechanism of sea beet and the four studied sugar beet cultivars. Together, our results indicate that domestication of the halophytic ancestor sea beet slightly reduced salt tolerance and that breeding for improved salt tolerance of sugar beet cultivars has not been effective. PMID:25492122

  15. Life cycle evolution: was the eumetazoan ancestor a holopelagic, planktotrophic gastraea?

    PubMed Central

    2013-01-01

    Background Two theories for the origin of animal life cycles with planktotrophic larvae are now discussed seriously: The terminal addition theory proposes a holopelagic, planktotrophic gastraea as the ancestor of the eumetazoans with addition of benthic adult stages and retention of the planktotrophic stages as larvae, i.e. the ancestral life cycles were indirect. The intercalation theory now proposes a benthic, deposit-feeding gastraea as the bilaterian ancestor with a direct development, and with planktotrophic larvae evolving independently in numerous lineages through specializations of juveniles. Results Information from the fossil record, from mapping of developmental types onto known phylogenies, from occurrence of apical organs, and from genetics gives no direct information about the ancestral eumetazoan life cycle; however, there are plenty of examples of evolution from an indirect development to direct development, and no unequivocal example of evolution in the opposite direction. Analyses of scenarios for the two types of evolution are highly informative. The evolution of the indirect spiralian life cycle with a trochophora larva from a planktotrophic gastraea is explained by the trochophora theory as a continuous series of ancestors, where each evolutionary step had an adaptational advantage. The loss of ciliated larvae in the ecdysozoans is associated with the loss of outer ciliated epithelia. A scenario for the intercalation theory shows the origin of the planktotrophic larvae of the spiralians through a series of specializations of the general ciliation of the juvenile. The early steps associated with the enhancement of swimming seem probable, but the following steps which should lead to the complicated downstream-collecting ciliary system are without any advantage, or even seem disadvantageous, until the whole structure is functional. None of the theories account for the origin of the ancestral deuterostome (ambulacrarian) life cycle. Conclusions All

  16. Ancestor-descendant relationships in evolution: origin of the extant pygmy right whale, Caperea marginata.

    PubMed

    Tsai, Cheng-Hsiu; Fordyce, R Ewan

    2015-01-01

    Ancestor-descendant relationships (ADRs), involving descent with modification, are the fundamental concept in evolution, but are usually difficult to recognize. We examined the cladistic relationship between the only reported fossil pygmy right whale, †Miocaperea pulchra, and its sole living relative, the enigmatic pygmy right whale Caperea marginata, the latter represented by both adult and juvenile specimens. †Miocaperea is phylogenetically bracketed between juvenile and adult Caperea marginata in morphologically based analyses, thus suggesting a possible ADR-the first so far identified within baleen whales (Cetacea: Mysticeti). The †Miocaperea-Caperea lineage may show long-term morphological stasis and, in turn, punctuated equilibrium.

  17. Life cycle evolution: was the eumetazoan ancestor a holopelagic, planktotrophic gastraea?

    PubMed

    Nielsen, Claus

    2013-08-16

    Two theories for the origin of animal life cycles with planktotrophic larvae are now discussed seriously: The terminal addition theory proposes a holopelagic, planktotrophic gastraea as the ancestor of the eumetazoans with addition of benthic adult stages and retention of the planktotrophic stages as larvae, i.e. the ancestral life cycles were indirect. The intercalation theory now proposes a benthic, deposit-feeding gastraea as the bilaterian ancestor with a direct development, and with planktotrophic larvae evolving independently in numerous lineages through specializations of juveniles. Information from the fossil record, from mapping of developmental types onto known phylogenies, from occurrence of apical organs, and from genetics gives no direct information about the ancestral eumetazoan life cycle; however, there are plenty of examples of evolution from an indirect development to direct development, and no unequivocal example of evolution in the opposite direction. Analyses of scenarios for the two types of evolution are highly informative. The evolution of the indirect spiralian life cycle with a trochophora larva from a planktotrophic gastraea is explained by the trochophora theory as a continuous series of ancestors, where each evolutionary step had an adaptational advantage. The loss of ciliated larvae in the ecdysozoans is associated with the loss of outer ciliated epithelia. A scenario for the intercalation theory shows the origin of the planktotrophic larvae of the spiralians through a series of specializations of the general ciliation of the juvenile. The early steps associated with the enhancement of swimming seem probable, but the following steps which should lead to the complicated downstream-collecting ciliary system are without any advantage, or even seem disadvantageous, until the whole structure is functional. None of the theories account for the origin of the ancestral deuterostome (ambulacrarian) life cycle. All the available information is

  18. Ether-à-go-go family voltage-gated K+ channels evolved in an ancestral metazoan and functionally diversified in a cnidarian-bilaterian ancestor.

    PubMed

    Li, Xiaofan; Martinson, Alexandra S; Layden, Michael J; Diatta, Fortunay H; Sberna, Anna P; Simmons, David K; Martindale, Mark Q; Jegla, Timothy J

    2015-02-15

    We examined the evolutionary origins of the ether-à-go-go (EAG) family of voltage-gated K(+) channels, which have a strong influence on the excitability of neurons. The bilaterian EAG family comprises three gene subfamilies (Eag, Erg and Elk) distinguished by sequence conservation and functional properties. Searches of genome sequence indicate that EAG channels are metazoan specific, appearing first in ctenophores. However, phylogenetic analysis including two EAG family channels from the ctenophore Mnemiopsis leidyi indicates that the diversification of the Eag, Erg and Elk gene subfamilies occurred in a cnidarian/bilaterian ancestor after divergence from ctenophores. Erg channel function is highly conserved between cnidarians and mammals. Here we show that Eag and Elk channels from the sea anemone Nematostella vectensis (NvEag and NvElk) also share high functional conservation with mammalian channels. NvEag, like bilaterian Eag channels, has rapid kinetics, whereas NvElk activates at extremely hyperpolarized voltages, which is characteristic of Elk channels. Potent inhibition of voltage activation by extracellular protons is conserved between mammalian and Nematostella EAG channels. However, characteristic inhibition of voltage activation by Mg(2+) in Eag channels and Ca(2+) in Erg channels is reduced in Nematostella because of mutation of a highly conserved aspartate residue in the voltage sensor. This mutation may preserve sub-threshold activation of Nematostella Eag and Erg channels in a high divalent cation environment. mRNA in situ hybridization of EAG channels in Nematostella suggests that they are differentially expressed in distinct cell types. Most notable is the expression of NvEag in cnidocytes, a cnidarian-specific stinging cell thought to be a neuronal subtype. © 2015. Published by The Company of Biologists Ltd.

  19. Ether-à-go-go family voltage-gated K+ channels evolved in an ancestral metazoan and functionally diversified in a cnidarian–bilaterian ancestor

    PubMed Central

    Li, Xiaofan; Martinson, Alexandra S.; Layden, Michael J.; Diatta, Fortunay H.; Sberna, Anna P.; Simmons, David K.; Martindale, Mark Q.; Jegla, Timothy J.

    2015-01-01

    We examined the evolutionary origins of the ether-à-go-go (EAG) family of voltage-gated K+ channels, which have a strong influence on the excitability of neurons. The bilaterian EAG family comprises three gene subfamilies (Eag, Erg and Elk) distinguished by sequence conservation and functional properties. Searches of genome sequence indicate that EAG channels are metazoan specific, appearing first in ctenophores. However, phylogenetic analysis including two EAG family channels from the ctenophore Mnemiopsis leidyi indicates that the diversification of the Eag, Erg and Elk gene subfamilies occurred in a cnidarian/bilaterian ancestor after divergence from ctenophores. Erg channel function is highly conserved between cnidarians and mammals. Here we show that Eag and Elk channels from the sea anemone Nematostella vectensis (NvEag and NvElk) also share high functional conservation with mammalian channels. NvEag, like bilaterian Eag channels, has rapid kinetics, whereas NvElk activates at extremely hyperpolarized voltages, which is characteristic of Elk channels. Potent inhibition of voltage activation by extracellular protons is conserved between mammalian and Nematostella EAG channels. However, characteristic inhibition of voltage activation by Mg2+ in Eag channels and Ca2+ in Erg channels is reduced in Nematostella because of mutation of a highly conserved aspartate residue in the voltage sensor. This mutation may preserve sub-threshold activation of Nematostella Eag and Erg channels in a high divalent cation environment. mRNA in situ hybridization of EAG channels in Nematostella suggests that they are differentially expressed in distinct cell types. Most notable is the expression of NvEag in cnidocytes, a cnidarian-specific stinging cell thought to be a neuronal subtype. PMID:25696816

  20. Lung development of monotremes: evidence for the mammalian morphotype.

    PubMed

    Ferner, Kirsten; Zeller, Ulrich; Renfree, Marilyn B

    2009-02-01

    The reproductive strategies and the extent of development of neonates differ markedly between the three extant mammalian groups: the Monotremata, Marsupialia, and Eutheria. Monotremes and marsupials produce highly altricial offspring whereas the neonates of eutherian mammals range from altricial to precocial. The ability of the newborn mammal to leave the environment in which it developed depends highly on the degree of maturation of the cardio-respiratory system at the time of birth. The lung structure is thus a reflection of the metabolic capacity of neonates. The lung development in monotremes (Ornithorhynchus anatinus, Tachyglossus aculeatus), in one marsupial (Monodelphis domestica), and one altricial eutherian (Suncus murinus) species was examined. The results and additional data from the literature were integrated into a morphotype reconstruction of the lung structure of the mammalian neonate. The lung parenchyma of monotremes and marsupials was at the early terminal air sac stage at birth, with large terminal air sacs. The lung developed slowly. In contrast, altricial eutherian neonates had more advanced lungs at the late terminal air sac stage and postnatally, lung maturation proceeded rapidly. The mammalian lung is highly conserved in many respects between monotreme, marsupial, and eutherian species and the structural differences in the neonatal lungs can be explained mainly by different developmental rates. The lung structure of newborn marsupials and monotremes thus resembles the ancestral condition of the mammalian lung at birth, whereas the eutherian newborns have a more mature lung structure.

  1. ACL reconstruction

    MedlinePlus

    ... This increases the chance you may have a meniscus tear. ACL reconstruction may be used for these ... When other ligaments are also injured When your meniscus is torn Before surgery, talk to your health ...

  2. Breast Reconstruction

    MedlinePlus

    ... senos Preguntas Para el Médico Datos Para la Vida Komen El cuidado de sus senos:Consejos útiles ... can help . Cost Federal law requires most insurance plans cover the cost of breast reconstruction. Learn more ...

  3. Sirtuins: Guardians of Mammalian Healthspan

    PubMed Central

    Giblin, William; Skinner, Mary E.; Lombard, David B.

    2014-01-01

    The first link between sirtuins and longevity was made 15 years ago in yeast. These initial studies sparked efforts by many laboratories working in diverse model organisms to elucidate the relationships between sirtuins, lifespan, and age-associated dysfunction. Here we discuss the current understanding of how sirtuins relate to aging. We focus primarily on mammalian sirtuins SIRT1, SIRT3, and SIRT6, the three sirtuins for which the most relevant data are available. Strikingly, a large body of evidence now indicates that these and other mammalian sirtuins suppress a variety of age-related pathologies and promote healthspan. Moreover, increased expression of SIRT1 or SIRT6 extends mouse lifespan. Overall, these data point to important roles for sirtuins in promoting mammalian health, and perhaps in modulating the aging process. PMID:24877878

  4. Electroporation into Cultured Mammalian Embryos

    NASA Astrophysics Data System (ADS)

    Nomura, Tadashi; Takahashi, Masanori; Osumi, Noriko

    Over the last century, mammalian embryos have been used extensively as a common animal model to investigate fundamental questions in the field of developmental biology. More recently, the establishment of transgenic and gene-targeting systems in laboratory mice has enabled researchers to unveil the genetic mechanisms under lying complex developmental processes (Mak, 2007). However, our understanding of cell—cell interactions and their molecular basis in the early stages of mammalian embryogenesis is still very fragmentary. One of the major problems is the difficulty of precise manipulation and limited accessibility to mammalian embryos via uterus wall. Unfortunately, existing tissue and organotypic culture systems per se do not fully recapitulate three-dimensional, dynamic processes of organogenesis observed in vivo. Although transgenic animal technology and virus-mediated gene delivery are useful to manipulate gene expression, these techniques take much time and financial costs, which limit their use.

  5. Mammalian sex hormones in plants.

    PubMed

    Janeczko, Anna; Skoczowski, Andrzej

    2005-01-01

    The occurrence of mammalian sex hormones and their physiological role in plants is reviewed. These hormones, such as 17beta-estradiol, androsterone, testosterone or progesterone, were present in 60-80% of the plant species investigated. Enzymes responsible for their biosynthesis and conversion were also found in plants. Treatment of the plants with sex hormones or their precursors influenced plant development: cell divisions, root and shoot growth, embryo growth, flowering, pollen tube growth and callus proliferation. The regulatory abilities of mammalian sex hormones in plants makes possible their use in practice, especially in plant in vitro culture.

  6. Mammalian development does not recapitulate suspected key transformations in the evolutionary detachment of the mammalian middle ear

    PubMed Central

    Ramírez-Chaves, Héctor E.; Wroe, Stephen W.; Selwood, Lynne; Hinds, Lyn A.; Leigh, Chris; Koyabu, Daisuke; Kardjilov, Nikolay; Weisbecker, Vera

    2016-01-01

    The ectotympanic, malleus and incus of the developing mammalian middle ear (ME) are initially attached to the dentary via Meckel's cartilage, betraying their origins from the primary jaw joint of land vertebrates. This recapitulation has prompted mostly unquantified suggestions that several suspected—but similarly unquantified—key evolutionary transformations leading to the mammalian ME are recapitulated in development, through negative allometry and posterior/medial displacement of ME bones relative to the jaw joint. Here we show, using µCT reconstructions, that neither allometric nor topological change is quantifiable in the pre-detachment ME development of six marsupials and two monotremes. Also, differential ME positioning in the two monotreme species is not recapitulated. This challenges the developmental prerequisites of widely cited evolutionary scenarios of definitive mammalian middle ear (DMME) evolution, highlighting the requirement for further fossil evidence to test these hypotheses. Possible association between rear molar eruption, full ME ossification and ME detachment in marsupials suggests functional divergence between dentary and ME as a trigger for developmental, and possibly also evolutionary, ME detachment. The stable positioning of the dentary and ME supports suggestions that a ‘partial mammalian middle ear’ as found in many mammaliaforms—probably with a cartilaginous Meckel's cartilage—represents the only developmentally plausible evolutionary DMME precursor. PMID:26763693

  7. Mammalian development does not recapitulate suspected key transformations in the evolutionary detachment of the mammalian middle ear.

    PubMed

    Ramírez-Chaves, Héctor E; Wroe, Stephen W; Selwood, Lynne; Hinds, Lyn A; Leigh, Chris; Koyabu, Daisuke; Kardjilov, Nikolay; Weisbecker, Vera

    2016-01-13

    The ectotympanic, malleus and incus of the developing mammalian middle ear (ME) are initially attached to the dentary via Meckel's cartilage, betraying their origins from the primary jaw joint of land vertebrates. This recapitulation has prompted mostly unquantified suggestions that several suspected--but similarly unquantified--key evolutionary transformations leading to the mammalian ME are recapitulated in development, through negative allometry and posterior/medial displacement of ME bones relative to the jaw joint. Here we show, using µCT reconstructions, that neither allometric nor topological change is quantifiable in the pre-detachment ME development of six marsupials and two monotremes. Also, differential ME positioning in the two monotreme species is not recapitulated. This challenges the developmental prerequisites of widely cited evolutionary scenarios of definitive mammalian middle ear (DMME) evolution, highlighting the requirement for further fossil evidence to test these hypotheses. Possible association between rear molar eruption, full ME ossification and ME detachment in marsupials suggests functional divergence between dentary and ME as a trigger for developmental, and possibly also evolutionary, ME detachment. The stable positioning of the dentary and ME supports suggestions that a 'partial mammalian middle ear' as found in many mammaliaforms--probably with a cartilaginous Meckel's cartilage--represents the only developmentally plausible evolutionary DMME precursor.

  8. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors.

    PubMed

    Tahirov, Tahir H; Makarova, Kira S; Rogozin, Igor B; Pavlov, Youri I; Koonin, Eugene V

    2009-03-18

    Evolution of DNA polymerases, the key enzymes of DNA replication and repair, is central to any reconstruction of the history of cellular life. However, the details of the evolutionary relationships between DNA polymerases of archaea and eukaryotes remain unresolved. We performed a comparative analysis of archaeal, eukaryotic, and bacterial B-family DNA polymerases, which are the main replicative polymerases in archaea and eukaryotes, combined with an analysis of domain architectures. Surprisingly, we found that eukaryotic Polymerase epsilon consists of two tandem exonuclease-polymerase modules, the active N-terminal module and a C-terminal module in which both enzymatic domains are inactivated. The two modules are only distantly related to each other, an observation that suggests the possibility that Pol epsilon evolved as a result of insertion and subsequent inactivation of a distinct polymerase, possibly, of bacterial descent, upstream of the C-terminal Zn-fingers, rather than by tandem duplication. The presence of an inactivated exonuclease-polymerase module in Pol epsilon parallels a similar inactivation of both enzymatic domains in a distinct family of archaeal B-family polymerases. The results of phylogenetic analysis indicate that eukaryotic B-family polymerases, most likely, originate from two distantly related archaeal B-family polymerases, one form giving rise to Pol epsilon, and the other one to the common ancestor of Pol alpha, Pol delta, and Pol zeta. The C-terminal Zn-fingers that are present in all eukaryotic B-family polymerases, unexpectedly, are homologous to the Zn-finger of archaeal D-family DNA polymerases that are otherwise unrelated to the B family. The Zn-finger of Polepsilon shows a markedly greater similarity to the counterpart in archaeal PolD than the Zn-fingers of other eukaryotic B-family polymerases. Evolution of eukaryotic DNA polymerases seems to have involved previously unnoticed complex events. We hypothesize that the archaeal

  9. Evidence of duplicated Hox genes in the most recent common ancestor of extant scorpions.

    PubMed

    Sharma, Prashant P; Santiago, Marc A; González-Santillán, Edmundo; Monod, Lionel; Wheeler, Ward C

    2015-01-01

    Scorpions (order Scorpiones) are unusual among arthropods, both for the extreme heteronomy of their bauplan and for the high gene family turnover exhibited in their genomes. These phenomena appear to be correlated, as two scorpion species have been shown to possess nearly twice the number of Hox genes present in most arthropods. Segmentally offset anterior expression boundaries of a subset of Hox paralogs have been shown to correspond to transitions in segmental identities in the scorpion posterior tagmata, suggesting that posterior heteronomy in scorpions may have been achieved by neofunctionalization of Hox paralogs. However, both the first scorpion genome sequenced and the developmental genetic data are based on exemplars of Buthidae, one of 19 families of scorpions. It is therefore not known whether Hox paralogy is limited to Buthidae or widespread among scorpions. We surveyed 24 high throughput transcriptomes and the single whole genome available for scorpions, in order to test the prediction that Hox gene duplications are common to the order. We used gene tree parsimony to infer whether the paralogy was consistent with a duplication event in the scorpion common ancestor. Here we show that duplicated Hox genes in non-buthid scorpions occur in six of the ten Hox classes. Gene tree topologies and parsimony-based reconciliation of the gene trees are consistent with a duplication event in the most recent common ancestor of scorpions. These results suggest that a Hox paralogy, and by extension the model of posterior patterning established in a buthid, can be extended to non-Buthidae scorpions.

  10. Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales

    PubMed Central

    Meredith, Robert W.; Gatesy, John; Cheng, Joyce; Springer, Mark S.

    2011-01-01

    Whales in the suborder Mysticeti are filter feeders that use baleen to sift zooplankton and small fish from ocean waters. Adult mysticetes lack teeth, although tooth buds are present in foetal stages. Cladistic analyses suggest that functional teeth were lost in the common ancestor of crown-group Mysticeti. DNA sequences for the tooth-specific genes, ameloblastin (AMBN), enamelin (ENAM) and amelogenin (AMEL), have frameshift mutations and/or stop codons in this taxon, but none of these molecular cavities are shared by all extant mysticetes. Here, we provide the first evidence for pseudogenization of a tooth gene, enamelysin (MMP20), in the common ancestor of living baleen whales. Specifically, pseudogenization resulted from the insertion of a CHR-2 SINE retroposon in exon 2 of MMP20. Genomic and palaeontological data now provide congruent support for the loss of enamel-capped teeth on the common ancestral branch of crown-group mysticetes. The new data for MMP20 also document a polymorphic stop codon in exon 2 of the pygmy sperm whale (Kogia breviceps), which has enamel-less teeth. These results, in conjunction with the evidence for pseudogenization of MMP20 in Hoffmann's two-toed sloth (Choloepus hoffmanni), another enamel-less species, support the hypothesis that the only unique, non-overlapping function of the MMP20 gene is in enamel formation. PMID:20861053

  11. Analyzing the rate at which languages lose the influence of a common ancestor.

    PubMed

    Rafferty, Anna N; Griffiths, Thomas L; Klein, Dan

    2014-01-01

    Analyzing the rate at which languages change can clarify whether similarities across languages are solely the result of cognitive biases or might be partially due to descent from a common ancestor. To demonstrate this approach, we use a simple model of language evolution to mathematically determine how long it should take for the distribution over languages to lose the influence of a common ancestor and converge to a form that is determined by constraints on language learning. We show that modeling language learning as Bayesian inference of n binary parameters or the ordering of n constraints results in convergence in a number of generations that is on the order of n log n. We relax some of the simplifying assumptions of this model to explore how different assumptions about language evolution affect predictions about the time to convergence; in general, convergence time increases as the model becomes more realistic. This allows us to characterize the assumptions about language learning (given the models that we consider) that are sufficient for convergence to have taken place on a timescale that is consistent with the origin of human languages. These results clearly identify the consequences of a set of simple models of language evolution and show how analysis of convergence rates provides a tool that can be used to explore questions about the relationship between accounts of language learning and the origins of similarities across languages. © 2014 Cognitive Science Society, Inc.

  12. Did Viruses Evolve As a Distinct Supergroup from Common Ancestors of Cells?

    PubMed Central

    Harish, Ajith; Abroi, Aare; Gough, Julian; Kurland, Charles

    2016-01-01

    The evolutionary origins of viruses according to marker gene phylogenies, as well as their relationships to the ancestors of host cells remains unclear. In a recent article Nasir and Caetano-Anollés reported that their genome-scale phylogenetic analyses based on genomic composition of protein structural-domains identify an ancient origin of the “viral supergroup” (Nasir et al. 2015. A phylogenomic data-driven exploration of viral origins and evolution. Sci Adv. 1(8):e1500527.). It suggests that viruses and host cells evolved independently from a universal common ancestor. Examination of their data and phylogenetic methods indicates that systematic errors likely affected the results. Reanalysis of the data with additional tests shows that small-genome attraction artifacts distort their phylogenomic analyses, particularly the location of the root of the phylogenetic tree of life that is central to their conclusions. These new results indicate that their suggestion of a distinct ancestry of the viral supergroup is not well supported by the evidence. PMID:27497315

  13. Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales.

    PubMed

    Meredith, Robert W; Gatesy, John; Cheng, Joyce; Springer, Mark S

    2011-04-07

    Whales in the suborder Mysticeti are filter feeders that use baleen to sift zooplankton and small fish from ocean waters. Adult mysticetes lack teeth, although tooth buds are present in foetal stages. Cladistic analyses suggest that functional teeth were lost in the common ancestor of crown-group Mysticeti. DNA sequences for the tooth-specific genes, ameloblastin (AMBN), enamelin (ENAM) and amelogenin (AMEL), have frameshift mutations and/or stop codons in this taxon, but none of these molecular cavities are shared by all extant mysticetes. Here, we provide the first evidence for pseudogenization of a tooth gene, enamelysin (MMP20), in the common ancestor of living baleen whales. Specifically, pseudogenization resulted from the insertion of a CHR-2 SINE retroposon in exon 2 of MMP20. Genomic and palaeontological data now provide congruent support for the loss of enamel-capped teeth on the common ancestral branch of crown-group mysticetes. The new data for MMP20 also document a polymorphic stop codon in exon 2 of the pygmy sperm whale (Kogia breviceps), which has enamel-less teeth. These results, in conjunction with the evidence for pseudogenization of MMP20 in Hoffmann's two-toed sloth (Choloepus hoffmanni), another enamel-less species, support the hypothesis that the only unique, non-overlapping function of the MMP20 gene is in enamel formation.

  14. DNA repair in mammalian embryos.

    PubMed

    Jaroudi, Souraya; SenGupta, Sioban

    2007-01-01

    Mammalian cells have developed complex mechanisms to identify DNA damage and activate the required response to maintain genome integrity. Those mechanisms include DNA damage detection, DNA repair, cell cycle arrest and apoptosis which operate together to protect the conceptus from DNA damage originating either in parental gametes or in the embryo's somatic cells. DNA repair in the newly fertilized preimplantation embryo is believed to rely entirely on the oocyte's machinery (mRNAs and proteins deposited and stored prior to ovulation). DNA repair genes have been shown to be expressed in the early stages of mammalian development. The survival of the embryo necessitates that the oocyte be sufficiently equipped with maternal stored products and that embryonic gene expression commences at the correct time. A Medline based literature search was performed using the keywords 'DNA repair' and 'embryo development' or 'gametogenesis' (publication dates between 1995 and 2006). Mammalian studies which investigated gene expression were selected. Further articles were acquired from the citations in the articles obtained from the preliminary Medline search. This paper reviews mammalian DNA repair from gametogenesis to preimplantation embryos to late gestational stages.

  15. How difficult is inference of mammalian causal gene regulatory networks?

    PubMed

    Djordjevic, Djordje; Yang, Andrian; Zadoorian, Armella; Rungrugeecharoen, Kevin; Ho, Joshua W K

    2014-01-01

    Gene regulatory networks (GRNs) play a central role in systems biology, especially in the study of mammalian organ development. One key question remains largely unanswered: Is it possible to infer mammalian causal GRNs using observable gene co-expression patterns alone? We assembled two mouse GRN datasets (embryonic tooth and heart) and matching microarray gene expression profiles to systematically investigate the difficulties of mammalian causal GRN inference. The GRNs were assembled based on > 2,000 pieces of experimental genetic perturbation evidence from manually reading > 150 primary research articles. Each piece of perturbation evidence records the qualitative change of the expression of one gene following knock-down or over-expression of another gene. Our data have thorough annotation of tissue types and embryonic stages, as well as the type of regulation (activation, inhibition and no effect), which uniquely allows us to estimate both sensitivity and specificity of the inference of tissue specific causal GRN edges. Using these unprecedented datasets, we found that gene co-expression does not reliably distinguish true positive from false positive interactions, making inference of GRN in mammalian development very difficult. Nonetheless, if we have expression profiling data from genetic or molecular perturbation experiments, such as gene knock-out or signalling stimulation, it is possible to use the set of differentially expressed genes to recover causal regulatory relationships with good sensitivity and specificity. Our result supports the importance of using perturbation experimental data in causal network reconstruction. Furthermore, we showed that causal gene regulatory relationship can be highly cell type or developmental stage specific, suggesting the importance of employing expression profiles from homogeneous cell populations. This study provides essential datasets and empirical evidence to guide the development of new GRN inference methods for

  16. Evidence for a single loss of mineralized teeth in the common avian ancestor.

    PubMed

    Meredith, Robert W; Zhang, Guojie; Gilbert, M Thomas P; Jarvis, Erich D; Springer, Mark S

    2014-12-12

    Edentulism, the absence of teeth, has evolved convergently among vertebrates, including birds, turtles, and several lineages of mammals. Instead of teeth, modern birds (Neornithes) use a horny beak (rhamphotheca) and a muscular gizzard to acquire and process food. We performed comparative genomic analyses representing lineages of nearly all extant bird orders and recovered shared, inactivating mutations within genes expressed in both the enamel and dentin of teeth of other vertebrate species, indicating that the common ancestor of modern birds lacked mineralized teeth. We estimate that tooth loss, or at least the loss of enamel caps that provide the outer layer of mineralized teeth, occurred about 116 million years ago. Copyright © 2014, American Association for the Advancement of Science.

  17. Environmental Adaptation from the Origin of Life to the Last Universal Common Ancestor

    NASA Astrophysics Data System (ADS)

    Cantine, Marjorie D.; Fournier, Gregory P.

    2017-07-01

    Extensive fundamental molecular and biological evolution took place between the prebiotic origins of life and the state of the Last Universal Common Ancestor (LUCA). Considering the evolutionary innovations between these two endpoints from the perspective of environmental adaptation, we explore the hypothesis that LUCA was temporally, spatially, and environmentally distinct from life's earliest origins in an RNA world. Using this lens, we interpret several molecular biological features as indicating an environmental transition between a cold, radiation-shielded origin of life and a mesophilic, surface-dwelling LUCA. Cellularity provides motility and permits Darwinian evolution by connecting genetic material and its products, and thus establishing heredity and lineage. Considering the importance of compartmentalization and motility, we propose that the early emergence of cellularity is required for environmental dispersal and diversification during these transitions. Early diversification and the emergence of ecology before LUCA could be an important pre-adaptation for life's persistence on a changing planet.

  18. Large number of ultraconserved elements were already present in the jawed vertebrate ancestor.

    PubMed

    Wang, Jianli; Lee, Alison P; Kodzius, Rimantas; Brenner, Sydney; Venkatesh, Byrappa

    2009-03-01

    Stephen (2008) identified 13,736 ultraconserved elements (UCEs) in placental mammals and investigated their evolution in opossum, chicken, frog, and fugu. They found that there was a massive expansion of UCEs during tetrapod evolution and the substitution rate in UCEs showed a significant decline in tetrapods compared with fugu, suggesting they were exapted in tetrapods. They considered it unlikely that these elements are ancient but evolved at a higher rate in teleost fishes. In this study, we investigated the evolution of UCEs in a cartilaginous fish, the elephant shark and show that nearly half the UCEs were present in the jawed vertebrate ancestor. The substitution rate in UCEs is higher in fugu than in elephant shark, and approximately one-third of ancient UCEs have diverged beyond recognition in teleost fishes. These data indicate that UCEs have evolved at a higher rate in teleost fishes, which may have implications for their vast diversity and evolutionary success.

  19. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut.

    PubMed

    Bertioli, David John; Cannon, Steven B; Froenicke, Lutz; Huang, Guodong; Farmer, Andrew D; Cannon, Ethalinda K S; Liu, Xin; Gao, Dongying; Clevenger, Josh; Dash, Sudhansu; Ren, Longhui; Moretzsohn, Márcio C; Shirasawa, Kenta; Huang, Wei; Vidigal, Bruna; Abernathy, Brian; Chu, Ye; Niederhuth, Chad E; Umale, Pooja; Araújo, Ana Cláudia G; Kozik, Alexander; Kim, Kyung Do; Burow, Mark D; Varshney, Rajeev K; Wang, Xingjun; Zhang, Xinyou; Barkley, Noelle; Guimarães, Patrícia M; Isobe, Sachiko; Guo, Baozhu; Liao, Boshou; Stalker, H Thomas; Schmitz, Robert J; Scheffler, Brian E; Leal-Bertioli, Soraya C M; Xun, Xu; Jackson, Scott A; Michelmore, Richard; Ozias-Akins, Peggy

    2016-04-01

    Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of a total size of ∼2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging. As a foundation to understanding the genome of cultivated peanut, we report the genome sequences of its diploid ancestors (Arachis duranensis and Arachis ipaensis). We show that these genomes are similar to cultivated peanut's A and B subgenomes and use them to identify candidate disease resistance genes, to guide tetraploid transcript assemblies and to detect genetic exchange between cultivated peanut's subgenomes. On the basis of remarkably high DNA identity of the A. ipaensis genome and the B subgenome of cultivated peanut and biogeographic evidence, we conclude that A. ipaensis may be a direct descendant of the same population that contributed the B subgenome to cultivated peanut.

  20. Aberrant Time to Most Recent Common Ancestor as a Signature of Natural Selection.

    PubMed

    Hunter-Zinck, Haley; Clark, Andrew G

    2015-10-01

    Natural selection inference methods often target one mode of selection of a particular age and strength. However, detecting multiple modes simultaneously, or with atypical representations, would be advantageous for understanding a population's evolutionary history. We have developed an anomaly detection algorithm using distributions of pairwise time to most recent common ancestor (TMRCA) to simultaneously detect multiple modes of natural selection in whole-genome sequences. As natural selection distorts local genealogies in distinct ways, the method uses pairwise TMRCA distributions, which approximate genealogies at a nonrecombining locus, to detect distortions without targeting a specific mode of selection. We evaluate the performance of our method, TSel, for both positive and balancing selection over different time-scales and selection strengths and compare TSel's performance with that of other methods. We then apply TSel to the Complete Genomics diversity panel, a set of human whole-genome sequences, and recover loci previously inferred to be under positive or balancing selection.

  1. Adaptive evolution of vertebrate-type cryptochrome in the ancestors of Hymenoptera.

    PubMed

    Wang, Bo; Xiao, Jin-Hua; Bian, Sheng-Nan; Gu, Hai-Feng; Huang, Da-Wei

    2013-02-23

    One of the most mysterious aspects of insect clock mechanisms is that some insects, including Hymenoptera and Tribolium, only express a vertebrate-type cryptochrome (cry2). It is unknown whether or not cry2 underwent adaptive evolution in these insects. In the present study, we cloned and sequenced the full-length cry2 from a fig pollinator species, Ceratosolen solmsi (Hymenoptera: Chalcidoidea: Agaonidae), and examined the molecular evolution and daily expression of this gene. Our results suggest that cry2 underwent positive selection in the branch leading to hymenopteran insects. The function of CRY2 might have been fixed since undergoing natural selection in the ancestor of Hymenoptera. Male pollinators showed stronger rhythmicity in the host figs, which reflect an adaptation to their life cycles.

  2. Environmental Adaptation from the Origin of Life to the Last Universal Common Ancestor.

    PubMed

    Cantine, Marjorie D; Fournier, Gregory P

    2017-07-06

    Extensive fundamental molecular and biological evolution took place between the prebiotic origins of life and the state of the Last Universal Common Ancestor (LUCA). Considering the evolutionary innovations between these two endpoints from the perspective of environmental adaptation, we explore the hypothesis that LUCA was temporally, spatially, and environmentally distinct from life's earliest origins in an RNA world. Using this lens, we interpret several molecular biological features as indicating an environmental transition between a cold, radiation-shielded origin of life and a mesophilic, surface-dwelling LUCA. Cellularity provides motility and permits Darwinian evolution by connecting genetic material and its products, and thus establishing heredity and lineage. Considering the importance of compartmentalization and motility, we propose that the early emergence of cellularity is required for environmental dispersal and diversification during these transitions. Early diversification and the emergence of ecology before LUCA could be an important pre-adaptation for life's persistence on a changing planet.

  3. Do Basque- and Caucasian-speaking populations share non-Indo-European ancestors?

    PubMed

    Bertorelle, G; Bertranpetit, J; Calafell, F; Nasidze, I S; Barbujani, G

    1995-01-01

    Genetic evidence is consistent with the view that the Indo-European languages were propagated in Europe by the diffusion of early farmers. The existence of phylogenetic relationships between European populations speaking other languages has been proposed on linguistic and archaeological grounds, and is here tested by analyzing allele frequencies at ten polymorphic protein and blood group loci. Genetic distances between speakers of Basque and Caucasian languages are compared with those between controls, i.e. contiguous populations speaking Indo-European and Altaic. Although some statistical tests show an excess of genetic similarity between Basque and South Caucasian speakers, most results do not support their common origin. If the Basques and the Caucasian-speaking populations share common ancestors, recent evolutionary phenomena must have caused divergence between them, so that their gene frequencies do not appear more similar now than those of random pairs of populations separated by the same geographic distance.

  4. Evolution of mammalian sensorimotor cortex: thalamic projections to parietal cortical areas in Monodelphis domestica

    PubMed Central

    Dooley, James C.; Franca, João G.; Seelke, Adele M. H.; Cooke, Dylan F.; Krubitzer, Leah A.

    2015-01-01

    The current experiments build upon previous studies designed to reveal the network of parietal cortical areas present in the common mammalian ancestor. Understanding this ancestral network is essential for highlighting the basic somatosensory circuitry present in all mammals, and how this basic plan was modified to generate species specific behaviors. Our animal model, the short-tailed opossum (Monodelphis domestica), is a South American marsupial that has been proposed to have a similar ecological niche and morphology to the earliest common mammalian ancestor. In this investigation, we injected retrograde neuroanatomical tracers into the face and body representations of primary somatosensory cortex (S1), the rostral and caudal somatosensory fields (SR and SC), as well as a multimodal region (MM). Projections from different architectonically defined thalamic nuclei were then quantified. Our results provide further evidence to support the hypothesized basic mammalian plan of thalamic projections to S1, with the lateral and medial ventral posterior thalamic nuclei (VPl and VPm) projecting to S1 body and S1 face, respectively. Additional strong projections are from the medial division of posterior nucleus (Pom). SR receives projections from several midline nuclei, including the medial dorsal, ventral medial nucleus, and Pom. SC and MM show similar patterns of connectivity, with projections from the ventral anterior and ventral lateral nuclei, VPm and VPl, and the entire posterior nucleus (medial and lateral). Notably, MM is distinguished from SC by relatively dense projections from the dorsal division of the lateral geniculate nucleus and pulvinar. We discuss the finding that S1 of the short-tailed opossum has a similar pattern of projections as other marsupials and mammals, but also some distinct projections not present in other mammals. Further we provide additional support for a primitive posterior parietal cortex which receives input from multiple modalities. PMID

  5. Evolution of mammalian sensorimotor cortex: thalamic projections to parietal cortical areas in Monodelphis domestica.

    PubMed

    Dooley, James C; Franca, João G; Seelke, Adele M H; Cooke, Dylan F; Krubitzer, Leah A

    2014-01-01

    The current experiments build upon previous studies designed to reveal the network of parietal cortical areas present in the common mammalian ancestor. Understanding this ancestral network is essential for highlighting the basic somatosensory circuitry present in all mammals, and how this basic plan was modified to generate species specific behaviors. Our animal model, the short-tailed opossum (Monodelphis domestica), is a South American marsupial that has been proposed to have a similar ecological niche and morphology to the earliest common mammalian ancestor. In this investigation, we injected retrograde neuroanatomical tracers into the face and body representations of primary somatosensory cortex (S1), the rostral and caudal somatosensory fields (SR and SC), as well as a multimodal region (MM). Projections from different architectonically defined thalamic nuclei were then quantified. Our results provide further evidence to support the hypothesized basic mammalian plan of thalamic projections to S1, with the lateral and medial ventral posterior thalamic nuclei (VPl and VPm) projecting to S1 body and S1 face, respectively. Additional strong projections are from the medial division of posterior nucleus (Pom). SR receives projections from several midline nuclei, including the medial dorsal, ventral medial nucleus, and Pom. SC and MM show similar patterns of connectivity, with projections from the ventral anterior and ventral lateral nuclei, VPm and VPl, and the entire posterior nucleus (medial and lateral). Notably, MM is distinguished from SC by relatively dense projections from the dorsal division of the lateral geniculate nucleus and pulvinar. We discuss the finding that S1 of the short-tailed opossum has a similar pattern of projections as other marsupials and mammals, but also some distinct projections not present in other mammals. Further we provide additional support for a primitive posterior parietal cortex which receives input from multiple modalities.

