Science.gov

Sample records for mammalian hemoglobins effect

  1. Structural analysis of fish versus mammalian hemoglobins: Effect of the heme pocket environment on autooxidation and hemin loss

    SciTech Connect

    Aranda IV, Roman; Cai, He; Worley, Chad E.; Levin, Elena J.; Li, Rong; Olson, John S.; Phillips, Jr., George N.; Richards, Mark P.

    2010-01-07

    The underlying stereochemical mechanisms for the dramatic differences in autooxidation and hemin loss rates of fish versus mammalian hemoglobins (Hb) have been examined by determining the crystal structures of perch, trout IV, and bovine Hb at high and low pH. The fish Hbs autooxidize and release hemin {approx}50- to 100-fold more rapidly than bovine Hb. Five specific amino acid replacements in the CD corner and along the E helix appear to cause the increased susceptibility of fish Hbs to oxidative degradation compared with mammalian Hbs. Ile is present at the E11 helical position in most fish Hb chains whereas a smaller Val residue is present in all mammalian {alpha} and {beta} chains. The larger IleE11 side chain sterically hinders bound O{sub 2} and facilitates dissociation of the neutral superoxide radical, enhancing autooxidation. Lys(E10) is found in most mammalian Hb and forms favorable electrostatic and hydrogen bonding interactions with the heme-7-propionate. In contrast, Thr(E10) is present in most fish Hbs and is too short to stabilize bound heme, and causes increased rates of hemin dissociation. Especially high rates of hemin loss in perch Hb are also due to a lack of electrostatic interaction between His(CE3) and the heme-6 propionate in {alpha} subunits whereas this interaction does occur in trout IV and bovine Hb. There is also a larger gap for solvent entry into the heme crevice near {beta} CD3 in the perch Hb ({approx}8 {angstrom}) compared with trout IV Hb ({approx}6 {angstrom}) which in turn is significantly higher than that in bovine Hb ({approx}4 {angstrom}) at low pH. The amino acids at CD4 and E14 differ between bovine and the fish Hbs and have the potential to modulate oxidative degradation by altering the orientation of the distal histidine and the stability of the E-helix. Generally rapid rates of lipid oxidation in fish muscle can be partly attributed to the fact that fish Hbs are highly susceptible to oxidative degradation.

  2. Contribution of cooperativity and the Bohr effect to efficient oxygen transport by hemoglobins from five mammalian species.

    PubMed

    Zhang, Yan; Kobayashi, Keiko; Kitazawa, Kazuki; Imai, Kiyohiro; Kobayashi, Michiyori

    2006-01-01

    By using published experimental values of the standard oxygen (O2) equilibrium curve and the in vivo arterial and venous O2 pressure (PO2) of fetal and maternal blood in five mammalian species (human, cow, pig, sheep, and horse), we investigated the relationship between the efficiency of O2 delivery and the effectiveness of the Bohr shift, and discussed the significance of cooperativity for mammalian Hb. The O2 delivery of fetal blood was more efficient than that of maternal blood, and the effectiveness of the Bohr shift at both O2 loading and release sites of fetal blood was high. A linear relationship was observed between the efficiency of O2 delivery and the effectiveness of the Bohr shift at O2 loading sites of the five mammalian species. In both fetal and maternal blood, the theoretically obtained optimal P50 value for O2 delivery (optP50(OD)) was nearly equal to the optimal P50 value for the effectiveness of the Bohr shift at the O2 loading site (optP50(BS)(loading)). This phenomenon was favorable for fetal blood to uptake O2 from maternal blood with the aid of the Bohr shift and to deliver a large amount of O2 to the tissues. The optP50s for the effectiveness of the Bohr shift at given arterial PO2 (PaO2) and venous PO2 (PvO2) were derived as follows: optP50(BS)(loading) = PaO2((n+1)/(n-1))(1/n), and optP50(BS)(release) = PvO2((n+1)/(n-1))(1/n). The relationship between in vivo PO2s and n, PaO2/PvO2 = ((n+1)/(n-1))(2/n), was derived by letting optP50 for the efficiency of O2 delivery be equal to that for the effectiveness of the Bohr shift.

  3. Anion Bohr effect of human hemoglobin.

    PubMed

    Bucci, E; Fronticelli, C

    1985-01-15

    The pH dependence of oxygen affinity of hemoglobin (Bohr effect) is due to ligand-linked pK shifts of ionizable groups. Attempt to identify these groups has produced controversial data and interpretations. In a further attempt to clarify the situation, we noticed that hemoglobin alkylated in its liganded form lost the Bohr effect while hemoglobin alkylated in its unliganded form showed the presence of a practically unmodified Bohr effect. In spite of this difference, analyses of the extent of alkylation of the two compounds failed to identify the presence of specific preferential alkylations. In particular, the alpha 1 valines and beta 146 histidines appeared to be alkylated to the same extent in the two proteins. Focusing our attention on the effect of the anions on the functional properties of hemoglobin, we measured the Bohr effect of untreated hemoglobin in buffers made with HEPES [N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid], MES [2-(N-morpholino)ethanesulfonic acid], and MOPS [3-(N-morpholino)propanesulfonic acid], which being zwitterions do not need addition of chlorides or other anions for reaching the desired pH. The shape acquired by the Bohr effect curves, either as pH dependence of oxygen affinity or as pH dependence of protons exchanged with the solution, was irreconcilable with that of the Bohr effect curves in usual buffers. This indicated the relevance of solvent components in determining the functional properties of hemoglobin. A new thermodynamic model is proposed for the Bohr effect that includes the interaction of hemoglobin with solvent components. The classic proton Bohr effect is a special case of the new theory.

  4. Alkaline Bohr effect of human hemoglobin Ao.

    PubMed

    Di Cera, E; Doyle, M L; Gill, S J

    1988-04-01

    Differential oxygen binding measurements obtained over the pH range 6.95 to 9.10 at 25 degrees C have allowed a detailed description of the alkaline Bohr effect of human hemoglobin Ao. Phenomenological analysis of the data in terms of the Adair equation shows that: (1) the oxygen binding curves are asymmetrical with the population of the triply oxygenated species being negligible throughout the pH range studied: (2) the shape of the oxygen binding curve is affected by pH, especially at low saturation; and (3) the maximum O2-proton linkage is -0.52 mole of proton per mole of oxygen at pH 7.4. A possible molecular mechanism of the Bohr effect is proposed within the framework of an allosteric model which accounts for the low population of triply oxygenated hemoglobin species. At least three Bohr groups are necessary for a quantitative description of the alkaline Bohr effect. Two of these groups titrate in the range of the His146 beta and Vall alpha residues, which have long been identified as the main alkaline Bohr groups, and altogether contribute 84% of the alkaline Bohr effect at physiological pH. A third ionizable group, linked to oxygenation presumably at the beta chains, is implicated and is titrated in a pH range characteristic of a surface histidyl residue.

  5. A comparative study of the temperature dependence of the oxygen-binding properties of mammalian hemoglobins.

    PubMed

    Coletta, M; Clementi, M E; Ascenzi, P; Petruzzelli, R; Condò, S G; Giardina, B

    1992-03-15

    The effect of temperature on the oxygen-binding properties of hemoglobin (Hb) from ruminants, such as ox, reindeer, musk ox, mouflon and egyptian water buffalo is compared to that of human adult Hb (HbA). A striking difference emerges where in the presence of chloride ions and in the absence of 2,3-diphosphoglycerate [Gri(2,3)P2] a strongly reduced exothermic oxygenation process is observed for all ruminant Hb investigated with respect to HbA. Next, in the presence of physiological concentrations of Gri(2,3)P2, HbA displays a less exothermic oxygenation process, with values tending toward those observed in ruminant Hb [where Gri(2,3)P2 is not a physiological effector and for which the addition of Gri(2,3)P2 has essentially no effect on the oxygenation enthalpy]. Different from HbA, the intrinsically less exothermic oxygen binding seems to be independent of the experimental conditions for ruminant Hb, underlying specific structural characteristics which might be responsible for this feature.

  6. Bohr effect of hemoglobins: Accounting for differences in magnitude.

    PubMed

    Okonjo, Kehinde O

    2015-09-01

    The basis of the difference in the Bohr effect of various hemoglobins has remained enigmatic for decades. Fourteen amino acid residues, identical in pairs and located at specific 'Bohr group positions' in human hemoglobin, are implicated in the Bohr effect. All 14 are present in mouse, 11 in dog, eight in pigeon and 13 in guinea pig hemoglobin. The Bohr data for human and mouse hemoglobin are identical: the 14 Bohr groups appear at identical positions in both molecules. The dog data are different from the human because three Bohr group positions are occupied by non-ionizable groups in dog hemoglobin; the pigeon data are vastly different from the human because six Bohr group positions are occupied by non-ionizable groups in pigeon hemoglobin. The guinea pig data are quite complex. Quantitative analyses showed that only the pigeon data could be fitted with the Wyman equation for the Bohr effect. We demonstrate that, apart from guinea pig hemoglobin, the difference between the Bohr effect of each of the other hemoglobins and of pigeon hemoglobin can be accounted for quantitatively on the basis of the occupation of some of their Bohr group positions by non-ionizable groups in pigeon hemoglobin. We attribute the anomalous guinea pig result to a new salt-bridge formed in its R2 quaternary structure between the terminal NH3(+) group of one β-chain and the COO(-) terminal group of the partner β-chain in the same molecule. The pKas of this NH3(+) group are 6.33 in the R2 and 4.59 in the T state.

  7. Effect of hydrostatic pressure on ligand binding to hemoglobin.

    PubMed

    Carey, F G; Knowles, F; Gibson, Q H

    1977-06-25

    Increase in hydrostatic pressure to 1000 atm increased the affinity of human and menhaden (Brevoortia tyrannus) hemoglobins for oxygen. With necessary assumptions about the form of the equilibrium curve, and after correction for changes in pH and volume due to pressure, the increase in affinity is about 2-fold for both hemoglobins. At pH 6.5, Hill's n for menhaden hemoglobin is near 1, and it is believed to remain in the T state, whereas human hemoglobin undergoes a T to R transition. This suggests that the R-T equilibrium is not disturbed by pressure. In direct experiments the binding of a fluorescent effector (8 hydroxy-1,3,6-pyrene (trisulfonic acid) to deoxyhemoglobin was not changed by pressure. The binding of n-butylisocyanide to hemoglobin and to myoglobin is also greater at high pressures, similarly suggesting that the R-T transition is not involved in the pressure effect. PMID:16924

  8. Effects of cerebral ischemia on neuronal hemoglobin

    PubMed Central

    He, Yangdong; Hua, Ya; Liu, Wenquan; Hu, Haitao; Keep, Richard F.; Xi, Guohua

    2009-01-01

    Summary The present study examined whether or not neuronal hemoglobin (Hb) is present in rats. It then examined whether cerebral ischemia or ischemic preconditioning (IPC) affects neuronal Hb levels in vivo and in vitro. In vivo, male Sprague-Dawley rats were subjected to either 15 minutes of transient middle cerebral artery occlusion with 24 hours of reperfusion, an IPC stimulus, or 24 hours of permanent middle cerebral artery occlusion (pMCAO), or IPC followed three days later by 24 hours of pMCAO. In vitro, primary cultured neurons were exposed to 2 hours of oxygen-glucose deprivation with 22 hours of reoxygenation. Results showed that Hb is widely expressed in rat cerebral neurons but not astrocytes. Hb expression was significantly upregulated in the ipsilateral caudate and the cortical core of the middle cerebral artery territory after IPC. Hb levels also increased in more penumbral cortex and the contralateral hemisphere 24 hours after pMCAO, but expression in the ipsilateral caudate and cortical core area were decreased. Ischemic preconditioning modified pMCAO-induced brain Hb changes. Neuronal Hb levels in vitro were increased by 2 hours of oxygen-glucose deprivation and 22 hours of reoxygenation. These results indicate that Hb is synthesized in neurons and can be upregulated by ischemia. PMID:19066615

  9. Effect of Some High Consumption Spices on Hemoglobin Glycation

    PubMed Central

    Naderi, G. H.; Dinani, Narges J.; Asgary, S.; Taher, M.; Nikkhoo, N.; Boshtam, M.

    2014-01-01

    Formation of glycation products is major factor responsible in complications of diabetes. Worldwide trend is toward the use of natural additives in reducing the complications of diseases. Therefore, there is a growing interest in natural antiglycation found in plants. Herbs and spices are one of the most important targets to search for natural antiglycation from the point of view of safety. This study investigated the ability of some of the spices to inhibit glycation process in a hemoglobin/glucose model system and compared their potency with each other. For this subject the best concentration and time to incubate glucose with hemoglobin was investigated. Then the glycosylation degree of hemoglobin in the presence of extracts by the three concentrations 0.25, 0.5 and 1 μg/ml was measured colorimetrically at 520 nm. Results represent that some of extracts such as wild caraway, turmeric, cardamom and black pepper have inhibitory effects on hemoglobin glycation. But some of the extracts such as anise and saffron have not only inhibitory effects but also aggravated this event and have proglycation properties. In accordance with the results obtained we can conclude that wild caraway, turmeric, cardamom and black pepper especially wild caraway extracts are potent antiglycation agents, which can be of great value in the preventive glycation-associated complications in diabetes. PMID:25593391

  10. Effect of some high consumption spices on hemoglobin glycation.

    PubMed

    Naderi, G H; Dinani, Narges J; Asgary, S; Taher, M; Nikkhoo, N; Boshtam, M

    2014-01-01

    Formation of glycation products is major factor responsible in complications of diabetes. Worldwide trend is toward the use of natural additives in reducing the complications of diseases. Therefore, there is a growing interest in natural antiglycation found in plants. Herbs and spices are one of the most important targets to search for natural antiglycation from the point of view of safety. This study investigated the ability of some of the spices to inhibit glycation process in a hemoglobin/glucose model system and compared their potency with each other. For this subject the best concentration and time to incubate glucose with hemoglobin was investigated. Then the glycosylation degree of hemoglobin in the presence of extracts by the three concentrations 0.25, 0.5 and 1 μg/ml was measured colorimetrically at 520 nm. Results represent that some of extracts such as wild caraway, turmeric, cardamom and black pepper have inhibitory effects on hemoglobin glycation. But some of the extracts such as anise and saffron have not only inhibitory effects but also aggravated this event and have proglycation properties. In accordance with the results obtained we can conclude that wild caraway, turmeric, cardamom and black pepper especially wild caraway extracts are potent antiglycation agents, which can be of great value in the preventive glycation-associated complications in diabetes.

  11. Effect of some high consumption spices on hemoglobin glycation.

    PubMed

    Naderi, G H; Dinani, Narges J; Asgary, S; Taher, M; Nikkhoo, N; Boshtam, M

    2014-01-01

    Formation of glycation products is major factor responsible in complications of diabetes. Worldwide trend is toward the use of natural additives in reducing the complications of diseases. Therefore, there is a growing interest in natural antiglycation found in plants. Herbs and spices are one of the most important targets to search for natural antiglycation from the point of view of safety. This study investigated the ability of some of the spices to inhibit glycation process in a hemoglobin/glucose model system and compared their potency with each other. For this subject the best concentration and time to incubate glucose with hemoglobin was investigated. Then the glycosylation degree of hemoglobin in the presence of extracts by the three concentrations 0.25, 0.5 and 1 μg/ml was measured colorimetrically at 520 nm. Results represent that some of extracts such as wild caraway, turmeric, cardamom and black pepper have inhibitory effects on hemoglobin glycation. But some of the extracts such as anise and saffron have not only inhibitory effects but also aggravated this event and have proglycation properties. In accordance with the results obtained we can conclude that wild caraway, turmeric, cardamom and black pepper especially wild caraway extracts are potent antiglycation agents, which can be of great value in the preventive glycation-associated complications in diabetes. PMID:25593391

  12. Lamprey hemoglobin. Structural basis of the bohr effect.

    PubMed

    Qiu, Y; Maillett, D H; Knapp, J; Olson, J S; Riggs, A F

    2000-05-01

    Lampreys, among the most primitive living vertebrates, have hemoglobins (Hbs) with self-association and ligand-binding properties very different from those that characterize the alpha(2)beta(2) tetrameric Hbs of higher vertebrates. Monomeric, ligated lamprey Hb self-associates to dimers and tetramers upon deoxygenation. Dissociation to monomers upon oxygenation accounts for the cooperative binding of O(2) and its pH dependence. Honzatko and Hendrickson (Honzatko, R. B., and Hendrickson, W. A. (1986) Proc. Natl. Acad. Sci. U. S. A 83, 8487-8491) proposed that the dimeric interface of the Hb resembles either the alpha(1)beta(2) interface of mammalian Hbs or the contacts in clam Hb where the E and F helices form the interface. Perutz (Perutz, M. F. (1989) Quart. Rev. Biophys. 2, 139- 236) proposed a version of the clam model in which the distal histidine swings out of the heme pocket upon deoxygenation to form a bond with a carboxyl group of a second monomer. The sedimentation behavior and oxygen equilibria of nine mutants of the major Hb component, PMII, from Petromyzon marinus have been measured to test these models. The results strongly support a critical role of the E helix and the AB corner in forming the subunit interface in the dimer and rule out the alpha(1)beta(2) model. The pH dependence of both the sedimentation equilibrium and the oxygen binding of the mutant E75Q indicate that Glu(75) is one of two groups responsible for the Bohr effect. Changing the distal histidine 73 to glutamine almost completely abolishes the self-association of the deoxy-Hb and causes a large increase in O(2) affinity. The recent x-ray crystallographic determination of the structure of deoxy lamprey Hb, reported after the completion of this work (Heaslet, H. A., and Royer, W. E. (1999) Structure 7, 517-526), shows that the dimer interface does involve the E helix and the AB corner, supporting the measurements and interpretations reported here.

  13. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Knight, C.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization.The Astronauts will be exposed to microgravity environment for a long duration of time during these flights.Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system.We did our preliminary investigations by exposing mammalian lymphocytes to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon Inc (USA).Our initial results showed no significant change in cytokine expression in these cells for a time period of forty eight hours exposure.Our future experiments will involve exposure for a longer period of time.

  14. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization. The Astronauts will be exposed to microgravity environment for a long duration of time during these flights. Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system and nervous system. We did our preliminary investigations by exposing mammalian lymphocytes and astrocyte cells to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon, Inc. (USA).Our initial results showed no significant change in cytokine expression in these cells up to a time period of 120 hours exposure. Our future experiments will involve exposure for a longer period of time.

  15. Hemoglobin potentiates central nervous system damage.

    PubMed Central

    Sadrzadeh, S M; Anderson, D K; Panter, S S; Hallaway, P E; Eaton, J W

    1987-01-01

    Iron and iron compounds--including mammalian hemoglobins--catalyze hydroxyl radical production and lipid peroxidation. To determine whether hemoglobin-mediated lipid peroxidation might be important in hemorrhagic injuries to the central nervous system (CNS), we studied the effects of purified hemoglobin on CNS homogenates and injected hemoglobin into the spinal cords of anesthetized cats. Hemoglobin markedly inhibits Na/K ATPase activity in CNS homogenates and spinal cords of living cats. Hemoglobin also catalyzes substantial peroxidation of CNS lipids. Importantly, the potent iron chelator, desferrioxamine, blocks these adverse effects of hemoglobin, both in vitro and in vivo. Because desferrioxamine is not known to interact with heme iron, these results indicate that free iron, derived from hemoglobin, is the proximate toxic species. Overall, our data suggest that hemoglobin, released from red cells after trauma, can promote tissue injury through iron-dependent mechanisms. Suppression of this damage by desferrioxamine suggests a rational therapeutic approach to management of trauma-induced CNS injury. Images PMID:3027133

  16. Hemoglobin substitutes.

    PubMed

    Anbari, Kevin K; Garino, Jonathan P; Mackenzie, Colin F

    2004-10-01

    Orthopaedic patients frequently require blood transfusions to treat peri-operative anemia. Research in the area of hemoglobin substitutes has been of great interest since it holds the promise of reducing the reliance on allogeneic blood transfusions. The three categories of hemoglobin substitutes are (1) cell-free, extracellular hemoglobin preparations made from human or bovine hemoglobin (hemoglobin-based oxygen carriers or HBOCs); (2) fluorine-substituted linear or cyclic carbon chains with a high oxygen-carrying capacity (perfluorocarbons); and (3) liposome-encapsulated hemoglobin. Of the three, HBOCs have been the most extensively studied and tested in preclinical and clinical trials that have shown success in diminishing the number of blood transfusions as well as an overall favorable side-effect profile. This has been demonstrated in vascular, cardiothoracic, and orthopaedic patients. HBOC-201, which is a preparation of cell-free bovine hemoglobin, has been approved for clinical use in South Africa. These products may well become an important tool for physicians treating peri-operative anemia in orthopaedic patients.

  17. Hemoglobin Bohr effects: atomic origin of the histidine residue contributions.

    PubMed

    Zheng, Guishan; Schaefer, Michael; Karplus, Martin

    2013-11-26

    The Bohr effect in hemoglobin, which refers to the dependence of the oxygen affinity on the pH, plays an important role in its cooperativity and physiological function. The dominant contribution to the Bohr effect arises from the difference in the pKa values of His residues of the unliganded (deoxy) and liganded (carbonmonoxy) structures. Using recent high resolution structures, the residue pKa values corresponding to the two structures are calculated. The method is based on determining the electrostatic interactions between residues in the protein, relative to those of the residue in solution, by use of the linearized finite difference Poisson-Boltzmann equation and Monte Carlo sampling of protonation states. Given that good agreement is obtained with the available experimental values for the contribution of His residues in HbA to the Bohr effect, the calculated results are used to determine the atomic origin of the pKa shift between deoxy and carbonmonoxy HbA. The contributions to the pKa shift calculated by means of the linear response approximation show that the salt bridge involving His146 plays an important role in the alkaline Bohr effect, as suggested by Perutz but that other interactions are significant as well. A corresponding analysis is made for the contribution of His143 to the acid Bohr effect for which there is no proposed explanation. The method used is summarized and the program by which it is implemented is described in the Appendix .

  18. Effects of rutin on the redox reactions of hemoglobin.

    PubMed

    Lu, Naihao; Ding, Yun; Yang, Zhen; Gao, Pingzhang

    2016-08-01

    Flavonoids are widely used to attenuate oxidative damage in vitro and in vivo. In this study, we investigated the influence of rutin (quercetin-3-rhamnosylglucoside) on hemoglobin (Hb)- dependent redox reactions, i.e. oxidative stability of Hb and its cytotoxic ferryl intermediate. It was found that rutin induced generation of H2O2, which in turn oxidized Hb rapidly. Meanwhile, rutin exhibited anti-oxidant effect by effectively reducing ferryl intermediate back to ferric Hb at physiological pH. In comparison with quercetin, rutin had stronger capability on reducing ferryl species while lesser pro-oxidant effect on H2O2 generation, thus it exhibited more protective effect on H2O2-induced Hb oxidation. Circular dichroism spectrum showed no significant change in the secondary structure of Hb after flavonoid addition, while molecular docking revealed different binding modes of quercetin and rutin with Hb. These results might provide new insights into the potential nutritional and physiological implications of rutin and quercetin with redox active heme proteins regarding their ani- and pro-oxidant effects.

  19. Baculovirus Stimulates Antiviral Effects in Mammalian Cells

    PubMed Central

    Gronowski, Ann M.; Hilbert, David M.; Sheehan, Kathleen C. F.; Garotta, Gianni; Schreiber, Robert D.

    1999-01-01

    Herein, we report that Autographa californica nucleopolyhedrovirus, a member of the Baculoviridae family, is capable of stimulating antiviral activity in mammalian cells. Baculoviruses are not pathogenic to mammalian cells. Nevertheless, live baculovirus is shown here to induce interferons (IFN) from murine and human cell lines and induces in vivo protection of mice from encephalomyocarditis virus infection. Monoclonal antibodies specific for the baculovirus envelope gp67 neutralize baculovirus-dependent IFN production. Moreover, UV treatment of baculovirus eliminates both infectivity and IFN-inducing activity. In contrast, the IFN-inducing activity of the baculovirus was unaffected by DNase or RNase treatment. These data demonstrate that IFN production can be induced in mammalian cells by baculovirus even though the cells fail to serve as a natural host for an active viral infection. Baculoviruses, therefore, provide a novel model in which to study at least one alternative mechanism for IFN induction in mammalian cells. PMID:10559307

  20. Effects of Hemoglobin Variants on Hemoglobin A1c Values Measured Using a High-Performance Liquid Chromatography Method

    PubMed Central

    De-La-Iglesia, Silvia; Ropero, Paloma; Nogueira-Salgueiro, Patricia; Santana-Benitez, Jesus

    2014-01-01

    Hemoglobin A1c (HbA1c) is routinely used to monitor long-term glycemic control and for diagnosing diabetes mellitus. However, hemoglobin (Hb) gene variants/modifications can affect the accuracy of some methods. The potential effect of Hb variants on HbA1c measurements was investigated using a high-performance liquid chromatography (HPLC) method compared with an immunoturbimetric assay. Fasting plasma glucose (FPG) and HbA1c levels were measured in 42 371 blood samples. Samples producing abnormal chromatograms were further analyzed to characterize any Hb variants. Fructosamine levels were determined in place of HbA1c levels when unstable Hb variants were identified. Abnormal HPLC chromatograms were obtained for 160 of 42 371 samples. In 26 samples HbS was identified and HbA1c results correlated with FPG. In the remaining 134 samples HbD, Hb Louisville, Hb Las Palmas, Hb N-Baltimore, or Hb Porto Alegre were identified and HbA1c did not correlate with FPG. These samples were retested using an immunoturbidimetric assay and the majority of results were accurate; only 3 (with the unstable Hb Louisville trait) gave aberrant HbA1c results. Hb variants can affect determination of HbA1c levels with some methods. Laboratories should be aware of Hb variants occurring locally and choose an appropriate HbA1c testing method. PMID:25355712

  1. Comparison of Hemoglobin Levels Before and After Hemodialysis and Their Effects on Erythropoietin Dosing and Cost

    PubMed Central

    Sagheb, Mohammad Mahdi; Fallahzadeh, Mohammad Amin; Moaref, Alireza; Fallahzadeh, Mohammad Hossein; Dormanesh, Banafshe

    2016-01-01

    Background Hemoglobin levels measured after hemodialysis, as compared to hemoglobin levels measured before hemodialysis, are suggested to be a more accurate reflection of the hemoglobin levels between hemodialysis sessions, and to be a better reference point for adjusting erythropoietin dosing. Objectives The aim of this study was to compare the hemoglobin levels before and after hemodialysis, to calculate the required erythropoietin doses based on these levels, and to develop a model to predict effective erythropoietin dosing. Patients and Methods In this cross-sectional study, the hemoglobin levels of 52 patients with end-stage renal disease were measured before and after hemodialysis. The required erythropoietin doses and the differences in cost were calculated based on the hemoglobin levels before and after hemodialysis. A model to predict the adjusted erythropoietin dosages based on post-hemodialysis hemoglobin levels was proposed. Results Hemoglobin levels measured after hemodialysis were significantly higher than the hemoglobin levels before hemodialysis (11.1 ± 1.1 vs. 11.9 ± 1.2 g/dL, P < 0.001, 7% increase). The mean required erythropoietin dose based on post-hemodialysis hemoglobin levels was significantly lower than the corresponding erythropoietin dose based on pre-hemodialysis hemoglobin levels (10947 ± 6820 vs. 12047 ± 7542 U/week, P < 0.001, 9% decrease). The cost of erythropoietin was also significantly lower when post-hemodialysis levels were used (15.96 ± 9.85 vs. 17.57 ± 11.00 dollars/patient/week, P < 0.001). This translated into 83.72 dollars/patient/year in cost reduction. The developed model for predicting the required dosage is: Erythropoietin (U/week) = 43540.8 + (-2734.8) × Post-hemodialysis Hb* (g/dL). [(R2) = 0.221; *P < 0.001]. Conclusions Using post-hemodialysis hemoglobin levels as a reference point for erythropoietin dosing can result in significant dose and cost reduction, and can protect hemodialysis patients from

  2. Bohr effect and temperature sensitivity of hemoglobins from highland and lowland deer mice.

    PubMed

    Jensen, Birgitte; Storz, Jay F; Fago, Angela

    2016-05-01

    An important means of physiological adaptation to environmental hypoxia is an increased oxygen (O2) affinity of the hemoglobin (Hb) that can help secure high O2 saturation of arterial blood. However, the trade-off associated with a high Hb-O2 affinity is that it can compromise O2 unloading in the systemic capillaries. High-altitude deer mice (Peromyscus maniculatus) have evolved an increased Hb-O2 affinity relative to lowland conspecifics, but it is not known whether they have also evolved compensatory mechanisms to facilitate O2 unloading to respiring tissues. Here we investigate the effects of pH (Bohr effect) and temperature on the O2-affinity of high- and low-altitude deer mouse Hb variants, as these properties can potentially facilitate O2 unloading to metabolizing tissues. Our experiments revealed that Bohr factors for the high- and low-altitude Hb variants are very similar in spite of the differences in O2-affinity. The Bohr factors of deer mouse Hbs are also comparable to those of other mammalian Hbs. In contrast, the high- and low-altitude variants of deer mouse Hb exhibited similarly low temperature sensitivities that were independent of red blood cell anionic cofactors, suggesting an appreciable endothermic allosteric transition upon oxygenation. In conclusion, high-altitude deer mice have evolved an adaptive increase in Hb-O2 affinity, but this is not associated with compensatory changes in sensitivity to changes in pH or temperature. Instead, it appears that the elevated Hb-O2 affinity in high-altitude deer mice is compensated by an associated increase in the tissue diffusion capacity of O2 (via increased muscle capillarization), which promotes O2 unloading. PMID:26808972

  3. Bohr effect and temperature sensitivity of hemoglobins from highland and lowland deer mice.

    PubMed

    Jensen, Birgitte; Storz, Jay F; Fago, Angela

    2016-05-01

    An important means of physiological adaptation to environmental hypoxia is an increased oxygen (O2) affinity of the hemoglobin (Hb) that can help secure high O2 saturation of arterial blood. However, the trade-off associated with a high Hb-O2 affinity is that it can compromise O2 unloading in the systemic capillaries. High-altitude deer mice (Peromyscus maniculatus) have evolved an increased Hb-O2 affinity relative to lowland conspecifics, but it is not known whether they have also evolved compensatory mechanisms to facilitate O2 unloading to respiring tissues. Here we investigate the effects of pH (Bohr effect) and temperature on the O2-affinity of high- and low-altitude deer mouse Hb variants, as these properties can potentially facilitate O2 unloading to metabolizing tissues. Our experiments revealed that Bohr factors for the high- and low-altitude Hb variants are very similar in spite of the differences in O2-affinity. The Bohr factors of deer mouse Hbs are also comparable to those of other mammalian Hbs. In contrast, the high- and low-altitude variants of deer mouse Hb exhibited similarly low temperature sensitivities that were independent of red blood cell anionic cofactors, suggesting an appreciable endothermic allosteric transition upon oxygenation. In conclusion, high-altitude deer mice have evolved an adaptive increase in Hb-O2 affinity, but this is not associated with compensatory changes in sensitivity to changes in pH or temperature. Instead, it appears that the elevated Hb-O2 affinity in high-altitude deer mice is compensated by an associated increase in the tissue diffusion capacity of O2 (via increased muscle capillarization), which promotes O2 unloading.

  4. Effects of Hemoglobin-Based Oxygen Carriers on Blood Coagulation

    PubMed Central

    Roghani, Kimia; Holtby, Randall J.; Jahr, Jonathan S.

    2014-01-01

    For many decades, Hemoglobin-based oxygen carriers (HBOCs) have been central in the development of resuscitation agents that might provide oxygen delivery in addition to simple volume expansion. Since 80% of the world population lives in areas where fresh blood products are not available, the application of these new solutions may prove to be highly beneficial (Kim and Greenburg 2006). Many improvements have been made to earlier generation HBOCs, but various concerns still remain, including coagulopathy, nitric oxide scavenging, platelet interference and decreased calcium concentration secondary to volume expansion (Jahr et al. 2013). This review will summarize the current challenges faced in developing HBOCs that may be used clinically, in order to guide future research efforts in the field. PMID:25514567

  5. Role of β/δ101Gln in regulating the effect of temperature and allosteric effectors on oxygen affinity in woolly mammoth hemoglobin.

    PubMed

    Yuan, Yue; Byrd, Catherine; Shen, Tong-Jian; Simplaceanu, Virgil; Tam, Tsuey Chyi S; Ho, Chien

    2013-12-10

    The oxygen affinity of woolly mammoth hemoglobin (rHb WM) is less affected by temperature change than that of Asian elephant hemoglobin (rHb AE) or human normal adult hemoglobin (Hb A). We report here a biochemical-biophysical study of Hb A, rHb AE, rHb WM, and three rHb WM mutants with amino acid substitutions at β/δ101 (β/δ101Gln→Glu, Lys, or Asp) plus a double and a triple mutant, designed to clarify the role of the β/δ101 residue. The β/δ101Gln residue is important for responding to allosteric effectors, such as phosphate, inositol hexaphosphate (IHP), and chloride. The rHb WM mutants studied generally have higher affinity for oxygen under various conditions of pH, temperature, and salt concentration, and in the presence or absence of organic phosphate, than do rHb WM, rHb AE, and Hb A. Titrations for the O2 affinity of these mutant rHbs as a function of chloride concentration indicate a lower heterotopic effect of this anion due to the replacement of β/δ101Gln in rHb WM. The alkaline Bohr effect of rHb WM and its mutants is reduced by 20-50% compared to that of Hb A and is independent of changes in temperature, in contrast to what has been observed in the hemoglobins of most mammalian species, including human. The results of our study on the temperature dependence of the O2 affinity of rHb WM and its mutant rHbs illustrate the important role of β/δ101Gln in regulating the functional properties of these hemoglobins.

  6. Role of β/δ101Gln in regulating the effect of temperature and allosteric effectors on oxygen affinity in woolly mammoth hemoglobin.

    PubMed

    Yuan, Yue; Byrd, Catherine; Shen, Tong-Jian; Simplaceanu, Virgil; Tam, Tsuey Chyi S; Ho, Chien

    2013-12-10

    The oxygen affinity of woolly mammoth hemoglobin (rHb WM) is less affected by temperature change than that of Asian elephant hemoglobin (rHb AE) or human normal adult hemoglobin (Hb A). We report here a biochemical-biophysical study of Hb A, rHb AE, rHb WM, and three rHb WM mutants with amino acid substitutions at β/δ101 (β/δ101Gln→Glu, Lys, or Asp) plus a double and a triple mutant, designed to clarify the role of the β/δ101 residue. The β/δ101Gln residue is important for responding to allosteric effectors, such as phosphate, inositol hexaphosphate (IHP), and chloride. The rHb WM mutants studied generally have higher affinity for oxygen under various conditions of pH, temperature, and salt concentration, and in the presence or absence of organic phosphate, than do rHb WM, rHb AE, and Hb A. Titrations for the O2 affinity of these mutant rHbs as a function of chloride concentration indicate a lower heterotopic effect of this anion due to the replacement of β/δ101Gln in rHb WM. The alkaline Bohr effect of rHb WM and its mutants is reduced by 20-50% compared to that of Hb A and is independent of changes in temperature, in contrast to what has been observed in the hemoglobins of most mammalian species, including human. The results of our study on the temperature dependence of the O2 affinity of rHb WM and its mutant rHbs illustrate the important role of β/δ101Gln in regulating the functional properties of these hemoglobins. PMID:24228693

  7. The effect of gamma-rays on the hemoglobin of whole-body irradiated mice

    NASA Astrophysics Data System (ADS)

    Ashry, H. A.; Selim, N. S.; El-Behay, A. Z.

    1994-07-01

    Changes in the UV-visible absorption spectrum of mouse hemoglobin as a result of whole body irradiation were studied. White albino adult mice were exposed to a Cs-137 γ-source at a dose rate of 47.5 Gy/h to different absorbed dose values ranging from 1 to 8 Gy. Blood specimens were taken 24 h after irradiation. The UV-visible absorption spectra of hemoglobin of irradiated and control mice were measured in the wavelength range from 200 to 700 nm. The obtained results showed significant changes in the bands measured at 340 nm, in the Soret band measured at 410 nm, also, the α- and β-bands measured at 537 and 572 nm showed significant decrease in intensity with the absorbed dose increase. The absorbance measured at 630 nm showed no significant changes. The radiation effect on the animal hemoglobin was discussed on the basis of the obtained results.

  8. Hemoglobin (image)

    MedlinePlus

    Hemoglobin is the most important component of red blood cells. It is composed of a protein called ... exchanged for carbon dioxide. Abnormalities of an individual's hemoglobin value can indicate defects in the normal balance ...

  9. Effect of methylprednisolone on mammalian neuronal networks in vitro.

    PubMed

    Wittstock, Matthias; Rommer, Paulus S; Schiffmann, Florian; Jügelt, Konstantin; Stüwe, Simone; Benecke, Reiner; Schiffmann, Dietmar; Zettl, Uwe K

    2015-01-01

    Glucocorticosteroids (GCS) are widely used for the treatment of neurological diseases, e.g. multiple sclerosis. High levels of GCS are toxic to the central nervous system and can produce adverse effects. The effect of methylprednisolone (MP) on mammalian neuronal networks was studied in vitro. We demonstrate a dose-dependent excitatory effect of MP on cultured neuronal networks, followed by a shut-down of electrical activity using the microelectrode array technique.

  10. Effects of heat stress on mammalian reproduction

    PubMed Central

    Hansen, Peter J.

    2009-01-01

    Heat stress can have large effects on most aspects of reproductive function in mammals. These include disruptions in spermatogenesis and oocyte development, oocyte maturation, early embryonic development, foetal and placental growth and lactation. These deleterious effects of heat stress are the result of either the hyperthermia associated with heat stress or the physiological adjustments made by the heat-stressed animal to regulate body temperature. Many effects of elevated temperature on gametes and the early embryo involve increased production of reactive oxygen species. Genetic adaptation to heat stress is possible both with respect to regulation of body temperature and cellular resistance to elevated temperature. PMID:19833646

  11. Effects of low doses of quercetin and genistein on oxidation and carbonylation in hemoglobin and myoglobin.

    PubMed

    Boadi, William Y; Johnson, Damitea

    2014-09-01

    Protein-bound carbonyls have been shown to increase with age as well as in numerous diseases including rheumatoid arthritis, adult respiratory syndrome pulmonary fibrosis, diabetes, Parkinson's disease, and Alzheimer's just to mention a few. The effects of the flavonoids quercetin and genistein were investigated according to their ability to inhibit the oxidation of hemoglobin and myoglobin via the Fenton's pathway. Antioxidative activity of the flavonoids were determined by oxidizing hemoglobin and myoglobin in separate experiments with 50 μM Fe(2+) and 0.01 mM hydrogen peroxide (H2O2) with and without quercetin and/or genistein. The samples were treated singly with either quercetin, genistein, or in combination at concentrations of 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 μM, respectively, dissolved in dimethyl sulfoxide (DMSO). Samples were then incubated in a water bath at 37°C for 8, 12, and 24 hr, respectively. Levels of carbonylation were assayed by the protein carbonyl assay and the carbonyl levels quantified and expressed per mg of protein. The results indicate that protein carbonyls for samples treated with quercetin or genistein decreased in a dose-dependent manner compared to the controls. That of quercetin compared to genistein was more efficient in reducing the levels of protein carbonylation in hemoglobin and myoglobin, respectively. The combination of both flavonoids did show a gradual decrease in carbonyl compounds for only hemoglobin for all the doses and times tested. The results indicate that both flavonoids at low doses inhibited carbonylation in both hemoglobin and myoglobin and the inhibition may be attributed to the prevention of protein oxidation. PMID:25026201

  12. Effect of Carbon Nanotubes on Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Chen, Michelle; Ahmed, Asma; Black, Melanie; Kawamoto, Nicole; Lucas, Jessica; Pagala, Armie; Pham, Tram; Stankiewicz, Sara; Chen, Howard

    2010-03-01

    Carbon Nanotubes possess extraordinary electrical, mechanical, and thermal properties. Research on applying the carbon nanotubes for ultrasensitive detection, disease diagnosis, and drug delivery is rapidly developing. While the fundamental and technological findings on carbon nanotubes show great promise, it is extremely important to investigate the effect of the carbon nanotubes on human health. In our experiments, we introduce purified carbon nanotubes in suspension to ovary cells cultured from Hamsters. These cells are chosen since they show robust morphological changes associated with cytotoxicity that can easily be observed under a light microscope. We will discuss the toxicity of carbon nanotubes by characterizing the cell morphology and viability as a function of time and the concentration of carbon nanotube suspension.

  13. Centrophenoxine: effects on aging mammalian brain.

    PubMed

    Nandy, K

    1978-02-01

    A study was made of the effects of centrophenoxine on the learning and memory of old mice. The results were correlated with changes in neuronal lipofuscin in the cerebral cortex and hippocampus. Old female mice (11-12 months) were treated with centropheoxine for three months and their learning and memory were tested in a T-maze. The number of trials required to attain the criterion in the 20 treated old mice were compared with those for 20 untreated mice of the same age and for 20 younger untreated mice. The treated animals learned the task with significantly fewer trials, and also exhibited a reduction of neuronal lipofuscin pigment in both the cerebral cortex and the hippocampus. The changes in lipofuscin were demonstrated by study of the characteristic autofluorescence, and by histolchemical and ultrastructural (electron microscope) observations.

  14. Space radiation effects on plant and mammalian cells

    NASA Astrophysics Data System (ADS)

    Arena, C.; De Micco, V.; Macaeva, E.; Quintens, R.

    2014-11-01

    The study of the effects of ionizing radiation on organisms is related to different research aims. The current review emphasizes the studies on the effects of different doses of sparsely and densely ionizing radiation on living organisms, with the final purpose of highlighting specific and common effects of space radiation in mammals and plants. This topic is extremely relevant in the context of radiation protection from space environment. The response of different organisms to ionizing radiation depends on the radiation quality/dose and/or the intrinsic characteristics of the living system. Macromolecules, in particular DNA, are the critical targets of radiation, even if there is a strong difference between damages encountered by plant and mammalian cells. The differences in structure and metabolism between the two cell types are responsible for the higher resistance of the plant cell compared with its animal counterpart. In this review, we report some recent findings from studies performed in Space or on Earth, simulating space-like levels of radiation with ground-based facilities, to understand the effect of ionizing radiation on mammalian and plant cells. In particular, our attention is focused on genetic alterations and repair mechanisms in mammalian cells and on structures and mechanisms conferring radioresistance to plant cells.

  15. Effects of lead and cadmium co-exposure on hemoglobin in a Chinese population.

    PubMed

    Chen, Xiao; Zhou, Hao; Li, Xiaoshuang; Wang, Zhongqiu; Zhu, Guoying; Jin, Taiyi

    2015-03-01

    Cadmium (Cd) and lead (Pb) show adverse effects on hemoglobin. But most studies are focussed on one single agent. In this study, we observed the main and interactive effects of Cd and Pb on the hemoglobin level in a Chinese population. A total of 308 persons (202 women and 106 men), living in controlled and polluted areas, were included in this study. Blood and urine were collected to determine the levels of hemoglobin (Hb), Cd, Pb, and urinary N-acetyl-β-D-glucosaminidase (UNAG). The Cd and Pb level of subjects living in the polluted area were significantly higher compared to those living in the control area (p<0.05). The level of hemoglobin was declined with the increasing BPb (p<0.05) and BCd in women. The Hb of women and men with the highest level of BCd and BPb were decreased by 8.3g/L and 10.7 g/L compared to those with the lowest level of BCd and BPb, respectively. The Hb level of those women and men with the highest level of UNAG decreased by 4.2g/L and 17.2g/L compared with those with low level of UNAG, respectively. Hb was negatively associated with BPb, BCd, and UNAG. This study evidenced that Cd and Pb can influence Hb level. In addition, our study shows that Cd and Pb may have interactive effects on Hb and Hb level was correlated with tubular dysfunction caused by Cd and Pb exposure.

  16. Blood lead: Its effect on trace element levels and iron structure in hemoglobin

    NASA Astrophysics Data System (ADS)

    Jin, C.; Li, Y.; Li, Y. L.; Zou, Y.; Zhang, G. L.; Normura, M.; Zhu, G. Y.

    2008-08-01

    Lead is a ubiquitous environmental pollutant that induce a broad range of physiological and biochemical dysfunctions. The purpose of this study was to investigate its effects on trace elements and the iron structure in hemoglobin. Blood samples were collected from rats that had been exposed to lead. The concentration of trace elements in whole blood and blood plasma was determined by ICP-MS and the results indicate that lead exists mainly in the red blood cells and only about 1-3% in the blood plasma. Following lead exposure, the concentrations of zinc and iron in blood decrease, as does the hemoglobin level. This indicates that the heme biosynthetic pathway is inhibited by lead toxicity and that lead poisoning-associated anemia occurs. The selenium concentration also decreases after lead exposure, which may lead to an increased rate of free radical production. The effect of lead in the blood on iron structure in hemoglobin was determined by EXAFS. After lead exposure, the Fe-O bond length increases by about 0.07 Å and the Fe-Np bond length slightly increases, but the Fe-N ɛ bond length remains unchanged. This indicates that the blood content of Hb increases, but that the content of HbO 2 decreases.

  17. Hemoglobin Effects on Nitric Oxide Mediated Hypoxic Vasodilation.

    PubMed

    Rong, Zimei; Cooper, Chris E

    2016-01-01

    The brain responds to hypoxia with an increase in cerebral blood flow (CBF). However, such an increase is generally believed to start only after the oxygen tension decreases to a certain threshold level. Although many mechanisms (different vasodilator and different generation and metabolism mechanisms of the vasodilator) have been proposed at the molecular level, none of them has gained universal acceptance. Nitric oxide (NO) has been proposed to play a central role in the regulation of oxygen supply since it is a vasodilator whose production and metabolism are both oxygen dependent. We have used a computational model that simulates blood flow and oxygen metabolism in the brain (BRAINSIGNALS) to test mechanism by which NO may elucidate hypoxic vasodilation. The first model proposed that NO was produced by the enzyme nitric oxide synthase (NOS) and metabolized by the mitochondrial enzyme cytochrome c oxidase (CCO). NO production declined with decreasing oxygen concentration given that oxygen is a substrate for nitric oxide synthase (NOS). However, this was balanced by NO metabolism by CCO, which also declined with decreasing oxygen concentration. However, the NOS effect was dominant; the resulting model profiles of hypoxic vasodilation only approximated the experimental curves when an unfeasibly low K m for oxygen for NOS was input into the model. We therefore modified the model such that NO generation was via the nitrite reductase activity of deoxyhemoglobin instead of NOS, whilst keeping the metabolism of NO by CCO the same. NO production increased with decreasing oxygen concentration, leading to an improved reproduction of the experimental CBF versus PaO2 curve. However, the threshold phenomenon was not perfectly reproduced. In this present work, we incorporated a wider variety of oxygen dependent and independent NO production and removal mechanisms. We found that the addition of NO removal via oxidation to nitrate mediated by oxyhemoglobin resulted in the

  18. The effect of 75% glycerol on the oxygen binding properties of carp hemoglobin.

    PubMed

    Kwiatkowski, L D; Noble, R W

    1993-09-30

    At pH 6 in the presence of inositol hexaphosphate, IHP, conditions where ligand-saturated carp hemoglobin is already in the low affinity T state, the addition of glycerol has little effect on affinity and ligand binding remains noncooperative. At all other pH values examined, with and without IHP, the effect of glycerol is to lower oxygen affinity possibly by shifting the equilibrium between the T state and the high affinity R state in the direction of the T state. Although glycerol does not appear to have an appreciable effect on the T state itself, a small effect on the R state cannot be excluded by our data.

  19. Temperature modulation of bovine hemoglobins.

    PubMed

    Condò, S G; el-Sherbini, S; Giardina, B

    1991-06-28

    The functional properties of hemoglobin from Egyptian water buffalo have been characterized as a function of pH, temperature and chloride concentration. Alongside overall similarities shared with ox and Arctic ruminant hemoglobins, hemoglobin from buffalo shows significant differences with respect to the effect of temperature. The results obtained may suggest that the limited effect of temperature on oxygen binding recently reported for ox hemoglobin could be regarded as an interesting case of a reminiscence of a past glacial age.

  20. Effects of naphthalene on the hemoglobin concentration and oxygen uptake of daphnia magna

    SciTech Connect

    Crider, J.Y.; Wilhm, J.; Harman, H.J.

    1982-01-01

    In addition to acute testing for survival of Daphnia magna exposed to naphthalene, various physiological tests were made. Short term studies were conducted to calculate LC50 values and physiological responses. Daphnia of 24 h were fed initially 0.25 ml food/l and the pH, dissolved oxygen and temperature, conductivity, swimming movements, and the number of survivors were determined at 0, 24, and 48 h. These experiments were run at least three times and the dosage-mortality curves were determined by the use of probit and regression analyses. Physiological studies were made for concentrations of 1, 5, and 10 mg/l. Oxygen consumption of Daphnia was measured polarographically and a carboxyhemoglobin method was used to measure total hemoglobin. The hemoglobin concentrations of the treated organisms decreased from 102 nmoles/animal at 1 mg/l naphthalene to 67 nmoles/animal at 9 mg/l. Oxygen uptake decreased from 37 nmoles/animal/h at 1 mg/l to 28 nmoles/animal/h at8 mg/l. Results show that hemoglobin concentration and oxygen uptake may be useful tools in assessing water quality and its effects on the biota. (JMT)

  1. Effects of laser acupoint irradiation on blood glucose and glycosylated hemoglobin in type 2 diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Liu; Guo-Xin, Xiong; Li-Ping, Zhang

    2016-06-01

    To investigate the effects of semiconductor laser acupoint irradiation on blood glucose, glycosylated hemoglobin and physical fitness in type 2 diabetes mellitus, 44 cases of type 2 diabetic patients were randomly divided into a control group and a treatment group. All patients in both groups were given a drug treatment. The Hegu, Quchi and Zusanli acupoints of patients in the treatment group were then irradiated daily for 15 d with a 10 MW semiconductor laser. Before and after treatment, patients in both groups underwent a variety of tests and measurements: a two-hour postprandial blood glucose test; a glycosylated hemoglobin test and body mass index (BMI), waist-to-hip ratio (WHR) and body fat percentage (BFP) measurements. The data detected after treatment greatly decreased in the treatment group and was significantly different from that in the control group. It is shown that the acupoint irradiation with a semiconductor laser can improve two-hour postprandial blood glucose, glycosylated hemoglobin and some physical fitness measurements in type 2 diabetes mellitus patients.

  2. Global allostery model of hemoglobin. Modulation of O(2) affinity, cooperativity, and Bohr effect by heterotropic allosteric effectors.

    PubMed

    Yonetani, Takashi; Park, Sung-Ick; Tsuneshige, Antonio; Imai, Kiyohiro; Kanaori, Kenji

    2002-09-13

    The O(2) equilibria of human adult hemoglobin have been measured in a wide range of solution conditions in the presence and absence of various allosteric effectors in order to determine how far hemoglobin can modulate its O(2) affinity. The O(2) affinity, cooperative behavior, and the Bohr effect of hemoglobin are modulated principally by tertiary structural changes, which are induced by its interactions with heterotropic allosteric effectors. In their absence, hemoglobin is a high affinity, moderately cooperative O(2) carrier of limited functional flexibility, the behaviors of which are regulated by the homotropic, O(2)-linked T/R quaternary structural transition of the Monod-Wyman-Changeux/Perutz model. However, the interactions with allosteric effectors provide such "inert" hemoglobin unprecedented magnitudes of functional diversities not only of physiological relevance but also of extreme nature, by which hemoglobin can behave energetically beyond what can be explained by the Monod-Wyman-Changeux/Perutz model. Thus, the heterotropic effector-linked tertiary structural changes rather than the homotropic ligation-linked T/R quaternary structural transition are energetically more significant and primarily responsible for modulation of functions of hemoglobin.

  3. The dual effects of nitrite on hemoglobin-dependent redox reactions.

    PubMed

    Lu, Naihao; Chen, Chao; He, Yingjie; Tian, Rong; Xiao, Qiang; Peng, Yi-Yuan

    2014-08-31

    Evidence to support the role of heme proteins-dependent reactions as major inducers of oxidative damage is increasingly present. Nitrite (NO2(-)) is one of the major end products of NO metabolism, and from the daily consumption. Although the biological significance of heme proteins/NO2(-)-mediated protein tyrosine nitration is a subject of great interest, the important roles of NO2(-) on heme proteins-dependent redox reactions have been greatly underestimated. In this study, we investigated the influence of NO2(-) on met-hemoglobin (Hb)-dependent oxidative and nitrative stress. It was found that NO2(-) effectively reduced cytotoxic ferryl intermediate back to ferric Hb in a biphasic kinetic reaction. However, the presence of NO2(-) surprisingly exerted pro-oxidant effect on Hb-H2O2-induced protein (bovine serum albumin, enolase) oxidation at low concentrations and enhanced the loss of HepG2 cell viability. In the reduction of ferryl Hb to ferric state, NO2(-) was decreased and oxidized to a nitrating agent NO2, Tyr12 and Tyr191 in enolase were subsequently nitrated. In contrast to the frequently inhibitive effect of nitrotyrosine, NO2(-)-triggered tyrosine nitration might play an important role in enolase activation. These data provided novel evidence that the dietary intake and potential therapeutic application of NO2(-) would possess anti- and pro-oxidant activities through interfering in hemoglobin-dependent redox reactions. Besides the classic role in protein tyrosine nitration, the dual effects on hemoglobin-triggered oxidative stress may provide new insights into the physiological and toxicological implications of NO2(-) with heme proteins.

  4. Quinones: reactions with hemoglobin, effects within erythrocytes and potential for antimalarial development

    SciTech Connect

    Denny, B.J.

    1986-01-01

    The focus of this research was to characterize the interactions of some simple quinone like compounds with purified hemoglobin and to study the effects of these compounds within erythrocytes. It is proposed that these sorts of agents can have an antimalarial effect. The simplest compounds chosen for study were benzoquinone, methylquinone (toluquinone) and hydroquinone. When /sup 14/C-quinone was reacted with purified hemoglobin (Hb) there was rapid binding of the first two moles of substrate per Hb molecule. An unusual property of the modified Hb's is that in the presence of a redox sensitive agent such as cytochrome c they are capable of generating superoxide anions. Within erythrocytes, quinone and toluquinone which differ only by a single methyl group have completely different effects. Toluquinone causes the cells to hemolyse and the effect was enhanced when the erythrocyte superoxide dismutase was inhibited; the effect was diminished when scavengers of activated oxygen such as histidine, mannitol and vital E were present. Benzoquinone on the other hand did not cause the cells to hemolyse and instead appeared to protect the cells from certain hemolytic stresses. Growth of malaria parasites in erythrocytes has been shown to be inhibited by activated forms of oxygen, also some quinone like agents in the past have been shown to inhibit the parasite's metabolism. An initial experiment with erythrocytes infected with malaria parasites showed that quinone and toluquinone could both inhibit the growth rate of parasites.

  5. Effect of repeated benzene inhalation exposures on benzene metabolism, binding to hemoglobin, and induction of micronuclei.

    PubMed

    Sabourin, P J; Sun, J D; MacGregor, J T; Wehr, C M; Birnbaum, L S; Lucier, G; Henderson, R F

    1990-05-01

    Metabolism of benzene is thought to be necessary to produce the toxic effects, including carcinogenicity, associated with benzene exposure. To extrapolate from the results of rodent studies to potential health risks in man, one must know how benzene metabolism is affected by species, dose, dose rate, and repeated versus single exposures. The purpose of our studies was to determine the effect of repeated inhalation exposures on the metabolism of [14C]benzene by rodents. Benzene metabolism was assessed by characterizing and quantitating urinary metabolites, and by quantitating 14C bound to hemoglobin and micronuclei induction. F344/N rats and B6C3F1 mice were exposed, nose-only, to 600 ppm benzene or to air (control) for 6 hr/day, 5 days/week for 3 weeks. On the last day, both benzene-pretreated and control animals were exposed to 600 ppm, 14C-labeled benzene for 6 hr. Individual benzene metabolites in urine collected for 24 hr after the exposure were analyzed. There was a significant decrease in the respiratory rate of mice (but not rats) pretreated with benzene which resulted in lower levels of urinary [14C]benzene metabolites. The analyses indicated that the only effects of benzene pretreatment on the metabolite profile in rat or mouse urine were a slight shift from glucuronidation to sulfation in mice and a shift from sulfation to glucuronidation in rats. Benzene pretreatment also had no effect, in either species, on formation of [14C]benzene-derived hemoglobin adducts. Mice and rats had similar levels of hemoglobin adduct binding, despite the higher metabolism of benzene by mice. This indicates that hemoglobin adduct formation occurs with higher efficiency in rats. After 1 week of exposure to 600 ppm benzene, the frequency of micronucleated, polychromatic erythrocytes (PCEs) in mice was significantly increased. Exposure to the same level of benzene for an additional 2 weeks did not further increase the frequency of micronuclei in PCEs. These results indicate

  6. Toxic effects of Karenia mikimotoi extracts on mammalian cells

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Yan, Tian; Yu, Rencheng; Zhou, Mingjiang

    2011-07-01

    Karenia is one of the most harmful and representative red tide genus in a temperate zone. Blooms caused by this genus have resulted in massive fish death in the South China Sea and the East China Sea. However, the potential effects of this dinoflagellate on human health through the transfer of toxins via marine food webs, and the mechanisms of toxicity, are still unknown. Therefore, we examined the toxic effects of a strain of K. mikimotoi (isolated from the South China Sea) on the proliferation and morphology of four mammalian cell lines (two normal cell lines and two cancer cell lines). In addition, we carried out a preliminary investigation on the mechanism of toxicity of the alga. The results show that the polar lipid-soluble component of K. mikimotoi significantly inhibited proliferation of the four cell lines, and resulted in the cells becoming spherical, swollen and damaged. The result of Annexin V and PI double-staining confirmed that cell membranes were disrupted. The malonaldehyde (MDA) contents in the medium of the four cell lines treated with the polar-lipid extracts all increased significantly, which indicates that the polar-lipid toxins produced by K. mikimotoi could adversely affect mammalian cells by inducing lipid peroxidation. We conclude that K. mikimotoi is a potential threat to human health, and the comprehensive effect of this dinoflagellate and its mechanisms should be investigated further.

  7. Mutual effects of proton and sodium chloride on oxygenation of liganded human hemoglobin.

    PubMed

    Lepeshkevich, Sergei V; Dzhagarov, Boris M

    2005-12-01

    The different effects of pH and NaCl on individual O2-binding properties of alpha and beta subunits within liganded tetramer and dimer of human hemoglobin (HbA) were examined in a number of laser time-resolved spectroscopic measurements. A previously proposed approach [Dzhagarov BM & Lepeshkevich SV (2004) Chem Phys Lett390, 59-64] was used to determine the extent of subunit dissociation rate constant difference and subunit affinity difference from a single flash photolysis experiment. To investigate the effect of NaCl concentration on the association and dissociation rate constants we carried out a series of experiments at four different concentrations (0.1, 0.5, 1.0 and 2.0 m NaCl) over the pH range of the alkaline Bohr effect. As the data suggest, the individual properties of the alpha and beta subunits within the completely liganded tetrameric hemoglobin did not depend on pH under salt-free conditions. However, different effects NaCl on the individual kinetic properties of the alpha and beta subunits were revealed. Regulation of the O2-binding properties of the alpha and beta subunits within the liganded tetramer is proposed to be attained in two quite different ways.

  8. Hemoglobin electrophoresis

    MedlinePlus

    ... sickle cell anemia. Other, less common, abnormal Hb molecules cause other types of anemia . ... adults, these are normal percentages of different hemoglobin molecules: Hb A: 95% to 98% Hb A2: 2% ...

  9. Hemoglobin derivatives

    MedlinePlus

    ... in red blood cells that moves oxygen and carbon dioxide between the lungs and body tissues. This article ... attached to carbon monoxide instead of oxygen or carbon dioxide. High amounts of this type of abnormal hemoglobin ...

  10. Protective Effect of Ascorbic Acid on Molecular Behavior Changes of Hemoglobin Induced by Magnetic Field

    NASA Astrophysics Data System (ADS)

    Hassan, Nahed S.; Abou Aiad, T. H. M.

    With the use of electricity and industrialization of societies, humans are commonly exposed to static magnetic field induced by electric currents. The putative mechanisms by which Static Magnetic Field (SMF) may affect biological systems is that of increasing free radical life span in organisms. To test this hypothesis, we investigate the effect of ascorbic acid (Vitamin C) treatment on the changes in the molecular behavior of hemoglobin as a result of exposure of the animals to magnetic field in the occupation levels. By measuring the relative permittivity, dielectric loss, relaxation time, conductivity, radius and diffusion coefficient of aqueous solutions of hemoglobin. These measurements were calculated in the frequency range of (100 Hz-100 kHz) to give more information about molecular behavior. Twenty four male albino rats were equally divided into four groups 1, 2, 3 and 4. Animals of group 1, were used as control, animals of group 2, were exposed to (0.2T) magnetic field and that of group 3, 4, were treated with Ascorbic Acid by two doses group 3 (20 mg kg-1 body weight), group 4 (50 mg kg-1 body weight) orally half hour before exposure to magnetic field. The sub chronic exposure expanded (1 h day-1) for 30 consecutive days. The results indicated that exposure of animals to magnetic field resulted in changes in the molecular behavior of hemoglobin molecule while treatment with ascorbic acid afforded comparatively more significant amelioration in these molecular changes, via decreasing the radical pair interaction of magnetic field with biological molecules.

  11. A simple and efficient method for hemoglobin removal from mammalian tissue cytosol by zinc sulfate and its application to the study of lipoxygenase.

    PubMed

    Hover, C G; Kulkarni, A P

    2000-02-01

    A simple and efficient method is described to remove hemoglobin (Hb) from human term placental cytosol to study dioxygenase and co-oxidase activities of lipoxygenase. In the untreated samples, 70%-80% of the linoleic acid-dependent dioxygenase and co-oxidase activities were found to be associated with the pseudo-lipoxygenase activity of Hb. Zinc sulfate (0.5 mM) precipitated >97% of the Hb present in the cytosol. The dioxygenase activity of the ZnSO4 treated cytosol exhibited a Vmax value of 313 nmoles linoleic acid hydroperoxide formed/min/mg protein and a K(M) of 1.4 mM for linoleic acid. The ZnSO4 treated cytosol displayed co-oxidase activity toward benzidine, dimethoxybenzidine, guaiacol, pyrogallol, tetramethylbenzidine and tetramethyl-p-phenylenediamine. Nordihydroguaiaretic acid, 5,8,11-eicosatriynoic acid, butylated hydroxyanisole, butylated hydroxytoluene and gossypol caused concentration dependent inhibition of dioxygenase and co-oxidase activities. These results suggest ZnSO4 precipitation of Hb from cytosol does not alter the functional characteristics of the human term placental lipoxygenase.

  12. Effects of S-nitrosation on hemoglobin-induced microvascular damage.

    PubMed

    Burke, Tara K; Teng, Xinjun; Patel, Rakesh P; Baldwin, Ann L

    2006-01-01

    Blood substitutes, such as diaspirin cross-linked hemoglobin (Hb), cause microvascular leakiness to macromolecules. Because of the potentially stabilizing effects of nitric acid (NO) on endothelium, experiments were performed to determine whether S-nitrosohemoglobin (SNO-Hb), a potential NO-donor Hb-based blood substitute, would not cause microvascular damage. Release of NO, or its metabolites, from the SNO-Hb was facilitated by addition of glutathione, which aids in the decomposition of S-nitrosothiols. In anesthetized rats, the mesenteric microvasculature was perfused with SNO-Hb with glutathione (six rats), SNO-Hb alone (six rats), or saline (eight rats) for 10 min, followed by fluorescein isothiocyanate (FITC)-albumin for 1 min, and finally fixed for epifluorescence microscopic examination. When comparing the SNO-Hb group with saline, both the numbers and areas of leaks were significantly increased [0.019 +/- 0.003 (SEM) microm vs. 0.0030 +/- 0.0004 and 7.36 +/- 1.50 vs. 0.156 +/- 0.035 (p < 0.005)]. With the addition of glutathione, leakage was still high (0.005 +/- 0.00005 microm and 5.086 +/- 0.064 microm) but decreased compared with SNO-Hb alone (p < 0.005). In conclusion, NO, or a related vasodilator, when released from SNO-Hb, significantly reduces but does not eliminate microvascular damage. Further improvements may result by S-nitrosating a more stable form of modified hemoglobin. PMID:16910757

  13. The calming effect of maternal carrying in different mammalian species.

    PubMed

    Esposito, Gianluca; Setoh, Peipei; Yoshida, Sachine; Kuroda, Kumi O

    2015-01-01

    Attachment theory postulates that mothers and their infants possess some basic physiological mechanisms that favor their dyadic interaction and bonding. Many studies have focused on the maternal physiological mechanisms that promote attachment (e.g., mothers' automatic responses to infant faces and/or cries), and relatively less have examined infant physiology. Thus, the physiological mechanisms regulating infant bonding behaviors remain largely undefined. This review elucidates some of the neurobiological mechanisms governing social bonding and cooperation in humans by focusing on maternal carrying and its beneficial effect on mother-infant interaction in mammalian species (e.g., in humans, big cats, and rodents). These studies show that infants have a specific calming response to maternal carrying. A human infant carried by his/her walking mother exhibits a rapid heart rate decrease, and immediately stops voluntary movement and crying compared to when he/she is held in a sitting position. Furthermore, strikingly similar responses were identified in mouse rodents, who exhibit immobility, diminished ultra-sonic vocalizations and heart rate. In general, the studies described in the current review demonstrate the calming effect of maternal carrying to be comprised of a complex set of behavioral and physiological components, each of which has a specific postnatal time window and is orchestrated in a well-matched manner with the maturation of the infants. Such reactions could have been evolutionarily adaptive in mammalian mother-infant interactions. The findings have implications for parenting practices in developmentally normal populations. In addition, we propose that infants' physiological response may be useful in clinical assessments as we discuss possible implications on early screening for child psychopathology (e.g., autism spectrum disorders and perinatal brain disorders).

  14. The calming effect of maternal carrying in different mammalian species

    PubMed Central

    Esposito, Gianluca; Setoh, Peipei; Yoshida, Sachine; Kuroda, Kumi O.

    2015-01-01

    Attachment theory postulates that mothers and their infants possess some basic physiological mechanisms that favor their dyadic interaction and bonding. Many studies have focused on the maternal physiological mechanisms that promote attachment (e.g., mothers’ automatic responses to infant faces and/or cries), and relatively less have examined infant physiology. Thus, the physiological mechanisms regulating infant bonding behaviors remain largely undefined. This review elucidates some of the neurobiological mechanisms governing social bonding and cooperation in humans by focusing on maternal carrying and its beneficial effect on mother–infant interaction in mammalian species (e.g., in humans, big cats, and rodents). These studies show that infants have a specific calming response to maternal carrying. A human infant carried by his/her walking mother exhibits a rapid heart rate decrease, and immediately stops voluntary movement and crying compared to when he/she is held in a sitting position. Furthermore, strikingly similar responses were identified in mouse rodents, who exhibit immobility, diminished ultra-sonic vocalizations and heart rate. In general, the studies described in the current review demonstrate the calming effect of maternal carrying to be comprised of a complex set of behavioral and physiological components, each of which has a specific postnatal time window and is orchestrated in a well-matched manner with the maturation of the infants. Such reactions could have been evolutionarily adaptive in mammalian mother–infant interactions. The findings have implications for parenting practices in developmentally normal populations. In addition, we propose that infants’ physiological response may be useful in clinical assessments as we discuss possible implications on early screening for child psychopathology (e.g., autism spectrum disorders and perinatal brain disorders). PMID:25932017

  15. Effects of lead on delta-aminolevulinic acid dehydratase activity, growth, hemoglobin content, and reproduction in Daphnia magna

    SciTech Connect

    Berglind, R.; Dave, G.; Sjoebeck, M.L.

    1985-04-01

    The effects of continuous exposure to lead for various periods and recovery in clean water on delta-aminolevulinic acid dehydratase (ALA-D) activity, hemoglobin content, growth, and reproduction were studied in Daphnia magna. Steady-state inhibition of ALA-D activity was reached within 2 days in 16, 64, and 256 micrograms Pb liter-1, but restoration in clean water was prolonged in relation to previous exposure. In spite of the inhibition of ALA-D activity hemoglobin content increased after 2 days in 16 and 24 micrograms Pb liter-1. Furthermore, hemoglobin content in previously exposed animals increased during recovery in clean water. Maximum hemoglobin content (2.9 times control value) was found after 2 days recovery of animals exposed to 64 micrograms Pb liter-1. These findings suggest that some enzyme(s) other than ALA-D in the biosynthetic pathway of hemoglobin formation is (are) more sensitive to lead. Growth, in contrast to reproduction, was stimulated by low concentrations of lead (less than 64 micrograms Pb liter-1), although in 256 micrograms Pb liter-1 growth was also significantly impaired. After 19 days the 16 and 50% reproductive impairment concentrations were less than or equal to 1 and 10 micrograms Pb liter-1, respectively.

  16. No scavenging and the hypertensive effect of hemoglobin-based blood substitutes.

    PubMed

    Olson, John S; Foley, Erin W; Rogge, Corina; Tsai, Ah-Lim; Doyle, Michael P; Lemon, Douglas D

    2004-03-15

    The major pathway for nitric oxide scavenging in red cells involves the direct reaction of the gas with HbO2 to form nitrate and the ferric form of the protein, metHb. Because both atoms of O2 are incorporated into nitrate, this process is called NO dioxygenation (NOD). The NOD reaction involves an initial, very rapid bimolecular addition of NO to bound O2 to form a transient Fe(III)-peroxynitrite complex, which can be observed spectrally at alkaline pH. This intermediate rapidly isomerizes at pH 7 (t1/2 <== 1 ms) to metHb and NO3-, which is nontoxic and readily transported out of red cells and excreted. The rate of NO consumption by intracellular HbO2 during normal blood flow is limited by diffusion up to and into the red cells and is too slow to interfere significantly with vasoregulation. In contrast, extracellular HbO2 is highly vasoconstrictive, and the resultant hypertension is a significant side effect of most hemoglobin-based blood substitutes. The major cause of this blood pressure effect seems to be the high rate of NO dioxygenation by cell-free HbO2, which can extravasate into the vessel walls and interfere directly with NO signaling between endothelial and smooth muscle cells. This interpretation is supported by a strong linear correlation between the magnitude of the blood pressure effect caused by infusion of cross-linked recombinant hemoglobin tetramers in vivo and the rate of NO dioxygenation by these proteins measured in vitro.

  17. Effect of deep breathing on extracted oxygen and cerebral hemoglobin levels.

    PubMed

    Kennedy, Patrick M; Zarbock, Christopher M; Burke, Broc A; Diamond, Solomon G

    2011-01-01

    This study examines the relationship between oxygen expired and functional near infrared spectroscopy (fNIRS) measured hemoglobin levels in the brain. Analysis of these two signals during normal versus deep breathing provides insight into the dynamics of cerebral physiology. Intersubject variation suggests the existence of two distinct groups with respect to oxygen extraction and hemoglobin levels. PMID:22254486

  18. Determination of selenium via the fluorescence quenching effect of selenium on hemoglobin-catalyzed peroxidative reaction.

    PubMed

    Chen, Ya-Hong; Zhang, Ya-Nan; Tian, Feng-Shou

    2015-05-01

    A new method for the determination of selenium based on its fluorescence quenching on the hemoglobin-catalyzed reaction of H2 O2 and l-tyrosine has been established. The effect of pH, foreign ions and the optimization of variables on the determination of selenium was examined. The calibration curve was found to be linear between the fluorescence quenching (F0 /F) and the concentration of selenium within the range of 0.16-4.00 µg/mL. The detection limit was 1.96 ng/mL and the relative standard deviation was 3.14%. This method can be used for the determination of selenium in Se-enriched garlic bulbs with satisfactory results.

  19. Subunit dissociation in fish hemoglobins.

    PubMed

    Edelstein, S J; McEwen, B; Gibson, Q H

    1976-12-10

    The tetramer-dimer dissociation equilibria (K 4,2) of several fish hemoglobins have been examined by sedimentation velocity measurements with a scanner-computer system for the ultracentrifuge and by flash photolysis measurements using rapid kinetic methods. Samples studied in detail included hemoglobins from a marine teleost, Brevoortia tyrannus (common name, menhaden); a fresh water teleost, Cyprinus carpio, (common name, carp); and an elasmobranch Prionace glauca (common name, blue shark). For all three species in the CO form at pH 7, in 0.1 M phosphate buffer, sedimentation coefficients of 4.3 S (typical of tetrameric hemoglobin) are observed in the micromolar concentration range. In contrast, mammalian hemoglobins dissociate appreciably to dimers under these conditions. The inability to detect dissociation in three fish hemoglobins at the lowest concentrations examined indicates that K 4,2 must have a value of 10(-8) M or less. In flash photolysis experiments on very dilute solutions in long path length cells, two kinetic components were detected with their proportions varying as expected for an equilibrium between tetramers (the slower component) and dimers (the faster component); values of K 4,2 for the three fish hemoglobins in the range 10(-9) to 10(-8) M were calculated from these data. Thus, the values of K 4,2 for liganded forms of the fish hemoglobins appear to be midway between the value for liganded human hemoglobin (K 4,2 approximately 10(-6) M) and unliganded human hemoglobin (K 4,2 approximately 10(-12) M). This conclusion is supported by measurements on solutions containing guanidine hydrochloride to enhance the degree of dissociation. All three fish hemoglobins are appreciably dissociated at guanidine concentrations of about 0.8 M, which is roughly midway between the guanidine concentrations needed to cause comparable dissociation of liganded human hemoglobin (about 0.4 M) and unliganded human hemoglobin (about 1.6 M). Kinetic measurements on

  20. Serum free hemoglobin test

    MedlinePlus

    Blood hemoglobin; Serum hemoglobin ... Hemoglobin (Hb) is the main component of red blood cells. It is a protein that carries oxygen. ... people may contain up to 5 mg/dL hemoglobin. Normal value ranges may vary slightly among different ...

  1. Hemoglobin C disease

    MedlinePlus

    Clinical hemoglobin C ... Hemoglobin C is an abnormal type of hemoglobin, the protein in red blood cells that carries oxygen. It is ... Americans. You are more likely to have hemoglobin C disease if someone in your family has had ...

  2. Effective isotope labeling of proteins in a mammalian expression system.

    PubMed

    Sastry, Mallika; Bewley, Carole A; Kwong, Peter D

    2015-01-01

    Isotope labeling of biologically interesting proteins is a prerequisite for structural and dynamics studies by NMR spectroscopy. Many of these proteins require mammalian cofactors, chaperons, or posttranslational modifications such as myristoylation, glypiation, disulfide bond formation, or N- or O-linked glycosylation; and mammalian cells have the necessary machinery to produce them in their functional forms. Here, we describe recent advances in mammalian expression, including an efficient adenoviral vector-based system, for the production of isotopically labeled proteins. This system enables expression of mammalian proteins and their complexes, including proteins that require posttranslational modifications. We describe a roadmap to produce isotopically labeled (15)N and (13)C posttranslationally modified proteins, such as the outer domain of HIV-1 gp120, which has four disulfide bonds and 15 potential sites of N-linked glycosylation. These methods should allow NMR spectroscopic analysis of the structure and function of posttranslationally modified and secreted, cytoplasmic, or membrane-bound proteins.

  3. Effect of the N-terminal residues on the quaternary dynamics of human adult hemoglobin

    NASA Astrophysics Data System (ADS)

    Chang, Shanyan; Mizuno, Misao; Ishikawa, Haruto; Mizutani, Yasuhisa

    2016-05-01

    The protein dynamics of human hemoglobin following ligand photolysis was studied by time-resolved resonance Raman spectroscopy. The time-resolved spectra of two kinds of recombinant hemoglobin expressed in Escherichia coli, normal recombinant hemoglobin and the α(V1M)/β(V1M) double mutant, were compared with those of human adult hemoglobin (HbA) purified from blood. A frequency shift of the iron-histidine stretching [ν(Fe-His)] band was observed in the time-resolved spectra of all three hemoglobin samples, indicative of tertiary and quaternary changes in the protein following photolysis. The spectral changes of the α(V1M)/β(V1M) double mutant were distinct from those of HbA in the tens of microseconds region, whereas the spectral changes of normal recombinant hemoglobin were similar to those of HbA isolated from blood. These results demonstrated that a structural change in the N-termini is involved in the second step of the quaternary structure change of hemoglobin. We discuss the implications of these results for understanding the allosteric pathway of HbA.

  4. Comparative In Vivo Effects of Hemoglobin-Based Oxygen Carriers (HBOC) with Varying Prooxidant and Physiological Reactivity

    PubMed Central

    Roman, Ioana; Sevastre, Bogdan; Hathazi, Denisa; Scurtu, Florina; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2016-01-01

    A series of hemoglobin-based oxygen carrier candidates (HBOC), previously noted for their differences in prooxidative and physiological reactivity, were compared in terms of the negative effects displayed upon injection in Wistar rats. At the concentrations tested, antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages. PMID:27097326

  5. Comparative In Vivo Effects of Hemoglobin-Based Oxygen Carriers (HBOC) with Varying Prooxidant and Physiological Reactivity.

    PubMed

    Toma, Vlad Al; Farcaș, Anca D; Roman, Ioana; Sevastre, Bogdan; Hathazi, Denisa; Scurtu, Florina; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2016-01-01

    A series of hemoglobin-based oxygen carrier candidates (HBOC), previously noted for their differences in prooxidative and physiological reactivity, were compared in terms of the negative effects displayed upon injection in Wistar rats. At the concentrations tested, antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages. PMID:27097326

  6. The fungicide mancozeb induces toxic effects on mammalian granulosa cells.

    PubMed

    Paro, Rita; Tiboni, Gian Mario; Buccione, Roberto; Rossi, Gianna; Cellini, Valerio; Canipari, Rita; Cecconi, Sandra

    2012-04-15

    The ethylene-bis-dithiocarbamate mancozeb is a widely used fungicide with low reported toxicity in mammals. In mice, mancozeb induces embryo apoptosis, affects oocyte meiotic spindle morphology and impairs fertilization rate even when used at very low concentrations. We evaluated the toxic effects of mancozeb on the mouse and human ovarian somatic granulosa cells. We examined parameters such as cell morphology, induction of apoptosis, and p53 expression levels. Mouse granulosa cells exposed to mancozeb underwent a time- and dose-dependent modification of their morphology, and acquired the ability to migrate but not to proliferate. The expression level of p53, in terms of mRNA and protein content, decreased significantly in comparison with unexposed cells, but no change in apoptosis was recorded. Toxic effects could be attributed, at least in part, to the presence of ethylenthiourea (ETU), the main mancozeb catabolite, which was found in culture medium. Human granulosa cells also showed dose-dependent morphological changes and reduced p53 expression levels after exposure to mancozeb. Altogether, these results indicate that mancozeb affects the somatic cells of the mammalian ovarian follicles by inducing a premalignant-like status, and that such damage occurs to the same extent in both mouse and human GC. These results further substantiate the concept that mancozeb should be regarded as a reproductive toxicant. PMID:22369882

  7. The effect of ascetic acid on mammalian cells

    SciTech Connect

    Mariana, Oana C; Trujillo, Antoinette; Sanders, Claire K; Burnett, Kassidy S; Freyer, James P; Mourant, Judith R

    2010-01-01

    Effects of the contrast agent, acetic acid, on mammalian cells are studied using light scattering measurements, viability and fluorescence pH assays. Results depend on whether cells are in PBS or are live and metabolizing. Acetic acid is a contrast agent used to aid the detection of cancerous and precancerous lesions of the uterine cervix. Typically 3% or 5% acetic acid is applied to the swface of the cervix and areas of the tissue that turn 'acetowhite' are considered more likely to be precancerous. The mechanism of action of acetic acid has never been understood in detail, although there are several hypotheses. One is that a decrease in pH causes cytokeratins in epithelial cells to polymerize. We will present data demonstrating that this is not the sole mechanism of acetowhitening. Another hypothesis is that a decrease in pH in the nucleus causes deacetylation of the histones which in turn results in a dense chromatin structure. Relevant to this hypothesis we have measured the internal pH of cells. Additional goals of this work are to understand what physical changes result in acetowhitening, to understand why there is variation in how cells respond to acetic acid, and to investigate how acetowhitening affects the light scatter properties measured by a fiber-optic probe we have developed for cervical cancer diagnostics.

  8. Effects of Tetrodotoxin on the Mammalian Cardiovascular System

    PubMed Central

    Zimmer, Thomas

    2010-01-01

    The human genome encodes nine functional voltage-gated Na+ channels. Three of them, namely Nav1.5, Nav1.8, and Nav1.9, are resistant to nanomolar concentrations of tetrodotoxin (TTX; IC50 ≥ 1 μM). The other isoforms, which are predominantly expressed in the skeletal muscle and nervous system, are highly sensitive to TTX (IC50 ~ 10 nM). During the last two decades, it has become evident that in addition to the major cardiac isoform Nav1.5, several of those TTX sensitive isoforms are expressed in the mammalian heart. Whereas immunohistochemical and electrophysiological methods demonstrated functional expression in various heart regions, the physiological importance of those isoforms for cardiac excitation in higher mammals is still debated. This review summarizes our knowledge on the systemic cardiovascular effects of TTX in animals and humans, with a special focus on cardiac excitation and performance at lower concentrations of this marine drug. Altogether, these data strongly suggest that TTX sensitive Na+ channels, detected more recently in various heart tissues, are not involved in excitation phenomena in the healthy adult heart of higher mammals. PMID:20411124

  9. [Effects of delayed cord clamping on hemoglobin and ferritin levels in infants at three months of age].

    PubMed

    Venâncio, Sonia Isoyama; Levy, Renata Bertazzi; Saldiva, Sílvia Regina Dias Médici; Mondini, Lenise; Alves, Maria Cecília Goi Porto; Leung, Siu Lum

    2008-01-01

    This study assessed the effect of delayed (1 minute after delivery) clamping of the umbilical cord on hemoglobin and ferritin levels in infants at three months of age. Mothers and their infants born through vaginal delivery, at term, and without congenital anomalies (325 pairs) were recruited at a hospital in São Paulo, Brazil, in 2006 (164 in the delayed clamping subgroup and 161 in the early clamping subgroup). Maternal hemoglobin at delivery, umbilical cord hemoglobin, and ferritin were recorded. At three months follow-up, venous blood samples were drawn from 224 (69%) infants for hemoglobin and ferritin measurement. Socioeconomic, maternal reproductive, anthropometric, and infant feeding variables were studied. Multiple linear regression models were used to analyze the data. The effect of delayed clamping at birth, measured at three months, was only significant for ferritin (p = 0.040), and the concentration was higher (23.29ng/mL) in this subgroup as compared to the early clamping subgroup. Delayed umbilical cord clamping can serve as a strategy to improve infant iron status and prevent iron deficiency.

  10. Effects of Iron Supplementation and Activity on Serum Iron Depletion and Hemoglobin Levels in Female Athletes

    ERIC Educational Resources Information Center

    Cooter, G. Rankin; Mowbray, Kathy W.

    1978-01-01

    Research revealed that a four-month basketball training program did not significantly alter serum iron, total iron binding capacity, hemoglobin, and percent saturation levels in female basketball athletes. (JD)

  11. The fungicide mancozeb induces toxic effects on mammalian granulosa cells

    SciTech Connect

    Paro, Rita; Tiboni, Gian Mario; Buccione, Roberto; Rossi, Gianna; Cellini, Valerio; Canipari, Rita; Cecconi, Sandra

    2012-04-15

    The ethylene-bis-dithiocarbamate mancozeb is a widely used fungicide with low reported toxicity in mammals. In mice, mancozeb induces embryo apoptosis, affects oocyte meiotic spindle morphology and impairs fertilization rate even when used at very low concentrations. We evaluated the toxic effects of mancozeb on the mouse and human ovarian somatic granulosa cells. We examined parameters such as cell morphology, induction of apoptosis, and p53 expression levels. Mouse granulosa cells exposed to mancozeb underwent a time- and dose-dependent modification of their morphology, and acquired the ability to migrate but not to proliferate. The expression level of p53, in terms of mRNA and protein content, decreased significantly in comparison with unexposed cells, but no change in apoptosis was recorded. Toxic effects could be attributed, at least in part, to the presence of ethylenthiourea (ETU), the main mancozeb catabolite, which was found in culture medium. Human granulosa cells also showed dose-dependent morphological changes and reduced p53 expression levels after exposure to mancozeb. Altogether, these results indicate that mancozeb affects the somatic cells of the mammalian ovarian follicles by inducing a premalignant-like status, and that such damage occurs to the same extent in both mouse and human GC. These results further substantiate the concept that mancozeb should be regarded as a reproductive toxicant. Highlights: ► The fungicide mancozeb affects oocyte spindle morphology and fertilization rate. ► We investigated the toxic effects of mancozeb on mouse and human granulosa cells. ► Granulosa cells modify their morphology and expression level of p53. ► Mancozeb induces a premalignant-like status in exposed cells.

  12. Non-site-specific allosteric effect of oxygen on human hemoglobin under high oxygen partial pressure

    PubMed Central

    Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka

    2014-01-01

    Protein allostery is essential for vital activities. Allosteric regulation of human hemoglobin (HbA) with two quaternary states T and R has been a paradigm of allosteric structural regulation of proteins. It is widely accepted that oxygen molecules (O2) act as a “site-specific” homotropic effector, or the successive O2 binding to the heme brings about the quaternary regulation. However, here we show that the site-specific allosteric effect is not necessarily only a unique mechanism of O2 allostery. Our simulation results revealed that the solution environment of high O2 partial pressure enhances the quaternary change from T to R without binding to the heme, suggesting an additional “non-site-specific” allosteric effect of O2. The latter effect should play a complementary role in the quaternary change by affecting the intersubunit contacts. This analysis must become a milestone in comprehensive understanding of the allosteric regulation of HbA from the molecular point of view. PMID:24710521

  13. Oxygen-organophosphate linkage in hemoglobin A. The double hump effect.

    PubMed Central

    Kister, J; Poyart, C; Edelstein, S J

    1987-01-01

    At low concentrations of chloride ions, and in the presence of nonsaturating concentrations of organophosphates, the oxygen equilibrium curves (OEC) for solutions of human adult hemoglobin exhibit a biphasic shape conveniently revealed by graphical analysis of the first derivative of the Hill equation with a characteristic form that we call "the double hump effect." This shape, observed for sub-saturating concentrations of organophosphates, stands in marked contrast to the simple lateral shifts of the OEC represented largely by scaling factors when pH or chloride are varied. In the case of protons or chloride, there is a self-buffering effect due to the presence of a large reservoir of proton or chloride binding sites not necessarily linked to oxygen, whereas such sites do not exist in the case of organophosphates. In addition, in the former case, we are dealing with curves measured at constant activity of the effector, while in the latter, at constant concentration. In the presence of saturating concentrations of inositol hexaphosphate (IHP), at low chloride concentration, the entire OEC is shifted to the right, including both its upper and lower asymptotes, indicating a decrease in the intrinsic oxygen affinities of both the T and R states. Theoretical considerations leading to a successful modeling of OEC obtained under nonsaturating and saturating concentrations of IHP required an expanded two-state allosteric model in which IHP-dependent variations in oxygen association constants for both the T and R conformations are taken into account. PMID:3676434

  14. Osmotic and diffusive properties of intracellular water in camel erythrocytes: effect of hemoglobin crowdedness.

    PubMed

    Bogner, Peter; Miseta, Attila; Berente, Zoltan; Schwarcz, Attila; Kotek, Gyula; Repa, Imre

    2005-09-01

    Camel erythrocytes have exceptional osmotic resistance and is believed to be due to augmented water-binding associated with the high hydrophilicity of camel hemoglobin. In practical terms this means that the proportion of osmotically non-removable water in camel erythrocytes is nearly 3-fold greater than that in human erythrocytes (approximately 65 vs approximately 20%). The relationship between water diffusion and the osmotic characteristics of intracellular water is the subject of this report. The amount of osmotically inactive water is 2-fold greater in camel hemoglobin solution in vitro compared to that of human, but water diffusion does not differ in camel and human hemoglobin solutions. However, the evaluation of water diffusion by magnetic resonance measurements in camel erythrocytes revealed approximately 15% lower apparent diffusion coefficient (ADC) compared with human erythrocytes. When human erythrocytes were dehydrated to the level of camel erythrocytes, their osmotic and water diffusion properties were similar. These results show that a lower ADC is associated with a more pronounced increase in osmotically inactive water fraction. It is proposed that increased hemoglobin hydrophilicity allows not only augmented water-binding, but also a closer hemoglobin packaging in vivo, which in turn is associated with slower ADC and increased osmotic resistance. PMID:15951204

  15. Key parameters affecting the initial leaky effect of hemoglobin-loaded nanoparticles as blood substitutes.

    PubMed

    Zhang, Xiaolan; Liu, Changsheng; Yuan, Yuan; Zhang, Shiyu; Shan, Xiaoqian; Sheng, Yan; Xu, Feng

    2008-06-01

    In order to realize long-term carrying/delivering oxygen and minimize the adverse effects of free hemoglobin (Hb) in vivo, Hb is desired to be confined in Hb-loaded nanoparticles (HbP), a novel blood substitute with potential clinical applications, and thus functions as the native red blood cells (RBCs). However, the initial burst release of Hb ("leaky effect") greatly underscores the significance of this work. The study described here wants to disclose the key preparative parameters, including polymer, excipients in the inner aqueous phase and solvent profile, affecting the Hb release behavior (the initial 24 h) from HbP fabricated by commonly used solvent diffusion/evaporation double emulsion technique. The results demonstrate that PEGlytated polymers, regardless of two- or tri-block copolymers show slower release compared with the corresponding non-PEGlytated ones. The higher polymer concentration yields lower initial release. PEG200, added as excipient facilitates Hb burst effect to about 38.4%, almost 17% increase compared to the control ( approximately 21%), whereas, PVA and Poloxamer188, due to amphiphilic nature, can effectively attenuate this leakage to about 13.0 and 5.1%, respectively. The diffusion/extraction rate from oil phase and the subsequent evaporation rate from the aqueous continuous phase of solvents impose different influences on Hb release. To reduce the burst effect, the initial diffusion/extraction rate should be slow, whereas, the concomitant evaporation rate should be as fast as possible. The results obtained here will be guidance's for the future tailored design of more desirable polymersome nanoparticle blood substitutes.

  16. Gender-specific protective effect of hemoglobin on arsenic-induced skin lesions.

    PubMed

    Breton, Carrie V; Houseman, E Andres; Kile, Molly L; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Christiani, David C

    2006-05-01

    Chronic arsenic poisoning remains a public health crisis in Bangladesh. As arsenic has been shown to bind to human hemoglobin (Hb), hematologic mechanisms may play a role in the pathway through which arsenic exerts its toxicity. Two separate studies, a case-control and a cohort, were conducted to investigate the role of Hb in the development of arsenic-induced skin lesions. In the first, conditional logistic regression was used to investigate the effect of Hb on skin lesions among 900 case-control pairs from Pabna, Bangladesh, in which individuals were matched on gender, age, and location. In the second, mixed linear regression models were used to examine the association between toenail arsenic, urinary arsenic, and Hb within a cohort of 184 individuals from 50 families in the same region who did not have arsenic-induced skin lesions. Hb was significantly associated with skin lesions but this association was gender specific. In males, a 40% reduction in the odds of skin lesions occurred for every 1 g/dL increase in Hb (odds ratio, 0.60; 95% confidence interval, 0.49-0.73). No effect was observed for females (odds ratio, 1.16; 95% confidence interval, 0.92-1.46). In the cohort of 184 individuals, no associations between toenail arsenic or urinary arsenic species and Hb levels were observed. Low Hb levels may exacerbate the detrimental health effects of chronic arsenic poisoning. Whereas providing clean water remains the optimal solution to Bangladesh's problem of arsenic poisoning, improving nutrition and reducing iron-deficiency anemia may ameliorate negative health effects, such as skin lesions in individuals who have been exposed.

  17. Effect of hyperbaric oxygenation on brain hemodynamics, hemoglobin oxygenation and mitochondrial NADH.

    PubMed

    Meirovithz, Elhanan; Sonn, Judith; Mayevsky, Avraham

    2007-06-01

    To determine the HbO(2) oxygenation level at the microcirculation, we used the hyperbaric chamber. The effects of hyperbaric oxygenation (HBO) were tested on vitality parameters in the brain at various pressures. Microcirculatory hemoglobin oxygen saturation (HbO(2)), cerebral blood flow (CBF) and mitochondrial NADH redox state were assessed in the brain of awake restrained rats using a fiber optic probe. The hypothesis was that HBO may lead to maximal level in microcirculatory HbO(2) due to the amount of the dissolved O(2) to provide the O(2) consumed by the brain, and therefore no O(2) will be dissociated from the HbO(2). Awake rats were exposed progressively to 15 min normobaric hyperoxia, 100% O(2) (NH) and to 90 min hyperbaric hyperoxia (HH) from 1.75 to 6.0 absolute atmospheres (ATA). NH and HH gradually decreased the blood volume measured by tissue reflectance and NADH but increased HbO(2) in relation to pO(2) in the chamber up to a nearly maximum effect at 2.5 ATA. Two possible approximations were found to describe the relationship between NADH and HbO(2): linear or logarithmic. These findings show that the increase in brain microcirculatory HbO(2) is due to an increase in O(2) supply by dissolved O(2), reaching a maximum at 2.5 ATA. NADH is oxidized (decreased signal) in parallel to the HbO(2) increase, showing maximal tissue oxygenation and cellular mitochondrial NADH oxidation at 2.5 ATA. In conclusion, in the normoxic brain, the level of microcirculatory HbO(2) is about 50% as compared to the maximal level recorded at 2.5 ATA and the minimal level measured during anoxia.

  18. Synergistic Effects of Hemoglobin and Tumor Perfusion on Tumor Control and Survival in Cervical Cancer

    SciTech Connect

    Mayr, Nina A. Wang, Jian Z.; Zhang Dongqing; Montebello, Joseph F.; Grecula, John C.; Lo, Simon S.; Fowler, Jeffery M.; Yuh, William T.C.

    2009-08-01

    Purpose: The tumor oxygenation status is likely influenced by two major factors: local tumor blood supply (tumor perfusion) and its systemic oxygen carrier, hemoglobin (Hgb). Each has been independently shown to affect the radiotherapy (RT) outcome in cervical cancer. This study assessed the effect of local tumor perfusion, systemic Hgb levels, and their combination on the treatment outcome in cervical cancer. Methods and Materials: A total of 88 patients with cervical cancer, Stage IB2-IVA, who were treated with RT/chemotherapy, underwent serial dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) before RT, at 20-22 Gy, and at 45-50 Gy. The DCE-MRI perfusion parameters, mean and lowest 10th percentile of the signal intensity distribution in the tumor pixels, and the Hgb levels, including pre-RT, nadir, and mean Hgb (average of weekly Hgb during RT), were correlated with local control and disease-specific survival. The median follow-up was 4.6 years. Results: Local recurrence predominated in the group with both a low mean Hgb (<11.2 g/dL) and low perfusion (lowest 10th percentile of signal intensity <2.0 at 20-22 Gy), with a 5-year local control rate of 60% vs. 90% for all other groups (p = .001) and a disease-specific survival rate of 41% vs. 72% (p = .008), respectively. In the group with both high mean Hgb and high perfusion, the 5-year local control rate and disease-specific survival rate was 100% and 78%, respectively. Conclusion: These results suggest that the compounded effects of Hgb level and tumor perfusion during RT influence the radioresponsiveness and survival in cervical cancer patients. The outcome was worst when both were impaired. The management of Hgb may be particularly important in patients with low tumor perfusion.

  19. Bohr effect of human hemoglobin A: magnitude of negative contributions determined by the equilibrium between two tertiary structures.

    PubMed

    Okonjo, Kehinde O; Olatunde, Abimbola M; Fodeke, Adedayo A; Babalola, J Oyebamiji

    2014-06-01

    We have measured the affinity of the CysF9[93]β sulfhydryl group of human deoxyhemoglobin and oxyhemoglobin for 5,5'-dithiobis(2-nitrobenzoate), DTNB, between pH ≈5.6 and 9 in order to understand the basis of the reported reduction of the Bohr effect induced by chemical modification of the sulfhydryl. We analyzed the results quantitatively on the basis of published data indicating that the sulfhydryl exists in two conformations that are coupled to the transition between two tertiary structures of hemoglobin in dynamic equilibrium. Our analyses show that the ionizable groups linked to the DTNB reaction have lower pKas of ionization in deoxyhemoglobin compared to oxyhemoglobin. So these ionizable groups should make negative contributions to the Bohr effect. We identify these groups as HisNA2[2]β, HisEF1[77]β and HisH21[143]β. We provide explanations for the finding that hemoglobin, chemically modified at CysF9[93]β, has a lower Bohr effect and a higher oxygen affinity than unmodified hemoglobin.

  20. In vitro study of the direct effect of extracellular hemoglobin on myelin components.

    PubMed

    Bamm, Vladimir V; Lanthier, Danielle K; Stephenson, Erin L; Smith, Graham S T; Harauz, George

    2015-01-01

    There is a relationship between cerebral vasculature and multiple sclerosis (MS) lesions: abnormal accumulations of iron have been found in the walls of dilated veins in MS plaques. The sources of this iron can be varied, but capillary and venous hemorrhages leading to blood extravasation have been recorded, and could result in the release of hemoglobin extracellularly. Extracellular hemoglobin oxidizes quickly and is known to become a reactive molecule that triggers low-density lipoprotein oxidation and plays a pivotal role in atherogenesis. In MS, it could lead to local oxidative stress, inflammation, and tissue damage. Here, we investigated whether extracellular hemoglobin and its breakdown products can cause direct oxidative damage to myelin components in a peroxidative environment such as occurs in inflamed tissue. Oxidation of lipids was assessed by the formation of fluorescent peroxidized lipid-protein covalent adducts, by the increase in conjugated diene and malondialdehyde. Oxidation of proteins was analyzed by the change in protein mass. The results suggest that the globin radical could be a trigger of myelin basic protein oxidative cross-linking, and that heme transferred to the lipids is involved in lipid peroxidation. This study provides new insight into the mechanism by which hemoglobin exerts its pathological oxidative activity towards myelin components. This work supports further research into the vascular pathology in MS, to gain insight into the origin and role of iron deposits in disease pathogenesis, or in stimulation of different comorbidities such as cardiovascular disease.

  1. Customization of Advia 120 thresholds for canine erythrocyte volume and hemoglobin concentration, and effects on morphology flagging results

    PubMed Central

    Grimes, Carolyn N.; Fry, Michael M.

    2014-01-01

    This study sought to develop customized morphology flagging thresholds for canine erythrocyte volume and hemoglobin concentration [Hgb] on the ADVIA 120 hematology analyzer; compare automated morphology flagging with results of microscopic blood smear evaluation; and examine effects of customized thresholds on morphology flagging results. Customized thresholds were determined using data from 52 clinically healthy dogs. Blood smear evaluation and automated morphology flagging results were correlated with mean cell volume (MCV) and cellular hemoglobin concentration mean (CHCM) in 26 dogs. Customized thresholds were applied retroactively to complete blood (cell) count (CBC) data from 5 groups of dogs, including a reference sample group, clinical cases, and animals with experimentally induced iron deficiency anemia. Automated morphology flagging correlated more highly with MCV or CHCM than did blood smear evaluation; correlation with MCV was highest using customized thresholds. Customized morphology flagging thresholds resulted in more sensitive detection of microcytosis, macrocytosis, and hypochromasia than default thresholds. PMID:25477546

  2. Asynchronous ligand binding and proton release in a root effect hemoglobin.

    PubMed

    Saffran, W A; Gibson, Q H

    1981-05-10

    CO binding to the Root effect hemoglobin of menhaden, Brevoortia tyrannus, has been studied by flash photolysis and equilibrium measurements in [bis(2-hydroxyethyl)amino]Tris(hydroxymethyl)methane and Tris buffers, containing 0.2 M NaCl, between pH 6.0 and 8.0. The equilibrium and kinetic data were analyzed according to the two-state model, extended to include chain differences. The calculated value of the allosteric constant, L, varied from 3 X 10(6) at pH 6.0 to 20 at pH 8.0, lower at each pH value than that computed for phosphate buffer. In addition, the intrinsic rate constants of both T and R states were found to vary with pH. The kinetics of CO binding and of proton release, followed by absorbance changes in the pH indicator dye phenol red, were observed in 0.2 M NaCl, at pH values ranging from 6.3 to 7.8. Proton release lags behind CO binding across this pH range, the larger lags occurring at lower pH; this suggests that some proton release is associated with quaternary conformational change. The CO binding progress curves in unbuffered solution were simulated by the two-state model; in these calculations the value of L was systematically changed during the course of the reaction. The time courses of reaction intermediates, obtained from these computations, were then used to represent the kinetics of proton release. A simple model, assuming that proton release accompanies quaternary conformational transition but a modified model, incorporating pH dependence of the intrinsic T and R state affinities, describes proton release across the pH range studied. PMID:7217097

  3. Transfection of the Human Heme Oxygenase Gene Into Rabbit Coronary Microvessel Endothelial Cells: Protective Effect Against Heme and Hemoglobin Toxicity

    NASA Astrophysics Data System (ADS)

    Abraham, N. G.; Lavrovsky, Y.; Schwartzman, M. L.; Stoltz, R. A.; Levere, R. D.; Gerritsen, M. E.

    1995-07-01

    Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an ≈3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with >85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.

  4. Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor.

    PubMed

    Hajian, A; Ghodsi, J; Afraz, A; Yurchenko, O; Urban, G

    2016-12-01

    This work describes the development of a new biosensor for methylparaben determination using electrocatalytic properties of hemoglobin in the presence of hydrogen peroxide. The voltammetric oxidation of methylparaben by the proposed biosensor in phosphate buffer (pH=7.0), a physiological pH, was studied and it was confirmed that methylparaben undergoes a one electron-one proton reaction in a diffusion-controlled process. The biosensor was fabricated by carbon paste electrode modified with hemoglobin and multiwalled carbon nanotube. Based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for determination of methylparaben within a linear range from 0.1 to 13μmolL(-1) and detection limit of 25nmolL(-1). The developed biosensor possessed accurate and rapid response to methylparaben and showed good sensitivity, stability, and repeatability. Finally, the applicability of the proposed biosensor was verified by methylparaben evaluation in various real samples. PMID:27612696

  5. Differential Effects of Paromomycin on Ribosomes of Leishmania mexicana and Mammalian Cells ▿

    PubMed Central

    Fernández, Marisa M.; Malchiodi, Emilio L.; Algranati, Israel D.

    2011-01-01

    Paromomycin, an aminoglycoside antibiotic having low mammalian cell toxicity, is one of the drugs currently used in the chemotherapy of cutaneous and visceral leishmaniasis. In order to understand the mode of action of this antibiotic at the molecular level, we have investigated the effects of paromomycin on protein synthesis in Leishmania and its mammalian hosts. We were able to demonstrate that in vivo protein synthesis in the promastigote stage of the parasite and its proliferation rate are markedly inhibited by paromomycin while being only slightly affected by other aminoglycoside antibiotics, such as streptomycin and neomycin B. Furthermore, both in vitro polypeptide synthesis induced by poly(U) as mRNA and accuracy of translation are significantly decreased by paromomycin in cell-free systems containing ribosomal particles of Leishmania promastigotes. Conversely, when ribosomes from mammalian cells are used instead of the protozoan particles, polyphenylalanine synthesis is only barely reduced by the antibiotic and the translation misreading remains almost unaltered. Surface plasmon resonance analysis of the interaction between paromomycin and protozoan or mammalian cell ribosomal RNAs shows a strong binding of antibiotic to the parasite ribosomal decoding site and practically no interaction with the mammalian cell counterpart. Our results indicating differential effects of paromomycin on the translation processes of the Leishmania parasite and its mammalian hosts can explain the therapeutic efficiency of this antibiotic as an antileishmaniasis agent. PMID:20956601

  6. Protective effect of selenium on hemoglobin mediated lipid peroxidation in vivo.

    PubMed

    Simoni, J; Simoni, G; Garcia, E L; Prien, S D; Tran, R M; Feola, M; Shires, G T

    1995-01-01

    The toxicity of hemoglobin (Hb) solutions is related, at least in part, to the generation of oxygen free radicals with consequent induction of lipid peroxidation. The present study was designed to examine whether selenium (Se) may prevent the oxidative damage observed after Hb administration. Three groups of rats were compared; (I) the negative control group receiving autotransfusion; (II) the positive control group with replacement of 40% total blood volume (TBV) with modified bovine Hb solution; and (III) the experimental group which received dietary supplemented selenium (Na2SeO3) in daily doses of 5 micrograms.kg body wt-1 in drinking water, 4 days before and 3 days after administration of Hb solution in the same volume as in group II. Three days after Hb injection, all animals were sacrificed. Oxidative stress was determined by measuring conjugated dienes (CD) and thiobarbituric acid reactants (MDA) in homogenates of the perfused liver, heart, lungs, kidney, brain and plasma. Additionally, the 45k x g supernatants of the organs homogenates and plasma were assayed for the antioxidant enzymes activity: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and the intracellular level of reduced glutathione (GSH). Also, a measurement of nonprotein bound intracellular free iron (Fe) and tissue Se concentrations was performed. Simultaneously, injury dysfunction of vital organs was assessed by the measurement of plasma LDH, SGPT, creatinine, blood PaO2 and by histopathological studies. Results indicate that the exchange transfusion with Hb solution introduced significant increases in CD and MDA formation, particularly in the liver and heart tissues, and in plasma. While the values of the SOD and CAT in the liver and heart tissue were generally altered, the SOD/CAT ratio was also increased. After the Hb injection, activity of GSH-Px remained unchanged and was associated with significant depletion of GSH. The plasma levels of SGPT and LDH were

  7. Effects of simulated weightlessness on mammalian development. Part 1: Development of clinostat for mammalian tissue culture and use in studies on meiotic maturation of mouse oocytes

    NASA Technical Reports Server (NTRS)

    Wolegemuth, D. J.; Grills, G. S.

    1984-01-01

    The effects of weightlessness on three aspects of mammalian reproduction: oocyte development, fertilization, and early embryogenesis was studied. Zero-gravity conditions within the laboratory by construction of a clinostat designed to support in vitro tissue culture were simulated and the effects of simulated weightlessness on meiotic maturation in mammalian oocytes using mouse as the model system were studied. The timing and frequency of germinal vesicule breakdown and polar body extrusion, and the structural and numerical properties of meiotic chromosomes at Metaphase and Metaphase of meiosis are assessed.

  8. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission.

    PubMed

    Ogada, D L; Torchin, M E; Kinnaird, M F; Ezenwa, V O

    2012-06-01

    Vultures (Accipitridae and Cathartidae) are the only known obligate scavengers. They feed on rotting carcasses and are the most threatened avian functional group in the world. Possible effects of vulture declines include longer persistence of carcasses and increasing abundance of and contact between facultative scavengers at these carcasses. These changes could increase rates of transmission of infectious diseases, with carcasses serving as hubs of infection. To evaluate these possibilities, we conducted a series of observations and experimental tests of the effects of vulture extirpation on decomposition rates of livestock carcasses and mammalian scavengers in Kenya. We examined whether the absence of vultures changed carcass decomposition time, number of mammalian scavengers visiting carcasses, time spent by mammals at carcasses, and potential for disease transmission at carcasses (measured by changes in intraspecific contact rates). In the absence of vultures, mean carcass decomposition rates nearly tripled. Furthermore, the mean number of mammals at carcasses increased 3-fold (from 1.5 to 4.4 individuals/carcass), and the average time spent by mammals at carcasses increased almost 3-fold (from 55 min to 143 min). There was a nearly 3-fold increase in the mean number of contacts between mammalian scavengers at carcasses without vultures. These results highlight the role of vultures in carcass decomposition and level of contact among mammalian scavengers. In combination, our findings lead us to hypothesize that changes in vulture abundance may affect patterns of disease transmission among mammalian carnivores.

  9. Nonlinear photoacoustic spectroscopy of hemoglobin

    SciTech Connect

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V.

    2015-05-18

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.

  10. Sickle Cells Abolish Melanoma Tumorigenesis in Hemoglobin SS Knockin Mice and Augment the Tumoricidal Effect of Oncolytic Virus In Vivo.

    PubMed

    Sun, Chiang Wang; Willmon, Candice; Wu, Li-Chen; Knopick, Peter; Thoerner, Jutta; Vile, Richard; Townes, Tim M; Terman, David S

    2016-01-01

    Insights from the study of cancer resistance in animals have led to the discovery of novel anticancer pathways and opened new venues for cancer prevention and treatment. Sickle cells (SSRBCs) from subjects with homozygous sickle cell anemia (SCA) have been shown to target hypoxic tumor niches, induce diffuse vaso-occlusion, and potentiate a tumoricidal response in a heme- and oxidant-dependent manner. These findings spawned the hypothesis that SSRBCs and the vasculopathic microenvironment of subjects with SCA might be inimical to tumor outgrowth and thereby constitute a natural antitumor defense. We therefore implanted the B16F10 melanoma into humanized hemoglobin SS knockin mice which exhibit the hematologic and vasculopathic sequelae of human SCA. Over the 31-day observation period, hemoglobin SS mice showed no significant melanoma outgrowth. By contrast, 68-100% of melanomas implanted in background and hemoglobin AA knockin control mice reached the tumor growth end point (p < 0.0001). SS knockin mice also exhibited established markers of underlying vasculopathy, e.g., chronic hemolysis (anemia, reticulocytosis) and vascular inflammation (leukocytosis) that differed significantly from all control groups. Genetic differences or normal AA gene knockin do not explain the impaired tumor outgrowth in SS knockin mice. These data point instead to the chronic pro-oxidative vasculopathic network in these mice as the predominant cause. In related studies, we demonstrate the ability of the sickle cell component of this system to function as a therapeutic vehicle in potentiating the oncolytic/vasculopathic effect of RNA reovirus. Sickle cells were shown to efficiently adsorb and transfer the virus to melanoma cells where it induced apoptosis even in the presence of anti-reovirus neutralizing antibodies. In vivo, SSRBCs along with their viral cargo rapidly targeted the tumor and initiated a tumoricidal response exceeding that of free virus and similarly loaded normal RBCs

  11. Sickle Cells Abolish Melanoma Tumorigenesis in Hemoglobin SS Knockin Mice and Augment the Tumoricidal Effect of Oncolytic Virus In Vivo.

    PubMed

    Sun, Chiang Wang; Willmon, Candice; Wu, Li-Chen; Knopick, Peter; Thoerner, Jutta; Vile, Richard; Townes, Tim M; Terman, David S

    2016-01-01

    Insights from the study of cancer resistance in animals have led to the discovery of novel anticancer pathways and opened new venues for cancer prevention and treatment. Sickle cells (SSRBCs) from subjects with homozygous sickle cell anemia (SCA) have been shown to target hypoxic tumor niches, induce diffuse vaso-occlusion, and potentiate a tumoricidal response in a heme- and oxidant-dependent manner. These findings spawned the hypothesis that SSRBCs and the vasculopathic microenvironment of subjects with SCA might be inimical to tumor outgrowth and thereby constitute a natural antitumor defense. We therefore implanted the B16F10 melanoma into humanized hemoglobin SS knockin mice which exhibit the hematologic and vasculopathic sequelae of human SCA. Over the 31-day observation period, hemoglobin SS mice showed no significant melanoma outgrowth. By contrast, 68-100% of melanomas implanted in background and hemoglobin AA knockin control mice reached the tumor growth end point (p < 0.0001). SS knockin mice also exhibited established markers of underlying vasculopathy, e.g., chronic hemolysis (anemia, reticulocytosis) and vascular inflammation (leukocytosis) that differed significantly from all control groups. Genetic differences or normal AA gene knockin do not explain the impaired tumor outgrowth in SS knockin mice. These data point instead to the chronic pro-oxidative vasculopathic network in these mice as the predominant cause. In related studies, we demonstrate the ability of the sickle cell component of this system to function as a therapeutic vehicle in potentiating the oncolytic/vasculopathic effect of RNA reovirus. Sickle cells were shown to efficiently adsorb and transfer the virus to melanoma cells where it induced apoptosis even in the presence of anti-reovirus neutralizing antibodies. In vivo, SSRBCs along with their viral cargo rapidly targeted the tumor and initiated a tumoricidal response exceeding that of free virus and similarly loaded normal RBCs

  12. Sickle Cells Abolish Melanoma Tumorigenesis in Hemoglobin SS Knockin Mice and Augment the Tumoricidal Effect of Oncolytic Virus In Vivo

    PubMed Central

    Sun, Chiang Wang; Willmon, Candice; Wu, Li-Chen; Knopick, Peter; Thoerner, Jutta; Vile, Richard; Townes, Tim M.; Terman, David S.

    2016-01-01

    Insights from the study of cancer resistance in animals have led to the discovery of novel anticancer pathways and opened new venues for cancer prevention and treatment. Sickle cells (SSRBCs) from subjects with homozygous sickle cell anemia (SCA) have been shown to target hypoxic tumor niches, induce diffuse vaso-occlusion, and potentiate a tumoricidal response in a heme- and oxidant-dependent manner. These findings spawned the hypothesis that SSRBCs and the vasculopathic microenvironment of subjects with SCA might be inimical to tumor outgrowth and thereby constitute a natural antitumor defense. We therefore implanted the B16F10 melanoma into humanized hemoglobin SS knockin mice which exhibit the hematologic and vasculopathic sequelae of human SCA. Over the 31-day observation period, hemoglobin SS mice showed no significant melanoma outgrowth. By contrast, 68–100% of melanomas implanted in background and hemoglobin AA knockin control mice reached the tumor growth end point (p < 0.0001). SS knockin mice also exhibited established markers of underlying vasculopathy, e.g., chronic hemolysis (anemia, reticulocytosis) and vascular inflammation (leukocytosis) that differed significantly from all control groups. Genetic differences or normal AA gene knockin do not explain the impaired tumor outgrowth in SS knockin mice. These data point instead to the chronic pro-oxidative vasculopathic network in these mice as the predominant cause. In related studies, we demonstrate the ability of the sickle cell component of this system to function as a therapeutic vehicle in potentiating the oncolytic/vasculopathic effect of RNA reovirus. Sickle cells were shown to efficiently adsorb and transfer the virus to melanoma cells where it induced apoptosis even in the presence of anti-reovirus neutralizing antibodies. In vivo, SSRBCs along with their viral cargo rapidly targeted the tumor and initiated a tumoricidal response exceeding that of free virus and similarly loaded normal

  13. Silver-doped calcium phosphate nanoparticles: synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells.

    PubMed

    Peetsch, Alexander; Greulich, Christina; Braun, Dieter; Stroetges, Christian; Rehage, Heinz; Siebers, Bettina; Köller, Manfred; Epple, Matthias

    2013-02-01

    Spherical silver-doped calcium phosphate nanoparticles were synthesized in a co-precipitation route from calcium nitrate/silver nitrate and ammonium phosphate in a continuous process and colloidally stabilized by carboxymethyl cellulose. Nanoparticles with 0.39 wt% silver content and a diameter of about 50-60 nm were obtained. The toxic effects toward mammalian and prokaryotic cells were determined by viability tests and determination of the minimal inhibitory and minimal bactericidal concentrations (MIC and MBC). Three mammalian cells lines, i.e. human mesenchymal stem cells (hMSC) and blood peripheral mononuclear cells (PBMC, monocytes and T-lymphocytes), and two prokaryotic strains, i.e. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were used. Silver-doped calcium phosphate nanoparticles and silver acetate showed similar effect toward mammalian and prokaryotic cells with toxic silver concentrations in the range of 1-3 μg mL(-1).

  14. Effects of PEG-PLA-nano artificial cells containing hemoglobin on kidney function and renal histology in rats.

    PubMed

    Liu, Zun Chang; Chang, Thomas M S

    2008-01-01

    This study is to investigate the long-term effects of PEG-PLA nano artificial cells containing hemoglobin (NanoRBC) on renal function and renal histology after 1/3 blood volume top loading in rats. The experimental rats received one of the following infusions: NanoRBC in Ringer lactate, Ringer lactate, stroma-free hemoglobin (SFHB), polyhemoglobin (PolyHb), autologous rat whole blood (rat RBC). Blood samples were taken before infusions and on days 1, 7 and 21 after infusions for biochemistry analysis. Rats were sacrificed on day 21 after infusions and kidneys were excised for histology examination. Infusion of SFHB induced significant decrease in renal function damage evidenced by elevated serum urea, creatinine and uric acid throughout the 21 days. Kidney histology in SFHb infusion group revealed focal tubular necrosis and intraluminal cellular debris in the proximal tubules, whereas the glomeruli were not observed damaged. In all the other groups, NanoRBC, PolyHb, Ringer lactate and rat RBC, there were no abnormalities in renal biochemistry or histology. In conclusion, injection of NanoRBC did not have adverse effects on renal function nor renal histology.

  15. When Herbivores Eat Predators: Predatory Insects Effectively Avoid Incidental Ingestion by Mammalian Herbivores

    PubMed Central

    Ben-Ari, Matan; Inbar, Moshe

    2013-01-01

    The direct trophic links between mammalian herbivores and plant-dwelling insects have been practically ignored. Insects are ubiquitous on plants consumed by mammalian herbivores and are thus likely to face the danger of being incidentally ingested by a grazing mammal. A few studies have shown that some herbivorous hemipterans are able to avoid this peril by dropping to the ground upon detecting the heat and humidity on the mammal's breath. We hypothesized that if this risk affects the entire plant-dwelling insect community, other insects that share this habitat are expected to develop similar escape mechanisms. We assessed the ability of three species (adults and larvae) of coccinellid beetles, important aphid predators, to avoid incidental ingestion. Both larvae and adults were able to avoid incidental ingestion effectively by goats by dropping to the ground, demonstrating the importance of this behavior in grazed habitats. Remarkably, all adult beetles escaped by dropping off the plant and none used their functional wings to fly away. In controlled laboratory experiments, we found that human breath caused 60–80% of the beetles to drop. The most important component of mammalian herbivore breath in inducing adult beetles and larvae to drop was the combination of heat and humidity. The fact that the mechanism of dropping in response to mammalian breath developed in distinct insect orders and disparate life stages accentuates the importance of the direct influence of mammalian herbivores on plant-dwelling insects. This direct interaction should be given its due place when discussing trophic interactions. PMID:23424674

  16. The Effects of Ionizing Radiation on Mammalian Cells.

    ERIC Educational Resources Information Center

    Biaglow, John E.

    1981-01-01

    Discusses the effects of radiation on dividing cells and factors influencing these effects; also briefly reviews the radical mechanism for radiation damage. Emphasizes the importance of oxygen in radiation effects. (CS)

  17. Importance of Many-Body Effects in the Kernel of Hemoglobin for Ligand Binding

    NASA Astrophysics Data System (ADS)

    Weber, Cédric; O'Regan, David D.; Hine, Nicholas D. M.; Littlewood, Peter B.; Kotliar, Gabriel; Payne, Mike C.

    2013-03-01

    We propose a mechanism for binding of diatomic ligands to heme based on a dynamical orbital selection process. This scenario may be described as bonding determined by local valence fluctuations. We support this model using linear-scaling first-principles calculations, in combination with dynamical mean-field theory, applied to heme, the kernel of the hemoglobin metalloprotein central to human respiration. We find that variations in Hund’s exchange coupling induce a reduction of the iron 3d density, with a concomitant increase of valence fluctuations. We discuss the comparison between our computed optical absorption spectra and experimental data, our picture accounting for the observation of optical transitions in the infrared regime, and how the Hund’s coupling reduces, by a factor of 5, the strong imbalance in the binding energies of heme with CO and O2 ligands.

  18. Toxic effects of zinc from trout farm sediments on ATP, protein, and hemoglobin concentrations of Limnodrilus hoffmeisteri.

    PubMed

    Martinez-Tabche, L; Gutiérrez Cabrera, I; Gómez Oliván, L; Galar Martinez, M; Germán Faz, C

    2000-04-14

    Zinc (Zn) is a nutritionally essential metal, and deficiency results in severe health consequences to aquatic organisms. In this study toxicity data for Limnodrilus hoffmeisteri produced by Zn in systems using three natural sediments (trout farms: El Oyamel, El Truchón, and El Potrero) are presented. Hemoglobin, adenosine triphosphate (ATP), and protein concentrations were measured in L. hoffmeisteri exposed to spiked sediments, as indicators of exposure. Physicochemical characteristics of water and sediments were also considered. Zn concentrations were measured in water and sediment. El Oyamel, El Truchón, and El Potrero pond sediments did not have similar physicochemical characteristics. Zn concentrations of water obtained from the rustic ponds were near 0.4575 mg/L; however, this metal was always found to be higher in the sediments (0.0271-0.9754 mg/kg). The bioassay with worms demonstrated that pond sediments from El Oyamel, El Potrero, and El Truchón produced toxicity since ATP and protein concentrations were low compared to controls (organisms without metal). All spiked sediments had a significant reduction effect on ATP, protein, and hemoglobin concentrations. This investigation clearly shows that sediments of El Truchón, El Oyamel, and El Potrero possess toxicity potential. These results suggest the usefulness of these bioassays to evaluate the toxicity of sediments polluted with heavy metals. PMID:10777248

  19. Reproducing the Hemoglobin Saturation Profile, a Marker of the Blood Oxygenation Level Dependent (BOLD) fMRI Effect, at the Microscopic Level.

    PubMed

    Hadjistassou, Constantinos; Moyle, Keri; Ventikos, Yiannis

    2016-01-01

    The advent of functional MRI in the mid-1990s has catalyzed progress pertaining to scientific discoveries in neuroscience. With the prospect of elucidating the physiological aspect of the Blood Oxygenation Level Dependent (BOLD) effect we present a computational capillary-tissue system capable of mapping venous hemoglobin saturation- a marker of the BOLD hemodynamic response. Free and facilitated diffusion and convection for hemoglobin and oxygen are considered in the radial and axial directions. Hemoglobin reaction kinetics are governed by the oxyhemoglobin dissociation curve. Brain activation, mimicked by dynamic transitions in cerebral blood velocity (CBv) and oxidative metabolism (CMRO2), is simulated by normalized changes in m = (ΔCBv/CBv)/(ΔCMRO2/CMRO2) of values 2, 3 and 4. Venous hemoglobin saturation profiles and peak oxygenation results, for m = 2, based upon a 50% and a 25% increase in CBv and CMRO2, respectively, lie within physiological limits exhibiting excellent correlation with the BOLD signal, for short-duration stimuli. Our analysis suggests basal CBv and CMRO2 values of 0.6 mm/s and 200 μmol/100g/min. Coupled CBv and CMRO2 responses, for m = 3 and m = 4, overestimate peak hemoglobin saturation, confirming the system's responsiveness to changes in hematocrit, CBv and CMRO2. Finally, factoring in neurovascular effects, we show that no initial dip will be observed unless there is a time delay in the onset of increased CBv relative to CMRO2. PMID:26939128

  20. Reproducing the Hemoglobin Saturation Profile, a Marker of the Blood Oxygenation Level Dependent (BOLD) fMRI Effect, at the Microscopic Level

    PubMed Central

    Hadjistassou, Constantinos; Moyle, Keri; Ventikos, Yiannis

    2016-01-01

    The advent of functional MRI in the mid-1990s has catalyzed progress pertaining to scientific discoveries in neuroscience. With the prospect of elucidating the physiological aspect of the Blood Oxygenation Level Dependent (BOLD) effect we present a computational capillary-tissue system capable of mapping venous hemoglobin saturation— a marker of the BOLD hemodynamic response. Free and facilitated diffusion and convection for hemoglobin and oxygen are considered in the radial and axial directions. Hemoglobin reaction kinetics are governed by the oxyhemoglobin dissociation curve. Brain activation, mimicked by dynamic transitions in cerebral blood velocity (CBv) and oxidative metabolism (CMRO2), is simulated by normalized changes in m = (ΔCBv/CBv)/(ΔCMRO2/CMRO2) of values 2, 3 and 4. Venous hemoglobin saturation profiles and peak oxygenation results, for m = 2, based upon a 50% and a 25% increase in CBv and CMRO2, respectively, lie within physiological limits exhibiting excellent correlation with the BOLD signal, for short-duration stimuli. Our analysis suggests basal CBv and CMRO2 values of 0.6 mm/s and 200 μmol/100g/min. Coupled CBv and CMRO2 responses, for m = 3 and m = 4, overestimate peak hemoglobin saturation, confirming the system’s responsiveness to changes in hematocrit, CBv and CMRO2. Finally, factoring in neurovascular effects, we show that no initial dip will be observed unless there is a time delay in the onset of increased CBv relative to CMRO2. PMID:26939128

  1. Effects of Short-Term Exenatide Treatment on Regional Fat Distribution, Glycated Hemoglobin Levels, and Aortic Pulse Wave Velocity of Obese Type 2 Diabetes Mellitus Patients

    PubMed Central

    Park, Keun-Young; Kim, Byung-Joon; Hwang, Won-Min; Kim, Dong-Ho

    2016-01-01

    Background Most type 2 diabetes mellitus patients are obese and have obesity related vascular complications. Exenatide treatment is well known for both decreasing glycated hemoglobin levels and reduction in body weight. So, this study aimed to determine the effects of exenatide on body composition, glycated hemoglobin levels, and vascular stiffness in obese type 2 diabetes mellitus patients. Methods For 1 month, 32 obese type 2 diabetes mellitus patients were administered 5 µg of exenatide twice daily. The dosage was then increased to 10 µg. Patients' height, body weight, glycated hemoglobin levels, lipid profile, pulse wave velocity (PWV), body mass index, fat mass, and muscle mass were measured by using Inbody at baseline and after 3 months of treatment. Results After 3 months of treatment, glycated hemoglobin levels decreased significantly (P=0.007). Triglyceride, total cholesterol, and low density lipoprotein levels decreased, while aspartate aminotransferase and alanine aminotransferase levels were no change. Body weight, and fat mass decreased significantly (P=0.002 and P=0.001, respectively), while interestingly, muscle mass did not decrease (P=0.289). In addition to, Waist-to-hip ratio and aortic PWV decreased significantly (P=0.006 and P=0.001, respectively). Conclusion Effects of short term exenatide use in obese type 2 diabetes mellitus with cardiometabolic high risk patients not only reduced body weight without muscle mass loss, body fat mass, and glycated hemoglobin levels but also improved aortic PWV in accordance with waist to hip ratio. PMID:26676329

  2. 9 -Tetrahydrocannabinol: effects on mammalian nonmyelinated nerve fibers.

    PubMed

    Byck, R; Ritchie, J M

    1973-04-01

    Delta(9)-Tetrahydrocannabinol can be applied to tissue in vitro by dissolving it in Pluronic F68 and ethanol. It causes a decrease in size of the compound action potential of the nonmnyelinated fibers of the vagus nerve of the rabbit. This effect appears to be dose-related and chloride-dependent. Effects on other measurable parameters of nerve function seem to be minimal. Although the amounts required seem to be higher than those required to produce hallucinogenic effects in man, this effect is consistent with other work on Delta(9)-tetrahydrocannabinol and may ultimately account for a significant portion of the pharmacological activity of this drug.

  3. Effect of radiofrequency radiation in cultured mammalian cells: A review.

    PubMed

    Manna, Debashri; Ghosh, Rita

    2016-01-01

    The use of mobile phone related technologies will continue to increase in the foreseeable future worldwide. This has drawn attention to the probable interaction of radiofrequency electromagnetic radiation with different biological targets. Studies have been conducted on various organisms to evaluate the alleged ill-effect on health. We have therefore attempted to review those work limited to in vitro cultured cells where irradiation conditions were well controlled. Different investigators have studied varied endpoints like DNA damage, cell cycle arrest, reactive oxygen species (ROS) formation, cellular morphology and viability to weigh the genotoxic effect of such radiation by utilizing different frequencies and dose rates under various irradiation conditions that include continuous or pulsed exposures and also amplitude- or frequency-modulated waves. Cells adapt to change in their intra and extracellular environment from different chemical and physical stimuli through organized alterations in gene or protein expression that result in the induction of stress responses. Many studies have focused on such effects for risk estimations. Though the effects of microwave radiation on cells are often not pronounced, some investigators have therefore combined radiofrequency radiation with other physical or chemical agents to observe whether the effects of such agents were augmented or not. Such reports in cultured cellular systems have also included in this review. The findings from different workers have revealed that, effects were dependent on cell type and the endpoint selection. However, contradictory findings were also observed in same cell types with same assay, in such cases the specific absorption rate (SAR) values were significant.

  4. Effect of radiofrequency radiation in cultured mammalian cells: A review.

    PubMed

    Manna, Debashri; Ghosh, Rita

    2016-01-01

    The use of mobile phone related technologies will continue to increase in the foreseeable future worldwide. This has drawn attention to the probable interaction of radiofrequency electromagnetic radiation with different biological targets. Studies have been conducted on various organisms to evaluate the alleged ill-effect on health. We have therefore attempted to review those work limited to in vitro cultured cells where irradiation conditions were well controlled. Different investigators have studied varied endpoints like DNA damage, cell cycle arrest, reactive oxygen species (ROS) formation, cellular morphology and viability to weigh the genotoxic effect of such radiation by utilizing different frequencies and dose rates under various irradiation conditions that include continuous or pulsed exposures and also amplitude- or frequency-modulated waves. Cells adapt to change in their intra and extracellular environment from different chemical and physical stimuli through organized alterations in gene or protein expression that result in the induction of stress responses. Many studies have focused on such effects for risk estimations. Though the effects of microwave radiation on cells are often not pronounced, some investigators have therefore combined radiofrequency radiation with other physical or chemical agents to observe whether the effects of such agents were augmented or not. Such reports in cultured cellular systems have also included in this review. The findings from different workers have revealed that, effects were dependent on cell type and the endpoint selection. However, contradictory findings were also observed in same cell types with same assay, in such cases the specific absorption rate (SAR) values were significant. PMID:27053138

  5. Hemoglobin Variants: Biochemical Properties and Clinical Correlates

    PubMed Central

    Thom, Christopher S.; Dickson, Claire F.; Gell, David A.; Weiss, Mitchell J.

    2013-01-01

    Diseases affecting hemoglobin synthesis and function are extremely common worldwide. More than 1000 naturally occurring human hemoglobin variants with single amino acid substitutions throughout the molecule have been discovered, mainly through their clinical and/or laboratory manifestations. These variants alter hemoglobin structure and biochemical properties with physiological effects ranging from insignificant to severe. Studies of these mutations in patients and in the laboratory have produced a wealth of information on hemoglobin biochemistry and biology with significant implications for hematology practice. More generally, landmark studies of hemoglobin performed over the past 60 years have established important paradigms for the disciplines of structural biology, genetics, biochemistry, and medicine. Here we review the major classes of hemoglobin variants, emphasizing general concepts and illustrative examples. PMID:23388674

  6. Hemoglobin variants: biochemical properties and clinical correlates.

    PubMed

    Thom, Christopher S; Dickson, Claire F; Gell, David A; Weiss, Mitchell J

    2013-03-01

    Diseases affecting hemoglobin synthesis and function are extremely common worldwide. More than 1000 naturally occurring human hemoglobin variants with single amino acid substitutions throughout the molecule have been discovered, mainly through their clinical and/or laboratory manifestations. These variants alter hemoglobin structure and biochemical properties with physiological effects ranging from insignificant to severe. Studies of these mutations in patients and in the laboratory have produced a wealth of information on hemoglobin biochemistry and biology with significant implications for hematology practice. More generally, landmark studies of hemoglobin performed over the past 60 years have established important paradigms for the disciplines of structural biology, genetics, biochemistry, and medicine. Here we review the major classes of hemoglobin variants, emphasizing general concepts and illustrative examples.

  7. Study of radiation effects on mammalian cells in vitro

    NASA Technical Reports Server (NTRS)

    Sinclair, W. K.

    1968-01-01

    Radiation effect on single cells and cell populations of Chinese hamster lung tissue is studied in vitro. The rate and position as the cell progresses through the generation cycle shows division delay, changes in some biochemical processes in the cell, chromosomal changes, colony size changes, and loss of reproductive capacity.

  8. [EFFECTS OF DIFFERENT CLASSES OF PLANT HORMONES ON MAMMALIAN CELLS].

    PubMed

    Vildanova, M S; Smirnova, E A

    2016-01-01

    Plant hormones are signal molecules of different chemical structure, secreted by plant cells and acting at low concentrations as regulators of plant growth and differentiation. Certain plant hormones are similar to animal hormones or can be produced by animal cells. A number of studies show that the effect of biologically active components of plant origin including plant/phytohormones is much wider than was previously thought, but so far there are no objective criteria for assessing the influence of phytohormones on the physiological state of animal cells. Presented in the survey data show that plant hormones, which have different effects on plant growth and development (jasmonic, abscisic and gibberellic acids), are not neutral to the cells of animal origin, and animal cells response to them may be either positive or negative. PMID:27220246

  9. Effects of increased anionic charge in the beta-globin chain on assembly of hemoglobin in vitro.

    PubMed

    Adachi, K; Yamaguchi, T; Pang, J; Surrey, S

    1998-02-15

    Studies on assembly in vitro of alpha-globin chains with recombinant beta16 Gly-->Asp, beta95 Lys-->Glu, beta120 Lys-->Glu and beta16 Gly-->Asp, 120 Lys-->Glu human beta-globin chain variants in addition to human betaA- and betaS-globin chains were performed to evaluate effects of increased anionic charge in the beta chain on hemoglobin assembly using soluble recombinant beta-globin chains expressed in bacteria. A beta112 Cys-->Asp change was also engineered to monitor effects on assembly of increased negative charge at alpha1beta1 interaction sites. Order of tetramer formation in vitro under limiting alpha-globin chain conditions showed Hb betaG16D, K120E = Hb betaK120E = Hb betaK95E > Hb betaG16D > Hb A > Hb S > Hb betaC112D. In addition, beta112 Cys-->Asp chains exist as monomers rather than beta4 tetramers in the absence of alpha chains, and the beta chain in Hb betaC112D tetramers was readily exchanged by addition of betas. These results suggest that affinity between alpha and beta chains is promoted by negatively-charged beta chains up to a maximum of two additional net negative charges and is independent of location on the surface except at the alpha1beta1 interaction site. In addition, our findings show that beta112 Cys on the G helix is critical for facilitating formation of stable alphabeta dimers, which then form functional hemoglobin tetramers, and that beta112 Cys-->Asp inhibits formation of stable alpha1beta1 and beta1beta2 interactions in alpha2beta2 and beta4 tetramers, respectively. PMID:9454775

  10. Development of a simple assay system for protein-stabilizing efficiency based on hemoglobin protection against denaturation and measurement of the cooperative effect of mixing protein stabilizers.

    PubMed

    Chen, Siyu; Manabe, Yoshiyuki; Minamoto, Naoya; Saiki, Naoka; Fukase, Koichi

    2016-10-01

    We have elucidated the cooperative stabilization of proteins by sugars, amino acids, and other protein-stabilizing agents using a new and simple assay system. Our system determines the protein-stabilizing ability of various compounds by measuring their ability to protect hemoglobin from denaturation. Hemoglobin denaturation was readily measured by quantitative changes in its ultraviolet-visible absorption spectrum. The efficiency of our assay was confirmed using various sugars such as trehalose and sucrose that are known to be good protein stabilizers. We have also found that mixtures of two different types of protein stabilizers resulted in a cooperative stabilizing effect on protein. PMID:27253914

  11. An analysis of particle track effects on solid mammalian tissues

    NASA Technical Reports Server (NTRS)

    Todd, P.; Clarkson, T. W. (Principal Investigator)

    1992-01-01

    Relative biological effectiveness (RBE) and quality factor (Q) at extreme values of linear energy transfer (LET) have been determined on the basis of experiments with single-cell systems and specific tissue responses. In typical single-cell systems, each heavy particle (Ar or Fe) passes through a single cell or no cell. In experiments on animal tissues, however, each heavy particle passes through several cells, and the LET can exceed 200 keV micrometers-1 in every cell. In most laboratory animal tissue systems, however, only a small portion of the hit cells are capable of expressing the end-point being measured, such as cell killing, mutation or carcinogenesis. The following question was therefore addressed: do RBEs and Q factors derived from single-cell experiments properly account for the damage at high LET when multiple cells are hit by HZE tracks? A review is offered in which measured radiation effects and known tissue properties are combined to estimate on the one hand, the number of cells at risk, p3n, per track, where n is the number of cells per track based on tissue and organ geometry, and p3 is the probability that a cell in the track is capable of expressing the experimental end-point. On the other hand, the tissue and single-cell responses are compared by determining the ratio RBE in tissue/RBE in corresponding single cells. Experimental data from the literature indicate that tissue RBEs at very high LET (Fe and Ar ions) are higher than corresponding single-cell RBEs, especially in tissues in which p3n is high.

  12. Copper signaling in the mammalian nervous system: synaptic effects

    PubMed Central

    Gaier, ED; Eipper, BA; Mains, RE

    2014-01-01

    Copper (Cu) is an essential metal present at high levels in the CNS. Its role as a co-factor in mitochondrial ATP production and in other essential cuproenzymes is well defined. Menkes and Wilson’s diseases are severe neurodegenerative conditions that demonstrate the importance of Cu transport into the secretory pathway. Brain levels of Cu, which is almost entirely protein bound, exceed extracellular levels by more than a hundred-fold. Cu stored in the secretory pathway is released in a Ca2+-dependent manner and can transiently reach concentrations over 100 µM at synapses. The ability of low µM levels of Cu to bind to and modulate the function of γ-aminobutyric acid type A (GABAA) receptors, N-methyl-D-aspartate (NMDA) receptors and voltage-gated Ca2+ channels contributes to its effects on synaptic transmission. Cu also binds to amyloid precursor protein and prion protein; both proteins are found at synapses and brain Cu homeostasis is disrupted in mice lacking either protein. Especially intriguing is the ability of Cu to affect AMP-activated protein kinase (AMPK), a monitor of cellular energy status. Despite this, few investigators have examined the direct effects of Cu on synaptic transmission and plasticity. Although the variability of results demonstrates complex influences of Cu that are highly method-sensitive, these studies nevertheless strongly support important roles for endogenous Cu and new roles for Cu-binding proteins in synaptic function/plasticity and behavior. Further study of the many roles of Cu in nervous system function will reveal targets for intervention in other diseases in which Cu homeostasis is disrupted. PMID:23115049

  13. Effect of nonsurgical periodontal treatment on glycosylated hemoglobin in diabetic patients: a systematic review.

    PubMed

    Mauri-Obradors, Elisabet; Jané-Salas, Enric; Sabater-Recolons, Maria del Mar; Vinas, Miguel; López-López, José

    2015-09-01

    This review was designed to determine whether non-surgical periodontal treatment is able to reduce serum glycosylated hemoglobin (HbA1c) levels in patients with diabetes mellitus (DM). Several previous reports showed that scaling and root planning (SRP) improve periodontal status in patients with DM, but whether it also improves metabolic control of the disease is unclear. A systematic review was conducted according to the recommendations of the Cochrane Collaboration and PRISMA. A literature search was conducted in October 2012 using three libraries (Cochrane, Web of Knowledge, and Scopus) and the keywords "periodontal disease" and "diabetes mellitus." Only 21 of the articles met the inclusion criteria for this review. A total of 1,454 patients were thus included in this study to evaluate whether periodontal treatment improved serum HbA1c levels. Both the methodological quality and the risk of bias of each study were taken into account using the Jadad scale. Only ten of the included studies had an acceptable-good score of 3-5. Fourteen of the studies reported a significant decrease in serum HbA1c levels (p < 0.05) after periodontal treatment. The remaining seven studies failed to find a significant decrease in serum HbA1c. The findings of this review suggest that the published literature is insufficient and inconclusive to clearly support periodontal treatment as a means to improve serum HbA1c levels in patients with type 1 DM. It also demonstrates the need for homogeneous studies, with larger samples and longer follow-up periods, to properly address this question.

  14. Effects of Sleep Disorders on Hemoglobin A1c Levels in Type 2 Diabetic Patients

    PubMed Central

    Keskin, Ahmet; Ünalacak, Murat; Bilge, Uğur; Yildiz, Pinar; Güler, Seda; Selçuk, Engin Burak; Bilgin, Muzaffer

    2015-01-01

    Background: Studies have reported the presence of sleep disorders in approximately 50–70% of diabetic patients, and these may contribute to poor glycemic control, diabetic neuropathy, and overnight hypoglycemia. The aim of this study was to determine the frequency of sleep disorders in diabetic patients, and to investigate possible relationships between scores of these sleep disorders and obstructive sleep apnea syndrome (OSAS) and diabetic parameters (fasting blood glucose, glycated hemoglobin A1c [HbA1c], and lipid levels). Methods: We used the Berlin questionnaire (BQ) for OSAS, the Epworth Sleepiness Scale (ESS), and the Pittsburgh Sleep Quality Index (PSQI) to determine the frequency of sleep disorders and their possible relationships with fasting blood glucose, HbA1c, and lipid levels. Results: The study included 585 type 2 diabetic patients admitted to family medicine clinics between October and December 2014. Sleep, sleep quality, and sleep scores were used as the dependent variables in the analysis. The ESS scores showed that 54.40% of patients experienced excessive daytime sleepiness, and according to the PSQI, 64.30% experienced poor-quality sleep. The BQ results indicated that 50.20% of patients were at high-risk of OSAS. HbA1c levels correlated significantly with the ESS and PSQI results (r = 0.23, P < 0.001 and r = 0.14, P = 0.001, respectively), and were significantly higher in those with high-risk of OSAS as defined by the BQ (P < 0.001). These results showed that HbA1c levels were related to sleep disorders. Conclusions: Sleep disorders are common in diabetic patients and negatively affect the control of diabetes. Conversely, poor diabetes control is an important factor disturbing sleep quality. Addressing sleep disturbances in patients who have difficulty controlling their blood glucose has dual benefits: Preventing diabetic complications caused by sleep disturbance and improving diabetes control. PMID:26668142

  15. Effect of dialysis dose and membrane flux on hemoglobin cycling in hemodialysis patients.

    PubMed

    He, Liyu; Fu, Min; Chen, Xian; Liu, Hong; Chen, Xing; Peng, Xiaofei; Liu, Fuyou; Peng, Youming

    2015-04-01

    Many studies found that hemoglobin (Hb) fluctuation was closely related to the prognosis of the maintenance hemodialysis patients. We investigated the association of factors relating dialysis dose and dialyzer membrane with Hb levels. We undertook a randomized clinical trial in 140 patients undergoing thrice-weekly dialysis and assigned patients randomly to a standard or high dose of dialysis; Hb level was measured every month for 12 months. In the standard-dose group, the mean (±SD) urea reduction ratio was 65.1% ± 7.3%, the single-pool Kt/V was 1.26 ± 0.11, and the equilibrated Kt/V was 1.05 ± 0.09; in the high-dose group, the values were 73.5% ± 8.7%, 1.68 ± 0.15, and 1.47 ± 0.11, respectively. The standard deviation (SD) and residual SD (liner regression of Hb) values of Hb were significantly higher in the standard-dose group and low-flux group. The percentage achievement of target Hb in the high-dose dialysis group and high-flux dialyzer group was significantly higher than the standard-dose group and low-flux group, respectively. Patients undergoing hemodialysis thrice weekly appear to have benefit from a higher dialysis dose than that recommended by current KDQQI (Kidney Disease Qutcome Quality Initiative) guidelines or from the use of a high-flux membrane, which is in favor of maintaining stable Hb levels.

  16. Hemoglobins, programmed cell death and somatic embryogenesis.

    PubMed

    Hill, Robert D; Huang, Shuanglong; Stasolla, Claudio

    2013-10-01

    Programmed cell death (PCD) is a universal process in all multicellular organisms. It is a critical component in a diverse number of processes ranging from growth and differentiation to response to stress. Somatic embryogenesis is one such process where PCD is significantly involved. Nitric oxide is increasingly being recognized as playing a significant role in regulating PCD in both mammalian and plant systems. Plant hemoglobins scavenge NO, and evidence is accumulating that events that modify NO levels in plants also affect hemoglobin expression. Here, we review the process of PCD, describing the involvement of NO and plant hemoglobins in the process. NO is an effector of cell death in both plants and vertebrates, triggering the cascade of events leading to targeted cell death that is a part of an organism's response to stress or to tissue differentiation and development. Expression of specific hemoglobins can alter this response in plants by scavenging the NO, thus, interrupting the death process. Somatic embryogenesis is used as a model system to demonstrate how cell-specific expression of different classes of hemoglobins can alter the embryogenic process, affecting hormone synthesis, cell metabolite levels and genes associated with PCD and embryogenic competence. We propose that plant hemoglobins influence somatic embryogenesis and PCD through cell-specific expression of a distinct plant hemoglobin. It is based on the premise that both embryogenic competence and PCD are strongly influenced by cellular NO levels. Increases in cellular NO levels result in elevated Zn(2+) and reactive-oxygen species associated with PCD, but they also result in decreased expression of MYC2, a transcription factor that is a negative effector of indoleacetic acid synthesis, a hormone that positively influences embryogenic competence. Cell-specific hemoglobin expression reduces NO levels as a result of NO scavenging, resulting in cell survival.