  6. Project Reconstruct.

    ERIC Educational Resources Information Center

    Helisek, Harriet; Pratt, Donald

    1994-01-01

    Presents a project in which students monitor their use of trash, input and analyze information via a database and computerized graphs, and "reconstruct" extinct or endangered animals from recyclable materials. The activity was done with second-grade students over a period of three to four weeks. (PR)

  7. Project Reconstruct.

    ERIC Educational Resources Information Center

    Helisek, Harriet; Pratt, Donald

    1994-01-01

    Presents a project in which students monitor their use of trash, input and analyze information via a database and computerized graphs, and "reconstruct" extinct or endangered animals from recyclable materials. The activity was done with second-grade students over a period of three to four weeks. (PR)

  8. Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data.

    PubMed

    Keller, Matthew C; Visscher, Peter M; Goddard, Michael E

    2011-09-01

    Inbreeding depression, which refers to reduced fitness among offspring of related parents, has traditionally been studied using pedigrees. In practice, pedigree information is difficult to obtain, potentially unreliable, and rarely assessed for inbreeding arising from common ancestors who lived more than a few generations ago. Recently, there has been excitement about using SNP data to estimate inbreeding (F) arising from distant common ancestors in apparently "outbred" populations. Statistical power to detect inbreeding depression using SNP data depends on the actual variation in inbreeding in a population, the accuracy of detecting that with marker data, the effect size, and the sample size. No one has yet investigated what variation in F is expected in SNP data as a function of population size, and it is unclear which estimate of F is optimal for detecting inbreeding depression. In the present study, we use theory, simulated genetic data, and real genetic data to find the optimal estimate of F, to quantify the likely variation in F in populations of various sizes, and to estimate the power to detect inbreeding depression. We find that F estimated from runs of homozygosity (Froh), which reflects shared ancestry of genetic haplotypes, retains variation in even large populations (e.g., SD=0.5% when Ne=10,000) and is likely to be the most powerful method of detecting inbreeding effects from among several alternative estimates of F. However, large samples (e.g., 12,000-65,000) will be required to detect inbreeding depression for likely effect sizes, and so studies using Froh to date have probably been underpowered.

  9. The ancestors of diatoms evolved a unique mitochondrial dehydrogenase to oxidize photorespiratory glycolate.

    PubMed

    Schmitz, Jessica; Srikanth, Nishtala V; Hüdig, Meike; Poschmann, Gereon; Lercher, Martin J; Maurino, Veronica G

    2017-05-01

    Like other oxygenic photosynthetic organisms, diatoms produce glycolate, a toxic intermediate, as a consequence of the oxygenase activity of Rubisco. Diatoms can remove glycolate through excretion and through oxidation as part of the photorespiratory pathway. The diatom Phaeodactylum tricornutum encodes two proteins suggested to be involved in glycolate metabolism: PtGO1 and PtGO2. We found that these proteins differ substantially from the sequences of experimentally characterized proteins responsible for glycolate oxidation in other species, glycolate oxidase (GOX) and glycolate dehydrogenase. We show that PtGO1 and PtGO2 are the only sequences of P. tricornutum homologous to GOX. Our phylogenetic analyses indicate that the ancestors of diatoms acquired PtGO1 during the proposed first secondary endosymbiosis with a chlorophyte alga, which may have previously obtained this gene from proteobacteria. In contrast, PtGO2 is orthologous to an uncharacterized protein in Galdieria sulphuraria, consistent with its acquisition during the secondary endosymbiosis with a red alga that gave rise to the current plastid. The analysis of amino acid residues at conserved positions suggests that PtGO2, which localizes to peroxisomes, may use substrates other than glycolate, explaining the lack of GOX activity we observe in vitro. Instead, PtGO1, while only very distantly related to previously characterized GOX proteins, evolved glycolate-oxidizing activity, as demonstrated by in gel activity assays and mass spectrometry analysis. PtGO1 localizes to mitochondria, consistent with previous suggestions that photorespiration in diatoms proceeds in these organelles. We conclude that the ancestors of diatoms evolved a unique alternative to oxidize photorespiratory glycolate: a mitochondrial dehydrogenase homologous to GOX able to use electron acceptors other than O2.

  10. Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor

    PubMed Central

    Crompton, R H; Vereecke, E E; Thorpe, S K S

    2008-01-01

    Based on our knowledge of locomotor biomechanics and ecology we predict the locomotion and posture of the last common ancestors of (a) great and lesser apes and their close fossil relatives (hominoids); (b) chimpanzees, bonobos and modern humans (hominines); and (c) modern humans and their fossil relatives (hominins). We evaluate our propositions against the fossil record in the context of a broader review of evolution of the locomotor system from the earliest hominoids of modern aspect (crown hominoids) to early modern Homo sapiens. While some early East African stem hominoids were pronograde, it appears that the adaptations which best characterize the crown hominoids are orthogrady and an ability to abduct the arm above the shoulder – rather than, as is often thought, manual suspension sensu stricto. At 7–9 Ma (not much earlier than the likely 4–8 Ma divergence date for panins and hominins, see Bradley, 2008) there were crown hominoids in southern Europe which were adapted to moving in an orthograde posture, supported primarily on the hindlimb, in an arboreal, and possibly for Oreopithecus, a terrestrial context. By 7 Ma, Sahelanthropus provides evidence of a Central African hominin, panin or possibly gorilline adapted to orthogrady, and both orthogrady and habitually highly extended postures of the hip are evident in the arboreal East African protohominin Orrorin at 6 Ma. If the traditional idea that hominins passed through a terrestrial ‘knuckle-walking’ phase is correct, not only does it have to be explained how a quadrupedal gait typified by flexed postures of the hindlimb could have preadapted the body for the hominin acquisition of straight-legged erect bipedality, but we would have to accept a transition from stem-hominoid pronogrady to crown hominoid orthogrady, back again to pronogrady in the African apes and then back to orthogrady in hominins. Hand-assisted arboreal bipedality, which is part of a continuum of orthograde behaviours, is used by

  11. Mechanisms of mammalian iron homeostasis

    PubMed Central

    Pantopoulos, Kostas; Porwal, Suheel Kumar; Tartakoff, Alan; Devireddy, L.

    2012-01-01

    Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in acquisition or distribution of the metal causes anemia; whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways, as well as in mechanisms underlying intracellular iron trafficking, an important but less-studied area of mammalian iron homeostasis. PMID:22703180

  12. Architecture of the Mammalian Golgi

    PubMed Central

    Klumperman, Judith

    2011-01-01

    Since its first visualization in 1898, the Golgi has been a topic of intense morphological research. A typical mammalian Golgi consists of a pile of stapled cisternae, the Golgi stack, which is a key station for modification of newly synthesized proteins and lipids. Distinct stacks are interconnected by tubules to form the Golgi ribbon. At the entrance site of the Golgi, the cis-Golgi, vesicular tubular clusters (VTCs) form the intermediate between the endoplasmic reticulum and the Golgi stack. At the exit site of the Golgi, the trans-Golgi, the trans-Golgi network (TGN) is the major site of sorting proteins to distinct cellular locations. Golgi functioning can only be understood in light of its complex architecture, as was revealed by a range of distinct electron microscopy (EM) approaches. In this article, a general concept of mammalian Golgi architecture, including VTCs and the TGN, is described. PMID:21502307

  13. Bioenergetics of Mammalian Sperm Capacitation

    PubMed Central

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-01-01

    After ejaculation, the mammalian male gamete must undergo the capacitation process, which is a prerequisite for egg fertilization. The bioenergetics of sperm capacitation is poorly understood despite its fundamental role in sustaining the biochemical and molecular events occurring during gamete activation. Glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) are the two major metabolic pathways producing ATP which is the primary source of energy for spermatozoa. Since recent data suggest that spermatozoa have the ability to use different metabolic substrates, the main aim of this work is to present a broad overview of the current knowledge on the energy-producing metabolic pathways operating inside sperm mitochondria during capacitation in different mammalian species. Metabolism of glucose and of other energetic substrates, such as pyruvate, lactate, and citrate, is critically analyzed. Such knowledge, besides its obvious importance for basic science, could eventually translate into the development of novel strategies for treatment of male infertility, artificial reproduction, and sperm selection methods. PMID:24791005

  14. Ceramide signaling in mammalian epidermis

    PubMed Central

    Uchida, Yoshikazu

    2013-01-01

    Ceramide, the backbone structure of all sphingolipids, as well as a minor component of cellular membranes, has a unique role in the skin, by forming the epidermal permeability barrier at the extracellular domains of the outermost layer of skin, the stratum corneum, which is required for terrestrial mammalian survival. In contrast to the role of ceramide in forming the permeability barrier, the signaling roles of ceramide and its metabolites have not yet been recognized. Ceramide and/or its metabolites regulate proliferation, differentiation, and apoptosis in epidermal keratinocytes. Recent studies have further demonstrated that a ceramide metabolite, sphingosine-1-phosphate, modulates innate immune function. Ceramide already has been applied to therapeutic approaches for treatment of eczema associated with attenuated epidermal permeability barrier function. Pharmacological modulation of ceramide and its metabolites signaling can also be applied to cutaneous disease prevention and therapy. The author here describes the signaling roles of ceramide and its metabolites in mammalian cells and tissues, including epidermis. PMID:24055887

  15. Mammalian Polyamine Metabolism and Function

    PubMed Central

    Pegg, Anthony E.

    2009-01-01

    Summary Polyamines are ubiquitous small basic molecules that play multiple essential roles in mammalian physiology. Their cellular content is highly regulated and there is convincing evidence that altered metabolism is involvement in many disease states. Drugs altering polyamine levels may therefore have a variety of important targets. This review will summarize the current state of understanding of polyamine metabolism and function, the regulation of polyamine content, and heritable pathological conditions that may be derived from altered polyamine metabolism. PMID:19603518

  16. Evaluating and treating mammalian bites.

    PubMed

    Rasmussen, Donna; Landon, Alexandra; Powell, Jennifer; Brown, Gina R

    2017-03-01

    Mammalian bites, typically from dogs, cats, or humans, are a common presentation in EDs and family practice settings, and patients present with varying degrees of complexity. Injuries can range from local to systemic, including aggressive bacterial infections and permanent limb impairment. Using a systematic approach to initial wound assessment, followed by appropriate diagnostic testing and treatment, is critical to improved long-term patient outcomes.

  17. GLUTs and mammalian sperm metabolism.

    PubMed

    Bucci, Diego; Rodriguez-Gil, Juan Enrique; Vallorani, Claudia; Spinaci, Marcella; Galeati, Giovanna; Tamanini, Carlo

    2011-01-01

    Mammalian cells use glucides as a substrate that can be catabolized through glycolitic pathways or oxidative phosphorylation, used as a source of reducing potential, or used for anabolic aims. An important role in supplying cells with energy is played by different membrane proteins that can actively (sodium-dependent glucose transporters) or passively (glucose transporters; GLUT) transport hexoses through the lipidic bilayer. In particular, GLUTs are a family of 13 proteins that facilitate the transport of sugars and have a peculiar distribution in different tissues as well as a particular affinity for substrates. These proteins are also present in mature sperm cells, which, in fact, need carriers for uptake energetic sources that are important for maintaining cell basic activity as well as specific functions, such as motility and fertilization ability. Likewise, several GLUTs have been studied in various mammalian species (man, bull, rat, mouse, boar, dog, stallion, and donkey) to point out both their actual presence or absence and their localization on plasma membrane. The aim of this work is to give an overall picture of the studies available on GLUTs in mammalian spermatozoa at this moment, pointing out the species peculiarity, the possible role of these proteins, and the potential future research on this item.

  18. Scalable architecture in mammalian brains.

    PubMed

    Clark, D A; Mitra, P P; Wang, S S

    2001-05-10

    Comparison of mammalian brain parts has often focused on differences in absolute size, revealing only a general tendency for all parts to grow together. Attempts to find size-independent effects using body weight as a reference variable obscure size relationships owing to independent variation of body size and give phylogenies of questionable significance. Here we use the brain itself as a size reference to define the cerebrotype, a species-by-species measure of brain composition. With this measure, across many mammalian taxa the cerebellum occupies a constant fraction of the total brain volume (0.13 +/- 0.02), arguing against the hypothesis that the cerebellum acts as a computational engine principally serving the neocortex. Mammalian taxa can be well separated by cerebrotype, thus allowing the use of quantitative neuroanatomical data to test evolutionary relationships. Primate cerebrotypes have progressively shifted and neocortical volume fractions have become successively larger in lemurs and lorises, New World monkeys, Old World monkeys, and hominoids, lending support to the idea that primate brain architecture has been driven by directed selection pressure. At the same time, absolute brain size can vary over 100-fold within a taxon, while maintaining a relatively uniform cerebrotype. Brains therefore constitute a scalable architecture.

  19. Mammalian Alphaherpesvirus miRNAs

    PubMed Central

    Jurak, Igor; Griffiths, Anthony; Coen, Donald M.

    2012-01-01

    Mammalian alphaherpesviruses are major causes of human and veterinary disease. During productive infection, these viruses exhibit complex and robust patterns of gene expression. These viruses also form latent infections in neurons of sensory ganglia in which productive cycle gene expression is highly repressed. Both modes of infection provide advantageous opportunities for regulation by microRNAs. Thus far, published data regarding microRNAs are available for six mammalian alphaherpesviruses. No microRNAs have yet been detected from varicella zoster virus. The five other viruses -- herpes simplex viruses-1 and -2, herpes B virus, bovine herpesvirus-1, and pseudorabies virus -- representing both genera of mammalian alphaherpesviruses have been shown to express microRNAs. In this article, we discuss these microRNAs in terms of where they are encoded in the viral genome relative to other viral transcripts; whether they are expressed during productive or latent infection; their potential targets; what little is known about their actual targets and functions during viral infection; and what little is known about the interactions of these viruses with the host microRNA machinery. PMID:21736960

  20. Cell Lineage Analysis of the Mammalian Female Germline

    PubMed Central

    Elbaz, Judith; Jinich, Adrian; Chapal-Ilani, Noa; Maruvka, Yosef E.; Nevo, Nava; Marx, Zipora; Horovitz, Inna; Wasserstrom, Adam; Mayo, Avi; Shur, Irena; Benayahu, Dafna; Skorecki, Karl; Segal, Eran; Dekel, Nava; Shapiro, Ehud

    2012-01-01

    Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote). We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development. PMID:22383887

  1. Micro-optical coherence tomography of the mammalian cochlea

    PubMed Central

    Iyer, Janani S.; Batts, Shelley A.; Chu, Kengyeh K.; Sahin, Mehmet I.; Leung, Hui Min; Tearney, Guillermo J.; Stankovic, Konstantina M.

    2016-01-01

    The mammalian cochlea has historically resisted attempts at high-resolution, non-invasive imaging due to its small size, complex three-dimensional structure, and embedded location within the temporal bone. As a result, little is known about the relationship between an individual’s cochlear pathology and hearing function, and otologists must rely on physiological testing and imaging methods that offer limited resolution to obtain information about the inner ear prior to performing surgery. Micro-optical coherence tomography (μOCT) is a non-invasive, low-coherence interferometric imaging technique capable of resolving cellular-level anatomic structures. To determine whether μOCT is capable of resolving mammalian intracochlear anatomy, fixed guinea pig inner ears were imaged as whole temporal bones with cochlea in situ. Anatomical structures such as the tunnel of Corti, space of Nuel, modiolus, scalae, and cell groupings were visualized, in addition to individual cell types such as neuronal fibers, hair cells, and supporting cells. Visualization of these structures, via volumetrically-reconstructed image stacks and endoscopic perspective videos, represents an improvement over previous efforts using conventional OCT. These are the first μOCT images of mammalian cochlear anatomy, and they demonstrate μOCT’s potential utility as an imaging tool in otology research. PMID:27633610

  2. Progress Towards Mammalian Whole-Brain Cellular Connectomics

    PubMed Central

    Mikula, Shawn

    2016-01-01

    Neurons are the fundamental structural units of the nervous system—i.e., the Neuron Doctrine—as the pioneering work of Santiago Ramón y Cajal in the 1880’s clearly demonstrated through careful observation of Golgi-stained neuronal morphologies. However, at that time sample preparation, imaging methods and computational tools were either nonexistent or insufficiently developed to permit the precise mapping of an entire brain with all of its neurons and their connections. Some measure of the “mesoscopic” connectional organization of the mammalian brain has been obtained over the past decade by alignment of sparse subsets of labeled neurons onto a reference atlas or via MRI-based diffusion tensor imaging. Neither method, however, provides data on the complete connectivity of all neurons comprising an individual brain. Fortunately, whole-brain cellular connectomics now appears within reach due to recent advances in whole-brain sample preparation and high-throughput electron microscopy (EM), though substantial obstacles remain with respect to large volume electron microscopic acquisitions and automated neurite reconstructions. This perspective examines the current status and problems associated with generating a mammalian whole-brain cellular connectome and argues that the time is right to launch a concerted connectomic attack on a small mammalian whole-brain. PMID:27445704

  3. Multiple origins of Heliozoa from flagellate ancestors: New cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista, Hacrobia and Chromista.

    PubMed

    Cavalier-Smith, Thomas; Chao, Ema E; Lewis, Rhodri

    2015-12-01

    Heliozoan protists have radiating cell projections (axopodia) supported by microtubular axonemes nucleated by the centrosome and bearing granule-like extrusomes for catching prey. To clarify previously confused heliozoan phylogeny we sequenced partial transcriptomes of two tiny naked heliozoa, the endohelean Microheliella maris and centrohelid Oxnerella marina, and the cercozoan pseudoheliozoan Minimassisteria diva. Phylogenetic analysis of 187 genes confirms that all are chromists; but centrohelids (microtubules arranged as hexagons and triangles) are not sisters to Endohelea having axonemes in transnuclear cytoplasmic channels (triangular or square microtubular arrays). Centrohelids are strongly sister to haptophytes (together phylum Haptista); we explain the common origins of their axopodia and haptonema. Microheliella is sister to new superclass Corbistoma (zooflagellate Telonemea and Picomonadea, with asymmetric microfilamentous pharyngeal basket), showing that these axopodial protists evolved independently from zooflagellate ancestors. We group Corbistoma and Endohelea as new cryptist subphylum Corbihelia with dense fibrillar interorganellar connections; endohelean axopodia and Telonema cortex are ultrastructurally related. Differently sampled trees clarify why corticate multigene eukaryote phylogeny is problematic: long-branch artefacts probably distort deep multigene phylogeny of corticates (Plantae, Chromista); basal radiations may be contradictorily reconstructed because of their extreme closeness and the Bayesian star-tree paradox. Haptista and Hacrobia are holophyletic, and Chromista probably are.

  4. A Francisella-like endosymbiont in the Gulf Coast tick evolved from a mammalian pathogen

    PubMed Central

    Gerhart, Jonathan G.; Moses, Abraham S.; Raghavan, Rahul

    2016-01-01

    Ticks (order Ixodida) vector pathogenic bacteria that cause diseases in humans and other mammals. They also contain bacteria that are closely related to pathogens but function as endosymbionts that provide nutrients that are missing from mammalian blood—their sole food source. For instance, mammalian pathogens such as Coxiella burnetii and Francisella tularensis, as well as Coxiella-like and Francisella-like endosymbionts (CLEs and FLEs, respectively) occur in ticks worldwide. However, it is not clear whether the pathogens evolved from symbionts or symbionts from pathogens. Recent studies have indicated that C. burnetii likely originated from a tick-associated ancestor, but the origins of FLEs are not clear. In this study, we sequenced the genome of an FLE, termed FLE-Am, present in the Gulf Coast tick, Amblyomma maculatum. We show that FLE-Am likely evolved from a pathogenic strain of Francisella, indicating that tick endosymbionts can evolve from mammalian pathogens. Although the genome of FLE-Am is almost the same size as the genomes of pathogenic Francisella strains, about one-third of its protein-coding genes contain inactivating mutations. The relatively low coding capacity and extensive metabolic capabilities indicate that FLE-Am transitioned recently to its current endosymbiotic lifestyle and likely replaced an ancient endosymbiont with degraded functionality. PMID:27645766

  5. The Last Universal Common Ancestor: emergence, constitution and genetic legacy of an elusive forerunner

    PubMed Central

    Glansdorff, Nicolas; Xu, Ying; Labedan, Bernard

    2008-01-01

    Background Since the reclassification of all life forms in three Domains (Archaea, Bacteria, Eukarya), the identity of their alleged forerunner (Last Universal Common Ancestor or LUCA) has been the subject of extensive controversies: progenote or already complex organism, prokaryote or protoeukaryote, thermophile or mesophile, product of a protracted progression from simple replicators to complex cells or born in the cradle of "catalytically closed" entities? We present a critical survey of the topic and suggest a scenario. Results LUCA does not appear to have been a simple, primitive, hyperthermophilic prokaryote but rather a complex community of protoeukaryotes with a RNA genome, adapted to a broad range of moderate temperatures, genetically redundant, morphologically and metabolically diverse. LUCA's genetic redundancy predicts loss of paralogous gene copies in divergent lineages to be a significant source of phylogenetic anomalies, i.e. instances where a protein tree departs from the SSU-rRNA genealogy; consequently, horizontal gene transfer may not have the rampant character assumed by many. Examining membrane lipids suggest LUCA had sn1,2 ester fatty acid lipids from which Archaea emerged from the outset as thermophilic by "thermoreduction," with a new type of membrane, composed of sn2,3 ether isoprenoid lipids; this occurred without major enzymatic reconversion. Bacteria emerged by reductive evolution from LUCA and some lineages further acquired extreme thermophily by convergent evolution. This scenario is compatible with the hypothesis that the RNA to DNA transition resulted from different viral invasions as proposed by Forterre. Beyond the controversy opposing "replication first" to metabolism first", the predictive arguments of theories on "catalytic closure" or "compositional heredity" heavily weigh in favour of LUCA's ancestors having emerged as complex, self-replicating entities from which a genetic code arose under natural selection. Conclusion Life

  6. The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner.

    PubMed

    Glansdorff, Nicolas; Xu, Ying; Labedan, Bernard

    2008-07-09

    Since the reclassification of all life forms in three Domains (Archaea, Bacteria, Eukarya), the identity of their alleged forerunner (Last Universal Common Ancestor or LUCA) has been the subject of extensive controversies: progenote or already complex organism, prokaryote or protoeukaryote, thermophile or mesophile, product of a protracted progression from simple replicators to complex cells or born in the cradle of "catalytically closed" entities? We present a critical survey of the topic and suggest a scenario. LUCA does not appear to have been a simple, primitive, hyperthermophilic prokaryote but rather a complex community of protoeukaryotes with a RNA genome, adapted to a broad range of moderate temperatures, genetically redundant, morphologically and metabolically diverse. LUCA's genetic redundancy predicts loss of paralogous gene copies in divergent lineages to be a significant source of phylogenetic anomalies, i.e. instances where a protein tree departs from the SSU-rRNA genealogy; consequently, horizontal gene transfer may not have the rampant character assumed by many. Examining membrane lipids suggest LUCA had sn1,2 ester fatty acid lipids from which Archaea emerged from the outset as thermophilic by "thermoreduction," with a new type of membrane, composed of sn2,3 ether isoprenoid lipids; this occurred without major enzymatic reconversion. Bacteria emerged by reductive evolution from LUCA and some lineages further acquired extreme thermophily by convergent evolution. This scenario is compatible with the hypothesis that the RNA to DNA transition resulted from different viral invasions as proposed by Forterre. Beyond the controversy opposing "replication first" to metabolism first", the predictive arguments of theories on "catalytic closure" or "compositional heredity" heavily weigh in favour of LUCA's ancestors having emerged as complex, self-replicating entities from which a genetic code arose under natural selection. Life was born complex and the LUCA

  7. Studies in Historical Replication in Psychology VII: The Relative Utility of "Ancestor Analysis" from Scientific and Educational Vantages

    ERIC Educational Resources Information Center

    Ranney, Michael Andrew

    2008-01-01

    This article discusses, from various vantages, Ryan Tweney's (this issue) pedagogical technique of employing historical replications of psychological experiments with graduate students in psychology. A "prima facie" perspective suggests great promise for this sort of academic "ancestor analysis," particularly given the enthusiasm and skill…

  8. Single, Ancient Origin of a Plastid Metabolite Translocator Family in Plantae from an Endomembrane-Derived Ancestor

    PubMed Central

    Weber, Andreas P. M.; Linka, Marc; Bhattacharya, Debashish

    2006-01-01

    Phylogenetic analyses show the single origin of a plastid metabolite translocator family in the Plantae from a gene encoding an existing endomembrane-derived protein. Red algal secondary endosymbiosis has spread a translocator gene into the ancestor of the “chromalveolate” protists, where it has diversified into a novel clade of proteins. PMID:16524915

  9. Functional characterization of mammalian Wntless homolog in mammalian system.

    PubMed

    Wang, Li-Ting; Wang, Shih-Jong; Hsu, Shih-Hsien

    2012-07-01

    Wntless (GPR177) protein is a newly identified regulator of Wnt signals in Drosophila, but its cellular function in mammals is still unclear. In this study, we explored the expression pattern and potential cellular function of Wntless in mammalian cells. Wntless mRNA was expressed in many mouse tissues, including the spleen, lung, kidney, thymus, and stomach, and lower levels of expression were detected in the mouse brain and testis. Expression of Wntless protein analyzed by Western blot and immunohistochemical staining was only detected in the submucosa, muscle, ganglia, and nerve cells of murine large intestines. Both immunofluorescence staining and subcellular fraction extraction analysis revealed that endogenous Wntless protein was expressed predominantly in the cytoplasmic organelles with a morphologically dot-shaped distribution. Furthermore, overexpression of Wntless could be corrected by and may activate the nuclear factor-κB (NF-κB) signaling pathway in cancer (HeLa) cells. These results suggest that Wntless plays a role in signaling regulation during the formation of cancer in addition to its role as a retromer protein in mammalian systems.

  10. Mammalian cloning: advances and limitations.

    PubMed

    Solter, D

    2000-12-01

    For many years, researchers cloning mammals experienced little success, but recent advances have led to the successful cloning of several mammalian species. However, cloning by the transfer of nuclei from adult cells is still a hit-and-miss procedure, and it is not clear what technical and biological factors underlie this. Our understanding of the molecular basis of reprogramming remains extremely limited and affects experimental approaches towards increasing the success rate of cloning. Given the future practical benefits that cloning can offer, the time has come to address what should be done to resolve this problem.

  11. In search of the last common ancestor: new findings on wild chimpanzees.

    PubMed

    McGrew, W C

    2010-10-27

    Modelling the behaviour of extinct hominins is essential in order to devise useful hypotheses of our species' evolutionary origins for testing in the palaeontological and archaeological records. One approach is to model the last common ancestor (LCA) of living apes and humans, based on current ethological and ecological knowledge of our closest living relations. Such referential modelling is based on rigorous, ongoing field studies of the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). This paper reviews recent findings from nature, focusing on those with direct implications for hominin evolution, e.g. apes, using elementary technology to access basic resources such as food and water, or sheltering in caves or bathing as thermoregulatory adaptations. I give preference to studies that directly address key issues, such as whether stone artefacts are detectible before the Oldowan, based on the percussive technology of hammer and anvil use by living apes. Detailed comparative studies of chimpanzees living in varied habitats, from rainforest to savannah, reveal that some behavioural patterns are universal (e.g. shelter construction), while others show marked (e.g. extractive foraging) or nuanced (e.g. courtship) cross-populational variation. These findings allow us to distinguish between retained, primitive traits of the LCA versus derived ones in the human lineage.

  12. In search of the last common ancestor: new findings on wild chimpanzees

    PubMed Central

    McGrew, W. C.

    2010-01-01

    Modelling the behaviour of extinct hominins is essential in order to devise useful hypotheses of our species' evolutionary origins for testing in the palaeontological and archaeological records. One approach is to model the last common ancestor (LCA) of living apes and humans, based on current ethological and ecological knowledge of our closest living relations. Such referential modelling is based on rigorous, ongoing field studies of the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). This paper reviews recent findings from nature, focusing on those with direct implications for hominin evolution, e.g. apes, using elementary technology to access basic resources such as food and water, or sheltering in caves or bathing as thermoregulatory adaptations. I give preference to studies that directly address key issues, such as whether stone artefacts are detectible before the Oldowan, based on the percussive technology of hammer and anvil use by living apes. Detailed comparative studies of chimpanzees living in varied habitats, from rainforest to savannah, reveal that some behavioural patterns are universal (e.g. shelter construction), while others show marked (e.g. extractive foraging) or nuanced (e.g. courtship) cross-populational variation. These findings allow us to distinguish between retained, primitive traits of the LCA versus derived ones in the human lineage. PMID:20855301

  13. 76 FR 20802 - Culturally Significant Objects Imported for Exhibition Determinations: “Ancestors of the Lake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ...Notice is hereby given of the following determinations: Pursuant to the authority vested in me by the Act of October 19, 1965 (79 Stat. 985; 22 U.S.C. 2459), Executive Order 12047 of March 27, 1978, the Foreign Affairs Reform and Restructuring Act of 1998 (112 Stat. 2681, et seq.; 22 U.S.C. 6501 note, et seq.), Delegation of Authority No. 234 of October 1, 1999, and Delegation of Authority No. 236-3 of August 28, 2000, I hereby determine that the objects to be included in the exhibition ``Ancestors of the Lake: Art from Lake Sentani and Humboldt Bay,'' imported from abroad for temporary exhibition within the United States, are of cultural significance. The objects are imported pursuant to loan agreements with the foreign owners or custodians. I also determine that the exhibition or display of the exhibit objects at The Menil Collection, Houston, Texas, from on or about May 6, 2011, until on or about August 28, 2011, and at possible additional exhibitions or venues yet to be determined, is in the national interest. I have ordered that Public Notice of these Determinations be published in the Federal Register.

  14. Structural Similarities between Thiamin-Binding Protein and Thiaminase-I Suggest a Common Ancestor

    SciTech Connect

    Soriano, Erika V.; Rajashankar, Kanagalaghatta R.; Hanes, Jeremiah W.; Bale, Shridhar; Begley, Tadhg P.; Ealick, Steven E.

    2008-06-30

    ATP-binding cassette (ABC) transporters are responsible for the transport of a wide variety of water-soluble molecules and ions into prokaryotic cells. In Gram-negative bacteria, periplasmic-binding proteins deliver ions or molecules such as thiamin to the membrane-bound ABC transporter. The gene for the thiamin-binding protein tbpA has been identified in both Escherichia coli and Salmonella typhimurium. Here we report the crystal structure of TbpA from E. coli with bound thiamin monophosphate. The structure was determined at 2.25 {angstrom} resolution using single-wavelength anomalous diffraction experiments, despite the presence of nonmerohedral twinning. The crystal structure shows that TbpA belongs to the group II periplasmic-binding protein family. Equilibrium binding measurements showed similar dissociation constants for thiamin, thiamin monophosphate, and thiamin pyrophosphate. Analysis of the binding site by molecular modeling demonstrated how TbpA binds all three forms of thiamin. A comparison of TbpA and thiaminase-I, a thiamin-degrading enzyme, revealed structural similarity between the two proteins, especially in domain 1, suggesting that the two proteins evolved from a common ancestor.

  15. An early modern human from Romania with a recent Neanderthal ancestor

    PubMed Central

    Fu, Qiaomei; Hajdinjak, Mateja; Moldovan, Oana Teodora; Constantin, Silviu; Mallick, Swapan; Skoglund, Pontus; Patterson, Nick; Rohland, Nadin; Lazaridis, Iosif; Nickel, Birgit; Viola, Bence; Prüfer, Kay; Meyer, Matthias; Kelso, Janet; Reich, David; Pääbo, Svante

    2015-01-01

    Neanderthals are thought to have disappeared in Europe ~39,000–41,000 years ago but they have contributed one to three percent of the DNA of present-day people in Eurasia1. Here, we analyze DNA from a 37,000–42,000-year-old2 modern human from Peştera cu Oase, Romania. Although the specimen contains small amounts of human DNA, we use an enrichment strategy to isolate sites that are informative about its relationship to Neanderthals and present-day humans. We find that on the order of six to nine percent of the genome of the Oase individual is derived from Neanderthals, more than any other modern human sequenced to date. Three chromosomal segments of Neanderthal ancestry are over 50 centimorgans in size, indicating that this individual had a Neanderthal ancestor as recently as four to six generations back. However, the Oase individual does not share more alleles with later Europeans than with East Asians, suggesting that the Oase population did not contribute substantially to later humans in Europe. PMID:26098372

  16. Tracing ancestor rice of Suriname Maroons back to its African origin.

    PubMed

    van Andel, Tinde R; Meyer, Rachel S; Aflitos, Saulo A; Carney, Judith A; Veltman, Margaretha A; Copetti, Dario; Flowers, Jonathan M; Havinga, Reinout M; Maat, Harro; Purugganan, Michael D; Wing, Rod A; Schranz, M Eric

    2016-10-03

    African rice (Oryza glaberrima) and African cultivation practices are said to have influenced emerging colonial plantation economies in the Americas(1,2). However, the level of impact of African rice practices is difficult to establish because of limited written or botanical records(2,3). Recent findings of O. glaberrima in rice fields of Suriname Maroons bear evidence of the high level of knowledge about rice among African slaves and their descendants, who consecrate it in ancestor rituals(4,5). Here we establish the strong similarity, and hence likely origin, of the first extant New World landrace of O. glaberrima to landraces from the Upper Guinean forests in West Africa. We collected African rice from a Maroon market in Paramaribo, Suriname, propagated it, sequenced its genome(6) and compared it with genomes of 109 accessions representing O. glaberrima diversity across West Africa. By analysing 1,649,769 single nucleotide polymorphisms (SNPs) in clustering analyses, the Suriname sample appears sister to an Ivory Coast landrace, and shows no evidence of introgression from Asian rice. Whereas the Dutch took most slaves from Ghana, Benin and Central Africa(7), the diaries of slave ship captains record the purchase of food for provisions when sailing along the West African Coast(8), offering one possible explanation for the patterns of genetic similarity. This study demonstrates the utility of genomics in understanding the largely unwritten histories of crop cultures of diaspora communities.

  17. Punctuated emergences of genetic and phenotypic innovations in eumetazoan, bilaterian, euteleostome, and hominidae ancestors.

    PubMed

    Wenger, Yvan; Galliot, Brigitte

    2013-01-01

    Phenotypic traits derive from the selective recruitment of genetic materials over macroevolutionary times, and protein-coding genes constitute an essential component of these materials. We took advantage of the recent production of genomic scale data from sponges and cnidarians, sister groups from eumetazoans and bilaterians, respectively, to date the emergence of human proteins and to infer the timing of acquisition of novel traits through metazoan evolution. Comparing the proteomes of 23 eukaryotes, we find that 33% human proteins have an ortholog in nonmetazoan species. This premetazoan proteome associates with 43% of all annotated human biological processes. Subsequently, four major waves of innovations can be inferred in the last common ancestors of eumetazoans, bilaterians, euteleostomi (bony vertebrates), and hominidae, largely specific to each epoch, whereas early branching deuterostome and chordate phyla show very few innovations. Interestingly, groups of proteins that act together in their modern human functions often originated concomitantly, although the corresponding human phenotypes frequently emerged later. For example, the three cnidarians Acropora, Nematostella, and Hydra express a highly similar protein inventory, and their protein innovations can be affiliated either to traits shared by all eumetazoans (gut differentiation, neurogenesis); or to bilaterian traits present in only some cnidarians (eyes, striated muscle); or to traits not identified yet in this phylum (mesodermal layer, endocrine glands). The variable correspondence between phenotypes predicted from protein enrichments and observed phenotypes suggests that a parallel mechanism repeatedly produce similar phenotypes, thanks to novel regulatory events that independently tie preexisting conserved genetic modules.