  17. Effect of Gravity on the Mammalian Cell Deformation

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y.; Gonda, Steven

    1995-01-01

    The effect of human cell immersed in culture liquid under a micro-gravity environment has been investigated. The study is based on the numerical simulation of the configuration of human cell affected by the time dependent variation of gravity acceleration ranging from 10(exp -3) to 2 g(sub o) (g(sub o) = 9.81 m/s(exp 2)) in 15 seconds. Both the free floating cell and the cell contacted to the upper and lower inclined walls imposed by the time-dependent reduced gravity acceleration are considered in this study. The results show that the cell configuration changes from spherical to horizontally elongated ellipsoid for both the free floating cell and the cell sitting on the lower inclined wall while the cell configuration varies from spherical to vertically elongated ellipsoid for the cell hanging to the upper inclined wall when the gravity acceleration increases. Experimental observations, carried out of human cells exposed to the variation of gravity levels, show that the results of experimental observations agree exactly with the theoretical model computation described in this paper. These results sre significant for humans exposed to the micro-gravity environment.

  18. Biological effects of Trichoderma harzianum peptaibols on mammalian cells.

    PubMed

    Peltola, Joanna; Ritieni, Alberto; Mikkola, Raimo; Grigoriev, Pavel A; Pócsfalvi, Gabriella; Andersson, Maria A; Salkinoja-Salonen, Mirja S

    2004-08-01

    Trichoderma species isolated from water-damaged buildings were screened for toxicity by using boar sperm cells as indicator cells. The crude methanolic cell extract from Trichoderma harzianum strain ES39 inhibited the boar sperm cell motility at a low exposure concentration (50% effective concentration, 1 to 5 microg [dry weight] ml of extended boar semen(-1)). The same exposure concentration depleted the boar sperm cells of NADH(2). Inspection of the exposed boar sperm cells by transmission electron microscopy revealed damage to the plasma membrane. By using the black lipid membrane technique, it was shown that the semipurified metabolites (eluted from a SepPak C(18) cartridge) of T. harzianum strain ES39 induced voltage-dependent conductivity. The high-performance liquid chromatography-purified metabolites of T. harzianum strain ES39 dissipated the mitochondrial membrane potential (Deltapsi(m)) of human lung epithelial carcinoma cells (cell line A549). The semipurified metabolites (eluted from a SepPak C(18) cartridge) of T. harzianum strain ES39 were analyzed by mass spectrometry (MS). Matrix-assisted laser desorption ionization and nanoflow electrospray ionization MS revealed five major peptaibols, each of which contained 18 residues and had a mass ranging from 1,719 to 1,775 Da. Their partial amino acid sequences were determined by collision-induced dissociation tandem MS.

  19. Non-cell-autonomous effects of vector-expressed regulatory RNAs in mammalian heart cells.

    PubMed

    Kizana, E; Cingolani, E; Marbán, E

    2009-09-01

    In mammalian cells, small regulatory RNA molecules are able to modulate gene expression in a cell-autonomous manner. In contrast, this mechanism of gene regulation can occur systemically in plants and nematodes. The existence of similar cell-to-cell transmission in mammalian cells has been explored, but generalizibilty and mechanistic insights have remained elusive. Here, we show that small regulatory RNA molecules are capable of a non-cell-autonomous effect between primary cardiac myocytes through a gap-junction-dependent mechanism. Co-culture experiments showed that both Dicer-processed small-interfering RNAs (siRNAs) and Drosha-processed microRNAs (miRNAs) were capable of target gene knockdown and physiological effects in a non-cell-autonomous manner. Target gene siRNA molecules were detected in recipient cells, indicating transfer of the primary effector molecule. All of these effects were abrogated by dominant-negative molecular suppression of gap junction function. Our results show that both siRNAs and miRNAs are capable of a non-cell-autonomous effect between mammalian cells through gap junctions. The recognition of this biological process raises the novel therapeutic prospect of a bystander effect after gene transfer to tissues bearing gap junctions and for cell engineering with a view to creating regulatory RNA donor cells that exert their influence throughout a syncytium. PMID:19516277

  20. Contrasting effects of different mammalian herbivores on sagebrush plant communities.

    PubMed

    Veblen, Kari E; Nehring, Kyle C; McGlone, Christopher M; Ritchie, Mark E

    2015-01-01

    Herbivory by both grazing and browsing ungulates shapes the structure and functioning of terrestrial ecosystems worldwide, and both types of herbivory have been implicated in major ecosystem state changes. Despite the ecological consequences of differences in diets and feeding habits among herbivores, studies that experimentally distinguish effects of grazing from spatially co-occurring, but temporally segregated browsing are extremely rare. Here we use a set of long-term exclosures in northern Utah, USA, to determine how domestic grazers vs. wild ungulate herbivores (including browsers and mixed feeders) affect sagebrush-dominated plant communities that historically covered ~62 million ha in North America. We sampled plant community properties and found that after 22 years grazing and browsing elicited perceptible changes in overall plant community composition and distinct responses by individual plant species. In the woody layer of the plant community, release from winter and spring wild ungulate herbivory increased densities of larger Wyoming big sagebrush (Artemisia tridentata, ssp. wyomingensis) at the expense of small sagebrush, while disturbance associated with either cattle or wild ungulate activity alone was sufficient to increase bare ground and reduce cover of biological soil crusts. The perennial bunchgrass, bottlebrush squirretail (Elymus elymoides), responded positively to release from summer cattle grazing, and in turn appeared to competitively suppress another more grazing tolerant perennial grass, Sandberg's blue grass (Poa secunda). Grazing by domestic cattle also was associated with increased non-native species biomass. Together, these results illustrate that ungulate herbivory has not caused sagebrush plant communities to undergo dramatic state shifts; however clear, herbivore-driven shifts are evident. In a dry, perennial-dominated system where plant community changes can occur very slowly, our results provide insights into potential long

  1. Contrasting Effects of Different Mammalian Herbivores on Sagebrush Plant Communities

    PubMed Central

    Veblen, Kari E.; Nehring, Kyle C.; McGlone, Christopher M.; Ritchie, Mark E.

    2015-01-01

    Herbivory by both grazing and browsing ungulates shapes the structure and functioning of terrestrial ecosystems worldwide, and both types of herbivory have been implicated in major ecosystem state changes. Despite the ecological consequences of differences in diets and feeding habits among herbivores, studies that experimentally distinguish effects of grazing from spatially co-occurring, but temporally segregated browsing are extremely rare. Here we use a set of long-term exclosures in northern Utah, USA, to determine how domestic grazers vs. wild ungulate herbivores (including browsers and mixed feeders) affect sagebrush-dominated plant communities that historically covered ~62 million ha in North America. We sampled plant community properties and found that after 22 years grazing and browsing elicited perceptible changes in overall plant community composition and distinct responses by individual plant species. In the woody layer of the plant community, release from winter and spring wild ungulate herbivory increased densities of larger Wyoming big sagebrush (Artemisia tridentata, ssp. wyomingensis) at the expense of small sagebrush, while disturbance associated with either cattle or wild ungulate activity alone was sufficient to increase bare ground and reduce cover of biological soil crusts. The perennial bunchgrass, bottlebrush squirretail (Elymus elymoides), responded positively to release from summer cattle grazing, and in turn appeared to competitively suppress another more grazing tolerant perennial grass, Sandberg’s blue grass (Poa secunda). Grazing by domestic cattle also was associated with increased non-native species biomass. Together, these results illustrate that ungulate herbivory has not caused sagebrush plant communities to undergo dramatic state shifts; however clear, herbivore-driven shifts are evident. In a dry, perennial-dominated system where plant community changes can occur very slowly, our results provide insights into potential long

  2. Effects of quercetin on hemoglobin-dependent redox reactions: relationship to iron-overload rat liver injury.

    PubMed

    Lu, Nai-Hao; Chen, Chao; He, Ying-Jie; Tian, Rong; Xiao, Qiang; Peng, Yi-Yuan

    2013-01-01

    Flavonoids have been widely reported to protect liver injury in iron-overload diseases, where the mechanism of this therapeutic action is dependent on their antioxidant effects, including free radical scavenging and metal-chelating. In this study, in contrast to the significant decrease in iron content, quercetin (Qu) from lower diet (0.3%, w/w) showed pro-oxidant ability on protein carbonyl formation and exhibited unobvious effect on iron-overload rat liver injury. Furthermore, the anti- and pro-oxidant activities of Qu on hemoglobin (Hb)-dependent redox reactions (i.e. the oxidative stability of Hb and its cytotoxic ferryl intermediate, Hb-induced protein oxidation) were investigated to illustrate the elevated protein oxidation in lower Qu-treated iron-overload rat. It was found that superoxide (O₂·⁻) and hydrogen peroxide (H₂O₂) were generated during the reaction between Qu and Hb. Qu, however, effectively reduced ferryl intermediate back to ferric Hb in a biphasic kinetic reaction. Moreover, Qu could significantly aggravate Hb-H₂O₂-induced protein oxidation at low concentrations and exhibit protective effects at high concentrations. Different from the classic antioxidant mechanisms of Qu, the dual effects on Hb redox reactions in vitro, therefore, may provide new insights into the physiological and pharmacological implications of Qu with iron-overload disease.

  3. The Hemoglobin E Thalassemias

    PubMed Central

    Fucharoen, Suthat; Weatherall, David J.

    2012-01-01

    Hemoglobin E (HbE) is an extremely common structural hemoglobin variant that occurs at high frequencies throughout many Asian countries. It is a β-hemoglobin variant, which is produced at a slightly reduced rate and hence has the phenotype of a mild form of β thalassemia. Its interactions with different forms of α thalassemia result in a wide variety of clinical disorders, whereas its coinheritance with β thalassemia, a condition called hemoglobin E β thalassemia, is by far the most common severe form of β thalassemia in Asia and, globally, comprises approximately 50% of the clinically severe β-thalassemia disorders. PMID:22908199

  4. Effects of Global Warming on Ancient Mammalian Communities and Their Environments

    PubMed Central

    DeSantis, Larisa R. G.; Feranec, Robert S.; MacFadden, Bruce J.

    2009-01-01

    Background Current global warming affects the composition and dynamics of mammalian communities and can increase extinction risk; however, long-term effects of warming on mammals are less understood. Dietary reconstructions inferred from stable isotopes of fossil herbivorous mammalian tooth enamel document environmental and climatic changes in ancient ecosystems, including C3/C4 transitions and relative seasonality. Methodology/Principal Findings Here, we use stable carbon and oxygen isotopes preserved in fossil teeth to document the magnitude of mammalian dietary shifts and ancient floral change during geologically documented glacial and interglacial periods during the Pliocene (∼1.9 million years ago) and Pleistocene (∼1.3 million years ago) in Florida. Stable isotope data demonstrate increased aridity, increased C4 grass consumption, inter-faunal dietary partitioning, increased isotopic niche breadth of mixed feeders, niche partitioning of phylogenetically similar taxa, and differences in relative seasonality with warming. Conclusion/Significance Our data show that global warming resulted in dramatic vegetation and dietary changes even at lower latitudes (∼28°N). Our results also question the use of models that predict the long term decline and extinction of species based on the assumption that niches are conserved over time. These findings have immediate relevance to clarifying possible biotic responses to current global warming in modern ecosystems. PMID:19492043

  5. Mutagenic effect of a keV range N + beam on mammalian cells

    NASA Astrophysics Data System (ADS)

    Feng, Huiyun; Wu, Lijun; Yu, Lixiang; Han, Wei; Liu, Xuelan; Yu, Zengliang

    2005-07-01

    The radiobiological effects of a keV (5-20 keV) range nitrogen ion (N +) beam on mammalian cells were studied, particularly with regard to the induction of mutation in the cell genome. The experiment demonstrated that the 20 keV N + beam, which resulted in cell death to a certain extent, induced a 2-3 fold increase in the mutation rates at the CD59 gene locus of the mammalian A L cells as compared to the control. Within certain fluence ranges (0-6 × 10 14 N +/cm 2), the cell survival displayed a down-up-down pattern which is similar to the phenomenon known as 'hyper-radiosensitivity' manifested under low-dose irradiation; the CD59 mutation rate firstly showed a gradual rise up to a 3-fold increment above the background level as the ion fluence went up to 4 × 10 14 N +/cm 2, after this peak point however, a downtrend appeared though the ion fluence increased further. It was also observed that the fraction of CD59 mutation bears no proportional relation to ion energy in further experiments of mutation induction by N + beams with the incident energies of 5, 10, 15 and 20 keV at the same fluence of 3 × 10 14 N +/cm 2. Analyses of the deletion patterns of chromosome 11 in CD59- mutants induced by 5-20 keV N + beams showed that these ions did not result in large-size chromosome deletions in this mammalian cell system. A preliminary discussion, suggesting that the mutagenic effect of such low-energy ion influx on mammalian cells could result from multiple processes involving direct collision of particles with cellular DNA, and cascade atomic and molecular reactions due to plentiful primary and secondary particles, was also presented. The study provided the first glimpse into the roles low-energy ions may play in inducing mutagenesis in mammalian cells, and results will be of much value in helping people to understand the contribution of low-energy ions to radiological effects of various ionising radiations.

  6. Effects of carbon source and Vitreoscilla hemoglobin (VHb) on the production of beta-galactosidase in Enterobacter aerogenes.

    PubMed

    Khleifat, Khaled M; Abboud, Muayad M; Al-Mustafa, Ahmed H; Al-Sharafa, Khalid Y

    2006-10-01

    At fixed concentration (0.5%), lactose and galactose acted as inducers while glucose and other tested carbon sugars showed repression effects on beta-galactosidase production in Enterobacter aerogenes strain. The expression of Vitreoscilla hemoglobin gene (vgb) in this bacterial strain managed to overcome the repression effects as well as improving the induction of beta-galactosidase formation by carbon sources. In parallel, the bacterial O(2) consumption was increased correspondingly to the vgb induction of beta-galactosidase synthesis. When Enterobacter aerogenes strains were grown at the incubation temperature 42 degrees C, about 5-fold higher enzyme productivity was obtained than with a similar incubation at 37 degrees C. The bacterial growth expressed as biomass yield had a different optimum temperature and was not influenced to the same extent by variations in the carbon sources. These data are discussed in terms of proposed enhancement in beta-galactosidase productivity by vgb expression as well as its significance to improve the technology of whey processing.

  7. Blood glycated hemoglobin evaluation in sick dogs.

    PubMed Central

    Marca, M C; Loste, A; Unzueta, A; Pérez, M

    2000-01-01

    Blood glycated hemoglobin concentration reflects long-term serum glucose levels in dogs. In this study, the effects of several diseases on blood glycated hemoglobin levels have been evaluated. For this study, blood samples were drawn from 93 unhealthy dogs. The animals were distributed into 10 groups according to pathological process (group 1, digestive problems; group 2, leishmaniasis; group 3, anemia; group 4, dermatological disorders; group 5, urinary problems; group 6, cardiorespiratory problems; group 7, diabetes mellitus; group 8, insulinoma; group 9, general diseases; group 10, control group). Blood glucose and glycated hemoglobin concentrations and hemoglobin and hematocrit values were analyzed in all the animals. In diabetic dogs, a strong increase in blood glycated hemoglobin was observed when compared with the other groups (P < 0.01). In contrast, dogs with insulinoma showed a decrease in blood glycated hemoglobin, though significant differences were not reported in all cases. No change in blood glycated hemoglobin concentrations were reported in dogs affected by other diseases. So, we can suppose that only the chronic alterations in glucose metabolism (chronic hyper- or hypoglycemia) can induce significant changes on the blood glycated hemoglobin concentrations in dogs. PMID:10805256

  8. The Effects of Dietary Iron and Capsaicin on Hemoglobin, Blood Glucose, Insulin Tolerance, Cholesterol, and Triglycerides, in Healthy and Diabetic Wistar Rats

    PubMed Central

    Villalpando-Hernández, Salvador; Ríos-Silva, Mónica; Díaz-Reval, María I.; Cruzblanca, Humberto; Mancilla, Evelyn

    2016-01-01

    Objective Our aim was to assess the effects of dietary iron, and the compound capsaicin, on hemoglobin as well as metabolic indicators including blood glucose, cholesterol, triglycerides, insulin, and glucose tolerance. Materials and Methods Our animal model was the Wistar rat, fed a chow diet, with or without experimentally induced diabetes. Diabetic males were fed control, low, or high-iron diets, the latter, with or without capsaicin. Healthy rats were fed identical diets, but without the capsaicin supplement. We then measured the parameters listed above, using the Student t-test and ANOVA, to compare groups. Results Healthy rats fed a low-iron diet exhibited significantly reduced total cholesterol and triglyceride levels, compared with rats fed a control diet. Significantly reduced blood lipid was also provoked by low dietary iron in diabetic rats, compared with those fed a control diet. Insulin, and glucose tolerance was only improved in healthy rats fed the low-iron diet. Significant increases in total cholesterol were found in diabetic rats fed a high-iron diet, compared with healthy rats fed the same diet, although no statistical differences were found for triglycerides. Hemoglobin levels, which were not statistically different in diabetic versus healthy rats fed the high-iron diet, fell when capsaicin was added. Capsaicin also provoked a fall in the level of cholesterol and triglycerides in diabetic animals, versus diabetics fed with the high iron diet alone. In conclusion, low levels of dietary iron reduced levels of serum triglycerides, hemoglobin, and cholesterol, and significantly improved insulin, and glucose tolerance in healthy rats. In contrast, a high-iron diet increased cholesterol significantly, with no significant changes to triglyceride concentrations. The addition of capsaicin to the high-iron diet (for diabetic rats) further reduced levels of hemoglobin, cholesterol, and triglycerides. These results suggest that capsaicin, may be suitable

  9. Denaturant effects on HbGp hemoglobin as monitored by 8-anilino-1-naphtalene-sulfonic acid (ANS) probe.

    PubMed

    Barros, Ana E B; Carvalho, Francisco A O; Alves, Fernanda R; Carvalho, José W P; Tabak, Marcel

    2015-03-01

    Glossoscolex paulistus extracellular hemoglobin (HbGp) stability has been monitored in the presence of denaturant agents. 8-Anilino-1-naphtalene-sulfonic acid (ANS) was used, and spectroscopic and hydrodynamic studies were developed. Dodecyltrimethylammonium bromide (DTAB) induces an increase in ANS fluorescence emission intensity, with maximum emission wavelength blue-shifted from 517 to 493 nm. Two transitions are noticed, at 2.50 and 9.50 mmol/L of DTAB, assigned to ANS interaction with pre-micellar aggregates and micelles, respectively. In oxy-HbGp, ANS binds to protein sites less exposed to solvent, as compared to DTAB micelles. In DTAB-HbGp-ANS ternary system, at pH 7.0, protein aggregation, oligomeric dissociation and unfolding were observed, while, at pH 5.0, aggregation is absent. DTAB induced unfolding process displays two transitions, one due to oligomeric dissociation and the second one, probably, to the denaturation of dissociated subunits. Moreover, guanidine hydrochloride and urea concentrations above 1.5 and 4.0 mol/L, respectively, induce the full HbGp denaturation, with reduction of ANS-bound oxy-HbGp hydrophobic patches, as noticed by fluorescence quenching up to 1.0 and 5.0 mol/L of denaturants. Our results show clearly the differences in probe sensitivity to the surfactant, in the presence and absence of protein, and new insights into the denaturant effects on HbGp unfolding.

  10. Effect of Locomotor Respiratory Coupling Induced by Cortical Oxygenated Hemoglobin Levels During Cycle Ergometer Exercise of Light Intensity.

    PubMed

    Oyanagi, Keiichi; Tsubaki, Atsuhiro; Yasufuku, Yuichi; Takai, Haruna; Kera, Takeshi; Tamaki, Akira; Iwata, Kentaro; Onishi, Hideaki

    2016-01-01

    This study aimed to clarify the effects of locomotor-respiratory coupling (LRC) induced by light load cycle ergometer exercise on oxygenated hemoglobin (O2Hb) in the dorsolateral prefrontal cortex (DLPFC), supplementary motor area (SMA), and sensorimotor cortex (SMC). The participants were 15 young healthy adults (9 men and 6 women, mean age: 23.1 ± 1.8 (SEM) years). We conducted a task in both LRC-inducing and LRC-non-inducing conditions for all participants. O2Hb was measured using near-infrared spectroscopy. The LRC frequency ratio during induction was 2:1; pedaling rate, 50 rpm; and intensity of load, 30 % peak volume of oxygen uptake. The test protocol included a 3-min rest prior to exercise, steady loading motion for 10 min, and 10-min rest post exercise (a total of 23 min). In the measurement of O2Hb, we focused on the DLPFC, SMA, and SMC. The LRC frequency was significantly higher in the LRC-inducing condition (p < 0.05). O2Hb during exercise was significantly lower in the DLPFC and SMA, under the LRC-inducing condition (p < 0.05). The study revealed that even light load could induce LRC and that O2Hb in the DLPFC and SMA decreases during exercise via LRC induction.

  11. Cytotoxic Effects of Tropodithietic Acid on Mammalian Clonal Cell Lines of Neuronal and Glial Origin.

    PubMed

    Wichmann, Heidi; Vocke, Farina; Brinkhoff, Thorsten; Simon, Meinhard; Richter-Landsberg, Christiane

    2015-12-01

    The marine metabolite tropodithietic acid (TDA), produced by several Roseobacter clade bacteria, is known for its broad antimicrobial activity. TDA is of interest not only as a probiotic in aquaculture, but also because it might be of use as an antibacterial agent in non-marine or non-aquatic environments, and thus the potentially cytotoxic influences on eukaryotic cells need to be evaluated. The present study was undertaken to investigate its effects on cells of the mammalian nervous system, i.e., neuronal N2a cells and OLN-93 cells as model systems for nerve cells and glia. The data show that in both cell lines TDA exerted morphological changes and cytotoxic effects at a concentration of 0.3-0.5 µg/mL (1.4-2.4 µM). Furthermore, TDA caused a breakdown of the mitochondrial membrane potential, the activation of extracellular signal-regulated kinases ERK1/2, and the induction of the small heat shock protein HSP32/HO-1, which is considered as a sensor of oxidative stress. The cytotoxic effects were accompanied by an increase in intracellular Ca(2+)-levels, the disturbance of the microtubule network, and the reorganization of the microfilament system. Hence, mammalian cells are a sensitive target for the action of TDA and react by the activation of a stress response resulting in cell death. PMID:26633426

  12. Cytotoxic Effects of Tropodithietic Acid on Mammalian Clonal Cell Lines of Neuronal and Glial Origin

    PubMed Central

    Wichmann, Heidi; Vocke, Farina; Brinkhoff, Thorsten; Simon, Meinhard; Richter-Landsberg, Christiane

    2015-01-01

    The marine metabolite tropodithietic acid (TDA), produced by several Roseobacter clade bacteria, is known for its broad antimicrobial activity. TDA is of interest not only as a probiotic in aquaculture, but also because it might be of use as an antibacterial agent in non-marine or non-aquatic environments, and thus the potentially cytotoxic influences on eukaryotic cells need to be evaluated. The present study was undertaken to investigate its effects on cells of the mammalian nervous system, i.e., neuronal N2a cells and OLN-93 cells as model systems for nerve cells and glia. The data show that in both cell lines TDA exerted morphological changes and cytotoxic effects at a concentration of 0.3–0.5 µg/mL (1.4–2.4 µM). Furthermore, TDA caused a breakdown of the mitochondrial membrane potential, the activation of extracellular signal-regulated kinases ERK1/2, and the induction of the small heat shock protein HSP32/HO-1, which is considered as a sensor of oxidative stress. The cytotoxic effects were accompanied by an increase in intracellular Ca2+-levels, the disturbance of the microtubule network, and the reorganization of the microfilament system. Hence, mammalian cells are a sensitive target for the action of TDA and react by the activation of a stress response resulting in cell death. PMID:26633426

  13. Effect of low glycemic load diet on glycated hemoglobin (HbA1c) in poorly-controlled diabetes patients.

    PubMed

    Ziaee, Amir; Afaghi, Ahmad; Sarreshtehdari, Majied

    2011-12-29

    Different carbohydrate diets have been administrated to diabetic patients to evaluate the glycemic response, while Poor-controlled diabetes is increasing world wide. To investigate the role of an alternative carbohydrate diet on glycemic control, we explored the effect of a low glycemic load (Low GL)-high fat diet on glycemic response and also glycated hemoglobin (HbA1c) of poor-controlled diabetes patients. Hundred poorly-controlled diabetes patients, HbA1c > 8, age 52.8 ± 4.5 y, were administrated a low GL diet , GL = 67 (Energy 1800 kcal; total fat 36%; fat derived from olive oil and nuts 15%; carbohydrate 42%; protein 22%) for 10 weeks. Patients did their routine life style program during intervention. Fasting blood glucose and HbA1c before and after intervention with significant reduction were: 169 ± 17, 141 ± 12; 8.85% (73 mmol/mol) ± 0.22%, and 7.81% (62 mmol/mol) ± 0.27%; respectively (P < 0.001). Mean fasting blood glucose reduced by 28.1 ± 12.5 and HbA1c by 1.1% (11 mmol/mol) ± 0.3% (P=0.001). There was positive moderate correlation between HbA1c concentration before intervention and FBS reduction after intervention (P < 0.001, at 0.01 level, R =0.52), and strong positive correlation between FBS before intervention and FBS reduction (P < 0.001, at 0.01 level, R = 0.70). This study demonstrated that our alternative low glycemic load diet can be effective in glycemic control.

  14. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites

    PubMed Central

    Wikoff, William R.; Anfora, Andrew T.; Liu, Jun; Schultz, Peter G.; Lesley, Scott A.; Peters, Eric C.; Siuzdak, Gary

    2009-01-01

    Although it has long been recognized that the enteric community of bacteria that inhabit the human distal intestinal track broadly impacts human health, the biochemical details that underlie these effects remain largely undefined. Here, we report a broad MS-based metabolomics study that demonstrates a surprisingly large effect of the gut “microbiome” on mammalian blood metabolites. Plasma extracts from germ-free mice were compared with samples from conventional (conv) animals by using various MS-based methods. Hundreds of features were detected in only 1 sample set, with the majority of these being unique to the conv animals, whereas ≈10% of all features observed in both sample sets showed significant changes in their relative signal intensity. Amino acid metabolites were particularly affected. For example, the bacterial-mediated production of bioactive indole-containing metabolites derived from tryptophan such as indoxyl sulfate and the antioxidant indole-3-propionic acid (IPA) was impacted. Production of IPA was shown to be completely dependent on the presence of gut microflora and could be established by colonization with the bacterium Clostridium sporogenes. Multiple organic acids containing phenyl groups were also greatly increased in the presence of gut microbes. A broad, drug-like phase II metabolic response of the host to metabolites generated by the microbiome was observed, suggesting that the gut microflora has a direct impact on the drug metabolism capacity of the host. Together, these results suggest a significant interplay between bacterial and mammalian metabolism. PMID:19234110

  15. An insect-tapeworm model as a proxy for anthelminthic effects in the mammalian host.

    PubMed

    Woolsey, Ian David; Fredensborg, Brian L; Jensen, Per M; Kapel, Christian M O; Meyling, Nicolai V

    2015-07-01

    Invertebrate models provide several important advantages over their vertebrate counterparts including fewer legislative stipulations and faster, more cost-effective experimental procedures. Furthermore, various similarities between insect and mammalian systems have been highlighted. To obtain maximum use of invertebrate models in pharmacology, their fidelity as analogues of vertebrate systems requires verification. We utilised a flour beetle (Tenebrio molitor)-tapeworm (Hymenolepis diminuta) model to evaluate the efficacy of known anthelmintic compounds, praziquantel, mebendazole and levamisole against H. diminuta cysticercoid larvae in vitro. Inhibition of cysticercoid activity during the excystation procedure was used as a proxy for worm removal. The effects of the three compounds mirrored their relative efficacy in treatment against adult worms in mammalian systems; however, further study is required to determine the fidelity of this model in relation to dose administered. The model precludes comparison of consecutive daily administration of pharmaceuticals in mammals due to cysticercoids not surviving outside of the host for multiple days. Treatment of beetles in vivo, followed by excystation of cysticercoids postdissection could potentially allow for such comparisons. Further model validation will include analysis of pharmaceutical efficacy in varying H. diminuta isolates and pharmaceutical dilution in solvents other than water. Notwithstanding, our results demonstrate that this model holds promise as a method to efficiently identify promising new cestocidal candidates. PMID:25895063

  16. Phylogeny of Echinoderm Hemoglobins

    PubMed Central

    Christensen, Ana B.; Herman, Joseph L.; Elphick, Maurice R.; Kober, Kord M.; Janies, Daniel; Linchangco, Gregorio; Semmens, Dean C.; Bailly, Xavier; Vinogradov, Serge N.; Hoogewijs, David

    2015-01-01

    Background Recent genomic information has revealed that neuroglobin and cytoglobin are the two principal lineages of vertebrate hemoglobins, with the latter encompassing the familiar myoglobin and α-globin/β-globin tetramer hemoglobin, and several minor groups. In contrast, very little is known about hemoglobins in echinoderms, a phylum of exclusively marine organisms closely related to vertebrates, beyond the presence of coelomic hemoglobins in sea cucumbers and brittle stars. We identified about 50 hemoglobins in sea urchin, starfish and sea cucumber genomes and transcriptomes, and used Bayesian inference to carry out a molecular phylogenetic analysis of their relationship to vertebrate sequences, specifically, to assess the hypothesis that the neuroglobin and cytoglobin lineages are also present in echinoderms. Results The genome of the sea urchin Strongylocentrotus purpuratus encodes several hemoglobins, including a unique chimeric 14-domain globin, 2 androglobin isoforms and a unique single androglobin domain protein. Other strongylocentrotid genomes appear to have similar repertoires of globin genes. We carried out molecular phylogenetic analyses of 52 hemoglobins identified in sea urchin, brittle star and sea cucumber genomes and transcriptomes, using different multiple sequence alignment methods coupled with Bayesian and maximum likelihood approaches. The results demonstrate that there are two major globin lineages in echinoderms, which are related to the vertebrate neuroglobin and cytoglobin lineages. Furthermore, the brittle star and sea cucumber coelomic hemoglobins appear to have evolved independently from the cytoglobin lineage, similar to the evolution of erythroid oxygen binding globins in cyclostomes and vertebrates. Conclusion The presence of echinoderm globins related to the vertebrate neuroglobin and cytoglobin lineages suggests that the split between neuroglobins and cytoglobins occurred in the deuterostome ancestor shared by echinoderms and

  17. Is hemoglobin A1c level effective in predicting the prognosis of Fournier gangrene?

    PubMed Central

    Sen, Haluk; Bayrak, Omer; Erturhan, Sakip; Borazan, Ersin; Koc, Mustafa Nihat

    2016-01-01

    Objectives: To evaluate the effect of immune failure and/or diabetes mellitus (DM) association on the mortality and morbidity of the Fournier's Gangrene (FG), and interrelatedly, the usability of HbA1c level in the prediction of prognosis. Materials and Methods: The data of 38 patients with the diagnosis of FG were investigated retrospectively. The patients were divided into two groups as patients with DM (Group 1, n = 18) and non-diabetics (Group 2, n = 20). The patients in group 1 were also divided into two subgroups as patients with HbA1c value ≥7 (Group 1a) and HbA1c value <7 (Group 1b). Results: The mean age of all 38 male patients was 66.3 ± 6.4 years. The initial symptoms were scrotal rash and swelling (n = 20, 52.6%), high fever (>38°C) (n = 22, 57.8%), purulent discharge from genital or perineal areas (n = 13, 34.2%), skin bruises (n = 11, 28.9%) and general state disorder in five patients that were admitted from day care center (13.1%). DM, as the most often comorbid disease, was detected in 18 patients (47.3%). Six patients (15.7%) were deceased during the follow-up period. Conclusion: In the present study, the researchers determined that diabetic patients with HbA1c level of 7 or higher had worse prognosis, and increased mortality. PMID:27453658

  18. Hemoglobin-based red blood cell substitutes.

    PubMed

    Chang, Thomas Ming Swi

    2004-09-01

    Polyhemoglobin is already well into the final stages of clinical trials in humans with one approved for routine clinical use in South Africa. Conjugated hemoglobin is also in ongoing clinical trials. Meanwhile, recombinant Hb has been modified to modulate the effects of nitric oxide. Other systems contain antioxidant enzymes for those clinical applications that may have potential problems related to ischemia-reperfusion injuries. Other developments are based on hemoglobin-lipid vesicles and also the use of nanotechnology and biodegradable copolymers to prepare nanodimension artificial red blood cells containing hemoglobin and complex enzyme systems.

  19. O2-Filled Swimbladder Employs Monocarboxylate Transporters for the Generation of O2 by Lactate-Induced Root Effect Hemoglobin

    PubMed Central

    Umezawa, Takahiro; Kato, Akira; Ogoshi, Maho; Ookata, Kayoko; Munakata, Keijiro; Yamamoto, Yoko; Islam, Zinia; Doi, Hiroyuki; Romero, Michael F.; Hirose, Shigehisa

    2012-01-01

    The swimbladder volume is regulated by O2 transfer between the luminal space and the blood In the swimbladder, lactic acid generation by anaerobic glycolysis in the gas gland epithelial cells and its recycling through the rete mirabile bundles of countercurrent capillaries are essential for local blood acidification and oxygen liberation from hemoglobin by the “Root effect.” While O2 generation is critical for fish flotation, the molecular mechanism of the secretion and recycling of lactic acid in this critical process is not clear. To clarify molecules that are involved in the blood acidification and visualize the route of lactic acid movement, we analyzed the expression of 17 members of the H+/monocarboxylate transporter (MCT) family in the fugu genome and found that only MCT1b and MCT4b are highly expressed in the fugu swimbladder. Electrophysiological analyses demonstrated that MCT1b is a high-affinity lactate transporter whereas MCT4b is a low-affinity/high-conductance lactate transporter. Immunohistochemistry demonstrated that (i) MCT4b expresses in gas gland cells together with the glycolytic enzyme GAPDH at high level and mediate lactic acid secretion by gas gland cells, and (ii) MCT1b expresses in arterial, but not venous, capillary endothelial cells in rete mirabile and mediates recycling of lactic acid in the rete mirabile by solute-specific transcellular transport. These results clarified the mechanism of the blood acidification in the swimbladder by spatially organized two lactic acid transporters MCT4b and MCT1b. PMID:22496829

  20. THE RENAL HANDLING OF HEMOGLOBIN

    PubMed Central

    Bunn, H. Franklin; Esham, William T.; Bull, Robert W.

    1969-01-01

    The glomerular filtration of hemoglobin (α2β2) was studied under conditions in which its dissociation into αβ dimers was experimentally altered. Rats receiving hemoglobin treated with the sulfhydryl reagent bis(N-maleimidomethyl) ether (BME) showed a much lower renal excretion and prolonged plasma survival as compared with animals injected with untreated hemoglobin. Plasma disappearance was also prolonged in dogs receiving BME hemoglobin. Gel filtration data indicated that under physiological conditions, BME hemoglobin had impaired subunit dissociation. In addition, BME hemoglobin showed a very high oxygen affinity and a decreased rate of auto-oxidation. Glomerular filtration was enhanced under conditions which favor the dissociation of hemoglobin into dimers. Cat hemoglobin, which forms subunits much more extensively than canine hemoglobin, was excreted more readily by the rat kidney. The renal uptake of 59Fe hemoglobin injected intra-arterially into rabbits varied inversely with the concentration of the injected dose. PMID:5778789

  1. Anti-tumor effects of dehydroaltenusin, a specific inhibitor of mammalian DNA polymerase {alpha}

    SciTech Connect

    Maeda, Naoki; Kokai, Yasuo; Ohtani, Seiji; Sahara, Hiroeki; Kuriyama, Isoko; Kamisuki, Shinji; Takahashi, Shunya; Sakaguchi, Kengo; Sugawara, Fumio; Yoshida, Hiromi; Sato, Noriyuki; Mizushina, Yoshiyuki . E-mail: mizushin@nutr.kobegakuin.ac.jp

    2007-01-12

    In the screening of selective inhibitors of eukaryotic DNA polymerases (pols), dehydroaltenusin was found to be an inhibitor of pol {alpha} from a fungus (Alternaria tennuis). We succeeded in chemically synthesizing dehydroaltenusin, and the compound inhibited only mammalian pol {alpha} with IC{sub 50} value of 0.5 {mu}M, and did not influence the activities of other replicative pols such as pols {delta} and {epsilon}, but also showed no effect on pol {alpha} activity from another vertebrate, fish, or from a plant species. Dehydroaltenusin also had no influence on the other pols and DNA metabolic enzymes tested. The compound also inhibited the proliferation of human cancer cells with LD{sub 50} values of 38.0-44.4 {mu}M. In an in vivo anti-tumor assay on nude mice bearing solid tumors of HeLa cells, dehydroaltenusin was shown to be a promising suppressor of solid tumors. Histopathological examination revealed that increased tumor necrosis and decreased mitotic index were apparently detected by the compound in vivo. Therefore, dehydroaltenusin could be of interest as not only a mammalian pol {alpha}-specific inhibitor, but also as a candidate drug for anti-cancer treatment.

  2. Immunomodulatory and radioprotective effects of lignans derived from fresh nutmeg mace (Myristica fragrans) in mammalian splenocytes.

    PubMed

    Checker, Rahul; Chatterjee, Suchandra; Sharma, Deepak; Gupta, Sumit; Variyar, Prasad; Sharma, Arun; Poduval, T B

    2008-05-01

    Recently, the lignans present in the aqueous extract of fresh nutmeg mace (aril of the fruit of Myristica fragrans) were shown to possess antioxidant properties in cell free systems and protected PUC18 plasmid against radiation-induced DNA damage. The present report describes the immunomodulatory and radiomodifying properties of lignans present in the aqueous extract of fresh nutmeg mace in mammalian splenocytes. These macelignans (ML) inhibited the proliferation of splenocytes in response to polyclonal T cell mitogen concanavalin A (Con A). This inhibition of proliferation was due to cell cycle arrest in G1 phase and augmentation of apoptosis as shown by increase in pre G1 cells. The increase in activation induced cell death by ML was dose dependent. It was found to inhibit the transcription of IL-2 and IL-4 genes in response to Con A. The production of IL-2, IL-4 and IFN-gamma cytokines was significantly inhibited by ML in Con A-stimulated lymphocytes in a dose dependent manner. ML protected splenocytes against radiation-induced intracellular ROS production in a dose dependent manner. ML was not cytotoxic towards lymphocytes. On the contrary, it significantly inhibited the radiation-induced DNA damage in splenocytes as indicated by decrease in DNA fragmentation. To our knowledge, this is the first report showing the antioxidant, radioprotective and immunomodulatory effects of lignans in mammalian cells.

  3. The effects of selenium on glutathione peroxidase activity and radioprotection in mammalian cells

    SciTech Connect

    Diamond, A.M.; Murray, J.L.; Dale, P.; Tritz, R.; Grdina, D.J.

    1995-09-05

    The media of representative mammalian cell lines were supplemented with low levels of selenium in the form of sodium selenite in order to investigate the effects of selenium on mammalian cells. Following incubation in 30 nM sodium selenite, these cells were assayed for changes in glutathione peroxidase (GPx) activity. The cells examined included NIH 3T3 mouse fibroblasts, PC12 rat sympathetic precursor cells, SupT-1 human lymphocytes, MCF-7{sup adr} human breast carcinoma cells and AA8 Chinese hamster ovary cells. Selenium supplementation resulted in a marginal increase in GPx activity for the NIH 3T3, MCF-7{sup adr} and Supt-1 cells but stimulated GPx activity approximately 5-fold in PC12 and AA8 cells. AA8 cells were selected to evaluate whether selenium supplementation was radioprotective against {sup 60}cobalt gamma irradiation. Protection against radiation-induced mutation was measured by evaluating mutation frequency at the hprt locus. In this assay, preincubation of AA8 CHO cells significantly protected these cells from exposure to 8 Gy.

  4. Beneficial effect of rightward hemoglobin-oxygen dissociation curve shift for short-term high-altitude adaptation.

    PubMed

    Moore, L G; Brewer, G J

    1981-07-01

    To determine whether a rightward shift of the ODC was beneficial for short-term high-altitude adaptation, 10 drug-treated subjects were compared in a double-blind manner to 10 placebo-treated subjects after ascent from Ann Arbor, Mich. (240 m) to the top of Pike's Peak, Colo. (4300 m). Subjects were normal, male residents at 240 m in good health. Phosphate (30 mmol, t.i.d.), vitamin C (500 mg, q.i.d.), and sodium bicarbonate (1.25 mEq/kg body weight) were administered in order to elevate 2,3-DPG levels and shift ODCs to the right before the ascent so that subjects with right-shifted ODCs could be contrasted with subjects whose ODCs were not right-shifted during the first 1 to 2 days at 4300 m. After 24 hr at 4300 m, 2,3-DPG levels were higher in drug-treated than in placebo-treated subjects (19.7 +/- 0.6 mmol/gm of hemoglobin vs. 18.5 +/- 0.4; p less than 0.05 by one-tailed test), and ODC positions were different after 6 hr at high altitude (one-tailed p less than 0.01). Drug-treated subjects felt better as measured by a symptomatology questionnaire and had better central nervous system function as measured by a darkness-adaptation visual task. Performance in the two groups of subjects was the same on other visual and cognitive psychometric tests. Cardiopulmonary responses to high altitude were comparable in the two groups. The small, though significant improvement in dark adaptation and symptoms in drug-treated subjects suggests that oxygenation of the brain may have benefited from the small-shift in ODC observed. Agents with greater effect on 2,3-DPG levels are deserving of trial to determine whether they have more substantial effects on short-term responses to high altitude. PMID:7252323

  5. Effects of crosslinking on the thermal stability of hemoglobin. I. The use of bis(3,5-dibromosalicyl) fumarate.

    PubMed

    White, F L; Olsen, K W

    1987-10-01

    The double-headed aspirin, bis(3,5-dibromosalicyl) fumarate, has been used to crosslink hemoglobin A between Lys 82 beta 1 and Lys 82 beta 2 (J. A. Walder et al. (1979) Biochemistry 18,4265). Denaturation experiments were used to compare the stability of this crosslinked protein to that of hemoglobin A. Thermal denaturations, done in 0.01 M 4-morpholine-propanesulfonic acid, pH 7, containing 0.9 M guanidine to prevent precipitation at high temperatures, were monitored by changes in absorbance between 190 and 650 nm using a diode array spectrophotometer. The sample was heated from 25 to 70 degrees C at 0.3 degrees C/min. The data were analyzed by using both a two-state model and a novel first derivative method. As expected, methemoglobin A had a single, broad transition with a midpoint of 40.7 degrees C. The crosslinked methemoglobin showed a transition at 57.1 degrees C. Two minor transitions, one of which was apparently due to residual unmodified hemoglobin, were also observed in the crosslinked sample. Thus, a single crosslink between only two of the four subunits can lead to a significantly more stable molecule. These results can be explained by Le Chatelier's principle, since crosslinking prevents dissociation of the beta-subunits and, thereby, holds the entire tetramer together. PMID:3662541

  6. Effect of pH on Structural Changes in Perch Hemoglobin that Can Alter Redox Stability and Heme Affinity

    SciTech Connect

    Richards, Mark P.; Aranda, IV, Roman; He, Cai; Phillips, Jr., George N.

    2010-01-07

    pH can be manipulated to alter the oxidative stability of fish-based foods during storage. X-ray diffraction was used to investigate the ability of reduced pH to cause structural changes in fish hemoglobins that lead to enhanced oxidative degradation. Decreasing pH from 8.0 to 6.3 and 5.7 created a large channel for solvent entry into the heme crevice of perch hemoglobin beta chains. The proton-induced opening of this channel occurred between site CD3 and the heme-6-propionate. Solvent entry into the heme crevice can enhance metHb formation and hemin loss, processes that accelerate lipid oxidation. Reduced pH also decreased the distance between Ile at E11 in one of the alpha chains and the ligand above the heme iron atom. This sterically displaces O{sub 2} and protonated O{sub 2} which increases metHb formation. These studies demonstrate that pH reduction causes structural changes in perch hemoglobin which increase oxidative degradation of the heme pigment.

  7. In vitro cytocidal effect of lytic peptides on several transformed mammalian cell lines.

    PubMed

    Jaynes, J M; Julian, G R; Jeffers, G W; White, K L; Enright, F M

    1989-01-01

    Several types of transformed mammalian cells, derived from established cell lines, were found to be lysed in vitro by three novel lytic peptides (SB-37, SB-37*, and Shiva-1). This is in contrast with the behavior of normal cells, where the observed lytic activity of the peptides is greatly reduced. Based on experiments utilizing compounds which disrupt the cytoskeleton (colchicine and cytochalasin-D), it is surmised that alterations in the cytoskeleton of transformed cells increase their sensitivity to the cytolytic activity exerted by the peptides, primarily by causing a loss of osmotic integrity. Thus, a stable and regenerative cytoskeletal system, as that possessed by normal cells, would seem requisite to withstanding the lytic effects of the peptides.

  8. Deferral pattern in voluntary blood donors on basis of low hemoglobin and effect of application of digital hemoglobinometer on this pattern

    PubMed Central

    Mathur, Ankit; Shah, Ripal; Shah, Priti; Harimoorthy, V.; Choudhury, Nabajyoti

    2012-01-01

    Background: One of the responsibilities of blood center is to provide safety to blood donors. It is mandatory to screen a blood donor for hemoglobin (Hb) or hematocrit which should not be less than 12.5 g/dl or 38% Hct. Most commonly applied method for hemoglobin estimation is copper sulphate method, but this method has chances of false acceptance as well as false deferral. In order to avoid this chance of error, digital hemoglobinometer is used. This study was planned to analyze effect of application of digital hemoglobinometer for detection of Hb on donors, who are deferred by copper sulphate method. Materials and Methods: Total 35,339 voluntary non renumareted altruistic donors were included in this study between the periods of September 2005 to July 2006. Total deferred donors were 8622 (24.39%) and donors deferred due to hemoglobin by copper sulphate method were 4391 (50.92%). Digital hemoglobinometer was applied on 3163 deferred donors (72.03%). Results of digital hemoglobinometer were validated by known controls. Result: Digital hemoglobinometer was applied on 3163 donors who were deferred by copper sulphate method. Out of this, donors accepted by digital hemoglobinometer were 1196 (37.01%). Total repeat donors were 629 (52.50%) and first time were 567 (47.40%). Male donors were 891 (74.44%) and females were 305 (25.50%). Donors deferred with digital hemoglobinometer were 2135, out of them 1097 (51.14%) were repeat, 1038 (48.38%) were first time, 1349 (60.79%) were male, 786 (34.47%) donors were female donors. Range of hemoglobin in deferred donors was 7.0 to 12.4 and in accepted donors 12.5 to 16.4. Conclusion: By the application of digital hemoglobinometer 37.81% donors were found hemoglobin >12.5 which were deferred with copper sulphate method and unnecessary deferral of donors can be reduced to a great extent. In country like India, where blood supply is always less than the requirement, this new technique may be helpful to increase donor population but

  9. An Examination of the Effects of Double-Strand Breaks on Extrachromosomal Recombination in Mammalian Cells

    PubMed Central

    Yang, D.; Waldman, A. S.

    1992-01-01

    We studied the effects of double-strand breaks on intramolecular extrachromosomal homologous recombination in mammalian cells. Pairs of defective herpes thymidine kinase (tk) sequences were introduced into mouse Ltk(-) cells on a DNA molecule that also contained a neo gene under control of the SV40 early promoter/enhancer. With the majority of the constructs used, gene conversions or double crossovers, but not single crossovers, were recoverable. DNA was linearized with various restriction enzymes prior to transfection. Recombination events producing a functional tk gene were monitored by selecting for tk-positive colonies. For double-strand breaks placed outside of the region of homology, maximal recombination frequencies were measured when a break placed the two tk sequences downstream from the SV40 early promoter/enhancer. We observed no relationship between recombination frequency and either the distance between a break and the tk sequences or the distance between the tk sequences. The quantitative effects of the breaks appeared to depend on the degree of homology between the tk sequences. We also observed that inverted repeats recombined as efficiently as direct repeats. The data indicated that the breaks influenced recombination indirectly, perhaps by affecting the binding of a factor(s) to the SV40 promoter region which in turn stimulated or inhibited recombination of the tk sequences. Taken together, we believe that our results provide strong evidence for the existence of a pathway for extrachromosomal homologous recombination in mammalian cells that is distinct from single-strand annealing. We discuss the possibility that intrachromosomal and extrachromosomal recombination have mechanisms in common. PMID:1459429

  10. The non-genomic effects of endocrine-disrupting chemicals on mammalian sperm.

    PubMed

    Tavares, R S; Escada-Rebelo, S; Correia, M; Mota, P C; Ramalho-Santos, J

    2016-01-01

    Exposure to toxicants present in the environment, especially the so-called endocrine-disrupting chemicals (EDCs), has been associated with decreased sperm quality and increased anomalies in male reproductive organs over the past decades. Both human and animal populations are continuously exposed to ubiquitous synthetic and natural-occurring EDCs through diet, dermal contact and/or inhalation, therefore potentially compromising male reproductive health. Although the effects of EDC are likely induced via multiple genomic-based pathways, their non-genomic effects may also be relevant. Furthermore, spermatozoa are transcriptionally inactive cells that can come in direct contact with EDCs in reproductive fluids and secretions and are therefore a good model to address non-genomic effects. This review thus focuses on the non-genomic effects of several important EDCs relevant to mammalian exposure. Notably, EDCs were found to interfere with pre-existing pathways inducing a panoply of deleterious effects to sperm function that included altered intracellular Ca(2) (+) oscillations, induction of oxidative stress, mitochondrial dysfunction, increased DNA damage and decreased sperm motility and viability, among others, potentially jeopardizing male fertility. Although many studies have used non-environmentally relevant concentrations of only one compound for mechanistic studies, it is important to remember that mammals are not exposed to one, but rather to a multitude of environmental EDCs, and synergistic effects may occur. Furthermore, some effects have been detected with single compounds at environmentally relevant concentrations.

  11. Hemoglobin parameters from diffuse reflectance data

    PubMed Central

    Mourant, Judith R.; Marina, Oana C.; Hebert, Tiffany M.; Kaur, Gurpreet; Smith, Harriet O.

    2014-01-01

    Abstract. Tissue vasculature is altered when cancer develops. Consequently, noninvasive methods of monitoring blood vessel size, density, and oxygenation would be valuable. Simple spectroscopy employing fiber optic probes to measure backscattering can potentially determine hemoglobin parameters. However, heterogeneity of blood distribution, the dependence of the tissue-volume-sampled on scattering and absorption, and the potential compression of tissue all hinder the accurate determination of hemoglobin parameters. We address each of these issues. A simple derivation of a correction factor for the absorption coefficient, μa, is presented. This correction factor depends not only on the vessel size, as others have shown, but also on the density of blood vessels. Monte Carlo simulations were used to determine the dependence of an effective pathlength of light through tissue which is parameterized as a ninth-order polynomial function of μa. The hemoglobin bands of backscattering spectra of cervical tissue are fit using these expressions to obtain effective blood vessel size and density, tissue hemoglobin concentration, and oxygenation. Hemoglobin concentration and vessel density were found to depend on the pressure applied during in vivo acquisition of the spectra. It is also shown that determined vessel size depends on the blood hemoglobin concentration used. PMID:24671524

  12. AMINO ACIDS AND HEMOGLOBIN PRODUCTION IN ANEMIA

    PubMed Central

    Whipple, G. H.; Robscheit-Robbins, F. S.

    1940-01-01

    Certain individual amino acids when given to standard anemic dogs cause an increase in new hemoglobin production. Occasional negative experiments are recorded. Glycine, glutamic acid, aspartic acid, cystine, histidine, phenylalanine, and proline when given in 1 gm. doses daily for 2 weeks, increase hemoglobin output on the average 23 to 25 gm. above the control level. This reaction amounts to 25 to 30 per cent of the new hemoglobin produced by the feeding of 300 gm. liver daily for 2 weeks—a standard liver test. Alanine, valine, isoleucine, and arginine in the same dosage increase the hemoglobin output on the average 13 to 17 gm. per 2 weeks over the control level. Leucine, methionine, lysine, tryptophane, and tyrosine fall in a middle group with hemoglobin output of about 20 gm. Isovaleric acid, β-hydroxybutyric acid, glutaric acid, and asparagine have shown positive effects and the butyrate is unusually potent for hemoglobin production (Table 2). The isomeric and dl-synthetic forms of the amino acids are as effectively utilized in this reaction as are the natural forms. PMID:19870982

  13. Effect of Smoking During Radiotherapy, Respiratory Insufficiency, and Hemoglobin Levels on Outcome in Patients Irradiated for Non-Small-Cell Lung Cancer

    SciTech Connect

    Rades, Dirk Setter, Cornelia M.S.; Schild, Steven E.; Dunst, Juergen

    2008-07-15

    Purpose: To investigate the effect of smoking during radiotherapy (RT), respiratory insufficiency before RT, hemoglobin levels during RT, and additional factors on overall survival, locoregional control (LRC), and metastasis-free survival in non-small-cell lung cancer patients. Methods and Materials: The following factors were investigated in 181 patients who underwent RT for non-small-cell lung cancer: age, gender, Karnofsky performance score, histologic type, grade, T/N stage, American Joint Committee on Cancer stage, surgery, chemotherapy, respiratory insufficiency before RT, pack-years, smoking during RT, and hemoglobin levels during RT. Additionally, in the 129 patients who did not undergo surgery, the effect of the equivalent dose in 2-Gy fractions (EQD2) (<60 Gy vs. 60 Gy vs. >60 Gy) on outcome was investigated. Results: On multivariate analysis, improved overall survival was associated with a lower T stage (p = 0.004), lower N stage (p 0.040), surgery (p = 0.010), and no respiratory insufficiency (p = 0.023). A Karnofsky performance score >70 achieved borderline significance (p = 0.056). Improved LRC was associated with a lower T stage (p = 0.007) and no smoking during RT (p = 0.029). Improved metastasis-free survival was associated with lower T stage (p < 0.001) and lower N stage (p < 0.001). In those patients who did not undergo surgery, an EQD2 of {>=}60 Gy was associated with a better outcome than an EQD2 of <60 Gy. Furthermore, an EQD2 >60 Gy resulted in better LRC than did an EQD2 of {<=}60 Gy. Conclusions: Smoking during RT had a significant effect on LRC, but we did not find that hemoglobin levels or respiratory insufficiency significantly affected LRC or metastasis-free survival in our patient population. Furthermore, our data suggest a dose-effect relationship in those patients who did not undergo surgery.

  14. Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells.

    PubMed

    Yang, Tianle; Chan, Noel Yan-Ki; Sauve, Anthony A

    2007-12-27

    A new two-step methodology achieves stereoselective synthesis of beta-nicotinamide riboside and a series of related amide, ester, and acid nucleosides. Compounds were prepared through a triacetylated-nicotinate ester nucleoside, via coupling of either ethylnicotinate or phenylnicotinate with 1,2,3,5-tetra-O-acetyl-beta-D-ribofuranose. Nicotinamide riboside, nicotinic acid riboside, O-ethylnicotinate riboside, O-methylnicotinate riboside, and several N-alkyl derivatives increased NAD+ concentrations from 1.2-2.7-fold in several mammalian cell lines. These findings establish bioavailability and potent effects of these nucleosides in stimulating the increase of NAD+ concentrations in mammalian cells. PMID:18052316

  15. Subunit dissociations in natural and recombinant hemoglobins.

    PubMed

    Manning, L R; Jenkins, W T; Hess, J R; Vandegriff, K; Winslow, R M; Manning, J M

    1996-04-01

    A precise and rapid procedure employing gel filtration on Superose-12 to measure the tetramer-dimer dissociation constants of some natural and recombinant hemoglobins in the oxy conformation is described. Natural sickle hemoglobin was chosen to verify the validity of the results by comparing the values with those reported using an independent method not based on gel filtration. Recombinant sickle hemoglobin, as well as a sickle double mutant with a substitution at the Val-6(beta) receptor site, had approximately the same dissociation constant as natural sickle hemoglobin. Of the two recombinant hemoglobins with amino acid replacements in the alpha 1 beta 2 subunit interface, one was found to be extensively dissociated and the other completely dissociated. In addition, the absence of an effect of the allosteric regulators DPG and IHP on the dissociation constant was demonstrated. Thus, a tetramer dissociation constant can now be determined readily and used together with other criteria for characterization of hemoglobins and their interaction with small regulatory molecules. PMID:8845768

  16. Rice (Oryza) hemoglobins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a sin...

  17. Direct effect of carbon monoxide on hexobarbital metabolism in the isolated perfused liver in the absence of hemoglobin

    SciTech Connect

    Takano, T.; Motohashi, Y.; Miyazaki, Y.; Okeda, R.

    1985-01-01

    The interaction of carbon monoxide (CO) with cytochrome P-450 associated with hexobarbital metabolism was observed in hemoglobin-free perfused rat liver by using a scanning reflectance spectrophotometer. The evidence obtained showed that CO bound to the substrate complexed cytochrome P-450 and, at a CO/O2 ratio of over 0.1 in the perfusate, inhibited the hexobarbital metabolism estimated from the hexobarbital uptake, and oxygen consumption. Although the oxygen supply to the liver cell was one of the major limiting factors during CO hypoxia, CO binding to cytochrome P-450 significantly enhanced the suppression of hexobarbital oxidation caused by hypoxic hypoxia.

  18. The lack of consistent diaspirin cross-linked hemoglobin infusion blood pressure effects in the US and EU traumatic hemorrhagic shock clinical trials.

    PubMed

    Sloan, Edward P; Philbin, Nora B; Koenigsberg, Max D; Gao, Weihua

    2010-02-01

    Hemoglobin solutions have demonstrated a pressor effect that could adversely affect hemorrhagic shock patient resuscitation through accelerated hemorrhage, diminished perfusion, or inadequate resuscitation. Data from two parallel, multicenter traumatic hemorrhagic shock clinical trials in 17 US emergency departments and in 27 EU prehospital systems using diaspirin cross-linked hemoglobin (DCLHb), a hemoglobin-based resuscitation fluid. In the 219 patients, patients were 37 years old, 64% sustained blunt injury, 48% received DCLHb, and 36% expired. Although mean systolic blood pressure (SBP) and diastolic blood pressure values differed at 2 of the 10 measured time points, blood pressure (BP) curve analysis showed no SBP, diastolic blood pressure, or MAP differences based on treatment. Although SBP values 160 and 120 mmHg or greater were 2.2x and 2.6x more frequently noted in survivors, they were not more common with DCLHb use or in DCLHb patients who expired in US study nonsurvivors or in any EU study patients. Systolic blood pressure values 160 and 120 mmHg or greater were 2.8x and 1.3x more frequently noted in DCLHb survivors as compared with normal saline survivors. Only 3% of the BP variation noted could be attributed to DCLHb use, and as expected, injury severity and baseline physiologic status were stronger predictors. In the United States alone, treatment group was not correlated by regression with BP at any time point. Neither mean BP readings nor elevated BP readings were correlated with DCLHb treatment of traumatic hemorrhagic shock patients. As such, no clinically demonstrable DCLHb pressor effect could be directly related to the adverse mortality outcome observed in the US study. PMID:20092028

  19. Rice ( Oryza) hemoglobins

    PubMed Central

    Arredondo-Peter, Raúl; Moran, Jose F.; Sarath, Gautam

    2014-01-01

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O 2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O 2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O 2-transport, O 2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs. PMID:25653837

  20. Rice ( Oryza) hemoglobins.

    PubMed

    Arredondo-Peter, Raúl; Moran, Jose F; Sarath, Gautam

    2014-01-01

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O 2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O 2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O 2-transport, O 2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs.

  1. Long-Term Single and Joint Effects of Excessive Daytime Napping on the HOMA-IR Index and Glycosylated Hemoglobin

    PubMed Central

    Li, Xue; Pang, Xiuyu; Zhang, Qiao; Qu, Qiannuo; Hou, Zhigang; Liu, Zhipeng; Lv, Lin; Na, Guanqiong; Zhang, Wei; Sun, Changhao; Li, Ying

    2016-01-01

    Abstract This prospective cohort study was conducted to assess the duration of daytime napping and its effect combined with night sleep deprivation on the risk of developing high HOMA-IR (homeostasis model assessment of insulin resistance) index and disadvantageous changes in glycosylated hemoglobin (HbA1c) levels. A total of 5845 diabetes-free subjects (2736 women and 3109 men), 30 to 65 years of age, were targeted for this cohort study since 2008. Multiple adjusted Cox regression models were performed to evaluate the single and joint effects of daytime napping on the risk of an elevated HbA1c level and high HOMA-IR index. After an average of 4.5 years of follow-up, >30 minutes of daytime napping was significantly associated with an increased risk of an elevated HbA1c level (>6.5%) in men and women (all P trend < 0.05). Hazard ratios (HRs) for an HbA1c level between 5.7% and 6.4% were also significant in the entire cohort and women, but nonsignificant in men. HRs (95% confidence interval, CIs) for the high HOMA-IR index in the entire cohort, men, and women were 1.33 (1.10–1.62), 1.46 (1.08–1.98), and 1.47 (1.12–1.91), respectively. The combination of sleep deprivation with no naps or >30 minutes napping and the combination of no sleep deprivation with >30 minutes daytime napping were all associated with an HbA1c level >6.5% (HR = 2.08, 95% CI = 1.24–3.51; HR = 4.00, 95% CI = 2.03–7.90; and HR = 2.05, 95% CI = 1.29–3.27, respectively). No sleep deprivation combined with >30 minutes daytime napping correlated with a high risk of an HbA1c level between 5.7% and 6.4% and high HOMA-IR index (HR = 2.12, 95% CI = 1.48–3.02; and HR = 1.35, 95% CI = 1.10–1.65, respectively). Daytime napping >30 minutes was associated with a high risk of an elevated HbA1c level and high HOMA-IR index. No sleep deprivation combined with napping >30 minutes carries a risk of abnormal glucose metabolism. Sleep deprivation combined with

  2. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  3. The antioxidant butylated hydroxyanisole potentiates the toxic effects of propylparaben in cultured mammalian cells.

    PubMed

    Pérez Martín, José Manuel; Fernández Freire, Paloma; Daimiel, Lidia; Martínez-Botas, Javier; Sánchez, Covadonga Martín; Lasunción, Miguel Ángel; Peropadre, Ana; Hazen, María José

    2014-10-01

    Butylated hydroxyanisole and propylparaben are phenolic preservatives commonly used in food, pharmaceutical and personal care products. Both chemicals have been subjected to extensive toxicological studies, due to the growing concern regarding their possible impacts on environmental and human health. However, the cytotoxicity and underlying mechanisms of co-exposure to these compounds have not been explored. In this study, a set of relevant cytotoxicity endpoints including cell viability and proliferation, oxidative stress, DNA damage and gene expression changes were analyzed to assess whether the antioxidant butylated hydroxyanisole could prevent the pro-oxidant effects caused by propylparaben in Vero cells. We demonstrated that binary mixtures of both chemicals induce greater cytotoxic effects than those reported after single exposureto each compound. Simultaneous treatment with butylated hydroxyanisole and propylparaben caused G0/G1 cell cycle arrest as a result of enhanced generation of oxidative stress and DNA double strand breaks. DNA microarray analysis revealed that a cross-talk between transforming growth factor beta (TGFβ) and ataxia-telangiectasia mutated kinase (ATM) pathways regulates the response of Vero cells to the tested compounds in binary mixture. Our findings indicate that butylated hydroxyanisole potentiates the pro-oxidant effects of propylparaben in cultured mammalian cells and provide useful information for their safety assessment.

  4. Effects of lead shot ingestion on delta-aminolevulinic acid dehydratase activity, hemoglobin concentration, and serum chemistry in bald eagles

    USGS Publications Warehouse

    Hoffman, D.J.; Pattee, O.H.; Wiemeyer, Stanley N.; Mulhern, B.

    1981-01-01

    Lead shot ingestion by bald eagles (Haliaeetus leucocephalus) is considered to be widespread and has been implicated in the death of eagles in nature. It was recently demonstrated under experimental conditions that ingestion of as few as 10 lead shot resulted in death within 12 to 20 days. In the present study hematological responses to lead toxicity including red blood cell ALAD activity, hemoglobin concentration and 23 different blood serum chemistries were examined in five captive bald eagles that were unsuitable for rehabilitation and release. Eagles were dosed by force-feeding with 10 lead shot; they were redosed if regurgitation occurred. Red blood cell ALAD activity was inhibited by nearly 80% within 24 hours when mean blood lead concentration had increased to 0.8 parts per million (ppm). By the end of 1 week there was a significant decrease (20-25%) in hematocrit and hemoglobin, and the mean blood lead concentration was over 3 ppm. Within as little as 1-2 weeks after dosing, significant elevations in serum creatinine and serum alanine aminotransferase occurred, as well as a significant decrease in the ratio of serum aspartic aminotransferase to serum alanine aminotransferase. The mean blood lead concentration was over 5 ppm by the end of 2 weeks. These changes in serum chemistry may be indicative of kidney and liver alterations.

  5. Effects of crosslinking on the thermal stability of hemoglobins. II. The stabilization of met-, cyanomet-, and carbonmonoxyhemoglobins A and S with bis(3,5-dibromosalicyl) fumarate.

    PubMed

    Yang, T; Olsen, K W

    1988-03-01

    Hemoglobins A and S were crosslinked between Lys 82 beta 1 and Lys 82 beta 2 using bis (3,5-dibromosalicyl) fumarate (J. A. Walder et al. (1979) Biochemistry 18, 4265). Thermal denaturation experiments were used to compare the stabilities of the met, cyanomet, and carbonmonoxy forms of these crosslinked hemoglobins to the corresponding uncrosslinked proteins. Uncrosslinked carbonmonoxy- and cyanomethemoglobins had transition temperatures about 11 degrees C higher than the corresponding met samples. The increase in denaturation temperature (Tm) due to crosslinking was 15 degrees C for the methemoglobins, 10 degrees C for the cyanomethemoglobins, and 4 degrees C for the carbonmonoxy ones. There was no significant difference in stability between the met and carbonmonoxy crosslinked proteins. In order of increasing stability the samples were: met Hb S less than met Hb A less than CO Hb S less than CO Hb A = CN-met Hb A less than met XL-Hb S = CO XL-Hb S less than met XL-Hb A = CO XL-Hb A less than CN-met XL-Hb A. The slight decrease in the stability of Hb S (beta 6 Glu----Val) compared to Hb A can be explained by the replacement of an external ionic group by a hydrophobic residue in Hb S. In mixtures of crosslinked and normal Hb A, the Tm of the uncrosslinked material was slightly increased by the presence of the more stable crosslinked hemoglobin. The effects of both crosslinking and cyanide or carbon monoxide binding can be explained by Le Chatelier's principle since both would favor the native form of the protein. PMID:3355152

  6. Effect of the hemoglobin-based oxygen carrier HBOC-201 on laboratory instrumentation: cobas integra, chiron blood gas analyzer 840, Sysmex SE-9000 and BCT.

    PubMed

    Wolthuis, A; Peek, D; Scholten, R; Moreira, P; Gawryl, M; Clark, T; Westerhuis, L

    1999-01-01

    As part of a clinical trial, we evaluated the effects of the hemoglobin-based oxygen-carrier (HBOC) HBOC-201 (an ultrapurified, stroma-free bovine hemoglobin product, Biopure, Cambridge, MA, USA) on our routine clinical chemistry analyzer (Cobas Integra, F. Hoffmann-La Roche Ltd, Basel, Switzerland ), blood gas analyzer (Chiron 840, Chiron Diagnostics Corporation, East Walpole, MA, USA), routine hemocytometry analyzer (Sysmex SE-9000, TOA Medical Electronics Co Ltd., Kobe, Japan), hemostasis analyzer (BCT, Dade-Behring, Marburg, Germany) and bloodbanking system (Dia-Med-ID Micro Typing System, DiaMed AG, Cressier, Switzerland). The maximum tested concentration of HBOC-201 was 65 g/l. Of the 27 routine clinical chemistry tests challenged with HBOC-201, bilirubin-direct, creatine kinase MB-fraction (CK-MB), creatine kinase (CK), gamma-glutamyltransferase (GGT), magnesium and uric acid were influenced by even low concentrations of HBOC-201. These tests were excluded from use on the plasma of patients treated with HBOC-201. Since the non-availability of the cardiac marker CK-MB may lead to problems in acute situations, we introduced the qualitative Trop T-test (Boehringer Mannheim), which was not influenced. The applicability of another nine tests was limited by the concentration of the HBOC-201 in the patients' plasma. No interference of HBOC-201 in routine hemocytometry, hemostasis-analysis and red-blood cell agglutination detection (blood-bank tests) was observed. Although immediate patient-care was not compromised, routine use of hemoglobin-based oxygen carriers will have a strong impact on logistical management. The development of robust laboratory tests free from the interference of the pigmented oxygen carriers should therefore precede its introduction into routine transfusion medicine.

  7. Hemoglobin interacting proteins and implications of spectrin hemoglobin interaction.

    PubMed

    Basu, Avik; Chakrabarti, Abhijit

    2015-10-14

    In this report we have analyzed interacting partners of hemoglobin inside erythrocyte and sought possible implications of hemoglobin-spectrin interaction. Our list of identified cytosolic hemoglobin interacting proteins includes redox regulators like peroxiredoxin-2, Cu-Zn superoxide dismutase, catalase, aldehyde dehydrogenase-1, flavin reductase and chaperones like HSP70, α-hemoglobin stabilizing protein. Others include metabolic enzymes like carbonic anhydrase-1, selenium binding protein-1, purine nucleoside phosphorylase and nucleoside diphosphate kinase. Additionally, various membrane proteins like α and β spectrin, ankyrin, band3, protein4.1, actin and glyceraldehyde 3 phosphate dehydrogenase have been shown to interact with hemoglobin. Our result indicates that major membrane skeleton protein spectrin, that also has a chaperone like activity, helps to fold the unstable alpha-globin chains in vitro. Taken together our results could provide insight into a protein network evolved around hemoglobin molecule inside erythrocyte that may add a new perspective in understanding the hemoglobin function and homeostasis.

  8. Plasticizer endocrine disruption: Highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species.

    PubMed

    Mathieu-Denoncourt, Justine; Wallace, Sarah J; de Solla, Shane R; Langlois, Valerie S

    2015-08-01

    Due to their versatility, robustness, and low production costs, plastics are used in a wide variety of applications. Plasticizers are mixed with polymers to increase flexibility of plastics. However, plasticizers are not covalently bound to plastics, and thus leach from products into the environment. Several studies have reported that two common plasticizers, bisphenol A (BPA) and phthalates, induce adverse health effects in vertebrates; however few studies have addressed their toxicity to non-mammalian species. The aim of this review is to compare the effects of plasticizers in animals, with a focus on aquatic species. In summary, we identified three main chains of events that occur in animals exposed to BPA and phthalates. Firstly, plasticizers affect development by altering both the thyroid hormone and growth hormone axes. Secondly, these chemicals interfere with reproduction by decreasing cholesterol transport through the mitochondrial membrane, leading to reduced steroidogenesis. Lastly, exposure to plasticizers leads to the activation of peroxisome proliferator-activated receptors, the increase of fatty acid oxidation, and the reduction in the ability to cope with the augmented oxidative stress leading to reproductive organ malformations, reproductive defects, and decreased fertility.