  18. Punctuated Emergences of Genetic and Phenotypic Innovations in Eumetazoan, Bilaterian, Euteleostome, and Hominidae Ancestors

    PubMed Central

    Wenger, Yvan; Galliot, Brigitte

    2013-01-01

    Phenotypic traits derive from the selective recruitment of genetic materials over macroevolutionary times, and protein-coding genes constitute an essential component of these materials. We took advantage of the recent production of genomic scale data from sponges and cnidarians, sister groups from eumetazoans and bilaterians, respectively, to date the emergence of human proteins and to infer the timing of acquisition of novel traits through metazoan evolution. Comparing the proteomes of 23 eukaryotes, we find that 33% human proteins have an ortholog in nonmetazoan species. This premetazoan proteome associates with 43% of all annotated human biological processes. Subsequently, four major waves of innovations can be inferred in the last common ancestors of eumetazoans, bilaterians, euteleostomi (bony vertebrates), and hominidae, largely specific to each epoch, whereas early branching deuterostome and chordate phyla show very few innovations. Interestingly, groups of proteins that act together in their modern human functions often originated concomitantly, although the corresponding human phenotypes frequently emerged later. For example, the three cnidarians Acropora, Nematostella, and Hydra express a highly similar protein inventory, and their protein innovations can be affiliated either to traits shared by all eumetazoans (gut differentiation, neurogenesis); or to bilaterian traits present in only some cnidarians (eyes, striated muscle); or to traits not identified yet in this phylum (mesodermal layer, endocrine glands). The variable correspondence between phenotypes predicted from protein enrichments and observed phenotypes suggests that a parallel mechanism repeatedly produce similar phenotypes, thanks to novel regulatory events that independently tie preexisting conserved genetic modules. PMID:24065732

  19. Fine scale genetic structure in the wild ancestor of maize (Zea mays ssp. parviglumis).

    PubMed

    Van Heerwaarden, Joost; Ross-Ibarra, Jeffrey; Doebley, John; Glaubitz, Jeffrey C; González, Jose De Jesús Sánchez; Gaut, Brandon S; Eguiarte, Luis E

    2010-03-01

    Analysis of fine scale genetic structure in continuous populations of outcrossing plant species has traditionally been limited by the availability of sufficient markers. We used a set of 468 SNPs to characterize fine-scale genetic structure within and between two dense stands of the wild ancestor of maize, teosinte (Zea mays ssp. parviglumis). Our analyses confirmed that teosinte is highly outcrossing and showed little population structure over short distances. We found that the two populations were clearly genetically differentiated, although the actual level of differentiation was low. Spatial autocorrelation of relatedness was observed within both sites but was somewhat stronger in one of the populations. Using principal component analysis, we found evidence for significant local differentiation in the population with stronger spatial autocorrelation. This differentiation was associated with pronounced shifts in the first two principal components along the field. These shifts corresponded to changes in allele frequencies, potentially due to local topographical features. There was little evidence for selection at individual loci as a contributing factor to differentiation. Our results demonstrate that significant local differentiation may, but need not, co-occur with spatial autocorrelation of relatedness. The present study represents one of the most detailed analyses of local genetic structure to date and provides a benchmark for future studies dealing with fine scale patterns of genetic diversity in natural plant populations.

  20. CloudLCA: finding the lowest common ancestor in metagenome analysis using cloud computing.

    PubMed

    Zhao, Guoguang; Bu, Dechao; Liu, Changning; Li, Jing; Yang, Jian; Liu, Zhiyong; Zhao, Yi; Chen, Runsheng

    2012-02-01

    Estimating taxonomic content constitutes a key problem in metagenomic sequencing data analysis. However, extracting such content from high-throughput data of next-generation sequencing is very time-consuming with the currently available software. Here, we present CloudLCA, a parallel LCA algorithm that significantly improves the efficiency of determining taxonomic composition in metagenomic data analysis. Results show that CloudLCA (1) has a running time nearly linear with the increase of dataset magnitude, (2) displays linear speedup as the number of processors grows, especially for large datasets, and (3) reaches a speed of nearly 215 million reads each minute on a cluster with ten thin nodes. In comparison with MEGAN, a well-known metagenome analyzer, the speed of CloudLCA is up to 5 more times faster, and its peak memory usage is approximately 18.5% that of MEGAN, running on a fat node. CloudLCA can be run on one multiprocessor node or a cluster. It is expected to be part of MEGAN to accelerate analyzing reads, with the same output generated as MEGAN, which can be import into MEGAN in a direct way to finish the following analysis. Moreover, CloudLCA is a universal solution for finding the lowest common ancestor, and it can be applied in other fields requiring an LCA algorithm.

  1. The evolution of air resonance power efficiency in the violin and its ancestors.

    PubMed

    Nia, Hadi T; Jain, Ankita D; Liu, Yuming; Alam, Mohammad-Reza; Barnas, Roman; Makris, Nicholas C

    2015-03-08

    The fact that acoustic radiation from a violin at air-cavity resonance is monopolar and can be determined by pure volume change is used to help explain related aspects of violin design evolution. By determining the acoustic conductance of arbitrarily shaped sound holes, it is found that air flow at the perimeter rather than the broader sound-hole area dominates acoustic conductance, and coupling between compressible air within the violin and its elastic structure lowers the Helmholtz resonance frequency from that found for a corresponding rigid instrument by roughly a semitone. As a result of the former, it is found that as sound-hole geometry of the violin's ancestors slowly evolved over centuries from simple circles to complex f-holes, the ratio of inefficient, acoustically inactive to total sound-hole area was decimated, roughly doubling air-resonance power efficiency. F-hole length then slowly increased by roughly 30% across two centuries in the renowned workshops of Amati, Stradivari and Guarneri, favouring instruments with higher air-resonance power, through a corresponding power increase of roughly 60%. By evolution-rate analysis, these changes are found to be consistent with mutations arising within the range of accidental replication fluctuations from craftsmanship limitations with subsequent selection favouring instruments with higher air-resonance power.

  2. Hybrid apomicts trapped in the ecological niches of their sexual ancestors

    PubMed Central

    Mau, Martin; Lovell, John T.; Corral, José M.; Kiefer, Christiane; Koch, Marcus A.; Aliyu, Olawale M.; Sharbel, Timothy F.

    2015-01-01

    Asexual reproduction is expected to reduce the adaptive potential to novel or changing environmental conditions, restricting or altering the ecological niche of asexual lineages. Asexual lineages of plants and animals are typically polyploid, an attribute that may influence their genetic variation, plasticity, adaptive potential, and niche breadth. The genus Boechera (Brassicaceae) represents an ideal model to test the relative ecological and biogeographic impacts of reproductive mode and ploidy because it is composed of diploid sexual and both diploid and polyploid asexual (i.e., apomictic) lineages. Here, we demonstrate a strong association between a transcriptionally conserved allele and apomictic seed formation. We then use this allele as a proxy apomixis marker in 1,649 accessions to demonstrate that apomixis is likely to be a common feature across the Boechera phylogeny. Phylogeographic analyses of these data demonstrate (i) species-specific niche differentiation in sexuals, (ii) extensive niche conservation between differing reproductive modes of the same species, (iii) ploidy-specific niche differentiation within and among species, and (iv) occasional niche drift between apomicts and their sexual ancestors. We conclude that ploidy is a substantially stronger and more common driver of niche divergence within and across Boechera species although variation in both traits may not necessarily lead to niche evolution on the species scale. PMID:25902513

  3. Ontogenetic differences in heterostylous plants and implications for development from a herkogamous ancestor.

    PubMed

    Faivre, A E

    2000-06-01

    Alternative ontogenetic pathways among heterostylous species of Rubiaceae may reflect differences in their evolutionary histories. In this study, measurements were taken at different developmental stages on a series of long-styled (LS) and short-styled (SS) buds of the heterostylous taxa Psychotria chiapensis, P. poeppigiana, and Bouvardia ternifolia (all Rubiaceae). Results indicated that modifications in growth rates of stamens relative to corollas in all three species led to differences in anther heights between LS and SS flowers. Distinct style heights for LS and SS flowers of P. chiapensis and P. poeppigiana originate in the earlier stages of bud development and are maintained as styles elongate at equal rates. This contrasts with B. ternifolia, which has differences in style heights resulting from unequal relative growth rates between floral morphs. The "approach herkogamous" floral morphology, defined by having stigmas positioned above anthers, has been proposed as a potential evolutionary precursor for heterostylous taxa. To examine this hypothesis, floral development of two species with approach herkogamous morphologies, Psychotria pittieri and P. brachiata, was compared to that of the three heterostylous taxa. Differences in the relative rates of style elongation for flowers of approach herkogamous versus heterostylous species predict additional steps in the original model for the evolution of heterostyly from an approach herkogamous ancestor. The diversity of heterostylous ontogenies found within Rubiaceae provides insight into potential evolutionary pathways for this sexual system in other angiosperm families.

  4. Divergent genetic mechanisms underlie reversals to radial floral symmetry from diverse zygomorphic flowered ancestors

    PubMed Central

    Zhang, Wenheng; Steinmann, Victor W.; Nikolov, Lachezar; Kramer, Elena M.; Davis, Charles C.

    2013-01-01

    Malpighiaceae possess flowers with a unique bilateral symmetry (zygomorphy), which is a hypothesized adaptation associated with specialization on neotropical oil bee pollinators. Gene expression of two representatives of the CYC2 lineage of floral symmetry TCP genes, CYC2A and CYC2B, demarcate the adaxial (dorsal) region of the flower in the characteristic zygomorphic flowers of most Malpighiaceae. Several clades within the family, however, have independently lost their specialized oil bee pollinators and reverted to radial flowers (actinomorphy) like their ancestors. Here, we investigate CYC2 expression associated with four independent reversals to actinomorphy. We demonstrate that these reversals are always associated with alteration of the highly conserved CYC2 expression pattern observed in most New World (NW) Malpighiaceae. In NW Lasiocarpus and Old World (OW) Microsteria, the expression of CYC2-like genes has expanded to include the ventral region of the corolla. Thus, the pattern of gene expression in these species has become radialized, which is comparable to what has been reported in the radial flowered legume clade Cadia. In striking contrast, in NW Psychopterys and OW Sphedamnocarpus, CYC2-like expression is entirely absent or at barely detectable levels. This is more similar to the pattern of CYC2 expression observed in radial flowered Arabidopsis. These results collectively indicate that, regardless of geographic distribution, reversals to similar floral phenotypes in this large tropical angiosperm clade have evolved via different genetic changes from an otherwise highly conserved developmental program. PMID:23970887

  5. The Distribution and Most Recent Common Ancestor of the 17q21 Inversion in Humans

    PubMed Central

    Donnelly, Michael P.; Paschou, Peristera; Grigorenko, Elena; Gurwitz, David; Mehdi, Syed Qasim; Kajuna, Sylvester L.B.; Barta, Csaba; Kungulilo, Selemani; Karoma, N.J.; Lu, Ru-Band; Zhukova, Olga V.; Kim, Jong-Jin; Comas, David; Siniscalco, Marcello; New, Maria; Li, Peining; Li, Hui; Manolopoulos, Vangelis G.; Speed, William C.; Rajeevan, Haseena; Pakstis, Andrew J.; Kidd, Judith R.; Kidd, Kenneth K.

    2010-01-01

    The polymorphic inversion on 17q21, sometimes called the microtubular associated protein tau (MAPT) inversion, is an ∼900 kb inversion found primarily in Europeans and Southwest Asians. We have identified 21 SNPs that act as markers of the inverted, i.e., H2, haplotype. The inversion is found at the highest frequencies in Southwest Asia and Southern Europe (frequencies of ∼30%); elsewhere in Europe, frequencies vary from < 5%, in Finns, to 28%, in Orcadians. The H2 inversion haplotype also occurs at low frequencies in Africa, Central Asia, East Asia, and the Americas, though the East Asian and Amerindian alleles may be due to recent gene flow from Europe. Molecular evolution analyses indicate that the H2 haplotype originally arose in Africa or Southwest Asia. Though the H2 inversion has many fixed differences across the ∼900 kb, short tandem repeat polymorphism data indicate a very recent date for the most recent common ancestor, with dates ranging from 13,600 to 108,400 years, depending on assumptions and estimation methods. This estimate range is much more recent than the 3 million year age estimated by Stefansson et al. in 2005.1 PMID:20116045

  6. From Offshore to Onshore: Multiple Origins of Shallow-Water Corals from Deep-Sea Ancestors

    PubMed Central

    Lindner, Alberto; Cairns, Stephen D.; Cunningham, Clifford W.

    2008-01-01

    Shallow-water tropical reefs and the deep sea represent the two most diverse marine environments. Understanding the origin and diversification of this biodiversity is a major quest in ecology and evolution. The most prominent and well-supported explanation, articulated since the first explorations of the deep sea, holds that benthic marine fauna originated in shallow, onshore environments, and diversified into deeper waters. In contrast, evidence that groups of marine organisms originated in the deep sea is limited, and the possibility that deep-water taxa have contributed to the formation of shallow-water communities remains untested with phylogenetic methods. Here we show that stylasterid corals (Cnidaria: Hydrozoa: Stylasteridae)—the second most diverse group of hard corals—originated and diversified extensively in the deep sea, and subsequently invaded shallow waters. Our phylogenetic results show that deep-water stylasterid corals have invaded the shallow-water tropics three times, with one additional invasion of the shallow-water temperate zone. Our results also show that anti-predatory innovations arose in the deep sea, but were not involved in the shallow-water invasions. These findings are the first robust evidence that an important group of tropical shallow-water marine animals evolved from deep-water ancestors. PMID:18560569

  7. Evidence for endothermic ancestors of crocodiles at the stem of archosaur evolution.

    PubMed

    Seymour, Roger S; Bennett-Stamper, Christina L; Johnston, Sonya D; Carrier, David R; Grigg, Gordon C

    2004-01-01

    Physiological, anatomical, and developmental features of the crocodilian heart support the paleontological evidence that the ancestors of living crocodilians were active and endothermic, but the lineage reverted to ectothermy when it invaded the aquatic, ambush predator niche. In endotherms, there is a functional nexus between high metabolic rates, high blood flow rates, and complete separation of high systemic blood pressure from low pulmonary blood pressure in a four-chambered heart. Ectotherms generally lack all of these characteristics, but crocodilians retain a four-chambered heart. However, crocodilians have a neurally controlled, pulmonary bypass shunt that is functional in diving. Shunting occurs outside of the heart and involves the left aortic arch that originates from the right ventricle, the foramen of Panizza between the left and right aortic arches, and the cog-tooth valve at the base of the pulmonary artery. Developmental studies show that all of these uniquely crocodilian features are secondarily derived, indicating a shift from the complete separation of blood flow of endotherms to the controlled shunting of ectotherms. We present other evidence for endothermy in stem archosaurs and suggest that some dinosaurs may have inherited the trait.

  8. An early modern human from Romania with a recent Neanderthal ancestor.

    PubMed

    Fu, Qiaomei; Hajdinjak, Mateja; Moldovan, Oana Teodora; Constantin, Silviu; Mallick, Swapan; Skoglund, Pontus; Patterson, Nick; Rohland, Nadin; Lazaridis, Iosif; Nickel, Birgit; Viola, Bence; Prüfer, Kay; Meyer, Matthias; Kelso, Janet; Reich, David; Pääbo, Svante

    2015-08-13

    Neanderthals are thought to have disappeared in Europe approximately 39,000-41,000 years ago but they have contributed 1-3% of the DNA of present-day people in Eurasia. Here we analyse DNA from a 37,000-42,000-year-old modern human from Peştera cu Oase, Romania. Although the specimen contains small amounts of human DNA, we use an enrichment strategy to isolate sites that are informative about its relationship to Neanderthals and present-day humans. We find that on the order of 6-9% of the genome of the Oase individual is derived from Neanderthals, more than any other modern human sequenced to date. Three chromosomal segments of Neanderthal ancestry are over 50 centimorgans in size, indicating that this individual had a Neanderthal ancestor as recently as four to six generations back. However, the Oase individual does not share more alleles with later Europeans than with East Asians, suggesting that the Oase population did not contribute substantially to later humans in Europe.

  9. Convergent evolution of Hawaiian and Australo-Pacific honeyeaters from distant songbird ancestors.

    PubMed

    Fleischer, Robert C; James, Helen F; Olson, Storrs L

    2008-12-23

    The Hawaiian "honeyeaters," five endemic species of recently extinct, nectar-feeding songbirds in the genera Moho and Chaetoptila, looked and acted like Australasian honeyeaters (Meliphagidae), and no taxonomist since their discovery on James Cook's third voyage has classified them as anything else. We obtained DNA sequences from museum specimens of Moho and Chaetoptila collected in Hawaii 115-158 years ago. Phylogenetic analysis of these sequences supports monophyly of the two Hawaiian genera but, surprisingly, reveals that neither taxon is a meliphagid honeyeater, nor even in the same part of the songbird radiation as meliphagids. Instead, the Hawaiian species are divergent members of a passeridan group that includes deceptively dissimilar families of songbirds (Holarctic waxwings, neotropical silky flycatchers, and palm chats). Here we designate them as a new family, the Mohoidae. A nuclear-DNA rate calibration suggests that mohoids diverged from their closest living ancestor 14-17 mya, coincident with the estimated earliest arrival in Hawaii of a bird-pollinated plant lineage. Convergent evolution, the evolution of similar traits in distantly related taxa because of common selective pressures, is illustrated well by nectar-feeding birds, but the morphological, behavioral, and ecological similarity of the mohoids to the Australasian honeyeaters makes them a particularly striking example of the phenomenon.

  10. The evolution of air resonance power efficiency in the violin and its ancestors

    PubMed Central

    Nia, Hadi T.; Jain, Ankita D.; Liu, Yuming; Alam, Mohammad-Reza; Barnas, Roman; Makris, Nicholas C.

    2015-01-01

    The fact that acoustic radiation from a violin at air-cavity resonance is monopolar and can be determined by pure volume change is used to help explain related aspects of violin design evolution. By determining the acoustic conductance of arbitrarily shaped sound holes, it is found that air flow at the perimeter rather than the broader sound-hole area dominates acoustic conductance, and coupling between compressible air within the violin and its elastic structure lowers the Helmholtz resonance frequency from that found for a corresponding rigid instrument by roughly a semitone. As a result of the former, it is found that as sound-hole geometry of the violin's ancestors slowly evolved over centuries from simple circles to complex f-holes, the ratio of inefficient, acoustically inactive to total sound-hole area was decimated, roughly doubling air-resonance power efficiency. F-hole length then slowly increased by roughly 30% across two centuries in the renowned workshops of Amati, Stradivari and Guarneri, favouring instruments with higher air-resonance power, through a corresponding power increase of roughly 60%. By evolution-rate analysis, these changes are found to be consistent with mutations arising within the range of accidental replication fluctuations from craftsmanship limitations with subsequent selection favouring instruments with higher air-resonance power. PMID:25792964

  11. Ceramide signaling in mammalian epidermis.

    PubMed

    Uchida, Yoshikazu

    2014-03-01

    Ceramide, the backbone structure of all sphingolipids, as well as a minor component of cellular membranes, has a unique role in the skin, by forming the epidermal permeability barrier at the extracellular domains of the outermost layer of the skin, the stratum corneum, which is required for terrestrial mammalian survival. In contrast to the role of ceramide in forming the permeability barrier, the signaling roles of ceramide and its metabolites have not yet been recognized. Ceramide and/or its metabolites regulate proliferation, differentiation, and apoptosis in epidermal keratinocytes. Recent studies have further demonstrated that a ceramide metabolite, sphingosine-1-phosphate, modulates innate immune function. Ceramide has already been applied to therapeutic approaches for treatment of eczema associated with attenuated epidermal permeability barrier function. Pharmacological modulation of ceramide and its metabolites' signaling can also be applied to cutaneous disease prevention and therapy. The author here describes the signaling roles of ceramide and its metabolites in mammalian cells and tissues, including the epidermis. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.

  12. Chimpocentrism and reconstructions of human evolution (a timely reminder).

    PubMed

    Vaesen, Krist

    2014-03-01

    Chimpanzees, but very few other animals, figure prominently in (recent) attempts to reconstruct the evolution of uniquely human traits. In particular, the chimpanzee is used (i) to identify traits unique to humans, and thus in need of reconstruction; (ii) to initialize the reconstruction, by taking its state to reflect the state of the last common ancestor of humans and chimpanzees; (iii) as a baseline against which to test evolutionary hypotheses. Here I point out the flaws in this three-step procedure, and show how they can be overcome by taking advantage of much broader phylogenetic comparisons. More specifically, I explain how such comparisons yield more reliable estimations of ancestral states and how they help to resolve problems of underdetermination inherent to chimpocentric accounts. To illustrate my points, I use a recent chimpocentric argument by Kitcher. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol ε and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors

    PubMed Central

    Tahirov, Tahir H; Makarova, Kira S; Rogozin, Igor B; Pavlov, Youri I; Koonin, Eugene V

    2009-01-01

    Background Evolution of DNA polymerases, the key enzymes of DNA replication and repair, is central to any reconstruction of the history of cellular life. However, the details of the evolutionary relationships between DNA polymerases of archaea and eukaryotes remain unresolved. Results We performed a comparative analysis of archaeal, eukaryotic, and bacterial B-family DNA polymerases, which are the main replicative polymerases in archaea and eukaryotes, combined with an analysis of domain architectures. Surprisingly, we found that eukaryotic Polymerase ε consists of two tandem exonuclease-polymerase modules, the active N-terminal module and a C-terminal module in which both enzymatic domains are inactivated. The two modules are only distantly related to each other, an observation that suggests the possibility that Pol ε evolved as a result of insertion and subsequent inactivation of a distinct polymerase, possibly, of bacterial descent, upstream of the C-terminal Zn-fingers, rather than by tandem duplication. The presence of an inactivated exonuclease-polymerase module in Pol ε parallels a similar inactivation of both enzymatic domains in a distinct family of archaeal B-family polymerases. The results of phylogenetic analysis indicate that eukaryotic B-family polymerases, most likely, originate from two distantly related archaeal B-family polymerases, one form giving rise to Pol ε, and the other one to the common ancestor of Pol α, Pol δ, and Pol ζ. The C-terminal Zn-fingers that are present in all eukaryotic B-family polymerases, unexpectedly, are homologous to the Zn-finger of archaeal D-family DNA polymerases that are otherwise unrelated to the B family. The Zn-finger of Polε shows a markedly greater similarity to the counterpart in archaeal PolD than the Zn-fingers of other eukaryotic B-family polymerases. Conclusion Evolution of eukaryotic DNA polymerases seems to have involved previously unnoticed complex events. We hypothesize that the archaeal

  14. Buds of the tree: the highway to the last universal common ancestor

    NASA Astrophysics Data System (ADS)

    de Farias, Savio Torres; Prosdocimi, Francisco

    2017-04-01

    The last universal common ancestor (LUCA) has been considered as the branching point on which Bacteria, Archaea and Eukaryotes have diverged. However, the increased information relating to viruses' genomes and the perception that many virus genes do not have homologs in other organisms opened a new discussion. Based on these facts, there has emerged the idea of an early LUCA that should be moved further into the past to include viruses, implicating that life should have originated before the appearance of cellular life forms. Another point of view from advocates of the RNA-world suggests that the origin of life happened a long time before organisms were capable of organizing themselves into cellular entities. Relevant data about the origin of ribosomes indicate that the catalytic unit of the large ribosomal subunit is what should actually be considered as the turning point that separated chemistry from biology. Other researchers seem to think that a tRNA was probably some sort of a strange attractor on which life has originated. Here we propose a theoretical synthesis that tries to provide a crosstalk among the theories and define important points on which the origin of life could have been originated and made more complex, taking into account gradualist assumptions. Thus, discussions involving the origin of biological activities in the RNA-world might lead into a world of progenotes on which viruses have been taken part until the appearance of the very first cells. Along this route of complexification, we identified some key points on which researchers may consider life as an emerging principle.

  15. The eukaryotic ancestor had a complex ubiquitin signaling system of archaeal origin.

    PubMed

    Grau-Bové, Xavier; Sebé-Pedrós, Arnau; Ruiz-Trillo, Iñaki

    2015-03-01

    The origin of the eukaryotic cell is one of the most important transitions in the history of life. However, the emergence and early evolution of eukaryotes remains poorly understood. Recent data have shown that the last eukaryotic common ancestor (LECA) was much more complex than previously thought. The LECA already had the genetic machinery encoding the endomembrane apparatus, spliceosome, nuclear pore, and myosin and kinesin cytoskeletal motors. It is unclear, however, when the functional regulation of these cellular components evolved. Here, we address this question by analyzing the origin and evolution of the ubiquitin (Ub) signaling system, one of the most important regulatory layers in eukaryotes. We delineated the evolution of the whole Ub, Small-Ub-related MOdifier (SUMO), and Ub-fold modifier 1 (Ufm1) signaling networks by analyzing representatives from all major eukaryotic, bacterial, and archaeal lineages. We found that the Ub toolkit had a pre-eukaryotic origin and is present in three extant archaeal groups. The pre-eukaryotic Ub toolkit greatly expanded during eukaryogenesis, through massive gene innovation and diversification of protein domain architectures. This resulted in a LECA with essentially all of the Ub-related genes, including the SUMO and Ufm1 Ub-like systems. Ub and SUMO signaling further expanded during eukaryotic evolution, especially labeling and delabeling enzymes responsible for substrate selection. Additionally, we analyzed protein domain architecture evolution and found that multicellular lineages have the most complex Ub systems in terms of domain architectures. Together, we demonstrate that the Ub system predates the origin of eukaryotes and that a burst of innovation during eukaryogenesis led to a LECA with complex posttranslational regulation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Comparative chloroplast genomics and phylogenetics of Fagopyrum esculentum ssp. ancestrale -a wild ancestor of cultivated buckwheat.

    PubMed

    Logacheva, Maria D; Samigullin, Tahir H; Dhingra, Amit; Penin, Aleksey A

    2008-05-20

    Chloroplast genome sequences are extremely informative about species-interrelationships owing to its non-meiotic and often uniparental inheritance over generations. The subject of our study, Fagopyrum esculentum, is a member of the family Polygonaceae belonging to the order Caryophyllales. An uncertainty remains regarding the affinity of Caryophyllales and the asterids that could be due to undersampling of the taxa. With that background, having access to the complete chloroplast genome sequence for Fagopyrum becomes quite pertinent. We report the complete chloroplast genome sequence of a wild ancestor of cultivated buckwheat, Fagopyrum esculentum ssp. ancestrale. The sequence was rapidly determined using a previously described approach that utilized a PCR-based method and employed universal primers, designed on the scaffold of multiple sequence alignment of chloroplast genomes. The gene content and order in buckwheat chloroplast genome is similar to Spinacia oleracea. However, some unique structural differences exist: the presence of an intron in the rpl2 gene, a frameshift mutation in the rpl23 gene and extension of the inverted repeat region to include the ycf1 gene. Phylogenetic analysis of 61 protein-coding gene sequences from 44 complete plastid genomes provided strong support for the sister relationships of Caryophyllales (including Polygonaceae) to asterids. Further, our analysis also provided support for Amborella as sister to all other angiosperms, but interestingly, in the bayesian phylogeny inference based on first two codon positions Amborella united with Nymphaeales. Comparative genomics analyses revealed that the Fagopyrum chloroplast genome harbors the characteristic gene content and organization as has been described for several other chloroplast genomes. However, it has some unique structural features distinct from previously reported complete chloroplast genome sequences. Phylogenetic analysis of the dataset, including this new sequence from non

  17. Evolutionary origins of Hsp90 chaperones and a deep paralogy in their bacterial ancestors.

    PubMed

    Stechmann, Alexandra; Cavalier-Smith, Thomas

    2004-01-01

    The 82-90 kD family of molecular chaperone proteins has homologs in eukaryotes (Hsp90) and many eubacteria (HtpG) but not in Archaebacteria. We used representatives of all four different eukaryotic paralogs (cytosolic, endoplasmic reticulum (ER), chloroplast, mitochondrial) together with numerous eubacterial HtpG proteins for phylogenetic analyses to investigate their evolutionary origins. Our trees confirm that none of the organellar Hsp90s derives from the endosymbionts of early eukaryotes. Contrary to previous suggestions of distant origins through lateral gene transfer (LGT) all eukaryote Hsp90s are related to Gram-positive eubacterial HtpG proteins. The nucleocytosolic, ER and chloroplast Hsp90 paralogs are clearly mutually related. The origin of mitochondrial Hsp90 is more obscure, as these sequences are deeply nested within eubacteria. Our trees also reveal a deep split within eubacteria into a group of mainly long-branching sequences (including the eukaryote mitochondrial Hsp90s) and another group comprising exclusively short-branching HtpG proteins, from which the cytosolic/ER versions probably arose. Both versions are present in several eubacterial phyla, suggesting gene duplication very early in eubacterial evolution and multiple independent losses thereafter. We identified one probable case of LGT within eubacteria. However, multiple losses can simply explain the evolutionary pattern of the eubacterial HtpG paralogs and predominate over LGT. We suggest that the actinobacterial ancestor of eukaryotes harbored genes for both eubacterial HtpG paralogs, as the actinobacterium Streptomyces coelicolor still does; one could have given rise to the mitochondrial Hsp90 and the other, following another duplication event in the ancestral eukaryote, to the cytosolic and ER Hsp90 homologs.

  18. Specimen-level phylogenetics in paleontology using the Fossilized Birth-Death model with sampled ancestors.

    PubMed

    Cau, Andrea

    2017-01-01

    Bayesian phylogenetic methods integrating simultaneously morphological and stratigraphic information have been applied increasingly among paleontologists. Most of these studies have used Bayesian methods as an alternative to the widely-used parsimony analysis, to infer macroevolutionary patterns and relationships among species-level or higher taxa. Among recently introduced Bayesian methodologies, the Fossilized Birth-Death (FBD) model allows incorporation of hypotheses on ancestor-descendant relationships in phylogenetic analyses including fossil taxa. Here, the FBD model is used to infer the relationships among an ingroup formed exclusively by fossil individuals, i.e., dipnoan tooth plates from four localities in the Ain el Guettar Formation of Tunisia. Previous analyses of this sample compared the results of phylogenetic analysis using parsimony with stratigraphic methods, inferred a high diversity (five or more genera) in the Ain el Guettar Formation, and interpreted it as an artifact inflated by depositional factors. In the analysis performed here, the uncertainty on the chronostratigraphic relationships among the specimens was included among the prior settings. The results of the analysis confirm the referral of most of the specimens to the taxa Asiatoceratodus, Equinoxiodus, Lavocatodus and Neoceratodus, but reject those to Ceratodus and Ferganoceratodus. The resulting phylogeny constrained the evolution of the Tunisian sample exclusively in the Early Cretaceous, contrasting with the previous scenario inferred by the stratigraphically-calibrated topology resulting from parsimony analysis. The phylogenetic framework also suggests that (1) the sampled localities are laterally equivalent, (2) but three localities are restricted to the youngest part of the section; both results are in agreement with previous stratigraphic analyses of these localities. The FBD model of specimen-level units provides a novel tool for phylogenetic inference among fossils but also

  19. Isozymatic variation and phylogenetic relationships between henequen (Agave fourcroydes) and its wild ancestor A. angustifolia (Agavaceae).

    PubMed

    Colunga-Garcíamarín, P; Coello-Coello, J; Eguiarte, L E; Piñero, D

    1999-01-01

    Isozymatic variation and phylogenetic relationships among extant henequén (Agave fourcroydes) germplasm and wild populations of its ancestor A. angustifolia in the Yucatan Peninsula in Mexico were analyzed. Analysis of three isozyme systems using starch gel electrophoresis indicated that while A. angustifolia populations have relatively high levels of variation, within each henequén cultivar all individuals were identical. This result corresponds to previous ethnobotanical and morphological analyses, which indicated severe loss of genetic variation of this domesticated plant as a consequence of the promotion by means of asexual propagation of only one cultivar since the middle of the last century. The three extant cultivars of henequén were distinct from each other. Two of them, Sac Ki (SK) and Yaax Ki (YK), could be matched within the progenitor, but Kitam Ki (KK) has a MDH electrophenotype not found in any of the plants growing inside the Yucatan Peninsula, but found in some A. angustifolia plants growing in the Mexican states of Oaxaca and Veracruz. A parsimony analysis of the morphological data indicated two lineages: that of SK and YK, cultivated cordage plants selected for stronger and longer fibers, whose sister group is the Tropical subdeciduous forest ecotype (SF), and that of all the other wild populations, which also included KK, the cultivated textile plants selected for finer fibers and nearly extinct in Yucatan. These results support the hypothesis of the yucatecan origin of SK and YK from the SF ecotype, as well as the hypothesis of a recent introduction of KK to the Yucatan Peninsula in a domestication trend that probably included also Chelem White (its cultivation being abandoned later).

  20. Evolution without speciation but with selection: LUCA, the Last Universal Common Ancestor in Gilbert's RNA world.

    PubMed

    Hoenigsberg, Hugo

    2003-12-30

    This is not an attempt to analyze the Last Universal Common Ancestor (LUCA) to understand the origin of living systems. We do not know what came before Gilberts' RNA world. Our analysis starts with the RNA world and with genes (biological replicators alla Dawkings) made up of RNA proteins with enzymatic catalytic functions within units that are not yet modern cells. We offer a scenario where cellular entities are very simple and without individuality; they are only simple primary units of selection (the first level of selection) in which replicators compete in the most Darwinian manner, totally deprived of cooperation and interactions among genes. The information processing system of this RNA world is inaccurate and inefficient when compared to that found in organisms that came later. Among the "genes" and the entities that harbor them, high mutation rate was the most prevalent source of variability and the only inheritance was through lateral gene transfer of mobile elements. There were no chromosomes or any other genomic organization. As millions of years accumulated, complex and organized biological structures and processes evolved thanks to the variability mustered up mostly by lateral gene transfers and mutations. With micro- and mini-satellites, lateral gene transfers became indispensable devices of selection to mold variability. Competition and Darwinian selection gave way to a new transition in evolution, one I consider ineluctable, in which cooperation among interactive genes prevailed for the sake of higher fitness. Compartmentalization constituted a major transition in evolution that spurted new types of genome organization. Minichromosomes is one of these; cellular membranes and cytoplasmic structures completed the picture of the primitive cell. However, the much talked about phylogenetic tree does not exit in that ancient LUCA. The tree has no organism at its base; only clusters of genes evoke a fragile beginning for the increasingly complex cell types

  1. DNA repair systems in archaea: mementos from the last universal common ancestor?

    PubMed

    DiRuggiero, J; Brown, J R; Bogert, A P; Robb, F T

    1999-10-01

    DNA repair in the Archaea is relevant to the consideration of genome maintenance and replication fidelity in the last universal common ancestor (LUCA) from two perspectives. First, these prokaryotes embody a mix of bacterial and eukaryal molecular features. Second, DNA repair proteins would have been essential in LUCA to maintain genome integrity, regardless of the environmental temperature. Yet we know very little of the basic molecular mechanisms of DNA damage and repair in the Archaea in general. Many studies on DNA repair in archaea have been conducted with hyperthermophiles because of the additional stress imposed on their macromolecules by high temperatures. In addition, of the six complete archaeal genome sequences published so far, five are thermophilic archaea. We have recently shown that the hyperthermophile Pyrococcus furiosus has an extraordinarily high capacity for repair of radiation-induced double-strand breaks and we have identified and sequenced several genes involved in DNA repair in P. furiosus. At the sequence level, only a few genes share homology with known bacterial repair genes. For instance, our phylogenetic analysis indicates that archaeal recombinases occur in two paralogous gene families, one of which is very deeply branched, and both recombinases are more closely related to the eukaryotic RAD51 and Dmc1 gene families than to the Escherichia coli recA gene. We have also identified a gene encoding a repair endo/exonuclease in the genomes of several Archaea. The archaeal sequences are highly homologous to those of the eukaryotic Rad2 family and they cluster with genes of the FEN-1 subfamily, which are known to be involved in DNA replication and repair in eukaryotes. We argue that there is a commonality of mechanisms and protein sequences, shared between prokaryotes and eukaryotes for several modes of DNA repair, reflecting diversification from a minimal set of genes thought to represent the genome of the LUCA.

  2. The Eukaryotic Ancestor Had a Complex Ubiquitin Signaling System of Archaeal Origin

    PubMed Central

    Grau-Bové, Xavier; Sebé-Pedrós, Arnau; Ruiz-Trillo, Iñaki

    2015-01-01

    The origin of the eukaryotic cell is one of the most important transitions in the history of life. However, the emergence and early evolution of eukaryotes remains poorly understood. Recent data have shown that the last eukaryotic common ancestor (LECA) was much more complex than previously thought. The LECA already had the genetic machinery encoding the endomembrane apparatus, spliceosome, nuclear pore, and myosin and kinesin cytoskeletal motors. It is unclear, however, when the functional regulation of these cellular components evolved. Here, we address this question by analyzing the origin and evolution of the ubiquitin (Ub) signaling system, one of the most important regulatory layers in eukaryotes. We delineated the evolution of the whole Ub, Small-Ub-related MOdifier (SUMO), and Ub-fold modifier 1 (Ufm1) signaling networks by analyzing representatives from all major eukaryotic, bacterial, and archaeal lineages. We found that the Ub toolkit had a pre-eukaryotic origin and is present in three extant archaeal groups. The pre-eukaryotic Ub toolkit greatly expanded during eukaryogenesis, through massive gene innovation and diversification of protein domain architectures. This resulted in a LECA with essentially all of the Ub-related genes, including the SUMO and Ufm1 Ub-like systems. Ub and SUMO signaling further expanded during eukaryotic evolution, especially labeling and delabeling enzymes responsible for substrate selection. Additionally, we analyzed protein domain architecture evolution and found that multicellular lineages have the most complex Ub systems in terms of domain architectures. Together, we demonstrate that the Ub system predates the origin of eukaryotes and that a burst of innovation during eukaryogenesis led to a LECA with complex posttranslational regulation. PMID:25525215

  3. Molecular Epidemiology of Helicobacter pylori Infection in Nepal: Specific Ancestor Root

    PubMed Central

    Miftahussurur, Muhammad; Sharma, Rabi Prakash; Shrestha, Pradeep Krishna; Suzuki, Rumiko; Uchida, Tomohisa; Yamaoka, Yoshio

    2015-01-01

    Prevalence of Helicobacter pylori infection in Nepal, a low-risk country for gastric cancer, is debatable. To our knowledge, no studies have examined H. pylori virulence factors in Nepal. We determined the prevalence of H. pylori infection by using three different tests, and the genotypes of virulence factors were determined by PCR followed by sequencing. Multilocus sequence typing was used to analyze the population structure of the Nepalese strains. The prevalence of H. pylori infection in dyspeptic patients was 38.4% (56/146), and was significantly related with source of drinking water. In total, 51 strains were isolated and all were cagA-positive. Western-type-cagA (94.1%), cagA pre-EPIYA type with no deletion (92.2%), vacA s1a (74.5%), and m1c (54.9%) were the predominant genotypes. Antral mucosal atrophy levels were significantly higher in patients infected with vacA s1 than in those infected with s2 genotypes (P = 0.03). Several Nepalese strains were H. pylori recombinants with genetic features of South Asian and East Asian genotypes. These included all East-Asian-type-cagA strains, with significantly lesser activity and inflammation in the corpus than the strains of the specific South Asian genotype (P = 0.03 and P = 0.005, respectively). Although the population structure confirmed that most Nepalese strains belonged to the hpAsia2 population, some strains shared hpEurope- and Nepalese-specific components. Nepalese patients infected with strains belonging to hpEurope showed higher inflammation in the antrum than strains from the Nepalese specific population (P = 0.05). These results support that ancestor roots of Kathmandu`s people not only connected with India alone. PMID:26226153

  4. Specimen-level phylogenetics in paleontology using the Fossilized Birth-Death model with sampled ancestors

    PubMed Central

    2017-01-01

    Bayesian phylogenetic methods integrating simultaneously morphological and stratigraphic information have been applied increasingly among paleontologists. Most of these studies have used Bayesian methods as an alternative to the widely-used parsimony analysis, to infer macroevolutionary patterns and relationships among species-level or higher taxa. Among recently introduced Bayesian methodologies, the Fossilized Birth-Death (FBD) model allows incorporation of hypotheses on ancestor-descendant relationships in phylogenetic analyses including fossil taxa. Here, the FBD model is used to infer the relationships among an ingroup formed exclusively by fossil individuals, i.e., dipnoan tooth plates from four localities in the Ain el Guettar Formation of Tunisia. Previous analyses of this sample compared the results of phylogenetic analysis using parsimony with stratigraphic methods, inferred a high diversity (five or more genera) in the Ain el Guettar Formation, and interpreted it as an artifact inflated by depositional factors. In the analysis performed here, the uncertainty on the chronostratigraphic relationships among the specimens was included among the prior settings. The results of the analysis confirm the referral of most of the specimens to the taxa Asiatoceratodus, Equinoxiodus, Lavocatodus and Neoceratodus, but reject those to Ceratodus and Ferganoceratodus. The resulting phylogeny constrained the evolution of the Tunisian sample exclusively in the Early Cretaceous, contrasting with the previous scenario inferred by the stratigraphically-calibrated topology resulting from parsimony analysis. The phylogenetic framework also suggests that (1) the sampled localities are laterally equivalent, (2) but three localities are restricted to the youngest part of the section; both results are in agreement with previous stratigraphic analyses of these localities. The FBD model of specimen-level units provides a novel tool for phylogenetic inference among fossils but also

  5. Genome sequence of the brown Norway rat yields insights into mammalian evolution

    SciTech Connect

    Gibbs, Richard A.; Weinstock, George M.; Metzker, Michael L.; Muzny, Donna M.; Sodergren, Erica J.; Scherer, Steven; Scott, Graham; Steffen, David; Worley, Kim C.; Burch, Paula E.; Okwuonu, Geoffrey; Hines, Sandra; Lewis, Lora; DeRamo, Christine; Delgado, Oliver; Dugan-Rocha, Shannon; Miner, George; Morgan, Margaret; Hawes, Alicia; Gill, Rachel; Holt, Robert A.; Adams, Mark D.; Amanatides, Peter G.; Baden-Tillson, Holly; Barnstead, Mary; Chin, Soo; Evans, Cheryl A.; Ferriera, Steven; Fosler, Carl; Glodek, Anna; Gu, Zhiping; Jennings, Don; Kraft, Cheryl L.; Nguyen, Trixie; Pfannkoch, Cynthia M.; Sitter, Cynthia; Sutton, Granger G.; Venter, J. Craig; Woodage, Trevor; Smith, Douglas; Lee, Hong-Maei; Gustafson, Erik; Cahill, Patrick; Kana, Arnold; Doucette-Stamm, Lynn; Weinstock, Keith; Fechtel, Kim; Weiss, Robert B.; Dunn, Diane M.; Green, Eric D.; Blakesley, Robert W.; Bouffard, Gerard G.; de Jong, Pieter J.; Osoegawa, Kazutoyo; Zhu, Baoli; Marra, Marco; Schein, Jacqueline; Bosdet, Ian; Fjell, Chris; Jones, Steven; Krzywinski, Martin; Mathewson, Carrie; Siddiqui, Asim; Wye, Natasja; McPherson, John; Zhao, Shaying; Fraser, Claire M.; Shetty, Jyoti; Shatsman, Sofiya; Geer, Keita; Chen, Yixin; Abramzon, Sofyia; Nierman, William C.; Havlak, Paul H.; Chen, Rui; Durbin, K. James; Egan, Amy; Ren, Yanru; Song, Xing-Zhi; Li, Bingshan; Liu, Yue; Qin, Xiang; Cawley, Simon; Cooney, A.J.; D'Souza, Lisa M.; Martin, Kirt; Wu, Jia Qian; Gonzalez-Garay, Manuel L.; Jackson, Andrew R.; Kalafus, Kenneth J.; McLeod, Michael P.; Milosavljevic, Aleksandar; Virk, Davinder; Volkov, Andrei; Wheeler, David A.; Zhang, Zhengdong; Bailey, Jeffrey A.; Eichler, Evan E.; Tuzun, Eray; Birney, Ewan; Mongin, Emmanuel; Ureta-Vidal, Abel; Woodwark, Cara; Zdobnov, Evgeny; Bork, Peer; Suyama, Mikita; Torrents, David; Alexandersson, Marina; Trask, Barbara J.; Young, Janet M.; et al.

    2004-02-02

    The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90 percent of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.

  6. mGRASP enables mapping mammalian synaptic connectivity with light microscopy

    PubMed Central

    Kim, Jinhyun; Zhao, Ting; Petralia, Ronald S; Yu, Yang; Peng, Hanchuan; Myers, Eugene; Magee, Jeffrey C

    2012-01-01

    The GFP reconstitution across synaptic partners (GRASP) technique, based on functional complementation between two nonfluorescent GFP fragments, can be used to detect the location of synapses quickly, accurately and with high spatial resolution. The method has been previously applied in the nematode and the fruit fly but requires substantial modification for use in the mammalian brain. We developed mammalian GRASP (mGRASP) by optimizing transmembrane split-GFP carriers for mammalian synapses. Using in silico protein design, we engineered chimeric synaptic mGRASP fragments that were efficiently delivered to synaptic locations and reconstituted GFP fluorescence in vivo. Furthermore, by integrating molecular and cellular approaches with a computational strategy for the three-dimensional reconstruction of neurons, we applied mGRASP to both long-range circuits and local microcircuits in the mouse hippocampus and thalamocortical regions, analyzing synaptic distribution in single neurons and in dendritic compartments. PMID:22138823

  7. Modeling the mammalian sleep cycle.

    PubMed

    Weber, Franz

    2017-08-24

    During sleep, the mammalian brain transitions through repeated cycles of non-rapid-eye-movement (NREM) and rapid-eye-movement (REM) sleep. The physiological implementation of this slow ultradian brain rhythm is largely unknown. Two differing dynamical mechanisms have been proposed to underlie the NREM-REM cycle. The first model type relies on reciprocal interactions between inhibitory and excitatory neural populations resulting in stable limit cycle oscillations. Recent experimental findings instead favor a model, in which mutually inhibitory interactions between REM sleep-promoting (REM-on) and REM sleep-suppressing (REM-off) neural populations stabilize the brain state. Slow modulations in the neural excitability, that are hypothesized to reflect the homeostatic need for REM sleep, abruptly switch the brain in and out of REM sleep. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Polarity in Mammalian Epithelial Morphogenesis

    PubMed Central

    Roignot, Julie; Peng, Xiao; Mostov, Keith

    2013-01-01

    Cell polarity is fundamental for the architecture and function of epithelial tissues. Epithelial polarization requires the intervention of several fundamental cell processes, whose integration in space and time is only starting to be elucidated. To understand what governs the building of epithelial tissues during development, it is essential to consider the polarization process in the context of the whole tissue. To this end, the development of three-dimensional organotypic cell culture models has brought new insights into the mechanisms underlying the establishment and maintenance of higher-order epithelial tissue architecture, and in the dynamic remodeling of cell polarity that often occurs during development of epithelial organs. Here we discuss some important aspects of mammalian epithelial morphogenesis, from the establishment of cell polarity to epithelial tissue generation. PMID:23378592

  9. Producing Newborn Synchronous Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen

    2008-01-01

    A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.

  10. Mammalian glutaminase isozymes in brain.

    PubMed

    Márquez, Javier; Cardona, Carolina; Campos-Sandoval, José A; Peñalver, Ana; Tosina, Marta; Matés, José M; Martín-Rufián, Mercedes

    2013-06-01

    Glutamine/glutamate homeostasis must be exquisitely regulated in mammalian brain and glutaminase (GA, E.C. 3.5.1.2) is one of the main enzymes involved. The products of GA reaction, glutamate and ammonia, are essential metabolites for energy and biosynthetic purposes but they are also hazardous compounds at concentrations beyond their normal physiological thresholds. The classical pattern of GA expression in mammals has been recently challenged by the discovery of novel transcript variants and protein isoforms. Furthermore, the interactome of brain GA is also starting to be uncovered adding a new level of regulatory complexity. GA may traffic in brain and unexpected locations, like cytosol and nucleus, have been found for GA isoforms. Finally, the expression of GA in glial cells has been reported and its potential implications in ammonia homeostasis are discussed.

  11. Interaction theory of mammalian mitochondria.

    PubMed

    Nakada, K; Inoue, K; Hayashi, J

    2001-11-09

    We generated mice with deletion mutant mtDNA by its introduction from somatic cells into mouse zygotes. Expressions of disease phenotypes are limited to tissues expressing mitochondrial dysfunction. Considering that all these mice share the same nuclear background, these observations suggest that accumulation of the mutant mtDNA and resultant expressions of mitochondrial dysfunction are responsible for expression of disease phenotypes. On the other hand, mitochondrial dysfunction and expression of clinical abnormalities were not observed until the mutant mtDNA accumulated predominantly. This protection is due to the presence of extensive and continuous interaction between exogenous mitochondria from cybrids and recipient mitochondria from embryos. Thus, we would like to propose a new hypothesis on mitochondrial biogenesis, interaction theory of mitochondria: mammalian mitochondria exchange genetic contents, and thus lost the individuality and function as a single dynamic cellular unit.

  12. Determinants of Mammalian Nucleolar Architecture

    PubMed Central

    Farley, Katherine I.; Surovtseva, Yulia; Merkel, Janie; Baserga, Susan J.

    2015-01-01

    The nucleolus is responsible for the production of ribosomes, essential machines which synthesize all proteins needed by the cell. The structure of human nucleoli is highly dynamic and is directly related to its functions in ribosome biogenesis. Despite the importance of this organelle, the intricate relationship between nucleolar structure and function remains largely unexplored. How do cells control nucleolar formation and function? What are the minimal requirements for making a functional nucleolus? Here we review what is currently known regarding mammalian nucleolar formation at nucleolar organizer regions (NORs), which can be studied by observing the dissolution and reformation of the nucleolus during each cell division. Additionally, the nucleolus can be examined by analyzing how alterations in nucleolar function manifest in differences in nucleolar architecture. Furthermore, changes in nucleolar structure and function are correlated with cancer, highlighting the importance of studying the determinants of nucleolar formation. PMID:25670395

  13. Pharmacology of mammalian olfactory receptors.

    PubMed

    Smith, Richard S; Peterlin, Zita; Araneda, Ricardo C

    2013-01-01

    Mammalian species have evolved a large and diverse number of odorant receptors (ORs). These proteins comprise the largest family of G-protein-coupled receptors (GPCRs) known, amounting to ~1,000-different receptors in the rodent. From the perspective of olfactory coding, the availability of such a vast number of chemosensory receptors poses several fascinating questions; in addition, such a large repertoire provides an attractive biological model to study ligand-receptor interactions. The limited functional expression of these receptors in heterologous systems, however, has greatly hampered attempts to deorphanize them. We have employed a successful approach that combines electrophysiological and imaging techniques to analyze the response profiles of single sensory neurons. Our approach has enabled us to characterize the "odor space" of a population of native aldehyde receptors and the molecular range of a genetically engineered receptor, OR-I7.

  14. Body Size in Mammalian Paleobiology

    NASA Astrophysics Data System (ADS)

    Damuth, John; MacFadden, Bruce J.

    1990-11-01

    This valuable collection of essays presents and evaluates techniques of body-mass estimation and reviews current and potential applications of body-size estimates in paleobiology. Papers discuss explicitly the errors and biases of various regression techniques and predictor variables, and the identification of functionally similar groups of species for improving the accuracy of estimates. At the same time other chapters review and discuss the physiological, ecological, and behavioral correlates of body size in extant mammals; the significance of body-mass distributions in mammalian faunas; and the ecology and evolution of body size in particular paleofaunas. Coverage is particularly detailed for carnivores, primates, and ungulates, but information is also presented on marsupials, rodents, and proboscideans.

  15. The Effect of Recombination on the Reconstruction of Ancestral Sequences

    PubMed Central

    Arenas, Miguel; Posada, David

    2010-01-01

    While a variety of methods exist to reconstruct ancestral sequences, all of them assume that a single phylogeny underlies all the positions in the alignment and therefore that recombination has not taken place. Using computer simulations we show that recombination can severely bias ancestral sequence reconstruction (ASR), and quantify this effect. If recombination is ignored, the ancestral sequences recovered can be quite distinct from the grand most recent common ancestor (GMRCA) of the sample and better resemble the concatenate of partial most recent common ancestors (MRCAs) at each recombination fragment. When independent phylogenetic trees are assumed for the different recombinant segments, the estimation of the fragment MRCAs improves significantly. Importantly, we show that recombination can change the biological predictions derived from ASRs carried out with real data. Given that recombination is widespread on nuclear genes and in particular in RNA viruses and some bacteria, the reconstruction of ancestral sequences in these cases should consider the potential impact of recombination and ideally be carried out using approaches that accommodate recombination. PMID:20124027

  16. The mammalian Cretaceous cochlear revolution.

    PubMed

    Manley, Geoffrey A

    2016-12-19

    The hearing organs of amniote vertebrates show large differences in their size and structure between the species' groups. In spite of this, their performance in terms of hearing sensitivity and the frequency selectivity of auditory-nerve units shows unexpectedly small differences. The only substantial difference is that therian, defined as live-bearing, mammalian groups are able to hear ultrasonic frequencies (above 15-20 kHz), whereas in contrast monotreme (egg laying) mammals and all non-mammalian amniotes cannot. This review compares the structure and physiology of the cochleae of the main groups and asks the question as to why the many structural differences seen in therian mammals arose, yet did not result in greater differences in physiology. The likely answers to this question are found in the history of the mammals during the Cretaceous period that ended 65 million years ago. During that period, the therian cochlea lost its lagenar macula, leading to a fall in endolymph calcium levels. This likely resulted in a small revolution and an auditory crisis that was compensated for by a subsequent series of structural and physiological adaptations. The end result was a system of equivalent performance to that independently evolved in other amniotes but with the additional - and of course "unforeseen" - advantage that ultrasonic-frequency responses became an available option. That option was not always availed of, but in most groups of therian mammals it did evolve and is used for communication and orientation based on improved sound localization, with micro-bats and toothed whales relying on it for prey capture.

  17. Genome regulation in mammalian cells.

    PubMed

    Puck, T T; Krystosek, A; Chan, D C

    1990-05-01

    A theory is presented proposing that genetic regulation in mammalian cells is at least a two-tiered effect; that one level of regulation involves the transition between gene exposure and sequestration; that normal differentiation requires a different spectrum of genes to be exposed in each separate state of differentiation; that the fiber systems of the cell cytoskeleton and the nuclear matrix together control the degree of gene exposure; that specific phosphorylation of these elements causes them to assume a different organizational network and to impose a different pattern of sequestration and exposure on the elements of the genome; that the varied gene phosphorylation mechanisms in the cell are integrated in this function; that attachment of this network system to specific parts of the chromosomes brings about sequestration or exposure of the genes in their neighborhood in a fashion similar to that observed when microtubule elements attach through the kinetochore to the centromeric DNA; that one function of repetitive sequences is to serve as elements for the final attachment of this fibrous network to the specific chromosomal loci; and that at least an important part of the calcium manifestation as a metabolic trigger of different differentiation states involves its acting as a binding agent to centers of electronegativity, in particular proteins and especially phosphorylated groups, so as to change the conformation of the fiber network that ultimately controls gene exposure in the mammalian cell. It would appear essential to determine what abnormal gene exposures and sequestrations are characteristic of each type of cancer; which agonists, if any, will bring about reverse transformation; and whether these considerations can be used in therapy.

  18. Dynamic Ising model: reconstruction of evolutionary trees

    NASA Astrophysics Data System (ADS)

    de Oliveira, P. M. C.

    2013-09-01

    An evolutionary tree is a cascade of bifurcations starting from a single common root, generating a growing set of daughter species as time goes by. ‘Species’ here is a general denomination for biological species, spoken languages or any other entity which evolves through heredity. From the N currently alive species within a clade, distances are measured through pairwise comparisons made by geneticists, linguists, etc. The larger is such a distance that, for a pair of species, the older is their last common ancestor. The aim is to reconstruct the previously unknown bifurcations, i.e. the whole clade, from knowledge of the N(N - 1)/2 quoted distances, which are taken for granted. A mechanical method is presented and its applicability is discussed.

  19. Mammalian biodiversity on Madagascar controlled by ocean currents.

    PubMed

    Ali, Jason R; Huber, Matthew

    2010-02-04

    Madagascar hosts one of the world's most unusual, endemic, diverse and threatened concentrations of fauna. To explain its unique, imbalanced biological diversity, G. G. Simpson proposed the 'sweepstakes hypothesis', according to which the ancestors of Madagascar's present-day mammal stock rafted there from Africa. This is an important hypothesis in biogeography and evolutionary theory for how animals colonize new frontiers, but its validity is questioned. Studies suggest that currents were inconsistent with rafting to Madagascar and that land bridges provided the migrants' passage. Here we show that currents could have transported the animals to the island and highlight evidence inconsistent with the land-bridge hypothesis. Using palaeogeographic reconstructions and palaeo-oceanographic modelling, we find that strong surface currents flowed from northeast Mozambique and Tanzania eastward towards Madagascar during the Palaeogene period, exactly as required by the 'sweepstakes process'. Subsequently, Madagascar advanced north towards the equatorial gyre and the regional current system evolved into its modern configuration with flows westward from Madagascar to Africa. This may explain why no fully non-aquatic land mammals have colonized Madagascar since the arrival of the rodents and carnivorans during the early-Miocene epoch. One implication is that rafting may be the dominant means of overseas dispersal in the Cenozoic era when palaeocurrent directions are properly considered.

  20. Mammalian Mitochondrial ncRNA Database.

    PubMed

    Anandakumar, Shanmugam; Vijayakumar, Saravanan; Arumugam, Nagarajan; Gromiha, M Michael

    2015-01-01

    Mammalian Mitochondrial ncRNA is a web-based database, which provides specific information on non-coding RNA in mammals. This database includes easy searching, comparing with BLAST and retrieving information on predicted structure and its function about mammalian ncRNAs. The database is available for free at http://www.iitm.ac.in/bioinfo/mmndb/.

  1. [The saga of aspirin: centuries-old ancestors of an old lady who doesn't deserve to die].

    PubMed

    Queneau, P

    2001-01-01

    Where do analgics come from? If their ancestors are many centuries old, we observe that the four main drugs of modern analgesia, morphine (1816), codeine (1832), paracetamol (1893) and aspirin (1897) were discovered during the 19th century. And through what 'sagas'! The first known prescriptions, written on earthenware shelves in Mesopotamia 3 centuries BC, already mentioned medications derived from willow to cure headaches. The Greeks dedicated to Asclepios, god of therapeutics, a statue carved in a willow trunk as a symbol! Thus, before becoming a drug, aspirin was born from the willow, which grows with its feet in water 'without suffering', as the ancestors put it. But before it walked on the moon with Neil Armstrong in 1969, the discovery of aspirin as a drug was the consequence of the filial love of a young researcher, Felix Hoffmann, who wanted to decrease the resistant pain of his rheumatic old father.

  2. Evolutionary history of mammalian sucking lice (Phthiraptera: Anoplura)

    PubMed Central

    2010-01-01

    Background Sucking lice (Phthiraptera: Anoplura) are obligate, permanent ectoparasites of eutherian mammals, parasitizing members of 12 of the 29 recognized mammalian orders and approximately 20% of all mammalian species. These host specific, blood-sucking insects are morphologically adapted for life on mammals: they are wingless, dorso-ventrally flattened, possess tibio-tarsal claws for clinging to host hair, and have piercing mouthparts for feeding. Although there are more than 540 described species of Anoplura and despite the potential economical and medical implications of sucking louse infestations, this study represents the first attempt to examine higher-level anopluran relationships using molecular data. In this study, we use molecular data to reconstruct the evolutionary history of 65 sucking louse taxa with phylogenetic analyses and compare the results to findings based on morphological data. We also estimate divergence times among anopluran taxa and compare our results to host (mammal) relationships. Results This study represents the first phylogenetic hypothesis of sucking louse relationships using molecular data and we find significant conflict between phylogenies constructed using molecular and morphological data. We also find that multiple families and genera of sucking lice are not monophyletic and that extensive taxonomic revision will be necessary for this group. Based on our divergence dating analyses, sucking lice diversified in the late Cretaceous, approximately 77 Ma, and soon after the Cretaceous-Paleogene boundary (ca. 65 Ma) these lice proliferated rapidly to parasitize multiple mammalian orders and families. Conclusions The diversification time of sucking lice approximately 77 Ma is in agreement with mammalian evolutionary history: all modern mammal orders are hypothesized to have diverged by 75 Ma thus providing suitable habitat for the colonization and radiation of sucking lice. Despite the concordant timing of diversification events

  3. Evolutionary history of mammalian sucking lice (Phthiraptera: Anoplura).

    PubMed

    Light, Jessica E; Smith, Vincent S; Allen, Julie M; Durden, Lance A; Reed, David L

    2010-09-22

    Sucking lice (Phthiraptera: Anoplura) are obligate, permanent ectoparasites of eutherian mammals, parasitizing members of 12 of the 29 recognized mammalian orders and approximately 20% of all mammalian species. These host specific, blood-sucking insects are morphologically adapted for life on mammals: they are wingless, dorso-ventrally flattened, possess tibio-tarsal claws for clinging to host hair, and have piercing mouthparts for feeding. Although there are more than 540 described species of Anoplura and despite the potential economical and medical implications of sucking louse infestations, this study represents the first attempt to examine higher-level anopluran relationships using molecular data. In this study, we use molecular data to reconstruct the evolutionary history of 65 sucking louse taxa with phylogenetic analyses and compare the results to findings based on morphological data. We also estimate divergence times among anopluran taxa and compare our results to host (mammal) relationships. This study represents the first phylogenetic hypothesis of sucking louse relationships using molecular data and we find significant conflict between phylogenies constructed using molecular and morphological data. We also find that multiple families and genera of sucking lice are not monophyletic and that extensive taxonomic revision will be necessary for this group. Based on our divergence dating analyses, sucking lice diversified in the late Cretaceous, approximately 77 Ma, and soon after the Cretaceous-Paleogene boundary (ca. 65 Ma) these lice proliferated rapidly to parasitize multiple mammalian orders and families. The diversification time of sucking lice approximately 77 Ma is in agreement with mammalian evolutionary history: all modern mammal orders are hypothesized to have diverged by 75 Ma thus providing suitable habitat for the colonization and radiation of sucking lice. Despite the concordant timing of diversification events early in the association between

  4. Breast reconstruction - natural tissue

    MedlinePlus

    ... flap; TUG; Mastectomy - breast reconstruction with natural tissue; Breast cancer - breast reconstruction with natural tissue ... it harder to find a tumor if your breast cancer comes back. The advantage of breast reconstruction with ...

  5. Recent advances in mammalian protein production

    PubMed Central

    Bandaranayake, Ashok D.; Almo, Steven C.

    2014-01-01

    Mammalian protein production platforms have had a profound impact in many areas of basic and applied research, and an increasing number of blockbuster drugs are recombinant mammalian proteins. With global sales of these drugs exceeding US$120 billion per year, both industry and academic research groups continue to develop cost effective methods for producing mammalian proteins to support preclinical and clinical evaluations of potential therapeutics. While a wide range of platforms have been successfully exploited for laboratory use, the bulk of recent biologics have been produced in mammalian cell lines due to the requirement for post translational modification and the biosynthetic complexity of the target proteins. In this review we highlight the range of mammalian expression platforms available for recombinant protein production, as well as advances in technologies for the rapid and efficient selection of highly productive clones. PMID:24316512

  6. Photodynamic inactivation of mammalian viruses and bacteriophages.

    PubMed

    Costa, Liliana; Faustino, Maria Amparo F; Neves, Maria Graça P M S; Cunha, Angela; Almeida, Adelaide

    2012-07-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  7. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    PubMed Central

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  8. The origin of life and the last universal common ancestor: do we need a change of perspective?

    PubMed

    Glansdorff, Nicolas; Xu, Ying; Labedan, Bernard

    2009-09-01

    A complete tree with roots, trunk and crown remains an appropriate model to represent all steps of life's development, from the emergence of a unique genetic code up to the last universal common ancestor and its further radiation. Catalytic closure of a mixture of prebiotic polymers is a heuristic alternative to the RNA world. Conjectures about emergence of life in an infinite multiverse should not confuse probability with possibility.

  9. Reconstructing ancestral gene content by coevolution.

    PubMed

    Tuller, Tamir; Birin, Hadas; Gophna, Uri; Kupiec, Martin; Ruppin, Eytan

    2010-01-01

    Inferring the gene content of ancestral genomes is a fundamental challenge in molecular evolution. Due to the statistical nature of this problem, ancestral genomes inferred by the maximum likelihood (ML) or the maximum-parsimony (MP) methods are prone to considerable error rates. In general, these errors are difficult to abolish by using longer genomic sequences or by analyzing more taxa. This study describes a new approach for improving ancestral genome reconstruction, the ancestral coevolver (ACE), which utilizes coevolutionary information to improve the accuracy of such reconstructions over previous approaches. The principal idea is to reduce the potentially large solution space by choosing a single optimal (or near optimal) solution that is in accord with the coevolutionary relationships between protein families. Simulation experiments, both on artificial and real biological data, show that ACE yields a marked decrease in error rate compared with ML or MP. Applied to a large data set (95 organisms, 4873 protein families, and 10,000 coevolutionary relationships), some of the ancestral genomes reconstructed by ACE were remarkably different in their gene content from those reconstructed by ML or MP alone (more than 10% in some nodes). These reconstructions, while having almost similar likelihood/parsimony scores as those obtained with ML/MP, had markedly higher concordance with the coevolutionary information. Specifically, when ACE was implemented to improve the results of ML, it added a large number of proteins to those encoded by LUCA (last universal common ancestor), most of them ribosomal proteins and components of the F(0)F(1)-type ATP synthase/ATPases, complexes that are vital in most living organisms. Our analysis suggests that LUCA appears to have been bacterial-like and had a genome size similar to the genome sizes of many extant organisms.

  10. Outgroup, alignment and modelling improvements indicate that two TNFSF13-like genes existed in the vertebrate ancestor.

    PubMed

    Redmond, Anthony K; Pettinello, Rita; Dooley, Helen

    2017-03-01

    The molecular machinery required for lymphocyte development and differentiation appears to have emerged concomitantly with distinct B- and T-like lymphocyte subsets in the ancestor of all vertebrates. The TNFSF superfamily (TNFSF) members BAFF (TNFSF13/Blys) and APRIL (TNFSF13) are key regulators of B cell development survival, and activation in mammals, but the temporal emergence of these molecules, and their precise relationship to the newly identified TNFSF gene BALM (BAFF and APRIL-like molecule), have not yet been elucidated. Here, to resolve the early evolutionary history of this family, we improved outgroup sampling and alignment quality, and applied better fitting substitution models compared to past studies. Our analyses reveal that BALM is a definitive TNFSF13 family member, which split from BAFF in the gnathostome (jawed vertebrate) ancestor. Most importantly, however, we show that both the APRIL and BAFF lineages existed in the ancestors of all extant vertebrates. This implies that APRIL has been lost, or is yet to be found, in cyclostomes (jawless vertebrates). Our results suggest that lineage-specific gene duplication and loss events have caused lymphocyte regulation, despite shared origins, to become secondarily distinct between gnathostomes and cyclostomes. Finally, the structure of lamprey BAFF-like, and its phylogenetic placement as sister to BAFF and BALM, but not the more slowly evolving APRIL, indicates that the primordial lymphocyte regulator was more APRIL-like than BAFF-like.

  11. Genomic and Proteomic Analyses Indicate that Banchine and Campoplegine Polydnaviruses Have Similar, if Not Identical, Viral Ancestors

    PubMed Central

    Béliveau, Catherine; Cohen, Alejandro; Stewart, Don; Periquet, Georges; Djoumad, Abdelmadjid; Kuhn, Lisa; Stoltz, Don; Boyle, Brian; Volkoff, Anne-Nathalie; Herniou, Elisabeth A.; Drezen, Jean-Michel

    2015-01-01

    ABSTRACT Polydnaviruses form a group of unconventional double-stranded DNA (dsDNA) viruses transmitted by endoparasitic wasps during egg laying into caterpillar hosts, where viral gene expression is essential to immature wasp survival. A copy of the viral genome is present in wasp chromosomes, thus ensuring vertical transmission. Polydnaviruses comprise two taxa, Bracovirus and Ichnovirus, shown to have distinct viral ancestors whose genomes were “captured” by ancestral wasps. While evidence indicates that bracoviruses derive from a nudivirus ancestor, the identity of the ichnovirus progenitor remains unknown. In addition, ichnoviruses are found in two ichneumonid wasp subfamilies, Campopleginae and Banchinae, where they constitute morphologically and genomically different virus types. To address the question of whether these two ichnovirus subgroups have distinct ancestors, we used genomic, proteomic, and transcriptomic analyses to characterize particle proteins of the banchine Glypta fumiferanae ichnovirus and the genes encoding them. Several proteins were found to be homologous to those identified earlier for campoplegine ichnoviruses while the corresponding genes were located in clusters of the wasp genome similar to those observed previously in a campoplegine wasp. However, for the first time in a polydnavirus system, these clusters also revealed sequences encoding enzymes presumed to form the replicative machinery of the progenitor virus and observed to be overexpressed in the virogenic tissue. Homology searches pointed to nucleocytoplasmic large DNA viruses as the likely source of these genes. These data, along with an analysis of the chromosomal form of five viral genome segments, provide clear evidence for the relatedness of the banchine and campoplegine ichnovirus ancestors. IMPORTANCE Recent work indicates that the two recognized polydnavirus taxa, Bracovirus and Ichnovirus, are derived from distinct viruses whose genomes integrated into the genomes

  12. Genomic and Proteomic Analyses Indicate that Banchine and Campoplegine Polydnaviruses Have Similar, if Not Identical, Viral Ancestors.

    PubMed

    Béliveau, Catherine; Cohen, Alejandro; Stewart, Don; Periquet, Georges; Djoumad, Abdelmadjid; Kuhn, Lisa; Stoltz, Don; Boyle, Brian; Volkoff, Anne-Nathalie; Herniou, Elisabeth A; Drezen, Jean-Michel; Cusson, Michel

    2015-09-01

    Polydnaviruses form a group of unconventional double-stranded DNA (dsDNA) viruses transmitted by endoparasitic wasps during egg laying into caterpillar hosts, where viral gene expression is essential to immature wasp survival. A copy of the viral genome is present in wasp chromosomes, thus ensuring vertical transmission. Polydnaviruses comprise two taxa, Bracovirus and Ichnovirus, shown to have distinct viral ancestors whose genomes were "captured" by ancestral wasps. While evidence indicates that bracoviruses derive from a nudivirus ancestor, the identity of the ichnovirus progenitor remains unknown. In addition, ichnoviruses are found in two ichneumonid wasp subfamilies, Campopleginae and Banchinae, where they constitute morphologically and genomically different virus types. To address the question of whether these two ichnovirus subgroups have distinct ancestors, we used genomic, proteomic, and transcriptomic analyses to characterize particle proteins of the banchine Glypta fumiferanae ichnovirus and the genes encoding them. Several proteins were found to be homologous to those identified earlier for campoplegine ichnoviruses while the corresponding genes were located in clusters of the wasp genome similar to those observed previously in a campoplegine wasp. However, for the first time in a polydnavirus system, these clusters also revealed sequences encoding enzymes presumed to form the replicative machinery of the progenitor virus and observed to be overexpressed in the virogenic tissue. Homology searches pointed to nucleocytoplasmic large DNA viruses as the likely source of these genes. These data, along with an analysis of the chromosomal form of five viral genome segments, provide clear evidence for the relatedness of the banchine and campoplegine ichnovirus ancestors. Recent work indicates that the two recognized polydnavirus taxa, Bracovirus and Ichnovirus, are derived from distinct viruses whose genomes integrated into the genomes of ancestral wasps

  13. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes.

    PubMed

    Mirkin, Boris G; Fenner, Trevor I; Galperin, Michael Y; Koonin, Eugene V

    2003-01-06

    Comparative analysis of sequenced genomes reveals numerous instances of apparent horizontal gene transfer (HGT), at least in prokaryotes, and indicates that lineage-specific gene loss might have been even more common in evolution. This complicates the notion of a species tree, which needs to be re-interpreted as a prevailing evolutionary trend, rather than the full depiction of evolution, and makes reconstruction of ancestral genomes a non-trivial task. We addressed the problem of constructing parsimonious scenarios for individual sets of orthologous genes given a species tree. The orthologous sets were taken from the database of Clusters of Orthologous Groups of proteins (COGs). We show that the phyletic patterns (patterns of presence-absence in completely sequenced genomes) of almost 90% of the COGs are inconsistent with the hypothetical species tree. Algorithms were developed to reconcile the phyletic patterns with the species tree by postulating gene loss, COG emergence and HGT (the latter two classes of events were collectively treated as gene gains). We prove that each of these algorithms produces a parsimonious evolutionary scenario, which can be represented as mapping of loss and gain events on the species tree. The distribution of the evolutionary events among the tree nodes substantially depends on the underlying assumptions of the reconciliation algorithm, e.g. whether or not independent gene gains (gain after loss after gain) are permitted. Biological considerations suggest that, on average, gene loss might be a more likely event than gene gain. Therefore different gain penalties were used and the resulting series of reconstructed gene sets for the last universal common ancestor (LUCA) of the extant life forms were analysed. The number of genes in the reconstructed LUCA gene sets grows as the gain penalty increases. However, qualitative examination of the LUCA versions reconstructed with different gain penalties indicates that, even with a gain penalty

  14. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes

    PubMed Central

    Mirkin, Boris G; Fenner, Trevor I; Galperin, Michael Y; Koonin, Eugene V

    2003-01-01

    Background Comparative analysis of sequenced genomes reveals numerous instances of apparent horizontal gene transfer (HGT), at least in prokaryotes, and indicates that lineage-specific gene loss might have been even more common in evolution. This complicates the notion of a species tree, which needs to be re-interpreted as a prevailing evolutionary trend, rather than the full depiction of evolution, and makes reconstruction of ancestral genomes a non-trivial task. Results We addressed the problem of constructing parsimonious scenarios for individual sets of orthologous genes given a species tree. The orthologous sets were taken from the database of Clusters of Orthologous Groups of proteins (COGs). We show that the phyletic patterns (patterns of presence-absence in completely sequenced genomes) of almost 90% of the COGs are inconsistent with the hypothetical species tree. Algorithms were developed to reconcile the phyletic patterns with the species tree by postulating gene loss, COG emergence and HGT (the latter two classes of events were collectively treated as gene gains). We prove that each of these algorithms produces a parsimonious evolutionary scenario, which can be represented as mapping of loss and gain events on the species tree. The distribution of the evolutionary events among the tree nodes substantially depends on the underlying assumptions of the reconciliation algorithm, e.g. whether or not independent gene gains (gain after loss after gain) are permitted. Biological considerations suggest that, on average, gene loss might be a more likely event than gene gain. Therefore different gain penalties were used and the resulting series of reconstructed gene sets for the last universal common ancestor (LUCA) of the extant life forms were analysed. The number of genes in the reconstructed LUCA gene sets grows as the gain penalty increases. However, qualitative examination of the LUCA versions reconstructed with different gain penalties indicates that, even

  15. Mammalian Comparative Genomics Reveals Genetic and Epigenetic Features Associated with Genome Reshuffling in Rodentia

    PubMed Central

    Capilla, Laia; Sánchez-Guillén, Rosa Ana; Farré, Marta; Paytuví-Gallart, Andreu; Malinverni, Roberto; Ventura, Jacint; Larkin, Denis M.