  9. Antimicrobial properties of hemoglobin.

    PubMed

    Sheshadri, Preethi; Abraham, Jayanthi

    2012-12-01

    Hemoglobin consists of a heme containing component and a globin unit. It exists as a tetramer with 2 α subunits and 2 β subunits in adults and with 2 α subunits and 2 γ chains in infants. On proteolytic cleavage, hemoglobin breaks down to produce many biologically active compounds, among which are hemocidins, those which exhibit antimicrobial property. The generation of these peptides does not depend on the blood group, Rhesus factor, age and sex of the healthy donors. The microbicidal activity has been observed against a variety of gram positive and Gram-negative bacteria, and against filamentous fungi, yeast and even certain parasites. The discovery of hemocidins opens a new field for research into the details of the peptides acting as second line of defence in boosting the innate immune system of the organisms.

  10. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells.

    PubMed

    Seagroves, T N; Ryan, H E; Lu, H; Wouters, B G; Knapp, M; Thibault, P; Laderoute, K; Johnson, R S

    2001-05-01

    The ability to respond to differential levels of oxygen is important to all respiring cells. The response to oxygen deficiency, or hypoxia, takes many forms and ranges from systemic adaptations to those that are cell autonomous. Perhaps the most ancient of the cell-autonomous adaptations to hypoxia is a metabolic one: the Pasteur effect, which includes decreased oxidative phosphorylation and an increase in anaerobic fermentation. Because anaerobic fermentation produces far less ATP than oxidative phosphorylation per molecule of glucose, increased activity of the glycolytic pathway is necessary to maintain free ATP levels in the hypoxic cell. Here, we present genetic and biochemical evidence that, in mammalian cells, this metabolic switch is regulated by the transcription factor HIF-1. As a result, cells lacking HIF-1alpha exhibit decreased growth rates during hypoxia, as well as decreased levels of lactic acid production and decreased acidosis. We show that this decrease in glycolytic capacity results in dramatically lowered free ATP levels in HIF-1alpha-deficient hypoxic cells. Thus, HIF-1 activation is an essential control element of the metabolic state during hypoxia; this requirement has important implications for the regulation of cell growth during development, angiogenesis, and vascular injury.

  11. Direct determination of protonation states of histidine residues in a 2 A neutron structure of deoxy-human normal adult hemoglobin and implications for the Bohr effect.

    PubMed

    Kovalevsky, Andrey Y; Chatake, Toshiyuki; Shibayama, Naoya; Park, Sam-Yong; Ishikawa, Takuya; Mustyakimov, Marat; Fisher, Zoe; Langan, Paul; Morimoto, Yukio

    2010-04-30

    We have investigated the protonation states of histidine residues (potential Bohr groups) in the deoxy form (T state) of human hemoglobin by direct determination of hydrogen (deuterium) positions with the neutron protein crystallography technique. The reversible binding of protons is key to the allosteric regulation of human hemoglobin. The protonation states of 35 of the 38 His residues were directly determined from neutron scattering omit maps, with 3 of the remaining residues being disordered. Protonation states of 5 equivalent His residues--alpha His20, alpha His50, alpha His89, beta His143, and beta His146--differ between the symmetry-related globin subunits. The distal His residues, alpha His58 and beta His63, are protonated in the alpha 1 beta 1 heterodimer and are neutral in alpha 2 beta 2. Buried residue alpha His103 is found to be protonated in both subunits. These distal and buried residues have the potential to act as Bohr groups. The observed protonation states of His residues are compared to changes in their pK(a) values during the transition from the T to the R state and the results provide some new insights into our understanding of the molecular mechanism of the Bohr effect.

  12. Effects of the non-commensal Methylococcus capsulatus Bath on mammalian immune cells.

    PubMed

    Christoffersen, Trine Eker; Olsen Hult, Lene Therese; Solberg, Henriette; Bakke, Anne; Kuczkowska, Katarzyna; Huseby, Eirin; Jacobsen, Morten; Lea, Tor; Kleiveland, Charlotte Ramstad

    2015-08-01

    Dietary inclusions of a bacterial meal consisting mainly of the non-commensal, methanotrophic bacteria Methylococcus capsulatus Bath have been shown to ameliorate symptoms of intestinal inflammation in different animal models. In order to investigate the molecular mechanisms causing these effects, we have studied the influence of this strain on different immune cells central for the regulation of inflammatory responses. Effects were compared to those induced by the closely related strain M. capsulatus Texas and the well-described probiotic strain Escherichia coli Nissle 1917. M. capsulatus Bath induced macrophage polarization toward a pro-inflammatory phenotype, but not to the extent observed after exposure to E. coli Nissle 1917. Likewise, dose-dependent abilities to activate NF-κB transcription in U937 cells were observed, with E. coli Nissle 1917 being most potent. High levels of CD141 on human primary monocyte-derived dendritic cells (moDCs) were only detected after exposure to E. coli Nissle 1917, which collectively indicate a superior capacity to induce Th1 cell responses for this strain. On the other hand, the M. capsulatus strains were more potent in increasing the expression of the maturation markers CD80, CD83 and CD86 than E. coli Nissle 1917. M. capsulatus Bath induced the highest levels of IL-6, IL-10 and IL-12 secretion from dendritic cells, suggesting that this strain generally the post potent inducer of cytokine secretion. These results show that M. capsulatus Bath exhibit immunogenic properties in mammalian in vitro systems which diverge from that of E. coli Nissle 1917. This may provide clues to how M. capsulatus Bath influence the adaptive immune system in vivo. However, further in vivo experiments are required for a complete understanding of how this strain ameliorates intestinal inflammation in animal models. PMID:25771177

  13. Different sensitivities of cultured mammalian cells towards aphidicolin-enhanced DNA effects in the comet assay.

    PubMed

    Speit, Günter; Schütz, Petra; Bausinger, Julia

    2016-06-01

    The comet assay in combination with the polymerase inhibitor aphidicolin (APC) has been used to measure DNA excision repair activity, DNA repair kinetics and individual DNA repair capacity. Since APC can enhance genotoxic effects of mutagens measured by the comet assay, this approach has been proposed for increasing the sensitivity of the comet assay in human biomonitoring. The APC-modified comet assay has mainly been performed with human blood and it was shown that it not only enhances the detection of DNA damage repaired by nucleotide excision repair (NER) but also damage typically repaired by base excision repair (BER). Recently, we reported that in contrast to blood leukocytes, A549 cells (a human lung adenocarcinoma cell line) seem to be insensitive towards the repair-inhibiting action of APC. To further elucidate the general usefulness of the APC-modified comet assay for studying repair in cultured mammalian cells, we comparatively investigated further cell lines (HeLa, TK6, V79). DNA damage was induced by BPDE (benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide) and MMS (methyl methanesulfonate) in the absence and presence of APC (3 or 15μM). APC was either added for 2h together with the mutagen or cells were pre-incubated for 30min with APC before the mutagen was added. The results indicate that the cell lines tested differ fundamentally with regard to their sensitivity and specificity towards the repair-inhibiting effect of APC. The actual cause for these differences is still unclear but potential molecular explanations are discussed. Irrespective of the underlying mechanism(s), our study revealed practical limitations of the use of the APC-modified comet assay.

  14. Properties of Hemoglobin Solutions in Red Cells

    PubMed Central

    Gary-Bobo, C. M.; Solomon, A. K.

    1968-01-01

    The present studies are concerned with a detailed examination of the apparent anomalous osmotic behavior of human red cells. Red cell water has been shown to behave simultaneously as solvent water for nonelectrolytes and nonsolvent water, in part, for electrolytes. The nonsolvent properties are based upon assumptions inherent in the conventional van't Hoff equation. However, calculations according to the van't Hoff equation give osmotic volumes considerably in excess of total cell water when the pH is lowered beyond the isoelectric point for hemoglobin; hence the van't Hoff equation is inapplicable for the measurement of the solvent properties of the red cell. Furthermore, in vitro measurements of osmotic and other properties of 3.7 millimolal solutions of hemoglobin have failed to reveal the presence of any salt exclusion. A new hypothesis has been developed from thermodynamic principles alone, which predicts that, at constant pH, the net charge on the hemoglobin molecule decreases with increased hemoglobin concentration. The existence of such cooperative interaction may be inferred from the effect of pH on the changes in hemoglobin net charge as the spacing between the molecules decreases. The resultant movement of counterions across the cell membrane causes the apparent anomalous osmotic behavior. Quantitative agreement has been found between the anion shift predicted by the equation and that observed in response to osmotic gradients. The proposed mechanism appears to be operative in a variety of tissues and could provide an electrical transducer for osmotic signals. PMID:5688085

  15. Effects of Simulated Weightlessness on Mammalian Development. Part 2: Meiotic Maturation of Mouse Oocytes During Clinostat Rotation

    NASA Technical Reports Server (NTRS)

    Wolgemuth, D. J.; Grills, G. S.

    1985-01-01

    In order to understand the role of gravity in basic cellular processes that are important during development, the effects of a simulated microgravity environment on mammalian gametes and early embryos cultured in vitro are examined. A microgravity environment is simulated by use of a clinostat, which essentially reorients cells relative to the gravity vector. Initial studies have focused on assessing the effects of clinostat rotation on the meiotic progression of mouse oocytes. Modifications centered on providing the unique in vitro culture of the clinostat requirements of mammalian oocytes and embryos: 37 C temperature, constant humidity, and a 5% CO2 in air environment. The oocytes are observed under the dissecting microscope for polar body formation and gross morphological appearance. They are then processed for cytogenetic analysis.

  16. Effects of mammalian herbivore declines on plant communities: observations and experiments in an African savanna

    PubMed Central

    Young, Hillary S; McCauley, Douglas J; Helgen, Kristofer M; Goheen, Jacob R; Otárola-Castillo, Erik; Palmer, Todd M; Pringle, Robert M; Young, Truman P; Dirzo, Rodolfo

    2013-01-01

    these observed differences is the compensatory effect of livestock associated with the depression or extirpation of wildlife. 5. Synthesis. Our results emphasize the importance of abiotic environmental heterogeneity in modulating the effects of mammalian herbivory on plant communities and the importance of such covariation in understanding effects of wild herbivore declines. They also suggest caution when extrapolating results from exclosure experiments to predict the consequences of defaunation as it proceeds in the Anthropocene. PMID:24014216

  17. Genotoxic effects of fly ash in bacteria, mammalian cells and animals

    SciTech Connect

    Morris, D.L.; Connor, T.H.; Harper, J.B.; Ward, J.B. Jr.; Legator, M.S. )

    1989-01-01

    The increasing use of fossil fuels has raised concerns about possible deleterious health effects of the final combustion product, fly ash. Seven ash samples from coal sources obtained from Battelle Columbus Laboratories were evaluated in the Salmonella/mammalian microsome mutagenicity assay to determine their mutagenic potential. While dimethyl sulfoxide extracts of five samples showed no mutagenicity, sample 102 caused an increase in the number of revertants per plate over controls in TA100 and TA98 with activation by liver homogenate (2-fold and 2.4-fold, respectively), and without (2-fold and 6-fold). This ash was thus evaluated in whole animal studies. Animals treated by inhalation or oral gavage were assayed for the presence of mutagens in the urine, micronuclei in polychromatic erythrocytes, and chromosomal aberrations in metaphase bone marrow cells. Those animals treated by inhalation were also examined for local damage in the lung. The assay for mutagens in the urine was negative as shown by the Ames assay with TA100 and TA98 and there was no increase in micronuclei or in metaphase aberrations. Histological sections from the animals treated by inhalation did not show the presence of particles, macrophage infiltrations and generalized lung damage. We tested the same fly ash with an in vitro cell transformation assay with the cell line Balb/c 3T3 subclone A31-1-13. Although there was not an increase in Type III foci, there was a dose-dependent increase of Type II foci in the treated cells over the controls. In one assay, there was approximately a 14-fold increase in Type II foci in the highest dose (2 mg/ml) compared to the solvent control. One other ash sample induced cell transformation without being markedly cytotoxic, while a third sample was highly toxic but did not induce transformation.

  18. Differential effects of caffeine and perchlorate on excitation-contraction coupling in mammalian skeletal muscle.

    PubMed

    Csernoch, L; Szentesi, P; Kovács, L

    1999-10-01

    1. Enzymatically dissociated single muscle fibres of the rat were studied under voltage clamp conditions in a double Vaseline gap experimental chamber. Intramembrane charge movement and changes in intracellular calcium concentration ([Ca2+]i) were measured and the rate of calcium release (Rrel) from the sarcoplasmic reticulum (SR) was calculated. This enabled the determination of SR permeability and thus the estimation of the transfer function between intramembrane charge movement and SR permeability. 2. Perchlorate (3 mM) shifted the membrane potential dependence of intramembrane charge movement to more negative voltages without any effect on the steepness or on the maximal available charge. The drug increased SR permeability at every membrane potential but did not alter the peak-to-steady level ratio. It also increased the slope of the transfer function, indicating a more efficient coupling between the voltage sensors and the ryanodine receptors. 3. Caffeine (1 mM), on the other hand, increased SR permeability without altering the voltage dependence of intramembrane charge movement. It neither prolonged the depolarization-induced increase in [Ca2+]i at short pulse durations nor altered the time to peak of Rrel. The augmentation of SR permeability by the drug was more pronounced during the peak caffeine response than during its steady level. This was manifested in a leftward shift of the transfer function rather than an increase in its slope. 4. These observations indicate that perchlorate and caffeine alter the coupling between the voltage sensors and SR calcium release channels in mammalian skeletal muscle. They do not, however, share a common mechanism for enhancing the depolarization-induced release of calcium from the SR.

  19. Cytotoxic and clastogenic effects of soluble chromium compounds on mammalian cell cultures.

    PubMed Central

    Levis, A. G.; Majone, F.

    1979-01-01

    The inhibition of cell growth, the reduction of cell survival and the induction of chromosome aberrations and of sister chromatid exchange (SCE) have been determined in cultured hamster cell lines (BHK and CHO) treated with 11 water-soluble compounds of hexavalent and trivalent chromium. All Cr6+ compounds inhibit growth of BHK cells and reduce survival of CHO cells to levels comparable to those obtained only after exposure to 100--1000 times higher Cr3+ concentrations. The cytotoxicity curves obtained with the different Cr6+ compounds are almost overlapping, whereas marked differences of activity are noticeable among Cr3+ compounds. Giant cells are obtained after exposure to Cr6+ and Cr3+ compounds, as shown by the rise of DNA and RNA per cell, and are due to the blockage of the cell cycle without sudden inhibition of macromolecular syntheses. Both Cr6+ and Cr3+ compounds are able to induce chromosome aberrations, whereas Cr3+ is absolutely incapable of inducing SCE, only Cr6+ being active. The frequency of chromosome aberrations is increased about 10-fold after exposure to 1.0 micrograms/ml Cr6+, whereas it is only doubled after treatment with up to 150 micrograms/ml Cr3+. On the other hand, in spite of the sensitivity of CHO cells to the induction of SCE by mitomycin C, the frequency of SCE hardly doubles after exposure to Cr6+ compounds. The present data confirm that Cr6+ compounds are characterized by a marked cytotoxicity and clastogenic action on mammalian cell cultures and show that Cr3+ compounds, though cytotoxic only at extremely high concentrations and not increasing the frequency of SCE, are not completely without cytogenetic effect, as they are able to induce chromosome aberrations. PMID:497104

  20. Inhibitory Effects of Lipophilic Acids and Related Compounds on Bacteria and Mammalian Cells

    PubMed Central

    Sheu, C. W.; Salomon, D.; Simmons, J. L.; Sreevalsan, T.; Freese, E.

    1975-01-01

    The inhibitory effect of lipophilic acids, antimicrobial food additives, and analgesics-antipyretics was examined at concentrations from 0.1 to 100 mM in bacteria (Bacillus subtilis and Escherichia coli) and mammalian cells (HeLa, human fibroblasts, and mouse neuroblastoma cells). Most compounds inhibit the growth of HeLa cells about as efficiently as that of B. subtilis. However, butyrate and propionate, as well as acetaminophen, antipyrene, phenacetin, and salicylamide, inhibit HeLa at millimolar concentrations whereas, at least 10 times higher concentrations are needed to inhibit B. subtilis. The concentrations needed to inhibit growth by 50% decrease with increasing octanol-water partition coefficients of the compound. Growth of E. coli is inhibited similar to that of B. subtilis by all compounds except butylbenzoate, decanoate, and linoleate which cannot penetrate the lipopolysaccharide layer. All growth inhibitors inhibit amino acid uptake into bacteria and their vesicles, and oxygen consumption in bacteria. In HeLa cells or human fibroblasts, neither amino acid uptake nor adenine 5′-triphosphate synthesis are inhibited by fatty acids at concentrations that completely inhibit growth. Short chain fatty acids (propionate, butyrate, and pentanoate) induce in HeLa the formation of cell processes. In neuroblastoma cells, grown in the presence of 10% fetal calf serum, butyrate also induces such processes which slowly continue to grow in length for at least 7 days; these processes differ in speed of formation, width, and cycloheximide susceptibility from the thin processes produced by serum deprivation alone. Images PMID:1137388

  1. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  2. Disorders of Human Hemoglobin

    NASA Astrophysics Data System (ADS)

    Bank, Arthur; Mears, J. Gregory; Ramirez, Francesco

    1980-02-01

    Studies of the human hemoglobin system have provided new insights into the regulation of expression of a group of linked human genes, the γ -δ -β globin gene complex in man. In particular, the thalassemia syndromes and related disorders of man are inherited anemias that provide mutations for the study of the regulation of globin gene expression. New methods, including restriction enzyme analysis and cloning of cellular DNA, have made it feasible to define more precisely the structure and organization of the globin genes in cellular DNA. Deletions of specific globin gene fragments have already been found in certain of these disorders and have been applied in prenatal diagnosis.

  3. Experimental recovery of intrinsic fluorescence and fluorophore concentration in the presence of hemoglobin: spectral effect of scattering and absorption on fluorescence

    NASA Astrophysics Data System (ADS)

    Du Le, Vinh Nguyen; Patterson, Michael S.; Farrell, Thomas J.; Hayward, Joseph E.; Fang, Qiyin

    2015-12-01

    The ability to recover the intrinsic fluorescence of biological fluorophores is crucial to accurately identify the fluorophores and quantify their concentrations in the media. Although some studies have successfully retrieved the fluorescence spectral shape of known fluorophores, the techniques usually came with heavy computation costs and did not apply for strongly absorptive media, and the intrinsic fluorescence intensity and fluorophore concentration were not recovered. In this communication, an experimental approach was presented to recover intrinsic fluorescence and concentration of fluorescein in the presence of hemoglobin (Hb). The results indicated that the method was efficient in recovering the intrinsic fluorescence peak and fluorophore concentration with an error of 3% and 10%, respectively. The results also suggested that chromophores with irregular absorption spectra (e.g., Hb) have more profound effects on fluorescence spectral shape than chromophores with monotonic absorption and scattering spectra (e.g., black India ink and polystyrene microspheres).

  4. Effect of alpha-tocopherol and alpha-tocopheryl quinone on the radiosensitivity of thiol-depleted mammalian cells

    SciTech Connect

    Hodgkiss, R.J.; Stratford, M.R.; Watfa, R.R.

    1989-05-01

    The effect of hypoxic cell radiosensitizers is increased when mammalian cells are depleted of endogenous glutathione by buthionine sulphoximine pre-treatment in vitro; a similar gain has not been observed in tumors in vivo despite evidence of glutathione depletion in vivo following buthionine sulphoximine treatment. However, concentrations of biological reducing agents other than glutathione were not measured in the in vivo experiments. Other reducing agents found in tumors include alpha-tocopherol, which reduces the sensitizing efficiency of nitro-aromatic sensitizers in thiol-depleted mammalian cells. These data suggest that the failure to observe large gains in misonidazole sensitizing efficiency in thiol-depleted tumors in vivo may be due, in part, to the presence of biological reducing agents such as alpha-tocopherol.

  5. Mammalian collection on Noah's Ark: the effects of beauty, brain and body size.

    PubMed

    Frynta, Daniel; Šimková, Olga; Lišková, Silvie; Landová, Eva

    2013-01-01

    The importance of today's zoological gardens as the so-called "Noah's Ark" grows as the natural habitat of many species quickly diminishes. Their potential to shelter a large amount of individuals from many species gives us the opportunity to reintroduce a species that disappeared in nature. However, the selection of animals to be kept in zoos worldwide is highly selective and depends on human decisions driven by both ecological criteria such as population size or vulnerability and audience-driven criteria such as aesthetic preferences. Thus we focused our study on the most commonly kept and bred animal class, the mammals, and we asked which factors affect various aspects of the mammalian collection of zoos. We analyzed the presence/absence, population size, and frequency per species of each of the 123 mammalian families kept in the worldwide zoo collection. Our aim was to explain these data using the human-perceived attractiveness of mammalian families, their body weight, relative brain size and species richness of the family. In agreement with various previous studies, we found that the body size and the attractiveness of mammals significantly affect all studied components of the mammalian collection of zoos. There is a higher probability of the large and attractive families to be kept. Once kept, these animals are presented in larger numbers in more zoos. On the contrary, the relative mean brain size only affects the primary selection whether to keep the family or not. It does not affect the zoo population size or the number of zoos that keep the family. PMID:23690985

  6. Mammalian collection on Noah's Ark: the effects of beauty, brain and body size.

    PubMed

    Frynta, Daniel; Šimková, Olga; Lišková, Silvie; Landová, Eva

    2013-01-01

    The importance of today's zoological gardens as the so-called "Noah's Ark" grows as the natural habitat of many species quickly diminishes. Their potential to shelter a large amount of individuals from many species gives us the opportunity to reintroduce a species that disappeared in nature. However, the selection of animals to be kept in zoos worldwide is highly selective and depends on human decisions driven by both ecological criteria such as population size or vulnerability and audience-driven criteria such as aesthetic preferences. Thus we focused our study on the most commonly kept and bred animal class, the mammals, and we asked which factors affect various aspects of the mammalian collection of zoos. We analyzed the presence/absence, population size, and frequency per species of each of the 123 mammalian families kept in the worldwide zoo collection. Our aim was to explain these data using the human-perceived attractiveness of mammalian families, their body weight, relative brain size and species richness of the family. In agreement with various previous studies, we found that the body size and the attractiveness of mammals significantly affect all studied components of the mammalian collection of zoos. There is a higher probability of the large and attractive families to be kept. Once kept, these animals are presented in larger numbers in more zoos. On the contrary, the relative mean brain size only affects the primary selection whether to keep the family or not. It does not affect the zoo population size or the number of zoos that keep the family.

  7. Mammalian Collection on Noah's Ark: The Effects of Beauty, Brain and Body Size

    PubMed Central

    Frynta, Daniel; Šimková, Olga; Lišková, Silvie; Landová, Eva

    2013-01-01

    The importance of today's zoological gardens as the so-called “Noah's Ark” grows as the natural habitat of many species quickly diminishes. Their potential to shelter a large amount of individuals from many species gives us the opportunity to reintroduce a species that disappeared in nature. However, the selection of animals to be kept in zoos worldwide is highly selective and depends on human decisions driven by both ecological criteria such as population size or vulnerability and audience-driven criteria such as aesthetic preferences. Thus we focused our study on the most commonly kept and bred animal class, the mammals, and we asked which factors affect various aspects of the mammalian collection of zoos. We analyzed the presence/absence, population size, and frequency per species of each of the 123 mammalian families kept in the worldwide zoo collection. Our aim was to explain these data using the human-perceived attractiveness of mammalian families, their body weight, relative brain size and species richness of the family. In agreement with various previous studies, we found that the body size and the attractiveness of mammals significantly affect all studied components of the mammalian collection of zoos. There is a higher probability of the large and attractive families to be kept. Once kept, these animals are presented in larger numbers in more zoos. On the contrary, the relative mean brain size only affects the primary selection whether to keep the family or not. It does not affect the zoo population size or the number of zoos that keep the family. PMID:23690985

  8. The effects of non-thermal plasmas on selected mammalian cells

    NASA Astrophysics Data System (ADS)

    Leduc, Mathieu

    Non-thermal plasma surface modifications have become indispensable processing steps in various industry and research sectors. Applications range from semiconductor processing to biotechnology and recently, plasma medicine. Non-thermal plasma sources have the advantage that a number of electron-driven chemical reactions can be produced while maintaining the gas (heavy species) temperature low, thus enabling the treatment of temperature-sensitive surfaces such as polymers, tissues and live cells. In the fields of biology and medicine, non-thermal plasmas have been primarily used for the deposition or modification of biocompatible polymers and for sterilization. Recently, non-thermal plasmas have been used to treat tissues and cells. A new field of research has emerged, Plasma Medicine, which studies the effects of non-thermal plasmas on cells and tissues for clinical applications. The Atmospheric Pressure Glow Discharge torch (APGD-t), a non-thermal plasma source, built in our laboratory was used to study the effects of non-thermal plasmas on mammalian cells. In its first application, we indirectly used the APGD-t to deposit a plasma-polymer on a glass surface and studied its effects on cultured cells. It was shown that the cells grew preferentially on the plasma-polymer, and their proliferation rate increased. The second application of the APGD-t was to further investigate previous observations of cell permeabilization obtained by plasma treatments and to apply non-thermal plasmas to cell transfection. It was demonstrated that the APGD-t is able to locally transfect adherent cells. We estimated the diameter of the pores created to be below 10 nm and that the pores remain open for less than 5 seconds. However, while investigating the mechanisms involved in cell transfection we observed that the use of higher gas flows in the negative controls (using the APGD-t but with the plasma turned off) also resulted in cell transfection. To further study this phenomena, we

  9. Effect of Dietary Oxalate on the Gut Microbiota of the Mammalian Herbivore Neotoma albigula

    PubMed Central

    Oakeson, Kelly F.; Dale, Colin; Dearing, M. Denise

    2016-01-01

    Diet is one of the primary drivers that sculpts the form and function of the mammalian gut microbiota. However, the enormous taxonomic and metabolic diversity held within the gut microbiota makes it difficult to isolate specific diet-microbe interactions. The objective of the current study was to elucidate interactions between the gut microbiota of the mammalian herbivore Neotoma albigula and dietary oxalate, a plant secondary compound (PSC) degraded exclusively by the gut microbiota. We quantified oxalate degradation in N. albigula fed increasing amounts of oxalate over time and tracked the response of the fecal microbiota using high-throughput sequencing. The amount of oxalate degraded in vivo was linearly correlated with the amount of oxalate consumed. The addition of dietary oxalate was found to impact microbial species diversity by increasing the representation of certain taxa, some of which are known to be capable of degrading oxalate (e.g., Oxalobacter spp.). Furthermore, the relative abundances of 117 operational taxonomic units (OTU) exhibited a significant correlation with oxalate consumption. The results of this study indicate that dietary oxalate induces complex interactions within the gut microbiota that include an increase in the relative abundance of a community of bacteria that may contribute either directly or indirectly to oxalate degradation in mammalian herbivores. PMID:26896138

  10. Red cell distribution width predicts short- and long-term outcomes of acute congestive heart failure more effectively than hemoglobin.

    PubMed

    Dai, Yuxiang; Konishi, Hakuoh; Takagi, Atsutoshi; Miyauchi, Katsumi; Daida, Hiroyuki

    2014-08-01

    The present study compared short- and long-term prognostic values of red blood cell distribution width (RDW) with those of hemoglobin (Hgb) among patients with acute congestive heart failure (CHF) in a cardiac care unit. The cross-sectional study examined data from 521 patients with acute CHF who were admitted to a cardiac care unit and followed up for 24 months (median). Mean Hgb levels in patients who succumbed (DIH) or remained alive (AIH) were 11.0±1.8 and 11.8±2.6 g/l (P>0.05), respectively. Median values of RDW were 16.2% and 14.4%, respectively (P<0.0001). During the 24-month follow-up, mean levels of Hgb in groups with and without endpoints were 11.4±2.5 and 12.5±2.4 g/dl (P<0.0001), respectively. Median RDW values were 14.9 and 13.8%, respectively (P<0.0001). Logistic regression analysis showed that in-hospital mortality was significantly associated with RDW (P=0.044), New York Heart Association (NYHA) functional class IV (P=0.0037), estimated glomerular filtration rate (eGFR) (P=0.042) and C-reactive protein (P=0.0044), but not with Hgb (P=0.10). The multivariate Cox proportional hazard model selected RDW [hazard ratio (HR), 2.19; P<0.0001], left ventricular ejection fraction (HR 0.81, P=0.0016), age (10-year increase; HR 1.19, P=0.0017) and NYHA functional classes III/IV (HR 1.52, P=0.0029) as independent predictors of long-term outcomes after adjustment, but not Hgb (HR 1.01, P=0.86). Higher RDW values in acute CHF patients at admission were associated with worse short- and long-term outcomes and RDW values were more prognostically relevant than Hgb levels. PMID:25009627

  11. Comparative study of the effect of BPA and its selected analogues on hemoglobin oxidation, morphological alterations and hemolytic changes in human erythrocytes.

    PubMed

    Maćczak, Aneta; Bukowska, Bożena; Michałowicz, Jaromir

    2015-01-01

    Bisphenol A (BPA) has been shown to provoke many deleterious impacts on human health, and thus it is now successively substituted by BPA analogues, whose effects have been poorly investigated. Up to now, only one study has been realized to assess the effect of BPA on human erythrocytes, which showed its significant hemolytic and oxidative potential. Moreover, no study has been conducted to evaluate the effect of BPA analogues on red blood cells. The purpose of the present study was to compare the impact of BPA and its selected analogues such as bisphenol F (BPF), bisphenol S (BPS) and bisphenol AF (BPAF) on hemolytic and morphological changes and hemoglobin oxidation (methemoglobin formation) of human erythrocytes. The erythrocytes were incubated with different bisphenols concentrations ranging from 0.5 to 500μg/ml for 1, 4 and 24h. The compounds examined caused hemolysis in human erythrocytes with BPAF exhibiting the strongest effect. All bisphenols examined caused methemoglobin formation with BPA inducing the strongest oxidative potential. Flow cytometry analysis showed that all bisphenols (excluding BPS) induced significant changes in erythrocytes size. Changes in red blood cells shape were conducted using phase contrast microscopy. It was noticed that BPA and BPAF induced echinocytosis, BPF caused stomatocytosis, while BPS did not provoke significant changes in shape of red blood cells. Generally, the results showed that BPS, which is the main substituent of bisphenol A in polymers and thermal paper production, exhibited significantly lower disturbance of erythrocyte functions than BPA.

  12. On Coupling Models Using Model-Checking: Effects of Irinotecan Injections on the Mammalian Cell Cycle

    NASA Astrophysics Data System (ADS)

    de Maria, Elisabetta; Fages, François; Soliman, Sylvain

    In systems biology, the number of models of cellular processes increases rapidly, but re-using models in different contexts or for different questions remains a challenging issue. In this paper, we show how the validation of a coupled model and the optimization of its parameters with respect to biological properties formalized in temporal logics, can be done automatically by model-checking. More specifically, we illustrate this approach with the coupling of existing models of the mammalian cell cycle, the p53-based DNA-damage repair network, and irinotecan metabolism, with respect to the biological properties of this anticancer drug.

  13. A cost-effective approach to microporate mammalian cells with the Neon Transfection System.

    PubMed

    Brees, Chantal; Fransen, Marc

    2014-12-01

    Electroporation is one of the most efficient nonviral methods for transferring exogenous DNA into mammalian cells. However, the relatively high costs of electroporation kits and reagents temper the routine use of this fast and easy to perform technique in many laboratories. Several years ago, a new flexible and easy to operate electroporation device was launched under the name Neon Transfection System. This device uses specialized pipette tips containing gold-plated electrodes as electroporation chamber. Here we report a protocol to regenerate these expensive tips as well as some other Neon kit accessories, thereby reducing the cost of electroporation at least 10-fold. PMID:25172131

  14. A cost-effective approach to microporate mammalian cells with the Neon Transfection System.

    PubMed

    Brees, Chantal; Fransen, Marc

    2014-12-01

    Electroporation is one of the most efficient nonviral methods for transferring exogenous DNA into mammalian cells. However, the relatively high costs of electroporation kits and reagents temper the routine use of this fast and easy to perform technique in many laboratories. Several years ago, a new flexible and easy to operate electroporation device was launched under the name Neon Transfection System. This device uses specialized pipette tips containing gold-plated electrodes as electroporation chamber. Here we report a protocol to regenerate these expensive tips as well as some other Neon kit accessories, thereby reducing the cost of electroporation at least 10-fold.

  15. High-fat diet-induced met-hemoglobin formation in rats prone (WOKW) or resistant (DA) to the metabolic syndrome: effect of CoQ10 supplementation.

    PubMed

    Orlando, Patrick; Silvestri, Sonia; Brugè, Francesca; Tiano, Luca; Kloting, Ingrid; Falcioni, Giancarlo; Polidori, Carlo

    2014-01-01

    The aim of this study was to evaluate the effects of a high-fat diet (HFD) on oxidative indexes in WistarOttawaKarlsburg W (WOKW) rats used as a model of metabolic syndrome in comparison with Dark Agouti (DA) rats used as a control strain. This syndrome is defined by the occurrence of two or more risk factors including obesity, hypertension, dyslipidemia, and insulin resistance. Forty rats were used in the study and the effect of HFD was evaluated in terms of body weight and both hemoglobin and CoQ oxidative status. Moreover, 16 rats (8 of each strain) were supplemented with 3 mg/100 g b.w. of CoQ10 for 1 month in view of its beneficial properties in cardiovascular disease due to its antioxidant activity in the lipid environment. HFD promoted an increase in body weight, in particular in WOKW males, and in the methemoglobin (met-Hb) index in both strains. Moreover, HFD promoted endogenous CoQ10 oxidation. CoQ10 supplementation was able to efficiently counteract the HFD pro-oxidant effects, preventing met-Hb formation and CoQ oxidation.

  16. Mammalian development in space

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  17. The effect of silver nanoparticles and silver ions on mammalian and plant cells in vitro.

    PubMed

    Jiravova, Jana; Tomankova, Katerina Barton; Harvanova, Monika; Malina, Lukas; Malohlava, Jakub; Luhova, Lenka; Panacek, Ales; Manisova, Barbora; Kolarova, Hana

    2016-10-01

    Silver nanoparticles (AgNPs) are the most frequently applied nanomaterials. In our experiments, we tested AgNPs (size 27 nm) manufactured by the Tollens process. Physico-chemical methods (TEM, DLS, AFM and spectrophotometry) were used for characterization and imaging of AgNPs. The effects of AgNPs and Ag(+) were studied in two experimental models (plant and mammalian cells). Human keratinocytes (SVK14) and mouse fibroblasts (NIH3T3) cell lines were selected to evaluate the cytotoxicity and genotoxicity effect on mammalian cells. Higher sensitivity to AgNPs and Ag(+) was observed in NIH3T3 than in SVK14 cells. AgNPs accumulated in the nucleus of NIH3T3 cells, caused DNA damage and increased the number of apoptotic and necrotic cells. Three genotypes of Solanum spp. (S. lycopersicum cv. Amateur, S. chmielewskii, S. habrochaites) were selected to test the toxicity of AgNPs and Ag(+) on the plant cells. The highest values of peroxidase activity and lipid peroxidation were recorded after the treatment of S. habrochaites genotype with AgNPs. Increased ROS levels were likely the reason for observed damaged membranes in S. habrochaites. We found that the cytotoxic and genotoxic effects of AgNPs depend not only on the characteristics of nanoparticles, but also on the type of cells that are treated with AgNPs. PMID:27456126

  18. The effect of silver nanoparticles and silver ions on mammalian and plant cells in vitro.

    PubMed

    Jiravova, Jana; Tomankova, Katerina Barton; Harvanova, Monika; Malina, Lukas; Malohlava, Jakub; Luhova, Lenka; Panacek, Ales; Manisova, Barbora; Kolarova, Hana

    2016-10-01

    Silver nanoparticles (AgNPs) are the most frequently applied nanomaterials. In our experiments, we tested AgNPs (size 27 nm) manufactured by the Tollens process. Physico-chemical methods (TEM, DLS, AFM and spectrophotometry) were used for characterization and imaging of AgNPs. The effects of AgNPs and Ag(+) were studied in two experimental models (plant and mammalian cells). Human keratinocytes (SVK14) and mouse fibroblasts (NIH3T3) cell lines were selected to evaluate the cytotoxicity and genotoxicity effect on mammalian cells. Higher sensitivity to AgNPs and Ag(+) was observed in NIH3T3 than in SVK14 cells. AgNPs accumulated in the nucleus of NIH3T3 cells, caused DNA damage and increased the number of apoptotic and necrotic cells. Three genotypes of Solanum spp. (S. lycopersicum cv. Amateur, S. chmielewskii, S. habrochaites) were selected to test the toxicity of AgNPs and Ag(+) on the plant cells. The highest values of peroxidase activity and lipid peroxidation were recorded after the treatment of S. habrochaites genotype with AgNPs. Increased ROS levels were likely the reason for observed damaged membranes in S. habrochaites. We found that the cytotoxic and genotoxic effects of AgNPs depend not only on the characteristics of nanoparticles, but also on the type of cells that are treated with AgNPs.

  19. Effects of track structure and cell inactivation on the calculation of heavy ion mutation rates in mammalian cells

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Shavers, M. R.; Katz, R.

    1996-01-01

    It has long been suggested that inactivation severely effects the probability of mutation by heavy ions in mammalian cells. Heavy ions have observed cross sections of inactivation that approach and sometimes exceed the geometric size of the cell nucleus in mammalian cells. In the track structure model of Katz the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated using the dose-response of the system to gamma-rays and the radial dose of the ions and may be equal to unity at small impact parameters for some ions. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections from heavy ions in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT mutations in Chinese hamster cells and good agreement is found. The resulting calculations qualitatively show that mutation cross sections for heavy ions display minima at velocities where inactivation cross sections display maxima. Also, calculations show the high probability of mutation by relativistic heavy ions due to the radial extension of ions track from delta-rays in agreement with the microlesion concept. The effects of inactivation on mutations rates make it very unlikely that a single parameter such as LET or Z*2/beta(2) can be used to specify radiation quality for heavy ion bombardment.

  20. Hemoglobin variants in Cyprus.

    PubMed

    Kyrri, Andreani R; Felekis, Xenia; Kalogerou, Eleni; Wild, Barbara J; Kythreotis, Loukas; Phylactides, Marios; Kleanthous, Marina

    2009-01-01

    Cyprus, located at the eastern end of the Mediterranean region, has been a place of eastern and western civilizations, and the presence of various hemoglobin (Hb) variants can be considered a testimony to past colonizations of the island. In this study, we report the structural Hb variants identified in the Cypriot population (Greek Cypriots, Maronites, Armenians, and Latinos) during the thalassemia screening of 248,000 subjects carried out at the Thalassaemia Centre, Nicosia, Cyprus, over a period of 26 years. A sample population of 65,668 people was used to determine the frequency and localization of several of the variants identified in Cyprus. The localization of some of the variants in regions where the presence of foreign people was most prevalent provides important clues to the origin of the variants. Twelve structural variants have been identified by DNA sequencing, nine concerning the beta-globin gene and three concerning the alpha-globin gene. The most common beta-globin variants identified were Hb S (0.2%), Hb D-Punjab (0.02%), and Hb Lepore-Washington-Boston (Hb Lepore-WB) (0.03%); the most common alpha-globin variant was Hb Setif (0.1%). The presence of some of these variants is likely to be directly linked to the history of Cyprus, as archeological monuments have been found throughout the island which signify the presence for many years of the Greeks, Syrians, Persians, Arabs, Byzantines, Franks, Venetians, and Turks. PMID:19373583

  1. Oxygen transport by hemoglobin.

    PubMed

    Mairbäurl, Heimo; Weber, Roy E

    2012-04-01

    Hemoglobin (Hb) constitutes a vital link between ambient O2 availability and aerobic metabolism by transporting oxygen (O2) from the respiratory surfaces of the lungs or gills to the O2-consuming tissues. The amount of O2 available to tissues depends on the blood-perfusion rate, as well as the arterio-venous difference in blood O2 contents, which is determined by the respective loading and unloading O2 tensions and Hb-O2-affinity. Short-term adjustments in tissue oxygen delivery in response to decreased O2 supply or increased O2 demand (under exercise, hypoxia at high altitude, cardiovascular disease, and ischemia) are mediated by metabolically induced changes in the red cell levels of allosteric effectors such as protons (H(+)), carbon dioxide (CO2), organic phosphates, and chloride (Cl(-)) that modulate Hb-O2 affinity. The long-term, genetically coded adaptations in oxygen transport encountered in animals that permanently are subjected to low environmental O2 tensions commonly result from changes in the molecular structure of Hb, notably amino acid exchanges that alter Hb's intrinsic O2 affinity or its sensitivity to allosteric effectors. Structure-function studies of animal Hbs and human Hb mutants illustrate the different strategies for adjusting Hb-O2 affinity and optimizing tissue oxygen supply.

  2. Near-infrared absorbance measurements of hemoglobin solutions incubated with glucose

    NASA Astrophysics Data System (ADS)

    Zhernovaya, Olga S.; Tuchin, Valery V.; Meglinski, Igor; Ritchie, Laurie

    2007-02-01

    It is known that glucose influences on spectral properties of blood and hemoglobin and interacts with plasma proteins and hemoglobin in erythrocytes. Changes of optical properties of blood and hemoglobin at glucose concentration within physiological level are important for diagnosis and monitoring of diabetes. The purpose of this study is to investigate the effect of presence of glucose and glycation of hemoglobin on absorbance of aqueous hemoglobin solutions with different glucose concentrations. Measurements were taken using spectrophotometer EQUINOX 55 (Bruker Optic GmbH) in a range 1000-1800 nm. Water has absorption bands in the near-infrared region which may be influenced by glucose presence. We have hypothesized that glucose and hemoglobin, especially glycated hemoglobin, may influence the absorption band of water in solution. The hemoglobin solutions with different amount of glucose (from 0 to 1000 mg/dl with a step 100 mg/dl) were incubated up to 28 days. Our measurements show that presence of glucose affects the spectra of aqueous hemoglobin solutions. The magnitude of absorbance depends on glucose concentration. At the beginning of incubation hemoglobin solution without glucose has the lowest absorbance magnitude, but after a rather long time of incubation (28 days) the absorbance of hemoglobin solutions with glucose become smaller compared to the absorbance of hemoglobin solution without glucose. This fact may be explained by assumption of hemoglobin glycation, when glucose molecules chemically bind to hemoglobin, and water binding to hemoglobin. In the case of water binding to hemoglobin molecules the amount of free water molecules in solution decreases, so the water aborbance is excepted to decrease.

  3. Osmotic effects of protein polymerization: analysis of volume changes in sickle cell anemia red cells following deoxy-hemoglobin S polymerization.

    PubMed

    Lew, V L; Bookchin, R M

    1991-05-01

    Polymerization-depolymerization of proteins within cells and subcellular organelles may have powerful osmotic effects. As a model to study these we analyzed the predicted volume changes following hemoglobin (Hb) S polymerization in sickle cell anemia (SS) red cells with different initial volumes. The theoretical analysis predicted that dehydrated SS red cells may sustain large polymerization-induced volume shifts whose direction would depend on whether or not small solutes were excluded from polymer-associated water. Experiments with SS cells from promptly fractionated venous blood showed oxygenation-induced swelling, maximal in the densest cells, in support of nonexclusion models. The predicted extent of cell dehydration on polymerization was strongly influenced by factors such as the dilution of residual soluble Hb and the increased osmotic contribution of Hb in cells dehydrated by salt loss, largely overlooked in the past. The osmotic effects of polymer formation may thus play an important part in microcirculatory infarction by dense SS cells, as they become even denser and stiffer during deoxygenation in the capillaries. PMID:1875401

  4. Investigation of effect on glycosylated hemoglobin, blood pressure, and body mass index of diabetes intensive education program in patients with type 2 diabetes mellitus.

    PubMed

    Beyazit, Emel; Mollaoğlu, Mukadder

    2011-07-01

    This study investigated the effects of a diabetes intensive education program (DIEP) on glycosylated hemoglobin (HbA(1)c), body mass index (BMI), and arterial blood pressure (BP). An 8-week randomized-controlled trial was conducted in Cumhuriyet University Hospital. Diabetes patients were randomized to control group (CG; n = 25) and intervention group (IG; n = 25) who received DIEP, including the factors affecting metabolic control and implementation of diabetes guidelines. Primary outcomes included HbA(1)c, BP, and BMI. After the 8 weeks, there was a significant decrease in HbA(1)c mean values for the intervention group. Also, BP significantly decreased from 143/87 to 130/80 mmHg in the IG as compared with an increase from 137/82 to 137/86 mmHg in the CG. In addition, the results demonstrated that DIEP improved the number of patients at goal for BP (130/80 mmHg). Baseline BMI did not change significantly in either group during the course of the study. These findings show that the DIEP may be effective in decreasing HbA(1)c levels and improving adherence to BP control.

  5. [Effects of surfactant and solvent on the encapsulation efficiency and size in using double emulsion method for preparing bovine hemoglobin loaded nanoparticles as blood substitutes].

    PubMed

    Zhang, Xiaolan; Yuan, Yuan; Shan, Xiaoqian; Sheng, Yan; Xu, Feng; Liu, Changsheng

    2009-02-01

    On the basis of previous researches, we have prepared Bovine hemoglobin-loaded nanoparticles (HbP), using the double emulsion method. More mild dispersing treatment was employed during the primary and secondary emulsion; over 97% encapsulation efficiency (EE%) and an average size about 286 nm were achieved by using surfactants, screening solvents, as well as avoiding the traditional strong dispersing process. The value of Hydrophile-lipophile balance in oil phase exerted a significant effect on EE% and led to higher EE% when matched with the surfactants in outer aqueous phase. When compared with the sole solvent Span80, the mixed surfactants such as Poloxemer188/Span80 stabilized the emulsion more efficiently and increased the EE%. The higher concentration of surfactants resulted in higher EE% and narrower size distribution. But over some amount, the surfactants had no significant effect on EE%, resulting in larger size and polydispersity index (PDI). The appropriate removal rate of solvents contributes to higher EE%, smaller size and PDI.

  6. Effect of hemoglobin on the uptake of /sup 3/H-norepinephrine and /sup 3/H-choline chloride into porcine cerebral arteries

    SciTech Connect

    Linnik, M.D.; Lee, T.J.F.

    1986-03-01

    Prolonged constriction of cerebral arteries often follows subarachnoid hemorrhage (SAH). SAH exposes hemoglobin (Hb) to cerebral arteries and Hb has been demonstrated to induce vasoconstriction as well as alter cerebrovascular neurogenic response characteristics. The effect of Hb on uptake of /sup 3/H-norepinephrine (/sup 3/H-NE) and /sup 3/H-choline chloride (/sup 3/H-ChCl) into porcine cerebral arteries was therefore examined. 0.5 to 50 ..mu..M porcine Hb caused a dose-dependent inhibition of /sup 3/H-NE uptake into the anterior (ANT), internal carotid (IC) and middle cerebral (MC) arteries of the pig. IC/sub 50/ values for uptake inhibition were: ANT, 31 ..mu..M; IC, 34 ..mu..M; MC, 37 ..mu..M. Porcine serum albumin (PSA) in the same concentration range also caused a decrease in /sup 3/H-NE uptake. An examination of protein-ligand interactions using column chromatography demonstrated binding of /sup 3/H-NE by both Hb and PSA. This protein binding may be responsible for part of the uptake inhibition. Hb and PSA had little effect on /sup 3/H-ChCl uptake into these arteries.

  7. Study of the Effects of Ultrasonic Waves on the Reproductive Integrity of Mammalian Cells Cultured in Vitro

    NASA Technical Reports Server (NTRS)

    Martins, B. I.

    1971-01-01

    The effects of monochromatic ultrasonic waves of 0.1, 0.5, 1.0, 2.0 and, 3.3 MHz frequency on the colony-forming ability of mammalian cells (M3-1,V79, Chang's and T-1) cultured in vitro have been studied to determine the nature of the action of ultrasonic energy on biological systems at the cellular level. The combined effect of ultrasound and X-rays has also been studied. It is concluded: (1) Ultrasonic irradiation causes both lethal and sublethal damage. (2) There is a threshold dose rate for lethal effects. (3) The effectiveness of ultrasonic waves in causing cell death probably depends on the frequency and the amplitude of the waves for a given cell line, indicating a possible resonance phenomenon.

  8. Weak binding gases as modulators of hemoglobin function

    SciTech Connect

    Schoenborn, B P; Saxena, A; North, B E

    1980-01-01

    Studies are reported in which the mechanisms of binding of inert gaseous agents to hemoglobin and myoglobin are investigated. Specific binding sites are mapped. Possible effects on sickle cell formation and oxygen binding are discussed. (ACR)

  9. More Refined Experiments with Hemoglobin.

    ERIC Educational Resources Information Center

    Morin, Phillippe

    1985-01-01

    Discusses materials needed, procedures used, and typical results obtained for experiments designed to make a numerical stepwise study of the oxygenation of hemoglobin, myoglobin, and other oxygen carriers. (JN)

  10. Bisphenol A Effects on Mammalian Oogenesis and Epigenetic Integrity of Oocytes: A Case Study Exploring Risks of Endocrine Disrupting Chemicals

    PubMed Central

    Eichenlaub-Ritter, Ursula; Pacchierotti, Francesca

    2015-01-01

    Bisphenol A (BPA), originally developed as a synthetic oestrogen, is nowadays extensively used in the production of polymeric plastics. Under harsh conditions, these plastics may release BPA, which then can leach into the environment. Detectable concentrations of BPA have been measured in most analysed samples of human serum, plasma, or urine, as well as in follicular fluid, foetal serum, and amniotic fluid. Here we summarize the evidence about adverse BPA effects on the genetic and epigenetic integrity of mammalian oocytes. We conclude that increasing evidence supports the notion that low BPA concentrations adversely affect the epigenome of mammalian female germ cells, with functional consequences on gene expression, chromosome dynamics in meiosis, and oocyte development. Specific time windows, during which profound chromatin remodelling occurs and maternal imprints are established or protected, appear particularly vulnerable to epigenetic deregulation by BPA. Transgenerational effects have been also observed in the offspring of BPA-treated rodents, although the epigenetic mechanisms of inheritance still need to be clarified. The relevance of these findings for human health protection still needs to be fully assessed, but they warrant further investigation in both experimental models and humans. PMID:26339634

  11. Studies on the effects of microgravity on the ultrastructure and functions of cultured mammalian cells (L-6)

    NASA Technical Reports Server (NTRS)

    Sato, Atsushige

    1993-01-01

    The human body consists of 10(exp 13) cells. Understanding the mechanisms by which the cells sense and respond to microgravity is very important as the basis for space biology. The cells were originally isolated aseptically from mammalian bodies and cultured in vitro. A set of cell culture vessels was developed to be applied to three kinds of space flight experiments. Experiment 1 is to practice the cell culture technique in a space laboratory and obtain favorable growth of the cells. Aseptic handling in tryspin treatment and medium renewal will be tested. The cells, following space flight, will be returned to the ground and cultured continuously to investigate the effects of space flight on the cellular characteristics. Experiment 2 is to examine the cytoskeletal structure of the cells under microgravity conditions. The cytoskeletal structure plays essential roles in the morphological construction, movements, axonal transport, and differentiation of the cells. The cells fixed during space flight will be returned and the cytoskeleton and ultrastructure observed using electron microscopy and fluorescence microscopy. Experiment 3 is to study the cellular productivity of valuable substances. The waste medium harvested during space flight are returned and quantitated for the cellular products. The effects of microgravity on mammalian cells will be clarified from the various aspects.

  12. Bisphenol A Effects on Mammalian Oogenesis and Epigenetic Integrity of Oocytes: A Case Study Exploring Risks of Endocrine Disrupting Chemicals.

    PubMed

    Eichenlaub-Ritter, Ursula; Pacchierotti, Francesca

    2015-01-01

    Bisphenol A (BPA), originally developed as a synthetic oestrogen, is nowadays extensively used in the production of polymeric plastics. Under harsh conditions, these plastics may release BPA, which then can leach into the environment. Detectable concentrations of BPA have been measured in most analysed samples of human serum, plasma, or urine, as well as in follicular fluid, foetal serum, and amniotic fluid. Here we summarize the evidence about adverse BPA effects on the genetic and epigenetic integrity of mammalian oocytes. We conclude that increasing evidence supports the notion that low BPA concentrations adversely affect the epigenome of mammalian female germ cells, with functional consequences on gene expression, chromosome dynamics in meiosis, and oocyte development. Specific time windows, during which profound chromatin remodelling occurs and maternal imprints are established or protected, appear particularly vulnerable to epigenetic deregulation by BPA. Transgenerational effects have been also observed in the offspring of BPA-treated rodents, although the epigenetic mechanisms of inheritance still need to be clarified. The relevance of these findings for human health protection still needs to be fully assessed, but they warrant further investigation in both experimental models and humans. PMID:26339634

  13. Biophysical basis of hypoxic radioprotection by deoxygenated dextran-hemoglobin

    SciTech Connect

    Wong, J.T.; Hill, R.P.

    1986-08-01

    Perfusion with deoxygenated dextran-hemoglobin provides an effective method for inducing hypoxic radioprotection of normal tissues during radiation treatment of tumors. In this study, the dependence of P50, the half-saturation pressure of oxygen binding to dextran-hemoglobin, was analyzed as a function of solution temperature and pH. The variation of attainable radioprotection with P50, and with the amount of collateral blood entering into the perfused region, was calculated. Upon perfusion of canine gracilis muscle with deoxygenated dextran-hemoglobin, a rapid onset of extensive venous hypoxia was observed.

  14. Haptoglobin preferentially binds β but not α subunits cross-linked hemoglobin tetramers with minimal effects on ligand and redox reactions.

    PubMed

    Jia, Yiping; Wood, Francine; Buehler, Paul W; Alayash, Abdu I

    2013-01-01

    Human hemoglobin (Hb) and haptoglobin (Hp) exhibit an extremely high affinity for each other, and the dissociation of Hb tetramers into dimers is generally believed to be a prerequisite for complex formation. We have investigated Hp interactions with native Hb, αα, and ββ cross-linked Hb (ααXLHb and ββXLHb, respectively), and rapid kinetics of Hb ligand binding as well as the redox reactivity in the presence of and absence of Hp. The quaternary conformation of ββ subunit cross-linking results in a higher binding affinity than that of αα subunit cross-linked Hb. However, ββ cross-linked Hb exhibits a four fold slower association rate constant than the reaction rate of unmodified Hb with Hp. The Hp contact regions in the Hb dimer interfaces appear to be more readily exposed in ββXLHb than ααXLHb. In addition, apart from the functional changes caused by chemical modifications, Hp binding does not induce appreciable effects on the ligand binding and redox reactions of ββXLHb. Our findings may therefore be relevant to the design of safer Hb-based oxygen therapeutics by utilizing this preferential binding of ββXLHb to Hp. This may ultimately provide a safe oxidative inactivation and clearance pathway for chemically modified Hbs in circulation.

  15. Two-photon excited fluorescence emission from hemoglobin

    NASA Astrophysics Data System (ADS)

    Sun, Qiqi; Zeng, Yan; Zhang, Wei; Zheng, Wei; Luo, Yi; Qu, Jianan Y.

    2015-03-01

    Hemoglobin, one of the most important proteins in blood, is responsible for oxygen transportation in almost all vertebrates. Recently, we discovered two-photon excited hemoglobin fluorescence and achieved label-free microvascular imaging based on the hemoglobin fluorescence. However, the mechanism of its fluorescence emission still remains unknown. In this work, we studied the two-photon excited fluorescence properties of the hemoglobin subunits, heme/hemin (iron (II)/(III) protoporphyrin IX) and globin. We first studied the properties of heme and the similar spectral and temporal characteristics of heme and hemoglobin fluorescence provide strong evidence that heme is the fluorophore in hemoglobin. Then we studied the fluorescence properties of hemin, globin and methemoglobin, and found that the hemin may have the main effect on the methemoglobin fluorescence and that globin has tryptophan fluorescence like other proteins. Finally, since heme is a centrosymmetric molecule, that the Soret band fluorescence of heme and hemoglobin was not observed in the single photon process in the previous study may be due to the parity selection rule. The discovery of heme two-photon excited fluorescence may open a new window for heme biology research, since heme as a cofactor of hemoprotein has many functions, including chemical catalysis, electron transfer and diatomic gases transportation.

  16. Respiration of mammalian cells at low concentrations of oxygen: I. Effect of hypoxic-cell radiosensitizing drugs.

    PubMed Central

    Koch, C. J.; Biaglow, J. E.

    1978-01-01

    Drugs which sensitize hypoxic mammalian cells to radiation damage in vitro can also affect the cellular respiration rate. This phenomenon was studied in detail to determine whether the changes in oxygen consumption occur at low oxygen concentrations and under optimal nutritional conditions. We have found that cells in tissue culture can undergo adaptive changes in respiration (electron flow) which make them insensitive to the effects of radiosensitizing drugs and even respiration uncouplers such as dinitrophenol, and the inhibitors rotenone and cyanide. At low cell densities, where nutrient depletion in the medium would be negligible, the drugs have reduced effects, particularly at low oxygen concentrations (below 40 mmHg oxygen partial pressure). Parallel cytotoxicity and growht inhibition studies indicate that most drugs are unlikely to have substantial effect on respiration at non-cytotoxic levels. PMID:277219

  17. Effects of Endurance Training on Lipid Metabolism and Glycosylated Hemoglobin Levels in Streptozotocin-induced Type 2 Diabetic Rats on a High-fat Diet.

    PubMed

    Heo, Myoung; Kim, Eunjung

    2013-08-01

    [Purpose] Exercise has been recognized as a simple and economical therapeutic modality that effectively benefits patients with diabetes, for instance, increasing insulin sensitivity in type 2 diabetes. However, thus far, no studies have examined the effect of endurance training exercises on type 2 diabetes. Therefore, this study examined the effect of endurance training exercise regimens on body weight, glucose and insulin levels, lipid profiles, and HbA1c levels in STZ-induced type 2 diabetic rats on a high-fat diet. HbA1c was considered an indicator of glucose control during endurance training. [Methods] A total of 36 rats were included in this study. Diabetes was induced by administering STZ to 2 groups of 12 rats each, and, the remaining 12 rats were classified as the normal group. Biochemical parameters were measured 28 days later, and included: serum total cholesterol, triglyceride, high-density lipoprotein, glycosylated hemoglobin, glucose, and insulin levels. [Results] A significant decrease in serum TC and TG levels, and an increase in HDL cholesterol level were observed in the endurance training group. Moreover, blood glucose and HbA1c levels after 28 days of exercising were significantly lower in the endurance training group than in the control group (p<0.05). [Conclusion] These results indicate that endurance training affects body weight and, lipid profiles, as well as fasting blood glucose, HbA1c, and insulin levels, in STZ-induced type 2 diabetic rats on a high- fat diet. We suggest that endurance training exercises may exhibit therapeutic, preventative, and protective effects against diabetes mellitus through improving lipid metabolism, glycemic control, and HbA1c levels.

  18. The effect of seeing a family physician on the level of glycosylated hemoglobin (HbA1c) in type 2 Diabetes Mellitus patients

    PubMed Central

    2013-01-01

    Background Glycosylated hemoglobin (HbA1c) in diabetic patients reflects the average blood glucose level, and will not be affected by variability in blood glucose in short time. Regular care of patients by medical staff could effectively control glycemic situation. The aim of this study was to assess the effect of medical care by general physicians on glycemic control by measuring of HbA1c. Methods In order to assess the effectiveness of National program for diabetes control and prevention in Iran, we compare HbA1c, Fasting blood glucose (FBS), systolic and diastolic blood pressure in two groups of diabetic patients diagnosed in this program. The first group consisted of patients who received at least four visits by General Physician (GP) during one year after the diagnosis, and second group were patients who did not visited by GPs or received 1–3 visits. Results After one year, 24.1% of patients did not receive any care, while 57.9% examined at least once a year. Among visited patients, 23.5% received 1–3 times medical care and 23.5% received four or more visits. HbA1c was significantly lowered in patients with appropriate care (four and more) compared with the non cared patients and patients with less than four cares. Conclusion Appropriate number of visits for each patient by GPs is an effective glycemic control in diabetic patients. Although this study provides a framework for medical care in diabetes, how to take care of these patients depends on specific situation of each patient and should be determined for each of them individually. PMID:23497576

  19. Development of an immunoassay to detect benzene adducts in hemoglobin

    SciTech Connect

    Grassman, J.A.

    1993-01-01

    The purpose of this project was to develop an immunoassay to detect the adducts formed in hemoglobin after exposure to benzene, which is known to cause bone marrow degeneration and acute myelogenous leukemia. The use of benzene-adduct detection as a biological monitoring method would permit measurement of low exposures and exposures sustained weeks earlier. The reactivity of hydroquinone, an important benzene metabolite, with blood proteins and amino acids was investigated in order to decide which antigens and analytes were likely to be suitable for immunoassay development. The second section determined the combination of benzene-metabolite and antigen need to produce an immunoassay with the requisite low detection limit and specificity. The immunoassays with the best performance were tested on hemoglobin from benzene-exposed mice. In vitro studies showed that hydroquinone efficiently formed adducts with erythrocyte membranes and hemoglobin but not with albumin. Adduction efficiency was greater in incubations using purified hemoglobin than whole blood. Cysteine accounted for 15 to 27% of the adducts formed by hydroquinone. The site of the other adducts were not identified although there was evidence that the hemoglobin heme was adducted. Adducts were found on only 1 of the 2 globin chains. Tryptic digestion of the globin failed to associate the adducts with a specific peptide. Antigens made from hydroquinone-adducted hemoglobin but not hydroquinone-adducted cysteines coupled to carrier proteins effectively elicited adduct-specific antibodies. Interference due to reactivity to hemoglobin was controlled by using uniform quantities of hemoglobin in all wells. The mid-range of the best assays were approximately 12 pmoles HQ per well. Antibodies directed toward hemoglobin adducted with the benzene metabolites phenol, catechol and 1,2,4-trihydroxybenzene were also made. The performance of the anti-1,2,4-trihydroxybenzene were suitable for quantitative immunoassays.

  20. Effect of the distal residues on the vibrational modes of the Fe-CO bond in hemoglobin studied by protein engineering

    SciTech Connect

    Lin, Shunhua; Yu, Naiteng ); Tame, J.; Shih, D.; Renaud, J.P.; Pagnier, J.; Nagai, Kiyoshi )

    1990-06-12

    Using an Escherichia coli gene expression system, the authors have engineered human hemoglobin (Hb) mutants having the distal histidine (E7) and valine (E11) residues replaced by other amino acids. The interaction between the mutated distal residues and bound carbon monoxide has been studied by Soret-excited resonance Raman spectroscopy. The replacement of Val-E11 by Ala, Leu, Ile, and Met has no effect on the {nu}(C-O), {nu}(Fe-CO) stretching or {delta}(Fe-C-O) bending frequencies in both the {alpha} and {beta} subunits of Hb, although some of these mutations affect the CO affinity as much as 40-fold. The strain imposed on the protein by the binding of CO is not localized in the Fe-CO bond and is probably distributed among many bonds in the globin. The replacement of His-E7 by Val or Gly brings the stretching frequencies {nu}(Fe-CO) and {nu}(C-O) close to those of free heme complexes. In contrast, the substitution of His-E7 by Gln, which is flexible and polar, produces no effects on the resonance Raman spectrum of either {alpha}- or {beta}-globin. The replacement of His-E7 of {beta}-globin by Phe shows the same effect as replacement by Gly or Val. Therefore, the steric bulk of the distal residues is not the primary determinant of the Fe-CO ligand vibrational frequencies. The ability of both histidine and glutamine to alter the {nu}(C-O), {nu}(Fe-CO), or {delta}(Fe-C-O) frequencies may be attributed to the polar nature of their side chains which can interact with bound CO in a similar manner.

  1. The evolution of Root effect hemoglobins in the absence of intracellular pH protection of the red blood cell: insights from primitive fishes.

    PubMed

    Regan, Matthew D; Brauner, Colin J

    2010-06-01

    The Root effect, a reduction in blood oxygen (O(2)) carrying capacity at low pH, is used by many fish species to maximize O(2) delivery to the eye and swimbladder. It is believed to have evolved in the basal actinopterygian lineage of fishes, species that lack the intracellular pH (pH(i)) protection mechanism of more derived species' red blood cells (i.e., adrenergically activated Na(+)/H(+) exchangers; betaNHE). These basal actinopterygians may consequently experience a reduction in blood O(2) carrying capacity, and thus O(2) uptake at the gills, during hypoxia- and exercise-induced generalized blood acidoses. We analyzed the hemoglobins (Hbs) of seven species within this group [American paddlefish (Polyodon spathula), white sturgeon (Acipenser transmontanus), spotted gar (Lepisosteus oculatus), alligator gar (Atractosteus spatula), bowfin (Amia calva), mooneye (Hiodon tergisus), and pirarucu (Arapaima gigas)] for their Root effect characteristics so as to test the hypothesis of the Root effect onset pH value being lower than those pH values expected during a generalized acidosis in vivo. Analysis of the haemolysates revealed that, although each of the seven species displayed Root effects (ranging from 7.3 to 40.5% desaturation of Hb with O(2), i.e., Hb O(2) desaturation), the Root effect onset pH values of all species are considerably lower (ranging from pH 5.94 to 7.04) than the maximum blood acidoses that would be expected following hypoxia or exercise (pH(i) 7.15-7.3). Thus, although these primitive fishes possess Hbs with large Root effects and lack any significant red blood cell betaNHE activity, it is unlikely that the possession of a Root effect would impair O(2) uptake at the gills following a generalized acidosis of the blood. As well, it was shown that both maximal Root effect and Root effect onset pH values increased significantly in bowfin over those of the more basal species, toward values of similar magnitude to those of most of the more derived

  2. The evolution of Root effect hemoglobins in the absence of intracellular pH protection of the red blood cell: insights from primitive fishes.

    PubMed

    Regan, Matthew D; Brauner, Colin J

    2010-06-01

    The Root effect, a reduction in blood oxygen (O(2)) carrying capacity at low pH, is used by many fish species to maximize O(2) delivery to the eye and swimbladder. It is believed to have evolved in the basal actinopterygian lineage of fishes, species that lack the intracellular pH (pH(i)) protection mechanism of more derived species' red blood cells (i.e., adrenergically activated Na(+)/H(+) exchangers; betaNHE). These basal actinopterygians may consequently experience a reduction in blood O(2) carrying capacity, and thus O(2) uptake at the gills, during hypoxia- and exercise-induced generalized blood acidoses. We analyzed the hemoglobins (Hbs) of seven species within this group [American paddlefish (Polyodon spathula), white sturgeon (Acipenser transmontanus), spotted gar (Lepisosteus oculatus), alligator gar (Atractosteus spatula), bowfin (Amia calva), mooneye (Hiodon tergisus), and pirarucu (Arapaima gigas)] for their Root effect characteristics so as to test the hypothesis of the Root effect onset pH value being lower than those pH values expected during a generalized acidosis in vivo. Analysis of the haemolysates revealed that, although each of the seven species displayed Root effects (ranging from 7.3 to 40.5% desaturation of Hb with O(2), i.e., Hb O(2) desaturation), the Root effect onset pH values of all species are considerably lower (ranging from pH 5.94 to 7.04) than the maximum blood acidoses that would be expected following hypoxia or exercise (pH(i) 7.15-7.3). Thus, although these primitive fishes possess Hbs with large Root effects and lack any significant red blood cell betaNHE activity, it is unlikely that the possession of a Root effect would impair O(2) uptake at the gills following a generalized acidosis of the blood. As well, it was shown that both maximal Root effect and Root effect onset pH values increased significantly in bowfin over those of the more basal species, toward values of similar magnitude to those of most of the more derived

  3. Effects of ramped amplitude waveforms on the onset response of high-frequency mammalian nerve block

    NASA Astrophysics Data System (ADS)

    Miles, J. D.; Kilgore, K. L.; Bhadra, N.; Lahowetz, E. A.

    2007-12-01

    Though high-frequency alternating current (HFAC) can block nerve conduction, the block is invariably preceded by an onset response which is a period of repetitive nerve firing. We tested the hypothesis that slowly ramping up the amplitude of the HFAC waveform could produce block without this initial onset response. Computer simulations were performed, using the McIntyre-Richardson-Grill (MRG) model of myelinated mammalian axon. A ramped-amplitude HFAC was applied to axons of diameters ranging from 7.3 µm to 16 µm and at frequencies ranging from 3125 Hz to 40 kHz. The ramped-amplitude HFAC was also investigated in vivo in preparations of rat sciatic nerve. Sinusoidal voltage-regulated waveforms, at frequencies between 10 kHz and 30 kHz, were applied with initial amplitudes of 0 V, linearly increasing with time to 10 V. Ramp durations ranged from 0 s to 60 s. In both the MRG model simulations and the experiments, ramping the HFAC waveform did not eliminate the onset response. In the rat experiments, the peak amplitude of the onset response was lessened by ramping the amplitude, but both the onset response duration and the amount of onset activity as measured by the force-time integral were increased.

  4. Metabolic Rate Limits the Effect of Sperm Competition on Mammalian Spermatogenesis

    PubMed Central

    delBarco-Trillo, Javier; Tourmente, Maximiliano; Roldan, Eduardo R. S.

    2013-01-01

    Sperm competition leads to increased sperm production in many taxa. This response may result from increases in testes size, changes in testicular architecture or changes in the kinetics of spermatogenesis, but the impact of each one of these processes on sperm production has not been studied in an integrated manner. Furthermore, such response may be limited in species with low mass-specific metabolic rate (MSMR), i.e., large-bodied species, because they cannot process energy and resources efficiently enough both at the organismic and cellular levels. Here we compare 99 mammalian species and show that higher levels of sperm competition correlated with a) higher proportions of seminiferous tubules, b) shorter seminiferous epithelium cycle lengths (SECL) which reduce the time required to produce sperm, and c) higher efficiencies of Sertoli cells (involved in sperm maturation). These responses to sperm competition, in turn, result in higher daily sperm production, more sperm stored in the epididymides, and more sperm in the ejaculate. However, the two processes that require processing resources at faster rates (SECL and efficiency of Sertoli cells) only respond to sperm competition in species with high MSMR. Thus, increases in sperm production with intense sperm competition occur via a complex network of mechanisms, but some are constrained by MSMR. PMID:24069461

  5. Effects of mammalian in utero heat stress on adolescent body temperature.

    PubMed

    Johnson, Jay S; Boddicker, Rebecca L; Sanz-Fernandez, M Victoria; Ross, Jason W; Selsby, Josh T; Lucy, Matt C; Safranski, Tim J; Rhoads, Rob P; Baumgard, Lance H

    2013-11-01

    In utero hyperthermia can cause a variety of developmental issues, but how it alters mammalian body temperature during adolescence is not well-understood. Study objectives were to determine the extent to which in utero hyperthermia affects future phenotypic responses to a heat load. Pregnant first parity pigs were exposed to thermal neutral (TN) or heat stress (HS) conditions during the entire gestation. Of the resultant offspring, 12 were housed in TN conditions, and 12 were maintained in HS conditions for 15 days. Adolescent pigs in HS conditions had increased rectal temperature and respiration rate (RR) compared to TN pigs, regardless of gestational treatment. Within the HS environment, no gestational difference in RR was detected; however, GHS pigs had increased rectal temperature compared to GTN pigs. As rectal temperature increased, GTN pigs had a more rapid increase in RR compared to the GHS pigs. Adolescent HS decreased nutrient intake, and body weight gain, but neither variable was statistically influenced by gestational treatments. In summary, in utero HS compromises the future thermoregulatory response to a thermal insult.

  6. The Effect of Vitamin D Supplementation on Adiposity, Blood Glycated Hemoglobin, Serum Leptin and Tumor Necrosis Factor-α in Type 2 Diabetic Patients

    PubMed Central

    Ghavamzadeh, Saeid; Mobasseri, Majid; Mahdavi, Reza

    2014-01-01

    Background: Since tumor necrosis factor-α (TNF-α) could be one of the risk factors at the development of diabetes complications; as well as serum leptin deficiency is related to increased susceptibility to infections in diabetic patients, they are potential indices from the preventive medicine viewpoint. This study was conducted to represent the effect of supplemental vitamin D3 on serum leptin, TNF-α and adiposity in type 2 diabetic patients. Methods: In this randomized double-blind placebo-controlled trial, study sample was selected through type 2 diabetic patients (n = 51). A total of 26 patients were orally supplemented by vitamin D3 (400 IU/d) (vitamin D group) and 25 patients by placebo (placebo group) for 14 weeks. The blood glycated hemoglobin (HbA1c) and the serum ionized Ca, leptin, TNF-α, and serum 25-hydroxyvitamin D (25[OH] D) were measured at the two groups in the baseline and postintervention stages. Results: It was shown that despite of theplacebo group, serum 25(OH) D and serum leptin was significantly increased (P = 0.001 and P = 0.002, respectively), while serum TNF-α was decreased significantly (P = 0.001) in vitamin D group. The remaining parameters, including body fat mass and HbA1c had no alterations between baseline and postintervention stages in vitamin D group. Conclusions: This study may advocate vitamin D supplementation among type 2 diabetic patients due to its beneficial effects on prevention of diabetes complications. PMID:25317290

  7. Volume expansion with modified hemoglobin solution, colloids, or crystalloid after hemorrhagic shock in rabbits: effects in skeletal muscle oxygen pressure and use versus arterial blood velocity and resistance.