    2016-01-01

    Abstract Understanding how mammalian genomes have been reshuffled through structural changes is fundamental to the dynamics of its composition, evolutionary relationships between species and, in the long run, speciation. In this work, we reveal the evolutionary genomic landscape in Rodentia, the most diverse and speciose mammalian order, by whole-genome comparisons of six rodent species and six representative outgroup mammalian species. The reconstruction of the evolutionary breakpoint regions across rodent phylogeny shows an increased rate of genome reshuffling that is approximately two orders of magnitude greater than in other mammalian species here considered. We identified novel lineage and clade-specific breakpoint regions within Rodentia and analyzed their gene content, recombination rates and their relationship with constitutive lamina genomic associated domains, DNase I hypersensitivity sites and chromatin modifications. We detected an accumulation of protein-coding genes in evolutionary breakpoint regions, especially genes implicated in reproduction and pheromone detection and mating. Moreover, we found an association of the evolutionary breakpoint regions with active chromatin state landscapes, most probably related to gene enrichment. Our results have two important implications for understanding the mechanisms that govern and constrain mammalian genome evolution. The first is that the presence of genes related to species-specific phenotypes in evolutionary breakpoint regions reinforces the adaptive value of genome reshuffling. Second, that chromatin conformation, an aspect that has been often overlooked in comparative genomic studies, might play a role in modeling the genomic distribution of evolutionary breakpoints. PMID:28175287

  16. The TLC: a novel auditory nucleus of the mammalian brain.

    PubMed

    Saldaña, Enrique; Viñuela, Antonio; Marshall, Allen F; Fitzpatrick, Douglas C; Aparicio, M-Auxiliadora

    2007-11-28

    We have identified a novel nucleus of the mammalian brain and termed it the tectal longitudinal column (TLC). Basic histologic stains, tract-tracing techniques and three-dimensional reconstructions reveal that the rat TLC is a narrow, elongated structure spanning the midbrain tectum longitudinally. This paired nucleus is located close to the midline, immediately dorsal to the periaqueductal gray matter. It occupies what has traditionally been considered the most medial region of the deep superior colliculus and the most medial region of the inferior colliculus. The TLC differs from the neighboring nuclei of the superior and inferior colliculi and the periaqueductal gray by its distinct connections and cytoarchitecture. Extracellular electrophysiological recordings show that TLC neurons respond to auditory stimuli with physiologic properties that differ from those of neurons in the inferior or superior colliculi. We have identified the TLC in rodents, lagomorphs, carnivores, nonhuman primates, and humans, which indicates that the nucleus is conserved across mammals. The discovery of the TLC reveals an unexpected level of longitudinal organization in the mammalian tectum and raises questions as to the participation of this mesencephalic region in essential, yet completely unexplored, aspects of multisensory and/or sensorimotor integration.

  17. DNA INTERSTRAND CROSSLINK REPAIR IN MAMMALIAN CELLS: STEP BY STEP

    PubMed Central

    Muniandy, Parameswary; Liu, Jia; Majumdar, Alokes; Liu, Su-ting; Seidman, Michael M.

    2009-01-01

    Interstrand DNA crosslinks (ICLs) are formed by natural products of metabolism and by chemotherapeutic reagents. Work in E. coli identified a two cycle repair scheme involving incisions on one strand on either side of the ICL (unhooking) producing a gapped intermediate with the incised oligonucleotide attached to the intact strand. The gap is filled by recombinational repair or lesion bypass synthesis. The remaining monoadduct is then removed by Nucleotide Excision Repair (NER). Despite considerable effort, our understanding of each step in mammalian cells is still quite limited. In part this reflects the variety of crosslinking compounds, each with distinct structural features, used by different investigators. Also, multiple repair pathways are involved, variably operative during the cell cycle. G1 phase repair requires functions from NER, although the mechanism of recognition has not been determined. Repair can be initiated by encounters with the transcriptional apparatus, or a replication fork. In the case of the latter, the reconstruction of a replication fork, stalled or broken by collision with an ICL, adds to the complexity of the repair process. The enzymology of unhooking, the identity of the lesion bypass polymerases required to fill the first repair gap, and the functions involved in the second repair cycle are all subjects of active inquiry. Here we will review current understanding of each step in ICL repair in mammalian cells. PMID:20039786

  18. Phylogenomic reconstruction supports supercontinent origins for Leishmania.

    PubMed

    Harkins, Kelly M; Schwartz, Rachel S; Cartwright, Reed A; Stone, Anne C

    2016-03-01

    Leishmania, a genus of parasites transmitted to human hosts and mammalian/reptilian reservoirs by an insect vector, is the causative agent of the human disease complex leishmaniasis. The evolutionary relationships within the genus Leishmania and its origins are the source of ongoing debate, reflected in conflicting phylogenetic and biogeographic reconstructions. This study employs a recently described bioinformatics method, SISRS, to identify over 200,000 informative sites across the genome from newly sequenced and publicly available Leishmania data. This dataset is used to reconstruct the evolutionary relationships of this genus. Additionally, we constructed a large multi-gene dataset, using it to reconstruct the phylogeny and estimate divergence dates for species. We conclude that the genus Leishmania evolved at least 90-100 million years ago, supporting a modified version of the Multiple Origins hypothesis that we call the Supercontinent hypothesis. According to this scenario, separate Leishmania clades emerged prior to, and during, the breakup of Gondwana. Additionally, we confirm that reptile-infecting Leishmania are derived from mammalian forms and that the species that infect porcupines and sloths form a clade long separated from other species. Finally, we firmly place the guinea-pig infecting species, Leishmaniaenriettii, the globally dispersed Leishmaniasiamensis, and the newly identified Australian species from a kangaroo, as sibling species whose distribution arises from the ancient connection between Australia, Antarctica, and South America. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The society of our "out of Africa" ancestors (I): The migrant warriors that colonized the world.

    PubMed

    Moreno, Eduardo

    2011-03-01

    The "out of Africa" hypothesis proposes that a small group of Homo sapiens left Africa 80,000 years ago, spreading the mitochondrial haplotype L3 throughout the Earth.1-10 Little effort has been made to try to reconstruct the society and culture of the tribe that left Africa to populate the rest of the world.1 Here, I find that hunter-gatherers that belong to mitochondrial haplotypes L0, L1 and L2 do not have a culture of ritualized fights. In contrast to this, almost all L3 derived hunter-gatherers have a more belligerent culture that includes ritualized fights such as wrestling, stick fights or headhunting expeditions. This appears to be independent of their environment because ritualized fights occur in all climates, from the tropics to the arctic. There is also a correlation between mitochondrial haplotypes and warfare propensity or the use of murder and suicide to resolve conflicts. The data implicate that the original human population outside Africa is descended from only two closely related sub-branches that practiced ritual fighting and had a higher propensity towards warfare and the use of murder for conflict resolution. This warfare culture may have given the out of Africa migrants a competitive advantage to colonize the world. But it could also have crucially influenced the subsequent history of The Earth. In the future, it would be interesting to see how we could further reconstruct the society and culture of the "Out of Africa Tribe."

  20. Autophagosome formation in mammalian cells.

    PubMed

    Burman, Chloe; Ktistakis, Nicholas T

    2010-12-01

    Autophagy is a fundamental intracellular trafficking pathway conserved from yeast to mammals. It is generally thought to play a pro-survival role, and it can be up regulated in response to both external and intracellular factors, including amino acid starvation, growth factor withdrawal, low cellular energy levels, endoplasmic reticulum (ER) stress, hypoxia, oxidative stress, pathogen infection, and organelle damage. During autophagy initiation a portion of the cytosol is surrounded by a flat membrane sheet known as the isolation membrane or phagophore. The isolation membrane then elongates and seals itself to form an autophagosome. The autophagosome fuses with normal endocytic traffic to mature into a late autophagosome, before fusing with lysosomes. The molecular machinery that enables formation of an autophagosome in response to the various autophagy stimuli is almost completely identified in yeast and-thanks to the observed conservation-is also being rapidly elucidated in higher eukaryotes including mammals. What are less clear and currently under intense investigation are the mechanism by which these various autophagy components co-ordinate in order to generate autophagosomes. In this review, we will discuss briefly the fundamental importance of autophagy in various pathophysiological states and we will then review in detail the various players in early autophagy. Our main thesis will be that a conserved group of heteromeric protein complexes and a relatively simple signalling lipid are responsible for the formation of autophagosomes in mammalian cells.

  1. Mitochondrial dysfunction in mammalian ageing.

    PubMed

    Terzioglu, Mügen; Larsson, Nils-Göran

    2007-01-01

    Ageing is likely a multifactorial process caused by accumulated damage to a variety of cellular components. Increasing age in mammals correlates with increased levels of mitochondrial DNA (mtDNA) mutations and deteriorating respiratory chain function. Mosaic respiratory chain deficiency in a subset of cells in various tissues, such as heart, skeletal muscle, colonic crypts and neurons, is typically found in aged humans. Experimental evidence in the mouse has linked increased levels of somatic mtDNA mutations to a variety of ageing phenotypes, such as osteoporosis, hair loss, greying of the hair, weight reduction and decreased fertility. It has been known for a long time that respiratory chain-deficient cells are more prone to undergo apoptosis and increased cell loss is therefore likely of importance in age-associated mitochondrial dysfunction. There is a tendency to automatically link mitochondrial dysfunction to increased production of reactive oxygen species (ROS). However, the experimental support for this concept is rather weak. Mouse models with respiratory chain deficiency induced by tissue-specific mtDNA depletion or by massive increase of point mutations in mtDNA have very minor or no increase of oxidative stress. Future studies are needed to address the relative importance of mitochondrial dysfunction and ROS in mammalian ageing.

  2. Structure of the mammalian kinetochore.

    PubMed

    Ris, H; Witt, P L

    1981-01-01

    The structure of the mammalian trilaminar kinetochore was investigated using stereo electron microscopy of chromosomes in hypotonic solutions which unraveled the chromosome but maintained microtubules. Mouse and Chinese hamster ovary cells were arrested in Colcemid and allowed to reform microtubules after Colcemid was removed. Recovered cells were then swelled, lysed or spread in hypotonic solutions which contained D2O to preserve microtubules. The chromosomes were observed in thin and thick sections and as whole mounts using high voltage electron microscopy. Bundles of microtubules were seen directly attached to chromatin, indicating that the kinetochore outer layer represents a differential arrangement of chromatin, continuous with the body of the chromosome. In cells fixed wihout pretreatment, the outer layer could be seen to be composed of hairpin loops of chromatin stacked together to form a solid layer. The hypotonically-induced unraveling of the outer layer was found to be reversible, and the typical 300 nm thick disk reformed when cells were returned to isotonic solutions. Short microtubules, newly nucleated after Colcemid removal, were found not to be attached to the kinetochore out layer, but were situated in the fibrous corona on the external surface of the outer layer. This was verified by observation of thick sections in stereo which made it possible to identify microtubules ends within the section. Thus, kinetochore microtubules are nucleated within the fibrous corona, and subsequently become attached to the outer layer.

  3. Nuclear Organization of Mammalian Genomes

    PubMed Central

    Sadoni, Nicolas; Langer, Sabine; Fauth, Christine; Bernardi, Giorgio; Cremer, Thomas; Turner, Bryan M.; Zink, Daniele

    1999-01-01

    We investigated the nuclear higher order compartmentalization of chromatin according to its replication timing (Ferreira et al. 1997) and the relations of this compartmentalization to chromosome structure and the spatial organization of transcription. Our aim was to provide a comprehensive and integrated view on the relations between chromosome structure and functional nuclear architecture. Using different mammalian cell types, we show that distinct higher order compartments whose DNA displays a specific replication timing are stably maintained during all interphase stages. The organizational principle is clonally inherited. We directly demonstrate the presence of polar chromosome territories that align to build up higher order compartments, as previously suggested (Ferreira et al. 1997). Polar chromosome territories display a specific orientation of early and late replicating subregions that correspond to R- or G/C-bands of mitotic chromosomes. Higher order compartments containing G/C-bands replicating during the second half of the S phase display no transcriptional activity detectable by BrUTP pulse labeling and show no evidence of transcriptional competence. Transcriptionally competent and active chromatin is confined to a coherent compartment within the nuclear interior that comprises early replicating R-band sequences. As a whole, the data provide an integrated view on chromosome structure, nuclear higher order compartmentalization, and their relation to the spatial organization of functional nuclear processes. PMID:10491386

  4. Technology of mammalian cell encapsulation.

    PubMed

    Uludag, H; De Vos, P; Tresco, P A

    2000-08-20

    Entrapment of mammalian cells in physical membranes has been practiced since the early 1950s when it was originally introduced as a basic research tool. The method has since been developed based on the promise of its therapeutic usefulness in tissue transplantation. Encapsulation physically isolates a cell mass from an outside environment and aims to maintain normal cellular physiology within a desired permeability barrier. Numerous encapsulation techniques have been developed over the years. These techniques are generally classified as microencapsulation (involving small spherical vehicles and conformally coated tissues) and macroencapsulation (involving larger flat-sheet and hollow-fiber membranes). This review is intended to summarize techniques of cell encapsulation as well as methods for evaluating the performance of encapsulated cells. The techniques reviewed include microencapsulation with polyelectrolyte complexation emphasizing alginate-polylysine capsules, thermoreversible gelation with agarose as a prototype system, interfacial precipitation and interfacial polymerization, as well as the technology of flat sheet and hollow fiber-based macroencapsulation. Four aspects of encapsulated cells that are critical for the success of the technology, namely the capsule permeability, mechanical properties, immune protection and biocompatibility, have been singled out and methods to evaluate these properties were summarized. Finally, speculations regarding future directions of cell encapsulation research and device development are included from the authors' perspective.

  5. Mammalian cell cultivation in space

    NASA Astrophysics Data System (ADS)

    Gmünder, Felix K.; Suter, Robert N.; Kiess, M.; Urfer, R.; Nordau, C.-G.; Cogoli, A.

    Equipment used in space for the cultivation of mammalian cells does not meet the usual standard of earth bound bioreactors. Thus, the development of a space worthy bioreactor is mandatory for two reasons: First, to investigate the effect on single cells of the space environment in general and microgravity conditions in particular, and second, to provide researchers on long term missions and the Space Station with cell material. However, expertise for this venture is not at hand. A small and simple device for animal cell culture experiments aboard Spacelab (Dynamic Cell Culture System; DCCS) was developed. It provides 2 cell culture chambers, one is operated as a batch system, the other one as a perfusion system. The cell chambers have a volume of 200 μl. Medium exchange is achieved with an automatic osmotic pump. The system is neither mechanically stirred nor equipped with sensors. Oxygen for cell growth is provided by a gas chamber that is adjacent to the cell chambers. The oxygen gradient produced by the growing cells serves to maintain the oxygen influx by diffusion. Hamster kidney cells growing on microcarriers were used to test the biological performance of the DCCS. On ground tests suggest that this system is feasible.

  6. [Chemical defense of plant to mammalian herbivore].

    PubMed

    Li, J; Liu, J

    2001-06-01

    The research progress in the chemical defense of plant to mammalian herbivore was reviewed in this paper. The plant secondary compounds mainly are phenolics, terpenoids and nitrogen-containing compounds. The defense efficiency of plant to mammalian herbivores is different with the types and content of secondary compounds in plant. Secondary compounds inhibited the foraging of mammalian herbivores by affecting the intake, digestion, metabolites and reproduction of animal. It is the main trends to study the mode of coevolution of plant and animals mediated by plant secondary compounds.

  7. Ghrelin Receptors in Non-Mammalian Vertebrates

    PubMed Central

    Kaiya, Hiroyuki; Kangawa, Kenji; Miyazato, Mikiya

    2012-01-01

    The growth hormone secretagogue-receptor (GHS-R) was discovered in humans and pigs in 1996. The endogenous ligand, ghrelin, was discovered 3 years later, in 1999, and our understanding of the physiological significance of the ghrelin system in vertebrates has grown steadily since then. Although the ghrelin system in non-mammalian vertebrates is a subject of great interest, protein sequence data for the receptor in non-mammalian vertebrates has been limited until recently, and related biological information has not been well organized. In this review, we summarize current information related to the ghrelin receptor in non-mammalian vertebrates. PMID:23882259

  8. High resolution thermal denaturation of mammalian DNAs.

    PubMed Central

    Guttmann, T; Vítek, A; Pivec, L

    1977-01-01

    High resolution melting profiles of different mammalian DNAs are presented. Melting curves of various mammalian DNAs were compared with respect to the degree of asymmetry, first moment, transition breath and Tmi of individual subtransitions. Quantitative comparison of the shape of all melting curves was made. Correlation between phylogenetical relations among mammals and shape of the melting profiles of their DNAs was demonstrated. The difference between multi-component heterogeneity of mammalian DNAs found by optical melting analysis and sedimentation in CsCl-netropsin density gradient is also discussed. PMID:840642

  9. Evolution, development, and initial function of the mammalian neocortex: response of the germinal zones to endothermy.

    PubMed

    Smart, I H M

    2008-01-01

    In the mouse the release of neocortical neurons from the periventricular germinal layers of the forebrain commences towards the ventral margin of the lateral pallium at the level of the interventricular foramen and is propagated from there across the lateral wall of the hemisphere. In the adult cortex the origin of the gradient corresponded to the ventral portion of the somatotopic map of the body, that is, to the area representating structures derived from the embryonic branchial arches, namely, the peri-oral region and laryngo-pharyngeal masticatory apparatus. Branchial arch nerves also innervate the fore- and mid-gut and all the related exocrine and endocrine glands. This suggests that the mammalian neocortex evolved from a visceral integration area in a positionally equivalent area in the pallium of a reptilian ancestor which expanded in relation to extensive changes taking place in the visceral and branchial systems of the body during the transition from reptilian ectothermy to mammalian endothermy. The practical problem facing early mammals was to acquire and process the extra energy required to sustain a continuously high metabolic rate. Improvements to the food processing capabilities of the visceral and branchial systems and the expansion of their neural control were important components in the conglomerate of changes required to sustain the increased energy demands of endothermic tissues. Endothermy also bestowed the ability to sustain greater numbers of metabolically expensive neurons and this, in turn, required an appropriate response from the cell production mechanisms in the periventricular germinal layers.

  10. Adaptive algebraic reconstruction technique

    SciTech Connect

    Lu Wenkai; Yin Fangfang

    2004-12-01

    Algebraic reconstruction techniques (ART) are iterative procedures for reconstructing objects from their projections. It is proven that ART can be computationally efficient by carefully arranging the order in which the collected data are accessed during the reconstruction procedure and adaptively adjusting the relaxation parameters. In this paper, an adaptive algebraic reconstruction technique (AART), which adopts the same projection access scheme in multilevel scheme algebraic reconstruction technique (MLS-ART), is proposed. By introducing adaptive adjustment of the relaxation parameters during the reconstruction procedure, one-iteration AART can produce reconstructions with better quality, in comparison with one-iteration MLS-ART. Furthermore, AART outperforms MLS-ART with improved computational efficiency.

  11. Enzymology of Mammalian DNA Methyltransferases.

    PubMed

    Jurkowska, Renata Z; Jeltsch, Albert

    2016-01-01

    DNA methylation is currently one of the hottest topics in basic and biomedical research. Despite tremendous progress in understanding the structures and biochemical properties of the mammalian DNA nucleotide methyltransferases (DNMTs), principles of their regulation in cells have only begun to be uncovered. In mammals, DNA methylation is introduced by the DNMT1, DNMT3A, and DNMT3B enzymes, which are all large multi-domain proteins. These enzymes contain a catalytic C-terminal domain with a characteristic cytosine-C5 methyltransferase fold and an N-terminal part with different domains that interacts with other proteins and chromatin and is involved in targeting and regulation of the DNMTs. The subnuclear localization of the DNMT enzymes plays an important role in their biological function: DNMT1 is localized to replicating DNA via interaction with PCNA and UHRF1. DNMT3 enzymes bind to heterochromatin via protein multimerization and are targeted to chromatin by their ADD and PWWP domains. Recently, a novel regulatory mechanism has been discovered in DNMTs, as latest structural and functional data demonstrated that the catalytic activities of all three enzymes are under tight allosteric control of their N-terminal domains having autoinhibitory functions. This mechanism provides numerous possibilities for the precise regulation of the methyltransferases via controlling the binding and release of autoinhibitory domains by protein factors, noncoding RNAs, or by posttranslational modifications of the DNMTs. In this chapter, we summarize key enzymatic properties of DNMTs, including their specificity and processivity, and afterward we focus on the regulation of their activity and targeting via allosteric processes, protein interactors, and posttranslational modifications.

  12. Chemosignals, Hormones and Mammalian Reproduction

    PubMed Central

    Petrulis, Aras

    2013-01-01

    Many mammalian species use chemosignals to coordinate reproduction by altering the physiology and behavior of both sexes. Chemosignals prime reproductive physiology so that individuals become sexually mature and active at times when mating is most probable and suppress it when it is not. Once in reproductive condition, odors produced and deposited by both males and females are used to find and select individuals for mating. The production, dissemination and appropriate responses to these cues are modulated heavily by organizational and activational effects of gonadal sex steroids and thereby intrinsically link chemical communication to the broader reproductive context. Many compounds have been identified as “pheromones” but very few have met the expectations of that term: a unitary, species-typical substance that is both necessary and sufficient for an experience-independent behavioral or physiological response. In contrast, most responses to chemosignals are dependent or heavily modulated by experience, either in adulthood or during development. Mechanistically, chemosignals are perceived by both main and accessory (vomeronasal) olfactory systems with the importance of each system tied strongly to the nature of the stimulus rather than to the response. In the central nervous system, the vast majority of responses to chemosignals are mediated by cortical and medial amygdala connections with hypothalamic and other forebrain structures. Despite the importance of chemosignals in mammals, many details of chemical communication differ even among closely related species and defy clear categorization. Although generating much research and public interest, strong evidence for the existence of a robust chemical communication among humans is lacking. PMID:23545474

  13. Chemosignals, hormones and mammalian reproduction.

    PubMed

    Petrulis, Aras

    2013-05-01

    Many mammalian species use chemosignals to coordinate reproduction by altering the physiology and behavior of both sexes. Chemosignals prime reproductive physiology so that individuals become sexually mature and active at times when mating is most probable and suppress it when it is not. Once in reproductive condition, odors produced and deposited by both males and females are used to find and select individuals for mating. The production, dissemination and appropriate responses to these cues are modulated heavily by organizational and activational effects of gonadal sex steroids and thereby intrinsically link chemical communication to the broader reproductive context. Many compounds have been identified as "pheromones" but very few have met the expectations of that term: a unitary, species-typical substance that is both necessary and sufficient for an experience-independent behavioral or physiological response. In contrast, most responses to chemosignals are dependent or heavily modulated by experience, either in adulthood or during development. Mechanistically, chemosignals are perceived by both main and accessory (vomeronasal) olfactory systems with the importance of each system tied strongly to the nature of the stimulus rather than to the response. In the central nervous system, the vast majority of responses to chemosignals are mediated by cortical and medial amygdala connections with hypothalamic and other forebrain structures. Despite the importance of chemosignals in mammals, many details of chemical communication differ even among closely related species and defy clear categorization. Although generating much research and public interest, strong evidence for the existence of a robust chemical communication among humans is lacking. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. The society of our “out of Africa” ancestors (I)

    PubMed Central

    2011-01-01

    The “out of Africa” hypothesis proposes that a small group of Homo sapiens left Africa 80,000 years ago, spreading the mitochondrial haplotype L3 throughout the Earth.1–10 Little effort has been made to try to reconstruct the society and culture of the tribe that left Africa to populate the rest of the world.1 Here, I find that hunter-gatherers that belong to mitochondrial haplotypes L0, L1 and L2 do not have a culture of ritualized fights. In contrast to this, almost all L3 derived hunter-gatherers have a more belligerent culture that includes ritualized fights such as wrestling, stick fights or headhunting expeditions. This appears to be independent of their environment because ritualized fights occur in all climates, from the tropics to the arctic. There is also a correlation between mitochondrial haplotypes and warfare propensity or the use of murder and suicide to resolve conflicts. The data implicate that the original human population outside Africa is descended from only two closely related sub-branches that practiced ritual fighting and had a higher propensity towards warfare and the use of murder for conflict resolution. This warfare culture may have given the out of Africa migrants a competitive advantage to colonize the world. But it could also have crucially influenced the subsequent history of The Earth. In the future, it would be interesting to see how we could further reconstruct the society and culture of the “Out of Africa Tribe.” PMID:21655430

  15. Bats and Rodents Shape Mammalian Retroviral Phylogeny.

    PubMed

    Cui, Jie; Tachedjian, Gilda; Wang, Lin-Fa

    2015-11-09

    Endogenous retroviruses (ERVs) represent past retroviral infections and accordingly can provide an ideal framework to infer virus-host interaction over their evolutionary history. In this study, we target high quality Pol sequences from 7,994 Class I and 8,119 Class II ERVs from 69 mammalian genomes and surprisingly find that retroviruses harbored by bats and rodents combined occupy the major phylogenetic diversity of both classes. By analyzing transmission patterns of 30 well-defined ERV clades, we corroborate the previously published observation that rodents are more competent as originators of mammalian retroviruses and reveal that bats are more capable of receiving retroviruses from non-bat mammalian origins. The powerful retroviral hosting ability of bats is further supported by a detailed analysis revealing that the novel bat gammaretrovirus, Rhinolophus ferrumequinum retrovirus, likely originated from tree shrews. Taken together, this study advances our understanding of host-shaped mammalian retroviral evolution in general.

  16. Mammalian synthetic biology: emerging medical applications.

    PubMed

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-06

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes.

  17. Mammalian Response to Cenozoic Climatic Change

    NASA Astrophysics Data System (ADS)

    Blois, Jessica L.; Hadly, Elizabeth A.

    2009-05-01

    Multiple episodes of rapid and gradual climatic changes influenced the evolution and ecology of mammalian species and communities throughout the Cenozoic. Climatic change influenced the abundance, genetic diversity, morphology, and geographic ranges of individual species. Within communities these responses interacted to catalyze immigration, speciation, and extinction. Combined they affected long-term patterns of community stability, functional turnover, biotic turnover, and diversity. Although the relative influence of climate on particular evolutionary processes is oft debated, an understanding of processes at the root of biotic change yields important insights into the complexity of mammalian response. Ultimately, all responses trace to events experienced by populations. However, many such processes emerge as patterns above the species level, where shared life history traits and evolutionary history allow us to generalize about mammalian response to climatic change. These generalizations provide the greatest power to understand and predict mammalian responses to current and future global change.

  18. Mammalian synthetic biology: emerging medical applications

    PubMed Central

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M.; Krams, Rob

    2015-01-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  19. Bats and Rodents Shape Mammalian Retroviral Phylogeny

    PubMed Central

    Cui, Jie; Tachedjian, Gilda; Wang, Lin-Fa

    2015-01-01

    Endogenous retroviruses (ERVs) represent past retroviral infections and accordingly can provide an ideal framework to infer virus-host interaction over their evolutionary history. In this study, we target high quality Pol sequences from 7,994 Class I and 8,119 Class II ERVs from 69 mammalian genomes and surprisingly find that retroviruses harbored by bats and rodents combined occupy the major phylogenetic diversity of both classes. By analyzing transmission patterns of 30 well-defined ERV clades, we corroborate the previously published observation that rodents are more competent as originators of mammalian retroviruses and reveal that bats are more capable of receiving retroviruses from non-bat mammalian origins. The powerful retroviral hosting ability of bats is further supported by a detailed analysis revealing that the novel bat gammaretrovirus, Rhinolophus ferrumequinum retrovirus, likely originated from tree shrews. Taken together, this study advances our understanding of host-shaped mammalian retroviral evolution in general. PMID:26548564

  20. Circadian Plasticity of Mammalian Inhibitory Interneurons

    PubMed Central

    2017-01-01

    Inhibitory interneurons participate in all neuronal circuits in the mammalian brain, including the circadian clock system, and are indispensable for their effective function. Although the clock neurons have different molecular and electrical properties, their main function is the generation of circadian oscillations. Here we review the circadian plasticity of GABAergic interneurons in several areas of the mammalian brain, suprachiasmatic nucleus, neocortex, hippocampus, olfactory bulb, cerebellum, striatum, and in the retina. PMID:28367335

  1. Pathways of mammalian replication fork restart.

    PubMed

    Petermann, Eva; Helleday, Thomas

    2010-10-01

    Single-molecule analyses of DNA replication have greatly advanced our understanding of mammalian replication restart. Several proteins that are not part of the core replication machinery promote the efficient restart of replication forks that have been stalled by replication inhibitors, suggesting that bona fide fork restart pathways exist in mammalian cells. Different models of replication fork restart can be envisaged, based on the involvement of DNA helicases, nucleases, homologous recombination factors and the importance of DNA double-strand break formation.

  2. Simplified Bioreactor For Growing Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F.

    1995-01-01

    Improved bioreactor for growing mammalian cell cultures developed. Designed to support growth of dense volumes of mammalian cells by providing ample, well-distributed flows of nutrient solution with minimal turbulence. Cells relatively delicate and, unlike bacteria, cannot withstand shear forces present in turbulent flows. Bioreactor vessel readily made in larger sizes to accommodate greater cell production quantities. Molding equipment presently used makes cylinders up to 30 centimeters long. Alternative sintered plastic techniques used to vary pore size and quantity, as necessary.

  3. Hacking the genetic code of mammalian cells.

    PubMed

    Schwarzer, Dirk

    2009-07-06

    A genetic shuttle: The highlighted article, which was recently published by Schultz, Geierstanger and co-workers, describes a straightforward scheme for enlarging the genetic code of mammalian cells. An orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for a new amino acid can be evolved in E. coli and subsequently transferred into mammalian cells. The feasibility of this approach was demonstrated by adding a photocaged lysine derivative to the genetic repertoire of a human cell line.

  4. The evolution of mammalian body temperature: the Cenozoic supraendothermic pulses.

    PubMed

    Lovegrove, Barry G

    2012-05-01

    In this study, I investigated the source(s) of variation in the body temperatures of mammals. I also attempted to reconstruct ancestral normothermic rest-phase body temperature states using a maximum parsimony approach. Body temperature at the familial level is not correlated with body mass. For small mammals, except the Macroscelidae, previously identified correlates, such as climate adaptation and zoogeography explained some, but not all, T(b) apomorphies. At the species level in large cursorial mammals, there was a significant correlation between body temperature and the ratio between metatarsal length and femur length, the proxy for stride length and cursoriality. With the exception of two primate families, all supraendothermic (T(b) > 37.9°C) mammals are cursorial, including Artiodactyla, Lagomorpha, some large Rodentia, and Carnivora. The ruminant supraendothermic cursorial pulse is putatively associated with global cooling and vegetation changes following the Paleocene-Eocene Thermal Maximum. Reconstructed ancestral body temperatures were highly unrealistic deep within the mammalian phylogeny because of the lack of fossil T(b) data that effectively creates ghost lineages. However, it is anticipated that the method of estimating body temperature from the abundance of ¹³C-¹⁸O bonds in the carbonate component of tooth bioapatite in both extant and extinct animals may be a very promising tool for estimating the T(b) of extinct mammals. Fossil T(b) data are essential for discerning derived T(b) reversals from ancestral states, and verifying the dates of supraendothermic pulses.

  5. An Evolutionary Network of Genes Present in the Eukaryote Common Ancestor Polls Genomes on Eukaryotic and Mitochondrial Origin

    PubMed Central

    Thiergart, Thorsten; Landan, Giddy; Schenk, Marc; Dagan, Tal; Martin, William F.

    2012-01-01

    To test the predictions of competing and mutually exclusive hypotheses for the origin of eukaryotes, we identified from a sample of 27 sequenced eukaryotic and 994 sequenced prokaryotic genomes 571 genes that were present in the eukaryote common ancestor and that have homologues among eubacterial and archaebacterial genomes. Maximum-likelihood trees identified the prokaryotic genomes that most frequently contained genes branching as the sister to the eukaryotic nuclear homologues. Among the archaebacteria, euryarchaeote genomes most frequently harbored the sister to the eukaryotic nuclear gene, whereas among eubacteria, the α-proteobacteria were most frequently represented within the sister group. Only 3 genes out of 571 gave a 3-domain tree. Homologues from α-proteobacterial genomes that branched as the sister to nuclear genes were found more frequently in genomes of facultatively anaerobic members of the rhiozobiales and rhodospirilliales than in obligate intracellular ricketttsial parasites. Following α-proteobacteria, the most frequent eubacterial sister lineages were γ-proteobacteria, δ-proteobacteria, and firmicutes, which were also the prokaryote genomes least frequently found as monophyletic groups in our trees. Although all 22 higher prokaryotic taxa sampled (crenarchaeotes, γ-proteobacteria, spirochaetes, chlamydias, etc.) harbor genes that branch as the sister to homologues present in the eukaryotic common ancestor, that is not evidence of 22 different prokaryotic cells participating at eukaryote origins because prokaryotic “lineages” have laterally acquired genes for more than 1.5 billion years since eukaryote origins. The data underscore the archaebacterial (host) nature of the eukaryotic informational genes and the eubacterial (mitochondrial) nature of eukaryotic energy metabolism. The network linking genes of the eukaryote ancestor to contemporary homologues distributed across prokaryotic genomes elucidates eukaryote gene origins in a

  6. Maize Domestication and Anti-Herbivore Defences: Leaf-Specific Dynamics during Early Ontogeny of Maize and Its Wild Ancestors

    PubMed Central

    Maag, Daniel; Erb, Matthias; Bernal, Julio S.; Wolfender, Jean-Luc; Turlings, Ted C. J.; Glauser, Gaétan

    2015-01-01

    As a consequence of artificial selection for specific traits, crop plants underwent considerable genotypic and phenotypic changes during the process of domestication. These changes may have led to reduced resistance in the cultivated plant due to shifts in resource allocation from defensive traits to increased growth rates and yield. Modern maize (Zea mays ssp. mays) was domesticated from its ancestor Balsas teosinte (Z. mays ssp. parviglumis) approximately 9000 years ago. Although maize displays a high genetic overlap with its direct ancestor and other annual teosintes, several studies show that maize and its ancestors differ in their resistance phenotypes with teosintes being less susceptible to herbivore damage. However, the underlying mechanisms are poorly understood. Here we addressed the question to what extent maize domestication has affected two crucial chemical and one physical defence traits and whether differences in their expression may explain the differences in herbivore resistance levels. The ontogenetic trajectories of 1,4-benzoxazin-3-ones, maysin and leaf toughness were monitored for different leaf types across several maize cultivars and teosinte accessions during early vegetative growth stages. We found significant quantitative and qualitative differences in 1,4-benzoxazin-3-one accumulation in an initial pairwise comparison, but we did not find consistent differences between wild and cultivated genotypes during a more thorough examination employing several cultivars/accessions. Yet, 1,4-benzoxazin-3-one levels tended to decline more rapidly with plant age in the modern maize cultivars. Foliar maysin levels and leaf toughness increased with plant age in a leaf-specific manner, but were also unaffected by domestication. Based on our findings we suggest that defence traits other than the ones that were investigated are responsible for the observed differences in herbivore resistance between teosinte and maize. Furthermore, our results indicate

  7. Maize Domestication and Anti-Herbivore Defences: Leaf-Specific Dynamics during Early Ontogeny of Maize and Its Wild Ancestors.

    PubMed

    Maag, Daniel; Erb, Matthias; Bernal, Julio S; Wolfender, Jean-Luc; Turlings, Ted C J; Glauser, Gaétan

    2015-01-01

    As a consequence of artificial selection for specific traits, crop plants underwent considerable genotypic and phenotypic changes during the process of domestication. These changes may have led to reduced resistance in the cultivated plant due to shifts in resource allocation from defensive traits to increased growth rates and yield. Modern maize (Zea mays ssp. mays) was domesticated from its ancestor Balsas teosinte (Z. mays ssp. parviglumis) approximately 9000 years ago. Although maize displays a high genetic overlap with its direct ancestor and other annual teosintes, several studies show that maize and its ancestors differ in their resistance phenotypes with teosintes being less susceptible to herbivore damage. However, the underlying mechanisms are poorly understood. Here we addressed the question to what extent maize domestication has affected two crucial chemical and one physical defence traits and whether differences in their expression may explain the differences in herbivore resistance levels. The ontogenetic trajectories of 1,4-benzoxazin-3-ones, maysin and leaf toughness were monitored for different leaf types across several maize cultivars and teosinte accessions during early vegetative growth stages. We found significant quantitative and qualitative differences in 1,4-benzoxazin-3-one accumulation in an initial pairwise comparison, but we did not find consistent differences between wild and cultivated genotypes during a more thorough examination employing several cultivars/accessions. Yet, 1,4-benzoxazin-3-one levels tended to decline more rapidly with plant age in the modern maize cultivars. Foliar maysin levels and leaf toughness increased with plant age in a leaf-specific manner, but were also unaffected by domestication. Based on our findings we suggest that defence traits other than the ones that were investigated are responsible for the observed differences in herbivore resistance between teosinte and maize. Furthermore, our results indicate

  8. Hermit to king, or hermit to all: multiple transitions to crab-like forms from hermit crab ancestors.

    PubMed

    Tsang, Ling Ming; Chan, Tin-Yam; Ahyong, Shane T; Chu, Ka Hou

    2011-10-01

    The Anomura presents the greatest degree of morphological disparity in the decapod Crustacea, with body forms ranging from the symmetrical and asymmetrical hermit crabs to squat lobsters and king crabs. The phylogeny of the anomurans has been fraught with controversy. Recent debate has focused primarily on the phenomenon of carcinization, the evolution of crab-like form from a non-crab-like ancestor, focused chiefly on derivation of king crabs from asymmetrical hermit crabs--the "hermit to king" hypothesis. We show by phylogenetic analysis of five nuclear protein-coding gene sequences that hermit crabs have a single origin, but surprisingly, that almost all other major clades and body forms within the Anomura, are derived from within the hermit crabs. The crab-like form and squat lobster form have each evolved at least twice from separate symmetrical hermit crab ancestors. In each case, a carcinization trend can be posited via a transition series from the initial symmetrical long-tailed hermit crab form, through the intermediate squat lobster or asymmetrical hermit crab form, to the final crab-like form. Adaptation to dextral shell habitation evolved at least twice, once in an exclusively deep-water clade and once in the common ancestor of all other asymmetrical hermit crabs (from which king crabs are derived). These remarkable cases of parallelism suggest considerable phenotypic flexibility within the hermit crab ground plan, with a general tendency toward carcinization. Rather than having a separate origin from other major clades, hermit crabs have given rise to most other major anomuran body types.

  9. Study of polymorphisms in the promoter region of ovine β-lactoglobulin gene and phylogenetic analysis among the Valle del Belice breed and other sheep breeds considered as ancestors.