    PubMed

    Boura, Cédric; Caron, Alexis; Longrois, Dan; Mertes, Paul Michel; Labrude, Pierre; Menu, Patrick

    2003-02-01

    Therapeutic goals for hemorrhagic shock resuscitation are the increase of cardiac output and oxygen delivery. The possibility exists that because of microcirculatory effects, different volume expanders result in different tissue oxygen delivery and oxygen use. In a rabbit model of resuscitation from hemorrhagic shock (50% blood loss), we compared the effects of an hemoglobin-based O2-carrying solution (HbOC) with those elicited by albumin, hydroxyethyl starch (HES), or saline on systemic hemodynamics, skeletal muscle O2 pressure (PtiO2), and interstitial concentration of lactate (LACi) through the combined implantation of a microdialysis probe and a sensitive O2 electrode into the hind limb. Hemorrhagic shock induced a 50% decrease in mean arterial pressure (MAP), femoral artery blood flow (BF), and PtiO2. After resuscitation, there were statistically significant differences among the volume expanders. The increase in MAP was faster with HbOC and colloids, and slower with saline, mainly obtained by vasoconstriction for HbOC and by increased BF with albumin and HES. The maximum MAP values were significantly higher for HbOC compared with the other volume expanders. HbOC and colloids induced a faster increase in PtiO2 as compared with saline, but maximum PtiO2 values were not different among the volume expanders. Tissue oxygen use as estimated by LACi increased transiently at the beginning of volume expansion with similar maximum values. Animals resuscitated with saline had significantly higher LACi concentrations after the onset of volume expansion as compared with HbOC but not with colloids. Our results demonstrate that there are measurable differences in MAP and BF upon resuscitation with the four different solutions and there is a slower increase in tissue PtiO2 with saline than with colloids associated with significantly increased LACi consistent with delayed reoxygenation upon resuscitation with saline.

  8. The effect of space microgravity on the physiological activity of mammalian resident cardiac stem cells

    NASA Astrophysics Data System (ADS)

    Belostotskaya, Galina; Zakharov, Eugeny

    Prolonged exposure to weightlessness during space flights is known to cause depression of heart function in mammals. The decrease in heart weight and its remodeling under the influence of prolonged weightlessness (or space microgravity) is assumed to be due to both morphological changes of working cardiomyocytes and their progressive loss, as well as to possible depletion of resident cardiac stem cells (CSCs) population, or their inability to self-renewal and regeneration of muscle tissue under conditions of weightlessness. We have previously shown that the presence of different maturity clones formed by resident CSCs not only in culture but also in the mammalian myocardium can be used as an indicator of the regenerative activity of myocardial cells [Belostotskaya, et al., 2013: 2014]. In this study, we were interested to investigate whether the 30-day near-Earth space flight on the spacecraft BION-M1 affects the regenerative potential of resident CSCs. Immediately after landing of the spacecraft, we had examined the presence of resident c-kit+, Sca-1+ and Isl1+ CSCs and their development in suspension of freshly isolated myocardial cells of C57BL mice in comparison to controls. Cardiac cell suspension was obtained by enzymatic digestion of the heart [Belostotskaya and Golovanova, 2014]. Immunocytochemically stained preparations of fixed cells were analyzed with confocal microscope Leica TCS SP5 (Germany) in the Resource Center of St-Petersburg State University. CSCs were labeled with appropriate antibodies. CSCs differentiation into mature cardiomyocytes was verified using antibodies to Sarcomeric α-Actinin and Cardiac Troponin T. Antibodies to Connexin43 were used to detect cell-cell contacts. All antibodies were conjugated with Alexa fluorochromes (488, 532, 546, 568, 594 and/or 647 nm), according to Zenon-technology (Invitrogen). It has been shown that, under identical conditions of cell isolation, more complete digestion of heart muscle was observed in

  9. Effects of genome-wide copy number variation on expression in mammalian cells

    PubMed Central

    2011-01-01

    Background There is only a limited understanding of the relation between copy number and expression for mammalian genes. We fine mapped cis and trans regulatory loci due to copy number change for essentially all genes using a human-hamster radiation hybrid (RH) panel. These loci are called copy number expression quantitative trait loci (ceQTLs). Results Unexpected findings from a previous study of a mouse-hamster RH panel were replicated. These findings included decreased expression as a result of increased copy number for 30% of genes and an attenuated relationship between expression and copy number on the X chromosome suggesting an Xist independent form of dosage compensation. In a separate glioblastoma dataset, we found conservation of genes in which dosage was negatively correlated with gene expression. These genes were enriched in signaling and receptor activities. The observation of attenuated X-linked gene expression in response to increased gene number was also replicated in the glioblastoma dataset. Of 523 gene deserts of size > 600 kb in the human RH panel, 325 contained trans ceQTLs with -log10 P > 4.1. Recently discovered genes, ultra conserved regions, noncoding RNAs and microRNAs explained only a small fraction of the results, suggesting a substantial portion of gene deserts harbor as yet unidentified functional elements. Conclusion Radiation hybrids are a useful tool for high resolution mapping of cis and trans loci capable of affecting gene expression due to copy number change. Analysis of two independent radiation hybrid panels show agreement in their findings and may serve as a discovery source for novel regulatory loci in noncoding regions of the genome. PMID:22085887

  10. The effects of calystegines isolated from edible fruits and vegetables on mammalian liver glycosidases.

    PubMed

    Asano, N; Kato, A; Matsui, K; Watson, A A; Nash, R J; Molyneux, R J; Hackett, L; Topping, J; Winchester, B

    1997-12-01

    The polyhydroxylated nortropane alkaloids called calystegines occur in many plants of the Convolvulaceae, Solanaceae, and Moraceae families. Certain of these alkaloids exhibit potent inhibitory activities against glycosidases and the recently demonstrated occurrence of calystegines in the leaves, skins, and sprouts of potatoes (Solanum tuberosum), and in the leaves of the eggplant (S. melongena), has raised concerns regarding the safety of these vegetables in the human diet. We have surveyed the occurrence of calystegines in edible fruits and vegetables of the families Convolvulaceae, Solanaceae, and Moraceae by GC-MS. Calystegines A3, B1, B2, and C1 were detected in all the edible fruits and vegetables tested; sweet and chili peppers, potatoes, eggplants, tomatoes, Physalis fruits, sweet potatoes, and mulberries. Calystegines B1 and C1 were potent competitive inhibitors of the bovine, human, and rat beta-glucosidase activities, with Ki values of 150, 10, and 1.9 microM, respectively for B1 and 15, 1.5, and 1 microM, respectively, for C1. Calystegine B2 was a strong competitive inhibitor of the alpha-galactosidase activity in all the livers. Human beta-xylosidase was inhibited by all four nortropanes, with calystegine C1 having a Ki of 0.13 microM. Calystegines A3 and B2 selectively inhibited the rat liver beta-glucosidase activity. The potent inhibition of mammalian beta-glucosidase and alpha-galactosidase activities in vitro raises the possibility of toxicity in humans consuming large amounts of plants that contain these compounds.

  11. Effects of Intermediates between Vitamins K2 and K3 on Mammalian DNA Polymerase Inhibition and Anti-Inflammatory Activity

    PubMed Central

    Mizushina, Yoshiyuki; Maeda, Jun; Irino, Yasuhiro; Nishida, Masayuki; Nishiumi, Shin; Kondo, Yasuyuki; Nishio, Kazuyuki; Kuramochi, Kouji; Tsubaki, Kazunori; Kuriyama, Isoko; Azuma, Takeshi; Yoshida, Hiromi; Yoshida, Masaru

    2011-01-01

    Previously, we reported that vitamin K3 (VK3), but not VK1 or VK2 (=MK-4), inhibits the activity of human DNA polymerase γ (pol γ). In this study, we chemically synthesized three intermediate compounds between VK2 and VK3, namely MK-3, MK-2 and MK-1, and investigated the inhibitory effects of all five compounds on the activity of mammalian pols. Among these compounds, MK-2 was the strongest inhibitor of mammalian pols α, κ and λ, which belong to the B, Y and X families of pols, respectively; whereas VK3 was the strongest inhibitor of human pol γ, an A-family pol. MK-2 potently inhibited the activity of all animal species of pol tested, and its inhibitory effect on pol λ activity was the strongest with an IC50 value of 24.6 μM. However, MK-2 did not affect the activity of plant or prokaryotic pols, or that of other DNA metabolic enzymes such as primase of pol α, RNA polymerase, polynucleotide kinase or deoxyribonuclease I. Because we previously found a positive relationship between pol λ inhibition and anti-inflammatory action, we examined whether these compounds could inhibit inflammatory responses. Among the five compounds tested, MK-2 caused the greatest reduction in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced acute inflammation in mouse ear. In addition, in a cell culture system using mouse macrophages, MK-2 displayed the strongest suppression of the production of tumor necrosis factor (TNF)-α induced by lipopolysaccharide (LPS). Moreover, MK-2 was found to inhibit the action of nuclear factor (NF)-κB. In an in vivo mouse model of LPS-evoked acute inflammation, intraperitoneal injection of MK-2 in mice led to suppression of TNF-α production in serum. In conclusion, this study has identified VK2 and VK3 intermediates, such as MK-2, that are promising anti-inflammatory candidates. PMID:21541047

  12. Free heme and sickle hemoglobin polymerization

    NASA Astrophysics Data System (ADS)

    Uzunova, Veselina V.

    This work investigates further the mechanism of one of the most interesting of the protein self-assembly systems---the polymerization of sickle hemoglobin and the role of free heme in it. Polymerization of sickle hemoglobin is the primary event in the pathology of a chronic hemolytic condition called sickle cell anemia with complex pathogenesis, unexplained variability and symptomatic treatment. Auto-oxidation develops in hemoglobin solutions exposed to room temperature and causes release of ferriheme. The composition of such solutions is investigated by mass spectrometry. Heme dimers whose amount corresponds to the initial amounts of heme released from the protein are followed. Differences in the dimer peak height are established for hemoglobin variants A, S and C and depending on the exposure duration. The effects of free heme on polymerization kinetics are studied. Growth rates and two characteristic parameters of nucleation are measured for stored Hb S. After dialysis of polymerizing solutions, no spherulites are detected at moderately high supersaturation and prolonged exposure times. The addition of 0.16-0.26 mM amounts of heme to dialyzed solutions leads to restoration of polymerization. The measured kinetic parameters have higher values compared to the ones before dialysis. The amount of heme in non-dialyzed aged solution is characterized using spectrophotometry. Three methods are used: difference in absorbance of dialyzed and non-dialyzed solutions, characteristic absorbance of heme-albumin complex and absorbance of non-dialyzed solutions with added potassium cyanide. The various approaches suggest the presence of 0.12 to 0.18 mM of free ferriheme in such solutions. Open questions are whether the same amounts of free heme are present in vivo and whether the same mechanism operates intracellulary. If the answer to those questions is positive, then removal of free heme from erythrocytes can influence their readiness to sickle.

  13. The Effects of 6 Isocaloric Meals Pattern on Blood Lipid Profile, Glucose, Hemoglobin A1c, Insulin and Malondialdehyde in Type 2 Diabetic Patients: A Randomized Clinical Trial

    PubMed Central

    Salehi, Moosa; Kazemi, Asma; Hasan Zadeh, Jafar

    2014-01-01

    Background: The present clinical trial study aims at investigating the effect of daily energy intake in 6 isocaloric meals in comparison with the current meal pattern (3 meals and 2 small snacks per day) on type 2 diabetes risk markers in diabetes during 3-month period. Methods: Eighty four type 2 diabetes patients were randomly divided into 6 isocaloric meal diet or a balanced diet (3 meals and 2 snacks previous meal pattern). The planned reduced calorie diets for both groups were identical except for the meal pattern. Blood samples were analyzed before and after the investigation for fasting blood sugar (FBS), two-hour post-prandial glucose (2hPP), insulin, hemoglobin A1c (HbA1c), total cholesterol, triglyceride, HDL-C, LDL-C, and molondialdehyde (MDA) concentrations. Results: HbA1c (P=0.00) and body mass index (BMI) (P=0.04) values decreased significantly in the 6 isocaloric meal pattern compared with the controls. There were no significant differences in fasting serum glucose (P=0.09), insulin (P=0.65), total cholesterol (P=0.32), LDL-C (P=0.43), HDL-C (P=0.40) cholesterol, triglyceride (P=0.40), MDA (P=0.13) and 2hPP serum glucose (P=0.30) concentrations between the 6 isocaloric meal and tradition meal pattern. Conclusion: Six isocaloric meal pattern in comparison with the current meal pattern led to weight loss and improved glycemic control. Serum lipid profile and MDA did not change significantly. Trial Registration Number: IRCT201205179780N1 PMID:25242841

  14. Effect of Metformin Glycinate on Glycated Hemoglobin A1c Concentration and Insulin Sensitivity in Drug-Naive Adult Patients with Type 2 Diabetes Mellitus

    PubMed Central

    Martínez-Abundis, Esperanza; Robles-Cervantes, José A.; Ramos-Zavala, Maria G.; Barrera-Durán, Carmelita; González-Canudas, Jorge

    2012-01-01

    Abstract Aim This study evaluated the effect of metformin glycinate on glycated hemoglobin A1c (A1C) concentration and insulin sensitivity in drug-naive adult patients with type 2 diabetes mellitus (T2DM). Subjects and Methods A randomized, double-blind, placebo-controlled clinical trial was carried out in 20 patients with drug-naive T2DM. Ten subjects received metformin glycinate (1,050.6 mg) once daily during the first month and force-titrated twice daily during the second month. Ten additional patients received placebo as the control group. Before and after the intervention, metabolic profile including A1C and insulin sensitivity (euglycemic-hyperinsulinemic clamp technique) was estimated. Results A1C concentrations decreased significantly with metformin glycinate administration (8.0±0.7% vs. 7.1±0.9%, P=0.008) before and after the intervention, respectively. There were significant differences in changes from baseline of A1C between groups (0.0±0.7% vs. −1.0±0.5% for placebo and metformin glycinate groups, respectively; P=0.004). A reduction of ≥1% in A1C levels was reached in 60.0% of patients with metformin glycinate administration (P=0.02). Insulin sensitivity was not modified by the intervention. Conclusions Administration of metformin glycinate during a 2-month period showed a greater decrease in A1C concentrations than placebo in a selected group of drug-naive adult patients with T2DM. PMID:22974412

  15. Effects of Age, Hemoglobin Type and Parasite Strain on IgG Recognition of Plasmodium falciparum–Infected Erythrocytes in Malian Children

    PubMed Central

    Zeituni, Amir E.; Miura, Kazutoyo; Diakite, Mahamadou; Doumbia, Saibou; Moretz, Samuel E.; Diouf, Ababacar; Tullo, Gregory; Lopera-Mesa, Tatiana M.; Bess, Cameron D.; Mita-Mendoza, Neida K.; Anderson, Jennifer M.; Fairhurst, Rick M.; Long, Carole A.

    2013-01-01

    Background Naturally-acquired antibody responses to antigens on the surface of Plasmodium falciparum-infected red blood cells (iRBCs) have been implicated in antimalarial immunity. To profile the development of this immunity, we have been studying a cohort of Malian children living in an area with intense seasonal malaria transmission. Methodology/Principal Findings We collected plasma from a sub-cohort of 176 Malian children aged 3-11 years, before (May) and after (December) the 2009 transmission season. To measure the effect of hemoglobin (Hb) type on antibody responses, we enrolled age-matched HbAA, HbAS and HbAC children. To quantify antibody recognition of iRBCs, we designed a high-throughput flow cytometry assay to rapidly test numerous plasma samples against multiple parasite strains. We evaluated antibody reactivity of each plasma sample to 3 laboratory-adapted parasite lines (FCR3, D10, PC26) and 4 short-term-cultured parasite isolates (2 Malian and 2 Cambodian). 97% of children recognized ≥1 parasite strain and the proportion of IgG responders increased significantly during the transmission season for most parasite strains. Both strain-specific and strain-transcending IgG responses were detected, and varied by age, Hb type and parasite strain. In addition, the breadth of IgG responses to parasite strains increased with age in HbAA, but not in HbAS or HbAC, children. Conclusions/Significance Our assay detects both strain-specific and strain-transcending IgG responses to iRBCs. The magnitude and breadth of these responses varied not only by age, but also by Hb type and parasite strain used. These findings indicate that studies of acquired humoral immunity should account for Hb type and test large numbers of diverse parasite strains. PMID:24124591

  16. Metabonomic Analysis Reveals Efficient Ameliorating Effects of Acupoint Stimulations on the Menopause-caused Alterations in Mammalian Metabolism

    NASA Astrophysics Data System (ADS)

    Zhang, Limin; Wang, Yulan; Xu, Yunxiang; Lei, Hehua; Zhao, Ying; Li, Huihui; Lin, Xiaosheng; Chen, Guizhen; Tang, Huiru

    2014-01-01

    Acupoint stimulations are effective in ameliorating symptoms of menopause which is an unavoidable ageing consequence for women. To understand the mechanistic aspects of such treatments, we systematically analyzed the effects of acupoint laser-irradiation and catgut-embedding on the ovariectomy-induced rat metabolic changes using NMR and GC-FID/MS methods. Results showed that ovariectomization (OVX) caused comprehensive metabolic changes in lipid peroxidation, glycolysis, TCA cycle, choline and amino acid metabolisms. Both acupoint laser-irradiation and catgut-embedding ameliorated the OVX-caused metabonomic changes more effectively than hormone replacement therapy (HRT) with nilestriol. Such effects of acupoint stimulations were highlighted in alleviating lipid peroxidation, restoring glucose homeostasis and partial reversion of the OVX-altered amino acid metabolism. These findings provided new insights into the menopause effects on mammalian biochemistry and beneficial effects of acupoint stimulations in comparison with HRT, demonstrating metabonomics as a powerful approach for potential applications in disease prognosis and developments of effective therapies.

  17. Transition of hemoglobin between two tertiary conformations: The transition constant differs significantly for the major and minor hemoglobins of the Japanese quail (Cortunix cortunix japonica).

    PubMed

    Okonjo, Kehinde Onwochei; Bello, Olugbenga S; Babalola, J Oyebamiji

    2008-03-01

    We demonstrate that 5,5'-dithiobis(2-nitrobenzoate) - DTNB - reacts with only CysF9[93]beta and CysB5[23]beta among the multiple sulfhydryl groups of the major and minor hemoglobins of the Japanese quail (Cortunix cortunix japonica). K(equ), the equilibrium constant for the reaction, does not differ very significantly between the two hemoglobins. It decreases 430-fold between pH approximately 5.6 and pH approximately 9: from a mean of 7+/-1 to a mean of 0.016+/-0.003. Quantitative analyses of the K(equ) data based on published X-ray and temperature-jump evidence for a tertiary structure transition in liganded hemoglobin enable the calculation of K(rt), the equilibrium constant for the r<---->t tertiary structure transition. K(rt) differs significantly between the two hemoglobins: 0.744+/-0.04 for the major, 0.401+/-0.01 for the minor hemoglobin. The mean pK(a)s of the two groups whose ionizations are coupled to the DTNB reaction are about the same as previously reported for mammalian hemoglobins.

  18. Reactions of arsine with hemoglobin

    SciTech Connect

    Hatlelid, K.M.; Brailsford, C.; Carter, D.E.

    1996-02-09

    The mechanism of arsine (AsH{sub 3}) induced hemolysis was studied in vitro using isolated red blood cells (RBCs) from the rat or dog. AsH{sub 3}-induced hemolysis of dog red blood cells was completely blocked by carbon monoxide (CO) preincubation and was reduced by pure oxygen (O{sub 2}) compared to incubations in air. Since CO and O{sub 2} bind to heme and also reduced hemolysis, these results suggested a reaction between AsH{sub 3} and hemoglobin in the hemeligand binding pocket or with the heme iron. Further, sodium nitrite induction of methemoglobin (metHb) to 85% and 34% of total Hb in otherwise intact RBCs resulted in 56% and 16% decreases in hemolysis, respectively, after incubation for 4 h. This provided additional evidence for the involvement of hemoglobin in the AsH{sub 3}-induced hemolysis mechanism. Reactions between AsH{sub 3} and hemoglobin were studied in solutions of purified dog hemoglobin. Spectrophotometric studies of the reaction of AsH{sub 3} with various purified hemoglobin species revealed that AsH{sub 3} reacted with HbO{sub 2} to produce metHb and, eventually, degraded Hb characterized by gross precipitation of the protein. AsH{sub 3} did not alter the spectrum of deoxyHb and did not cause degradation of metHb in oxygen, but bound to and reduced metHb in the absence of oxygen. These data indicate that a reaction of AsH{sub 3} with oxygenated hemoglobin, HbO{sub 2}, may lead to hemolysis, but there are reactions between AsH{sub 3} and metHb that may not be directly involved in the hemolytic process. 17 refs., 6 figs.

  19. A review of variant hemoglobins interfering with hemoglobin A1c measurement.

    PubMed

    Little, Randie R; Roberts, William L

    2009-05-01

    Hemoglobin A1c (HbA1c) is used routinely to monitor long-term glycemic control in people with diabetes mellitus, as HbA1c is related directly to risks for diabetic complications. The accuracy of HbA1c methods can be affected adversely by the presence of hemoglobin (Hb) variants or elevated levels of fetal hemoglobin (HbF). The effect of each variant or elevated HbF must be examined with each specific method. The most common Hb variants worldwide are HbS, HbE, HbC, and HbD. All of these Hb variants have single amino acid substitutions in the Hb beta chain. HbF is the major hemoglobin during intrauterine life; by the end of the first year, HbF falls to values close to adult levels of approximately 1%. However, elevated HbF levels can occur in certain pathologic conditions or with hereditary persistence of fetal hemoglobin. In a series of publications over the past several years, the effects of these four most common Hb variants and elevated HbF have been described. There are clinically significant interferences with some methods for each of these variants. A summary is given showing which methods are affected by the presence of the heterozygous variants S, E, C, and D and elevated HbF. Methods are divided by type (immunoassay, ion-exchange high-performance liquid chromatography, boronate affinity, other) with an indication of whether the result is artificially increased or decreased by the presence of a Hb variant. Laboratorians should be aware of the limitations of their method with respect to these interferences.

  20. [Homozygous hemoglobin-E (Hb-EE) disease].

    PubMed

    Amendola, G; Danise, P; Di Palma, A; Franzese, M; Avino, D; D'Arco, A M

    2004-01-01

    The Authors report on a 16 year-old girl, of Cambodian descent, who was admitted to the hospital for hematuria. She showed a mild microcytic, hypochromic anemia with a normal iron balance; clinical examination was normal with neither pallor nor icterus nor splenomegaly; electrophoresis of hemoglobin yielded no hemoglobin A, a sligtly increased amount of HbF and a single band with a mobility similar to that of HbA2; the patient showed no evidence of overt increased hemolysis. With the DNA technology a final diagnosis of homozygous hemoglobin E was made. Hemoglobin E is the most common Hb variant among Southeast Asian populations. The Authors discuss on the benign nature of Hb-EE disease, pointing out that the presence of a single HbE gene in combination with that for beta-thalassemia leads generally to a disorder often comparable in severity to that of homozygous beta-thalassemia. With the recent migration of a high number of people from the countries, where HbE is extremely frequent, to the Western world (including Italy), this thalassemia syndrome is now a global health problem; therefore its knowledge is an important diagnostic challenge to all the experts involved in the care of thalassemic patients.

  1. Pancreatic ascites hemoglobin contributes to the systemic response in acute pancreatitis.

    PubMed

    Pérez, Salvador; Pereda, Javier; Sabater, Luis; Sastre, Juan

    2015-04-01

    Upon hemolysis extracellular hemoglobin causes oxidative stress and cytotoxicity due to its peroxidase activity. Extracellular hemoglobin may release free hemin, which increases vascular permeability, leukocyte recruitment, and adhesion molecule expression. Pancreatitis-associated ascitic fluid is reddish and may contain extracellular hemoglobin. Our aim has been to determine the role of extracellular hemoglobin in the local and systemic inflammatory response during severe acute pancreatitis in rats. To this end we studied taurocholate-induced necrotizing pancreatitis in rats. First, extracellular hemoglobin in ascites and plasma was quantified and the hemolytic action of ascitic fluid was tested. Second, we assessed whether peritoneal lavage prevented the increase in extracellular hemoglobin in plasma during pancreatitis. Third, hemoglobin was purified from rat erythrocytes and administered intraperitoneally to assess the local and systemic effects of ascitic-associated extracellular hemoglobin during acute pancreatitis. Extracellular hemoglobin and hemin levels markedly increased in ascitic fluid and plasma during necrotizing pancreatitis. Peroxidase activity was very high in ascites. The peritoneal lavage abrogated the increase in extracellular hemoglobin in plasma. The administration of extracellular hemoglobin enhanced ascites; dramatically increased abdominal fat necrosis; upregulated tumor necrosis factor-α, interleukin-1β, and interleukin-6 gene expression; and decreased expression of interleukin-10 in abdominal adipose tissue during pancreatitis. Extracellular hemoglobin enhanced the gene expression and protein levels of vascular endothelial growth factor (VEGF) and other hypoxia-inducible factor-related genes in the lung. Extracellular hemoglobin also increased myeloperoxidase activity in the lung. In conclusion, extracellular hemoglobin contributes to the inflammatory response in severe acute pancreatitis through abdominal fat necrosis and inflammation

  2. The Non-Lethal Effects of - and High-Let Radiation on Cultured Mammalian Cells.

    NASA Astrophysics Data System (ADS)

    Walker, James Thomas

    In analyzing post-irradiation growth kinetics of cultured mammalian cells, specifically T1-E human cells, this investigation shows that the shift in post-irradiation clone-size distributions toward small colonies is due to both radiation-induced division delay and increased generation times of the irradiated population. Evidence also indicates that the final shape of the final clone-size distribution is influenced by the age density distribution of the parent cells at the time of plating. From computer-generated delay time distributions it was determined that a large percentage of the parent population was found to be in the plateau phase at early growth times and evidence indicates that these cells may contribute heavily to the total population response to radiation. Clone-size distributions of cells exposed to various LETs were obtained by an image analysis technique, and it was found that the loss of large colonies was dose and LET dependent in what appeared to be a systematic way. Dose response data suggest two predominant subpopulations, resistant and sensitive cells, as evidenced by their biphasic behavior. It appears that the sensitive population responds via "single hit" kinetics and the resistant population via "dose squared" kinetics. The (alpha)-component for the sensitive population varied as a function of LET in a similar way to that for survival. The (beta)-component for the resistant population increased with LET in the range between. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI). and decreased for higher LET values. The action cross section for this form of heritable damage appears to equal that of the geometric nuclear cross section of the cell, but was found to be different for resistant and sensitive cells. This difference may be due to the distribution of nuclear cross section which depends on the age distribution of the cell population at the time of radiation exposure. The RBE for the induction of small colonies, and the reduction of

  3. Switching Patients with Non-Dialysis Chronic Kidney Disease from Oral Iron to Intravenous Ferric Carboxymaltose: Effects on Erythropoiesis-Stimulating Agent Requirements, Costs, Hemoglobin and Iron Status

    PubMed Central

    Toblli, Jorge Eduardo; Di Gennaro, Federico

    2015-01-01

    Background Patients with non-dialysis-dependent chronic kidney disease (ND-CKD) often receive an erythropoiesis-stimulating agent (ESA) and oral iron treatment. This study evaluated whether a switch from oral iron to intravenous ferric carboxymaltose can reduce ESA requirements and improve iron status and hemoglobin in patients with ND-CKD. Methods This prospective, single arm and single-center study included adult patients with ND-CKD (creatinine clearance ≤40 mL/min), hemoglobin 11–12 g/dL and iron deficiency (ferritin <100 μg/L or transferrin saturation <20%), who were regularly treated with oral iron and ESA during 6 months prior to inclusion. Study patients received an intravenous ferric carboxymaltose dose of 1,000 mg iron, followed by a 6-months ESA/ ferric carboxymaltose maintenance regimen (target: hemoglobin 12 g/dL, transferrin saturation >20%). Outcome measures were ESA dose requirements during the observation period after initial ferric carboxymaltose treatment (primary endpoint); number of hospitalizations and transfusions, renal function before and after ferric carboxymaltose administration, number of adverse reactions (secondary endpoints). Hemoglobin, mean corpuscular volume, ferritin and transferrin saturation were measured monthly from baseline until end of study. Creatinine clearance, proteinuria, C-reactive protein, aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase bimonthly from baseline until end of study. Results Thirty patients were enrolled (age 70.1±11.4 years; mean±SD). Mean ESA consumption was significantly reduced by 83.2±10.9% (from 41,839±3,668 IU/patient to 6,879±4,271 IU/patient; p<0.01). Hemoglobin increased by 0.7±0.3 g/dL, ferritin by 196.0±38.7 μg/L and transferrin saturation by 5.3±2.9% (month 6 vs. baseline; all p<0.01). No ferric carboxymaltose-related adverse events were reported and no patient withdrew or required transfusions during the study. Conclusion Among patients with ND

  4. Effect of the synthesis of rice non-symbiotic hemoglobins 1 and 2 in the recombinant Escherichia coli TB1 growth

    PubMed Central

    Álvarez-Salgado, Emma; Arredondo-Peter, Raúl

    2016-01-01

    Non-symbiotic hemoglobins (nsHbs) are widely distributed in land plants, including rice. These proteins are classified into type 1 (nsHbs-1) and type 2. The O 2-affinity of nsHbs-1 is very high mostly because of an extremely low O 2-dissociation rate constant resulting in that nsHbs-1 apparently do not release O 2 after oxygenation. Thus, it is possible that the in vivo function of nsHbs-1 is other than O 2-transport. Based on the properties of multiple Hbs it was proposed that nsHbs-1 could play diverse roles in rice organs, however the in vivo activity of rice nsHbs-1 has been poorly analyzed. An in vivo analysis for rice nsHbs-1 is essential to elucidate the biological function(s) of these proteins. Rice Hb1 and Hb2 are nsHbs-1 that have been generated in recombinant Es cherichia coli TB1. The rice Hb1 and Hb2 amino acid sequence, tertiary structure and rate and equilibrium constants for the reaction of O 2 are highly similar. Thus, it is possible that rice Hb1 and Hb2 function similarly in vivo. As an initial approach to test this hypothesis we analyzed the effect of the synthesis of rice Hb1 and Hb2 in the recombinant E. coli TB1 growth. Effect of the synthesis of the O 2-carrying soybean leghemoglobin a, cowpea leghemoglobin II and Vitreoscilla Hb in the recombinant E. coli TB1 growth was also analyzed as an O 2-carrier control. Our results showed that synthesis of rice Hb1, rice Hb2, soybean Lb a, cowpea LbII and Vitreoscilla Hb inhibits the recombinant E. coli TB1 growth and that growth inhibition was stronger when recombinant E. coli TB1 synthesized rice Hb2 than when synthesized rice Hb1. These results suggested that rice Hb1 and Hb2 could function differently in vivo. PMID:26973784

  5. THE PREPARATION OF COMPLETELY COAGULATED HEMOGLOBIN

    PubMed Central

    Anson, M. L.; Mirsky, A. E.

    1929-01-01

    As a preliminary to the study of the reversal of the coagulation of hemoglobin several methods are described for the preparation of completely denatured and coagulated hemoglobin and the evidence is given that hemoglobin is a typical coagulable protein. PMID:19872511

  6. Visualizing the Bohr effect in hemoglobin: neutron structure of equine cyanomethemoglobin in the R state and comparison with human deoxyhemoglobin in the T state.

    PubMed

    Dajnowicz, Steven; Seaver, Sean; Hanson, B Leif; Fisher, S Zoë; Langan, Paul; Kovalevsky, Andrey Y; Mueser, Timothy C

    2016-07-01

    Neutron crystallography provides direct visual evidence of the atomic positions of deuterium-exchanged H atoms, enabling the accurate determination of the protonation/deuteration state of hydrated biomolecules. Comparison of two neutron structures of hemoglobins, human deoxyhemoglobin (T state) and equine cyanomethemoglobin (R state), offers a direct observation of histidine residues that are likely to contribute to the Bohr effect. Previous studies have shown that the T-state N-terminal and C-terminal salt bridges appear to have a partial instead of a primary overall contribution. Four conserved histidine residues [αHis72(EF1), αHis103(G10), αHis89(FG1), αHis112(G19) and βHis97(FG4)] can become protonated/deuterated from the R to the T state, while two histidine residues [αHis20(B1) and βHis117(G19)] can lose a proton/deuteron. αHis103(G10), located in the α1:β1 dimer interface, appears to be a Bohr group that undergoes structural changes: in the R state it is singly protonated/deuterated and hydrogen-bonded through a water network to βAsn108(G10) and in the T state it is doubly protonated/deuterated with the network uncoupled. The very long-term H/D exchange of the amide protons identifies regions that are accessible to exchange as well as regions that are impermeable to exchange. The liganded relaxed state (R state) has comparable levels of exchange (17.1% non-exchanged) compared with the deoxy tense state (T state; 11.8% non-exchanged). Interestingly, the regions of non-exchanged protons shift from the tetramer interfaces in the T-state interface (α1:β2 and α2:β1) to the cores of the individual monomers and to the dimer interfaces (α1:β1 and α2:β2) in the R state. The comparison of regions of stability in the two states allows a visualization of the conservation of fold energy necessary for ligand binding and release.

  7. Visualizing the Bohr effect in hemoglobin: neutron structure of equine cyanomethemoglobin in the R state and comparison with human deoxyhemoglobin in the T state.

    PubMed

    Dajnowicz, Steven; Seaver, Sean; Hanson, B Leif; Fisher, S Zoë; Langan, Paul; Kovalevsky, Andrey Y; Mueser, Timothy C

    2016-07-01

    Neutron crystallography provides direct visual evidence of the atomic positions of deuterium-exchanged H atoms, enabling the accurate determination of the protonation/deuteration state of hydrated biomolecules. Comparison of two neutron structures of hemoglobins, human deoxyhemoglobin (T state) and equine cyanomethemoglobin (R state), offers a direct observation of histidine residues that are likely to contribute to the Bohr effect. Previous studies have shown that the T-state N-terminal and C-terminal salt bridges appear to have a partial instead of a primary overall contribution. Four conserved histidine residues [αHis72(EF1), αHis103(G10), αHis89(FG1), αHis112(G19) and βHis97(FG4)] can become protonated/deuterated from the R to the T state, while two histidine residues [αHis20(B1) and βHis117(G19)] can lose a proton/deuteron. αHis103(G10), located in the α1:β1 dimer interface, appears to be a Bohr group that undergoes structural changes: in the R state it is singly protonated/deuterated and hydrogen-bonded through a water network to βAsn108(G10) and in the T state it is doubly protonated/deuterated with the network uncoupled. The very long-term H/D exchange of the amide protons identifies regions that are accessible to exchange as well as regions that are impermeable to exchange. The liganded relaxed state (R state) has comparable levels of exchange (17.1% non-exchanged) compared with the deoxy tense state (T state; 11.8% non-exchanged). Interestingly, the regions of non-exchanged protons shift from the tetramer interfaces in the T-state interface (α1:β2 and α2:β1) to the cores of the individual monomers and to the dimer interfaces (α1:β1 and α2:β2) in the R state. The comparison of regions of stability in the two states allows a visualization of the conservation of fold energy necessary for ligand binding and release. PMID:27377386

  8. In vitro macrophage uptake and in vivo biodistribution of PLA-PEG nanoparticles loaded with hemoglobin as blood substitutes: effect of PEG content.

    PubMed

    Sheng, Yan; Yuan, Yuan; Liu, Changsheng; Tao, Xinyi; Shan, Xiaoqian; Xu, Feng

    2009-09-01

    The aim of the present work is to investigate the effect of PEG content in copolymer on physicochemical properties, in vitro macrophage uptake, in vivo pharmacokinetics and biodistribution of poly(lactic acid) (PLA)-poly(ethylene glycol) (PEG) hemoglobin (Hb)-loaded nanoparticles (HbP) used as blood substitutes. The HbP were prepared from PLA and PLA-PEG copolymer of varying PEG contents (5, 10, and 20 wt%) by a modified w/o/w method and characterized with regard to their morphology, size, surface charge, drug loading, surface hydrophilicity, and PEG coating efficiency. The in vitro macrophage uptake, in vivo pharmacokinetics, and biodistribution following intravenous administration in mice of HbP labeled with 6-coumarin, were evaluated. The HbP prepared were all in the range of 100-200 nm with highest encapsulation efficiency 87.89%, surface charge -10 to -33 mV, static contact angle from 54.25 degrees to 68.27 degrees , and PEG coating efficiency higher than 80%. Compared with PLA HbP, PEGylation could notably avoid the macrophage uptake of HbP, in particular when the PEG content was 10 wt%, a minimum uptake (6.76%) was achieved after 1 h cultivation. In vivo, besides plasma, the major cumulative organ was the liver. All PLA-PEG HbP exhibited dramatically prolonged blood circulation and reduced liver accumulation, compared with the corresponding PLA HbP. The PEG content in copolymer affected significantly the survival time in blood. Optimum PEG coating (10 wt%) appeared to exist leading to the most prolonged blood circulation of PLA-PEG HbP, with a half-life of 34.3 h, much longer than that obtained by others (24.2 h). These results demonstrated that PEG 10 wt% modified PLA HbP with suitable size, surface charge, and surface hydrophilicity, has a promising potential as long-circulating oxygen carriers with desirable biocompatibility and biofunctionality.

  9. Visualizing the Bohr effect in hemoglobin: neutron structure of equine cyanomethemoglobin in the R state and comparison with human deoxyhemoglobin in the T state

    PubMed Central

    Dajnowicz, Steven; Seaver, Sean; Hanson, B. Leif; Fisher, S. Zoë; Langan, Paul; Kovalevsky, Andrey Y.; Mueser, Timothy C.

    2016-01-01

    Neutron crystallography provides direct visual evidence of the atomic positions of deuterium-exchanged H atoms, enabling the accurate determination of the protonation/deuteration state of hydrated biomolecules. Comparison of two neutron structures of hemoglobins, human deoxyhemoglobin (T state) and equine cyanomethemoglobin (R state), offers a direct observation of histidine residues that are likely to contribute to the Bohr effect. Previous studies have shown that the T-state N-terminal and C-terminal salt bridges appear to have a partial instead of a primary overall contribution. Four conserved histidine residues [αHis72(EF1), αHis103(G10), αHis89(FG1), αHis112(G19) and βHis97(FG4)] can become protonated/deuterated from the R to the T state, while two histidine residues [αHis20(B1) and βHis117(G19)] can lose a proton/deuteron. αHis103(G10), located in the α1:β1 dimer interface, appears to be a Bohr group that undergoes structural changes: in the R state it is singly protonated/deuterated and hydrogen-bonded through a water network to βAsn108(G10) and in the T state it is doubly protonated/deuterated with the network uncoupled. The very long-term H/D exchange of the amide protons identifies regions that are accessible to exchange as well as regions that are impermeable to exchange. The liganded relaxed state (R state) has comparable levels of exchange (17.1% non-exchanged) compared with the deoxy tense state (T state; 11.8% non-exchanged). Interestingly, the regions of non-exchanged protons shift from the tetramer interfaces in the T-state interface (α1:β2 and α2:β1) to the cores of the individual monomers and to the dimer interfaces (α1:β1 and α2:β2) in the R state. The comparison of regions of stability in the two states allows a visualization of the conservation of fold energy necessary for ligand binding and release. PMID:27377386

  10. Effects of enhanced UV-B radiation on secondary metabolites in forage plants and potential consequences for multiple trophic responses involving mammalian herbivores

    NASA Astrophysics Data System (ADS)

    Thines, Nicole J.; Bassman, John H.; Shipley, Lisa A.; Slusser, James R.

    2004-10-01

    Herbivores represent the interface between primary production and higher trophic levels. The effects of enhanced UV-B radiation on microbes, invertebrate herbivores, and detritivores has received limited study in both terrestrial and aquatic ecosystems. However, although direct effects (e.g. melanoma, cataracts) on mammals have been documented, indirect effects (e.g., resulting from changes in plant chemistry) of enhanced UV-B on mammalian herbivores have not been evaluated. Although the diet of mammalian herbivores has little effect on nutritional quality for their associated predators, to the extent changes in plant chemistry affect aspects of population dynamics (e.g., growth, fecundity, densities), higher trophic levels can be affected. In this study, different forage species of varying inherent levels of key secondary metabolites are being grown in the field under either ambient or ambient plus supplemental UV-B radiation simulating a 15% stratospheric ozone depletion for Pullman, Washington. At various time intervals, foliage is being sampled and analyzed for changes in secondary metabolites and other attributes. Using controlled feeding trials, changes in plant secondary metabolites are being related to preference and digestibility in specialist and generalist mammalian hindgut herbivores, digestion in ruminants and non-ruminants, and to selected aspects of population dynamics in mammalian herbivores. Results suggest how UV-B-induced changes in plant secondary chemistry affect animal nutrition, and thus animal productivity in a range of mammalian herbivores. Reductions in palatability and digestibility of plant material along with reductions in fecundity and other aspects of population dynamics could have significant economic ramifications for farmers, ranchers and wildlife biologists.

  11. Effect of GO-Fe3O4 and rotating magnetic field on cellular metabolic activity of mammalian cells.

    PubMed

    Urbas, Karolina; Jedrzejczak-Silicka, Magdalena; Rakoczy, Rafal; Zaborski, Daniel; Mijowska, Ewa

    2016-04-01

    The effect of hybrid material-graphene flakes with Fe3O4 nanospheres (GO-Fe3O4), graphene oxide (GO) and magnetite nanospheres (Fe3O4) in rotating magnetic field on mammalian cells metabolism has been studied. Several reports shown that exposure to magnetic field may have influence on cellular membrane permeability. Thus, the aim of presented study was to determine the cellular response of L929 fibroblast cells to nanomaterials and rotating magnetic field for 8-h exposure experiment. The GO had tendency to adsorb proteins, thus cell metabolism was decreased and the effect of that mechanism was enhanced by impact of nanospheres and rotating magnetic field. The highest reduction of cellular metabolism was recorded for WST-1 and NR assays at concentration 100 µg/mL of all tested nanomaterials and magnetic induction value 10.06 mT. The lactate dehydrogenase leakage assay has shown significant changes in membrane permeability. Further studies need to be carried out to precisely determine the mechanism of that process. PMID:26809700

  12. Radiation effects on the cell-cell communication of mammalian cells

    NASA Astrophysics Data System (ADS)

    Depriest, Kendall Russell

    Recent observations of bystander effects in unirradiated cell populations have focused attention on cell-cell communication, particularly gap junction intercellular communication (GJIC), as a means through which the bystander effect may be transmitted. The bystander expression of CDKN1A in unirradiated AG1522 human fibroblast cells observed in another laboratory was verified. The dose response of the bystander effect in the AG1522 cells showed that the effect had reached its maximum at the lowest alpha-particle fluence tested, 0.013 alpha/nuclei. To test potential mechanisms for communication to bystander cells, the fluorescence recovery after photobleaching technique was used. Only the rat liver epithelial cell line (Clone 9) exhibited GJIC based upon a fluorescence recovery after photobleaching assay, and there was no change in the rate constant for GJIC following exposure to low LET or high LET radiation. The fibroblast cell lines (AG1521, AG1522, and GM5758) showed no evidence of GJIC in three separate assays including immunohistochemistry. Lindane, an inhibitor of GJIC, eliminated the bystander expression of CDKN1A in AG1522 cells while octanol, another inhibitor of GJIC, did not change the bystander expression of the protein. The two chemicals act in different ways to disrupt GJIC and each one may alter other functions as well, so the elimination of the bystander effect by lindane apparently indicates that lindane is interfering with a bystander signaling mechanism that is not mediated by gap junctions. The lack of connexin localization in the cell membrane of the fibroblast cell lines and the elimination of the bystander expression by lindane, but not octanol, indicates that the bystander effect must be mediated by a non-GJIC mechanism. The experimental evidence suggests that the mediator of the bystander expression of CDKN1A in human diploid fibroblasts is most likely an extracellular signal, such as a cytokine, that acts in a calcium-dependent signal

  13. Induction of a bystander mutagenic effect of alpha particles in mammalian cells

    NASA Technical Reports Server (NTRS)

    Zhou, H.; Randers-Pehrson, G.; Waldren, C. A.; Vannais, D.; Hall, E. J.; Hei, T. K.; Chatterjee, A. (Principal Investigator)

    2000-01-01

    Ever since the discovery of X-rays was made by Rontgen more than a hundred years ago, it has always been accepted that the deleterious effects of ionizing radiation such as mutation and carcinogenesis are attributable mainly to direct damage to DNA. Although evidence based on microdosimetric estimation in support of a bystander effect appears to be consistent, direct proof of such extranuclear/extracellular effects are limited. Using a precision charged particle microbeam, we show here that irradiation of 20% of randomly selected A(L) cells with 20 alpha particles each results in a mutant fraction that is 3-fold higher than expected, assuming no bystander modulation effect. Furthermore, analysis by multiplex PCR shows that the types of mutants induced are significantly different from those of spontaneous origin. Pretreatment of cells with the radical scavenger DMSO had no effect on the mutagenic incidence. In contrast, cells pretreated with a 40 microM dose of lindane, which inhibits cell-cell communication, significantly decreased the mutant yield. The doses of DMSO and lindane used in these experiments are nontoxic and nonmutagenic. We further examined the mutagenic yield when 5-10% of randomly selected cells were irradiated with 20 alpha particles each. Results showed, likewise, a higher mutant yield than expected assuming no bystander effects. Our studies provide clear evidence that irradiated cells can induce a bystander mutagenic response in neighboring cells not directly traversed by alpha particles and that cell-cell communication process play a critical role in mediating the bystander phenomenon.

  14. Mitogenic effects of hydroxyapatite and calcium pyrophosphate dihydrate crystals on cultured mammalian cells.

    PubMed

    Cheung, H S; Story, M T; McCarty, D J

    1984-06-01

    Synthetic hydroxyapatite (HA) crystals in 1% serum stimulated 3H thymidine uptake into quiescent canine synovial fibroblasts and human foreskin fibroblast cultures, as did 10% serum. The onset of stimulation and peak uptake of thymidine after crystal addition were delayed by 2-3 hours as compared with the effects produced by 10% serum. Stimulation of 3H thymidine uptake was proportional to the serum concentration used. HA crystals (50 micrograms/ml) stimulated nuclide uptake at each serum concentration used. 3H thymidine uptake was also proportional to the dose of HA or calcium pyrophosphate dihydrate crystals, although larger doses of the latter crystal were required to produce equivalent effects. Not all particulates were effective mitogenic agents. Latex beads and diamond crystals had no effect. Monosodium urate crystals modestly stimulated and calcium urate crystals markedly stimulated nuclide uptake. The more complex crystals found in a naturally occurring condition (calcinosis) were as mitogenic as the pure synthetic HA. The synovial cell hyperplasia sometimes associated with crystals might be explained in part by their mitogenic activity. PMID:6329235

  15. Cytotoxic Effects of Hexavalent and Trivalent Chromium on Mammalian Cells In Vitro

    PubMed Central

    Levis, A. G.; Bianchi, V.; Tamino, G.; Pegoraro, B.

    1978-01-01

    The cytotoxic effects of hexavalent (k2Cr2O7) and trivalent (CrCl3) chromium compounds have been studied in cultured hamster fibroblasts (BHK line) and human epithelial-like cells (HEp line). K2Cr2O7 stimulates the uptake of labelled thymidine into the soluble intracellular pool (the stimulation of nucleoside uptake represents a specific effect of Cr6+) while Cr3+ always exerts an inhibitory action. DNA Synthesis is inhibited by treatment with both chromium compounds, but especially by K2Cr2O7. Moreover, the effective CrCl3 concentrations reduce the sensitivity of DNA and RNA to hydrolysis with perchloric acid. Treatments with k2Cr2O7 in balanced salt solution, where Cr6+ reduction is less marked, induce more pronounced cytotoxic effects than treatments in complete growth medium. HEp cells turned out to be more sensitive to K2Cr2O7 than BHK fibroblasts: in the former line TdR uptake is less stimulated, DNA synthesis and cell survival are more affected. Survival of BHK cells to K2Cr2O7 indicates a multi-hit mechanism of cell inactivation, the extrapolation number being about 10. On the basis of quantitative Cr determinations in the treatment solutions and in the treated cells, the cytotoxic effects of Cr are attributed to the action of Cr6+ at the plasma membrane level on the mechanisms involved in nucleoside uptake, and to the interaction of Cr3+ at the intracellular level with nucleophilic targets on the DNA molecule. PMID:205233

  16. Mutant quantity and quality in mammalian cells (AL) exposed to cesium-137 gamma radiation: effect of caffeine

    NASA Technical Reports Server (NTRS)

    McGuinness, S. M.; Shibuya, M. L.; Ueno, A. M.; Vannais, D. B.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    We examined the effect of caffeine (1,3,7-trimethylxanthine) on the quantity and quality of mutations in cultured mammalian AL human-hamster hybrid cells exposed to 137Cs gamma radiation. At a dose (1.5 mg/ml for 16 h) that reduced the plating efficiency (PE) by 20%, caffeine was not itself a significant mutagen, but it increased by approximately twofold the slope of the dose-response curve for induction of S1- mutants by 137Cs gamma radiation. Molecular analysis of 235 S1- mutants using a series of DNA probes mapped to the human chromosome 11 in the AL hybrid cells revealed that 73 to 85% of the mutations in unexposed cells and in cells treated with caffeine alone, 137Cs gamma rays alone or 137Cs gamma rays plus caffeine were large deletions involving millions of base pairs of DNA. Most of these deletions were contiguous with the region of the MIC1 gene at 11p13 that encodes the S1 cell surface antigen. In other mutants that had suffered multiple marker loss, the deletions were intermittent along chromosome 11. These "complex" mutations were rare for 137Cs gamma irradiation (1/63 = 1.5%) but relatively prevalent (23-50%) for other exposure conditions. Thus caffeine appears to alter both the quantity and quality of mutations induced by 137Cs gamma irradiation.

  17. Mammalian target of rapamycin hyperactivity mediates the detrimental effects of a high sucrose diet on Alzheimer's disease pathology.

    PubMed

    Orr, Miranda E; Salinas, Angelica; Buffenstein, Rochelle; Oddo, Salvatore

    2014-06-01

    High sugar consumption and diabetes increase the risk of developing Alzheimer's disease (AD) by unknown mechanisms. Using an animal model of AD, here we show that high sucrose intake induces obesity with changes in central and peripheral insulin signaling. These pre-diabetic changes are associated with an increase in amyloid-β production and deposition. Moreover, high sucrose ingestion exacerbates tau phosphorylation by increasing Cdk5 activity. Mechanistically, the sucrose-mediated increase in AD-like pathology results from hyperactive mammalian target of rapamycin (mTOR), a key nutrient sensor important in regulating energy homeostasis. Specifically, we show that rapamycin, an mTOR inhibitor, prevents the detrimental effects of sucrose in the brain without altering changes in peripheral insulin resistance. Overall, our data suggest that high sucrose intake and dysregulated insulin signaling, which are known to contribute to the occurrence of diabetes, increase the risk of developing AD by upregulating brain mTOR signaling. Therefore, early interventions to modulate mTOR activity in individuals at high risk of developing diabetes may decrease their AD susceptibility. PMID:24411482

  18. Actions of mammalian insulin on a Neurospora variant: effects on intracellular metabolite levels as monitored by P-31 NMR spectroscopy

    SciTech Connect

    Greenfield, N.J.; McKenzie, M.A.; Jordan, F.; Takahashi, M.; Lenard, J.

    1986-05-01

    Fourier transform P-31 NMR spectroscopy (81 MHz) was used to investigate the biochemical nature of insulin action upon the cell wall-deficient slime mutant of Neurospora crassa. Spectra of oxygenated, living cells (ca.10/sup 9//ml.) in late logarithmic-early stationary phase of growth were accumulated for approximately 20 min. (350-450 pulses). Pronounced differences were seen in the metabolite levels of cells cultured for 18-21 hours in the presence of insulin (100 nM) as compared to cells cultured in its absence. Differences in the insulin-grown cells included higher levels of sugar phosphates, inorganic (cytoplasmic) phosphate, NAD+/NADH and UDP-glucose (UDPG) compared to control cells, in which UDP-N-acetylglucosamine (UDPNAG) was the prominent sugar nucleotide. When 100 mM glucose was administered with insulin immediately prior to measurement, short term effects were seen. There were significant increases of sugar phosphates, inorganic phosphate, NAD+/NADH, phosphodiesters and UDPG relative to the case of glucose addition alone. These results are wholly consistent with the known influence of insulin upon mammalian metabolism: stimulation of glucose uptake, phosphorylation and oxidation, phosphatide synthesis and Pi uptake.

  19. COPPER AND COBALT RELATED HEMOGLOBIN PRODUCTION IN EXPERIMENTAL ANEMIA

    PubMed Central

    Robscheit-Robbins, F. S.; Whipple, G. H.

    1942-01-01

    Copper added to a standard diet often effects a moderate increase in hemoglobin production in anemia due to blood loss. The copper response is quite irregular in contrast to the iron response. In these dogs there is no lack of copper held in reserve stores (liver and spleen) so the reaction is not related to an actual deficiency of the element. An effect upon enzyme complexes related to globin and hemoglobin production is to be considered. Cobalt under similar conditions causes no stimulus to hemoglobin production, rather an inhibitory effect when more than minimal doses are given. The claim that cobalt causes a polycythemia in dogs receives no support from our experiments. PMID:19871199

  20. Expression of fully functional tetrameric human hemoglobin in Escherichia coli.

    PubMed Central

    Hoffman, S J; Looker, D L; Roehrich, J M; Cozart, P E; Durfee, S L; Tedesco, J L; Stetler, G L

    1990-01-01

    Synthetic genes encoding the human alpha- and beta-globin polypeptides have been expressed from a single operon in Escherichia coli. The alpha- and beta-globin polypeptides associate into soluble tetramers, incorporate heme, and accumulate to greater than 5% of the total cellular protein. Purified recombinant hemoglobin has the correct stoichiometry of alpha- and beta-globin chains and contains a full complement of heme. Each globin chain also contains an additional methionine as an extension to the amino terminus. The recombinant hemoglobin has a C4 reversed-phase HPLC profile essentially identical to that of human hemoglobin A0 and comigrates with hemoglobin A0 on SDS/PAGE. The visible spectrum and oxygen affinity are similar to that of native human hemoglobin A0. The recombinant protein shows a reduction in Bohr and phosphate effects, which may be attributed to the presence of methionine at the amino termini of the alpha and beta chains. We have also expressed the alpha- and beta-globin genes separately and found that the expression of the alpha-globin gene alone results in a marked decrease in the accumulation of alpha-globin in the cell. Separate expression of the beta-globin gene results in high levels of insoluble beta-globin. These observations suggest that the presence of alpha- and beta-globin in the same cell stabilizes alpha-globin and aids the correct folding of beta-globin. This system provides a simple method for expressing large quantities of recombinant hemoglobin and allows facile manipulation of the genes encoding hemoglobin to produce functionally altered forms of this protein. Images PMID:2236062

  1. Radiation-induced bystander effect and adaptive response in mammalian cells

    NASA Technical Reports Server (NTRS)

    Zhou, H.; Randers-Pehrson, G.; Waldren, C. A.; Hei, T. K.

    2004-01-01

    Two conflicting phenomena, bystander effect and adaptive response, are important in determining the biological responses at low doses of radiation and have the potential to impact the shape of the dose-response relationship. Using the Columbia University charged-particle microbeam and the highly sensitive AL cell mutagenic assay, we show here that non-irradiated cells acquire mutagenesis through direct contact with cells whose nuclei have been traversed with a single alpha particle each. Pretreatment of cells with a low dose of X-rays four hours before alpha particle irradiation significantly decreased this bystander mutagenic response. Results from the present study address some of the fundamental issues regarding both the actual target and radiation dose effect and can contribute to our current understanding in radiation risk assessment. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  2. Radiation-induced bystander effect and adaptive response in mammalian cells.

    PubMed

    Zhou, H; Randers-Pehrson, G; Waldren, C A; Hei, T K

    2004-01-01

    Two conflicting phenomena, bystander effect and adaptive response, are important in determining the biological responses at low doses of radiation and have the potential to impact the shape of the dose-response relationship. Using the Columbia University charged-particle microbeam and the highly sensitive AL cell mutagenic assay, we show here that non-irradiated cells acquire mutagenesis through direct contact with cells whose nuclei have been traversed with a single alpha particle each. Pretreatment of cells with a low dose of X-rays four hours before alpha particle irradiation significantly decreased this bystander mutagenic response. Results from the present study address some of the fundamental issues regarding both the actual target and radiation dose effect and can contribute to our current understanding in radiation risk assessment. PMID:15881649

  3. Tension in mechanically disrupted mammalian cardiac cells: effects of magnesium adenosine triphosphate.

    PubMed Central

    Best, P M; Donaldson, S K; Kerrick, W G

    1977-01-01

    1. Maximum and submaximum Ca-activated tension in mechanically disrupted rat ventricular fibres was examined in solutions containing 30 micron, 100 micron and 4 mM-MgATP and either 50 micron or 1 mM ionized Mg. 2. In the absence of added Ca, significant amounts of base-line tension (up to 50% of maximum) develop in solutions containing less than 30 micron-MgATP. This effect is Mg-dependent; more tension is produced with 50 micron-Mg than with 1 mM. 3. Increasing the MgATP concentration shifts the pCa-% maximum tension relationship in the direction of increasing Ca required for activation. At 50 micron-Mg the pCa which produces 50% maximum tension is 5-8, 5-3 and 5-5 for the 30 micron, 100 micron and 4 mM-MgATP solutions. The effect of MgATP on position is relatively independent of the Mg concentration. 4. The steepness of the pCa-% maximum tension curve increases as MgATP is elevated to the millimolar range. The Hill coefficients for the different MgATP curves at 50 micron-Mg are 1-1, 1-3 and 3-0. This change in steepness accounts for the slightly lower Ca concentration needed for half-maximum tension as the MgATP concentration is increased to millimolar levels. Raising the Mg concentration to 1 mM greatly diminishes the effect of MgATP on the slope of the pCa-tension relationship. 5. The maximum tnesion a fibre bundle can produce decreases as the amount of MgATP is raised from micromolar to millimolar levels. For 50 muM-Mg, maximum tension drops about 35% as MgATP is raised from 30 micronM to 4 mM. For any concentraiton of MgATP, maximum tension is higher at 1 mM-Mg than at 50 micron-Mg. 6. Existing theories of interaction between myosin heads and the thin filament are sufficient to account for the effects of MgATP on the position of the pCa-tension curves and on maximum tension. The effects on slope are less satisfactorily explained. PMID:850150

  4. A comparison of the effects of three GM corn varieties on mammalian health.

    PubMed

    de Vendômois, Joël Spiroux; Roullier, François; Cellier, Dominique; Séralini, Gilles-Eric

    2009-01-01

    We present for the first time a comparative analysis of blood and organ system data from trials with rats fed three main commercialized genetically modified (GM) maize (NK 603, MON 810, MON 863), which are present in food and feed in the world. NK 603 has been modified to be tolerant to the broad spectrum herbicide Roundup and thus contains residues of this formulation. MON 810 and MON 863 are engineered to synthesize two different Bt toxins used as insecticides. Approximately 60 different biochemical parameters were classified per organ and measured in serum and urine after 5 and 14 weeks of feeding. GM maize-fed rats were compared first to their respective isogenic or parental non-GM equivalent control groups. This was followed by comparison to six reference groups, which had consumed various other non-GM maize varieties. We applied nonparametric methods, including multiple pairwise comparisons with a False Discovery Rate approach. Principal Component Analysis allowed the investigation of scattering of different factors (sex, weeks of feeding, diet, dose and group). Our analysis clearly reveals for the 3 GMOs new side effects linked with GM maize consumption, which were sex- and often dose-dependent. Effects were mostly associated with the kidney and liver, the dietary detoxifying organs, although different between the 3 GMOs. Other effects were also noticed in the heart, adrenal glands, spleen and haematopoietic system. We conclude that these data highlight signs of hepatorenal toxicity, possibly due to the new pesticides specific to each GM corn. In addition, unintended direct or indirect metabolic consequences of the genetic modification cannot be excluded. PMID:20011136

  5. A comparison of the effects of three GM corn varieties on mammalian health.

    PubMed

    de Vendômois, Joël Spiroux; Roullier, François; Cellier, Dominique; Séralini, Gilles-Eric

    2009-12-10

    We present for the first time a comparative analysis of blood and organ system data from trials with rats fed three main commercialized genetically modified (GM) maize (NK 603, MON 810, MON 863), which are present in food and feed in the world. NK 603 has been modified to be tolerant to the broad spectrum herbicide Roundup and thus contains residues of this formulation. MON 810 and MON 863 are engineered to synthesize two different Bt toxins used as insecticides. Approximately 60 different biochemical parameters were classified per organ and measured in serum and urine after 5 and 14 weeks of feeding. GM maize-fed rats were compared first to their respective isogenic or parental non-GM equivalent control groups. This was followed by comparison to six reference groups, which had consumed various other non-GM maize varieties. We applied nonparametric methods, including multiple pairwise comparisons with a False Discovery Rate approach. Principal Component Analysis allowed the investigation of scattering of different factors (sex, weeks of feeding, diet, dose and group). Our analysis clearly reveals for the 3 GMOs new side effects linked with GM maize consumption, which were sex- and often dose-dependent. Effects were mostly associated with the kidney and liver, the dietary detoxifying organs, although different between the 3 GMOs. Other effects were also noticed in the heart, adrenal glands, spleen and haematopoietic system. We conclude that these data highlight signs of hepatorenal toxicity, possibly due to the new pesticides specific to each GM corn. In addition, unintended direct or indirect metabolic consequences of the genetic modification cannot be excluded.

  6. Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells.

    PubMed

    Milić, Mirta; Leitinger, Gerd; Pavičić, Ivan; Zebić Avdičević, Maja; Dobrović, Slaven; Goessler, Walter; Vinković Vrček, Ivana

    2015-06-01

    The rapid progress and early commercial acceptance of silver-based nanomaterials is owed to their biocidal activity. Besides embracing the antimicrobial potential of silver nanoparticles (AgNPs), it is imperative to give special attention to the potential adverse health effects of nanoparticles owing to prolonged exposure. Here, we report a detailed study on the in vitro interactions of citrate-coated AgNPs with porcine kidney (Pk15) cells. As uncertainty remains whether biological/cellular responses to AgNPs are solely as a result of the release of silver ions or whether the AgNPs themselves have toxic effects, we investigated the effects of Ag(+) on Pk15 cells for comparison. Next, we investigated the cellular uptake of both AgNPs and Ag(+) in Pk15 cells at various concentrations applied. The detected Ag contents in cells exposed to 50 mg l(-1) AgNPs and 50 mg l(-1) Ag(+) were 209 and 25 µg of Ag per 10(6) cells, respectively. Transmission electron microscopy (TEM) images indicated that the Pk15 cells internalized AgNPs by endocytosis. Both forms of silver, nano and ionic, decreased the number of viable Pk15 cells after 24 h in a dose-dependent manner. In spite of a significant uptake into the cells, AgNPs had only insignificant toxicity at concentrations lower than 25 mg l(-1) , whereas Ag(+) exhibited a significant decrease in cell viability at one-fifth of this concentration. The Comet assay suggested that a rather high concentration of AgNP (above 25 mg l(-1) ) is able to induce genotoxicity in Pk15 cells. Further studies must seek deeper understanding of AgNP behavior in biological media and their interactions with cellular membranes. PMID:25352480

  7. Effect of colchicine on mammalian liver nuclear envelope and on nucleo-cytoplasmic RNA transport.

    PubMed

    Agutter, P S; Suckling, K E

    1982-09-27

    The binding of colchicine to nuclear envelopes was studied in order to elucidate the mechanism whereby this compound inhibits nucleocytoplasmic RNA transport. The results suggest that a single class of colchicine-binding site (dissociation constant=approx. 0.7 mM, concentration=approx. 330 nmol colchicine/mg protein) is localised in the nuclear periphery (pore-lamina) and that binding to these sites effects a constriction of the pore-complexes with concomitant inhibition of RNA egress and disordering of the nuclear membrane phospholipid bilayers.

  8. Effects of lithotripter-generated high energy shock waves of mammalian cells in vitro.

    PubMed

    Kaver, I; Koontz, W W; Wilson, J D; Guice, J M; Smith, M J

    1992-01-01

    The effects of high energy shock waves on an established human prostatic carcinoma cell line (PC-3) were investigated. HESW were administered to PC-3 cell suspensions using an electrohydraulic lithotripter (Dornier HM3). Experimental variables included the number of shocks to which the cells were exposed, spark generator potential, and the position of the cell sample in the acoustic field. Two types of cellular damage were observed: immediate cell destruction (lysis) as measured by electronic particle counting and the loss of reproductive capacity (viability) among the remaining cells as determined by colony formation assay. Over the range of the experimental variables studied, cell lysis was dependent to a greater extent on the number of shocks administered than the generator potential. Viability was affected less but was also dependent on both the generator potential and shock number. Cell lysis was strongly dependent on the position of the sample in the acoustic field with the extent of damage increasing as the sample was moved along the central axis of the shock wave from the f2 focus towards the electrodes. Possible mechanisms of damage and the relationship of the in vitro effects to the damage observed in normal tissues of patients undergoing extracorporeal lithotripsy for kidney stone disease are discussed.

  9. Predicting effective microRNA target sites in mammalian mRNAs

    PubMed Central

    Agarwal, Vikram; Bell, George W; Nam, Jin-Wu; Bartel, David P

    2015-01-01

    MicroRNA targets are often recognized through pairing between the miRNA seed region and complementary sites within target mRNAs, but not all of these canonical sites are equally effective, and both computational and in vivo UV-crosslinking approaches suggest that many mRNAs are targeted through non-canonical interactions. Here, we show that recently reported non-canonical sites do not mediate repression despite binding the miRNA, which indicates that the vast majority of functional sites are canonical. Accordingly, we developed an improved quantitative model of canonical targeting, using a compendium of experimental datasets that we pre-processed to minimize confounding biases. This model, which considers site type and another 14 features to predict the most effectively targeted mRNAs, performed significantly better than existing models and was as informative as the best high-throughput in vivo crosslinking approaches. It drives the latest version of TargetScan (v7.0; targetscan.org), thereby providing a valuable resource for placing miRNAs into gene-regulatory networks. DOI: http://dx.doi.org/10.7554/eLife.05005.001 PMID:26267216

  10. delta-9-Tetrahydrocannabinol: effect on macromolecular synthesis in human and other mammalian cells.

    PubMed

    Blevins, R D; Regan, J D

    1976-03-11

    The principal psychoactive component of marihuana is delta-9-tetrahydrocannabinol. This compound at 10(-5) molar concentration in the medium of human cell cultures appeared to inhibit DNA, RNA, and protein synthesis by 50, 40, and 30% respectively, as measured by incorporation of radioactive precursors into acid-insoluble cell fractions in human diploid fibroblasts, human neuroblastoma cells, and mouse neuroblastoma cells. While delta-9-tetrahydrocannabinol inhibited semiconservative DNA synthesis, it had no effect on DNA repair synthesis in human cells as assayed by the photolysis of 5-bromodeoxyuridine incorporation into DNA during repair after ultraviolet radiation damage. Delta-9-tetrahydrocannabinol also had no effect on rejoining of DNA single-strand breaks induced by gamma-rays. The nonspecificity of the inhibition of macromolecular synthesis by delta-9-THC suggested a possible interference with uptake of radioactive precursors. However, experimentation has shown that this depression of macromolecular synthesis cannot be accounted for by reduced transport of radioactive precursors into the cell because the rate of transport of these precursors into the cell is essentially the same in the presence or absence of delta-9-THC. Pool sizes of macromolecular precursors as measured radioisotopically (3H-thymidine, 3H-uridine, 14C-leucine) appear to be reduced about 50%, and this reduced pool size could fully account for the reduced macromolecular synthesis seen in the presence of delta-9-THC. We do not know what causes this apparent reduction of pool sizes in the presence of delta-9-THC.

  11. UV-B effects on the nutritional chemistry of plants and the responses of a mammalian herbivore.

    PubMed

    Thines, Nicole J; Shipley, Lisa A; Bassman, John H; Slusser, James R; Gao, Wei

    2008-05-01

    Stratospheric ozone depletion has caused ground-level ultraviolet-B (UV-B) radiation to rise in temperate latitudes of both hemispheres. Because the effects of enhanced UV-B radiation on the nutrition of food consumed by mammalian herbivores are unknown, we measured nutritional and chemical constituents of 18 forages and related changes to in vitro dry matter digestibility. We also measured intake and in vivo digestibility of Pacific willow (Salix lasiandra) and alfalfa (Medicago sativa L.) by blue duikers (Cephalophus monticola). Forages were irradiated for 3 months with ambient (1x) or supplemental (1.6 x) UV-B radiation representing a 15% ozone depletion for Pullman, Washington, USA. Enhanced UV-B radiation had minimal and inconsistent effects on the nutritional content, in vitro dry matter digestibility, and protein-binding capacity of forages. However, flavonoid compounds increased in seven of the 13 forbs and woody dicots that were evaluated. Flavonoids were found to decrease only in yarrow (Achillea millefolium). When offered simultaneously, blue duikers preferred 1x and 1.6 x UV-B irradiated plants of alfalfa equally, but ate 26% less willow grown under 1.6 x UV-B radiation. However, when fed to duikers in separate feeding experiments, total dry matter intake and in vivo digestibility of dry matter, fiber, protein, and apparent energy did not differ between alfalfa and willow grown under 1x and 1.6 x UV-B radiation. We conclude that expected increases in UV-B radiation from ozone depletion would have minimal effects on intake and digestion of ruminant herbivores. PMID:18274780

  12. Effects of exogenous amines on mammalian cells, with particular reference to membrane flow.

    PubMed Central

    Dean, R T; Jessup, W; Roberts, C R

    1984-01-01

    We have reviewed the evidence that amines accumulate in intracellular vesicles of low pH, such as lysosomes and endosomes. There is consequent elevation of intravesicular pH, and inhibition of receptor-ligand dissociation often results from this pH change. We have argued that the capacity for fusion of such vesicles is also reduced by the high pH. We suggest that the variety of effects of amines on membrane flow and macromolecular transport we describe are at least partly due to such reduced fusion (Figs. 1 and 2). We propose that an internal low pH may facilitate heterologous vesicle-vesicle and vesicle-plasma membrane fusion. There is some evidence that clathrin can accelerate phospholipid vesicle fusion in vitro at low pH (Blumenthal et al., 1983) but no direct evidence on the role of intravesicular pH. This idea is consistent not only with the preceding discussion, but also with the fact that the intracellular membrane-bound compartments least involved in fusion events (e.g. mitochondria) are of neutral or alkaline internal pH. Membrane fusion is certainly required for the formation of vesicles at the periphery of the Golgi apparatus, and possibly earlier in the transport and processing of biosynthetic products in the Golgi (Bergeron et al., 1982). Thus the accumulation of amines in the Golgi may be responsible for several effects on the flow of macromolecules along their translocation pathways. The status of the plasma membrane in this view is complex. It might be argued that the pH dictating the fusion step in endocytosis is that of the extracellular fluid, in which case the inhibitory effects of amines on this process are not explained. However, the rapidity of acidification of the newly formed endocytic vesicles allows the possibility that plasma membrane invaginations might temporarily sequester areas which are of lower pH than that of the bulk extracellular fluid even before fusion, since the proton pumping enzyme(s) are probably present on the plasma

  13. The biology of mammalian parenting and its effect on offspring social development

    PubMed Central

    Rilling, James K.; Young, Larry J.

    2015-01-01

    Parents know the transformative nature of having and caring for a child. Among many mammals, giving birth leads from an aversion to infant stimuli to irresistible attraction. Here, we review the biological mechanisms governing this shift in parental motivation in mammals. Estrogen and progesterone prepare the uterus for embryo implantation and placental development. Prolactin stimulates milk production, whereas oxytocin initiates labor and triggers milk ejection during nursing. These same molecules, interacting with dopamine, also activate specific neural pathways to motivate parents to nurture, bond with, and protect their offspring. Parenting in turn shapes the neural development of the infant social brain. Recent work suggests that many of the principles governing parental behavior and its effect on infant development are conserved from rodent to humans. PMID:25124431

  14. The effects of digitalis on intracellular calcium transients in mammalian working myocardium as detected with aequorin.

    PubMed

    Morgan, J P

    1985-11-01

    The effects of positive inotropic agents on the amplitude and time course of the light signal and corresponding tension response were studied in cat and human working myocardium microinjected with the bioluminescent Ca2+ indicator aequorin. Distinctive patterns of light and tension responses were identified that are consistent with known actions of the various agents on the release of Ca2+ from intracellular stores, rate of uptake of Ca2+ by the sarcoplasmic reticulum and sensitivity of the myofilaments to Ca2+. In common with most other inotropic drugs, the cardiotonic steroid, acetylstrophanthidin, in doses of 4 X 10(-7) to 2 X 10(-6)M increases the amount of Ca2+ available for excitation-contraction coupling in the heart. However, in contrast to most other agents, acetylstrophanthidin does not affect the time course of the calcium transient. In common with changes in [Ca2+]o, acetylstrophanthidin does not alter the relationship between the amplitude of the aequorin light signal and developed tension, which, in contrast to caffeine and isoproterenol, indicates that the increase in tension is fully accounted for by the increase in systolic free calcium. These findings suggest that the cardiotonic steroids increase loading of intracellular calcium stores without affecting the kinetics of subcellular handling of Ca2+. In doses of 8 X 10(-7) to 2 X 10(-6)M, acetylstrophanthidin produces a calcium-overload state characterized by 'after-contractions' and 'after-glimmers' that are associated with the development of automatic and triggerable dysrhythmias. These studies provide direct evidence that the inotropic and toxic effects of digitalis on animal and human working myocardium are produced by changes in intracellular Ca2+.

  15. The effect of lidocaine on components of excitability in long mammalian cardiac Purkinje fibers.

    PubMed

    Arnsdorf, M F; Bigger, J T

    1975-11-01

    In contrast to the usual microelectrode techniques employing extracellular tissue stimulation, the double microelectrode technique of intracellular constant current application and intracellular transmembrane voltage recording permits quantitative definition of the components of cardiac excitability. This technique was employed to assess the effect of lidocaine, in a concentration equivalent to clinically effective antiarrhythmic plasma levels (5 mug/ml), on membrane characteristics, cable properties, strength-duration curves and change-duration curves in long sheep Purkinje fibers in normal Tyrode's solution at [K]0 = 4.0 mM. As determined by small hyperpolarizing pulses, lidocaine increased membrane conductance (GM) where GM approximates membrane potassium conductance (GM congruent to GK congruent to gK1) and decreased both the membrane length (lambdam) and time (taum) constants. Lidocaine shifted non-normalized strength-duration curves (threshold current, Ith, vs. current duration, t) and charge-duration curves (charge threshold th, vs. t) upward without altering either the resting transmembrane voltage (Vr) or threshold voltage (Vth). Normalized strength-duration curves and charge-duration curves, however, were superimposable during the control and lidocaine periods. This is best explained by lidocaine altering passive resistance-capacitance properties by increasing membrane potassium conductance without influencing active generator properties dependent on sodium conductance. Lidocaine did not alter the passive or active membrane properties relevant to conduction velocity. By increasing membrane potassium conductance, lidocaine decreases excitability in long Purkinje fibers by increasing Ith without altering Vr or Vth, by increasing Qth; by decreasing lambdam and by rendering local circuit currents less effectual in eliciting an action potential. PMID:1185592

  16. Geraniol blocks calcium and potassium channels in the mammalian myocardium: useful effects to treat arrhythmias.

    PubMed

    de Menezes-Filho, José Evaldo Rodrigues; Gondim, Antônio Nei Santana; Cruz, Jader Santos; de Souza, Américo Azevedo; Santos, José Nilson Andrade Dos; Conde-Garcia, Eduardo Antônio; de Sousa, Damião Pergentino; Santos, Michel Santana; de Oliveira, Evaleide Diniz; de Vasconcelos, Carla Maria Lins

    2014-12-01

    Geraniol is a monoterpene present in several essential oils, and it is known to have a plethora of pharmacological activities. In this study, we explored the contractile and electrophysiological properties of geraniol and its antiarrhythmic effects in the heart. The geraniol effects on atrial contractility, L-type Ca(2+) current, K(+) currents, action potential (AP) parameters, ECG profile and on the arrhythmia induced by ouabain were evaluated. In the atrium, geraniol reduced the contractile force (~98%, EC = 1,510 ± 160 μM) and diminished the positive inotropism of CaCl2 and BAY K8644. In cardiomyocytes, the IC a,L was reduced by 50.7% (n = 5) after perfusion with 300 μM geraniol. Moreover, geraniol prolonged the AP duration (APD) measured at 50% (n = 5) after repolarization, without changing the resting potential. The increased APD could be attributed to the blockade of the transient outward K(+) current (Ito ) (59.7%, n = 4), the non-inactivation K(+) current (Iss ) (39.2%, n = 4) and the inward rectifier K(+) current (IK 1 ) (33.7%, n = 4). In isolated hearts, geraniol increased PRi and QTi without affecting the QRS complex (n = 6), and it reduced both the left ventricular pressure (83%) and heart rate (16.5%). Geraniol delayed the time to onset of ouabain-induced arrhythmias by 128%, preventing 30% of the increase in resting tension (n = 6). Geraniol exerts its negative inotropic and chronotropic responses in the heart by decreasing both L-type Ca(2+) and voltage-gated K(+) currents, ultimately acting against ouabain-induced arrhythmias.

  17. Biological effects induced by BSA-stabilized silica nanoparticles in mammalian cell lines.

    PubMed

    Foldbjerg, Rasmus; Wang, Jing; Beer, Christiane; Thorsen, Kasper; Sutherland, Duncan S; Autrup, Herman

    2013-06-25

    Much of the concerns regarding engineered nanoparticle (NP) toxicity are based on knowledge from previous studies on particles in ambient air or occupational situations. E.g., the effects of exposure to silica dust particles have been studied intensely due to the carcinogenicity of crystalline silica. However, the increasing usage of engineered amorphous silica NPs has emphasized the need for further mechanistic insight to predict the consequences of exposure to the amorphous type of silica NPs. The present study focused on the in vitro biological effects following exposure to well-dispersed, BSA-stabilized, amorphous silica NPs whereas unmodified silica NPs where included for reasons of comparison. The cytotoxicity of the silica NPs was investigated in six different cell lines (A549, THP-1, CaCo-2, ASB-XIV, J-774A.1, and Colon-26) selected to explore the significance of organ and species sensitivity in vitro. Viability data demonstrated that macrophages were most sensitive to silica NP and interestingly, murine cell lines were generally found to be more sensitive than comparable human cell lines. Further studies were conducted in the human epithelial lung cell line, A549, to explore the molecular mechanism of silica toxicity. Generation of reactive oxygen species, one of the proposed toxicological mechanisms of NPs, was investigated in A549 cells by the dichlorofluorescin (DCF) assay to be significantly induced at NP concentrations above 113 μg/mL. However, induction of oxidative stress related pathways was not found after silica NP exposure for 24 h in gene array studies conducted in A549 cells at a relatively low NP concentration (EC20). Up-regulated genes (more than 2-fold) were primarily related to lipid metabolism and biosynthesis whereas down-regulated genes included several processes such as transcription, cell junction, extra cellular matrix (ECM)-receptor interaction and others. Thus, gene expression data proposes that several cellular processes other

  18. Long-Term Single and Joint Effects of Excessive Daytime Napping on the HOMA-IR Index and Glycosylated Hemoglobin: A Prospective Cohort Study.

    PubMed

    Li, Xue; Pang, Xiuyu; Zhang, Qiao; Qu, Qiannuo; Hou, Zhigang; Liu, Zhipeng; Lv, Lin; Na, Guanqiong; Zhang, Wei; Sun, Changhao; Li, Ying

    2016-02-01

    This prospective cohort study was conducted to assess the duration of daytime napping and its effect combined with night sleep deprivation on the risk of developing high HOMA-IR (homeostasis model assessment of insulin resistance) index and disadvantageous changes in glycosylated hemoglobin (HbA1c) levels.A total of 5845 diabetes-free subjects (2736 women and 3109 men), 30 to 65 years of age, were targeted for this cohort study since 2008. Multiple adjusted Cox regression models were performed to evaluate the single and joint effects of daytime napping on the risk of an elevated HbA1c level and high HOMA-IR index.After an average of 4.5 years of follow-up, >30 minutes of daytime napping was significantly associated with an increased risk of an elevated HbA1c level (>6.5%) in men and women (all P trend < 0.05). Hazard ratios (HRs) for an HbA1c level between 5.7% and 6.4% were also significant in the entire cohort and women, but nonsignificant in men. HRs (95% confidence interval, CIs) for the high HOMA-IR index in the entire cohort, men, and women were 1.33 (1.10-1.62), 1.46 (1.08-1.98), and 1.47 (1.12-1.91), respectively. The combination of sleep deprivation with no naps or >30 minutes napping and the combination of no sleep deprivation with >30 minutes daytime napping were all associated with an HbA1c level >6.5% (HR = 2.08, 95% CI = 1.24-3.51; HR = 4.00, 95% CI = 2.03-7.90; and HR = 2.05, 95% CI = 1.29-3.27, respectively). No sleep deprivation combined with >30 minutes daytime napping correlated with a high risk of an HbA1c level between 5.7% and 6.4% and high HOMA-IR index (HR = 2.12, 95% CI = 1.48-3.02; and HR = 1.35, 95% CI = 1.10-1.65, respectively).Daytime napping >30 minutes was associated with a high risk of an elevated HbA1c level and high HOMA-IR index. No sleep deprivation combined with napping >30 minutes carries a risk of abnormal glucose metabolism. Sleep deprivation combined with brief daytime napping <30

  19. Long-Term Single and Joint Effects of Excessive Daytime Napping on the HOMA-IR Index and Glycosylated Hemoglobin: A Prospective Cohort Study.

    PubMed

    Li, Xue; Pang, Xiuyu; Zhang, Qiao; Qu, Qiannuo; Hou, Zhigang; Liu, Zhipeng; Lv, Lin; Na, Guanqiong; Zhang, Wei; Sun, Changhao; Li, Ying

    2016-02-01

    This prospective cohort study was conducted to assess the duration of daytime napping and its effect combined with night sleep deprivation on the risk of developing high HOMA-IR (homeostasis model assessment of insulin resistance) index and disadvantageous changes in glycosylated hemoglobin (HbA1c) levels.A total of 5845 diabetes-free subjects (2736 women and 3109 men), 30 to 65 years of age, were targeted for this cohort study since 2008. Multiple adjusted Cox regression models were performed to evaluate the single and joint effects of daytime napping on the risk of an elevated HbA1c level and high HOMA-IR index.After an average of 4.5 years of follow-up, >30 minutes of daytime napping was significantly associated with an increased risk of an elevated HbA1c level (>6.5%) in men and women (all P trend < 0.05). Hazard ratios (HRs) for an HbA1c level between 5.7% and 6.4% were also significant in the entire cohort and women, but nonsignificant in men. HRs (95% confidence interval, CIs) for the high HOMA-IR index in the entire cohort, men, and women were 1.33 (1.10-1.62), 1.46 (1.08-1.98), and 1.47 (1.12-1.91), respectively. The combination of sleep deprivation with no naps or >30 minutes napping and the combination of no sleep deprivation with >30 minutes daytime napping were all associated with an HbA1c level >6.5% (HR = 2.08, 95% CI = 1.24-3.51; HR = 4.00, 95% CI = 2.03-7.90; and HR = 2.05, 95% CI = 1.29-3.27, respectively). No sleep deprivation combined with >30 minutes daytime napping correlated with a high risk of an HbA1c level between 5.7% and 6.4% and high HOMA-IR index (HR = 2.12, 95% CI = 1.48-3.02; and HR = 1.35, 95% CI = 1.10-1.65, respectively).Daytime napping >30 minutes was associated with a high risk of an elevated HbA1c level and high HOMA-IR index. No sleep deprivation combined with napping >30 minutes carries a risk of abnormal glucose metabolism. Sleep deprivation combined with brief daytime napping <30

  20. Effects of subacute pyridostigmine administration on mammalian skeletal muscle function. (Reannouncement with new availability information)

    SciTech Connect

    Adler, M.; Deshpande, S.S.; Foster, R.E.; Maxwell, D.M.; Albuquerque, E.X.

    1992-12-31

    The subacute effects of pyridostigmine bromide were investigated on the contractile properties of rat extensor digitorum longus (EDL) and diaphragm muscles. The cholinesterase inhibitor was delivered via subcutaneously implanted osmotic minipumps (Alzet) at 9 microns g h-1 (low dose) or 60 micro g h-1 (high dose). Animals receiving high-dose pyridostigmine pumps exhibited marked alterations in muscle properties within the first day of exposure that persisted for the remaining 13 days. With 0.1 Hz stimulation, EDL twitch tensions of treated animals were elevated relative to control. Repetitive stimulation at frequencies > 1 Hz led a use-dependent depression in the amplitude of successive twitches during the train. Recovery from pyridostigmine was essentially complete by 1 day of withdrawal. Rats implanted with low-dose pyridostigmine pumps showed little or no alteration of in vivo twitch tensions during the entire 14 days of treatment. Diaphragm and EDL muscles excised from pyridostigmine-treated rats and tested in vitro showed no significant alterations in twitch and tetanic tensions and displayed the same sensitivity as muscles of control animals to subsequent pyridostigmine exposures. In the presence of atropine, subacutely administered pyridostigmine protected rats from two LD5O doses of the irreversible cholinesterase inhibitor, soman. In the absence of atropine, the LD50 of soman was not altered by subacute pyridostigmine treatment. Extensor digitorum longus; diaphragm; twitch tension; ACh release; subacute; Alzet pumps; tolerance; anticholinesterase; pyridostigmine; soman.

  1. Beyond the detergent effect: a binding site for sodium dodecyl sulfate (SDS) in mammalian apoferritin

    SciTech Connect

    Liu, Renyu Bu, Weiming; Xi, Jin; Mortazavi, Shirin R.; Cheung-Lau, Jasmina C.; Dmochowski, Ivan J.; Loll, Patrick J.

    2012-05-01

    Using X-ray crystallography and isothermal titration calorimetry, we show that sodium dodecyl sulfate (SDS) binds specifically to a pre-formed internal cavity in horse-spleen apoferritin. Although sodium dodecyl sulfate (SDS) is widely used as an anionic detergent, it can also exert specific pharmacological effects that are independent of the surfactant properties of the molecule. However, structural details of how proteins recognize SDS are scarce. Here, it is demonstrated that SDS binds specifically to a naturally occurring four-helix bundle protein: horse apoferritin. The X-ray crystal structure of the apoferritin–SDS complex was determined at a resolution of 1.9 Å and revealed that the SDS binds in an internal cavity that has previously been shown to recognize various general anesthetics. A dissociation constant of 24 ± 9 µM at 293 K was determined by isothermal titration calorimetry. SDS binds in this cavity by bending its alkyl tail into a horseshoe shape; the charged SDS head group lies in the opening of the cavity at the protein surface. This crystal structure provides insights into the protein–SDS interactions that give rise to binding and may prove useful in the design of novel SDS-like ligands for some proteins.

  2. Novel insights in mammalian catalase heme maturation: effect of NO and thioredoxin-1.

    PubMed

    Chakravarti, Ritu; Gupta, Karishma; Majors, Alana; Ruple, Lisa; Aronica, Mark; Stuehr, Dennis J

    2015-05-01

    Catalase is a tetrameric heme-containing enzyme with essential antioxidant functions in biology. Multiple factors including nitric oxide (NO) have been shown to attenuate its activity. However, the possible impact of NO in relation to the maturation of active catalase, including its heme acquisition and tetramer formation, has not been investigated. We found that NO attenuates heme insertion into catalase in both short-term and long-term incubations. The NO inhibition in catalase heme incorporation was associated with defective oligomerization of catalase, such that inactive catalase monomers and dimers accumulated in place of the mature tetrameric enzyme. We also found that GAPDH plays a key role in mediating these NO effects on the structure and activity of catalase. Moreover, the NO sensitivity of catalase maturation could be altered up or down by manipulating the cellular expression level or activity of thioredoxin-1, a known protein-SNO denitrosylase enzyme. In a mouse model of allergic inflammatory asthma, we found that lungs from allergen-challenged mice contained a greater percentage of dimeric catalase relative to tetrameric catalase in the unchallenged control, suggesting that the mechanisms described here are in play in the allergic asthma model. Together, our study shows how maturation of active catalase can be influenced by NO, S-nitrosylated GAPDH, and thioredoxin-1, and how maturation may become compromised in inflammatory conditions such as asthma.

  3. Novel Insights in Mammalian Catalase Heme Maturation: Effect of NO and Thioredoxin-1

    PubMed Central

    Chakravarti, Ritu; Gupta, Karishma; Majors, Alana; Ruple, Lisa; Aronica, Mark; Stuehr, Dennis J.

    2016-01-01

    Catalase is a tetrameric heme-containing enzyme with essential antioxidant functions in biology. Multiple factors including nitric oxide (NO) have been shown to attenuate its activity. However, the possible impact of NO in relation to the maturation of active catalase, including its heme acquisition and tetramer formation, has not been investigated. We found that NO attenuates heme insertion into catalase in both short-term and long-term incubations. The NO inhibition in catalase heme incorporation was associated with defective oligomerization of catalase, such that inactive catalase monomers and dimers accumulated in place of the mature tetrameric enzyme. We also found that GAPDH plays a key role in mediating these NO effects on the structure and activity of catalase. Moreover, the NO sensitivity of catalase maturation could be altered up or down by manipulating the cellular expression level or activity of thioredoxin-1, a known protein-SNO denitrosylase enzyme. In a mouse model of allergic inflammatory asthma, we found that lungs from allergen-challenged mice contained a greater percentage of dimeric catalase relative to tetrameric catalase in the unchallenged control, suggesting that the mechanisms described here are in play in the allergic asthma model. Together, our study shows how maturation of active catalase can be influenced by NO, S-nitrosylated GAPDH, and thioredoxin-1, and how maturation may become compromised in inflammatory conditions such as asthma. PMID:25659933

  4. Stimulus and recording variables and their effects on mammalian vestibular evoked potentials

    NASA Technical Reports Server (NTRS)

    Jones, Sherri M.; Subramanian, Geetha; Avniel, Wilma; Guo, Yuqing; Burkard, Robert F.; Jones, Timothy A.

    2002-01-01

    Linear vestibular evoked potentials (VsEPs) measure the collective neural activity of the gravity receptor organs in the inner ear that respond to linear acceleration transients. The present study examined the effects of electrode placement, analog filtering, stimulus polarity and stimulus rate on linear VsEP thresholds, latencies and amplitudes recorded from mice. Two electrode-recording montages were evaluated, rostral (forebrain) to 'mastoid' and caudal (cerebellum) to 'mastoid'. VsEP thresholds and peak latencies were identical between the two recording sites; however, peak amplitudes were larger for the caudal recording montage. VsEPs were also affected by filtering. Results suggest optimum high pass filter cutoff at 100-300 Hz, and low pass filter cutoff at 10,000 Hz. To evaluate stimulus rate, linear jerk pulses were presented at 9.2, 16, 25, 40 and 80 Hz. At 80 Hz, mean latencies were longer (0.350-0.450 ms) and mean amplitudes reduced (0.8-1.8 microV) for all response peaks. In 50% of animals, late peaks (P3, N3) disappeared at 80 Hz. The results offer options for VsEP recording protocols. Copyright 2002 Elsevier Science B.V.

  5. Mutagenic Effects of a Single and an Exact Number of α Particles in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Hei, Tom K.; Wu, Li-Jun; Liu, Su-Xian; Vannais, Diane; Waldren, Charles A.; Randers-Pehrson, Gerhard

    1997-04-01

    One of the main uncertainties in risk estimation for environmental radon exposure using lung cancer data from underground miners is the extrapolation from high- to low-dose exposure where multiple traversal is extremely rare. The biological effects of a single α particle are currently unknown. Using the recently available microbeam source at the Radiological Research Accelerator Facility at Columbia University, we examined the frequencies and molecular spectrum of S1- mutants induced in human--hamster hybrid (AL) cells by either a single or an exact number of α particles. Exponentially growing cells were stained briefly with a nontoxic concentration of Hoechst dye for image analysis, and the location of individual cells was computer-monitored. The nucleus of each cell was irradiated with either 1,2,4, or 8 α particles at a linear energy transfer of 90 keV/μ m consistent with the energy spectrum of domestic radon exposure. Although single-particle traversal was only slightly cytotoxic to AL cells (survival fraction ≈ 0.82), it was highly mutagenic, and the induced mutant fraction averaged 110 mutants per 105 survivors. In addition, both toxicity and mutant induction were dose-dependent. Multiplex PCR analysis of mutant DNA showed that the proportion of mutants with multilocus deletions increased with the number of particle traversals. These data provide direct evidence that a single α particle traversing a nucleus will have a high probability of resulting in a mutation and highlight the need for radiation protection at low doses.

  6. Effects of trimebutine maleate on electrical activities of isolated mammalian cardiac preparations.

    PubMed

    Igawa, O; Kotake, H; Hirai, S; Hisatome, I; Hasegawa, J; Mashiba, H

    1989-05-01

    The effects of trimebutine maleate on electrical activity in guinea-pig isolated papillary muscles and rabbit sino-atrial nodes have been studied by means of a standard microelectrode method. In papillary muscles, trimebutine (above 10 microM) decreased the maximum rate of rise (Vmax) and the action potential duration at 90% repolarization (APD90), whereas the resting potential was not significantly altered. As to a decrease in Vmax, trimebutine produced a negative shift of the curve relating Vmax to the resting potential along the voltage axis. Trimebutine also depressed the slow action potentials of papillary muscles produced by 27 mM K and 0.2 mM Ba. In spontaneously beating sino-atrial node preparations, trimebutine (above 10 microM) decreased the heart rate, Vmax and the rate of diastolic depolarization. These results indicate that trimebutine maleate possesses a depressant action on the electrical activities of the fast- and slow-response fibres of the heart mainly due to inhibitions of both fast Na+ and slow Ca2+ channels. PMID:2569517

  7. Insights into Hemoglobin Assembly through in Vivo Mutagenesis of α-Hemoglobin Stabilizing Protein*

    PubMed Central

    Khandros, Eugene; Mollan, Todd L.; Yu, Xiang; Wang, Xiaomei; Yao, Yu; D'Souza, Janine; Gell, David A.; Olson, John S.; Weiss, Mitchell J.

    2012-01-01

    α-Hemoglobin stabilizing protein (AHSP) is believed to facilitate adult Hemoglobin A assembly and protect against toxic free α-globin subunits. Recombinant AHSP binds multiple forms of free α-globin to stabilize their structures and inhibit precipitation. However, AHSP also stimulates autooxidation of αO2 subunit and its rapid conversion to a partially unfolded bishistidyl hemichrome structure. To investigate these biochemical properties, we altered the evolutionarily conserved AHSP proline 30 in recombinantly expressed proteins and introduced identical mutations into the endogenous murine Ahsp gene. In vitro, the P30W AHSP variant bound oxygenated α chains with 30-fold increased affinity. Both P30W and P30A mutant proteins also caused decreased rates of αO2 autooxidation as compared with wild-type AHSP. Despite these abnormalities, mice harboring P30A or P30W Ahsp mutations exhibited no detectable defects in erythropoiesis at steady state or during induced stresses. Further biochemical studies revealed that the AHSP P30A and P30W substitutions had minimal effects on AHSP interactions with ferric α subunits. Together, our findings indicate that the ability of AHSP to stabilize nascent α chain folding intermediates prior to hemin reduction and incorporation into adult Hemoglobin A is physiologically more important than AHSP interactions with ferrous αO2 subunits. PMID:22287545

  8. Insights into hemoglobin assembly through in vivo mutagenesis of α-hemoglobin stabilizing protein.

    PubMed

    Khandros, Eugene; Mollan, Todd L; Yu, Xiang; Wang, Xiaomei; Yao, Yu; D'Souza, Janine; Gell, David A; Olson, John S; Weiss, Mitchell J

    2012-03-30

    α-Hemoglobin stabilizing protein (AHSP) is believed to facilitate adult Hemoglobin A assembly and protect against toxic free α-globin subunits. Recombinant AHSP binds multiple forms of free α-globin to stabilize their structures and inhibit precipitation. However, AHSP also stimulates autooxidation of αO(2) subunit and its rapid conversion to a partially unfolded bishistidyl hemichrome structure. To investigate these biochemical properties, we altered the evolutionarily conserved AHSP proline 30 in recombinantly expressed proteins and introduced identical mutations into the endogenous murine Ahsp gene. In vitro, the P30W AHSP variant bound oxygenated α chains with 30-fold increased affinity. Both P30W and P30A mutant proteins also caused decreased rates of αO(2) autooxidation as compared with wild-type AHSP. Despite these abnormalities, mice harboring P30A or P30W Ahsp mutations exhibited no detectable defects in erythropoiesis at steady state or during induced stresses. Further biochemical studies revealed that the AHSP P30A and P30W substitutions had minimal effects on AHSP interactions with ferric α subunits. Together, our findings indicate that the ability of AHSP to stabilize nascent α chain folding intermediates prior to hemin reduction and incorporation into adult Hemoglobin A is physiologically more important than AHSP interactions with ferrous αO(2) subunits.

  9. Mutagenic effects of a single and an exact number of alpha particles in mammalian cells

    NASA Technical Reports Server (NTRS)

    Hei, T. K.; Wu, L. J.; Liu, S. X.; Vannais, D.; Waldren, C. A.; Randers-Pehrson, G.

    1997-01-01

    One of the main uncertainties in risk estimation for environmental radon exposure using lung cancer data from underground miners is the extrapolation from high- to low-dose exposure where multiple traversal is extremely rare. The biological effects of a single alpha particle are currently unknown. Using the recently available microbeam source at the Radiological Research Accelerator Facility at Columbia University, we examined the frequencies and molecular spectrum of S1- mutants induced in human-hamster hybrid (A(L)) cells by either a single or an exact number of alpha particles. Exponentially growing cells were stained briefly with a nontoxic concentration of Hoechst dye for image analysis, and the location of individual cells was computer-monitored. The nucleus of each cell was irradiated with either 1,2,4, or 8 alpha particles at a linear energy transfer of 90 keV/microm consistent with the energy spectrum of domestic radon exposure. Although single-particle traversal was only slightly cytotoxic to A(L) cells (survival fraction approximately 0.82), it was highly mutagenic, and the induced mutant fraction averaged 110 mutants per 10(5) survivors. In addition, both toxicity and mutant induction were dose-dependent. Multiplex PCR analysis of mutant DNA showed that the proportion of mutants with multilocus deletions increased with the number of particle traversals. These data provide direct evidence that a single a particle traversing a nucleus will have a high probability of resulting in a mutation and highlight the need for radiation protection at low doses.

  10. Liposome-encapsulated hemoglobin processing methods.

    PubMed

    Zheng, S; Zheng, Y; Beissinger, R L; Fresco, R

    1992-01-01

    An effective and safe red blood cell substitute is being developed based on double emulsion/evaporation techniques followed by high pressure homogenization to form liposome-encapsulated hemoglobin (LEH). Formulations are made up of hydrogenated phosphatidylcholine (PC, soy or egg), cholesterol, phosphatidylinositol (PI), and alpha-tocopherol in a molar ratio of 1:1:0.2:0.02, respectively. Resulting LEH-encapsulated hemoglobin (Hb) concentrations are greater than 80% of precursor Hb solutions. Met-Hb generation accompanying LEH processing appears to be small with only a 3% increase for encapsulated over precursor. These results correspond to an oxygen content for an LEH suspension sample (50% by volume LEH) of 15 volume% oxygen. Oxygen affinity and cooperativity values for LEH suspensions appear to be near the normal values expected for whole blood. The viscosity of LEH suspension samples (50% by volume LEH in phosphate-buffered saline containing 7.5 wt% albumin) were slightly higher than that of whole blood. The effect of shear rate on leakage of encapsulated Hb from LEH was small, i.e. 0.5% or less. Nearly total isovolemic exchange transfusion using a cannulated rat model demonstrates efficacy of LEH suspension samples. There appears to be no difference in rat internal organ weights between rats exchanged with control compared to rats exchanged with LEH. Circulation half-life following 50% isovolemic exchange-transfusion is about 15 to 18 hours. PMID:1391451

  11. Modelling the dual role of Per phosphorylation and its effect on the period and phase of the mammalian circadian clock.

    PubMed

    Leloup, J-C; Goldbeter, A

    2011-01-01

    Circadian clocks are regulated at the post-translational level by a variety of processes among which protein phosphorylation plays a prominent, although complex, role. Thus, the phosphorylation of different sites on the clock protein PER by casein kinase I (CKI) can lead to opposite effects on the stability of the protein and on the period of circadian oscillations. Here the authors extend a computational model previously proposed for the mammalian circadian clock by incorporating two distinct phosphorylations of PER by CKI. On the basis of experimental observations the authors consider that phosphorylation at one site (denoted here PER-P1) enhances the rate of degradation of the protein and decreases the period, while phosphorylation at another site (PER-P2) stabilises the protein, enhances the transcription of the Per gene, and increases the period. The model also incorporates an additional phosphorylation of PER by the Glycogen Synthase Kinase 3 (GSK3). The authors show that the extended model incorporating the antagonistic effects of PER phosphorylations by CKI can account for observations pertaining to (i) the decrease in period in the Tau mutant, because of an increase in phosphorylation by CKI leading to PER-P1, and (ii) the familial advanced sleep phase syndrome (FASPS) in which the period is shortened and the phase of the oscillations is advanced when the rate of phosphorylation leading to PER-P2 is decreased. The model further accounts for the increase in period observed in the presence of CKI inhibitors that decrease the rate of phosphorylation leading to both PER-P1 and PER-P2. A similar increase in period results from inhibition of GSK3. [Includes supplementary material]. PMID:21261401

  12. Broadband diffuse optical spectroscopy assessment of hemorrhage- and hemoglobin-based blood substitute resuscitation

    NASA Astrophysics Data System (ADS)

    Lee, Jangwoen; Kim, Jae G.; Mahon, Sari; Tromberg, Bruce J.; Mukai, David; Kreuter, Kelly; Saltzman, Darin; Patino, Renee; Goldberg, Robert; Brenner, Matthew

    2009-07-01

    Hemoglobin-based oxygen carriers (HBOCs) are solutions of cell-free hemoglobin (Hb) that have been developed for replacement or augmentation of blood transfusion. It is important to monitor in vivo tissue hemoglobin content, total tissue hemoglobin [THb], oxy- and deoxy-hemoglobin concentrations ([OHb], [RHb]), and tissue oxygen saturation (StO2=[OHb]/[THb]×100%) to evaluate effectiveness of HBOC transfusion. We designed and constructed a broadband diffuse optical spectroscopy (DOS) prototype system to measure bulk tissue absorption and scattering spectra between 650 and 1000 nm capable of accurately determining these tissue hemoglobin component concentrations in vivo. Our purpose was to assess the feasibility of using DOS to optically monitor tissue [OHb], [RHb], StO2, and total tissue hemoglobin concentration ([THb]=[OHb]+[RHb]) during HBOC infusion using a rabbit hypovolemic shock model. The DOS prototype probe was placed on the shaved inner thigh muscle of the hind leg to assess concentrations of [OHb], [RHb], [THb], as well as StO2. Hemorrhagic shock was induced in intubated New Zealand white rabbits (N=6) by withdrawing blood via a femoral arterial line to 20% blood loss (10-15 cc/kg). Hemoglobin glutamer-200 (Hb-200) 1:1 volume resuscitation was administered following the hemorrhage. These values were compared against traditional invasive measurements, serum hemoglobin concentration (sHGB), systemic blood pressure, heart rate, and blood gases. DOS revealed increases of [THb], [OHb], and tissue hemoglobin oxygen saturation after Hb-200 infusion, while blood total hemoglobin values continued did not increase; we speculate, due to hyperosmolality induced hemodilution. DOS enables noninvasive in vivo monitoring of tissue hemoglobin and oxygenation parameters during shock and volume expansion with HBOC and potentially enables the assessment of efficacy of resuscitation efforts using artificial blood substitutes.

  13. Rodent Habitat on ISS: Advances in Capability for Determining Spaceflight Effects on Mammalian Physiology

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; Choi, S.; Gong, C.; Leveson-Gower, D.; Ronca, A.; Taylor, E.; Beegle, J.

    2016-01-01

    -flight showed that there were no differences between FLT and GC groups in adrenal gland and spleen weights, whereas FLT thymus and liver weights exceeded those of GC. Minimal differences between the control groups (GC and VIV) were observed. In addition, Over 3,000 aliquots collected post-flight from the four groups of mice were deposited into the Ames Life Science Data Archives for the Biospecimen Sharing Program and Genelab project. New capabilities recently developed include DEXA scanning, grip strength tests and male mice. In conclusion, new capability for long duration rodent habitation of group-housed rodents was developed and includes in-flight sample collection, thus avoiding the complication of reentry. Results obtained to date reveal the possibility of striking differences between the effects of short duration vs. long duration spaceflight. This Rodent Research system enables achievement of both basic science and translational research objectives to advance human exploration of space.

  14. Molecular analysis of the high-hemoglobin-F phenotype in Saudi Arabian sickle cell anemia.

    PubMed

    Miller, B A; Olivieri, N; Salameh, M; Ahmed, M; Antognetti, G; Huisman, T H; Nathan, D G; Orkin, S H

    1987-01-29

    Patients from the eastern province of Saudi Arabia who have sickle cell anemia have high circulating levels of fetal hemoglobin (hemoglobin F, 17 percent), and they therefore have a mild form of the disease. To examine the molecular basis of the elevated production of hemoglobin F, we searched for mutations in the promoter regions of the two hemoglobin F gamma-globin genes (G gamma and A gamma). The DNA sequences 450 bp (base pairs) upstream of both the G gamma and A gamma globin genes were normal except for a single-base cytosine-to-thymidine (C----T) substitution at -158 bp 5' to the cap (preinitiation) site of the G gamma-globin gene of the high-hemoglobin-F chromosome. We searched for an association between this -158 C----T substitution and the production of hemoglobin F and G gamma in normal Saudis and Saudis with sickle cell disease or trait. The substitution was present in nearly 100 percent of the patients with sickle cell disease or trait, and in 22 percent of the normal Saudis. Homozygosity for this mutation had no demonstrable effect on hemoglobin F production in the normal Saudi population. We conclude that this mutation is not uniquely responsible for the increase in hemoglobin F in Saudi patients. It may nevertheless have an important role in regulating hemoglobin F production, but its expression is complex and requires interaction with additional factors, such as hemolytic stress or other molecular determinants, possibly linked to the sickle cell gene.

  15. Hemoglobin

    MedlinePlus

    ... the anemia is severe Some conditions affect RBC production in the bone marrow and may cause an ... there is a problem with red blood cell production and/or lifespan, but it cannot determine the ...

  16. Hemoglobin

    MedlinePlus

    ... disease ) Failure of the right side of the heart ( cor pulmonale ) Severe chronic obstructive pulmonary disease (COPD) Scarring or thickening of the lungs ( pulmonary fibrosis ) and other severe lung disorders Other reasons for ...

  17. Mutant quantity and quality in mammalian cells (A{sub L}) exposed to cesium-137 gamma radiation: Effect of caffeine

    SciTech Connect

    McGuinness, S.M.; Shibuya, M.L.; Ueno, A.M.

    1995-06-01

    We examined the effect of caffeine (1,3,7-trimethylxanthine) on the quantity and quality of mutations in cultured mammalian A{sub L} human-hamster hybrid cells exposed to {sup 137}Cs {gamma} radiation. At a dose (1.5 mg/ml for 16 h) that reduced the plating efficiency (PE) by 20%, caffeine was not itself a significant mutagen, but it increased by approximately twofold the slope of the dose-response curve for induction of S1{sup {minus}} mutants by {sup 137}Cs {gamma} radiation. Molecular analysis of 235 S1{sup {minus}} mutants using a series of DNA probes mapped to the human chromosome 11 in the A{sub L} hybrid cells revealed that 73 to 85% of the mutations in unexposed cells and in cells treated with caffeine alone, {sup 137}Cs {gamma} rays alone or {sup 137}Cs {gamma} rays plus caffeine were large deletions involving millions of base pairs of DNA. Most of these deletions were contiguous with the region of the MIC1 gene at 11p13 that encodes the S1 cell surface antigen. In other mutants that had suffered multiple marker loss, the deletions were intermittent along chromosome 11. These {open_quotes}complex{close_quotes} mutations were rare for {sup 137}Cs {gamma} irradiation (1/63 = 1.5%) but relatively prevalent (23-50%) for other exposure conditions. Thus caffeine appears to alter both the quantity and quality of mutations induced by {sup 137}Cs {gamma} irradiation. 62 refs., 3 figs., 3 tabs.

  18. Effects of diverse mammalian and nonmammalian gonadotropins in a rat granulosa cell bioassay for follicle-stimulating hormone.

    PubMed

    Dahl, K D; Papkoff, H; Hsueh, A J

    1989-03-01

    The biopotencies of pituitary gonadotropins purified from a marsupial (kangaroo), two avian (ostrich and turkey), a reptile (turtle), an amphibian (bullfrog), and two fish (sturgeon and teleost) species were examined using an in vitro rat granulosa cell bioassay for follicle-stimulating hormone (FSH). Treatment of cultured granulosa cells with increasing concentrations of gonadotropin preparations from these species resulted in dose-dependent increases in estrogen production from negligible amounts to maximal levels of approximately 2-29 ng/culture. The relative biopotencies of these FSH preparations from most potent to least potent were in the order of human greater than ostrich greater than turkey greater than kangaroo greater than turtle greater than sturgeon greater than bullfrog greater than teleost with ED50 values of human 8.7 ng/well; ostrich 10.5 ng/well; turkey 22.5 ng/well; kangaroo 58.2 ng/well; turtle 62.5 ng/well; sturgeon 260 ng/well; bullfrog 750 ng/well; teleost greater than 1000 ng/well. In contrast, luteinizing hormone (LH) preparations were considerably less effective for ostrich, turkey, kangaroo, turtle, and bullfrog, being six-, five-, three-, and twofold less potent than FSH preparations for the same species, demonstrating the specificity of this assay for FSH. An LH preparation from bullfrog was unable to significantly stimulate estrogen production below 500 ng/ml. Thus, the present in vitro bioassay (GAB) using rat granulosa cells provides a sensitive and specific assay for measuring FSH activities of gonadotropins from diverse mammalian and nonmammalian species.

  19. Effects of the mycotoxin ochratoxin A in a bacterial and a mammalian in vitro mutagenicity test system.

    PubMed

    Föllmann, Wolfram; Lucas, Stefanie

    2003-05-01

    Ochratoxin A (OTA), a mycotoxin produced by several Aspergillus and Penicillium species, is a worldwide contaminant of food and feedstuffs. It is nephrotoxic, immunosuppressive and carcinogenic in several animal species. The mechanism by which OTA acts is not fully understood up to now. Here, OTA was evaluated for mutagenicity in the Salmonella typhimurium assay (Ames assay) and in the HPRT assay with V79 hamster fibroblasts. In the bacterial assay using the strains TA 98, TA 100, TA 1535, TA 1538, TA 102 and TA 104, OTA was not mutagenic at a concentration range from 0.01 to 500 micro M in the presence and absence of an external metabolising enzyme system (rat liver S9 enzyme mix). In V79 fibroblasts, cytotoxicity of OTA was estimated with the neutral red uptake assay. An IC(50) of 11.6 micro M was found in the absence and an IC(50) of 6.4 micro M in the presence of S9 mix. In the subsequent HPRT (hypoxanthine-guanine-phosphoribosyl-transferase) assay with V79 cells the negative result of the bacterial assay was confirmed using OTA in concentrations from 0.1 to 100 micro M. In order to obtain converted OTA metabolites from viable, metabolically competent cells, a preincubation of primary cultured rat hepatocytes with 0.016 to 0.8 micro M OTA was performed. The resulting culture medium, which contained OTA metabolites, was tested in both mutagenicity assays. Again, no mutagenic effect was detected either in the bacterial or in the mammalian test assay. In accordance with several literature data, the present results imply that OTA does not act as direct mutagen. Additionally, the OTA metabolites derived from cultured rat hepatocytes or rat liver S9 mix, also, do not have a mutagenic potency in the test systems used.

  20. Hemoglobin variant (hemoglobin Aalborg) mimicking interstitial pulmonary disease.

    PubMed

    Panou, Vasiliki; Jensen, Peter-Diedrich Mathias; Pedersen, Jan Freddy; Thomsen, Lars Pilegaard; Weinreich, Ulla Møller

    2014-01-01

    Hemoglobin Aalborg is a moderately unstable hemoglobin variant with no affiliation to serious hematological abnormality or major clinical symptoms under normal circumstances. Our index person was a healthy woman of 58, not previously diagnosed with hemoglobinopathy Aalborg, who developed acute respiratory failure after a routine cholecystectomy. Initially she was suspected of idiopathic interstitial lung disease, yet a series of tests uncovered various abnormal physiological parameters and set the diagnosis of hemoglobinopathy Aalborg. This led us to examine a group of the index person's relatives known with hemoglobinopathy Aalborg in order to study whether the same physiological abnormalities would be reencountered. They were all subjected to spirometry and body plethysmography, six-minute walking test, pulse oximetry, and arterial blood gas samples before and after the walking test. The entire study population presented the same physiological anomalies: reduction in diffusion capacity, and abnormalities in P(a)O2 and p50 values; the latter could not be presented by the arterial blood gas analyzer; furthermore there was concordance between pulse oximetry and arterial blood gas samples regarding saturation. These data suggest that, based upon the above mentioned anomalies in physiological parameters, the diagnosis of hemoglobinopathy Aalborg should be considered.

  1. Hemoglobin Variant (Hemoglobin Aalborg) Mimicking Interstitial Pulmonary Disease

    PubMed Central

    Panou, Vasiliki; Jensen, Peter-Diedrich Mathias; Pedersen, Jan Freddy; Thomsen, Lars Pilegaard; Weinreich, Ulla Møller

    2014-01-01

    Hemoglobin Aalborg is a moderately unstable hemoglobin variant with no affiliation to serious hematological abnormality or major clinical symptoms under normal circumstances. Our index person was a healthy woman of 58, not previously diagnosed with hemoglobinopathy Aalborg, who developed acute respiratory failure after a routine cholecystectomy. Initially she was suspected of idiopathic interstitial lung disease, yet a series of tests uncovered various abnormal physiological parameters and set the diagnosis of hemoglobinopathy Aalborg. This led us to examine a group of the index person's relatives known with hemoglobinopathy Aalborg in order to study whether the same physiological abnormalities would be reencountered. They were all subjected to spirometry and body plethysmography, six-minute walking test, pulse oximetry, and arterial blood gas samples before and after the walking test. The entire study population presented the same physiological anomalies: reduction in diffusion capacity, and abnormalities in PaO2 and p50 values; the latter could not be presented by the arterial blood gas analyzer; furthermore there was concordance between pulse oximetry and arterial blood gas samples regarding saturation. These data suggest that, based upon the above mentioned anomalies in physiological parameters, the diagnosis of hemoglobinopathy Aalborg should be considered. PMID:25400945

  2. Determination Of Ph Including Hemoglobin Correction

    DOEpatents

    Maynard, John D.; Hendee, Shonn P.; Rohrscheib, Mark R.; Nunez, David; Alam, M. Kathleen; Franke, James E.; Kemeny, Gabor J.

    2005-09-13

    Methods and apparatuses of determining the pH of a sample. A method can comprise determining an infrared spectrum of the sample, and determining the hemoglobin concentration of the sample. The hemoglobin concentration and the infrared spectrum can then be used to determine the pH of the sample. In some embodiments, the hemoglobin concentration can be used to select an model relating infrared spectra to pH that is applicable at the determined hemoglobin concentration. In other embodiments, a model relating hemoglobin concentration and infrared spectra to pH can be used. An apparatus according to the present invention can comprise an illumination system, adapted to supply radiation to a sample; a collection system, adapted to collect radiation expressed from the sample responsive to the incident radiation; and an analysis system, adapted to relate information about the incident radiation, the expressed radiation, and the hemoglobin concentration of the sample to pH.

  3. The effect of replacement of methionine by homocystine on survival of malignant and normal adult mammalian cells in culture.

    PubMed

    Halpern, B C; Clark, B R; Hardy, D N; Halpern, R M; Smith, R A

    1974-04-01

    In tissue cultures of normal adult and malignant mammalian cells, homocystine has been substituted for methionine in a medium rich in folic acid and cyanocobalamin. Normal adult cells thrive. Three highly malignant cell types from three different species, including man, die.

  4. Hemoglobin Labeled by Radioactive Lysine

    DOE R&D Accomplishments Database

    Bale, W. F.; Yuile, C. L.; DeLaVergne, L.; Miller, L. L.; Whipple, G. H.

    1949-12-08

    This paper reports on the utilization of tagged epsilon carbon of DL-lysine by a dog both anemic and hypoproteinemic due to repeated bleeding plus a diet low in protein. The experiment extended over period of 234 days, a time sufficient to indicate an erythrocyte life span of at least 115 days based upon the rate of replacement of labeled red cell proteins. The proteins of broken down red cells seem not to be used with any great preference for the synthesis of new hemoglobin.

  5. CD73 and AMPD3 deficiency enhance metabolic performance via erythrocyte ATP that decreases hemoglobin oxygen affinity

    PubMed Central

    O’Brien III, William G.; Berka, Vladimir; Tsai, Ah-Lim; Zhao, Zhaoyang; Lee, Cheng Chi

    2015-01-01

    Erythrocytes are the key target in 5′-AMP induced hypometabolism. To understand how regulation of endogenous erythrocyte AMP levels modulates systemic metabolism, we generated mice deficient in both CD73 and AMPD3, the key catabolic enzymes for extracellular and intra-erythrocyte AMP, respectively. Under physiological conditions, these mice displayed enhanced capacity for physical activity accompanied by significantly higher food and oxygen consumption, compared to wild type mice. Erythrocytes from Ampd3−/− mice exhibited higher half-saturation pressure of oxygen (p50) and about 3-fold higher levels of ATP and ADP, while they maintained normal 2,3-bisphosphoglycerate (2,3-BPG), methemoglobin levels and intracellular pH. The affinity of mammalian hemoglobin for oxygen is thought to be regulated primarily by 2,3-BPG levels and pH (the Bohr effect). However, our results show that increased endogenous levels of ATP and ADP, but not AMP, directly increase the p50 value of hemoglobin. Additionally, the rise in erythrocyte p50 directly correlates with an enhanced capability of systemic metabolism. PMID:26249166

  6. Erythrocyte phosphates and hemoglobin function in monotremes and some marsupials.

    PubMed

    Isaacks, R; Nicol, S; Sallis, J; Zeidler, R; Kim, H D

    1984-02-01

    Hematologic values, red blood cell (RBC) organic phosphate composition, hemoglobin function, and hemoglobin composition have been determined on blood from the monotremes, the duckbill platypus and the echidna, and three species of marsupials, the Tasmanian devil, the wallaby, and the brush-tail possum. Blood from the platypus had a RBC count of 8.63 X 10(6)/mm3, a mean corpuscular volume of 49.1 millemicron3, and a white blood cell count of 26.0 X 10(3)/mm3. The RBCs from the monotremes and the three marsupials exhibited hemoglobin polymorphism, each with three hemoglobin components. Addition of ATP, 2,3-bisphosphoglycerate (2,3-P2-glycerate), or inositol pentakisphosphate (inositol-P5) to phosphate-free hemoglobin from each species decreased hemoglobin oxygen affinity; the order of effect of these compounds was ATP less than 2,3-P2-glycerate less than inositol-P5. The RBCs of all species had concentrations of 2,3-P2-glycerate ranging from 6.02 mumol/ml RBCs in the wallaby to 10.39 mumol/ml RBCs in the possum. The RBCs from the three species of marsupials had concentrations of ATP ranging from 0.24 mumol/ml RBCs in the possum to 0.80 mumol/ml RBCs in the Tasmanian devil. The level of ATP in RBCs of the platypus and echidna were 0.06 and 0.03 mumol/ml RBCs, respectively.

  7. Net charge and oxygen affinity of human hemoglobin are independent of hemoglobin concentration

    PubMed Central

    1978-01-01

    The dependence of net charge and oxygen affinity of human hemoglobin upon hemoglobin concentration was reinvestigated. In contrast to earlier reports from various laboratories, both functional properties of hemoglobin were found to be independent of hemoglobin concentration. Two findings indicate a concentration-independent net charge of carbonmonoxy hemoglobin at pH 6.6: (A) The pH value of a given carbonmonoty hemoglobin solution remains constant at 6.6 when the hemoglobin concentration is raised from 10 to 40 g/dl, indicating that there is no change in protonation of titratable groups of hemoglobin: (b) the net charge of carbonmonoxy hemoglobin as estimated from the Donnan distribution of 22Na+ shows no dependence on hemoglobin concentration in this concentration range. The oxygen affinity of human hemoglobin was determined from measurements of oxygen concentrations in equilibrated samples using a Lex-O2-Con apparatus (Lexington Instruments, Waltham, Mass.). P50 averaged 11.4 mm Hg at 37 degrees C, pH = 7.2, and ionic strength approximately 0.15. Neither P50 nor Hill's n showed any variation with hemoglobin concentrations increasing from 10 to 40 g/dl. PMID:32221

  8. Radiation-induced changes in the optical properties of hemoglobin molecule

    NASA Astrophysics Data System (ADS)

    Selim, Nabila S.; El-Marakby, Seham M.

    2010-06-01

    Adult male Albino rats were exposed to different doses of gamma radiation from Cs-137 source. Hemoglobin samples were analyzed 24 h after irradiation. The UV-visible spectrum of hemoglobin molecule was measured in the range 200-700 nm. The overall spectrum of the hemoglobin molecule showed hypochromicity that increased with dose increase. To investigate the effect of radiation on the hemoglobin molecule, different parameters of the spectrum were calculated: molar absorption coefficient, absorption cross-section, transition dipole moment, dipole length, the optical energy gap and activation energy for each characteristic peak. The obtained results revealed that the radiation effect can induce rearrangement of the transition dipole moments and change molecular energy levels of the hemoglobin molecule.

  9. The interaction of sodium chlorite with phospholipids and glutathione: a comparison of effects in vitro, in mammalian and in microbial cells.

    PubMed

    Ingram, Paul R; Homer, Natalie Z M; Smith, Rachel A; Pitt, Andrew R; Wilson, Clive G; Olejnik, Orest; Spickett, Corinne M

    2003-02-01

    In this study the interaction of the preservative sodium chlorite with unsaturated lipids and glutathione was investigated, in comparison with peroxides, sodium hypochlorite, and benzalkonium chloride. The aim was to determine whether the action of sodium chlorite could involve membrane lipid damage or antioxidant depletion, and how this related to toxicity in both mammalian and microbial cells. The treatment of phospholipids with chlorite yielded low levels of hydroperoxides, but sodium chlorite oxidized the thiol-containing antioxidant glutathione to its disulfide form very readily in vitro, with a 1:4 oxidant:GSH stoichiometry. In cultured cells, sodium chlorite also caused a substantial depletion of intracellular glutathione, whereas lipid oxidation was not very prominent. Sodium chlorite had a lower toxicity to ocular mammalian cells than benzalkonium chloride, which could be responsible for the different effects of long-term application in the eye. The fungal cells, which were most resistant to sodium chlorite, maintained higher percentage levels of intracellular glutathione during treatment than the mammalian cells. The results show that sodium chlorite can cause oxidative stress in cells, and suggest that cell damage is more likely to be due to interaction with thiol compounds than with cell membrane lipids. The study also provides important information about the differential resistance of ocular cells and microbes to various preservatives and oxidants.

  10. Recent advances in mammalian protein production

    PubMed Central

    Bandaranayake, Ashok D.; Almo, Steven C.

    2014-01-01

    Mammalian protein production platforms have had a profound impact in many areas of basic and applied research, and an increasing number of blockbuster drugs are recombinant mammalian proteins. With global sales of these drugs exceeding US$120 billion per year, both industry and academic research groups continue to develop cost effective methods for producing mammalian proteins to support preclinical and clinical evaluations of potential therapeutics. While a wide range of platforms have been successfully exploited for laboratory use, the bulk of recent biologics have been produced in mammalian cell lines due to the requirement for post translational modification and the biosynthetic complexity of the target proteins. In this review we highlight the range of mammalian expression platforms available for recombinant protein production, as well as advances in technologies for the rapid and efficient selection of highly productive clones. PMID:24316512

  11. Degradation of bioabsorbable Mg-based alloys: Assessment of the effects of insoluble corrosion products and joint effects of alloying components on mammalian cells.

    PubMed

    Grillo, Claudia A; Alvarez, Florencia; Fernández Lorenzo de Mele, Mónica A

    2016-01-01

    This work is focused on the processes occurring at the bioabsorbable metallic biomaterial/cell interfaces that may lead to toxicity. A critical analysis of the results obtained when degradable metal disks (pure Mg and rare earth-containing alloys (ZEK100 alloys)) are in direct contact with cell culture and those obtained with indirect methods such as the use of metal salts and extracts was made. Viability was assessed by Acridine Orange dye, neutral red and clonogenic assays. The effects of concentration of corrosion products and possible joint effects of the binary and ternary combinations of La, Zn and Mg ions, as constituents of ZEK alloys, were evaluated on a mammalian cell culture. In all cases more detrimental effects were found for pure Mg than for the alloys. Experiments with disks showed that gradual alterations in pH and in the amount of corrosion products were better tolerated by cells and resulted in higher viability than abrupt changes. In addition, viability was dependent on the distance from the source of ions. Experiments with extracts showed that the effect of insoluble degradation products was highly detrimental. Indirect tests with Zn ions revealed that harmful effects may be found at concentrations ≥ 150 μM and at ≥ 100 μM in mixtures with Mg. These mixtures lead to more deleterious effects than single ions. Results highlight the need to develop a battery of tests to evaluate the biocompatibility of bioabsorbable biomaterials. PMID:26478323

  12. Degradation of bioabsorbable Mg-based alloys: Assessment of the effects of insoluble corrosion products and joint effects of alloying components on mammalian cells.

    PubMed

    Grillo, Claudia A; Alvarez, Florencia; Fernández Lorenzo de Mele, Mónica A

    2016-01-01

    This work is focused on the processes occurring at the bioabsorbable metallic biomaterial/cell interfaces that may lead to toxicity. A critical analysis of the results obtained when degradable metal disks (pure Mg and rare earth-containing alloys (ZEK100 alloys)) are in direct contact with cell culture and those obtained with indirect methods such as the use of metal salts and extracts was made. Viability was assessed by Acridine Orange dye, neutral red and clonogenic assays. The effects of concentration of corrosion products and possible joint effects of the binary and ternary combinations of La, Zn and Mg ions, as constituents of ZEK alloys, were evaluated on a mammalian cell culture. In all cases more detrimental effects were found for pure Mg than for the alloys. Experiments with disks showed that gradual alterations in pH and in the amount of corrosion products were better tolerated by cells and resulted in higher viability than abrupt changes. In addition, viability was dependent on the distance from the source of ions. Experiments with extracts showed that the effect of insoluble degradation products was highly detrimental. Indirect tests with Zn ions revealed that harmful effects may be found at concentrations ≥ 150 μM and at ≥ 100 μM in mixtures with Mg. These mixtures lead to more deleterious effects than single ions. Results highlight the need to develop a battery of tests to evaluate the biocompatibility of bioabsorbable biomaterials.

  13. Spectrophotometric Properties of Hemoglobin: Classroom Applications.

    ERIC Educational Resources Information Center

    Frary, Roger

    1997-01-01

    Discusses simple and safe techniques that can be used in the educational laboratory to study hemoglobin. Discusses the spectral properties of hemoglobin, spectral-absorbence curves of oxyhemoglobin and carboxyhemoglobin, tracking the conversion of oxyhemoglobin to methemoglobin, and changing from the oxyhemoglobin to deoxyhemoglobin conformation.…

  14. Separation and characterization of Menhaden hemoglobin components.

    PubMed

    Pokrywka, G S; Gold, F

    1980-01-01

    Hemolysate from Brevoortia tyrannus (Atlantic Menhaden) consists of two major and two minor components, as determined by ion-exchange chromatography. Oxygen equilibria, flash photolysis and rapid mixing techniques are used to detect functional differences between the two major components, revealing a system analogous to the Trout I-IV system. Menhaden IV exhibits a moderate Root effect and is sensitive to organic phosphate inhibition. Menhaden I exhibits little sensitivity to pH changes or the presence of organic phosphates. These differences are probably based on contrasting kinetic behavior, subunit heterogeneity and replacement of a COOH-terminal histidine residue. Theories accounting for the significance of functional hemoglobin multiplicity are reviewed. By bypassing the normal physiological unloading mechanisms, Menhaden I may be functioning as an oxygen reservoir, perhaps for red muscle during periods of high activity. PMID:7353958

  15. Determination of Human Hemoglobin Derivatives.

    PubMed

    Attia, Atef M M; Ibrahim, Fatma A A; Abd El-Latif, Noha A; Aziz, Samir W; Abdelmottaleb Moussa, Sherif A; Elalfy, Mohsen S

    2015-01-01

    The levels of the inactive hemoglobin (Hb) pigments [such as methemoglobin (metHb), carboxyhemoglobin (HbCO) and sulfohemoglobin (SHb)] and the active Hb [in the oxyhemoglobin (oxyHb) form] as well as the blood Hb concentration in healthy non pregnant female volunteers were determined using a newly developed multi-component spectrophotometric method. The results of this method revealed values of SHb% in the range (0.0727-0.370%), metHb% (0.43-1.0%), HbCO% (0.4-1.52%) and oxyHb% (97.06-98.62%). Furthermore, the results of this method revealed values of blood Hb concentration in the range (12.608-15.777 g/dL). The method is highly sensitive, accurate and reproducible.

  16. Monoclonal antibodies specific for sickle cell hemoglobin

    SciTech Connect

    Jensen, R.H.; Vanderlaan, M.; Grabske, R.J.; Branscomb, E.W.; Bigbee, W.L.; Stanker, L.H.

    1985-01-01

    Two mouse hybridoma cell lines were isolated which produce monoclonal antibodies that bind hemoglobin S. The mice were immunized with peptide-protein conjugates to stimulate a response to the amino terminal peptide of the beta chain of hemoglobin S, where the single amino acid difference between A and S occurs. Immunocharacterization of the antibodies shows that they bind specifically to the immunogen peptide and to hemoglobin S. The specificity for S is high enough that one AS cell in a mixture with a million AA cells is labeled by antibody, and such cells can be analyzed by flow cytometry. Immunoblotting of electrophoretic gels allows definitive identification of hemoglobin S as compared with other hemoglobins with similar electrophoretic mobility. 12 references, 4 figures.

  17. The Biochemistry of Vitreoscilla hemoglobin

    PubMed Central

    Stark, Benjamin C.; Dikshit, Kanak L.; Pagilla, Krishna R.

    2012-01-01

    The hemoglobin (VHb) from Vitreoscilla was the first bacterial hemoglobin discovered. Its structure and function have been extensively investigated, and engineering of a wide variety of heterologous organisms to express VHb has been performed to increase their growth and productivity. This strategy has shown promise in applications as far-ranging as the production of antibiotics and petrochemical replacements by microorganisms to increasing stress tolerance in plants. These applications of “VHb technology” have generally been of the “black box” variety, wherein the endpoint studied is an increase in the levels of a certain product or improved growth and survival. Their eventual optimization, however, will require a thorough understanding of the various functions and activities of VHb, and how VHb expression ripples to affect metabolism more generally. Here we review the current knowledge of these topics. VHb's functions all involve oxygen binding (and often delivery) in one way or another. Several biochemical and structure-function studies have provided an insight into the molecular details of this binding and delivery. VHb activities are varied. They include supply of oxygen to oxygenases and the respiratory chain, particularly under low oxygen conditions; oxygen sensing and modulation of transcription factor activity; and detoxification of NO, and seem to require interactions of VHb with “partner proteins”. VHb expression affects the levels of ATP and NADH, although not enormously. VHb expression may affect the level of many compounds of intermediary metabolism, and, apparently, alters the levels of expression of many genes. Thus, the metabolic changes in organisms engineered to express VHb are likely to be numerous and complicated. PMID:24688662

  18. A new polyethyleneglycol-derivatized hemoglobin derivative with decreased oxygen affinity and limited toxicity.

    PubMed

    Zolog, Oana; Mot, Augustin; Deac, Florina; Roman, Alina; Fischer-Fodor, Eva; Silaghi-Dumitrescu, Radu

    2011-01-01

    A new protocol is described for derivatization of hemoglobin with polyethyleneglycol (PEG) via reaction of the unmodified native hemoglobin with an activated amine-reacting polyethylene glycol derivative which, unlike protocols previously described, leads to formation of a peptide bond between hemoglobin and PEG. Dioxygen binding and peroxide reactivities of the derivatized hemoglobin are examined, and found to be within reasonable limits, with the particular observation that, unlike with a few other derivatization protocols, the dioxygen affinity is slightly lower than that of native Hb. In cell culture tests (human umbilical vein epithelial cells, HUVEC), the derivatization protocol induces no toxic effect. These results show promise towards applicability for production of hemoglobin-based blood substitutes. PMID:21161348

  19. A new polyethyleneglycol-derivatized hemoglobin derivative with decreased oxygen affinity and limited toxicity.

    PubMed

    Zolog, Oana; Mot, Augustin; Deac, Florina; Roman, Alina; Fischer-Fodor, Eva; Silaghi-Dumitrescu, Radu

    2011-01-01

    A new protocol is described for derivatization of hemoglobin with polyethyleneglycol (PEG) via reaction of the unmodified native hemoglobin with an activated amine-reacting polyethylene glycol derivative which, unlike protocols previously described, leads to formation of a peptide bond between hemoglobin and PEG. Dioxygen binding and peroxide reactivities of the derivatized hemoglobin are examined, and found to be within reasonable limits, with the particular observation that, unlike with a few other derivatization protocols, the dioxygen affinity is slightly lower than that of native Hb. In cell culture tests (human umbilical vein epithelial cells, HUVEC), the derivatization protocol induces no toxic effect. These results show promise towards applicability for production of hemoglobin-based blood substitutes.

  20. Effects of N-acetyl-L-cysteine-capped CdTe quantum dots on bovine serum albumin and bovine hemoglobin: isothermal titration calorimetry and spectroscopic investigations.

    PubMed

    Sun, Haoyu; Cui, Erqian; Tan, Zhigang; Liu, Rutao

    2014-12-01

    The interactions of N-acetyl-L-cysteine-capped CdTe quantum dots (QDs) with bovine serum albumin (BSA) and bovine hemoglobin (BHb) were investigated by isothermal titration calorimetry (ITC), fluorescence, synchronous fluorescence, fluorescence lifetime, ultraviolet-visible absorption, and circular dichroism techniques. Fluorescence data of BSA-QDs and BHb-QDs revealed that the quenching was static in every system. While CdTe QDs changed the microenvironment of tryptophan in BHb, the microenvironment of BSA kept unchanged. Adding CdTe QDs affected the skeleton and secondary structure of the protein (BSA and BHb). The ITC results indicated that the interaction between the protein (BSA and BHb) and QDs-612 was spontaneous and the predominant force was hydrophobic interaction. In addition, the binding constants were determined to be 1.19 × 10(5) L mol(-1) (BSA-QDs) and 2.19 × 10(5) L mol(-1) (BHb-QDs) at 298 K. From these results, we conclude that CdTe QDs have a larger impact on the structure of BHb than BSA.

  1. Hydroxylation and dealkylation reactions catalyzed by hemoglobin.

    PubMed

    Mieyal, J J; Starke, D W

    1994-01-01

    Red blood cells contain many enzymes that are akin to those that catalyze xenobiotic metabolism in liver and other tissues. An obvious exception is the cytochrome P-450 system that is found in virtually all other tissues. In vitro studies, however, have shown that hemoglobin can be a broad monooxygenase catalyst, exhibiting the properties of a monooxygenase enzyme. Thus, catalysis by Hb displays typical Michaelis-Menten kinetics, dependence on the native protein, coupling to NADPH-dependent flavoprotein reductases, and inhibition by carbon monoxide. The reconstituted system containing Hb along with P-450 reductase utilizes NADPH and O2 to catalyze typical monooxygenase reactions, including O- and N-demethylations as well as aromatic and aliphatic hydroxylations, and the catalytic cycle appears to mimic the typical P-450 mechanism. Turnover numbers for aniline hydroxylation are similar for Hb and P-450 reconstituted systems, whereas P-450 systems are more effective for other reactions. Catalysis by Hb seems to be restricted to the beta-heme sites of the tetramer, reflecting more facile substrate access. Overall the similarities and differences between Hb and P-450 provide an opportunity to examine the basis for their differential monooxygenase or peroxidase/peroxygenase activities in a comparative manner. Hb may be especially useful in delineating the early events in the respective reaction schemes, because it can be studied in various stable redox/ligand states, including the oxyferrous form. Similar hemoglobin-catalyzed oxidative biotransformations occur within intact erythrocytes, but apparent turnover numbers are much lower than those with the reconstituted Hb system, suggesting different mechanisms of catalysis. Although Hb-mediated oxidase activity in erythrocytes is low relative to other sites of xenobiotic metabolism, it may contribute to in situ activation of xenobiotics leading to oxidative stress, disruption of sulfhydryl homeostasis in the erythrocytes

  2. Effect of atrazine and fenitrothion at no-observed-effect-levels (NOEL) on amphibian and mammalian corticosterone-binding-globulin (CBG).

    PubMed

    Hernández, Sandra E; Sernia, Conrad; Bradley, Adrian J

    2014-11-01

    This study determines the effect of atrazine and fenitrothion no-observed-effect-levels (NOEL) on the binding of corticosterone (B) to corticosterone-binding-globulin (CBG) in an amphibian and a mammal. Plasma from five cane toads and five Wistar rats was exposed to atrazine and fenitrothion at the NOEL approved for Australian fresh water residues and by the World Health Organization (WHO). The concentration required to displace 50% (IC50) of B binding to CBG was determined by a competitive microdialysis protein assay. Competition studies showed that both atrazine and fenitrothion at NOEL are able to compete with B for CBG binding sites in toad and rat plasma. The IC50 levels for atrazine in toads and rats were 0.004 nmol/l and 0.09 nmol/l respectively. In the case of fenitrothion the IC50 level found in toads was 0.007 nmol/l, and 0.025 nmol/l in rats. Plasma dilution curves showed parallelism with the curve of B, demonstrating that these agro-chemicals are competitively inhibiting binding to CBG. The displacement of B by atrazine and fenitrothion would affect the total:free ratio of B and consequently disrupt the normal stress response. This is the first time that the potential disruptive effect of atrazine and fenitrothion on B-CBG interaction at the NOELs has been demonstrated in amphibian and mammalian models.

  3. Structure-function relations of human hemoglobins

    PubMed Central

    2006-01-01

    In 1949 Pauling and his associates showed that sickle cell hemoglobin (HbS) belonged to an abnormal molecular species. In 1958 Ingram, who used a two-dimensional system of electrophoresis and chromatography to break down the hemoglobin molecule into a mixture of smaller peptides, defined the molecular defect in HbS by showing that it differed from normal adult hemoglobin by only a single peptide. Since then, more than 200 variant and abnormal hemoglobins have been described. Furthermore, the construction of an atomic model of the hemoglobin molecule based on a high-resolution x-ray analysis by Dr. Max Perutz at Cambridge has permitted the study of the stereochemical part played by the amino acid residues, which were replaced, deleted, or added to in each of the hemoglobin variants. Some of the variants have been associated with clinical conditions. The demonstration of a molecular basis for a disease was a significant turning point in medicine. A new engineered hemoglobin derived from crocodile blood, with markedly reduced oxygen affinity and increased oxygen delivery to the tissues, points the way for future advances in medicine. PMID:17252042

  4. Oxygen Measurements in Liposome Encapsulated Hemoglobin

    NASA Astrophysics Data System (ADS)

    Phiri, Joshua Benjamin

    Liposome encapsulated hemoglobins (LEH's) are of current interest as blood substitutes. An analytical methodology for rapid non-invasive measurements of oxygen in artificial oxygen carriers is examined. High resolution optical absorption spectra are calculated by means of a one dimensional diffusion approximation. The encapsulated hemoglobin is prepared from fresh defibrinated bovine blood. Liposomes are prepared from hydrogenated soy phosphatidylcholine (HSPC), cholesterol and dicetylphosphate using a bath sonication method. An integrating sphere spectrophotometer is employed for diffuse optics measurements. Data is collected using an automated data acquisition system employing lock-in -amplifiers. The concentrations of hemoglobin derivatives are evaluated from the corresponding extinction coefficients using a numerical technique of singular value decomposition, and verification of the results is done using Monte Carlo simulations. In situ measurements are required for the determination of hemoglobin derivatives because most encapsulation methods invariably lead to the formation of methemoglobin, a nonfunctional form of hemoglobin. The methods employed in this work lead to high resolution absorption spectra of oxyhemoglobin and other derivatives in red blood cells and liposome encapsulated hemoglobin (LEH). The analysis using singular value decomposition method offers a quantitative means of calculating the fractions of oxyhemoglobin and other hemoglobin derivatives in LEH samples. The analytical methods developed in this work will become even more useful when production of LEH as a blood substitute is scaled up to large volumes.

  5. Effects of Pleistocene environmental changes on the distribution and community structure of the mammalian fauna of Mexico

    NASA Astrophysics Data System (ADS)

    Ceballos, Gerardo; Arroyo-Cabrales, Joaquín; Ponce, Eduardo

    2010-05-01

    Biological communities in Mexico experienced profound changes in species composition and structure as a consequence of the environmental fluctuations during the Pleistocene. Based on the recent and fossil Mexican mammal checklists, we determine the distribution, composition, diversity, and community structure of late Pleistocene mammalian faunas, and analyze extinction patterns and response of individual species to environmental changes. We conclude that (1) differential extinctions occurred at family, genus, and species level, with a major impact on species heavier than 100 kg, including the extinction all proboscideans and several ruminants; (2) Pleistocene mammal communities in Mexico were more diverse than recent ones; and (3) the current assemblages of species are relatively young. Furthermore, Pleistocene relicts support the presence of biogeographic corridors; important refugia existed as well as centers of speciation in isolated regions. We identified seven corridors: eastern USA-Sierra Madre Oriental corridor, Rocky Mountains-Sierra Madre Occidental corridor, Central United States-Northern Mexico corridor, Transvolcanic Belt-Sierra Madre del Sur corridor, western USA-Baja California corridor, Tamaulipas-Central America gulf lowlands corridor, and Sonora-Central America Pacific lowlands corridor. Our study suggests that present mammalian assemblages are very different than the ones in the late Pleistocene.

  6. The progressive effect of the individualistic response of species to Quaternary climate change: an analysis of British mammalian faunas

    NASA Astrophysics Data System (ADS)

    Stewart, John R.

    2008-12-01

    The individualistic response of species to climate change is accepted by many although how this process works across several climate oscillations has not been widely considered. A cluster analysis using the Bray-Curtis metric with single linkage to show relative faunal similarity was performed on successively older British mammalian faunas to investigate whether they become progressively different compared to the present day (Holocene). British mammalian faunas from MIS 3, 5, 11, 13 and 17 were compared with the Holocene revealing that the last glaciation (MIS 3) is more different than are any of the interglacials (MIS 5, 11, 13, 17). Furthermore, the interglacials generally become more distinct from the Holocene with age. This difference relates to the fact that interglacial faunas have greater proportions of extinct and extirpated species with increased age. The increase in extirpated taxa in turn relates to faunas becoming more non-analogue with greater age. The increase in extirpated elements with age probably relates to the individualistic response to climate change which appears to be progressing with time. The implications of this progressive process are considered in relation to refugia, extinction and evolution.