    PubMed

    Mastrangelo, S; Sardina, M T; Riggio, V; Portolano, B

    2012-01-01

    The aim of this work was to sequence the promoter region of β-lactoglobulin (BLG) gene in four sheep breeds, in order to identify polymorphisms, infer and analyze haplotypes, and phylogenetic relationship among the Valle del Belice breed and the other three breeds considered as ancestors. Sequencing analysis and alignment of the obtained sequences showed the presence of 36 single nucleotide polymorphisms (SNPs) and one deletion. A total of 22 haplotypes found in "best" reconstruction were inferred considering the 37 polymorphic sites identified. Haplotypes were used for the reconstruction of a phylogenetic tree using the Neighbor-Joining algorithm. The number of polymorphisms identified showed high variability within breeds. Analysis of genetic diversity indexes showed that the Sarda breed presented the lowest nucleotide diversity, whereas the Comisana breed presented the highest one. Comparing the nucleotide diversity among breeds, the highest value was obtained between Valle del Belice and Pinzirita breeds, whereas the lowest one was between Valle del Belice and Sarda breeds. Considering that polymorphisms in the promoter region of BLG gene could have a functional role associated with milk composition, the lowest value of nucleotide diversity between Valle del Belice and Sarda breeds may be related to a higher similarity of milk composition of these two breeds compared to the others. Further analyses will be conducted in order to evaluate the possible correlation between the genetic diversity indexes and the BLG content in milk of our breeds.

  10. Neuromagnetic source reconstruction

    SciTech Connect

    Lewis, P.S.; Mosher, J.C.; Leahy, R.M.

    1994-12-31

    In neuromagnetic source reconstruction, a functional map of neural activity is constructed from noninvasive magnetoencephalographic (MEG) measurements. The overall reconstruction problem is under-determined, so some form of source modeling must be applied. We review the two main classes of reconstruction techniques-parametric current dipole models and nonparametric distributed source reconstructions. Current dipole reconstructions use a physically plausible source model, but are limited to cases in which the neural currents are expected to be highly sparse and localized. Distributed source reconstructions can be applied to a wider variety of cases, but must incorporate an implicit source, model in order to arrive at a single reconstruction. We examine distributed source reconstruction in a Bayesian framework to highlight the implicit nonphysical Gaussian assumptions of minimum norm based reconstruction algorithms. We conclude with a brief discussion of alternative non-Gaussian approachs.

  11. Masticatory loading, function, and plasticity: a microanatomical analysis of mammalian circumorbital soft-tissue structures.

    PubMed

    Jasarević, Eldin; Ning, Jie; Daniel, Ashley N; Menegaz, Rachel A; Johnson, Jeffrey J; Stack, M Sharon; Ravosa, Matthew J

    2010-04-01

    In contrast to experimental evidence regarding the postorbital bar, postorbital septum, and browridge, there is exceedingly little evidence regarding the load-bearing nature of soft-tissue structures of the mammalian circumorbital region. This hinders our understanding of pronounced transformations during primate origins, in which euprimates evolved a postorbital bar from an ancestor with the primitive mammalian condition where only soft tissues spanned the lateral orbital margin between frontal bone and zygomatic arch. To address this significant gap, we investigated the postorbital microanatomy of rabbits subjected to long-term variation in diet-induced masticatory stresses. Rabbits exhibit a masticatory complex and feeding behaviors similar to primates, yet retain a more primitive mammalian circumorbital region. Three cohorts were obtained as weanlings and raised on different diets until adult. Following euthanasia, postorbital soft tissues were dissected away, fixed, and decalcified. These soft tissues were divided into inferior, intermediate, and superior units and then dehydrated, embedded, and sectioned. H&E staining was used to characterize overall architecture. Collagen orientation and complexity were evaluated via picrosirius-red staining. Safranin-O identified proteoglycan content with additional immunostaining performed to assess Type-II collagen expression. Surprisingly, the ligament along the lateral orbital wall was composed of elastic fibrocartilage. A more degraded organization of collagen fibers in this postorbital fibrocartilage is correlated with increased masticatory forces due to a more fracture-resistant diet. Furthermore, the lack of marked changes in the extracellular composition of the lateral orbital wall related to tissue viscoelasticity suggests it is unlikely that long-term exposure to elevated masticatory stresses underlies the development of a bony postorbital bar.

  12. The Origin of GPCRs: Identification of Mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in Fungi

    PubMed Central

    Fredriksson, Robert; Schiöth, Helgi B.

    2012-01-01

    G protein-coupled receptors (GPCRs) in humans are classified into the five main families named Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin according to the GRAFS classification. Previous results show that these mammalian GRAFS families are well represented in the Metazoan lineages, but they have not been shown to be present in Fungi. Here, we systematically mined 79 fungal genomes and provide the first evidence that four of the five main mammalian families of GPCRs, namely Rhodopsin, Adhesion, Glutamate and Frizzled, are present in Fungi and found 142 novel sequences between them. Significantly, we provide strong evidence that the Rhodopsin family emerged from the cAMP receptor family in an event close to the split of Opisthokonts and not in Placozoa, as earlier assumed. The Rhodopsin family then expanded greatly in Metazoans while the cAMP receptor family is found in 3 invertebrate species and lost in the vertebrates. We estimate that the Adhesion and Frizzled families evolved before the split of Unikonts from a common ancestor of all major eukaryotic lineages. Also, the study highlights that the fungal Adhesion receptors do not have N-terminal domains whereas the fungal Glutamate receptors have a broad repertoire of mammalian-like N-terminal domains. Further, mining of the close unicellular relatives of the Metazoan lineage, Salpingoeca rosetta and Capsaspora owczarzaki, obtained a rich group of both the Adhesion and Glutamate families, which in particular provided insight to the early emergence of the N-terminal domains of the Adhesion family. We identified 619 Fungi specific GPCRs across 79 genomes and revealed that Blastocladiomycota and Chytridiomycota phylum have Metazoan-like GPCRs rather than the GPCRs specific for Fungi. Overall, this study provides the first evidence of the presence of four of the five main GRAFS families in Fungi and clarifies the early evolutionary history of the GPCR superfamily. PMID:22238661

  13. Ancestry of the mammalian preplate and its derivatives: evolutionary relicts or embryonic adaptations?

    PubMed

    Aboitiz, Francisco; Montiel, Juan; García, Ricardo R

    2005-01-01

    Mammalian cortical development is preceded by the elaboration of a transient preplate, which is split into a superficial marginal zone and a deep subplate after the arrival of the cortical plate. There has been some controversy in the evolutionary interpretation of this transient structure, as some propose it to represent the ancestral cortex or pallium of non-mammals, while others consider it to be a phylogenetic novelty. The preplate and its derivatives contain components derived by both tangential and radial migration. Tangentially migrating elements include pioneer neurons and interneurons, both of subpallial origin, and Cajal-Retzius cells, mostly of pallial origin. Pioneer neurons were probably present in the ancestors of mammals, but may have changed their original superficial position to one below the developing cortex, thus attracting thalamic afferents in the subcortical white matter, and making them penetrate the cortex radially. In mammals, Cajal-Retzius cells appear to have increased both in number and on their level of reelin expression, perhaps in the context of controlling the final stages of migration in a radially expanding neoocortex. Radial-migrating cells are partly represented by the pyramidal-like cells of the subplate. These neurons resemble the excitatory elements of the adult reptilian cortex, but is not clear whether they are their true homologues. One possibility is that these cells appeared by virtue of a heterochronic process in which the earliest radial elements of the cortical plate began to be produced at progressively earlier developmental stages. Thus, we conclude that the mammalian preplate and its derivatives contain both ancestral and derived elements, all of which have been modified in the course of mammalian evolution to support an increasingly complex cortical plate development.

  14. Mandibular Reconstruction: Overview.

    PubMed

    Kumar, Batchu Pavan; Venkatesh, V; Kumar, K A Jeevan; Yadav, B Yashwanth; Mohan, S Ram

    2016-12-01

    Mandibular reconstruction has changed significantly over the years and continues to evolve with the introduction of newer technologies and techniques. This article reviews the history of oromandibular reconstruction, biomechanics of mandible, summarizes the reconstruction options available for mandible with defect classification, goals in reconstruction, the various donor sites, current reconstructive options, dental rehabilitation and persistent associated problems. Oromandibular reconstruction, although a challenge for the head and neck reconstructive surgeon, is now reliable and highly successful with excellent long-term functional and aesthetic outcomes with the use of autogenous bone grafts and current reconstructive options. The ideal reconstruction would provide a solid arch to articulate with the upper jaw, restoring swallowing speech, mastication, and esthetics. Autogenous vascularized bone grafts in combination with microsurgical techniques have revolutionized mandibular reconstruction in oral cancer surgery. Current trends in mandibular reconstruction aim to achieve reestablishment of a viable mandible of proper form and maxillary mandibular relationship while decreasing the need for invasive autogenous graft procurement. However the optimal reconstruction of mandibular defects is still controversial in regards to reconstructive options which include the donor site selection, timing of surgery and method of reconstruction.

  15. Reconstructing disease outbreaks from genetic data: a graph approach.

    PubMed

    Jombart, T; Eggo, R M; Dodd, P J; Balloux, F

    2011-02-01

    Epidemiology and public health planning will increasingly rely on the analysis of genetic sequence data. In particular, genetic data coupled with dates and locations of sampled isolates can be used to reconstruct the spatiotemporal dynamics of pathogens during outbreaks. Thus far, phylogenetic methods have been used to tackle this issue. Although these approaches have proved useful for informing on the spread of pathogens, they do not aim at directly reconstructing the underlying transmission tree. Instead, phylogenetic models infer most recent common ancestors between pairs of isolates, which can be inadequate for densely sampled recent outbreaks, where the sample includes ancestral and descendent isolates. In this paper, we introduce a novel method based on a graph approach to reconstruct transmission trees directly from genetic data. Using simulated data, we show that our approach can efficiently reconstruct genealogies of isolates in situations where classical phylogenetic approaches fail to do so. We then illustrate our method by analyzing data from the early stages of the swine-origin A/H1N1 influenza pandemic. Using 433 isolates sequenced at both the hemagglutinin and neuraminidase genes, we reconstruct the likely history of the worldwide spread of this new influenza strain. The presented methodology opens new perspectives for the analysis of genetic data in the context of disease outbreaks.

  16. Bats host major mammalian paramyxoviruses

    PubMed Central

    Drexler, Jan Felix; Corman, Victor Max; Müller, Marcel Alexander; Maganga, Gael Darren; Vallo, Peter; Binger, Tabea; Gloza-Rausch, Florian; Rasche, Andrea; Yordanov, Stoian; Seebens, Antje; Oppong, Samuel; Sarkodie, Yaw Adu; Pongombo, Célestin; Lukashev, Alexander N.; Schmidt-Chanasit, Jonas; Stöcker, Andreas; Carneiro, Aroldo José Borges; Erbar, Stephanie; Maisner, Andrea; Fronhoffs, Florian; Buettner, Reinhard; Kalko, Elisabeth K.V.; Kruppa, Thomas; Franke, Carlos Roberto; Kallies, René; Yandoko, Emmanuel R.N.; Herrler, Georg; Reusken, Chantal; Hassanin, Alexandre; Krüger, Detlev H.; Matthee, Sonja; Ulrich, Rainer G.; Leroy, Eric M.; Drosten, Christian

    2012-01-01

    The large virus family Paramyxoviridae includes some of the most significant human and livestock viruses, such as measles-, distemper-, mumps-, parainfluenza-, Newcastle disease-, respiratory syncytial virus and metapneumoviruses. Here we identify an estimated 66 new paramyxoviruses in a worldwide sample of 119 bat and rodent species (9,278 individuals). Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, identification of a bat virus conspecific with the human mumps virus, detection of close relatives of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as direct evidence of Sendai virus in rodents. Phylogenetic reconstruction of host associations suggests a predominance of host switches from bats to other mammals and birds. Hypothesis tests in a maximum likelihood framework permit the phylogenetic placement of bats as tentative hosts at ancestral nodes to both the major Paramyxoviridae subfamilies (Paramyxovirinae and Pneumovirinae). Future attempts to predict the emergence of novel paramyxoviruses in humans and livestock will have to rely fundamentally on these data. PMID:22531181

  17. Bats host major mammalian paramyxoviruses.

    PubMed

    Drexler, Jan Felix; Corman, Victor Max; Müller, Marcel Alexander; Maganga, Gael Darren; Vallo, Peter; Binger, Tabea; Gloza-Rausch, Florian; Cottontail, Veronika M; Rasche, Andrea; Yordanov, Stoian; Seebens, Antje; Knörnschild, Mirjam; Oppong, Samuel; Adu Sarkodie, Yaw; Pongombo, Célestin; Lukashev, Alexander N; Schmidt-Chanasit, Jonas; Stöcker, Andreas; Carneiro, Aroldo José Borges; Erbar, Stephanie; Maisner, Andrea; Fronhoffs, Florian; Buettner, Reinhard; Kalko, Elisabeth K V; Kruppa, Thomas; Franke, Carlos Roberto; Kallies, René; Yandoko, Emmanuel R N; Herrler, Georg; Reusken, Chantal; Hassanin, Alexandre; Krüger, Detlev H; Matthee, Sonja; Ulrich, Rainer G; Leroy, Eric M; Drosten, Christian

    2012-04-24

    The large virus family Paramyxoviridae includes some of the most significant human and livestock viruses, such as measles-, distemper-, mumps-, parainfluenza-, Newcastle disease-, respiratory syncytial virus and metapneumoviruses. Here we identify an estimated 66 new paramyxoviruses in a worldwide sample of 119 bat and rodent species (9,278 individuals). Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, identification of a bat virus conspecific with the human mumps virus, detection of close relatives of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as direct evidence of Sendai virus in rodents. Phylogenetic reconstruction of host associations suggests a predominance of host switches from bats to other mammals and birds. Hypothesis tests in a maximum likelihood framework permit the phylogenetic placement of bats as tentative hosts at ancestral nodes to both the major Paramyxoviridae subfamilies (Paramyxovirinae and Pneumovirinae). Future attempts to predict the emergence of novel paramyxoviruses in humans and livestock will have to rely fundamentally on these data.

  18. Comparative and evolutionary studies of mammalian arylsulfatase and sterylsulfatase genes and proteins encoded on the X-chromosome.

    PubMed

    Holmes, Roger S

    2017-06-01

    At least 19 sulfatase genes have been reported on the human genome, including four arylsulfatase (ARS) genes (ARSD; ARSE; ARSF; ARSH) and a sterylsulfatase (STS) gene located together on the X-chromosome. Bioinformatic analyses of mammalian genomes were undertaken using known human STS and ARS amino acid sequences to study the evolution of these genes and proteins encoded on eutherian and marsupial genomes. Several domain regions and key residues were conserved including signal peptides, active site residues, metal (Ca(2+)) and substrate binding sequences, transmembranes and N-glycosylation sites. Phylogenetic analyses describe the relationships and potential origins of these genes during mammalian evolution. Primate ARSH enzymes lacked signal peptide sequences which may influence their biological functions. CpG117 and CpG92 were detected within the 5' region of the human STS and ARSD genes, respectively, and miR-205 within the 3'-UTR for the human STS gene, using bioinformatic methods A proposal is described for a primordial invertebrate STS-like gene serving as an ancestor for unequal cross over events generating the gene complex on the eutherian mammalian X-chromosome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Acanthodes and shark-like conditions in the last common ancestor of modern gnathostomes.

    PubMed

    Davis, Samuel P; Finarelli, John A; Coates, Michael I

    2012-06-13

    Acanthodians, an exclusively Palaeozoic group of fish, are central to a renewed debate on the origin of modern gnathostomes: jawed vertebrates comprising Chondrichthyes (sharks, rays and ratfish) and Osteichthyes (bony fishes and tetrapods). Acanthodian internal anatomy is primarily understood from Acanthodes bronni because it remains the only example preserved in substantial detail, central to which is an ostensibly osteichthyan braincase. For this reason, Acanthodes has become an indispensible component in early gnathostome phylogenies. Here we present a new description of the Acanthodes braincase, yielding new details of external and internal morphology, notably the regions surrounding and within the ear capsule and neurocranial roof. These data contribute to a new reconstruction that, unexpectedly, resembles early chondrichthyan crania. Principal coordinates analysis of a character-taxon matrix including these new data confirms this impression: Acanthodes is quantifiably closer to chondrichthyans than to osteichthyans. However, phylogenetic analysis places Acanthodes on the osteichthyan stem, as part of a well-resolved tree that also recovers acanthodians as stem chondrichthyans and stem gnathostomes. As such, perceived chondrichthyan features of the Acanthodes cranium represent shared primitive conditions for crown group gnathostomes. Moreover, this increasingly detailed picture of early gnathostome evolution highlights ongoing and profound anatomical reorganization of vertebrate crania after the origin of jaws but before the divergence of living clades.

  20. Seed ferns from the late Paleozoic and Mesozoic: Any angiosperm ancestors lurking there?

    PubMed

    Taylor, Edith L; Taylor, Thomas N

    2009-01-01

    Five orders of late Paleozoic-Mesozoic seed ferns have, at one time or another, figured in discussions on the origin of angiosperms, even before the application of phylogenetic systematics. These are the Glossopteridales, Peltaspermales, Corystospermales, Caytoniales, and Petriellales. Although vegetative features have been used to suggest homologies, most discussion has focused on ovulate structures, which are generally interpreted as megasporophylls bearing seeds, with the seeds partially to almost completely enclosed by the megasporophyll (or cupule). Here we discuss current information about the reproductive parts of these plants. Since most specimens are impression-compression remains, homologizing the ovulate organs, deriving angiospermous homologues, and defining synapomorphies remain somewhat speculative. Although new specimens have increased the known diversity in these groups, a reconstruction of an entire plant is available only for the corystosperms, and thus hypotheses about phylogenetic position are of limited value. We conclude that, in the case of these seed plants, phylogenetic analysis techniques have surpassed the hard data needed to formulate meaningful phylogenetic hypotheses. Speculation on angiosperm origins and transitional stages in these fossils provides for interesting discussion, but currently it is still speculation, as the role of these groups in the origin of angiospermy continues to be cloaked in Darwin's mystery.

  1. Mammalian skull heterochrony reveals modular evolution and a link between cranial development and brain size.

    PubMed

    Koyabu, Daisuke; Werneburg, Ingmar; Morimoto, Naoki; Zollikofer, Christoph P E; Forasiepi, Analia M; Endo, Hideki; Kimura, Junpei; Ohdachi, Satoshi D; Truong Son, Nguyen; Sánchez-Villagra, Marcelo R

    2014-04-04

    The multiple skeletal components of the skull originate asynchronously and their developmental schedule varies across amniotes. Here we present the embryonic ossification sequence of 134 species, covering all major groups of mammals and their close relatives. This comprehensive data set allows reconstruction of the heterochronic and modular evolution of the skull and the condition of the last common ancestor of mammals. We show that the mode of ossification (dermal or endochondral) unites bones into integrated evolutionary modules of heterochronic changes and imposes evolutionary constraints on cranial heterochrony. However, some skull-roof bones, such as the supraoccipital, exhibit evolutionary degrees of freedom in these constraints. Ossification timing of the neurocranium was considerably accelerated during the origin of mammals. Furthermore, association between developmental timing of the supraoccipital and brain size was identified among amniotes. We argue that cranial heterochrony in mammals has occurred in concert with encephalization but within a conserved modular organization.

  2. Spatial and temporal arrival patterns of Madagascar's vertebrate fauna explained by distance, ocean currents, and ancestor type.

    PubMed

    Samonds, Karen E; Godfrey, Laurie R; Ali, Jason R; Goodman, Steven M; Vences, Miguel; Sutherland, Michael R; Irwin, Mitchell T; Krause, David W

    2012-04-03

    How, when, and from where Madagascar's vertebrates arrived on the island is poorly known, and a comprehensive explanation for the distribution of its organisms has yet to emerge. We begin to break that impasse by analyzing vertebrate arrival patterns implied by currently existing taxa. For each of 81 clades, we compiled arrival date, source, and ancestor type (obligate freshwater, terrestrial, facultative swimmer, or volant). We analyzed changes in arrival rates, with and without adjusting for clade extinction. Probability of successful transoceanic dispersal is negatively correlated with distance traveled and influenced by ocean currents and ancestor type. Obligate rafters show a decrease in probability of successful transoceanic dispersal from the Paleocene onward, reaching the lowest levels after the mid-Miocene. This finding is consistent with a paleoceanographic model [Ali JR, Huber M (2010) Nature 463:653-656] that predicts Early Cenozoic surface currents periodically conducive to rafting or swimming from Africa, followed by a reconfiguration to present-day flow 15-20 million years ago that significantly diminished the ability for transoceanic dispersal to Madagascar from the adjacent mainland.

  3. Evidence that CRABS CLAW and TOUSLED have conserved their roles in carpel development since the ancestor of the extant angiosperms

    PubMed Central

    Fourquin, Chloé; Vinauger-Douard, Marion; Fogliani, Bruno; Dumas, Christian; Scutt, Charles P.

    2005-01-01

    The carpel is the female reproductive organ specific to flowering plants. We aim to define the genes that controlled carpel development in the common ancestor of this group as a step toward determining the molecular events that were responsible for the evolution of the carpel. CRABS CLAW (CRC) and TOUSLED (TSL) control important aspects of carpel development in the model plant, Arabidopsis thaliana. The basal angiosperm species Amborella trichopoda and Cabomba aquatica very likely represent the two most early diverging groups of flowering plants. We have identified putative orthologues of CRC and TSL from A. trichopoda and C. aquatica, respectively. We demonstrate the expression patterns of these genes in carpels to be very highly conserved, both spatially and temporally, with those of their Arabidopsis orthologues. We argue that CRC and TSL in Arabidopsis are likely to have conserved their respective roles in carpel development since the common ancestor of the living flowering plants. We conclude that a divergent role shown for the CRC orthologue in rice, DROOPING LEAF, most probably arose specifically in the monocot lineage. We show that, in addition to its expression in carpels, the TSL orthologue of C. aquatica is expressed in tissues that contribute to buoyancy and argue that its role in these tissues may have arisen later than its role in carpel development. PMID:15767586

  4. Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds.

    PubMed

    Skoglund, Pontus; Ersmark, Erik; Palkopoulou, Eleftheria; Dalén, Love

    2015-06-01

    The origin of domestic dogs is poorly understood [1-15], with suggested evidence of dog-like features in fossils that predate the Last Glacial Maximum [6, 9, 10, 14, 16] conflicting with genetic estimates of a more recent divergence between dogs and worldwide wolf populations [13, 15, 17-19]. Here, we present a draft genome sequence from a 35,000-year-old wolf from the Taimyr Peninsula in northern Siberia. We find that this individual belonged to a population that diverged from the common ancestor of present-day wolves and dogs very close in time to the appearance of the domestic dog lineage. We use the directly dated ancient wolf genome to recalibrate the molecular timescale of wolves and dogs and find that the mutation rate is substantially slower than assumed by most previous studies, suggesting that the ancestors of dogs were separated from present-day wolves before the Last Glacial Maximum. We also find evidence of introgression from the archaic Taimyr wolf lineage into present-day dog breeds from northeast Siberia and Greenland, contributing between 1.4% and 27.3% of their ancestry. This demonstrates that the ancestry of present-day dogs is derived from multiple regional wolf populations.

  5. Spatial and temporal arrival patterns of Madagascar's vertebrate fauna explained by distance, ocean currents, and ancestor type

    PubMed Central

    Samonds, Karen E.; Godfrey, Laurie R.; Ali, Jason R.; Goodman, Steven M.; Vences, Miguel; Sutherland, Michael R.; Irwin, Mitchell T.; Krause, David W.

    2012-01-01

    How, when, and from where Madagascar's vertebrates arrived on the island is poorly known, and a comprehensive explanation for the distribution of its organisms has yet to emerge. We begin to break that impasse by analyzing vertebrate arrival patterns implied by currently existing taxa. For each of 81 clades, we compiled arrival date, source, and ancestor type (obligate freshwater, terrestrial, facultative swimmer, or volant). We analyzed changes in arrival rates, with and without adjusting for clade extinction. Probability of successful transoceanic dispersal is negatively correlated with distance traveled and influenced by ocean currents and ancestor type. Obligate rafters show a decrease in probability of successful transoceanic dispersal from the Paleocene onward, reaching the lowest levels after the mid-Miocene. This finding is consistent with a paleoceanographic model [Ali JR, Huber M (2010) Nature 463:653–656] that predicts Early Cenozoic surface currents periodically conducive to rafting or swimming from Africa, followed by a reconfiguration to present-day flow 15–20 million years ago that significantly diminished the ability for transoceanic dispersal to Madagascar from the adjacent mainland. PMID:22431643

  6. Archetype, adaptation and the mammalian heart.

    PubMed

    Meijler, F L; Meijler, T D

    2011-03-01

    Forty years ago, we started our quest for 'The Holy Grail' of understanding ventricular rate control and rhythm in atrial fibrillation (AF). We therefore studied the morphology and function of a wide range of mammalian hearts. From mouse to whale, we found that all hearts show similar structural and functional characteristics. This suggests that the mammalian heart remained well conserved during evolution and in this aspect it differs from other organs and parts of the mammalian body. The archetype of the mammalian heart was apparently so successful that adaptation by natural selection (evolution) caused by varying habitat demands, as occurred in other organs and many other aspects of mammalian anatomy, bypassed the heart. The structure and function of the heart of placental mammals have thus been strikingly conserved throughout evolution. The changes in the mammalian heart that did take place were mostly adjustments (scaling), to compensate for variations in body size and shape. A remarkable scaling effect is, for instance, the difference in atrioventricular (AV) conduction time, which is vital for optimal cardiac function in all mammals, small and large. Scaling of AV conduction takes place in the AV node (AVN), but its substrate is unknown. This sheds new light on the vital role of the AVN in health and disease. The AVN is master and servant of the heart at the same time and is of salient importance for our understanding of supraventricular arrhythmias in humans, especially AF. In Information Technology a software infra-structure called 'enterprise service bus' (ESB) may provide understanding of the mammalian heart's conservation during evolution. The ESB is quite unspecific (and thus general) when compared with the specialised components it has to support. For instance, one of the functions of an ESB is the routing of messages between system nodes. This routing is independent and unaware of the content of the messages. The function of the heart is likewise

  7. Journeys of our ancestors: Conservation science approaches to the analysis of cultural material

    NASA Astrophysics Data System (ADS)

    O'Grady, Caitlin Rose

    The application and use of non-destructive portable x-ray fluorescence (XRF) analysis is a critical tool in the preservation and interpretation of cultural material. Portable XRF instrumentation produce elemental compositional data that is used to reconstruct current artifact composition, which can be related to materials and methods of manufacture, technological practice, as well as object condition and presence of corrosion surfaces. Portable XRF analysis is used to assess a variety of material classes utilized in artifact manufacture. The dissertation research is based on a series of three case studies that represent typical groups of material culture commonly encountered in conservation and conservation science research. Conservators and conservation scientists frequently undertake analysis and interpretation of disparate groups of materials. Often, these objects are tied together by research questions or themes directed by outside influences including preservation issues requiring action; curatorial research interests; museum exhibition programs; as well as many other cultural heritage stakeholders. To this end, both non-destructive and destructive tools that provide measurements of interest play critical roles in analysis. The case studies have been designed to answer common compositional questions relating to (a) bulk analysis of Chinese coins, (b) characterization of Southwestern ceramic colorants, and, (c) chemical examination of post-depositional manganese dioxide accretions occurring on archaeological ceramic materials. They evaluate the value of data produced using effectiveness of non-destructive portable XRF analysis for the interpretation of archaeological materials. The case studies provide a template for the development of conservation science research, predicated on object preservation, which produce meaningful data for the interpretation and conservation of the analyzed archaeological artifacts. Portable XRF provides useful data that is used to

  8. Mammalian Cell-Based Sensor System

    NASA Astrophysics Data System (ADS)

    Banerjee, Pratik; Franz, Briana; Bhunia, Arun K.

    Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term "mammalian cell-based biosensor" is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the "normal" physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell-cell and cell-substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.

  9. A Comparative Study of Mammalian Diversification Pattern

    PubMed Central

    Yu, Wenhua; Xu, Junxiao; Wu, Yi; Yang, Guang

    2012-01-01

    Although mammals have long been regarded as a successful radiation, the diversification pattern among the clades is still poorly known. Higher-level phylogenies are conflicting and comprehensive comparative analyses are still lacking. Using a recently published supermatrix encompassing nearly all extant mammalian families and a novel comparative likelihood approach (MEDUSA), the diversification pattern of mammalian groups was examined. Both order- and family-level phylogenetic analyses revealed the rapid radiation of Boreoeutheria and Euaustralidelphia in the early mammalian history. The observation of a diversification burst within Boreoeutheria at approximately 100 My supports the Long Fuse model in elucidating placental diversification progress, and the rapid radiation of Euaustralidelphia suggests an important role of biogeographic dispersal events in triggering early Australian marsupial rapid radiation. Diversification analyses based on family-level diversity tree revealed seven additional clades with exceptional diversification rate shifts, six of which represent accelerations in net diversification rate as compared to the background pattern. The shifts gave origin to the clades Muridae+Cricetidae, Bovidae+Moschidae+Cervidae, Simiiformes, Echimyidae, Odontoceti (excluding Physeteridae+Kogiidae+Platanistidae), Macropodidae, and Vespertilionidae. Moderate to high extinction rates from background and boreoeutherian diversification patterns indicate the important role of turnovers in shaping the heterogeneous taxonomic richness observed among extant mammalian groups. Furthermore, the present results emphasize the key role of extinction on erasing unusual diversification signals, and suggest that further studies are needed to clarify the historical radiation of some mammalian groups for which MEDUSA did not detect exceptional diversification rates. PMID:22457604

  10. Breast Reconstruction with Implants

    MedlinePlus

    ... removes your breast to treat or prevent breast cancer. One type of breast reconstruction uses breast implants — silicone devices filled with silicone gel or salt water (saline) — to reshape your breasts. Breast reconstruction ...

  11. Breast Reconstruction after Mastectomy

    PubMed Central

    Schmauss, Daniel; Machens, Hans-Günther; Harder, Yves

    2016-01-01

    Breast cancer is the leading cause of cancer death in women worldwide. Its surgical approach has become less and less mutilating in the last decades. However, the overall number of breast reconstructions has significantly increased lately. Nowadays, breast reconstruction should be individualized at its best, first of all taking into consideration not only the oncological aspects of the tumor, neo-/adjuvant treatment, and genetic predisposition, but also its timing (immediate versus delayed breast reconstruction), as well as the patient’s condition and wish. This article gives an overview over the various possibilities of breast reconstruction, including implant- and expander-based reconstruction, flap-based reconstruction (vascularized autologous tissue), the combination of implant and flap, reconstruction using non-vascularized autologous fat, as well as refinement surgery after breast reconstruction. PMID:26835456

  12. Methods of Voice Reconstruction

    PubMed Central

    Chen, Hung-Chi; Kim Evans, Karen F.; Salgado, Christopher J.; Mardini, Samir

    2010-01-01

    This article reviews methods of voice reconstruction. Nonsurgical methods of voice reconstruction include electrolarynx, pneumatic artificial larynx, and esophageal speech. Surgical methods of voice reconstruction include neoglottis, tracheoesophageal puncture, and prosthesis. Tracheoesophageal puncture can be performed in patients with pedicled flaps such as colon interposition, jejunum, or gastric pull-up or in free flaps such as perforator flaps, jejunum, and colon flaps. Other flaps for voice reconstruction include the ileocolon flap and jejunum. Laryngeal transplantation is also reviewed. PMID:22550443

  13. Reoperative midface reconstruction.

    PubMed

    Acero, Julio; García, Eloy

    2011-02-01

    Reoperative reconstruction of the midface is a challenging issue because of the complexity of this region and the severity of the aesthetic and functional sequela related to the absence or failure of a primary reconstruction. The different situations that can lead to the indication of a reoperative reconstructive procedure after previous oncologic ablative procedures in the midface are reviewed. Surgical techniques, anatomic problems, and limitations affecting the reoperative reconstruction in this region of the head and neck are discussed.

  14. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Knight, C.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization.The Astronauts will be exposed to microgravity environment for a long duration of time during these flights.Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system.We did our preliminary investigations by exposing mammalian lymphocytes to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon Inc (USA).Our initial results showed no significant change in cytokine expression in these cells for a time period of forty eight hours exposure.Our future experiments will involve exposure for a longer period of time.

  15. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization. The Astronauts will be exposed to microgravity environment for a long duration of time during these flights. Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system and nervous system. We did our preliminary investigations by exposing mammalian lymphocytes and astrocyte cells to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon, Inc. (USA).Our initial results showed no significant change in cytokine expression in these cells up to a time period of 120 hours exposure. Our future experiments will involve exposure for a longer period of time.

  16. Involvement of opsins in mammalian sperm thermotaxis

    PubMed Central

    Pérez-Cerezales, Serafín; Boryshpolets, Sergii; Afanzar, Oshri; Brandis, Alexander; Nevo, Reinat; Kiss, Vladimir; Eisenbach, Michael

    2015-01-01

    A unique characteristic of mammalian sperm thermotaxis is extreme temperature sensitivity, manifested by the capacity of spermatozoa to respond to temperature changes of <0.0006 °C as they swim their body-length distance. The identity of the sensing system that confers this exceptional sensitivity on spermatozoa is not known. Here we show that the temperature-sensing system of mammalian spermatozoa involves opsins, known to be G-protein-coupled receptors that act as photosensors in vision. We demonstrate by molecular, immunological, and functional approaches that opsins are present in human and mouse spermatozoa at specific sites, which depend on the species and the opsin type, and that they are involved in sperm thermotaxis via two signalling pathways—the phospholipase C and the cyclic-nucleotide pathways. Our results suggest that, depending on the context and the tissue, mammalian opsins act not only as photosensors but also as thermosensors. PMID:26537127

  17. Mammalian diversity: gametes, embryos and reproduction.

    PubMed

    Behringer, Richard R; Eakin, Guy S; Renfree, Marilyn B

    2006-01-01

    The class Mammalia is composed of approximately 4800 extant species. These mammalian species are divided into three subclasses that include the monotremes, marsupials and eutherians. Monotremes are remarkable because these mammals are born from eggs laid outside of the mother's body. Marsupial mammals have relatively short gestation periods and give birth to highly altricial young that continue a significant amount of 'fetal' development after birth, supported by a highly sophisticated lactation. Less than 10% of mammalian species are monotremes or marsupials, so the great majority of mammals are grouped into the subclass Eutheria, including mouse and human. Mammals exhibit great variety in morphology, physiology and reproduction. In the present article, we highlight some of this remarkable diversity relative to the mouse, one of the most widely used mammalian model organisms, and human. This diversity creates challenges and opportunities for gamete and embryo collection, culture and transfer technologies.

  18. Involvement of opsins in mammalian sperm thermotaxis.

    PubMed

    Pérez-Cerezales, Serafín; Boryshpolets, Sergii; Afanzar, Oshri; Brandis, Alexander; Nevo, Reinat; Kiss, Vladimir; Eisenbach, Michael

    2015-11-05

    A unique characteristic of mammalian sperm thermotaxis is extreme temperature sensitivity, manifested by the capacity of spermatozoa to respond to temperature changes of <0.0006 °C as they swim their body-length distance. The identity of the sensing system that confers this exceptional sensitivity on spermatozoa is not known. Here we show that the temperature-sensing system of mammalian spermatozoa involves opsins, known to be G-protein-coupled receptors that act as photosensors in vision. We demonstrate by molecular, immunological, and functional approaches that opsins are present in human and mouse spermatozoa at specific sites, which depend on the species and the opsin type, and that they are involved in sperm thermotaxis via two signalling pathways-the phospholipase C and the cyclic-nucleotide pathways. Our results suggest that, depending on the context and the tissue, mammalian opsins act not only as photosensors but also as thermosensors.

  19. Requirement of mammalian Timeless for circadian rhythmicity.

    PubMed

    Barnes, Jessica W; Tischkau, Shelley A; Barnes, Jeffrey A; Mitchell, Jennifer W; Burgoon, Penny W; Hickok, Jason R; Gillette, Martha U

    2003-10-17

    Despite a central circadian role in Drosophila for the transcriptional regulator Timeless (dTim), the relevance of mammalian Timeless (mTim) remains equivocal. Conditional knockdown of mTim protein expression in the rat suprachiasmatic nucleus (SCN) disrupted SCN neuronal activity rhythms, and altered levels of known core clock elements. Full-length mTim protein (mTIM-fl) exhibited a 24-hour oscillation, where as a truncated isoform (mTIM-s) was constitutively expressed. mTIM-fl associated with the mammalian clock Period proteins (mPERs) in oscillating SCN cells. These data suggest that mTim is required for rhythmicity and is a functional homolog of dTim on the negative-feedback arm of the mammalian molecular clockwork.

  20. Synthetic therapeutic gene circuits in mammalian cells.

    PubMed

    Ye, Haifeng; Fussenegger, Martin

    2014-08-01

    In the emerging field of synthetic biology, scientists are focusing on designing and creating functional devices, systems, and organisms with novel functions by engineering and assembling standardised biological building blocks. The progress of synthetic biology has significantly advanced the design of functional gene networks that can reprogram metabolic activities in mammalian cells and provide new therapeutic opportunities for future gene- and cell-based therapies. In this review, we describe the most recent advances in synthetic mammalian gene networks designed for biomedical applications, including how these synthetic therapeutic gene circuits can be assembled to control signalling networks and applied to treat metabolic disorders, cancer, and immune diseases. We conclude by discussing the various challenges and future prospects of using synthetic mammalian gene networks for disease therapy. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Synthetic mammalian gene circuits for biomedical applications.