  7. Hemoglobins from bacteria to man: evolution of different patterns of gene expression.

    PubMed

    Hardison, R

    1998-04-01

    The discovery of hemoglobins in virtually all kingdoms of organisms has shown (1) that the ancestral gene for hemoglobin is ancient, and (2) that hemoglobins can serve additional functions besides transport of oxygen between tissues, ranging from intracellular oxygen transport to catalysis of redox reactions. These different functions of the hemoglobins illustrate the acquisition of new roles by a pre-existing structural gene, which requires changes not only in the coding regions but also in the regulatory elements of the genes. The evolution of different regulated functions within an ancient gene family allows an examination of the types of biosequence data that are informative for various types of issues. Alignment of amino acid sequences is informative for the phylogenetic relationships among the hemoglobins in bacteria, fungi, protists, plants and animals. Although many of these diverse hemoglobins are induced by low oxygen concentrations, to date none of the molecular mechanisms for their hypoxic induction shows common regulatory proteins; hence, a search for matches in non-coding DNA sequences would not be expected to be fruitful. Indeed, alignments of non-coding DNA sequences do not reveal significant matches even between mammalian alpha- and beta-globin gene clusters, which diverged approximately 450 million years ago and are still expressed in a coordinated and balanced manner. They are in very different genomic contexts that show pronounced differences in regulatory mechanisms. The alpha-globin gene is in constitutively active chromatin and is encompassed by a CpG island, which is a dominant determinant of its regulation, whereas the beta-globin gene is in A+T-rich genomic DNA. Non-coding sequence matches are not seen between avian and mammalian beta-globin gene clusters, which diverged approximately 250 million years ago, despite the fact that regulation of both gene clusters requires tissue-specific activation of a chromatin domain regulated by a locus

  8. Toxicity of hemoglobin solutions: hemoglobin is a lipopolysaccharide (LPS) binding protein which enhances LPS biological activity.

    PubMed

    Roth, R I; Kaca, W

    1994-01-01

    Administration of alpha alpha-crosslinked stroma-free hemoglobin (SFH) as a cell-free resuscitation fluid is associated with multiple organ toxicities. Many of these toxicities are characteristic of the pathophysiological effects of bacterial endotoxins (lipopolysaccharide, LPS). To better understand the potential role of LPS in the observed in vivo toxicities of SFH, we examined mixtures of SFH and E. coli LPS for evidence of LPS-SFH complex formation. LPS-SFH complexes were demonstrated by three techniques: ultrafiltration through 300 kDa cut-off membranes, which distinguished LPS in complexes (87-89% < 300 kDa) from LPS alone (90% > 300 kDa); density centrifugation through 5% sucrose, which distinguished denser LPS alone from LPS-SFH complexes; and precipitation by 67% ethanol, which demonstrated 2-3 fold increased precipitability of complexes compared to SFH alone. Interaction of LPS with SFH was also associated with markedly increased biological activity of LPS, as manifested by enhancement of LPS activation of Limulus amebocyte lysate (LAL), increased release of human mononuclear cell tissue factor, and enhanced production of cultured human endothelial cell tissue factor. These results demonstrated that hemoglobin can serve as an endotoxin binding protein, and that this interaction results in the alteration of several LPS physical characteristics and enhancement of LPS biological activities.

  9. Anti-Tumor Effects of Novel 5-O-Acyl Plumbagins Based on the Inhibition of Mammalian DNA Replicative Polymerase Activity

    PubMed Central

    Kawamura, Moe; Kuriyama, Isoko; Maruo, Sayako; Kuramochi, Kouji; Tsubaki, Kazunori; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2014-01-01

    We previously found that vitamin K3 (menadione, 2-methyl-1,4-naphthoquinone) inhibits the activity of human mitochondrial DNA polymerase γ (pol γ). In this study, we focused on plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), and chemically synthesized novel plumbagins conjugated with C2:0 to C22:6 fatty acids (5-O-acyl plumbagins). These chemically modified plumbagins enhanced mammalian pol inhibition and their cytotoxic activity. Plumbagin conjugated with chains consisting of more than C18-unsaturated fatty acids strongly inhibited the activities of calf pol α and human pol γ. Plumbagin conjugated with oleic acid (C18:1-acyl plumbagin) showed the strongest suppression of human colon carcinoma (HCT116) cell proliferation among the ten synthesized 5-O-acyl plumbagins. The inhibitory activity on pol α, a DNA replicative pol, by these compounds showed high correlation with their cancer cell proliferation suppressive activity. C18:1-Acyl plumbagin selectively inhibited the activities of mammalian pol species, but did not influence the activities of other pols and DNA metabolic enzymes tested. This compound inhibited the proliferation of various human cancer cell lines, and was the cytotoxic inhibitor showing strongest inhibition towards HT-29 colon cancer cells (LD50 = 2.9 µM) among the nine cell lines tested. In an in vivo anti-tumor assay conducted on nude mice bearing solid tumors of HT-29 cells, C18:1-acyl plumbagin was shown to be a promising tumor suppressor. These data indicate that novel 5-O-acyl plumbagins act as anti-cancer agents based on mammalian DNA replicative pol α inhibition. Moreover, the results suggest that acylation of plumbagin is an effective chemical modification to improve the anti-cancer activity of vitamin K3 derivatives, such as plumbagin. PMID:24520419

  10. [The effect of atropine and diazepam on mammalian neuromuscular junction--a model of their protective action against anticholinesterase-based war and agriculture poisons].

    PubMed

    Vyskocil, Frantisek

    2006-01-01

    The effect of atropine and diazepam on the mammalian neuromuscular junction. Nicotinolytic effect of atropine on the neuromuscular junction is discussed as a main mechanism of the beneficial effect of this drug during war and agriculture poisoning by anticholinesterases. Atropine is beneficial as it reduces the amplitude of intracellularly recorded endplate potentials and, first of all, causes a marked shortening of their time course (Beránek, Vyskocil 1968, Magazanik, Vyskocil 1969). Diazepam effectively blocks trains of action potentials in individual rat diaphragm muscle fibers, apparently by elevating the chloride permeability. It is suggested that similar increase in Cl- permeability may occur in brain excitable structures and can counteract the anticholinesterase-induced prolongation of ACh-depolarization that evokes repetitive firing.

  11. Blood Test: Hemoglobin A1C

    MedlinePlus

    ... the person's average blood sugar levels over that time. Why It's Done Doctors use the hemoglobin A1c test to determine if your child's diabetes management plan needs to be adjusted. Typically the test ...

  12. Nanobiotechnology for hemoglobin-based blood substitutes.

    PubMed

    Chang, T M S

    2009-04-01

    Nanobiotechnology is the assembling of biological molecules into nanodimension complexes. This has been used for the preparation of polyhemoglobin formed by the assembling of hemoglobin molecules into a soluble nanodimension complex. New generations of this approach include the nanobiotechnological assembly of hemoglobin, catalase, and superoxide dismutase into a soluble nanodimension complex. This acts as an oxygen carrier and an antioxidant for those conditions with potential for ischemiareperfusion injuries. Another recent novel approach is the assembling of hemoglobin and fibrinogen into a soluble nanodimension polyhemoglobin-fibrinogen complex that acts as an oxygen carrier with platelet-like activity. This is potentially useful in cases of extensive blood loss requiring massive replacement using blood substitutes, resulting in the need for the replacement of platelets and clotting factors. A further step is the preparation of nanodimension artificial red blood cells that contain hemoglobin and all the enzymes present in red blood cells.

  13. The Effect of Non-surgical Periodontal Therapy on Hemoglobin A1c Levels in Persons with Type 2 Diabetes and Chronic Periodontitis: A Randomized Clinical Trial

    PubMed Central

    Engebretson, Steven P.; Hyman, Leslie G.; Michalowicz, Bryan S.; Schoenfeld, Elinor R.; Gelato, Marie C.; Hou, Wei; Seaquist, Elizabeth R.; Reddy, Michael S.; Lewis, Cora E.; Oates, Thomas W.; Tripathy, Devjit; Katancik, James A.; Orlander, Philip R.; Paquette, David W.; Hanson, Naomi Q.; Tsai, Michael Y.

    2014-01-01

    Importance Chronic periodontitis, a destructive inflammatory disorder of the supporting structures of the teeth, is prevalent in patients with diabetes. Limited evidence suggests that periodontal therapy may improve glycemic control. Objective To determine if non-surgical periodontal treatment reduces hemoglobin A1c (HbA1c) in persons with type 2 diabetes (DM) and moderate to advanced chronic periodontitis. Design, Setting and Participants The Diabetes and Periodontal Therapy Trial (DPTT) is a 6-month, single-masked, randomized, multi-center clinical trial. Participants had DM, were taking stable doses of medications, had HbA1c ≥7% and <9%, and untreated periodontitis. Five hundred fourteen participants were enrolled between November 2009 and March 2012 from diabetes and dental clinics and communities affiliated with five academic medical centers. Intervention The treatment group (n=257) received scaling and root planing plus chlorhexidine oral rinse at baseline, and supportive periodontal therapy at three and six months. The control group (n=257) received no treatment for six months. Main Outcome Measure Difference in HbA1c change from baseline between groups at six months. Secondary outcomes included changes in probing pocket depths, clinical attachment loss, bleeding on probing, gingival index, fasting glucose, and the Homeostasis Model Assessment (HOMA2). Results Enrollment was stopped early due to futility. At 6 months, the periodontal therapy group increased HbA1c 0.17% (1.0) (mean (SD)) compared to 0.11% (1.0) in the control group, with no significant difference between groups based on a linear regression model adjusting for clinical site (mean difference = -0.05%; 95% Confidence Interval (CI): -0.23%, 0.12%; p=0.55). Probing depth, clinical attachment loss, bleeding on probing and gingival index measures improved in the treatment group compared to the control group at six months with adjusted between-group differences of 0.33mm (95% CI: 0.26, 0.39), 0

  14. Cloned Hemoglobin Genes Enhance Growth Of Cells

    NASA Technical Reports Server (NTRS)

    Khosla, Chaitan; Bailey, James E.

    1991-01-01

    Experiments show that portable deoxyribonucleic acid (DNA) sequences incorporated into host cells make them produce hemoglobins - oxygen-binding proteins essential to function of red blood cells. Method useful in several biotechnological applications. One, enhancement of growth of cells at higher densities. Another, production of hemoglobin to enhance supplies of oxygen in cells, for use in chemical reactions requiring oxygen, as additive to serum to increase transport of oxygen, and for binding and separating oxygen from mixtures of gases.

  15. Evolution of ruminant hemoglobins. Thermodynamic divergence of ox and buffalo hemoglobins.

    PubMed

    Giardina, B; Arevalo, F; Clementi, M E; Ferrara, L; Di Luccia, A; Lendaro, E; Bellelli, A; Condò, S G

    1992-03-01

    The ligand-binding properties of hemoglobins from two homozygote phenotypes (AA and BB) of water buffalo (Bubalus bubalis) have been characterized by equilibrium and kinetic techniques. In the case of the BB phenotype, the two constituent hemoglobins have been purified and separately analysed. Buffalo hemoglobins display the reduced sensitivity to organic phosphates characteristic of ruminant hemoglobins, their physiological effector probably being the chloride ion. In contrast to the other known hemoglobins from ruminants, all the hemoglobins from the water buffalo display a significant temperature sensitivity, the delta H for oxygen binding in the presence of physiological effectors approaching that of human hemoglobin (delta H = -30.5 kJ/mol O2). This discrepancy with the other ruminant hemoglobins (e.g. ox, delta H = -10.4 kJ/mol O2), whose primary structure is very similar to that of buffalo, hemoglobins might be correlated to the different habitat and phylogenetic history of the two subfamilies (Bos and Bubalus) of Bovidae.

  16. Enteral and parenteral feeding influences mortality after hemoglobin-E. coli peritonitis in normal rats.

    PubMed

    Kudsk, K A; Stone, J M; Carpenter, G; Sheldon, G F

    1983-07-01

    Enteral feeding with 25% dextrose-4.25% Freamine II (TPN) improves the survival of malnourished animals to normal levels after hemoglobin-E. coli adjuvant peritonitis, whereas intravenous feeding does not. To determine whether intravenous feeding maintained a high survival rate in previously well-nourished animals, 81 rats received TPN via gastrostomy or intravenous infusion for 12 days. They were then fasted for 24 hours and given a septic challenge. Gastrostomy-fed animals survived the challenge significantly better than intravenously fed animals. Enteral feeding appears to be important in producing a high survival rate after hemoglobin-E. coli adjuvant peritonitis.

  17. Heme degradation upon production of endogenous hydrogen peroxide via interaction of hemoglobin with sodium dodecyl sulfate.

    PubMed

    Salehi, N; Moosavi-Movahedi, A A; Fotouhi, L; Yousefinejad, S; Shourian, M; Hosseinzadeh, R; Sheibani, N; Habibi-Rezaei, M

    2014-04-01

    In this study the hemoglobin heme degradation upon interaction with sodium dodecyl sulfate (SDS) was investigated using UV-vis and fluorescence spectroscopy, multivariate curve resolution analysis, and chemiluminescence method. Our results showed that heme degradation occurred during interaction of hemoglobin with SDS producing three fluorescent components. We showed that the hydrogen peroxide, produced during this interaction, caused heme degradation. In addition, the endogenous hydrogen peroxide was more effective in hemoglobin heme degradation compared to exogenously added hydrogen peroxide. The endogenous form of hydrogen peroxide altered oxyHb to aquamethemoglobin and hemichrome at low concentration. In contrast, the exogenous hydrogen peroxide lacked this ability under same conditions.

  18. 21 CFR 864.7500 - Whole blood hemoglobin assays.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Whole blood hemoglobin assays. 864.7500 Section... blood hemoglobin assays. (a) Identification. A whole blood hemoglobin assay is a device consisting or... hemoglobin content of whole blood for the detection of anemia. This generic device category does not...

  19. 21 CFR 864.7500 - Whole blood hemoglobin assays.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Whole blood hemoglobin assays. 864.7500 Section... blood hemoglobin assays. (a) Identification. A whole blood hemoglobin assay is a device consisting or... hemoglobin content of whole blood for the detection of anemia. This generic device category does not...

  20. 21 CFR 864.7500 - Whole blood hemoglobin assays.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Whole blood hemoglobin assays. 864.7500 Section... blood hemoglobin assays. (a) Identification. A whole blood hemoglobin assay is a device consisting or... hemoglobin content of whole blood for the detection of anemia. This generic device category does not...

  1. 21 CFR 864.7500 - Whole blood hemoglobin assays.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Whole blood hemoglobin assays. 864.7500 Section... blood hemoglobin assays. (a) Identification. A whole blood hemoglobin assay is a device consisting or... hemoglobin content of whole blood for the detection of anemia. This generic device category does not...

  2. 21 CFR 864.7500 - Whole blood hemoglobin assays.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Whole blood hemoglobin assays. 864.7500 Section... blood hemoglobin assays. (a) Identification. A whole blood hemoglobin assay is a device consisting or... hemoglobin content of whole blood for the detection of anemia. This generic device category does not...

  3. 21 CFR 866.5470 - Hemoglobin immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hemoglobin immunological test system. 866.5470... Hemoglobin immunological test system. (a) Indentification. A hemoglobin immunological test system is a device... hemoglobin (the oxygen-carrying pigment in red blood cells) in blood, urine, plasma, or other body...

  4. 21 CFR 866.5470 - Hemoglobin immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hemoglobin immunological test system. 866.5470... Hemoglobin immunological test system. (a) Indentification. A hemoglobin immunological test system is a device... hemoglobin (the oxygen-carrying pigment in red blood cells) in blood, urine, plasma, or other body...

  5. Hemoglobin system of Sparus aurata: changes in fishes farmed under extreme conditions.

    PubMed

    Campo, Salvatore; Nastasi, Giancarlo; D'Ascola, Angela; Campo, Giuseppe M; Avenoso, Angela; Traina, Paola; Calatroni, Alberto; Burrascano, Emanuele; Ferlazzo, Alida; Lupidi, Giulio; Gabbianelli, Rosita; Falcioni, Giancarlo

    2008-09-15

    In order to gain more knowledge on the stress responses of gilhead seabream (Sparus aurata) under extreme conditions, this study investigated the functional properties of the hemoglobin system and globin gene expression under hypoxia and low salinity. The oxygen affinity for the two hemoglobin components present inside the S. aurata erythrocyte was practically identical as was the influence of protons and organic phosphates (Root effect). The quantification of S. aurata hemoglobin fractions performed by HPLC and the data on gene expression of globin chains assayed by PCR indicate that under hypoxia and low salinity there is a change in the ratio between the two different hemoglobin components. The result indicating that the distinct hemoglobins present in S. aurata erythrocyte have almost identical functional properties, does not explain the adaptive response (expression change) following exposure of the animal to hypoxia or low salinity on the basis of their function as oxygen transporter. We hypothesize that other parallel biological functions that the hemoglobin molecule is known to display within the erythrocyte are involved in adaptive molecular mechanisms. The autoxidation-reduction cycle of hemoglobin could be involved in the response to particular living conditions.

  6. The renal handling of hemoglobin. I. Glomerular filtration.

    PubMed

    Bunn, H F; Esham, W T; Bull, R W

    1969-05-01

    The glomerular filtration of hemoglobin (alpha(2)beta(2)) was studied under conditions in which its dissociation into alphabeta dimers was experimentally altered. Rats receiving hemoglobin treated with the sulfhydryl reagent bis(N-maleimidomethyl) ether (BME) showed a much lower renal excretion and prolonged plasma survival as compared with animals injected with untreated hemoglobin. Plasma disappearance was also prolonged in dogs receiving BME hemoglobin. Gel filtration data indicated that under physiological conditions, BME hemoglobin had impaired subunit dissociation. In addition, BME hemoglobin showed a very high oxygen affinity and a decreased rate of auto-oxidation. Glomerular filtration was enhanced under conditions which favor the dissociation of hemoglobin into dimers. Cat hemoglobin, which forms subunits much more extensively than canine hemoglobin, was excreted more readily by the rat kidney. The renal uptake of (59)Fe hemoglobin injected intra-arterially into rabbits varied inversely with the concentration of the injected dose.

  7. Functional differentiation in trematode hemoglobin isoforms.

    PubMed

    Rashid, A K; Weber, R E

    1999-03-01

    The Hbs and the major electrophoretic Hb components (isoHbs) were isolated from three species of the trematodes, Explanatum explanatum (Ee), Gastrothylax crumenifer (Gc) and Paramphistomum epiclitum (Pe), that parasitise the common Indian water buffalo Bubalus bubalis. The Hbs are monomeric and resemble the so-called nonfunctional mutant hemoglobins that have Tyr at B10 or E7 positions (replacing Leu and the His residues, respectively). However, they are capable of binding with O2 and CO. O2 equilibrium studies of trematode Hb isoforms reveal extremely high O2 affinities, with half-saturation O2 tension (P50) values up to 800 times lower than those of human hemoglobins. This correlates with Tyr residues at B10 and at the distal position (E7) that decrease the O2 dissociation rate by contributing hydrogen bonds (H-bonds) to the bound O2. These substitutions also increase the O2 association rates either due to orientation of E7-Tyr towards the solvent and/or by sterically hindering the entry of water molecules into the heme pocket. The latter may account for the low rate of autoxidation of trematode Hbs. The Hbs and their isoforms from different species exhibited pronounced variation in O2 affinity, which may relate to subtle differences in the structure of the heme pocket. The O2 affinities of the composite (unfractionated) Hbs were intermediate to those of the individual Hb isoform. The P50 values of Hbs here obtained by direct O2 equilibrium measurements differed from those calculated from kinetic data already published [Kiger, L., Rashid, A. K., Griffon, N., Haque, M., Moens, L.,Gibson, Q. H., Poyart, C., & Marden, M. C. (1998). Biophys. J. 75, 990-998.] Intermediate state(s) due to slow reorientation of E7-Tyr may account for this difference. Some Hb isoforms showed slight (either normal or reverse) Bohr effects. The hyperbolic O2 equilibrium curve, Hill coefficient (n) values near unity accord with a monomeric nature of trematode Hbs. In marked contrast to

  8. Chemical modifications that inhibit gelation of sickle hemoglobin.

    PubMed

    Benesch, R; Benesch, R E; Yung, S

    1974-04-01

    Substitution of the N-terminal amino groups with pyridoxal compounds inhibits gelation and increases the solubility of deoxy sickle hemoglobin (Hb S). Pyridoxylation of the alpha chains has considerably more effect than that of the beta chains. The increase in minimum gelling concentration of Hb S that results from modification of the alpha N-termini is the same as that produced by dilution of Hb S with an equal amount of Hb A. PMID:4524653

  9. Hemoglobin-based red blood cell substitutes and nitric oxide.

    PubMed

    Yu, Binglan; Bloch, Kenneth D; Zapol, Warren M

    2009-04-01

    Hemoglobin-based oxygen carriers (HBOCs) have been studied for decades as red blood cell substitutes. Profound vasoconstrictor effects have limited the clinical utility of HBOCs and are attributable to avid scavenging of nitric oxide (NO). Inhaling NO can charge the body's stores of NO metabolites without producing hypotension and can prevent systemic hypertension induced when HBOCs are subsequently infused. Concurrent breathing of low NO doses can prevent pulmonary vasoconstriction after HBOC infusion without augmenting plasma methemoglobinemia.

  10. Hemoglobin s polymerization and red cell membrane changes.

    PubMed

    Kuypers, Frans A

    2014-04-01

    Different pathways lead from the simple point mutation in hemoglobin to the membrane changes that characterize the altered interaction of the sickle red blood cell with its environment, including endothelial cells, white blood cells, and platelets. Polymerization and oxidation-induced damage to both lipid and protein components of the red cell membrane, as well as the generation of bioreactive membrane material (microparticles), has a profound effect on all tissues and organs, and defines the vasculopathy of the patient with sickle cell disease.

  11. Effect of Tumor Necrosis Factor-Alpha on Erythropoietin and Erythropoietin Receptor-Induced Erythroid Progenitor Cell Proliferation in β-Thalassemia/Hemoglobin E Patients.

    PubMed

    Tanyong, Dalina I; Panichob, Prapaporn; Kheansaard, Wasinee; Fucharoen, Suthat

    2015-12-01

    Amaç: Talasemi anemi ve inefektif eritropoeze neden olan genetik hastalıklardan birisidir. Enflamatuvar sitokinlerin bir çoğunun seviyelerinde artma b-talasemide gösterilmiş olup, bu durum inefektif eritropoeze katkıda bulunabilir. Ancak, tümör nekrozlaştırıcı faktör-alfa’nın (TNF-α) talasemik hastalarda inefektif eritropoeze nasıl bir mekanizma ile neden olduğu bilinmemektedir. Bu çalışmanın amacı b-talasemi/hemoglobin (Hb) E eritroid öncül hücrelerinde sağlıklı kontrollerin hücreleri ile karşılaştırıldığında TNF-α’nın eritropoetin (EPO) ve eritropoetin reseptör (EPOR) sunumu üzerine etkisinin araştırılmasıdır. Gereç ve Yöntemler: CD34-pozitif hücreler EasySep® CD34 seçim kiti yardımı ile heparinli kandan izole edildi. Hücreler 14 gün boyunca uygun kültür ortamında değişik EPO konsantrasyonlarında kültürde bekletildi. TNF-α’nın hücre canlılık yüzdesine etkisi tripan mavisi boyası ile incelendi. Bunun yanında, apopitoz yüzdesi ve EPOR protein seviyeleri akış sitometrisi ile ölçüldü. Bulgular: EPO tedavisi ile eritroid öncül hücrelerinin sayısında hem sağlıklı katılımcılarda hem de b-talasemi/Hb E hastalarında artış olduğu görüldü. Ancak özellikle b-talasemi/Hb E hastalarında EPO ile muamele edilmiş hücrelerde apopitozda azalma görüldü. İlginç olarak, TNF-α talasemik eritroid öncül hücrelerde hücre apopitoz oranında artmaya ve EPOR protein seviyelerinde azalmaya neden oldu. Sonuç: TNF-α EPOR protein düzeyi ve EPO ile uyarılmış eritroid öncül hücre çoğalmasında azalmaya neden oldu. b-talasemia/Hb E hastalarında TNF-α inefektif eritropoez mekanizmasında yer alıyor olabilir.

  12. Δ²,³-ivermectin ethyl secoester, a conjugated ivermectin derivative with leishmanicidal activity but without inhibitory effect on mammalian P-type ATPases.

    PubMed

    Noël, François; Pimenta, Paulo Henrique Cotrim; Dos Santos, Anderson Rouge; Tomaz, Erick Carlos Loureiro; Quintas, Luis Eduardo Menezes; Kaiser, Carlos Roland; Silva, Claudia Lucia Martins; Férézou, Jean-Pierre

    2011-01-01

    Looking at a new putative target for the large spectrum antiparasitic drug ivermectin, we recently showed that avermectin-derived drugs are active against promastigote and amastigote forms of Leishmania amazonensis at low micromolar concentrations. However, we then reported that at this concentration range ivermectin is also able to inhibit three important mammalian P-type ATPases so that unacceptable adverse effects could occur if this drug were used at such high doses therapeutically. The present work aimed to test the activity of ten ivermectin analogs on these rat ATPases in search of a compound with similar leishmanicidal activity but with no effect on the mammalian (host) ATPases at effective concentrations. We synthesized three new ivermectin analogs for testing on rat SERCA (1a and 1b), Na+, K+-ATPase (α₁ and α₂/α₃ isoforms) and H+/K+-ATPase activity, along with seven analogs already characterized for their leishmanicidal activity. Our main finding is that one of the prepared derivatives, Δ²,³-ivermectin ethyl secoester 8, is equipotent to ivermectin 1 for the in vitro leishmanicidal effects but is nearly without effect on the rat ATPases, indicating that it could have a better therapeutic index in vivo and could serve as a candidate for hit-to-lead progression. This conclusion is further supported by the fact that compound 8 produced only 6% (vs 77% for ivermectin) inhibition of the human kidney enzyme at 5 μM, a concentration corresponding to the IC₅₀ for the activity against L. amazonensis amastigotes. PMID:21088826

  13. History-Adjusted Marginal Structural Analysis of the Association between Hemoglobin Variability and Mortality among Chronic Hemodialysis Patients

    PubMed Central

    Brunelli, Steven M.; Joffe, Marshall M.; Israni, Rubeen K.; Yang, Wei; Fishbane, Steven; Berns, Jeffrey S.; Feldman, Harold I.

    2008-01-01

    Background and objectives: Hemoglobin variability is common among dialysis patients, and has been associated with increased mortality. The causal nature of this association has been difficult to ascertain because of potential time-dependent confounding, for which traditional statistical methods do not control. Design, settings, participants, & measurements: A retrospective cohort of 34,963 Fresenius Medical care dialysis patients from 1996 was assembled. Hemoglobin variability, absolute hemoglobin level, and temporal hemoglobin trend were measured over rolling 6-mo exposure windows. Their association with mortality was estimated using history-adjusted marginal structural analysis that adjusts for time-dependent confounding by applying weights to observations inversely related to the predictability of observed levels of hemoglobin. Results: In the primary analysis, each g/dl increase in hemoglobin variability was associated with an adjusted hazard ratio (HR) [95% confidence interval (CI)] for all-cause mortality of 1.93 (1.20 to 3.10). Neither higher absolute hemoglobin level nor increasing hemoglobin trend were significantly associated with mortality; adjusted HR (95% CI) 0.85 (0.64 to 1.11) and 0.60 (0.25 to 1.45), respectively. Conclusions: Marginal structural analysis demonstrates that hemoglobin variability is associated with increased mortality among chronic hemodialysis patients, and that this effect is more pronounced than appreciated using standard statistical techniques that do not take time-dependent confounding into account. PMID:18337553

  14. Discovery of the magnetic behavior of hemoglobin: A beginning of bioinorganic chemistry

    PubMed Central

    Bren, Kara L.; Eisenberg, Richard; Gray, Harry B.

    2015-01-01

    Two articles published by Pauling and Coryell in PNAS nearly 80 years ago described in detail the magnetic properties of oxy- and deoxyhemoglobin, as well as those of closely related compounds containing hemes. Their measurements revealed a large difference in magnetism between oxygenated and deoxygenated forms of the protein and, along with consideration of the observed diamagnetism of the carbonmonoxy derivative, led to an electronic structural formulation of oxyhemoglobin. The key role of hemoglobin as the main oxygen carrier in mammalian blood had been established earlier, and its allosteric behavior had been described in the 1920s. The Pauling–Coryell articles on hemoglobin represent truly seminal contributions to the field of bioinorganic chemistry because they are the first to make connections between active site electronic structure and the function of a metalloprotein. PMID:26508205

  15. The hemoglobin system of the brown moray Gymnothorax unicolor: structure/function relationships.

    PubMed

    Tamburrini, M; Verde, C; Olianas, A; Giardina, B; Corda, M; Sanna, M T; Fais, A; Deiana, A M; di Prisco, G; Pellegrini, M

    2001-07-01

    The Gymnothorax unicolor hemoglobin system is characterized by two components, called cathodic and anodic on the basis of their isoelectric point, which were separated by ion-exchange chromatography. The oxygen-binding properties of the purified components were studied in the absence and presence of chloride and/or GTP or ATP in the pH range 6.5-8.0. Stripped cathodic hemoglobin showed a small reverse Bohr effect, high oxygen affinity, and low co-operativity; the addition of chloride only caused a small decrease in oxygen affinity. In the presence of GTP or ATP, the oxygen affinity was dramatically reduced, the co-operativity increased, and the reverse Bohr effect abolished. Stripped anodic hemoglobin is characterized by both low oxygen affinity and co-operativity, and displayed a normal Bohr effect; the addition of chloride increased co-operativity, whereas ATP and GTP significantly modulated oxygen affinity at acidic pH values, enhancing the Bohr effect and giving rise to the Root effect. The complete amino-acid sequences of the alpha and beta chains of both hemoglobins were established; the molecular basis of the functional properties of the hemoglobins is discussed in the light of the primary structure and compared with those of other fish hemoglobins.

  16. Evaluation of the genetic effects induced by vinyl chloride monomer (VCM) under mammalian metabolic activation: studies in vitro and in vivo.

    PubMed

    Loprieno, N; Barale, R; Baroncelli, S; Bauer, C; Bronzetti, G; Cammellini, A; Cercignani, G; Corsi, C; Gervasi, G; Leporini, C; Nieri, R; Rossi, A M; Stretti, G; Turchi, G

    1976-04-01

    As part of a programme of investigations on the biological effects of the industrial compound vinyl chloride monomer (VCM), the raw material for the production of polyvinyl chloride (PVC), analyses on the genetic effects by this compound have been done by experiments (in vitro) which have taken mammalian metabolism into account. Vinyl chloride in the presence of purified microsomes (sedimented at 105,000 g) obtained from mouse liver was converted into an active metabolite(s) which produced gene mutations in the yeast Schizosaccharomyces pombe (forward mutation) and gene conversions in two loci of a diploid Saccharomyces cerevisiae. Moreover, the compound was active in the host-mediated assay, when mice were treated with an oral dose of 700 mg/kg. The role is discussed of mutagenicity tests for the prediction of both genetic and carcinogenic risks of chemical compounds in industrial use.

  17. Hemoglobin Status and Externalizing Behavioral Problems in Children

    PubMed Central

    Su, Jianhua; Cui, Naixue; Zhou, Guoping; Ai, Yuexian; Sun, Guiju; Zhao, Sophie R.; Liu, Jianghong

    2016-01-01

    Background: Still considered one of the most prevalent nutritional problems in the world, anemia has been shown in many studies to have deleterious effects on neurobehavioral development. While most research efforts have focused on investigating the effects of anemia on social and emotional development of infants by using a cross-sectional design, research is still needed to investigate whether early childhood anemia, beyond infantile years, is linked with behavioral problems. Objective: This study assessed whether (1) hemoglobin (Hb) levels in early childhood are associated with externalizing behavior; and (2) this relationship is confounded by social adversity. Methods: Hemoglobin levels were taken from children (N = 98) of the China Jintan Cohort Study at age 4 years, and externalizing behaviors (attention and aggression) were assessed with the Child Behavior Checklist (ASEBA-CBCL) at age 6 years (mean age 5.77 ± 0.39 years old). Results: Compared with other children in the sample, children with relatively lower Hb levels at age 4 had more behavioral problems in both attention and aggression at age 6, independent of social adversity. For boys, this association was significant for attention problems, which did not interact with social adversity. For girls, the association was significant for aggression, which interacted with social adversity. While girls on average exhibited higher social adversity than boys, the main effect of Hb was only significant in girls with low social adversity. Conclusions: These results indicate that there is an inverse association between hemoglobin levels and later behavioral problems. Findings of this study suggest that regular monitoring of children’s hemoglobin levels and appropriate intervention may help with early identification of behavioral problems. PMID:27472352

  18. Differential effects of the recombinant toxin PnTx4(5-5) from the spider Phoneutria nigriventer on mammalian and insect sodium channels.

    PubMed

    Paiva, Ana L B; Matavel, Alessandra; Peigneur, Steve; Cordeiro, Marta N; Tytgat, Jan; Diniz, Marcelo R V; de Lima, Maria Elena

    2016-02-01

    The toxin PnTx4(5-5) from the spider Phoneutria nigriventer is extremely toxic/lethal to insects but has no macroscopic behavioral effects observed in mice after intracerebral injection. Nevertheless, it was demonstrated that it inhibits the N-methyl-d-aspartate (NMDA) - subtype of glutamate receptors of cultured rat hippocampal neurons. PnTx4(5-5) has 63% identity to PnTx4(6-1), another insecticidal toxin from P. nigriventer, which can slow down the sodium current inactivation in insect central nervous system, but has no effect on Nav1.2 and Nav1.4 rat sodium channels. Here, we have cloned and heterologous expressed the toxin PnTx4(5-5) in Escherichia coli. The recombinant toxin rPnTx4(5-5) was tested on the sodium channel NavBg from the cockroach Blatella germanica and on mammalian sodium channels Nav1.2-1.6, all expressed in Xenopus leavis oocytes. We showed that the toxin has different affinity and mode of action on insect and mammalian sodium channels. The most remarkable effect was on NavBg, where rPnTx4(5-5) strongly slowed down channel inactivation (EC50 = 212.5 nM), and at 1 μM caused an increase on current peak amplitude of 105.2 ± 3.1%. Interestingly, the toxin also inhibited sodium current on all the mammalian channels tested, with the higher current inhibition on Nav1.3 (38.43 ± 8.04%, IC50 = 1.5 μM). Analysis of activation curves on Nav1.3 and Nav1.5 showed that the toxin shifts channel activation to more depolarized potentials, which can explain the sodium current inhibition. Furthermore, the toxin also slightly slowed down sodium inactivation on Nav1.3 and Nav1.6 channels. As far as we know, this is the first araneomorph toxin described which can shift the sodium channel activation to more depolarized potentials and also slows down channel inactivation.

  19. The expression of a mammalian proteinase inhibitor, bovine spleen trypsin inhibitor in tobacco and its effects on Helicoverpa armigera larvae.

    PubMed

    Christeller, John T; Burgess, Elisabeth P J; Mett, Valentina; Gatehouse, Heather S; Markwick, Ngaire P; Murray, Colleen; Malone, Louise A; Wright, Michelle A; Philip, Bruce A; Watt, Dianne; Gatehouse, Laurence N; Lövei, Gábor L; Shannon, April L; Phung, Margaret M; Watson, Lynn M; Laing, William A

    2002-04-01

    The cDNA for bovine spleen trypsin inhibitor (SI), a homologue of bovine pancreatic trypsin inhibitor (BPTI), including the natural mammalian presequence was expressed in tobacco using Agrobacterium tumefaciens-mediated transformation. Stable expression required the N-terminal targeting signal presequence although subcellular localization was not proven. SI was found to exist as two forms, one coinciding with authentic BPTI on western blots and the second marginally larger due to retention of the C-terminal peptide. Both were retained on a trypsin-agarose affinity gel and had inhibitory activity. Newly emergent leaves contained predominantly the large form whereas senescent leaves had little except the fully processed form present. Intermediate-aged leaves showed a gradual change indicating that a slow processing of the inhibitor peptide was occurring. The stability of SI was shown by the presence of protein at high levels in completely senescent leaves. Modifications to the cDNA (3' and 5' changes and minor codon changes) resulted in a 20-fold variation in expression. Expression of modified SI in transgenic tobacco leaves at 0.5% total soluble protein reduced both survival and growth of Helicoverpa armigera larvae feeding on leaves from the late first instar. In larvae surviving for 8 days, midgut trypsin activity was reduced in SI-tobacco fed larvae, while chymotrypsin activity was increased. Activities of leucine aminopeptidase and elastase-like chymotrypsin remained unaltered. The use of SI as an insect resistance factor is discussed.

  20. Effects of H2O2 on insulin signaling the glucose transport system in mammalian skeletal muscle.

    PubMed

    Henriksen, Erik J

    2013-01-01

    Hydrogen peroxide (H2O2) is an important regulator of cellular events leading to glucose transport activation in mammalian skeletal muscle. In the absence of insulin, H2O2 in the low micromolar range engages the canonical IRS-1/PI3K/Akt-dependent insulin signaling pathway, as well as other signaling elements (AMPK and p38 MAPK), to increase basal glucose transport activity. In contrast, in the presence of insulin, H2O2 antagonizes insulin signaling by recruitment of various deleterious serine/threonine kinases, producing a state of insulin resistance. Here, we describe the H2O2 enzymatic-generating system, utilizing glucose oxidase, that has been used to investigate the impact of H2O2 on cellular signaling mechanisms related to glucose transport activity in isolated rat skeletal muscle preparations, such as the soleus. By varying the glucose oxidase concentration in the medium, target ranges of steady-state H2O2 concentrations (30-90 μM) can be attained for up to 6h, with subsequent assessment of cellular signaling and glucose transport activity.

  1. Mammalian airborne allergens.

    PubMed

    Aalberse, Rob C

    2014-01-01

    Historically, horse dandruff was a favorite allergen source material. Today, however, allergic symptoms due to airborne mammalian allergens are mostly a result of indoor exposure, be it at home, at work or even at school. The relevance of mammalian allergens in relation to the allergenic activity of house dust extract is briefly discussed in the historical context of two other proposed sources of house dust allergenic activity: mites and Maillard-type lysine-sugar conjugates. Mammalian proteins involved in allergic reactions to airborne dust are largely found in only 2 protein families: lipocalins and secretoglobins (Fel d 1-like proteins), with a relatively minor contribution of serum albumins, cystatins and latherins. Both the lipocalin and the secretoglobin family are very complex. In some instances this results in a blurred separation between important and less important allergenic family members. The past 50 years have provided us with much detailed information on the genomic organization and protein structure of many of these allergens. However, the complex family relations, combined with the wide range of post-translational enzymatic and non-enzymatic modifications, make a proper qualitative and quantitative description of the important mammalian indoor airborne allergens still a significant proteomic challenge. PMID:24925404

  2. Modulating hemoglobin nitrite reductase activity through allostery: a mathematical model.

    PubMed

    Rong, Zimei; Alayash, Abdu I; Wilson, Michael T; Cooper, Chris E

    2013-11-30

    The production of nitric oxide by hemoglobin (Hb) has been proposed to play a major role in the control of blood flow. Because of the allosteric nature of hemoglobin, the nitrite reductase activity is a complex function of oxygen partial pressure PO2. We have previous developed a model to obtain the micro rate constants for nitrite reduction by R state (kR) and T state (kT) hemoglobin in terms of the experimental maximal macro rate constant kNmax and the corresponding oxygen concentration PO2max. However, because of the intrinsic difficulty in obtaining accurate macro rate constant kN, from available experiments, we have developed an alternative method to determine the micro reaction rate constants (kR and kT) by fitting the simulated macro reaction rate curve (kN versus PO2) to the experimental data. We then use our model to analyze the effect of pH (Bohr Effect) and blood ageing on the nitrite reductase activity, showing that the fall of bisphosphoglycerate (BPG) during red cell storage leads to increase NO production. Our model can have useful predictive and explanatory power. For example, the previously described enhanced nitrite reductase activity of ovine fetal Hb, in comparison to the adult protein, may be understood in terms of a weaker interaction with BPG and an increase in the value of kT from 0.0087M(-1)s(-1) to 0.083M(-1)s(-1).

  3. pH-sensing nano-crystals of carbonate apatite: effects on intracellular delivery and release of DNA for efficient expression into mammalian cells.

    PubMed

    Chowdhury, E H; Maruyama, A; Kano, A; Nagaoka, M; Kotaka, M; Hirose, S; Kunou, M; Akaike, T

    2006-07-01

    Two unique and fascinating properties of carbonate apatite which are well-known in hard tissue engineering, have been unveiled, for the first time, for the development of the simplest, but most efficient non-viral gene delivery device - ability of preventing the growth of crystals needed for high frequency DNA transfer across a plasma membrane and a fast dissolution rate for effective release of DNA during endosomal acidification, leading to a remarkably high transgene expression (5 to 100-fold) in mammalian cells compared to the widely used transfecting agents. Moreover, by modulating the crystal dissolution rate of carbonate apatite through incorporation of fluoride or strontium into it, transfection activity could be dramatically controlled, thus shedding light on a new barrier in the non-viral route, which was overlooked so far. Thus we have developed an innovative technology with significant insights, that would come as a promising tool for both basic research laboratories and clinical settings.

  4. Oxygen binding properties of hemoglobin from the white rhinoceros (beta 2-GLU) and the tapir.

    PubMed

    Baumann, R; Mazur, G; Braunitzer, G

    1984-04-01

    The beta-chain of rhinoceros hemoglobin contains glutamic acid at position beta 2, and important site for the binding of organic phosphates. We have investigated the oxygen binding properties of this hemoglobin and its interaction with ATP, 2,3-diphosphoglycerate, CO2 and chloride. The results show that the presence of GLU at position beta 2 nearly abolishes the effect of organic phosphates and CO2, whereas the oxygen-linked binding of chloride is not affected. Thus rhinoceros hemoglobin has only protons and chloride anions as major allosteric effectors for the control of its oxygen affinity. From the results obtained with hemoglobin solutions it can be calculated that the blood oxygen affinity of the rhinoceros must be rather high with a P50 of about 20 torr at pH 7.4 and 37 degrees C, which conforms with observations obtained for other large mammals.

  5. Towards erythropoietin equations that estimate oxygen delivery rather than static hemoglobin targets.

    PubMed

    Diskin, Charles J

    2012-01-01

    Although we have known since the 19th century that oxygen tension affects erythrocyte production, we have only recently begun to understand many subtleties of erythropoietin physiology. The unanticipated increase in mortality associated with erythropoietin use found in recent randomized studies is prompting a reassessment of static hemoglobin targets. Hemoglobin levels in dialysis patients do not correlate with endogenous erythropoietin production and may be related to differences in oxygen delivery resulting from shifts in the oxygen-hemoglobin dissociation curve. The time may have arrived to develop more physiologic targets such as oxygen delivery that would mimic the natural response to hypoxia. There are several equations that already exist that can compensate for the effects of the concentration of inorganic and organic phosphates as well as pH, carbon dioxide, and temperature on the delivery of oxygen. However, since the shape and dispersion of the oxygen-hemoglobin dissociation curve may actually change in different disease states, more work is needed.

  6. Glycosylated hemoglobin determination from capillary blood samples. Utility in an epidemiologic survey of diabetes.

    PubMed

    Ferrell, R E; Hanis, C L; Aguilar, L; Tulloch, B; Garcia, C; Schull, W J

    1984-02-01

    Total glycosylated hemoglobin was measured from capillary blood specimens obtained from a sample of 1880 individuals of Mexican-American ancestry residing in Starr County, Texas, between January 1981 and February 1982, as part of an epidemiologic survey to assess the prevalence of noninsulin-dependent diabetes mellitus (Type II). No significant difference was found between males and females. Diabetics were found to have significantly higher levels of glycosylated hemoglobin than nondiabetics. However, among diabetics, there was no significant difference between newly diagnosed and known diabetics, and known diabetics taking medication did not differ significantly from those not taking medication. An analysis of the specificity and sensitivity of glycosylated hemoglobin, fasting blood glucose, and casual blood glucose determinations as screening devices in a survey of diabetes prevalence reveals that glycosylated hemoglobin is superior to casual blood glucose determination. The conditions under which various screening devices might be more effective are discussed. PMID:6695895

  7. Formation of mammalian erythrocytes: chromatin condensation and enucleation.

    PubMed

    Ji, Peng; Murata-Hori, Maki; Lodish, Harvey F

    2011-07-01

    In all vertebrates, the cell nucleus becomes highly condensed and transcriptionally inactive during the final stages of red cell biogenesis. Enucleation, the process by which the nucleus is extruded by budding off from the erythroblast, is unique to mammals. Enucleation has critical physiological and evolutionary significance in that it allows an elevation of hemoglobin levels in the blood and also gives red cells their flexible biconcave shape. Recent experiments reveal that enucleation involves multiple molecular and cellular pathways that include histone deacetylation, actin polymerization, cytokinesis, cell-matrix interactions, specific microRNAs and vesicle trafficking; many evolutionarily conserved proteins and genes have been recruited to participate in this uniquely mammalian process. In this review, we discuss recent advances in mammalian erythroblast chromatin condensation and enucleation, and conclude with our perspectives on future studies.

  8. Classification of the Disorders of Hemoglobin

    PubMed Central

    Forget, Bernard G.; Bunn, H. Franklin

    2013-01-01

    Over the years, study of the disorders of hemoglobin has served as a paradigm for gaining insights into the cellular and molecular biology, as well as the pathophysiology, of inherited genetic disorders. To date, more than 1000 disorders of hemoglobin synthesis and/or structure have been identified and characterized. Study of these disorders has established the principle of how a mutant genotype can alter the function of the encoded protein, which in turn can lead to a distinct clinical phenotype. Genotype/phenotype correlations have provided important understanding of pathophysiological mechanisms of disease. Before presenting a brief overview of these disorders, we provide a summary of the structure and function of hemoglobin, along with the mechanism of assembly of its subunits, as background for the rationale and basis of the different categories of disorders in the classification. PMID:23378597

  9. Studies in red blood cell preservation: 4. Plasma vesicle hemoglobin exceeds free hemoglobin.

    PubMed

    Greenwalt, T J; McGuinness, C G; Dumaswala, U J

    1991-01-01

    Studies were designed to find out how much of the plasma hemoglobin ( Hb) in whole blood was in microvesicles and how much was free Hb after 21 days of storage in citrate-phosphate-dextrose anticoagulant and to determine the effect of the plasticizer, di-(2-ethylhexyl)phthalate (DEHP). The total plasma Hb in polyolefin (PO) containers without DEHP was much higher than in polyvinyl chloride (PVC) with the plasticizer (p = 0.004). Less than 30% of the Hb was in free solution in either type of container. The addition of 300 micrograms/ml of DEHP to the plasma in the PO containers resulted in marked reduction in the microvesiculation (p less than 0.01) but did not affect the level of free Hb. RBC hypotonic fragility and morphology scores were significantly improved. It is concluded that microvesiculation contributes more to plasma Hb concentration than free Hb during storage. Some hemolysis of red blood cells (RBC) is expected during blood bank storage. It has been shown that part of the hemoglobin (Hb) in the suspending medium is free and part is encapsulated in microvescicles shed by the RBC [1]. The amount of hemolysis and microvesiculation that occurs has been noted to be less when blood is stored in polyvinyl chloride (PVC) containers in which di-(2-ethylhexyl)phthalate (DEHP) is used as the plasticizer [1]. The DEHP that leaches into the plasma has been shown to decrease hemolysis, microvesiculation, and the increase in osmotic fragility which RBC undergo during refrigerated storage [2-9].(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1949704

  10. Vibrational modes of hemoglobin in red blood cells.

    PubMed

    Martel, P; Calmettes, P; Hennion, B

    1991-02-01

    Equine red blood cells were washed in saline heavy water (2H2O) to exchange the hydrogen atoms of the non-hemoglobin components with deuterons. This led to novel neutron scattering measurements of protein vibrations within a cellular system and permitted a comparison with inelastic neutron scattering measurements on purified horse hemoglobin, either dry or wetted with 2H2O. As a function of wavevector transfer Q and the frequency transfer v the neutron response typified by the dynamic structure factor S(Q, v) was found to be similar for extracted and cellular hemoglobin at low and high temperatures. At 77 K, in the cells, a peak in S(Q, v) due to the protein was found near 0.7 THz, approximately half the frequency of a strong peak in the aqueous medium. Measurements at higher temperatures (170 and 230 K) indicated similar small shifts downwards in the peak frequencies of both components. At 260 K the low frequency component became predominantly quasielastic, but a significant inelastic component could still be ascribed to the aqueous scattering. Near 295 K the frequency responses of both components were similar and centered near zero. When scattering due to water is taken into account it appears that the protein neutron response in, or out of, red blood cells is little affected by hydration in the low frequency regime where Van der Waals forces are thought to be effective. PMID:1849028

  11. Investigation of Hemoglobin/Gold Nanoparticle Heterolayer on Micro-Gap for Electrochemical Biosensor Application

    PubMed Central

    Lee, Taek; Kim, Tae-Hyung; Yoon, Jinho; Chung, Yong-Ho; Lee, Ji Young; Choi, Jeong-Woo

    2016-01-01

    In the present study, we fabricated a hemoglobin/gold nanoparticle (Hb/GNP) heterolayer immobilized on the Au micro-gap to confirm H2O2 detection with a signal-enhancement effect. The hemoglobin which contained the heme group catalyzed the reduction of H2O2. To facilitate the electron transfer between hemoglobin and Au micro-gap electrode, a gold nanoparticle was introduced. The Au micro-gap electrode that has gap size of 5 µm was fabricated by conventional photolithographic technique to locate working and counter electrodes oppositely in a single chip for the signal sensitivity and reliability. The hemoglobin was self-assembled onto the Au surface via chemical linker 6-mercaptohexanoic acid (6-MHA). Then, the gold nanoparticles were adsorbed onto hemoglobin/6-MHA heterolayers by the layer-by-layer (LbL) method. The fabrication of the Hb/GNP heterolayer was confirmed by atomic force microscopy (AFM) and surface-enhanced Raman spectroscopy (SERS). The redox property and H2O2 detection of Hb/GNP on the micro-gap electrode was investigated by a cyclic voltammetry (CV) experiment. Taken together, the present results show that the electrochemical signal-enhancement effect of a hemoglobin/nanoparticle heterolayer was well confirmed on the micro-scale electrode for biosensor applications. PMID:27171089

  12. Increased hemoglobin-oxygen affinity ameliorates bleomycin-induced hypoxemia and pulmonary fibrosis.

    PubMed

    Geng, Xin; Dufu, Kobina; Hutchaleelaha, Athiwat; Xu, Qing; Li, Zhe; Li, Chien-Ming; Patel, Mira P; Vlahakis, Nicholas; Lehrer-Graiwer, Josh; Oksenberg, Donna

    2016-09-01

    Although exertional dyspnea and worsening hypoxia are hallmark clinical features of idiopathic pulmonary fibrosis (IPF), no drug currently available could treat them. GBT1118 is a novel orally bioavailable small molecule that binds to hemoglobin and produces a concentration-dependent left shift of the oxygen-hemoglobin dissociation curve with subsequent increase in hemoglobin-oxygen affinity and arterial oxygen loading. To assess whether pharmacological modification of hemoglobin-oxygen affinity could ameliorate hypoxemia associated with lung fibrosis, we evaluated GBT1118 in a bleomycin-induced mouse model of hypoxemia and fibrosis. After pulmonary fibrosis and hypoxemia were induced, GBT1118 was administered for eight consecutive days. Hypoxemia was determined by monitoring arterial oxygen saturation, while the severity of pulmonary fibrosis was assessed by histopathological evaluation and determination of collagen and leukocyte levels in bronchoalveolar lavage fluid. We found that hemoglobin modification by GBT1118 had strong antihypoxemic therapeutic effects with improved arterial oxygen saturation to near normal level. Moreover, GBT1118 treatment significantly attenuated bleomycin-induced lung fibrosis, collagen accumulation, body weight loss, and leukocyte infiltration. This study is the first to suggest the beneficial effects of hemoglobin modification in fibrotic lungs and offers a promising and novel therapeutic strategy for the treatment of hypoxemia associated with chronic fibrotic lung disorders in human, including IPF. PMID:27624688

  13. Characterization of Polyethylene Glycol Modified Hemoglobins

    NASA Astrophysics Data System (ADS)

    Salazar, Gil; Barr, James; Morgan, Wayne; Ma, Li

    2011-03-01

    Polyethylene glycol modified hemoglobins (PEGHbs) was characterized by liquid chromatography and fluorescence methods. We prepared four samples of two different molecular weight PEG, 5KDa and 20KDa, modified bovine and human hemoglobin. We studied the oxygen affinities, stabilities, and peroxidase activities of PEGHbs. We have related oxygen affinities with different degrees of modifications. The data showed that the modification on the beta subunits was less stable than that of the alpha subunits on the human Hb based samples especially. We also compared peroxidase activities among different modified PEGHbs.

  14. Mammalian touch catches up

    PubMed Central

    Walsh, Carolyn M.; Bautista, Diana M.; Lumpkin, Ellen A.

    2015-01-01

    An assortment of touch receptors innervate the skin and encode different tactile features of the environment. Compared with invertebrate touch and other sensory systems, our understanding of the molecular and cellular underpinnings of mammalian touch lags behind. Two recent breakthroughs have accelerated progress. First, an arsenal of cell-type-specific molecular markers allowed the functional and anatomical properties of sensory neurons to be matched, thereby unraveling a cellular code for touch. Such markers have also revealed key roles of non-neuronal cell types, such as Merkel cells and keratinocytes, in touch reception. Second, the discovery of Piezo genes as a new family of mechanically activated channels has fueled the discovery of molecular mechanisms that mediate and mechanotransduction in mammalian touch receptors. PMID:26100741

  15. Structure of mammalian metallothionein.

    PubMed Central

    Kägi, J H; Vasák, M; Lerch, K; Gilg, D E; Hunziker, P; Bernhard, W R; Good, M

    1984-01-01

    All mammalian metallothioneins characterized contain a single polypeptide chain of 61 amino acid residues, among them 20 cysteines providing the ligands for seven metal-binding sites. Native metallothioneins are usually heterogeneous in metal composition, with Zn, Cd, and Cu occurring in varying proportions. However, forms containing only a single metal species, i.e., Zn, Cd, Ni, Co, Hg, Pb, Bi, have now been prepared by in vitro reconstitution from the metal-free apoprotein. By spectroscopic analysis of such derivatives it was established that all cysteine residues participate in metal binding, that each metal ion is bound to four thiolate ligands, and that the symmetry of each complex is close to that of a tetrahedron. To satisfy the requirements of the overall Me7(Cys-)20 stoichiometry, the complexes must be combined to form metal-thiolate cluster structures. Experimental proof for the occurrence of such clusters comes from the demonstration of metal-metal interactions by spectroscopic and magnetic means. Thus, in Co(II)7-metallothionein, the Co(II)-specific ESR signals are effectively suppressed by antiferromagnetic coupling of juxtaposed paramagnetic metal ions. By monitoring changes in ESR signal size occurring on stepwise incorporation of Co(II) into the protein, it is possible to follow the building up of the clusters. This process is biphasic. Up to binding of four equivalents of Co(II), the ESR amplitude increases in proportion to the metal content, indicating generation of magnetically noninteracting high-spin complexes. However, upon addition of the remaining three equivalents of Co(II), these features are progressively suppressed, signaling the formation of clusters. The same mode of cluster formation has also been documented for Cd and Hg. The actual spatial organization of the clusters and the polypeptide chain remains to be established. An attractive possibility is the arrangement of the tetrahedral metal-thiolates in adamantane-like structures

  16. Hemoglobin redux: combining neutron and X-ray diffraction with mass spectrometry to analyse the quaternary state of oxidized hemoglobins

    PubMed Central

    Mueser, Timothy C.; Griffith, Wendell P.; Kovalevsky, Andrey Y.; Guo, Jingshu; Seaver, Sean; Langan, Paul; Hanson, B. Leif

    2010-01-01

    Improvements in neutron diffraction instrumentation are affording the opportunity to re-examine the structures of vertebrate hemoglobins and to interrogate proton and solvent position changes between the different quaternary states of the protein. For hemoglobins of unknown primary sequence, structural studies of cyanomethemoglobin (CNmetHb) are being used to help to resolve sequence ambiguity in the mass spectra. These studies have also provided additional structural evidence for the involvement of oxidized hemoglobin in the process of erythrocyte senescence. X-ray crystal studies of Tibetan snow leopard CNmetHb have shown that this protein crystallizes in the B state, a structure with a more open dyad, which possibly has relevance to RBC band 3 protein binding and erythrocyte senescence. R-state equine CNmetHb crystal studies elaborate the solvent differences in the switch and hinge region compared with a human deoxyhemoglobin T-­state neutron structure. Lastly, comparison of histidine protonation between the T and R state should enumerate the Bohr-effect protons. PMID:21041946

  17. Hemoglobin redux: combining neutron and X-ray diffraction with mass spectrometry to analyse the quaternary state of oxidized hemoglobins

    SciTech Connect

    Mueser, Timothy C. Griffith, Wendell P.; Kovalevsky, Andrey Y.; Guo, Jingshu; Seaver, Sean; Langan, Paul; Hanson, B. Leif

    2010-11-01

    X-ray and neutron diffraction studies of cyanomethemoglobin are being used to evaluate the structural waters within the dimer–dimer interface involved in quaternary-state transitions. Improvements in neutron diffraction instrumentation are affording the opportunity to re-examine the structures of vertebrate hemoglobins and to interrogate proton and solvent position changes between the different quaternary states of the protein. For hemoglobins of unknown primary sequence, structural studies of cyanomethemoglobin (CNmetHb) are being used to help to resolve sequence ambiguity in the mass spectra. These studies have also provided additional structural evidence for the involvement of oxidized hemoglobin in the process of erythrocyte senescence. X-ray crystal studies of Tibetan snow leopard CNmetHb have shown that this protein crystallizes in the B state, a structure with a more open dyad, which possibly has relevance to RBC band 3 protein binding and erythrocyte senescence. R-state equine CNmetHb crystal studies elaborate the solvent differences in the switch and hinge region compared with a human deoxyhemoglobin T-state neutron structure. Lastly, comparison of histidine protonation between the T and R state should enumerate the Bohr-effect protons.

  18. Hemoglobin redux: combining neutron and X-ray diffraction with mass spectrometry to analyse the quaternary state of oxidized hemoglobins.

    PubMed

    Mueser, Timothy C; Griffith, Wendell P; Kovalevsky, Andrey Y; Guo, Jingshu; Seaver, Sean; Langan, Paul; Hanson, B Leif

    2010-11-01

    Improvements in neutron diffraction instrumentation are affording the opportunity to re-examine the structures of vertebrate hemoglobins and to interrogate proton and solvent position changes between the different quaternary states of the protein. For hemoglobins of unknown primary sequence, structural studies of cyanomethemoglobin (CNmetHb) are being used to help to resolve sequence ambiguity in the mass spectra. These studies have also provided additional structural evidence for the involvement of oxidized hemoglobin in the process of erythrocyte senescence. X-ray crystal studies of Tibetan snow leopard CNmetHb have shown that this protein crystallizes in the B state, a structure with a more open dyad, which possibly has relevance to RBC band 3 protein binding and erythrocyte senescence. R-state equine CNmetHb crystal studies elaborate the solvent differences in the switch and hinge region compared with a human deoxyhemoglobin T-state neutron structure. Lastly, comparison of histidine protonation between the T and R state should enumerate the Bohr-effect protons.

  19. Rheotaxis guides mammalian sperm

    PubMed Central

    Miki, Kiyoshi; Clapham, David E

    2013-01-01

    Background In sea urchins, spermatozoan motility is altered by chemotactic peptides, giving rise to the assumption that mammalian eggs also emit chemotactic agents that guide spermatozoa through the female reproductive tract to the mature oocyte. Mammalian spermatozoa indeed undergo complex adaptations within the female (the process of capacitation) that are initiated by agents ranging from pH to progesterone, but these factors are not necessarily taxic. Currently, chemotaxis, thermotaxis, and rheotaxis have not been definitively established in mammals. Results Here, we show that positive rheotaxis, the ability of organisms to orient and swim against the flow of surrounding fluid, is a major taxic factor for mouse and human sperm. This flow is generated within 4 hours of sexual stimulation and coitus in female mice; prolactin-triggered oviductal fluid secretion clears the oviduct of debris, lowers viscosity, and generates the stream that guides sperm migration in the oviduct. Rheotaxic movement is demonstrated in capacitated and uncapacitated spermatozoa in low and high viscosity medium. Finally, we show that a unique sperm motion we quantify using the sperm head's rolling rate reflects sperm rotation that generates essential force for positioning the sperm in the stream. Rotation requires CatSper channels, presumably by enabling Ca2+ influx. Conclusions We propose that rheotaxis is a major determinant of sperm guidance over long distances in the mammalian female reproductive tract. Coitus induces fluid flow to guide sperm in the oviduct. Sperm rheotaxis requires rotational motion during CatSper channel-dependent hyperactivated motility. PMID:23453951

  20. Asymptomatic child heterozygous for hemoglobin S and hemoglobin Pôrto Alegre.

    PubMed

    Lojo, Liliana; Santiago-Borrero, Pedro; Rivera, Enid; Renta, Jessicca; Cadilla, Carmen L

    2011-03-01

    Hemoglobin Pôrto Alegre (PA) is a rare hemoglobin resulting from a mutation in β9(A6)Ser → Cys. We describe an asymptomatic Puerto Rican female with combined heterozygosity for Hb PA and Hb S. Since birth, she has maintained normal hemoglobin, bilirubin, LDH levels, and reticulocyte count. Peripheral smear evaluation has revealed normal erythrocyte morphology with no changes suggestive of hemolysis. We conclude that the presence of Hb PA does not increase the risk of red blood cell sickling in patients who carry the Hb S mutation.

  1. Asymptomatic Child Heterozygous for Hemoglobin S and Hemoglobin Pôrto Alegre

    PubMed Central

    Lojo, Liliana; Santiago-Borrero, Pedro; Rivera, Enid; Renta, Jessicca; Cadilla, Carmen L

    2013-01-01

    Hemoglobin Pôrto Alegre (PA) is a rare hemoglobin resulting from a mutation in β9(A6)Ser→Cys. We describe an asymptomatic Puerto Rican female with combined heterozygosity for Hb PA and Hb S. Since birth, she has maintained normal hemoglobin, bilirubin, LDH levels, and reticulocyte count. Peripheral smear evaluation has revealed normal erythrocyte morphology with no changes suggestive of hemolysis. We conclude that the presence of Hb PA does not increase the risk of red blood cell sickling in patients who carry the Hb S mutation. PMID:21225927

  2. Evolutionary paths to mammalian cochleae.

    PubMed

    Manley, Geoffrey A

    2012-12-01

    Evolution of the cochlea and high-frequency hearing (>20 kHz; ultrasonic to humans) in mammals has been a subject of research for many years. Recent advances in paleontological techniques, especially the use of micro-CT scans, now provide important new insights that are here reviewed. True mammals arose more than 200 million years (Ma) ago. Of these, three lineages survived into recent geological times. These animals uniquely developed three middle ear ossicles, but these ossicles were not initially freely suspended as in modern mammals. The earliest mammalian cochleae were only about 2 mm long and contained a lagena macula. In the multituberculate and monotreme mammalian lineages, the cochlea remained relatively short and did not coil, even in modern representatives. In the lineage leading to modern therians (placental and marsupial mammals), cochlear coiling did develop, but only after a period of at least 60 Ma. Even Late Jurassic mammals show only a 270 ° cochlear coil and a cochlear canal length of merely 3 mm. Comparisons of modern organisms, mammalian ancestors, and the state of the middle ear strongly suggest that high-frequency hearing (>20 kHz) was not realized until the early Cretaceous (~125 Ma). At that time, therian mammals arose and possessed a fully coiled cochlea. The evolution of modern features of the middle ear and cochlea in the many later lineages of therians was, however, a mosaic and different features arose at different times. In parallel with cochlear structural evolution, prestins in therian mammals evolved into effective components of a new motor system. Ultrasonic hearing developed quite late-the earliest bat cochleae (~60 Ma) did not show features characteristic of those of modern bats that are sensitive to high ultrasonic frequencies.

  3. Evolutionary paths to mammalian cochleae.

    PubMed

    Manley, Geoffrey A

    2012-12-01

    Evolution of the cochlea and high-frequency hearing (>20 kHz; ultrasonic to humans) in mammals has been a subject of research for many years. Recent advances in paleontological techniques, especially the use of micro-CT scans, now provide important new insights that are here reviewed. True mammals arose more than 200 million years (Ma) ago. Of these, three lineages survived into recent geological times. These animals uniquely developed three middle ear ossicles, but these ossicles were not initially freely suspended as in modern mammals. The earliest mammalian cochleae were only about 2 mm long and contained a lagena macula. In the multituberculate and monotreme mammalian lineages, the cochlea remained relatively short and did not coil, even in modern representatives. In the lineage leading to modern therians (placental and marsupial mammals), cochlear coiling did develop, but only after a period of at least 60 Ma. Even Late Jurassic mammals show only a 270 ° cochlear coil and a cochlear canal length of merely 3 mm. Comparisons of modern organisms, mammalian ancestors, and the state of the middle ear strongly suggest that high-frequency hearing (>20 kHz) was not realized until the early Cretaceous (~125 Ma). At that time, therian mammals arose and possessed a fully coiled cochlea. The evolution of modern features of the middle ear and cochlea in the many later lineages of therians was, however, a mosaic and different features arose at different times. In parallel with cochlear structural evolution, prestins in therian mammals evolved into effective components of a new motor system. Ultrasonic hearing developed quite late-the earliest bat cochleae (~60 Ma) did not show features characteristic of those of modern bats that are sensitive to high ultrasonic frequencies. PMID:22983571

  4. Maternal hemoglobin level and fetal outcome at low and high altitudes

    PubMed Central

    Steenland, Kyle; Tapia, Vilma

    2009-01-01

    Both, low (<7 g/dl) and high (>14.5 g/dl), maternal hemoglobin (Hb) levels have been related to poor fetal outcome. Most studies have been done at low altitude (LA). Here, we have sought to determine whether this relationship exists at both high and low altitude, and also whether there is an adverse effect of high altitude (HA) on fetal outcome independent of level of maternal hemoglobin. The study is based on a retrospective multicenter analysis of 35,449 pregnancies at LA and six other cities above 3000 meters. In analyses of all women at both LA and HA, those with Hb <9 g/dl had odds ratios (ORs) and 95% confidence intervals (CI) of 4.4 (CI: 2.8–6.7), 2.5 (CI: 1.9–3.2), and 1.4 (CI: 1.1–1.9) for stillbirths, preterm, and small for gestational age (SGA) births, respectively, compared with women with 11–12.9 g/dl of Hb, after adjustment for confounders. These risks by hemoglobin level differed little between women at LA and HA, suggesting that no correction of the definition of anemia is necessary for women at HA. Women living at high altitude with hemoglobin >15.5 g/dl had higher risks for stillbirths (OR: 1.3; CI: 1.05–1.3), preterm (OR: 1.5; CI 1.3–1.8), and SGA births (OR: 2.1, CI 1.8–2.3). There was also a significant adverse effect of living at HA, independent of hemoglobin level for all three outcomes (OR: 3.9, 1.7, and 2.3; CI: 2.8–5.2, 1.5–1.9, and 2.1–2.5) for stillbirths, preterms, and SGA respectively, after adjusting for hemoglobin level. Both, high and low maternal hemoglobin levels were related to poor pregnancy outcome, with similar effect of low hemoglobin in both LA and HA. Our data suggest, that maternal hemoglobin above 11 g/dl but below 13 g/dl is the area of minimal risk of poor adverse outcomes. Living at HA had an adverse effect independent of hemoglobin level. PMID:19741055

  5. Unrecognized hemoglobin SE disease as microcytosis

    PubMed Central

    Cooper, Barry; Guileyardo, Joseph; Mora, Adan

    2016-01-01

    Hemoglobin SE disease was first described during the 1950s as a relatively benign microcytosis, but increasing prevalence has revealed a predisposition towards vasoocclusive sickling. Recognition of SE hemoglobinopathies’ potential complications is crucial so medical measures can be utilized to avoid multiorgan injury. PMID:27365881

  6. Metastable Polymerization of Sickle Hemoglobin in Droplets

    PubMed Central

    Aprelev, Alexey; Weng, Weijun; Zakharov, Mikhail; Rotter, Maria; Yosmanovich, Donna; Kwong, Suzanna; Briehl, Robin W.; Ferrone, Frank A.

    2007-01-01

    Sickle cell disease arises from a genetic mutation of one amino acid in each of the two hemoglobin β chains, leading to the polymerization of hemoglobin in the red cell upon deoxygenation, and is characterized by vascular crises and tissue damage due to the obstruction of small vessels by sickled cells. It has been an untested assumption that, in red cells that sickle, the growing polymer mass would consume monomers until the thermodynamically well-described monomer solubility was reached. By photolyzing droplets of sickle hemoglobin suspended in oil we find that polymerization does not exhaust the available store of monomers, but stops prematurely, leaving the solutions in a supersaturated, metastable state typically 20% above solubility at 37°C, though the particular values depend on the details of the experiment. We propose that polymer growth stops because the growing ends reach the droplet edge, whereas new polymer formation is thwarted by long nucleation times, since the hemoglobin concentration is lowered by depletion of monomers into the polymers that have formed. This finding suggests a new aspect to the pathophysiology of sickle cell disease, namely, that cells deoxygenated in the microcirculation are not merely undeformable, but will actively wedge themselves tightly against the walls of the microvasculature by a ratchet-like mechanism driven by the supersaturated solution. PMID:17493634

  7. Circular dichroism and conformation of fish hemoglobins.

    PubMed

    Greenwood, C; Gibson, Q H

    1983-04-10

    The circular dichroism spectrum of fully liganded CO hemoglobin from the Atlantic bluefin tuna (Tunnus thynnus) shows a pH- and temperature-dependent feature at 416 nm. It is half-developed at pH 5.9 and 20 degrees C and its change with temperature corresponds to a heat of 34 kcal/mol (tetramer) for the transition. Correlation with studies on function (Morris, R. J., and Gibson, Q. H. (1982) J. Biol. Chem. 257, 4869-4874) shows that the dichroism feature changes at about 1 pH unit below the R-T transition. There is a close correlation between the 416 nm band and changes in circular dichroism at 287 nm. The new 416 nm band is seen in several fish hemoglobins, but not with human hemoglobin. With hemoglobin from Brevoortia tyrannus, which has been sufficiently studied to permit the comparison, there is a smaller gap between the change in dichroism spectrum and the functional R-T transition. So far, no change in function has been associated with the appearance of the 416 nm circular dichroism band. PMID:6833248

  8. Hemoglobin: A Nitric-Oxide Dioxygenase

    PubMed Central

    Gardner, Paul R.

    2012-01-01

    Members of the hemoglobin superfamily efficiently catalyze nitric-oxide dioxygenation, and when paired with native electron donors, function as NO dioxygenases (NODs). Indeed, the NOD function has emerged as a more common and ancient function than the well-known role in O2 transport-storage. Novel hemoglobins possessing a NOD function continue to be discovered in diverse life forms. Unique hemoglobin structures evolved, in part, for catalysis with different electron donors. The mechanism of NOD catalysis by representative single domain hemoglobins and multidomain flavohemoglobin occurs through a multistep mechanism involving O2 migration to the heme pocket, O2 binding-reduction, NO migration, radical-radical coupling, O-atom rearrangement, nitrate release, and heme iron re-reduction. Unraveling the physiological functions of multiple NODs with varying expression in organisms and the complexity of NO as both a poison and signaling molecule remain grand challenges for the NO field. NOD knockout organisms and cells expressing recombinant NODs are helping to advance our understanding of NO actions in microbial infection, plant senescence, cancer, mitochondrial function, iron metabolism, and tissue O2 homeostasis. NOD inhibitors are being pursued for therapeutic applications as antibiotics and antitumor agents. Transgenic NOD-expressing plants, fish, algae, and microbes are being developed for agriculture, aquaculture, and industry. PMID:24278729

  9. Trematode hemoglobins show exceptionally high oxygen affinity.

    PubMed

    Kiger, L; Rashid, A K; Griffon, N; Haque, M; Moens, L; Gibson, Q H; Poyart, C; Marden, M C

    1998-08-01

    Ligand binding studies were made with hemoglobin (Hb) isolated from trematode species Gastrothylax crumenifer (Gc), Paramphistomum epiclitum (Pe), Explanatum explanatum (Ee), parasitic worms of water buffalo Bubalus bubalis, and Isoparorchis hypselobagri (Ih) parasitic in the catfish Wallago attu. The kinetics of oxygen and carbon monoxide binding show very fast association rates. Whereas oxygen can be displaced on a millisecond time scale from human Hb at 25 degrees C, the dissociation of oxygen from trematode Hb may require a few seconds to over 20 s (for Hb Pe). Carbon monoxide dissociation is faster, however, than for other monomeric hemoglobins or myoglobins. Trematode hemoglobins also show a reduced rate of autoxidation; the oxy form is not readily oxidized by potassium ferricyanide, indicating that only the deoxy form reacts rapidly with this oxidizing agent. Unlike most vertebrate Hbs, the trematodes have a tyrosine residue at position E7 instead of the usual distal histidine. As for Hb Ascaris, which also displays a high oxygen affinity, the trematodes have a tyrosine in position B10; two H-bonds to the oxygen molecule are thought to be responsible for the very high oxygen affinity. The trematode hemoglobins display a combination of high association rates and very low dissociation rates, resulting in some of the highest oxygen affinities ever observed.