    PubMed

    Ye, Haifeng; Aubel, Dominique; Fussenegger, Martin

    2013-12-01

    Synthetic biology is the science of reassembling cataloged and standardized biological items in a systematic and rational manner to create and engineer functional biological designer devices, systems and organisms with novel and useful, preferably therapeutic functions. Synthetic biology has significantly advanced the design of complex genetic networks that can reprogram metabolic activities in mammalian cells and provide novel therapeutic strategies for future gene-based and cell-based therapies. Synthetic biology-inspired therapeutic strategies provide new opportunities for improving human health in the 21st century. This review covers the most recent synthetic mammalian circuits designed for therapy of diseases such as metabolic disorders, cancer, and immune disorders. We conclude by discussing current challenges and future perspectives for biomedical applications of synthetic mammalian gene networks.

  2. The mouse male germ cell-specific gene Tpx-1: molecular structure, mode of expression in spermatogenesis, and sequence similarity to two non-mammalian genes.

    PubMed

    Mizuki, N; Sarapata, D E; Garcia-Sanz, J A; Kasahara, M

    1992-01-01

    Tpx-1 is a testis-specific gene that maps on mouse Chromosome (Chr) 17. The deduced TPX-1 protein shows 55% amino acid sequence similarity to acidic epididymal glycoprotein (AEG), assumed to be involved in sperm maturation. In the present study, we determined the genomic structure of the mouse Tpx-1 gene and the cellular localization of its transcripts. The gene was found to contain ten exons, with an unusually large intron (approximately 17.0 kilobase pairs) between exons 8 and 9. In situ hybridization of testicular sections showed that Tpx-1 is transcribed abundantly by haploid male germ cells. A computer search of protein databases revealed that deduced TPX-1/AEG proteins have significant sequence similarity (approximately 30%) to two non-mammalian proteins: "pathogenesis-related" proteins 1 of tobaccos, and venom sac proteins of white-face hornets, known as Dol m V. Amino acid residues encoded by exon 10 of the Tpx-1 gene and most of those encoded by exon 9 were absent in the non-mammalian proteins. This result suggests that the ancestor of Tpx-1 acquired exons 9 and 10 after its divergence from the ancestors of the plant and insect proteins.

  3. Reconstruction of metabolic pathways for the cattle genome.

    PubMed

    Seo, Seongwon; Lewin, Harris A

    2009-03-12

    Metabolic reconstruction of microbial, plant and animal genomes is a necessary step toward understanding the evolutionary origins of metabolism and species-specific adaptive traits. The aims of this study were to reconstruct conserved metabolic pathways in the cattle genome and to identify metabolic pathways with missing genes and proteins. The MetaCyc database and PathwayTools software suite were chosen for this work because they are widely used and easy to implement. An amalgamated cattle genome database was created using the NCBI and Ensembl cattle genome databases (based on build 3.1) as data sources. PathwayTools was used to create a cattle-specific pathway genome database, which was followed by comprehensive manual curation for the reconstruction of metabolic pathways. The curated database, CattleCyc 1.0, consists of 217 metabolic pathways. A total of 64 mammalian-specific metabolic pathways were modified from the reference pathways in MetaCyc, and two pathways previously identified but missing from MetaCyc were added. Comparative analysis of metabolic pathways revealed the absence of mammalian genes for 22 metabolic enzymes whose activity was reported in the literature. We also identified six human metabolic protein-coding genes for which the cattle ortholog is missing from the sequence assembly. CattleCyc is a powerful tool for understanding the biology of ruminants and other cetartiodactyl species. In addition, the approach used to develop CattleCyc provides a framework for the metabolic reconstruction of other newly sequenced mammalian genomes. It is clear that metabolic pathway analysis strongly reflects the quality of the underlying genome annotations. Thus, having well-annotated genomes from many mammalian species hosted in BioCyc will facilitate the comparative analysis of metabolic pathways among different species and a systems approach to comparative physiology.

  4. Composition and Evolution of the Vertebrate and Mammalian Selenoproteomes

    PubMed Central

    Lobanov, Alexei V.; Pringle, Thomas H.; Guigo, Roderic; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2012-01-01

    Background Selenium is an essential trace element in mammals due to its presence in proteins in the form of selenocysteine (Sec). Human genome codes for 25 Sec-containing protein genes, and mouse and rat genomes for 24. Methodology/Principal Findings We characterized the selenoproteomes of 44 sequenced vertebrates by applying gene prediction and phylogenetic reconstruction methods, supplemented with the analyses of gene structures, alternative splicing isoforms, untranslated regions, SECIS elements, and pseudogenes. In total, we detected 45 selenoprotein subfamilies. 28 of them were found in mammals, and 41 in bony fishes. We define the ancestral vertebrate (28 proteins) and mammalian (25 proteins) selenoproteomes, and describe how they evolved along lineages through gene duplication (20 events), gene loss (10 events) and replacement of Sec with cysteine (12 events). We show that an intronless selenophosphate synthetase 2 gene evolved in early mammals and replaced functionally the original multiexon gene in placental mammals, whereas both genes remain in marsupials. Mammalian thioredoxin reductase 1 and thioredoxin-glutathione reductase evolved from an ancestral glutaredoxin-domain containing enzyme, still present in fish. Selenoprotein V and GPx6 evolved specifically in placental mammals from duplications of SelW and GPx3, respectively, and GPx6 lost Sec several times independently. Bony fishes were characterized by duplications of several selenoprotein families (GPx1, GPx3, GPx4, Dio3, MsrB1, SelJ, SelO, SelT, SelU1, and SelW2). Finally, we report identification of new isoforms for several selenoproteins and describe unusually conserved selenoprotein pseudogenes. Conclusions/Significance This analysis represents the first comprehensive survey of the vertebrate and mammal selenoproteomes, and depicts their evolution along lineages. It also provides a wealth of information on these selenoproteins and their forms. PMID:22479358

  5. Better Smelling Through Genetics: Mammalian Odor Perception

    PubMed Central

    Keller, Andreas; Vosshall, Leslie B.

    2008-01-01

    SUMMARY The increasing availability of genomic and genetic tools to study olfaction—the sense of smell—has brought important new insights into how this chemosensory modality functions in different species. Newly sequenced mammalian genomes—from platypus to dog—have made it possible to infer how smell has evolved to suit the needs of a given species and how variation within a species may affect individual olfactory perception. This review will focus on recent advances in the genetics and genomics of mammalian smell, with a primary focus on rodents and humans. PMID:18938244

  6. A new modification for mammalian messenger RNA.

    PubMed

    Liu, Fange; He, Chuan

    2017-09-01

    The discovery of multiple RNA modifications in the past few years has broadened our views of the structures and potential functions of RNA species, but deciphering which modifications are made where and how remains a challenge. A new study by Xu et al. applies a combination of mass spectrometry, biochemistry, genetics, and cellular biology tools to reveal the two mammalian methyltransferases that are responsible for m(3)C installation in tRNA and a third that mediates the previously unknown installation of m(3)C in mammalian mRNA. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Mammalian cell cultures for biologics manufacturing.

    PubMed

    Kantardjieff, Anne; Zhou, Weichang

    2014-01-01

    Biopharmaceuticals represent a growing sector of the pharmaceutical industry, and are used for a wide range of indications, including oncology and rheumatology. Cultured mammalian cells have become the predominant expression system for their production, partly due to their ability to complete the posttranslational modifications required for drug safety and efficacy. Over the past decade, the productivity of mammalian cell culture production processes has growth dramatically through improvements in both volumetric and specific productivities. This article presents an overview of the biologics market, including analysis of sales and approvals; as well as a review of industrial production cell lines and cell culture operations.

  8. The mammalian blastema: regeneration at our fingertips

    PubMed Central

    Simkin, Jennifer; Sammarco, Mimi C.; Dawson, Lindsay A.; Schanes, Paula P.; Yu, Ling

    2015-01-01

    Abstract In the mouse, digit tip regeneration progresses through a series of discrete stages that include inflammation, histolysis, epidermal closure, blastema formation, and redifferentiation. Recent studies reveal how each regenerative stage influences subsequent stages to establish a blastema that directs the successful regeneration of a complex mammalian structure. The focus of this review is on early events of healing and how an amputation wound transitions into a functional blastema. The stepwise formation of a mammalian blastema is proposed to provide a model for how specific targeted treatments can enhance regenerative performance in humans. PMID:27499871

  9. Particle Image Velocimetry Measurements in an Anatomically-Accurate Scaled Model of the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Rumple, Christopher; Krane, Michael; Richter, Joseph; Craven, Brent

    2013-11-01

    The mammalian nose is a multi-purpose organ that houses a convoluted airway labyrinth responsible for respiratory air conditioning, filtering of environmental contaminants, and chemical sensing. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of respiratory airflow and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture an anatomically-accurate transparent model for stereoscopic particle image velocimetry (SPIV) measurements. Challenges in the design and manufacture of an index-matched anatomical model are addressed. PIV measurements are presented, which are used to validate concurrent computational fluid dynamics (CFD) simulations of mammalian nasal airflow. Supported by the National Science Foundation.

  10. Microsurgical Burn Reconstruction.

    PubMed

    Seth, Akhil K; Friedstat, Jonathan S; Orgill, Dennis P; Pribaz, Julian J; Halvorson, Eric G

    2017-10-01

    The treatment of burn-related wounds requires consideration of several factors, including defect size, available donor sites, exposure of critical structures, and the ultimate functional and aesthetic result of reconstruction. Although skin grafts and locoregional flaps are workhorses in burn reconstruction, they have inherent limitations that can directly impact reconstructive outcomes. Microsurgical free tissue transfer represents a viable option for the reconstruction of burn-related wounds in certain patients. Each anatomic region of the body has unique challenges that must be addressed to achieve a successful reconstruction. Therefore, the choice of free flap must be individualized to the wound and patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Possible postcranial pneumaticity in the last common ancestor of birds and crocodilians: evidence from Erythrosuchus and other Mesozoic archosaurs.

    PubMed

    Gower, D J

    2001-03-01

    Birds and crocodilians (extant archosaurs) have differing, distinctive morphologies. Birds have respiratory airsacs with diverticula that pneumatize the postcranial skeleton, a feature absent in crocodilians. Bony correlates of pneumatic sinuses are known in the vertebrae of some non-avian dinosaurs and in pterosaurs--taxa more closely related to birds than crocodilians. This and the apparent absence of pneumatic postcranial bones in fossil archosaurs more closely related to crocodilians than to birds, has been interpreted as evidence that postcranial pneumaticity is a derived character of birds and their nearest fossil relatives. The presence of apparent osteological correlates of postcranial pneumaticity is here reported in some non-crown-group archosaurs, and some of the fossil taxa more closely related to crocodilians than to birds. This suggests that the last common ancestor of birds and crocodilians might have had a pneumatized postcranium, and that the absence of this feature in crocodilians might be derived.

  12. A molecular palaeobiological hypothesis for the origin of aplacophoran molluscs and their derivation from chiton-like ancestors

    PubMed Central

    Vinther, Jakob; Sperling, Erik A.; Briggs, Derek E. G.; Peterson, Kevin J.

    2012-01-01

    Aplacophorans have long been argued to be basal molluscs. We present a molecular phylogeny, including the aplacophorans Neomeniomorpha (Solenogastres) and Chaetodermomorpha (Caudofoveata), which recovered instead the clade Aculifera (Aplacophora + Polyplacophora). Our relaxed Bayesian molecular clock estimates an Early Ordovician appearance of the aculiferan crown group consistent with the presence of chiton-like molluscs with seven or eight dorsal shell plates by the Late Cambrian (approx. 501–490 Ma). Molecular, embryological and palaeontological data indicate that aplacophorans, as well as chitons, evolved from a paraphyletic assemblage of chiton-like ancestors. The recovery of cephalopods as a sister group to aculiferans suggests that the plesiomorphic condition in molluscs might be a morphology similar to that found in monoplacophorans. PMID:21976685

  13. Possible postcranial pneumaticity in the last common ancestor of birds and crocodilians: evidence from Erythrosuchus and other Mesozoic archosaurs

    NASA Astrophysics Data System (ADS)

    Gower, D. J.

    2001-02-01

    Birds and crocodilians (extant archosaurs) have differing, distinctive morphologies. Birds have respiratory airsacs with diverticula that pneumatize the postcranial skeleton, a feature absent in crocodilians. Bony correlates of pneumatic sinuses are known in the vertebrae of some non-avian dinosaurs and in pterosaurs - taxa more closely related to birds than crocodilians. This and the apparent absence of pneumatic postcranial bones in fossil archosaurs more closely related to crocodilians than to birds, has been interpreted as evidence that postcranial pneumaticity is a derived character of birds and their nearest fossil relatives. The presence of apparent osteological correlates of postcranial pneumaticity is here reported in some non-crown-group archosaurs, and some of the fossil taxa more closely related to crocodilians than to birds. This suggests that the last common ancestor of birds and crocodilians might have had a pneumatized postcranium, and that the absence of this feature in crocodilians might be derived.

  14. Estimating the Age of the Common Ancestor of a DNA Sample Using the Number of Segregating Sites

    PubMed Central

    Fu, Y. X.

    1996-01-01

    The number of segregating sites in a sample of DNA sequences and the age of the most recent common ancestor (MRCA) of the sequences in the sample are positively correlated. The value of the former can be used to estimate the value of the latter. Using the coalescent approach, we derive in this paper the joint probability distribution of the number of segregating sites and the age of the MRCA of a sample under the neutral Wright-Fisher model. From this distribution, we are able to compute the likelihood function of the number of segregating sites and the posterior probability of the age of the MRCA of a sample. Three point estimators and one interval estimator of the age of the MRCA are developed; their relationships and properties are investigated. The estimation of the age of the MRCA of human Y chromosomes from a sample of no variation is discussed. PMID:8889543

  15. [Contribution of ZHAO ji-an, a modern famous doctor handed down from ancestors, to the acupuncture and moxibustion cause ].

    PubMed

    Zhao, Shou-Mao

    2007-12-01

    ZHAO Jian was a modern famous doctor of Shanxi province, a family of TCM handed down from ancestors, with unique academic thought and manipulation of acupuncture and moxibustion, and made important contribution to the acup-moxibustion sciences, mainly including paying attention to medical ethics, noble character and high prestige, originating "the crimes of indiscriminately passing on acupuncture and moxibustion"; writing scholarly works, developing Chinese national culture; constantly creating needling instruments; paying attention to treating mind, regulating yin and yang, advocating treating both mind and form; promoting free circulation of qi to kill pain, combination of acupuncture with massage, originating "alternate application of mental needles and digital needling "; inheriting ancient medicine and ancient acupuncture and moxibustion methods, originating no-pain inserting needle method, and combination of acupuncture and moxibustion with massage.

  16. A molecular palaeobiological hypothesis for the origin of aplacophoran molluscs and their derivation from chiton-like ancestors.

    PubMed

    Vinther, Jakob; Sperling, Erik A; Briggs, Derek E G; Peterson, Kevin J

    2012-04-07

    Aplacophorans have long been argued to be basal molluscs. We present a molecular phylogeny, including the aplacophorans Neomeniomorpha (Solenogastres) and Chaetodermomorpha (Caudofoveata), which recovered instead the clade Aculifera (Aplacophora + Polyplacophora). Our relaxed Bayesian molecular clock estimates an Early Ordovician appearance of the aculiferan crown group consistent with the presence of chiton-like molluscs with seven or eight dorsal shell plates by the Late Cambrian (approx. 501-490 Ma). Molecular, embryological and palaeontological data indicate that aplacophorans, as well as chitons, evolved from a paraphyletic assemblage of chiton-like ancestors. The recovery of cephalopods as a sister group to aculiferans suggests that the plesiomorphic condition in molluscs might be a morphology similar to that found in monoplacophorans.

  17. Tn5060 from the Siberian permafrost is most closely related to the ancestor of Tn21 prior to integron acquisition.

    PubMed

    Kholodii, Gennady; Mindlin, Sofia; Petrova, Mayya; Minakhina, Svetlana

    2003-09-26

    A Tn21-related mercury resistance transposon, Tn5060, has been isolated from Pseudomonas sp. strain A19-1 from a 8,000-10,000-year-old Siberian permafrost sample, and sequenced. Like Tn21, the element transposes to different plasmids at a frequency of 10(-2)-10(-3) per target plasmid transfer. Comparison of the complete Tn5060 DNA sequence (8,667 bp) with that of Tn21 (19,672 bp) shows that Tn5060 does not contain integron In2 and deviates from Tn21 in four nucleotide positions. These and other comparative data demonstrate that Tn5060 is the most closely related of the characterized mercury resistances to the as yet hypothetical immediate ancestor of Tn21, TnX.

  18. Ancestors of two-spirits: Historical depictions of Native North American gender-crossing women through critical discourse analysis.

    PubMed

    Hemmilä, Anita

    2016-01-01

    Letters written by Christian men of European origin during the sixteenth-nineteenth centuries contain brief descriptions of gender-crossing individuals among indigenous Americans. Although now considered ethnocentrically biased because of the etic positioning of their authors, these historical sources are invaluable because they offer a glimpse of the ancestors of modern-day two-spirits. An application of critical discourse analysis to three depictions of gender-crossing females from the eighteenth and nineteenth centuries demonstrates that such women were favorably portrayed. These results differ dramatically from those obtained from my similar analysis of depictions of gender-crossing males. It also became evident that the three descriptions of gender-crossing women were not based on actual observations, but only on hearsay, which makes their use as primary sources questionable.

  19. Cultured normal mammalian tissue and process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Prewett, Tacey L. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor)

    1993-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cell aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  20. Crossroads between Bacterial and Mammalian Glycosyltransferases

    PubMed Central

    Brockhausen, Inka

    2014-01-01

    Bacterial glycosyltransferases (GT) often synthesize the same glycan linkages as mammalian GT; yet, they usually have very little sequence identity. Nevertheless, enzymatic properties, folding, substrate specificities, and catalytic mechanisms of these enzyme proteins may have significant similarity. Thus, bacterial GT can be utilized for the enzymatic synthesis of both bacterial and mammalian types of complex glycan structures. A comparison is made here between mammalian and bacterial enzymes that synthesize epitopes found in mammalian glycoproteins, and those found in the O antigens of Gram-negative bacteria. These epitopes include Thomsen–Friedenreich (TF or T) antigen, blood group O, A, and B, type 1 and 2 chains, Lewis antigens, sialylated and fucosylated structures, and polysialic acids. Many different approaches can be taken to investigate the substrate binding and catalytic mechanisms of GT, including crystal structure analyses, mutations, comparison of amino acid sequences, NMR, and mass spectrometry. Knowledge of the protein structures and functions helps to design GT for specific glycan synthesis and to develop inhibitors. The goals are to develop new strategies to reduce bacterial virulence and to synthesize vaccines and other biologically active glycan structures. PMID:25368613

  1. The cytogenetics of mammalian autosomal rearrangements

    SciTech Connect

    Daniel, A.

    1988-01-01

    Combining data from animal and clinical studies with classical cytogenetic observations, the volume provides information on various aspects of mammalian autosomal rearrangements. Topics range from the reproductive consequences to carriers of autosomal rearrangements to the application of structural rearrangements and DNA probes to gene mapping. In addition, the book presents an overview of new perspectives and future directions for research.

  2. Phospholipid synthesis and transport in mammalian cells.

    PubMed

    Vance, Jean E

    2015-01-01

    Membranes of mammalian subcellular organelles contain defined amounts of specific phospholipids that are required for normal functioning of proteins in the membrane. Despite the wide distribution of most phospholipid classes throughout organelle membranes, the site of synthesis of each phospholipid class is usually restricted to one organelle, commonly the endoplasmic reticulum (ER). Thus, phospholipids must be transported from their sites of synthesis to the membranes of other organelles. In this article, pathways and subcellular sites of phospholipid synthesis in mammalian cells are summarized. A single, unifying mechanism does not explain the inter-organelle transport of all phospholipids. Thus, mechanisms of phospholipid transport between organelles of mammalian cells via spontaneous membrane diffusion, via cytosolic phospholipid transfer proteins, via vesicles and via membrane contact sites are discussed. As an example of the latter mechanism, phosphatidylserine (PS) is synthesized on a region of the ER (mitochondria-associated membranes, MAM) and decarboxylated to phosphatidylethanolamine in mitochondria. Some evidence is presented suggesting that PS import into mitochondria occurs via membrane contact sites between MAM and mitochondria. Recent studies suggest that protein complexes can form tethers that link two types of organelles thereby promoting lipid transfer. However, many questions remain about mechanisms of inter-organelle phospholipid transport in mammalian cells. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Architecture of mammalian respiratory complex I.

    PubMed

    Vinothkumar, Kutti R; Zhu, Jiapeng; Hirst, Judy

    2014-11-06

    Complex I (NADH:ubiquinone oxidoreductase) is essential for oxidative phosphorylation in mammalian mitochondria. It couples electron transfer from NADH to ubiquinone with proton translocation across the energy-transducing inner membrane, providing electrons for respiration and driving ATP synthesis. Mammalian complex I contains 44 different nuclear- and mitochondrial-encoded subunits, with a combined mass of 1 MDa. The 14 conserved 'core' subunits have been structurally defined in the minimal, bacterial complex, but the structures and arrangement of the 30 'supernumerary' subunits are unknown. Here we describe a 5 Å resolution structure of complex I from Bos taurus heart mitochondria, a close relative of the human enzyme, determined by single-particle electron cryo-microscopy. We present the structures of the mammalian core subunits that contain eight iron-sulphur clusters and 60 transmembrane helices, identify 18 supernumerary transmembrane helices, and assign and model 14 supernumerary subunits. Thus, we considerably advance knowledge of the structure of mammalian complex I and the architecture of its supernumerary ensemble around the core domains. Our structure provides insights into the roles of the supernumerary subunits in regulation, assembly and homeostasis, and a basis for understanding the effects of mutations that cause a diverse range of human diseases.

  4. Architecture of mammalian respiratory complex I

    PubMed Central

    Hirst, Judy

    2014-01-01

    Complex I (NADH:ubiquinone oxidoreductase) is essential for oxidative phosphorylation in mammalian mitochondria. It couples electron transfer from NADH to ubiquinone with proton translocation across the energy-transducing inner membrane, providing electrons for respiration and driving ATP synthesis. Mammalian complex I contains 44 different nuclear- and mitochondrial-encoded subunits, with a combined mass of 1 MDa. The fourteen conserved ‘core’ subunits have been structurally defined in the minimal, bacterial complex, but the structures and arrangement of the 30 ‘supernumerary’ subunits are unknown. Here, we describe a 5 Å resolution structure of complex I from Bos taurus heart mitochondria, a close relative of the human enzyme, determined by single-particle electron cryo-microscopy. We present the structures of the mammalian core subunits that contain eight iron-sulphur clusters and 60 transmembrane helices, identify 18 supernumerary transmembrane helices, and assign and model 14 supernumerary subunits. Thus, we significantly advance knowledge of the structure of mammalian complex I and the architecture of its supernumerary ensemble around the core domains. Our structure provides insights into the roles of the supernumerary subunits in regulation, assembly and homeostasis, and a basis for understanding the effects of mutations that cause a diverse range of human diseases. PMID:25209663

  5. Medical and experimental mammalian genetics: A perspective

    SciTech Connect

    McKusick, V.A.; Roderick, T.H.; Mori, J.; Paul, N.W.

    1987-01-01

    This book contains 14 papers. Some of the titles are: Structure and Organization of Mammalian Chromosomes: Normal and Abnormal; Globin Gene Structure and the Nature of Mutation; Retroviral DNA Content of the Mouse Genome; Maternal Genes: Mitochondrial Diseases; Human Evolution; and Prospects for Gene Replacement Therapy.

  6. Structure of mammalian respiratory complex I

    PubMed Central

    Hirst, Judy

    2016-01-01

    Complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in the cell, powers ATP synthesis in mammalian mitochondria by using the reducing potential of NADH to drive protons across the inner membrane. Mammalian complex I1 contains 45 subunits, comprising 14 core subunits that house the catalytic machinery and are conserved from bacteria to humans, and a mammalian-specific cohort of 31 supernumerary subunits1,2. Knowledge about the structures and functions of the supernumerary subunits is fragmentary. Here, we describe a 4.2 Å resolution single-particle cryoEM structure of complex I from Bos taurus. We locate and model all 45 subunits to provide the entire structure of the mammalian complex. Furthermore, computational sorting of the particles identified different structural classes, related by subtle domain movements, which reveal conformationally-dynamic regions and match biochemical descriptions of the ‘active-to-deactive’ enzyme transition that occurs during hypoxia3,4. Thus, our structures provide a foundation for understanding complex I assembly5 and the effects of mutations that cause clinically-relevant complex I dysfunctions6, insights into the structural and functional roles of the supernumerary subunits, and new information on the mechanism and regulation of catalysis. PMID:27509854

  7. A promoter-level mammalian expression atlas

    PubMed Central

    2015-01-01

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research. PMID:24670764

  8. Ticks Take Cues from Mammalian Interferon.

    PubMed

    de Silva, Aravinda M

    2016-07-13

    Interferons are considered a first line of immune defense restricted to vertebrates. In this issue of Cell Host & Microbe, Smith et al. (2016) demonstrate that mammalian interferon γ activates an antimicrobial response within ticks feeding on blood. The study suggests that arthropods have a parallel interferon-like defense system.

  9. A promoter-level mammalian expression atlas.

    PubMed

    Forrest, Alistair R R; Kawaji, Hideya; Rehli, Michael; Baillie, J Kenneth; de Hoon, Michiel J L; Haberle, Vanja; Lassmann, Timo; Kulakovskiy, Ivan V; Lizio, Marina; Itoh, Masayoshi; Andersson, Robin; Mungall, Christopher J; Meehan, Terrence F; Schmeier, Sebastian; Bertin, Nicolas; Jørgensen, Mette; Dimont, Emmanuel; Arner, Erik; Schmidl, Christian; Schaefer, Ulf; Medvedeva, Yulia A; Plessy, Charles; Vitezic, Morana; Severin, Jessica; Semple, Colin A; Ishizu, Yuri; Young, Robert S; Francescatto, Margherita; Alam, Intikhab; Albanese, Davide; Altschuler, Gabriel M; Arakawa, Takahiro; Archer, John A C; Arner, Peter; Babina, Magda; Rennie, Sarah; Balwierz, Piotr J; Beckhouse, Anthony G; Pradhan-Bhatt, Swati; Blake, Judith A; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Burroughs, A Maxwell; Califano, Andrea; Cannistraci, Carlo V; Carbajo, Daniel; Chen, Yun; Chierici, Marco; Ciani, Yari; Clevers, Hans C; Dalla, Emiliano; Davis, Carrie A; Detmar, Michael; Diehl, Alexander D; Dohi, Taeko; Drabløs, Finn; Edge, Albert S B; Edinger, Matthias; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Fagiolini, Michela; Fairbairn, Lynsey; Fang, Hai; Farach-Carson, Mary C; Faulkner, Geoffrey J; Favorov, Alexander V; Fisher, Malcolm E; Frith, Martin C; Fujita, Rie; Fukuda, Shiro; Furlanello, Cesare; Furino, Masaaki; Furusawa, Jun-ichi; Geijtenbeek, Teunis B; Gibson, Andrew P; Gingeras, Thomas; Goldowitz, Daniel; Gough, Julian; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J; Hamaguchi, Masahide; Hara, Mitsuko; Harbers, Matthias; Harshbarger, Jayson; Hasegawa, Akira; Hasegawa, Yuki; Hashimoto, Takehiro; Herlyn, Meenhard; Hitchens, Kelly J; Ho Sui, Shannan J; Hofmann, Oliver M; Hoof, Ilka; Hori, Furni; Huminiecki, Lukasz; Iida, Kei; Ikawa, Tomokatsu; Jankovic, Boris R; Jia, Hui; Joshi, Anagha; Jurman, Giuseppe; Kaczkowski, Bogumil; Kai, Chieko; Kaida, Kaoru; Kaiho, Ai; Kajiyama, Kazuhiro; Kanamori-Katayama, Mutsumi; Kasianov, Artem S; Kasukawa, Takeya; Katayama, Shintaro; Kato, Sachi; Kawaguchi, Shuji; Kawamoto, Hiroshi; Kawamura, Yuki I; Kawashima, Tsugumi; Kempfle, Judith S; Kenna, Tony J; Kere, Juha; Khachigian, Levon M; Kitamura, Toshio; Klinken, S Peter; Knox, Alan J; Kojima, Miki; Kojima, Soichi; Kondo, Naoto; Koseki, Haruhiko; Koyasu, Shigeo; Krampitz, Sarah; Kubosaki, Atsutaka; Kwon, Andrew T; Laros, Jeroen F J; Lee, Weonju; Lennartsson, Andreas; Li, Kang; Lilje, Berit; Lipovich, Leonard; Mackay-Sim, Alan; Manabe, Ri-ichiroh; Mar, Jessica C; Marchand, Benoit; Mathelier, Anthony; Mejhert, Niklas; Meynert, Alison; Mizuno, Yosuke; de Lima Morais, David A; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Motakis, Efthymios; Motohashi, Hozumi; Mummery, Christine L; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakachi, Yutaka; Nakahara, Fumio; Nakamura, Toshiyuki; Nakamura, Yukio; Nakazato, Kenichi; van Nimwegen, Erik; Ninomiya, Noriko; Nishiyori, Hiromi; Noma, Shohei; Noma, Shohei; Noazaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Ohimiya, Hiroko; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A; Pain, Arnab; Passier, Robert; Patrikakis, Margaret; Persson, Helena; Piazza, Silvano; Prendergast, James G D; Rackham, Owen J L; Ramilowski, Jordan A; Rashid, Mamoon; Ravasi, Timothy; Rizzu, Patrizia; Roncador, Marco; Roy, Sugata; Rye, Morten B; Saijyo, Eri; Sajantila, Antti; Saka, Akiko; Sakaguchi, Shimon; Sakai, Mizuho; Sato, Hiroki; Savvi, Suzana; Saxena, Alka; Schneider, Claudio; Schultes, Erik A; Schulze-Tanzil, Gundula G; Schwegmann, Anita; Sengstag, Thierry; Sheng, Guojun; Shimoji, Hisashi; Shimoni, Yishai; Shin, Jay W; Simon, Christophe; Sugiyama, Daisuke; Sugiyama, Takaai; Suzuki, Masanori; Suzuki, Naoko; Swoboda, Rolf K; 't Hoen, Peter A C; Tagami, Michihira; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Tatsukawa, Hideki; Tatum, Zuotian; Thompson, Mark; Toyodo, Hiroo; Toyoda, Tetsuro; Valen, Elvind; van de Wetering, Marc; van den Berg, Linda M; Verado, Roberto; Vijayan, Dipti; Vorontsov, Ilya E; Wasserman, Wyeth W; Watanabe, Shoko; Wells, Christine A; Winteringham, Louise N; Wolvetang, Ernst; Wood, Emily J; Yamaguchi, Yoko; Yamamoto, Masayuki; Yoneda, Misako; Yonekura, Yohei; Yoshida, Shigehiro; Zabierowski, Susan E; Zhang, Peter G; Zhao, Xiaobei; Zucchelli, Silvia; Summers, Kim M; Suzuki, Harukazu; Daub, Carsten O; Kawai, Jun; Heutink, Peter; Hide, Winston; Freeman, Tom C; Lenhard, Boris; Bajic, Vladimir B; Taylor, Martin S; Makeev, Vsevolod J; Sandelin, Albin; Hume, David A; Carninci, Piero; Hayashizaki, Yoshihide

    2014-03-27

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly 'housekeeping', whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.

  10. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  11. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, Gisela K.

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  12. Buds from the tree of life: linking compartmentalized prokaryotes and eukaryotes by a non-hyperthermophile common ancestor and implications for understanding Archaean microbial communities

    NASA Astrophysics Data System (ADS)

    Fuerst, John A.; Nisbet, Euan G.

    2004-07-01

    The origin of the first nucleated eukaryote and the nature of the last common ancestor of the three domains of life are major questions in the evolutionary biology of cellular life on Earth, the solutions to which may be linked. Planctomycetes are unusual compartmentalized bacteria that include a membrane-bounded nucleoid. The possibility that they constitute a very deep branch of the domain Bacteria suggests a model for the evolution of the three domains of life from a last common ancestor that was a mesophile or moderate thermophile with a compartmentalized eukaryote-like cell plan. Planctomycetes and some members of the domain Archaea may have retained cell compartmentalization present in an original eukaryote-like last common ancestor of the three domains of life. The implications of this model for possible habitats of the early evolution of domains of cellular life and for interpretation of geological evidence relating to those habitats and the early emergence of life are examined here.

  13. The life history of retrocopies illuminates the evolution of new mammalian genes.

    PubMed

    Carelli, Francesco Nicola; Hayakawa, Takashi; Go, Yasuhiro; Imai, Hiroo; Warnefors, Maria; Kaessmann, Henrik

    2016-03-01

    New genes contribute substantially to adaptive evolutionary innovation, but the functional evolution of new mammalian genes has been little explored at a broad scale. Previous work established mRNA-derived gene duplicates, known as retrocopies, as models for the study of new gene origination. Here we combine mammalian transcriptomic and epigenomic data to unveil the processes underlying the evolution of stripped-down retrocopies into complex new genes. We show that although some robustly expressed retrocopies are transcribed from preexisting promoters, most evolved new promoters from scratch or recruited proto-promoters in their genomic vicinity. In particular, many retrocopy promoters emerged from ancestral enhancers (or bivalent regulatory elements) or are located in CpG islands not associated with other genes. We detected 88-280 selectively preserved retrocopies per mammalian species, illustrating that these mechanisms facilitated the birth of many functional retrogenes during mammalian evolution. The regulatory evolution of originally monoexonic retrocopies was frequently accompanied by exon gain, which facilitated co-option of distant promoters and allowed expression of alternative isoforms. While young retrogenes are often initially expressed in the testis, increased regulatory and structural complexities allowed retrogenes to functionally diversify and evolve somatic organ functions, sometimes as complex as those of their parents. Thus, some retrogenes evolved the capacity to temporarily substitute for their parents during the process of male meiotic X inactivation, while others rendered parental functions superfluous, allowing for parental gene loss. Overall, our reconstruction of the "life history" of mammalian retrogenes highlights retroposition as a general model for understanding new gene birth and functional evolution.

  14. The life history of retrocopies illuminates the evolution of new mammalian genes

    PubMed Central

    Carelli, Francesco Nicola; Hayakawa, Takashi; Go, Yasuhiro; Imai, Hiroo; Warnefors, Maria; Kaessmann, Henrik

    2016-01-01

    New genes contribute substantially to adaptive evolutionary innovation, but the functional evolution of new mammalian genes has been little explored at a broad scale. Previous work established mRNA-derived gene duplicates, known as retrocopies, as models for the study of new gene origination. Here we combine mammalian transcriptomic and epigenomic data to unveil the processes underlying the evolution of stripped-down retrocopies into complex new genes. We show that although some robustly expressed retrocopies are transcribed from preexisting promoters, most evolved new promoters from scratch or recruited proto-promoters in their genomic vicinity. In particular, many retrocopy promoters emerged from ancestral enhancers (or bivalent regulatory elements) or are located in CpG islands not associated with other genes. We detected 88–280 selectively preserved retrocopies per mammalian species, illustrating that these mechanisms facilitated the birth of many functional retrogenes during mammalian evolution. The regulatory evolution of originally monoexonic retrocopies was frequently accompanied by exon gain, which facilitated co-option of distant promoters and allowed expression of alternative isoforms. While young retrogenes are often initially expressed in the testis, increased regulatory and structural complexities allowed retrogenes to functionally diversify and evolve somatic organ functions, sometimes as complex as those of their parents. Thus, some retrogenes evolved the capacity to temporarily substitute for their parents during the process of male meiotic X inactivation, while others rendered parental functions superfluous, allowing for parental gene loss. Overall, our reconstruction of the “life history” of mammalian retrogenes highlights retroposition as a general model for understanding new gene birth and functional evolution. PMID:26728716

  15. Helium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells.

    PubMed

    Schürmann, Matthias; Frese, Natalie; Beyer, André; Heimann, Peter; Widera, Darius; Mönkemöller, Viola; Huser, Thomas; Kaltschmidt, Barbara; Kaltschmidt, Christian; Gölzhäuser, Armin

    2015-11-18

    Cell membranes are composed of 2D bilayers of amphipathic lipids, which allow a lateral movement of the respective membrane components. These components are arranged in an inhomogeneous manner as transient micro- and nanodomains, which are believed to be crucially involved in the regulation of signal transduction pathways in mammalian cells. Because of their small size (diameter 10-200 nm), membrane nanodomains cannot be directly imaged using conventional light microscopy. Here, direct visualization of cell membrane nanodomains by helium ion microscopy (HIM) is presented. It is shown that HIM is capable to image biological specimens without any conductive coating and that HIM images clearly allow the identification of nanodomains in the ultrastructure of membranes with 1.5 nm resolution. The shape of these nanodomains is preserved by fixation of the surrounding unsaturated fatty acids while saturated fatty acids inside the nanodomains are selectively removed. Atomic force microscopy, fluorescence microscopy, 3D structured illumination microscopy, and direct stochastic optical reconstruction microscopy provide additional evidence that the structures in the HIM images of cell membranes originate from membrane nanodomains. The nanodomains observed by HIM have an average diameter of 20 nm and are densely arranged with a minimal nearest neighbor distance of ≈ 15 nm. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Firefly luciferase gene: structure and expression in mammalian cells.

    PubMed Central

    de Wet, J R; Wood, K V; DeLuca, M; Helinski, D R; Subramani, S

    1987-01-01

    The nucleotide sequence of the luciferase gene from the firefly Photinus pyralis was determined from the analysis of cDNA and genomic clones. The gene contains six introns, all less than 60 bases in length. The 5' end of the luciferase mRNA was determined by both S1 nuclease analysis and primer extension. Although the luciferase cDNA clone lacked the six N-terminal codons of the open reading frame, we were able to reconstruct the equivalent of a full-length cDNA using the genomic clone as a source of the missing 5' sequence. The full-length, intronless luciferase gene was inserted into mammalian expression vectors and introduced into monkey (CV-1) cells in which enzymatically active firefly luciferase was transiently expressed. In addition, cell lines stably expressing firefly luciferase were isolated. Deleting a portion of the 5'-untranslated region of the luciferase gene removed an upstream initiation (AUG) codon and resulted in a twofold increase in the level of luciferase expression. The ability of the full-length luciferase gene to activate cryptic or enhancerless promoters was also greatly reduced or eliminated by this 5' deletion. Assaying the expression of luciferase provides a rapid and inexpensive method for monitoring promoter activity. Depending on the instrumentation employed to detect luciferase activity, we estimate this assay to be from 30- to 1,000-fold more sensitive than assaying chloramphenicol acetyltransferase expression. Images PMID:3821727

  17. Surgical reconstruction of TMJ.

    PubMed

    Ramil Novo, V M; Garcìa, A G; Berini Aytès, L; Escoda, C G

    1999-01-01

    Certain situations and pathological processes that arise with temporomandibular joint destruction can only be resolved with surgical reconstructive procedures in order to attempt a functional and anatomical rehabilitation of this joint. Many of these situations can be surgically treated with the patient's own autologous tissues. However, in some patients reconstruction is complex and the use of autologous tissues is unadvisable whereas reconstruction utilizing alloplastic materials may be an appropriate alternative. The following report describes 4 clinical cases in which autologous grafts or Christensen joint prosthesis are employed in temporomandibular joint reconstruction.

  18. Speckle variance OCT imaging of the vasculature in live mammalian embryos

    NASA Astrophysics Data System (ADS)

    Sudheendran, N.; Syed, S. H.; Dickinson, M. E.; Larina, I. V.; Larin, K. V.

    2011-03-01

    Live imaging of normal and abnormal vascular development in mammalian embryos is important tool in embryonic research, which can potentially contribute to understanding, prevention and treatment of cardiovascular birth defects. Here, we used speckle variance analysis of swept source optical coherence tomography (OCT) data sets acquired from live mouse embryos to reconstruct the 3-D structure of the embryonic vasculature. Both Doppler OCT and speckle variance algorithms were used to reconstruct the vascular structure. The results demonstrates that speckle variance imaging provides more accurate representation of the vascular structure, as it is not sensitive to the blood flow direction, while the Doppler OCT imaging misses blood flow component perpendicular to the beam direction. These studies suggest that speckle variance imaging is a promising tool to study vascular development in cultured mouse embryos.

  19. Yeast ancestral genome reconstructions: the possibilities of computational methods II.

    PubMed

    Chauve, Cedric; Gavranovic, Haris; Ouangraoua, Aida; Tannier, Eric

    2010-09-01

    Since the availability of assembled eukaryotic genomes, the first one being a budding yeast, many computational methods for the reconstruction of ancestral karyotypes and gene orders have been developed. The difficulty has always been to assess their reliability, since we often miss a good knowledge of the true ancestral genomes to compare their results to, as well as a good knowledge of the evolutionary mechanisms to test them on realistic simulated data. In this study, we propose some measures of reliability of several kinds of methods, and apply them to infer and analyse the architectures of two ancestral yeast genomes, based on the sequence of seven assembled extant ones. The pre-duplication common ancestor of S. cerevisiae and C. glabrata has been inferred manually by Gordon et al. (Plos Genet. 2009). We show why, in this case, a good convergence of the methods is explained by some properties of the data, and why results are reliable. In another study, Jean et al. (J. Comput Biol. 2009) proposed an ancestral architecture of the last common ancestor of S. kluyveri, K. thermotolerans, K. lactis, A. gossypii, and Z. rouxii inferred by a computational method. In this case, we show that the dataset does not seem to contain enough information to infer a reliable architecture, and we construct a higher resolution dataset which gives a good reliability on a new ancestral configuration.

  20. Lactate Metabolism is Associated with Mammalian Mitochondria

    PubMed Central

    Chen, Ying-Jr; Mahieu, Nathaniel G.; Huang, Xiaojing; Singh, Manmilan; Crawford, Peter A; Johnson, Stephen L.; Gross, Richard W.; Schaefer, Jacob

    2016-01-01

    It is well established that lactate secreted by fermenting cells can be oxidized or used as a gluconeogenic substrate by other cells and tissues. Within the fermenting cell itself, however, it is generally assumed that lactate is produced to replenish NAD+ and then is secreted. Here we explored the possibility that cytosolic lactate is metabolized by the mitochondria of fermenting mammalian cells. We found that fermenting HeLa and H460 cells utilize exogenous lactate carbon to synthesize a large percentage of their lipids. With high-resolution mass spectrometry, we found that both 13C and 2-2H labels from enriched lactate enter the mitochondria. The lactate dehydrogenase (LDH) inhibitor oxamate decreased respiration of isolated mitochondria incubated in lactate, but not isolated mitochondria incubated in pyruvate. Additionally, transmission electron microscopy (TEM) showed that LDHB localizes to the mitochondria. Taken together, our results demonstrate a link between lactate metabolism and the mitochondria of fermenting mammalian cells. PMID:27618187

  1. Mammalian lipoxygenases and their biological relevance

    PubMed Central

    Kuhn, Hartmut; Banthiya, Swathi; van Leyen, Klaus

    2015-01-01

    Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOX oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. PMID:25316652

  2. Circadian aspects of mammalian parturition: a review.

    PubMed

    Olcese, James

    2012-02-05

    The identification of circadian clocks in endocrine tissues has added considerable depth and complexity to our understanding of their physiology. A growing body of research reveals circadian clock gene expression in the uterus of non-pregnant and pregnant rodents. This review will focus on the mammalian uterus and its rhythmicity, particularly as it pertains to the circadian timing of parturition. This key event in the reproductive axis shows dramatic species-specific differences in its circadian phase. It is proposed here that these differences in the phasing of mammalian parturition are likely a function of opposite uterine cell responses to humoral cues. The argument will be made that melatonin fulfills many of the criteria to serve as a circadian signal in the initiation of human parturition, including specific actions on uterine smooth muscle cells that are consistent with a role for this hormone in the circadian timing of parturition.

  3. Avian and Mammalian Facilitative Glucose Transporters.

    PubMed

    Byers, Mary Shannon; Howard, Christianna; Wang, Xiaofei

    2017-04-05

    The GLUT members belong to a family of glucose transporter proteins that facilitate glucose transport across the cell membrane. The mammalian GLUT family consists of thirteen members (GLUTs 1-12 and H⁺-myo-inositol transporter (HMIT)). Humans have a recently duplicated GLUT member, GLUT14. Avians express the majority of GLUT members. The arrangement of multiple GLUTs across all somatic tissues signifies the important role of glucose across all organisms. Defects in glucose transport have been linked to metabolic disorders, insulin resistance and diabetes. Despite the essential importance of these transporters, our knowledge regarding GLUT members in avians is fragmented. It is clear that there are no chicken orthologs of mammalian GLUT4 and GLUT7. Our examination of GLUT members in the chicken revealed that some chicken GLUT members do not have corresponding orthologs in mammals. We review the information regarding GLUT orthologs and their function and expression in mammals and birds, with emphasis on chickens and humans.

  4. Potassium transport in the mammalian collecting duct.

    PubMed

    Muto, S

    2001-01-01

    The mammalian collecting duct plays a dominant role in regulating K(+) excretion by the nephron. The collecting duct exhibits axial and intrasegmental cell heterogeneity and is composed of at least two cell types: collecting duct cells (principal cells) and intercalated cells. Under normal circumstances, the collecting duct cell in the cortical collecting duct secretes K(+), whereas under K(+) depletion, the intercalated cell reabsorbs K(+). Assessment of the electrochemical driving forces and of membrane conductances for transcellular and paracellular electrolyte movement, the characterization of several ATPases, patch-clamp investigation, and cloning of the K(+) channel have provided important insights into the role of pumps and channels in those tubule cells that regulate K(+) secretion and reabsorption. This review summarizes K(+) transport properties in the mammalian collecting duct. Special emphasis is given to the mechanisms of how K(+) transport is regulated in the collecting duct.

  5. Mammalian Sperm Motility: Observation and Theory

    NASA Astrophysics Data System (ADS)

    Gaffney, E. A.; Gadêlha, H.; Smith, D. J.; Blake, J. R.; Kirkman-Brown, J. C.

    2011-01-01

    Mammalian spermatozoa motility is a subject of growing importance because of rising human infertility and the possibility of improving animal breeding. We highlight opportunities for fluid and continuum dynamics to provide novel insights concerning the mechanics of these specialized cells, especially during their remarkable journey to the egg. The biological structure of the motile sperm appendage, the flagellum, is described and placed in the context of the mechanics underlying the migration of mammalian sperm through the numerous environments of the female reproductive tract. This process demands certain specific changes to flagellar movement and motility for which further mechanical insight would be valuable, although this requires improved modeling capabilities, particularly to increase our understanding of sperm progression in vivo. We summarize current theoretical studies, highlighting the synergistic combination of imaging and theory in exploring sperm motility, and discuss the challenges for future observational and theoretical studies in understanding the underlying mechanics.

  6. Expanding the genetic code of mammalian cells.

    PubMed

    Italia, James S; Zheng, Yunan; Kelemen, Rachel E; Erickson, Sarah B; Addy, Partha S; Chatterjee, Abhishek

    2017-04-15

    In the last two decades, unnatural amino acid (UAA) mutagenesis has emerged as a powerful new method to probe and engineer protein structure and function. This technology enables precise incorporation of a rapidly expanding repertoire of UAAs into predefined sites of a target protein expressed in living cells. Owing to the small footprint of these genetically encoded UAAs and the large variety of enabling functionalities they offer, this technology has tremendous potential for deciphering the delicate and complex biology of the mammalian cells. Over the last few years, exciting progress has been made toward expanding the toolbox of genetically encoded UAAs in mammalian cells, improving the efficiency of their incorporation and developing innovative applications. Here, we provide our perspective on these recent developments and highlight the current challenges that must be overcome to realize the full potential of this technology. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  7. Ricin trafficking in plant and mammalian cells.

    PubMed

    Lord, J Michael; Spooner, Robert A

    2011-07-01

    Ricin is a heterodimeric plant protein that is potently toxic to mammalian and many other eukaryotic cells. It is synthesized and stored in the endosperm cells of maturing Ricinus communis seeds (castor beans). The ricin family has two major members, both, lectins, collectively known as Ricinus communis agglutinin ll (ricin) and Ricinus communis agglutinin l (RCA). These proteins are stored in vacuoles within the endosperm cells of mature Ricinus seeds and they are rapidly broken down by hydrolysis during the early stages of post-germinative growth. Both ricin and RCA traffic within the plant cell from their site of synthesis to the storage vacuoles, and when they intoxicate mammalian cells they traffic from outside the cell to their site of action. In this review we will consider both of these trafficking routes.

  8. Synaptic Release at Mammalian Bipolar Cell Terminals

    PubMed Central

    Wan, Qun-Fang; Heidelberger, Ruth

    2011-01-01

    Bipolar cells play a vital role in the transfer of visual information across the vertebrate retina. The synaptic output of these neurons is regulated by factors that are extrinsic and intrinsic. Relatively little is known about the intrinsic factors that regulate neurotransmitter exocytosis. Much of what we know about intrinsic presynaptic mechanisms that regulate glutamate release has come from the study of the unusually large and accessible synaptic terminal of the goldfish rod-dominant bipolar cell, the Mb1 bipolar cell. However, over the past several years, examination of presynaptic mechanisms governing neurotransmitter release has been extended to the mammalian rod bipolar cell. In this review, we discuss the recent advances in our understanding of synaptic vesicle dynamics and neurotransmitter release in rodent rod bipolar cells and consider how these properties help shape the synaptic output of the mammalian retina. PMID:21272392

  9. [Breast reconstruction after mastectomy].

    PubMed

    Ho Quoc, C; Delay, E

    2013-02-01

    The mutilating surgery for breast cancer causes deep somatic and psychological sequelae. Breast reconstruction can mitigate these effects and permit the patient to help rebuild their lives. The purpose of this paper is to focus on breast reconstruction techniques and on factors involved in breast reconstruction. The methods of breast reconstruction are presented: objectives, indications, different techniques, operative risks, and long-term monitoring. Many different techniques can now allow breast reconstruction in most patients. Clinical cases are also presented in order to understand the results we expect from a breast reconstruction. Breast reconstruction provides many benefits for patients in terms of rehabilitation, wellness, and quality of life. In our mind, breast reconstruction should be considered more as an opportunity and a positive choice (the patient can decide to do it), than as an obligation (that the patient would suffer). The consultation with the surgeon who will perform the reconstruction is an important step to give all necessary informations. It is really important that the patient could speak again with him before undergoing reconstruction, if she has any doubt. The quality of information given by medical doctors is essential to the success of psychological intervention. This article was written in a simple, and understandable way to help gynecologists giving the best information to their patients. It is maybe also possible to let them a copy of this article, which would enable them to have a written support and would facilitate future consultation with the surgeon who will perform the reconstruction. Copyright © 2012. Published by Elsevier Masson SAS.

  10. Basic techniques in mammalian cell tissue culture.

    PubMed

    Phelan, Katy; May, Kristin M

    2015-03-02

    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells.

  11. Isolation of genomic DNA from mammalian cells.

    PubMed

    Koh, Cheryl M

    2013-01-01

    The isolation of genomic DNA from mammalian cells is a routine molecular biology laboratory technique with numerous downstream applications. The isolated DNA can be used as a template for PCR, cloning, and genotyping and to generate genomic DNA libraries. It can also be used for sequencing to detect mutations and other alterations, and for DNA methylation analyses. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Structure and function of mammalian cilia.

    PubMed

    Satir, Peter; Christensen, Søren T

    2008-06-01

    In the past half century, beginning with electron microscopic studies of 9 + 2 motile and 9 + 0 primary cilia, novel insights have been obtained regarding the structure and function of mammalian cilia. All cilia can now be viewed as sensory cellular antennae that coordinate a large number of cellular signaling pathways, sometimes coupling the signaling to ciliary motility or alternatively to cell division and differentiation. This view has had unanticipated consequences for our understanding of developmental processes and human disease.

  13. Genome sequence and annotation of Trichoderma parareesei, the ancestor of the cellulase producer Trichoderma reesei

    SciTech Connect

    Yang, Dongqing; Pomraning, Kyle; Kopchinskiy, Alexey; Karimi, Aghcheh Razieh; Atanasova, Lea; Chenthamara, Komal; Baker, Scott E.; Zhang, Ruifu; Shen, Qirong; Freitag, Michael; Kubicek, Christian P.; Druzhinina, Irina S.

    2015-08-13

    The filamentous fungus Trichoderma parareesei is the asexually reproducing ancestor of Trichoderma reesei, the holomorphic industrial producer of cellulase and hemicellulase. Here, we present the genome sequence of the T. parareesei type strain CBS 125925, which contains genes for 9,318 proteins.

  14. Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant (Solanum melongena) and its wild ancestor (S. incanum)

    USDA-ARS?s Scientific Manuscript database

    Solanum incanum, the wild ancestor of eggplant (S. melongena) has been considered as a source of variation for high phenolic acids content in breeding programs aimed at improving the functional quality of eggplant. We have evaluated the morphological and phenolic acids content in an interspecific fa...

  15. Physical mapping of a large plant genome using global high-information-content-fingerprinting: the distal region of the wheat ancestor Aegilops tauschii chromosome 3DS.

    USDA-ARS?s Scientific Manuscript database

    Physical maps employing libraries of bacterial artificial chromosome (BAC) clones are essential for comparative genomics and sequencing of large and repetitive genomes such as those of the hexaploid bread wheat. The diploid ancestor of wheat genome, Aegilops tauschii, is used as a resource for wheat...

  16. Plate tectonics of virus shell assembly and reorganization in phage φ8, a distant relative of mammalian reoviruses.

    PubMed

    El Omari, Kamel; Sutton, Geoff; Ravantti, Janne J; Zhang, Hanwen; Walter, Thomas S; Grimes, Jonathan M; Bamford, Dennis H; Stuart, David I; Mancini, Erika J

    2013-08-06

    The hallmark of a virus is its capsid, which harbors the viral genome and is formed from protein subunits, which assemble following precise geometric rules. dsRNA viruses use an unusual protein multiplicity (120 copies) to form their closed capsids. We have determined the atomic structure of the capsid protein (P1) from the dsRNA cystovirus Φ8. In the crystal P1 forms pentamers, very similar in shape to facets of empty procapsids, suggesting an unexpected assembly pathway that proceeds via a pentameric intermediate. Unlike the elongated proteins used by dsRNA mammalian reoviruses, P1 has a compact trapezoid-like shape and a distinct arrangement in the shell, with two near-identical conformers in nonequivalent structural environments. Nevertheless, structural similarity with the analogous protein from the mammalian viruses suggests a common ancestor. The unusual shape of the molecule may facilitate dramatic capsid expansion during phage maturation, allowing P1 to switch interaction interfaces to provide capsid plasticity. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Comparison of amphibian and mammalian thyroperoxidase ...

    EPA Pesticide Factsheets

    Thyroperoxidase (TPO) catalyzes the production of thyroid hormones in the vertebrate thyroid gland by oxidizing iodide (I- ) to produce iodinated tyrosines on thyroglobulin, and further coupling of specific mono- or di-iodinated tyrosines to generate the triiodo- and tetra-iodothyronine, precursors to thyroid hormone. This enzyme is a target for thyroid disrupting chemicals. TPO-inhibition by xenobiotics is a molecular initiating event that is known to perturb the thyroid axis by preventing synthesis of thyroid hormone. Previous work on TPO-inhibition has been focused on mammalian TPO; specifically, the rat and pig. A primary objective of this experiment was to directly measure TPO activity in a non-mammalian system, in this case a thyroid gland homogenate from Xenopus laevis; as well as compare chemical inhibition from past mammalian studies to the amphibian data generated. Thyroid glands obtained from X. laevis tadpoles at NF stages 58-60, were pooled and homogenized by sonication in phosphate buffer. This homogenate was then used to test 24 chemicals for inhibition of TPO as measured by conversion of Amplex UltraRed (AUR) substrate to its fluorescent product. The test chemicals were selected based upon previous results from rat in vitro TPO assays, and X. laevis in vitro and in vivo studies for thyroid disrupting endpoints, and included both positive and negative chemicals in these assays. An initial screening of the chemicals was done at a single high con

  18. Epigenetic Regulation of the Mammalian Cell

    PubMed Central

    Baverstock, Keith; Rönkkö, Mauno

    2008-01-01

    Background Understanding how mammalian cells are regulated epigenetically to express phenotype is a priority. The cellular phenotypic transition, induced by ionising radiation, from a normal cell to the genomic instability phenotype, where the ability to replicate the genotype accurately is compromised, illustrates important features of epigenetic regulation. Based on this phenomenon and earlier work we propose a model to describe the mammalian cell as a self assembled open system operating in an environment that includes its genotype, neighbouring cells and beyond. Phenotype is represented by high dimensional attractors, evolutionarily conditioned for stability and robustness and contingent on rules of engagement between gene products encoded in the genetic network. Methodology/Findings We describe how this system functions and note the indeterminacy and fluidity of its internal workings which place it in the logical reasoning framework of predicative logic. We find that the hypothesis is supported by evidence from cell and molecular biology. Conclusions Epigenetic regulation and memory are fundamentally physical, as opposed to chemical, processes and the transition to genomic instability is an important feature of mammalian cells with probable fundamental relevance to speciation and carcinogenesis. A source of evolutionarily selectable variation, in terms of the rules of engagement between gene products, is seen as more likely to have greater prominence than genetic variation in an evolutionary context. As this epigenetic variation is based on attractor states phenotypic changes are not gradual; a phenotypic transition can involve the changed contribution of several gene products in a single step. PMID:18523589

  19. Mutation hot spots in mammalian mitochondrial DNA.

    PubMed

    Galtier, Nicolas; Enard, David; Radondy, Yoan; Bazin, Eric; Belkhir, Khalid

    2006-02-01

    Animal mitochondrial DNA is characterized by a remarkably high level of within-species homoplasy, that is, phylogenetic incongruence between sites of the molecule. Several investigators have invoked recombination to explain it, challenging the dogma of maternal, clonal mitochondrial inheritance in animals. Alternatively, a high level of homoplasy could be explained by the existence of mutation hot spots. By using an exhaustive mammalian data set, we test the hot spot hypothesis by comparing patterns of site-specific polymorphism and divergence in several groups of closely related species, including hominids. We detect significant co-occurrence of synonymous polymorphisms among closely related species in various mammalian groups, and a correlation between the site-specific levels of variability within humans (on one hand) and between Hominoidea species (on the other hand), indicating that mutation hot spots actually exist in mammalian mitochondrial coding regions. The whole data, however, cannot be explained by a simple mutation hot spots model. Rather, we show that the site-specific mutation rate quickly varies in time, so that the same sites are not hypermutable in distinct lineages. This study provides a plausible mutation model that potentially accounts for the peculiar distribution of mitochondrial sequence variation in mammals without the need for invoking recombination. It also gives hints about the proximal causes of mitochondrial site-specific hypermutability in humans.

  20. Mammalian Synthetic Biology: Engineering Biological Systems.

    PubMed

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  1. Aneuploidy in mammalian somatic cells in vivo.

    PubMed

    Cimino, M C; Tice, R R; Liang, J C

    1986-01-01

    Aneuploidy is an important potential source of human disease and of reproductive failure. Nevertheless, the ability of chemical agents to induce aneuploidy has been investigated only sporadically in intact (whole-animal) mammalian systems. A search of the available literature from the EMCT Aneuploidy File (for years 1970-1983) provided 112 papers that dealt with aneuploidy in mammalian somatic cells in vivo. 59 of these papers did not meet minimal criteria for analysis and were rejected from subsequent review. Of the remaining 53 papers that dealt with aneuploidy induction by chemical agents in mammalian somatic cells in vivo, only 3 (6%) contained data that were considered to be supported conclusively by adequate study designs, execution, and reporting. These 3 papers dealt with 2 chemicals, one of which, mercury, was negative for aneuploidy induction in humans, and the other, pyrimethamine, was positive in an experimental rodent study. The majority of papers (94%) were considered inconclusive for a variety of reasons. The most common reasons for calling a study inconclusive were (a) combining data on hyperploidy with those on hypoploidy and/or polyploidy, (b) an inadequate or unspecified number of animals and/or cells per animal scored per treatment group, and (c) poor data presentation such that animal-to-animal variability could not be assessed. Suggestions for protocol development are made, and the future directions of research into aneuploidy induction are discussed.

  2. Mammalian masticatory muscles: homology, nomenclature, and diversification.

    PubMed

    Druzinsky, Robert E; Doherty, Alison H; De Vree, Frits L

    2011-08-01

    There is a deep and rich literature of comparative studies of jaw muscles in mammals but no recent analyses employ modern phylogenetic techniques to better understand evolutionary changes that have occurred in these muscles. In order to fully develop and utilize the Feeding Experiments End-user Database (FEED), we are constructing a comprehensive ontology of mammalian jaw muscles. This process has led to a careful consideration of nomenclature and homologies of the muscles and their constituent parts. Precise determinations of muscle attachments have shown that muscles with similar names are not necessarily homologous. Using new anatomical descriptions derived from the literature, we defined character states for the jaw muscles in diverse mammalian species. We then mapped those characters onto a recent phylogeny of mammals with the aid of the Mesquite software package. Our data further elucidate how muscle groups associated with the feeding apparatus differ and have become highly specialized in certain mammalian orders, such as Rodentia, while remaining conserved in other orders. We believe that careful naming of muscles and statistical analyses of their distributions among mammals, in association with the FEED database, will lead to new, significant insights into the functional, structural, and evolutionary morphology of the jaw muscles.

  3. Some principles of regeneration in mammalian systems.

    PubMed

    Carlson, Bruce M

    2005-11-01

    This article presents some general principles underlying regenerative phenomena in vertebrates, starting with the epimorphic regeneration of the amphibian limb and continuing with tissue and organ regeneration in mammals. Epimorphic regeneration following limb amputation involves wound healing, followed shortly by a phase of dedifferentiation that leads to the formation of a regeneration blastema. Up to the point of blastema formation, dedifferentiation is guided by unique regenerative pathways, but the overall developmental controls underlying limb formation from the blastema generally recapitulate those of embryonic limb development. Damaged mammalian tissues do not form a blastema. At the cellular level, differentiation follows a pattern close to that seen in the embryo, but at the level of the tissue and organ, regeneration is strongly influenced by conditions inherent in the local environment. In some mammalian systems, such as the liver, parenchymal cells contribute progeny to the regenerate. In others, e.g., skeletal muscle and bone, tissue-specific progenitor cells constitute the main source of regenerating cells. The substrate on which regeneration occurs plays a very important role in determining the course of regeneration. Epimorphic regeneration usually produces an exact replica of the structure that was lost, but in mammalian tissue regeneration the form of the regenerate is largely determined by the mechanical environment acting on the regenerating tissue, and it is normally an imperfect replica of the original. In organ hypertophy, such as that occurring after hepatic resection, the remaining liver mass enlarges, but there is no attempt to restore the original form.

  4. Comparison of amphibian and mammalian thyroperoxidase ...

    EPA Pesticide Factsheets

    Thyroperoxidase (TPO) catalyzes the production of thyroid hormones in the vertebrate thyroid gland by oxidizing iodide (I- ) to produce iodinated tyrosines on thyroglobulin, and further coupling of specific mono- or di-iodinated tyrosines to generate the triiodo- and tetra-iodothyronine, precursors to thyroid hormone. This enzyme is a target for thyroid disrupting chemicals. TPO-inhibition by xenobiotics is a molecular initiating event that is known to perturb the thyroid axis by preventing synthesis of thyroid hormone. Previous work on TPO-inhibition has been focused on mammalian TPO; specifically, the rat and pig. A primary objective of this experiment was to directly measure TPO activity in a non-mammalian system, in this case a thyroid gland homogenate from Xenopus laevis; as well as compare chemical inhibition from past mammalian studies to the amphibian data generated. Thyroid glands obtained from X. laevis tadpoles at NF stages 58-60, were pooled and homogenized by sonication in phosphate buffer. This homogenate was then used to test 24 chemicals for inhibition of TPO as measured by conversion of Amplex UltraRed (AUR) substrate to its fluorescent product. The test chemicals were selected based upon previous results from rat in vitro TPO assays, and X. laevis in vitro and in vivo studies for thyroid disrupting endpoints, and included both positive and negative chemicals in these assays. An initial screening of the chemicals was done at a single high con

  5. MAMMALIAN CELLS CONTAIN A SECOND NUCLEOCYTOPLASMIC HEXOSAMINIDASE

    PubMed Central

    Gutternigg, Martin; Rendić, Dubravko; Voglauer, Regina; Iskratsch, Thomas; Wilson, Iain B. H.

    2010-01-01

    Some thirty years ago, work on mammalian tissues suggested the presence of two cytosolic hexosaminidases in mammalian cells; one of these has been more recently characterised in recombinant form and has an important role in cellular function due to its ability to cleave β-N-acetylglucosamine residues from a variety of nuclear and cytoplasmic proteins. However, the molecular nature of the second cytosolic hexosaminidase, named hexosaminidase D, has remained obscure. In the present study, we molecularly characterise for the first time the human and murine recombinant forms of enzymes, encoded by HEXDC genes, which appear to correspond to hexosaminidase D in terms of substrate specificity, pH dependency and temperature stability; furthermore, a myc-tagged form of this novel hexosaminidase displays a nucleocytoplasmic localisation. Transcripts of the corresponding gene are expressed in a number of murine tissues. Based on its sequence, this enzyme represents, along with the lysosomal hexosaminidase subunits encoded by the HEXA and HEXB genes, the third class 20 glycosidase to be found from mammalian sources. PMID:19040401

  6. Comparative analysis of mammalian Y chromosomes illuminates ancestral structure and lineage-specific evolution

    PubMed Central

    Li, Gang; Davis, Brian W.; Raudsepp, Terje; Pearks Wilkerson, Alison J.; Mason, Victor C.; Ferguson-Smith, Malcolm; O'Brien, Patricia C.; Waters, Paul D.; Murphy, William J.

    2013-01-01

    Although more than thirty mammalian genomes have been sequenced to draft quality, very few of these include the Y chromosome. This has limited our understanding of the evolutionary dynamics of gene persistence and loss, our ability to identify conserved regulatory elements, as well our knowledge of the extent to which different types of selection act to maintain genes within this unique genomic environment. Here, we present the first MSY (male-specific region of the Y chromosome) sequences from two carnivores, the domestic dog and cat. By combining these with other available MSY data, our multiordinal comparison allows for the first accounting of levels of selection constraining the evolution of eutherian Y chromosomes. Despite gene gain and loss across the phylogeny, we show the eutherian ancestor retained a core set of 17 MSY genes, most being constrained by negative selection for nearly 100 million years. The X-degenerate and ampliconic gene classes are partitioned into distinct chromosomal domains in most mammals, but were radically restructured on the human lineage. We identified multiple conserved noncoding elements that potentially regulate eutherian MSY genes. The acquisition of novel ampliconic gene families was accompanied by signatures of positive selection and has differentially impacted the degeneration and expansion of MSY gene repertoires in different species. PMID:23788650

  7. Reconstruction of Japanese Vowels.

    ERIC Educational Resources Information Center

    Aoki, Haruo

    1972-01-01

    This paper discusses the relationship between linguistic reconstructions and their historical validity using the case of Old Japanese (8th century A.D.) vowels as an example. Reconstructions throughout the paper include only those cases in which the modern reflexes and phonological correspondences between two or more genetically related languages…

  8. Breast reconstruction - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100156.htm Breast reconstruction - series—Indication, part 1 To use the sharing ... A.M. Editorial team. Related MedlinePlus Health Topics Breast Reconstruction A.D.A.M., Inc. is accredited by ...

  9. Education for Reconstruction.

    ERIC Educational Resources Information Center

    Phillips, David; And Others

    This report describes the main questions that various international agencies must address in order to reconstruct education in countries that have experienced crisis. "Crisis" is defined as war, natural disaster, and extreme political and economic upheaval. Many of the problems of educational reconstruction with which the Allies contended in…

  10. The Calmodulin-Binding, Short Linear Motif, NSCaTE Is Conserved in L-Type Channel Ancestors of Vertebrate Cav1.2 and Cav1.3 Channels

    PubMed Central

    Taiakina, Valentina; Boone, Adrienne N.; Fux, Julia; Senatore, Adriano; Weber-Adrian, Danielle

    2013-01-01

    NSCaTE is a short linear motif of (xWxxx(I or L)xxxx), composed of residues with a high helix-forming propensity within a mostly disordered N-terminus that is conserved in L-type calcium channels from protostome invertebrates to humans. NSCaTE is an optional, lower affinity and calcium-sensitive binding site for calmodulin (CaM) which competes for CaM binding with a more ancient, C-terminal IQ domain on L-type channels. CaM bound to N- and C- terminal tails serve as dual detectors to changing intracellular Ca2+ concentrations, promoting calcium-dependent inactivation of L-type calcium channels. NSCaTE is absent in some arthropod species, and is also lacking in vertebrate L-type isoforms, Cav1.1 and Cav1.4 channels. The pervasiveness of a methionine just downstream from NSCaTE suggests that L-type channels could generate alternative N-termini lacking NSCaTE through the choice of translational start sites. Long N-terminus with an NSCaTE motif in L-type calcium channel homolog LCav1 from pond snail Lymnaea stagnalis has a faster calcium-dependent inactivation than a shortened N-termini lacking NSCaTE. NSCaTE effects are present in low concentrations of internal buffer (0.5 mM EGTA), but disappears in high buffer conditions (10 mM EGTA). Snail and mammalian NSCaTE have an alpha-helical propensity upon binding Ca2+-CaM and can saturate both CaM N-terminal and C-terminal domains in the absence of a competing IQ motif. NSCaTE evolved in ancestors of the first animals with internal organs for promoting a more rapid, calcium-sensitive inactivation of L-type channels. PMID:23626724

  11. Transoral Robotic Reconstructive Surgery

    PubMed Central

    Selber, Jesse C.; Sarhane, Karim A.; Ibrahim, Amir E.; Holsinger, Floyd C.

    2014-01-01

    Transoral robotic surgery (TORS) has emerged as a technique that allows head and neck surgeons to safely resect large and complex oropharyngeal tumors without dividing the mandible or performing a lip-split incision. These resections provide a reconstructive challenge because the cylinder of the oropharynx remains closed and both physical access and visualization of oropharyngeal anatomy is severely restricted. Transoral robotic reconstruction (TORRS) of such defects allows the reconstructive surgeon to inset free flaps or perform adjacent tissue transfer while seeing what the resecting surgeon sees. Early experience with this technique has proved feasible and effective. Robotic reconstruction has many distinct advantages over conventional surgery, and offers patients a less morbid surgical course. In this review, we discuss the clinical applicability of transoral robotic surgery in head and neck reconstruction, highlighting the benefits and limitations of such an approach, and outlining the guidelines for its utilization. PMID:24872777

  12. Phylogenomic and biogeographic reconstruction of the Trichinella complex

    PubMed Central

    Korhonen, Pasi K.; Pozio, Edoardo; La Rosa, Giuseppe; Chang, Bill C. H.; Koehler, Anson V.; Hoberg, Eric P.; Boag, Peter R.; Tan, Patrick; Jex, Aaron R.; Hofmann, Andreas; Sternberg, Paul W.; Young, Neil D.; Gasser, Robin B.

    2016-01-01

    Trichinellosis is a globally important food-borne parasitic disease of humans caused by roundworms of the Trichinella complex. Extensive biological diversity is reflected in substantial ecological and genetic variability within and among Trichinella taxa, and major controversy surrounds the systematics of this complex. Here we report the sequencing and assembly of 16 draft genomes representing all 12 recognized Trichinella species and genotypes, define protein-coding gene sets and assess genetic differences among these taxa. Using thousands of shared single-copy orthologous gene sequences, we fully reconstruct, for the first time, a phylogeny and biogeography for the Trichinella complex, and show that encapsulated and non-encapsulated Trichinella taxa diverged from their most recent common ancestor ∼21 million years ago (mya), with taxon diversifications commencing ∼10−7 mya. PMID:26830005

  13. Reconstructing the evolution of laughter in great apes and humans.

    PubMed

    Davila Ross, Marina; Owren, Michael J; Zimmermann, Elke

    2009-07-14

    Human emotional expressions, such as laughter, are argued to have their origins in ancestral nonhuman primate displays. To test this hypothesis, the current work examined the acoustics of tickle-induced vocalizations from infant and juvenile orangutans, gorillas, chimpanzees, and bonobos, as well as tickle-induced laughter produced by human infants. Resulting acoustic data were then coded as character states and submitted to quantitative phylogenetic analysis. Acoustic outcomes revealed both important similarities and differences among the five species. Furthermore, phylogenetic trees reconstructed from the acoustic data matched the well-established trees based on comparative genetics. Taken together, the results provide strong evidence that tickling-induced laughter is homologous in great apes and humans and support the more general postulation of phylogenetic continuity from nonhuman displays to human emotional expressions. Findings also show that distinctively human laughter characteristics such as predominantly regular, stable voicing and consistently egressive airflow are nonetheless traceable to characteristics of shared ancestors with great apes.

  14. The cult of amphioxus in German Darwinism; or, our gelatinous ancestors in Naples' blue and balmy bay.

    PubMed

    Hopwood, Nick

    2015-01-01

    Biologists having rediscovered amphioxus, also known as the lancelet or Branchiostoma, it is time to reassess its place in early Darwinist debates over vertebrate origins. While the advent of the ascidian-amphioxus theory and challenges from various competitors have been, documented, this article offers a richer account of the public appeal of amphioxus as a primitive ancestor. The focus is on how the 'German Darwin' Ernst Haeckel persuaded general magazine and newspaper readers to revere this "flesh of our flesh and blood of our blood", and especially on Das neue Laienbrevier des Haeckelismus (The new lay breviary of Haeckelism) by Moritz Reymond with cartoons by Fritz Steub. From the late 1870s these successful little books of verse introduced the Neapolitan discoveries that made the animal's name and satirized Haeckel's rise as high priest of its cult. One song is reproduced and translated here, with a contemporary "imitation" by the Canadian palaeontologist Edward John Chapman, and extracts from others. Predating the American "It's a long way from amphioxus" by decades, these rhymes dramatize neglected 'species politics' of Darwinism and highlight the roles of humour in negotiating evolution.

  15. Identification, genealogical structure and population genetics of S-alleles in Malus sieversii, the wild ancestor of domesticated apple.

    PubMed

    Ma, X; Cai, Z; Liu, W; Ge, S; Tang, L

    2017-09-01

    The self-incompatibility (SI) gene that is specifically expressed in pistils encodes the SI-associated ribonuclease (S-RNase), functioning as the female-specificity determinant of a gametophytic SI system. Despite extensive surveys in Malus domestica, the S-alleles have not been fully investigated for Malus sieversii, the primary wild ancestor of the domesticated apple. Here we screened the M. sieversii S-alleles via PCR amplification and sequencing, and identified 14 distinct alleles in this species. By contrast, nearly 40 are present in its close wild relative, Malus sylvestris. We further sequenced 8 nuclear genes to provide a neutral reference, and investigated the evolution of S-alleles via genealogical and population genetic analyses. Both shared ancestral polymorphism and an excess of non-synonymous substitution were detected in the S-RNases of the tribe Maleae in Rosaceae, indicating the action of long-term balancing selection. Approximate Bayesian Computations based on the reference neutral loci revealed a severe bottleneck in four of the six studied M. sieversii populations, suggesting that the low number of S-alleles found in this species is mainly the result of diversity loss due to a drastic population contraction. Such a bottleneck may lead to ambiguous footprints of ongoing balancing selection detected at the S-locus. This study not only elucidates the constituents and number of S-alleles in M. sieversii but also illustrates the potential utility of S-allele number shifts in demographic inference for self-incompatible plant species.

  16. Modern African ape populations as genetic and demographic models of the last common ancestor of humans, chimpanzees, and gorillas.

    PubMed

    Jensen-Seaman, M I; Deinard, A S; Kidd, K K

    2001-01-01

    In order to fully understand human evolutionary history through the use of molecular data, it is essential to include our closest relatives as a comparison. We p