  10. Measurement of the oxidation state of mitochondrial cytochrome c from the neocortex of the mammalian brain

    PubMed Central

    Sakata, Y.; Abajian, M.; Ripple, M. O.; Springett, R.

    2012-01-01

    Diffuse optical remission spectra from the mammalian neocortex at visible wavelengths contain spectral features originating from the mitochondria. A new algorithm is presented, based on analytically relating the first differential of the attenuation spectrum to the first differential of the chromophore spectra, that can separate and calculate the oxidation state of cytochrome c as well as the absolute concentration and saturation of hemoglobin. The algorithm is validated in phantoms and then tested on the neocortex of the rat during an anoxic challenge. Implementation of the algorithm will provide detailed information of mitochondrial oxygenation and mitochondrial function in physiological studies of the mammalian brain. PMID:22876356

  11. Effects of a Hemoglobin-Based Oxygen Carrier (HBOC-201) and Derivatives with Altered Oxygen Affinity and Viscosity on Systemic and Microcirculatory Variables in a Top-load Rat Model

    PubMed Central

    Song, Bjorn Kyungsuck; Nugent, William H.; Moon-Massat, Paula F.; Pittman, Roland N.

    2014-01-01

    The effects of a polymerized bovine hemoglobin-based oxygen carrier (HBOC) and two derivatives on arteriolar vasoactivity and tissue oxygen tension were explored by administering HBOC in a dose-response fashion to normovolemic rats. The effect of oxygen affinity (P50) and viscosity were also explored, where the P50 and viscosity of the parent compound (HBOC-201) and its modifications (MP50 and LP50A) were as follows: 40 mmHg and 3.0 cP (HBOC-20l); 18 mmHg and 4.4 cP (MP50); and 17 mmHg and 12.1 cP (LP50A). Anesthetized male Sprague-Dawley rats (N = 32) were randomized to receive one of the HBOC solutions, and were administered four infusions that increased in concentration for each dose (2, 22, 230 and 780 mg/kg, IV). Data were compared to rats receiving an equivalent volume for each of the four infusions (0.4, 0.4, 3.8, 13.1 ml/kg, IV) of iso-oncotic 5.9% human serum albumin (HSA). Increasing doses of either HBOC solutions or HSA were associated with increasing MAP. Doses 3 and 4 of HBOC-201, MP50 and HSA produced significant increases in MAP, whereas similar increases began at a lower dose (Dose 2) with LP50A. There were no significant changes in arteriolar diameters at any dose for any group. Interstitial partial pressure of oxygen (ISF PO2) remained unchanged for HBOC-201, MP50 and HSA, but LP50A caused a significant decrease in ISF PO2 compared to baseline after Doses 3 and 4. In conclusion, there was no evidence that HBOC-201 would perform better with increased oxygen affinity (40 to 18 mmHg) or viscosity (3.0 to 4.4 cP). PMID:25046829

  12. Towards hemerythrin-based blood substitutes: comparative performance to hemoglobin on human leukocytes and umbilical vein endothelial cells.

    PubMed

    Fischer-Fodor, Eva; Mot, Augustin; Deac, Florina; Arkosi, Mariann; Silaghi-Dumitrescu, Radu

    2011-06-01

    Hemerythrin is a dioxygen-carrying protein whose oxidative/nitrosative stress-related reactivity is lower than that of hemoglobin, which may warrant investigation of hemerythrin as raw material for artificial oxygen carriers ('blood substitutes'). We report here the first biological tests for hemerythrin and its chemical derivatives, comparing their performance with that of a representative competitor, glutaraldehyde-polymerized bovine hemoglobin. Hemerythrin (native or derivatized) exhibits a proliferative effect on human umbilical vein endothelial cell (HUVEC) cultures, as opposed to a slight inhibitory effect of hemoglobin. A similar positive effect is displayed on human lymphocytes by glutaraldehyde-polymerized hemerythrin, but not by native or polyethylene glycol-derivatized hemerythrin.

  13. Dihydroartemisinin ameliorates inflammatory disease by its reciprocal effects on Th and regulatory T cell function via modulating the mammalian target of rapamycin pathway.

    PubMed

    Zhao, Yan G; Wang, Yunqi; Guo, Zengli; Gu, Ai-di; Dan, Han C; Baldwin, Albert S; Hao, Weidong; Wan, Yisong Y

    2012-11-01

    Dihydroartemisinin (DHA) is an important derivative of the herb medicine Artemisia annua L., used in ancient China. DHA is currently used worldwide to treat malaria by killing malaria-causing parasites. In addition to this prominent effect, DHA is thought to regulate cellular functions, such as angiogenesis, tumor cell growth, and immunity. Nonetheless, how DHA affects T cell function remains poorly understood. We found that DHA potently suppressed Th cell differentiation in vitro. Unexpectedly, however, DHA greatly promoted regulatory T cell (Treg) generation in a manner dependent on the TGF-βR:Smad signal. In addition, DHA treatment effectively reduced onset of experimental autoimmune encephalomyelitis (EAE) and ameliorated ongoing EAE in mice. Administration of DHA significantly decreased Th but increased Tregs in EAE-inflicted mice, without apparent global immune suppression. Moreover, DHA modulated the mammalian target of rapamycin (mTOR) pathway, because mTOR signal was attenuated in T cells upon DHA treatment. Importantly, enhanced Akt activity neutralized DHA-mediated effects on T cells in an mTOR-dependent fashion. This study therefore reveals a novel immune regulatory function of DHA in reciprocally regulating Th and Treg cell generation through the modulating mTOR pathway. It addresses how DHA regulates immune function and suggests a new type of drug for treating diseases in which mTOR activity is to be tempered. PMID:22993204

  14. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13 grams per deciliter of polymerized hemoglobin of bovine origin in modified Lactated Ringer's...

  15. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13 grams per deciliter of polymerized hemoglobin of bovine origin in modified Lactated Ringer's...

  16. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13 grams per deciliter of polymerized hemoglobin of bovine origin in modified Lactated Ringer's...

  17. 21 CFR 864.7455 - Fetal hemoglobin assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fetal hemoglobin assay. 864.7455 Section 864.7455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... hemoglobin polypeptide chains). The hemoglobin determination may be made by methods such as...

  18. 21 CFR 864.7455 - Fetal hemoglobin assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fetal hemoglobin assay. 864.7455 Section 864.7455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... hemoglobin polypeptide chains). The hemoglobin determination may be made by methods such as...

  19. 21 CFR 864.7455 - Fetal hemoglobin assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fetal hemoglobin assay. 864.7455 Section 864.7455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... hemoglobin polypeptide chains). The hemoglobin determination may be made by methods such as...

  20. 21 CFR 864.7455 - Fetal hemoglobin assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal hemoglobin assay. 864.7455 Section 864.7455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... hemoglobin polypeptide chains). The hemoglobin determination may be made by methods such as...

  1. Bioimaging techniques for subcellular localization of plant hemoglobins and measurement of hemoglobin-dependent nitric oxide scavenging in planta.

    PubMed

    Hebelstrup, Kim H; Østergaard-Jensen, Erik; Hill, Robert D

    2008-01-01

    Plant hemoglobins are ubiquitous in all plant families. They are expressed at low levels in specific tissues. Several studies have established that plant hemoglobins are scavengers of nitric oxide (NO) and that varying the endogenous level of hemoglobin in plant cells negatively modulates bioactivity of NO generated under hypoxic conditions or during cellular signaling. Earlier methods for determination of hemoglobin-dependent scavenging in planta were based on measuring activity in whole plants or organs. Plant hemoglobins do not contain specific organelle localization signals; however, earlier reports on plant hemoglobin have demonstrated either cytosolic or nuclear localization, depending on the method or cell type investigated. We have developed two bioimaging techniques: one for visualization of hemoglobin-catalyzed scavenging of NO in specific cells and another for visualization of subcellular localization of green fluorescent protein-tagged plant hemoglobins in transformed Arabidopsis thaliana plants.

  2. Mammalian glycosylation in immunity

    PubMed Central

    Marth, Jamey D.; Grewal, Prabhjit K.

    2009-01-01

    Glycosylation produces a diverse and abundant repertoire of glycans, which are collectively known as the glycome. Glycans are one of the four fundamental macromolecular components of all cells, and are highly regulated in the immune system. Their diversity reflects their multiple biological functions that encompass ligands for proteinaceous of receptors known as lectins. Since the discovery that selectins and their glycan ligands are important for the regulation of leukocyte trafficking, it has been shown that additional features of the vertebrate immune system are also controlled by endogenous cellular glycosylation. This Review focuses on the emerging immunological roles of the mammalian glycome. PMID:18846099

  3. Archetype, adaptation and the mammalian heart.

    PubMed

    Meijler, F L; Meijler, T D

    2011-03-01

    Forty years ago, we started our quest for 'The Holy Grail' of understanding ventricular rate control and rhythm in atrial fibrillation (AF). We therefore studied the morphology and function of a wide range of mammalian hearts. From mouse to whale, we found that all hearts show similar structural and functional characteristics. This suggests that the mammalian heart remained well conserved during evolution and in this aspect it differs from other organs and parts of the mammalian body. The archetype of the mammalian heart was apparently so successful that adaptation by natural selection (evolution) caused by varying habitat demands, as occurred in other organs and many other aspects of mammalian anatomy, bypassed the heart. The structure and function of the heart of placental mammals have thus been strikingly conserved throughout evolution. The changes in the mammalian heart that did take place were mostly adjustments (scaling), to compensate for variations in body size and shape. A remarkable scaling effect is, for instance, the difference in atrioventricular (AV) conduction time, which is vital for optimal cardiac function in all mammals, small and large. Scaling of AV conduction takes place in the AV node (AVN), but its substrate is unknown. This sheds new light on the vital role of the AVN in health and disease. The AVN is master and servant of the heart at the same time and is of salient importance for our understanding of supraventricular arrhythmias in humans, especially AF. In Information Technology a software infra-structure called 'enterprise service bus' (ESB) may provide understanding of the mammalian heart's conservation during evolution. The ESB is quite unspecific (and thus general) when compared with the specialised components it has to support. For instance, one of the functions of an ESB is the routing of messages between system nodes. This routing is independent and unaware of the content of the messages. The function of the heart is likewise

  4. Comparison of S9 mix and hepatocytes as external metabolizing systems in mammalian cell cultures: cytogenetic effects of 7,12-dimethylbenzanthracene and aflatoxin B1

    SciTech Connect

    Madle, E.; Tiedemann, G.; Madle, S.; Oett, A.; Kaufmann, G.

    1986-01-01

    Two external metabolizing systems, S9 mix from Aroclor-induced rat livers and freshly isolated hepatocytes, were used for activation in cultures of human lymphocytes and V79 cells. 7, 12-dimethylbenzanthracene (DMBA) and aflatoxin B1 (AFB1) were employed as indirectly acting reference mutagens. Mutagenic effects were measured by induction of sister chromatid exchange (SCE). With DMBA, SCE-inducing effects were found to be quite similar after activation by S9 mix and activation by hepatocytes. In contrast with AFB1, S9 activation led to a stronger SCE induction than hepatocyte activation in both target cells. The induction of chromosomal aberrations by AFB1 after activation by the two metabolizing systems was also analyzed in V79 cells. This experiment again revealed that AFB1 was more efficiently activated by S9 mix than by hepatocytes. The experiments have shown that the suitability of hepatocytes as an activation system is not restricted to microbial or eukaryotic point mutation assays, but that hepatocyte metabolism can also be successfully included in cytogenetic tests with short- and long-term cultures of mammalian target cells.

  5. Producing Newborn Synchronous Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen

    2008-01-01

    A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.

  6. Mitochondria and mammalian reproduction.

    PubMed

    Ramalho-Santos, João; Amaral, Sandra

    2013-10-15

    Mitochondria are cellular organelles with crucial roles in ATP synthesis, metabolic integration, reactive oxygen species (ROS) synthesis and management, the regulation of apoptosis (namely via the intrinsic pathway), among many others. Additionally, mitochondria in different organs or cell types may have distinct properties that can decisively influence functional analysis. In terms of the importance of mitochondria in mammalian reproduction, and although there are species-specific differences, these aspects involve both energetic considerations for gametogenesis and fertilization, control of apoptosis to ensure the proper production of viable gametes, and ROS signaling, as well as other emerging aspects. Crucially, mitochondria are the starting point for steroid hormone biosynthesis, given that the conversion of cholesterol to pregnenolone (a common precursor for all steroid hormones) takes place via the activity of the cytochrome P450 side-chain cleavage enzyme (P450scc) on the inner mitochondrial membrane. Furthermore, mitochondrial activity in reproduction has to be considered in accordance with the very distinct strategies for gamete production in the male and female. These include distinct gonad morpho-physiologies, different types of steroids that are more prevalent (testosterone, estrogens, progesterone), and, importantly, the very particular timings of gametogenesis. While spermatogenesis is complete and continuous since puberty, producing a seemingly inexhaustible pool of gametes in a fixed environment; oogenesis involves the episodic production of very few gametes in an environment that changes cyclically. These aspects have always to be taken into account when considering the roles of any common element in mammalian reproduction.

  7. [Research on Early Diagnosis of Gastric Cancer by the Surface Enhanced Raman Spectroscopy of Human Hemoglobin].

    PubMed

    Wang, Wei; Pan, Zhi-feng; Tang, Wei-yue; Li, Yun-tao; Fan, Chun-zhen

    2015-12-01

    Early diagnosis have great positive effect on the treatment of gastric cancer patients. Raman spectroscopy can provide a useful monitor for hemoglobin dynamics. Besides, Raman spectroscopy has notable advantages in the fields of abnormal hemoglobin diagnosis, hemoglobin oxygen saturation deter mination and blood methemoglobin analysis. In this paper, novel silver colloid was synthesized by microwave heated method. The surface enhanced Raman spectrums of hemoglobin from 11 normal persons and 20 gastric cancer patients are measured and analyzed in order to obtain spectrums which are high repeatability and characteristic peaks protruding. By analyzing the assignations of the SERS bands, it found that the content of asparagine, tyrosine and phenylalanine in the hemoglobin are significantly lower than healthy people. Discussing the structure of hemoglobin, when hemoglobin combines with oxygen, Fe²⁺ is in a low spin state, ionic radius shrinks and moves 0. 075 nm and fall into the pore in the middle of the heme porphyrin ring plane. This spatial variation affects F8His connected with the iron, will narrow the gap between the globin in the two strands of the helix, as a result, HC2 tyrosine pushed out of the void. Using this mechanism, the absorption peak of 1 560 cm⁻¹ confirmed that the tyrosine content in patients with gastric cancer was lower than that of normal people. Principal component analysis(PCA) is employed to get a three-dimensional scatter plot of PC scores for the health and cancer groups, and it can be learned that they are distributed in separate areas. By using the method of discriminate analysis, it is found that the diagnostic algorithm separates the two groups with sensitivity of 90.0% and diagnostic specificity of 90.9%, the overall diagnostic accuracy was 90.3%. The results from this exploratory study demonstrate that, SERS detection of oxyhemoglobin combined with multivariate analysis would be an effective method for early diagnosis of gastric

  8. [Research on Early Diagnosis of Gastric Cancer by the Surface Enhanced Raman Spectroscopy of Human Hemoglobin].

    PubMed

    Wang, Wei; Pan, Zhi-feng; Tang, Wei-yue; Li, Yun-tao; Fan, Chun-zhen

    2015-12-01

    Early diagnosis have great positive effect on the treatment of gastric cancer patients. Raman spectroscopy can provide a useful monitor for hemoglobin dynamics. Besides, Raman spectroscopy has notable advantages in the fields of abnormal hemoglobin diagnosis, hemoglobin oxygen saturation deter mination and blood methemoglobin analysis. In this paper, novel silver colloid was synthesized by microwave heated method. The surface enhanced Raman spectrums of hemoglobin from 11 normal persons and 20 gastric cancer patients are measured and analyzed in order to obtain spectrums which are high repeatability and characteristic peaks protruding. By analyzing the assignations of the SERS bands, it found that the content of asparagine, tyrosine and phenylalanine in the hemoglobin are significantly lower than healthy people. Discussing the structure of hemoglobin, when hemoglobin combines with oxygen, Fe²⁺ is in a low spin state, ionic radius shrinks and moves 0. 075 nm and fall into the pore in the middle of the heme porphyrin ring plane. This spatial variation affects F8His connected with the iron, will narrow the gap between the globin in the two strands of the helix, as a result, HC2 tyrosine pushed out of the void. Using this mechanism, the absorption peak of 1 560 cm⁻¹ confirmed that the tyrosine content in patients with gastric cancer was lower than that of normal people. Principal component analysis(PCA) is employed to get a three-dimensional scatter plot of PC scores for the health and cancer groups, and it can be learned that they are distributed in separate areas. By using the method of discriminate analysis, it is found that the diagnostic algorithm separates the two groups with sensitivity of 90.0% and diagnostic specificity of 90.9%, the overall diagnostic accuracy was 90.3%. The results from this exploratory study demonstrate that, SERS detection of oxyhemoglobin combined with multivariate analysis would be an effective method for early diagnosis of gastric

  9. Computation of the unsteady facilitated transport of oxygen in hemoglobin

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1990-01-01

    The transport of a reacting permeant diffusing through a thin membrane is extended to more realistic dissociation models. A new nonlinear analysis of the reaction-diffusion equations, using implicit finite-difference methods and direct block solvers, is used to study the limits of linearized and equilibrium theories. Computed curves of molecular oxygen permeating through hemoglobin solution are used to illustrate higher-order reaction models, the effect of concentration boundary layers at the membrane interfaces, and the transient buildup of oxygen flux.

  10. Carbon monoxide binding to a fish hemoglobin under photostationary conditions.

    PubMed

    Torkelson, S J; Gibson, Q H

    1978-10-25

    Determinations of carbon monoxide binding curves for hemoglobin from Brevoortia tyrannus under equilibrium and photostationary conditions show that in the light, the curve is shifted to the right and altered in shape. The Bohr effect is much less in the light. The kinetics of the transition between equilibrium and photostationary states has been examined. All of the results are satisfactorily described using the two-state model of Monod, J. Wyman, J., and Changeux, J.P. (1965) J. Mol. Biol. 12, 88-118 with the assumption that light produces an additive increase in the rate of dissociation of ligand from the R and T states. PMID:701255

  11. Implementation of a Permeable Membrane Insert-based Infection System to Study the Effects of Secreted Bacterial Toxins on Mammalian Host Cells.

    PubMed

    Flaherty, Rebecca A; Lee, Shaun W

    2016-08-19

    Many bacterial pathogens secrete potent toxins to aid in the destruction of host tissue, to initiate signaling changes in host cells or to manipulate immune system responses during the course of infection. Though methods have been developed to successfully purify and produce many of these important virulence factors, there are still many bacterial toxins whose unique structure or extensive post-translational modifications make them difficult to purify and study in in vitro systems. Furthermore, even when pure toxin can be obtained, there are many challenges associated with studying the specific effects of a toxin under relevant physiological conditions. Most in vitro cell culture models designed to assess the effects of secreted bacterial toxins on host cells involve incubating host cells with a one-time dose of toxin. Such methods poorly approximate what host cells actually experience during an infection, where toxin is continually produced by bacterial cells and allowed to accumulate gradually during the course of infection. This protocol describes the design of a permeable membrane insert-based bacterial infection system to study the effects of Streptolysin S, a potent toxin produced by Group A Streptococcus, on human epithelial keratinocytes. This system more closely mimics the natural physiological environment during an infection than methods where pure toxin or bacterial supernatants are directly applied to host cells. Importantly, this method also eliminates the bias of host responses that are due to direct contact between the bacteria and host cells. This system has been utilized to effectively assess the effects of Streptolysin S (SLS) on host membrane integrity, cellular viability, and cellular signaling responses. This technique can be readily applied to the study of other secreted virulence factors on a variety of mammalian host cell types to investigate the specific role of a secreted bacterial factor during the course of infection.

  12. Implementation of a Permeable Membrane Insert-based Infection System to Study the Effects of Secreted Bacterial Toxins on Mammalian Host Cells.

    PubMed

    Flaherty, Rebecca A; Lee, Shaun W

    2016-01-01

    Many bacterial pathogens secrete potent toxins to aid in the destruction of host tissue, to initiate signaling changes in host cells or to manipulate immune system responses during the course of infection. Though methods have been developed to successfully purify and produce many of these important virulence factors, there are still many bacterial toxins whose unique structure or extensive post-translational modifications make them difficult to purify and study in in vitro systems. Furthermore, even when pure toxin can be obtained, there are many challenges associated with studying the specific effects of a toxin under relevant physiological conditions. Most in vitro cell culture models designed to assess the effects of secreted bacterial toxins on host cells involve incubating host cells with a one-time dose of toxin. Such methods poorly approximate what host cells actually experience during an infection, where toxin is continually produced by bacterial cells and allowed to accumulate gradually during the course of infection. This protocol describes the design of a permeable membrane insert-based bacterial infection system to study the effects of Streptolysin S, a potent toxin produced by Group A Streptococcus, on human epithelial keratinocytes. This system more closely mimics the natural physiological environment during an infection than methods where pure toxin or bacterial supernatants are directly applied to host cells. Importantly, this method also eliminates the bias of host responses that are due to direct contact between the bacteria and host cells. This system has been utilized to effectively assess the effects of Streptolysin S (SLS) on host membrane integrity, cellular viability, and cellular signaling responses. This technique can be readily applied to the study of other secreted virulence factors on a variety of mammalian host cell types to investigate the specific role of a secreted bacterial factor during the course of infection. PMID:27585035

  13. Antidepressant-like effect of ascorbic acid is associated with the modulation of mammalian target of rapamycin pathway.

    PubMed

    Moretti, Morgana; Budni, Josiane; Freitas, Andiara Espíndola; Rosa, Priscila Batista; Rodrigues, Ana Lúcia S

    2014-01-01

    The present study investigated the involvement of the PI3K, GSK-3β, heme oxygenase-1 (HO-1) and mTOR in the antidepressant-like effect of ascorbic acid in the tail suspension test (TST). Male Swiss mice were pretreated with ascorbic acid (1 mg/kg, p.o.) or vehicle and 45 min after, LY294002 (10 μg/site, i.c.v., reversible PI3K inhibitor), rapamycin (0.2 nmol/site, i.c.v., selective mTOR inhibitor), zinc protoporphyrin (ZnPP - 10 ng/site, i.c.v., HO-1 inhibitor) or vehicle was administered. We also investigated the synergistic effect of ascorbic acid (0.1 mg/kg, p.o., sub-effective dose in the TST) with lithium chloride (10 mg/kg, p.o., non-selective GSK-3β inhibitor), AR-A014418 (0.01 μg/site, i.c.v., selective GSK-3β inhibitor) or cobalt protoporphyrin (CoPP - 0.01 μg/site, i.c.v., HO-1 inducer) in the TST. The antidepressant-like effect of ascorbic acid (1 mg/kg, p.o.) was prevented by the treatment of mice with LY294002, rapamycin or ZnPP. In addition, sub-effective doses of lithium chloride, AR-A014418 or CoPP, combined with a sub-effective dose of ascorbic acid produced a synergistic antidepressant-like effect. We also demonstrated that 1 h after its administration, ascorbic acid increased the phosphorylation of p70S6K and the immunocontent of PSD-95 in the hippocampus of mice. These results indicate that the antidepressant-like effect of ascorbic acid in the TST might be dependent on the activation of PI3K and mTOR, inhibition of GSK-3β as well as induction of HO-1, reinforcing the notion that these are important targets for antidepressant activity and contributing to better elucidate the mechanisms underlying the antidepressant-like effect of ascorbic acid.

  14. A recombinant human hemoglobin with anti-sickling properties greater than fetal hemoglobin.

    PubMed

    Levasseur, Dana N; Ryan, Thomas M; Reilly, Michael P; McCune, Steven L; Asakura, Toshio; Townes, Tim M

    2004-06-25

    A new recombinant, human anti-sickling beta-globin polypeptide designated beta(AS3) (betaGly(16) --> Asp/betaGlu(22) --> Ala/betaThr(87) --> Gln) was designed to increase affinity for alpha-globin. The amino acid substitutions at beta22 and beta87 are located at axial and lateral contacts of the sickle hemoglobin (HbS) polymers and strongly inhibit deoxy-HbS polymerization. The beta16 substitution confers the recombinant beta-globin subunit (beta(AS3)) with a competitive advantage over beta(S) for interaction with the alpha-globin polypeptide. Transgenic mouse lines that synthesize high levels of HbAS3 (alpha(2)beta(AS3)(2)) were established, and recombinant HbAS3 was purified from hemolysates and then characterized. HbAS3 binds oxygen cooperatively and has an oxygen affinity that is comparable with fetal hemoglobin. Delay time experiments demonstrate that HbAS3 is a potent inhibitor of HbS polymerization. Subunit competition studies confirm that beta(AS3) has a distinct advantage over beta(S) for dimerization with alpha-globin. When equal amounts of beta(S)- and beta(AS3)-globin monomers compete for limiting alpha-globin chains up to 82% of the tetramers formed is HbAS3. Knock-out transgenic mice that express exclusively human HbAS3 were produced. When these mice were bred with knock-out transgenic sickle mice the beta(AS3) polypeptides corrected all hematological parameters and organ pathology associated with the disease. Expression of beta(AS3)-globin should effectively lower the concentration of HbS in erythrocytes of patients with sickle cell disease, especially in the 30% percent of these individuals who coinherit alpha-thalassemia. Therefore, constructs expressing the beta(AS3)-globin gene may be suitable for future clinical trials for sickle cell disease. PMID:15084588

  15. Structural and redox behavior of OxyVita, a zero-linked polymeric hemoglobin: comparison with natural acellular polymeric hemoglobins.

    PubMed

    Harrington, John P; Orlik, Kseniya; Orlig, Kseniya; Zito, Samantha L; Wollocko, Jacek; Wollocko, Hanna

    2010-04-01

    A zero-linked polymeric hemoglobin (OxyVita Hb) has been developed for application as an acellular therapeutic hemoglobin-based-oxygen-carrier (HBOC). For effective and safe oxygen binding, transport and delivery, an HBOC must meet essential molecular requirements related to its structural integrity and redox stability. OxyVita is a super polymer possessing an average M.wt. of 17 x 10(6) Da. Structural integrity was determined by unfolding studies of OxyVita in the presence of increasing concentrations of urea. The unfolding midpoints (D(1/2)) of different preparations of OxyVita (solution and powder forms) were compared to Lumbricus Hb (LtHb) and Arenicola Hb (ArHb), natural acellular polymeric hemoglobins, which are serving as models for an effective and safe acellular HBOC. Reduction studies of OxyVita Hb using endogenous reducing agents were also investigated. Results from these studies indicate that: 1) OxyVita Hb exhibits greater resistance to conformational change than either LtHb or ArHb in the reduced (oxyHb) state; and 2) the reduction of met OxyVita Hb to oxyHb occurs slowly in the presence of either ascorbic acid (70% reduction in 560 min.) or beta-NADH (40% reduction in 90 min.). These studies provide consistent evidence that OxyVita Hb possesses physiochemical properties that exhibit structural integrity and redox behavior necessary for functioning as an effective and safe HBOC within clinical applications. These results are in agreement with observations made by other investigators as to the reduction in heme-loss of OxyVita Hb, essential for the reversible binding/release of molecular oxygen within the circulatory system. PMID:20196683

  16. Structural and redox behavior of OxyVita, a zero-linked polymeric hemoglobin: comparison with natural acellular polymeric hemoglobins.

    PubMed

    Harrington, John P; Orlik, Kseniya; Orlig, Kseniya; Zito, Samantha L; Wollocko, Jacek; Wollocko, Hanna

    2010-04-01

    A zero-linked polymeric hemoglobin (OxyVita Hb) has been developed for application as an acellular therapeutic hemoglobin-based-oxygen-carrier (HBOC). For effective and safe oxygen binding, transport and delivery, an HBOC must meet essential molecular requirements related to its structural integrity and redox stability. OxyVita is a super polymer possessing an average M.wt. of 17 x 10(6) Da. Structural integrity was determined by unfolding studies of OxyVita in the presence of increasing concentrations of urea. The unfolding midpoints (D(1/2)) of different preparations of OxyVita (solution and powder forms) were compared to Lumbricus Hb (LtHb) and Arenicola Hb (ArHb), natural acellular polymeric hemoglobins, which are serving as models for an effective and safe acellular HBOC. Reduction studies of OxyVita Hb using endogenous reducing agents were also investigated. Results from these studies indicate that: 1) OxyVita Hb exhibits greater resistance to conformational change than either LtHb or ArHb in the reduced (oxyHb) state; and 2) the reduction of met OxyVita Hb to oxyHb occurs slowly in the presence of either ascorbic acid (70% reduction in 560 min.) or beta-NADH (40% reduction in 90 min.). These studies provide consistent evidence that OxyVita Hb possesses physiochemical properties that exhibit structural integrity and redox behavior necessary for functioning as an effective and safe HBOC within clinical applications. These results are in agreement with observations made by other investigators as to the reduction in heme-loss of OxyVita Hb, essential for the reversible binding/release of molecular oxygen within the circulatory system.

  17. Universal metastability of sickle hemoglobin polymerization

    NASA Astrophysics Data System (ADS)

    Weng, Weijun

    Sickle hemoglobin (HbS) is a natural mutation of the normal hemoglobin (HbA) found in the red blood cells of human body. Polymerization of HbS occurs when the concentration of deoxyHbS exceeds a well-defined solubility, which is the underlying cause of the Sickle Cell Disease. It has long been assumed that thermodynamic equilibrium is reached when polymerization comes to an end. However, in this thesis we demonstrate that in confined volume as well as in bulk solution, HbS polymerization terminates prematurely, leaving the solution in a metastable state. A newly developed Reservoir method as well as modulated excitation method were adopted for the study. This discovery of universal metastability gives us new insights into understanding the mechanism of sickle cell disease.

  18. [Effects of phosphatidylinositol-3 kinase/protein kinase b/bone morphogenetic protein-15 pathway on the follicular development in the mammalian ovary].

    PubMed

    Wu, Yan-qing; Chen, Li-yun; Zhang, Zheng-hong; wang, Zheng-chao

    2013-04-01

    In mammals, ovarian follicle is made of an oocyte with its surrounding granulosa cells and theca cells. Follicular growth and development is a highly coordinated programmable process, which guarantees the normal oocyte maturation and makes it having the fertilizing capacity. The paracrine and autocrine between oocytes and granulosa cells are essential for the follicular development to provide a suitable microenvironment. Phosphatidylinositol-3 kinase /protein kinase B is one of these important regulatory signaling pathways during this developmental process, and bone morphogenetic protein-15 an oocyte-specific secreted signal molecule, which regulates the follicular development by paracrine in the mammalian ovary. The present article overviewed the role of phosphatidylinositol-3 kinase / protein kinase B signaling during the follicular development based on our previous investigation about protein kinase B /forkhead transcription factor forkhead family of transcription factors -3a, and then focused on the regulatory effects of bone morphogenetic protein-15, as a downstream signal molecule of phosphatidylinositol-3 kinase / forkhead family of transcription factors -3a pathway, on ovarian follicular development, which helped to further understand the molecular mechanism regulating the follicular development and to treat ovarian diseases like infertility.

  19. Grape skin phenolics as inhibitors of mammalian α-glucosidase and α-amylase--effect of food matrix and processing on efficacy.

    PubMed

    Lavelli, V; Sri Harsha, P S C; Ferranti, P; Scarafoni, A; Iametti, S

    2016-03-01

    Type-2 diabetes is continuously increasing worldwide. Hence, there is a need to develop functional foods that efficiently alleviate damage due to hyperglycaemia complications while meeting the criteria for a sustainable food processing technology. Inhibition of mammalian α-amylase and α-glucosidase was studied for white grape skin samples recovered from wineries and found to be higher than that of the drug acarbose. In white grape skins, quercetin and kaempferol derivatives, analysed by UPLC-DAD-MS, and the oligomeric series of catechin/epicatechin units and their gallic acid ester derivatives up to nonamers, analysed by MALDI-TOF-MS were identified. White grape skin was then used for enrichment of a tomato puree (3%) and a flat bread (10%). White grape skin phenolics were found in the extract obtained from the enriched foods, except for the higher mass proanthocyanidin oligomers, mainly due to their binding to the matrix and to a lesser extent to heat degradation. Proanthocyanidin solubility was lower in bread, most probably due to formation of binary proanthocyanin/protein complexes, than in tomato puree where possible formation of ternary proanthocyanidin/protein/pectin complexes can enhance solubility. Enzyme inhibition by the enriched foods was significantly higher than for unfortified foods. Hence, this in vitro approach provided a platform to study potential dietary agents to alleviate hyperglycaemia damage and suggested that grape skin phenolics could be effective even if the higher mass proanthocyanidins are bound to the food matrix. PMID:26943361

  20. Serum ferritin levels in hemoglobin H disease.

    PubMed

    Galanello, R; Melis, M A; Paglietti, E; Cornacchia, G; de Virgiliis, S; Cao, A

    1983-01-01

    This study shows that hemoglobin H disease patients aged between 0.5 and 44 years, usually (27 out of 30) have normal serum ferritin levels according to age. This reconfirms that in this disease there are usually normal iron stores. However, in a few patients (3 out of 30) increased levels were found. This may be due to inappropriate iron medication, transfusions or associated idiopathic hereditary hemocromatosis gene.

  1. Protecting effects specifically from low doses of ionizing radiation to mammalian cells challenge the concept of linearity

    SciTech Connect

    Feinendegen, L.E.; Bond, V.P.; Sondhaus, C.A.; Altman, K.I.

    1998-12-31

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced changes in intracellular signaling that induce mechanisms of DNA damage control different from those operating at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. The aim of this paper is to demonstrate that by use of microdosimetric concepts, the energy deposited in cell mass can be related to the occurrence of cellular responses, both damaging and defensive.

  2. Efficient cleavage of p220 by poliovirus 2Apro expression in mammalian cells: effects on vaccinia virus.

    PubMed

    Aldabe, R; Feduchi, E; Novoa, I; Carrasco, L

    1995-10-24

    Poliovirus protease 2A cleaves p220, a component of initiation factor eIF-4F. Polyclonal antibodies that recognize p220 and the cleaved products from different species have been raised. Transfection of several cell lines with poliovirus 2Apro cloned in different plasmids leads to efficient cleavage of p220 upon infection with VT7, a recombinant vaccinia virus that expresses the T7 RNA polymerase. Under these conditions vaccinia virus protein synthesis is severely inhibited, while expression of poliovirus protein 2C from a similar plasmid has no effect. These results show by the first time the effects of p220 cleavage on vaccinia virus translation in the infected cells.

  3. Thermodynamic aspects of the linkage between binding of chloride and oxygen to human hemoglobin

    PubMed Central

    Haire, Robert N.; Hedlund, Bo E.

    1977-01-01

    Oxygen isotherms of human hemoglobin measured in distilled water and in solutions of sodium chloride in the concentration range from 0.02 to 3.0 M indicate that the oxygen affinity decreases up to about 1 M salt and then begins to increase. The isotherms obtained in the range from 0.02 to 0.6 M sodium chloride, at 37° and pH 7.4, have been analyzed in terms of changes in Gibbs free energy of heme ligation, resulting from the differential interaction between the chloride ion and the two forms of hemoglobin. The maximal theoretical change in Gibbs free energy that chloride ion can exert on the oxygen binding of hemoglobin amounts to 4.9 ± 0.2 kcal/mol (21 ± 0.8 kJ/mol) of hemoglobin tetramer. A plot of the logarithm of oxygen concentration at half saturation versus the logarithm of the chloride concentration has a slope of 0.40, suggesting 1.6 apparent chloride sites per hemoglobin tetramer. Because the interaction between chloride and hemoglobin is dependent on pH, the apparent thermodynamic linkage between chloride and oxygen binding will also include the salt dependence of the Bohr effect at pH 7.4. The fractional change in Gibbs free energy, measured as a function of the chloride concentration, can be approximated by the binding isotherm between a protein and a ligand, using an association constant of 11 M-1. Thus, if the number of oxygen-linked chloride sites is more than one per hemoglobin tetramer, these sites must be considered independent. PMID:270660

  4. Capacity of reductants and chelators to prevent lipid oxidation catalyzed by fish hemoglobin.

    PubMed

    Maestre, Rodrigo; Pazos, Manuel; Iglesias, Jacobo; Medina, Isabel

    2009-10-14

    The efficiency of different reductants (reduced glutathione, ascorbic acid, and catalase) and metal chelators [ethylenediaminetetraacetic acid (EDTA), citric acid, sodium tripolyphosphate (STPP), and adenosine-5'-triphosphate (ATP)] to inhibit lipid oxidation promoted by fish hemoglobin was investigated. The inhibitory activity on hemoglobin-catalyzed lipid oxidation was also evaluated for grape oligomeric catechins (proanthocyanidins), which have both reducing and chelating properties. The antioxidant activity was studied in two different lipid oxidation models, liposomes and washed minced fish muscle. Grape proanthocyanidins were found to be significantly more effective than other reductants to prevent hemoglobin-mediated lipid oxidation in both liposomes and washed fish muscle. Reduced glutathione was also efficient to retard lipid oxidation at the same molarity in washed fish muscle, whereas catalase and ascorbic acid showed a lower antioxidant activity. Metal chelators were less active than reductants, and consequently, the former were necessarily evaluated at much higher concentration than grape proanthocyanidins and reducing compounds. STPP was found to be the iron chelator with the strongest efficiency to delay hemoglobin-mediated lipid oxidation followed by EDTA. Citric acid and ATP were ineffective in retarding lipid oxidation in both systems. Grape proanthocyanidins provided the most extensive protection to preserve hemoglobin at ferrous state in washed fish muscle. Our results draw attention to the greater capacity of reducing compounds to prevent fish hemoglobin-mediated lipid oxidation in comparison with iron chelators, suggesting that the free radical scavenging and/or reduction of ferrylHb species are crucial actions to avoid the pro-oxidant capacity of fish hemoglobin.

  5. Kinetics of the polymerization of hemoglobin in high and low phosphate buffers.

    PubMed

    Adachi, K; Asakura, T

    1982-01-01

    Diluted solutions of deoxyhemoglobin S in concentrated phosphate buffer form aggregates or gels with a clear exhibition of a delay time. The aggregates can be liquified by cooling, bubbling with O2 or CO gas, or the dilution of phosphate buffer with water. These properties can be used as a simple method for studying the mechanism of polymerization and depolymerization of hemoglobins. The advantages of this method are: 1) The amount of hemoglobin sample required is only 1% to 5% of that required for the gelation of deoxy-Hb S in low phosphate buffer. 2) The kinetics can be measured turbidimetrically using an ordinary spectrophotometer. 3) The solubility of hemoglobin can be directly determined by taking the absorption spectrum of the supernatant solution after polymerization. 4) The polymer phase can be easily separated from the solution so that the amount and composition of the polymers can be analyzed. 5) The volume of the polymer phase is so small that excluded volume effect can be neglected. 6) The method can be applied to the study of polymerization of non-sickle hemoglobins and that of mixtures of sickle and non-sickle hemoglobins. The major question is whether the polymerization of hemoglobin in concentrated phosphate buffer is the same as that of deoxy-Hb S in low phosphate buffer. To answer this question, we studied the polymerization of Hb S, Hb A, Hb C Harlem, and Hb C in phosphate buffers of different molarities. We also studied the mechanism of the conversion of gels of these hemoglobins into crystals.

  6. Capacity of reductants and chelators to prevent lipid oxidation catalyzed by fish hemoglobin.

    PubMed

    Maestre, Rodrigo; Pazos, Manuel; Iglesias, Jacobo; Medina, Isabel

    2009-10-14

    The efficiency of different reductants (reduced glutathione, ascorbic acid, and catalase) and metal chelators [ethylenediaminetetraacetic acid (EDTA), citric acid, sodium tripolyphosphate (STPP), and adenosine-5'-triphosphate (ATP)] to inhibit lipid oxidation promoted by fish hemoglobin was investigated. The inhibitory activity on hemoglobin-catalyzed lipid oxidation was also evaluated for grape oligomeric catechins (proanthocyanidins), which have both reducing and chelating properties. The antioxidant activity was studied in two different lipid oxidation models, liposomes and washed minced fish muscle. Grape proanthocyanidins were found to be significantly more effective than other reductants to prevent hemoglobin-mediated lipid oxidation in both liposomes and washed fish muscle. Reduced glutathione was also efficient to retard lipid oxidation at the same molarity in washed fish muscle, whereas catalase and ascorbic acid showed a lower antioxidant activity. Metal chelators were less active than reductants, and consequently, the former were necessarily evaluated at much higher concentration than grape proanthocyanidins and reducing compounds. STPP was found to be the iron chelator with the strongest efficiency to delay hemoglobin-mediated lipid oxidation followed by EDTA. Citric acid and ATP were ineffective in retarding lipid oxidation in both systems. Grape proanthocyanidins provided the most extensive protection to preserve hemoglobin at ferrous state in washed fish muscle. Our results draw attention to the greater capacity of reducing compounds to prevent fish hemoglobin-mediated lipid oxidation in comparison with iron chelators, suggesting that the free radical scavenging and/or reduction of ferrylHb species are crucial actions to avoid the pro-oxidant capacity of fish hemoglobin. PMID:19736927

  7. Imidazolidinone adducts of peptides and hemoglobin

    SciTech Connect

    San George, R.C.; Hoberman, H.D.

    1986-05-01

    Acetaldehyde reacts selectively with the terminal amino groups of the ..cap alpha.. and ..beta.. chains of hemoglobin to form stable adducts, the structures of which, based on /sup 13/C NMR studies, are proposed to be diastereomeric 2-methyl imidazolidin-4-ones. In this scheme, acetaldelhyde forms a reversible Schiff base with the ..cap alpha..-amino groups of the polypeptide chains which cyclize with the amide nitrogen of the first peptide bond to form the stable imidazolidinone adducts. In support of this mechanism, the authors found that in following the reaction of the peptide val-gly-gly with (1,2-/sup 13/C) acetaldehyde, /sup 13/C NMR resonances attributed to a Schiff base (delta = 170 ppm) were observed which slowly disappeared prior to appearance of resonances from a pair of stable adducts (delta = 70 and 71 ppm) believed to be the diastereomeric imidazolidinones. Schiff base formation appeared to limit the overall rate. Tetraglycine reacted in a similar manner but with a resonance from a single stable adduct observed representing the enantiomeric imidazolidinone adducts of this peptide. Peptides with proline in position 2 should be incapable of forming imidazolidinones, and the authors found that ala-pro-gly did in fact fail to form a stable adduct with acetaldehyde. The 2-methyl imidazolidin-4-one adducts of hemoglobin may be useful in determining the contribution of the amino terminal groups to the structure and functional properties of hemoglobins.

  8. Radiation protection of in vitro mammalian cells: effects of hydroxyl radical scavengers on the slopes and shoulders of survival curves

    SciTech Connect

    Ewing, D.; Walton, H.L. )

    1991-05-01

    We have tested several chemical compounds, characterized and widely used as hydroxyl radical (.OH) scavengers, for their effects on the radiation sensitivity of Chinese hamster V79 cells irradiated in air or nitrogen. Our purpose is to reexamine the proposed relationship between the level of protection and the rates at which the scavengers react with .OH. We found that the additives can have two apparently independent effects on the shape of survival curves: a reduction in sensitivity (i.e., 'protection,' a decrease in the value of k) and an increase in the size of the shoulder of the survival curve (an increase in the value of Dq). We measured intracellular scavenger concentrations, and, using these values in our analysis, we found that neither of the two effects is correlated with the rates at which the scavengers react with .OH. Although these results could mean that .OH do not cause lethal damage, the interpretation we believe most probably correct is that these scavengers protect in multiple ways. The protection would occur in addition to or instead of simple .OH removal.

  9. Hemoglobin concentration in men with type 2 diabetes mellitus.

    PubMed

    Harusato, Ichiko; Fukui, Michiaki; Tanaka, Muhei; Shiraishi, Emi; Senmaru, Takafumi; Sakabe, Kazumi; Yamazaki, Masahiro; Hasegawa, Goji; Nakamura, Naoto

    2010-06-01

    Anemia is a common but often overlooked complication of diabetes. We investigated the relationship between hemoglobin concentration and various factors as well as markers of subclinical atherosclerosis in men with type 2 diabetes mellitus. Hemoglobin concentration was measured in 319 men with type 2 diabetes mellitus. We evaluated the relationship between hemoglobin concentration and various factors including age, body mass index, and glycemic control, as well as between hemoglobin concentration and pulse wave velocity or ankle-brachial index (n = 209) and between hemoglobin concentration and carotid intima-media thickness or plaque score (n = 125). Mean hemoglobin concentration was 14.2 +/- 0.80 g/dL. Body mass index (r = 0.340, P < .0001) and estimated glomerular filtration rate (r = 0.219, P = .0011) were positively associated with hemoglobin concentration, whereas age (r = -0.388, P < .0001), glycated albumin (r = -0.148, P = .0121), serum creatinine concentration (r = -0.206, P = .0019), and log (urinary albumin excretion) (r = -0.188, P = .0010) were negatively associated with hemoglobin concentration. Multiple regression analysis identified age (beta = -0.222, P = .0019), body mass index (beta = 0.145, P = .0432), systolic blood pressure (beta = 0.214, P = .0015), total cholesterol concentration (beta = 0.170, P = .0077), and serum creatinine concentration (beta = -0.181, P = .0045) as independent determinants of hemoglobin concentration. No significant association was observed between hemoglobin concentration and serum erythropoietin concentration (r = -0.079, P = .2980). Negative correlations were found between hemoglobin concentration and pulse wave velocity (r = -0.289, P < .0001) and between hemoglobin concentration and plaque score (r = -0.275, P = .0024). In conclusion, hemoglobin concentration was associated with various factors; and decreased hemoglobin concentration was associated with subclinical markers of atherosclerosis in men with type 2

  10. Human hemoglobin structural and functional alterations and heme degradation upon interaction with benzene: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Reza; Moosavi-Movahedi, Ali Akbar

    2016-03-01

    Here, the effect of benzene on hemoglobin structure, stability and heme prosthetic group integrity was studied by different methods. These included UV-vis absorption spectrophotometry, normal and synchronous fluorescence techniques, and differential scanning calorimetry (DSC). Our results indicated that benzene has high hemolytic potential even at low concentrations. The UV-vis spectroscopic results demonstrated that benzene altered both the globin chain and the heme prosthetic group of hemoglobin increasing met- and deoxy-Hb, while decreasing oxy-Hb. However, with increasing benzene the concentration of all species decreased due to heme destruction. The spectrophotometric results show that benzene has a high potential for penetrating the hydrophobic pocket of hemoglobin. These results were consistent with the molecular docking simulation results of benzene-hHb. Aggregation and thermal denaturation studies show that the increased benzene concentration induced hemoglobin aggregation with a decrease in stability, which is consistent with the DSC results. Conventional fluorescence spectroscopy revealed that the heme degradation species were produced in the presence of benzene. The results of constant wavelength synchronous fluorescence spectroscopy (CWSFS) indicated that at least five heme-degraded species were produced. Together, our results indicated that benzene has adverse effects on hemoglobin structure and function, and heme degradation.

  11. Effects on in Vivo and in Vitro Exposure to Excess Gravity on Growth and Differentiation of Mammalian Embryos

    NASA Technical Reports Server (NTRS)

    Duke, J.

    1985-01-01

    Studies on the development of embryonic mouse tissues exposed to excess gravity in vitro and in vivo are discussed. Suppression is seen in limb buds cultured under 3G. Mouse palates were exposed to excess G in vitro, 13- and 14-day palates were exposed to 2.6G for 24 hours. For in vivo studies, a small animal centrifuge was constructed. When the centrifuge is operated at 40 and 45 rpm, the linear accelerations generated range from 1.8 to 3.5G. The effects of gravity on body weights and on reproduction is also presented.

  12. The mammalian blastocyst.

    PubMed

    Frankenberg, Stephen R; de Barros, Flavia R O; Rossant, Janet; Renfree, Marilyn B

    2016-01-01

    The blastocyst is a mammalian invention that carries the embryo from cleavage to gastrulation. For such a simple structure, it exhibits remarkable diversity in its mode of formation, morphology, longevity, and intimacy with the uterine endometrium. This review explores this diversity in the light of the evolution of viviparity, comparing the three main groups of mammals: monotremes, marsupials, and eutherians. The principal drivers in blastocyst evolution were loss of yolk coupled with evolution of the placenta. An important outcome of blastocyst development is differentiation of two extraembryonic lineages (trophoblast and hypoblast) that contribute to the placenta. While in many species trophoblast segregation is often coupled with blastocyst formation, in marsupials and at least some Afrotherians, these events do not coincide. Thus, many questions regarding the conservation of molecular mechanisms controlling these events are of great interest but currently unresolved. For further resources related to this article, please visit the WIREs website. PMID:26799266

  13. The Sea Urchin Embryo, an Invertebrate Model for Mammalian Developmental Neurotoxicity, Reveals Multiple Neurotransmitter Mechanisms for Effects of Chlorpyrifos: Therapeutic Interventions and a Comparison with the Monoamine Depleter, Reserpine

    PubMed Central

    Buznikov, Gennady A.; Nikitina, Lyudmila A.; Rakić, Ljubiša M.; Miloševi, Ivan; Bezuglov, Vladimir V.; Lauder, Jean M.; Slotkin, Theodore A.

    2007-01-01

    Lower organisms show promise for the screening of neurotoxicants that might target mammalian brain development. Sea urchins use neurotransmitters as embryonic growth regulatory signals, so that adverse effects on neural substrates for mammalian brain development can be studied in this simple organism. We compared the effects of the organophosphate insecticide, chlorpyrifos in sea urchin embryos with those of the monoamine depleter, reserpine, so as to investigate multiple neurotransmitter mechanisms involved in developmental toxicity and to evaluate different therapeutic interventions corresponding to each neurotransmitter system. Whereas reserpine interfered with all stages of embryonic development, the effects of chlorpyrifos did not emerge until the mid-blastula stage. After that point, the effects of the two agents were similar. Treatment with membrane permeable analogs of the monoamine neurotransmitters, serotonin and dopamine, prevented the adverse effects of either chlorpyrifos or reserpine, despite the fact that chlorpyrifos works simultaneously through actions on acetylcholine, monoamines and other neurotransmitter pathways. This suggests that different neurotransmitters, converging on the same downstream signaling events, could work together or in parallel to offset the developmental disruption caused by exposure to disparate agents. We tested this hypothesis by evaluating membrane permeable analogs of acetylcholine and cannabinoids, both of which proved effective against chlorpyrifos- or reserpine-induced teratogenesis. Invertebrate test systems can provide both a screening procedure for mammalian neuroteratogenesis and may uncover novel mechanisms underlying developmental vulnerability as well as possible therapeutic approaches to prevent teratogenesis. PMID:17720543

  14. The effect of injection using narrow‐bore needles on mammalian cells: administration and formulation considerations for cell therapies

    PubMed Central

    Amer, Mahetab H.; White, Lisa J.

    2015-01-01

    Abstract Objectives This study focuses on the effect of the injection administration process on a range of cell characteristics. Methods Effects of different ejection rates, needle sizes and cell suspension densities were assessed in terms of viability, membrane integrity, apoptosis and senescence of NIH 3T3 fibroblasts. For ratiometric measurements, a multiplex assay was used to verify cell viability, cytotoxicity and apoptosis independent of cell number. Co‐delivery with alginate hydrogels and viscosity‐modifying excipients was also assessed. Key findings Ejections at 150 μl/min resulted in the highest percentage of dose being delivered as viable cells among ejection rates tested. The difference in proportions of apoptotic cells became apparent 48 h after ejection, with proportions being higher in samples ejected at slower rates. Co‐delivery with alginate hydrogels demonstrated a protective action on the cell payload. Conclusions This study demonstrates the importance of careful consideration of administration protocols required for successful delivery of cell suspensions, according to their nature and cellular responses post‐ejection. PMID:25623928

  15. Construction of simple and efficient siRNA validation systems for screening and identification of effective RNAi-targeted sequences from mammalian genes.

    PubMed

    Tsai, Wen-Hui; Chang, Wen-Tsan

    2014-01-01

    RNA interference (RNAi) is an evolutionarily conserved mechanism of gene silencing induced by double-stranded RNAs (dsRNAs). Among the widely used dsRNAs, small interfering RNAs (siRNAs) and short hairpin RNAs have evolved as extremely powerful and the most popular gene silencing reagents. The key challenge to achieving efficient gene silencing especially for the purpose of therapeutics is mainly dependent on the effectiveness and specificity of the selected RNAi-targeted sequences. Practically, only a small number of dsRNAs are capable of inducing highly effective and sequence-specific gene silencing via RNAi mechanism. In addition, the efficiency of gene silencing induced by dsRNAs can only be experimentally examined based on inhibition of the target gene expression. Therefore, it is essential to develop a fully robust and comparative validation system for measuring the efficacy of designed dsRNAs. In this chapter, we focus our discussion on a reliable and quantitative reporter-based siRNA validation system that has been previously established in our laboratory. The system consists of a short synthetic DNA fragment containing an RNAi-targeted sequence of interest and two expression vectors for targeting reporter and triggering siRNA expressions. The efficiency of siRNAs is determined by their abilities to inhibit expression of the targeting reporters with easily quantified readouts including enhanced green fluorescence protein and firefly luciferase. Since only a readily available short synthetic DNA fragment is needed for constructing this reliable and efficient reporter-based siRNA validation system, this system not only provides a powerful strategy for screening highly effective RNAi-targeted sequences from mammalian genes but also implicates the use of RNAi-based dsRNA reagents for reverse functional genomics and molecular therapeutics.

  16. Oxygen equilibria of ectotherm blood containing multiple hemoglobins.

    PubMed

    Maginniss, L A; Song, Y K; Reeves, R B

    1980-12-01

    Complete isocapnic O2 equilibrium curves (O2EC's) and related blood-gas properties are reported for whole blood of the bullfrog (Rana catesbeiana) and the aquatic turtle (Pseudemys scripta) at temperatures ranging from 5 to 35 degrees C. P50's for bullfrog and turtle blood at physiological pH and 25 degrees C were 36.6 Torr (pH 7.83) and 19.3 Torr (pH 7.55), respectively. Elevation of blood temperature significantly reduced hemoglobin oxygen affinity in both species (delta H = -8.1 and -7.8 kcal/mol O2 for Rana and Pseudemys, respectively). Bullfrog and turtle oxygen equilibrium data revealed non-standard curve shapes when compared with the Severinghaus curve for human blood (1979); ectotherm O2EC's rose more steeply below P50 (less sigmoid) and were distinctly flattened (linear) above 50% saturation. The CO2-Bohr effect for bullfrog and turtle blood varied significantly as a function of saturation. In addition, both species exhibited non-linear Hill relationships (logS/1-s vs. log PO2). These results indicate that the oxygen binding properties of the multiple hemoglobin bloods of Rana and Pseudemys (demonstrated by isoelectric focusing) are more complex than those exhibited by normal human blood. As a consequence, these ectotherm blood oxygen data are not well characterized by the limited number of simple descriptive parameters (P50, Hill's n and delta log P50/delta pH) commonly used to delineate predominantly single hemoglobin systems.

  17. Mass Spectra and Ion Collision Cross Sections of Hemoglobin

    NASA Astrophysics Data System (ADS)

    Kang, Yang; Terrier, Peran; Douglas, D. J.

    2011-02-01

    Mass spectra of commercially obtained hemoglobin (Hb) show higher levels of monomer and dimer ions, heme-deficient dimer ions, and apo-monomer ions than hemoglobin freshly prepared from blood. This has previously been attributed to oxidation of commercial Hb. Further, it has been reported that that dimer ions from commercial bovine Hb have lower collision cross sections than low charge state monomer ions. To investigate these effects further, we have recorded mass spectra of fresh human Hb, commercial human and bovine Hb, fresh human Hb oxidized with H2O2, lyophilized fresh human Hb, fresh human Hb both lyophilized and chemically oxidized, and commercial human Hb oxidized with H2O2. Masses of α-monomer ions of all hemoglobins agree with the masses expected from the sequences within 3 Da or better. Mass spectra of the β chains of commercial Hb and oxidized fresh human Hb show a peak or shoulder on the high mass side, consistent with oxidation of the protein. Both commercial proteins and oxidized fresh human Hb produce heme-deficient dimers with masses 32 Da greater than expected and higher levels of monomer and dimer ions than fresh Hb. Lyophilization or oxidation of Hb both produce higher levels of monomer and dimer ions in mass spectra. Fresh human Hb, commercial human Hb, commercial bovine Hb, and oxidized commercial human Hb all give dimer ions with cross sections greater than monomer ions. Thus, neither oxidation of Hb or the difference in sequence between human and bovine Hb make substantial differences to cross sections of ions.

  18. Effects of solar ultraviolet photons on mammalian cell DNA. [UVA (320-400 nm):a2

    SciTech Connect

    Peak, M.J.; Peak, J.G.

    1991-01-01

    This document presents information on the possible mechanisms of carcinogenesis caused by UVA (ultraviolet radiation in the 320--400 nm region). Most studies showing the carcinogenic effects of ultraviolet light have concentrated on UVB (280--320 nm). UVA had been considered harmless even though it penetrates biological tissues better than UVB. Recently, it has become apparent that UVA is also capable of causing damage to cellular DNA. This was unexpected because the DNA UV absorption spectrum indicates a negligible probability that photons of wavelengths longer than 320 nm will be directly absorbed. The most common defects induced in DNA by UVB are pyrimidine photoproducts, such as thymidine dimers. UVA photons produce defects resembling those caused by ionizing radiations: single- and double-strand breaks, and DNA-protein crosslinks. This paper also discusses the role of DNA repair mechanisms in UVA-induced defects and the molecular mechanisms of UVA damage induction. 38 refs. (MHB)

  19. Cell signaling pathways involved in drug-mediated fetal hemoglobin induction: Strategies to treat sickle cell disease

    PubMed Central

    Liu, Li; Li, Biaoru; Makala, Levi H

    2015-01-01

    The developmental regulation of globin gene expression has shaped research efforts to establish therapeutic modalities for individuals affected with sickle cell disease and β-thalassemia. Fetal hemoglobin has been shown to block sickle hemoglobin S polymerization to improve symptoms of sickle cell disease; moreover, fetal hemoglobin functions to replace inadequate hemoglobin A synthesis in β-thalassemia thus serving as an effective therapeutic target. In the perinatal period, fetal hemoglobin is synthesized at high levels followed by a decline to adult levels by one year of age. It is known that naturally occurring mutations in the γ-globin gene promoters and distant cis-acting transcription factors produce persistent fetal hemoglobin synthesis after birth to ameliorate clinical symptoms. Major repressor proteins that silence γ-globin during development have been targeted for gene therapy in β-hemoglobinopathies patients. In parallel effort, several classes of pharmacological agents that induce fetal hemoglobin expression through molecular and cell signaling mechanisms have been identified. Herein, we reviewed the progress made in the discovery of signaling molecules targeted by pharmacologic agents that enhance γ-globin expression and have the potential for future drug development to treat the β-hemoglobinopathies. PMID:26283707

  20. Concentration variations of amino acids in mammalian fossils: effects of diagenesis and the implications for amino acid racemization analysis

    SciTech Connect

    Blackwell, B.; Rutter, N.W.

    1985-01-01

    Detailed amino acid analysis of bones, teeth, and antler from several mammal species have shown that concentrations of several amino acids can be related to three factors: type of material analyzed, diagenetic alteration of the material, and relative age of the fossil. Concentrations of several amino acids are significantly different in enamel compared to those of dentine or cement. This can be used to check that no contamination of one material by another has occurred, which is critical for using the data for amino acid dating, since all three materials have different racemization rates for some acids. With increased in growth of secondary minerals, generally reduced amino acid concentrations are observed. Interacid ratios and concentrations vary significantly the norms expected for the type of material with increasing degrees of alteration. These effects can be linked to abnormal racemization ratios observed in the same samples. Therefore, abnormal concentrations and/or interacid ratios can be used to detect samples in which the D/L amino acid ratios otherwise appear normal, thereby insuring better accuracy of amino acid racemization analysis. For unaltered fossils, with increasing sample age regardless the type of material, some amino acids steadily degrade, while others actually increase in concentration initially due to their generation as by-products of decay. Preliminary studies indicate that this progressive alteration can used to complement racemization data for determining relative stratigraphic sequences.

  1. Yeast and mammalian metabolism continuous monitoring by using pressure recording as an assessment technique for xenobiotic agent effects

    NASA Astrophysics Data System (ADS)

    Milani, Marziale; Ballerini, Monica; Ferraro, Lorenzo; Marelli, E.; Mazza, Francesca; Zabeo, Matteo

    2002-06-01

    Our work is devoted to the study of Saccharomyces cerevisiae and human lymphocytes cellular metabolism in order to develop a reference model to assess biological systems responses to chemical or physical agents exposure. CO2 variations inside test-tubes are measured by differential pressure sensors; pressure values are subsequently converted in voltage. The system allows to test up to 16 samples at the same time. Sampling manages up to 100 acquisitions per second. Values are recorded by a data acquisition card connected to a computer. This procedure leads to a standard curve (pressure variation versus time), typical of the cellular line, that describe cellular metabolism. The longest time lapse used is of 170 h. Different phases appear in this curve: an initial growth up to a maximum, followed by a decrement that leads to a typical depression (pressure value inside the test-tubes is lower than the initial one) after about 35 h from the beginning of yeast cells. The curve is reproducible within an experimental error of 4%. The analysis of many samples and the low cost of the devices allow a good statistical significance of the data. In particular as a test we will compare two sterilizing agents effects: UV radiation and amuchina.

  2. Biological Effects of Particles with Very High Energy Deposition on Mammalian Cells Utilizing the Brookhaven Tandem Van de Graaff Accelerator

    NASA Technical Reports Server (NTRS)

    Saha, Janapriya; Cucinotta, Francis A.; Wang, Minli

    2013-01-01

    High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of high charge and energy (HZE) nuclei and secondary protons and neutrons, and secondaries from protons in SPE (Solar Particle Event) pose a major health risk to astronauts due to induction of DNA damage and oxidative stress. Experiments with high energy particles mimicking the space environment for estimation of radiation risk are being performed at NASA Space Radiation Laboratory at BNL. Experiments with low energy particles comparing to high energy particles of similar LET are of interest for investigation of the role of track structure on biological effects. For this purpose, we report results utilizing the Tandem Van de Graaff accelerator at BNL. The primary objective of our studies is to elucidate the influence of high vs low energy deposition on track structure, delta ray contribution and resulting biological responses. These low energy ions are of special relevance as these energies may occur following absorption through the spacecraft and shielding materials in human tissues and nuclear fragments produced in tissues by high energy protons and neutrons. This study will help to verify the efficiency of these low energy particles and better understand how various cell types respond to them.

  3. Tyrosine can protect against oxidative stress through ferryl hemoglobin reduction.

    PubMed

    Lu, Naihao; He, Yingjie; Chen, Chao; Tian, Rong; Xiao, Qiang; Peng, Yi-Yuan

    2014-08-01

    The toxic mechanism of hemoglobin (Hb) under oxidative stress is linked to the formations of highly cytotoxic ferryl species and subsequently heme-to-protein cross-linked derivative of Hb (Hb-X). In this study, we have examined the effects of free tyrosine and its analogues (3-chlorotyrosine, phenylalanine) on the stability of ferryl hemoglobin and the formation of Hb-X. The results showed that free tyrosine (not phenylalanine, 10-500 μM) was an efficient reducing agent of ferryl species and also effective at preventing the formation of cytotoxic Hb-X. Meanwhile, the dimeric tyrosine was formed as the oxidation product of tyrosine during Hb redox reaction. Compared with free tyrosine, 3-chlorotyrosine, an oxidation product of tyrosine and a proposed biomarker for hypochlorous acid (HOCl) in vivo, exhibited stronger antioxidant properties in Hb-induced oxidative stress, which was consistent with its more efficient ability in the reduction of ferryl species. These results showed that the presence of tyrosine and its derivative in vivo and vitro could ameliorate oxidative damage through ferryl heme reduction. The antioxidant ability, therefore, may provide new insights into the nutritional and physiological significance of free tyrosine with redox active heme proteins-related oxidative stress.

  4. Electrophoretic analysis of PEGylated hemoglobin-based blood substitutes.

    PubMed

    Ronda, Luca; Pioselli, Barbara; Bruno, Stefano; Faggiano, Serena; Mozzarelli, Andrea

    2011-01-01

    Polyethylene glycol (PEG)-conjugated hemoglobins, a novel class of blood substitutes, were investigated by a combination of native and denaturing one- and two-dimensional polyacrylamide gel electrophoresis (PAGE) coupled with the microspectrophotometric characterization of single bands and the functional analysis of electrophoretically separated fractions. For these intrinsically heterogeneous products, the molecular mass, the size distribution, and the degree of PEGylation are strictly correlated to their side effects and, therefore, are crucial pieces of information to evaluate their safety and efficacy. The PEGylation pattern was shown to strongly depend on the quaternary conformation of hemoglobin during the reaction, and the degree of conjugation was shown to correlate with the oxygen binding properties of the individual electrophoretically separated fractions. Moreover, small but not negligible fractions of underivatized tetramers, known to be responsible for serious side effects, were detected even in preparations with a high average degree of PEGylation. Overall, this approach might be exploited to characterize other products of protein PEGylation, an increasingly relevant technology for the optimization of the pharmacokinetic properties of protein-based drugs.

  5. Studies of hemoglobin denaturation and Heinz body formation in the unstable hemoglobins.

    PubMed

    Winterbourn, C C; Carrell, R W

    1974-09-01

    The sequential changes that occur during the precipitation on mild heating of the unstable hemoglobins, Hb Christchurch, Hb Sydney, Hb Köln, and Hb A, were examined with particular attention to the possibility of an accompanying oxidative process. Hb Christchurch, Hb Sydney, and Hb A precipitated with equal amounts of alpha- and beta-chains and full heme complement. Hb Köln, however, was one-half hemedepleted and showed a slight excess of precipitated beta-chains. In all cases the spectrum of the precipitated material was typical of a hemichrome. There was no evidence that sulfhydryl oxidation contributed to the precipitation process. Reduced glutathione was unable to protect the hemoglobin against precipitation, and mixed disulfide formation between the precipitating hemoglobin and glutathione was insignificant, even in the presence of excess glutathione. No blockade of beta93 cysteines could be demonstrated in the unstable hemoglobins. Precipitation of oxyhemoglobin and carboxyhemoglobin in all cases gave nonspecific oxidation of approximately two of the six hemoglobin sulfhydryl groups to give intra- and intermolecular disulfide bonds. Single alpha- and beta-chains, plus polymers of up to five or six chains linked by disulfide bridges, were demonstrated by polyacrylamide gel electrophoresis. This disulfide oxidation was not observed with deoxy- or methemoglobin and did not appear to influence the rate of precipitation. These findings fit the theoretical prediction that autoxidation of oxy- and carboxyhemoglobin is accompanied by formation of a free radical, with the reactions of this free radical being confined intramolecularly.Together, these results are in keeping with predictions based on the known structural abnormalities of the unstable hemoglobins, all of which result in greater molecular flexibility. Our findings support the conclusion that the usual precipitating event is altered bonding at the heme to give the formation of hemichromes. There is no

  6. Gene cooption and convergent evolution of oxygen transport hemoglobins in jawed and jawless vertebrates

    PubMed Central

    Hoffmann, Federico G.; Opazo, Juan C.; Storz, Jay F.

    2010-01-01

    Natural selection often promotes evolutionary innovation by coopting preexisting genes for new functions, and this process may be greatly facilitated by gene duplication. Here we report an example of cooptive convergence where paralogous members of the globin gene superfamily independently evolved a specialized O2 transport function in the two deepest branches of the vertebrate family tree. Specifically, phylogenetic evidence demonstrates that erythroid-specific O2 transport hemoglobins evolved independently from different ancestral precursor proteins in jawed vertebrates (gnathostomes) and jawless fish (cyclostomes, represented by lamprey and hagfish). A comprehensive phylogenetic analysis of the vertebrate globin gene superfamily revealed that the erythroid hemoglobins of cyclostomes are orthologous to the cytoglobin protein of gnathostome vertebrates, a hexacoordinate globin that has no O2 transport function and that is predominantly expressed in fibroblasts and related cell types. The phylogeny reconstruction also revealed that vertebrate-specific globins are grouped into four main clades: (i) cyclostome hemoglobin + cytoglobin, (ii) myoglobin + globin E, (iii) globin Y, and (iv) the α- and β-chain hemoglobins of gnathostomes. In the hemoglobins of gnathostomes and cyclostomes, multisubunit quaternary structures provide the basis for cooperative O2 binding and allosteric regulation by coupling the effects of ligand binding at individual subunits with interactions between subunits. However, differences in numerous structural details belie their independent origins. This example of convergent evolution of protein function provides an impressive demonstration of the ability of natural selection to cobble together complex design solutions by tinkering with different variations of the same basic protein scaffold. PMID:20660759

  7. Suspension culture of mammalian cells.

    PubMed

    Birch, J R; Arathoon, R

    1990-01-01

    Mammalian cell suspension culture systems are being used increasingly in the biotechnology industry. This is due to their many advantages including simplicity and homogeneity of culture. Suspension systems are very adaptable (e.g., for microcarrier, microencapsulation, or other methods of culture). Their engineering is thoroughly understood and standardized at large scale, and automation and cleaning procedures are well established. Suspension systems offer the possibility of quick implementation of production protocols due to their ability to be scaled easily once the basic culture parameters are understood. The only main disadvantage of the suspension culture systems to date is their inapplicability for the production of human vaccines from either primary cell lines or from normal human diploid cell lines (Hayflick et al., 1987 and references therein). One of the great advantages of suspension culture is the opportunity it provides to study interactions of metabolic and production phenomena in chemostat or turbidostat steady-state systems. Furthermore, in suspension culture systems from which cell number and cell mass measurements are easy to obtain, rigorous and quantitative estimations of the effects of growth conditions or perturbations of metabolic homeostasis can be made. Such studies can speed up the development of optimal processes. With our increasing understanding of factors influencing expression in mammalian cells (Cohen and Levinson, 1988; Santoro et al., 1988) and the direct application of new methods in suspension culture (Rhodes and Birch, 1988), its usefulness and importance is likely to increase in the future. In this chapter, we have described some of the potential uses of the various suspension culture systems and have covered most of the established technology and literature. Due to the rapid developments and needs in the biotechnology industry and the versatility of suspension culture systems, it is probable that many more variations on this

  8. Possibilities of Using Fetal Hemoglobin as a Platform for Producing Hemoglobin-Based Oxygen Carriers (HBOCs).

    PubMed

    Ratanasopa, Khuanpiroon; Cedervall, Tommy; Bülow, Leif

    2016-01-01

    The expression levels of fetal hemoglobin (HbF) in bacterial recombinant systems are higher compared with normal adult hemoglobin (HbA). However, heme disorientation in globins are often observed in recombinant production processes, both for HbA and HbF, although the degree of heme oriental disorder is much lower for HbF. In addition, the heme disorientation can be converted to a normal conformation by an oxidation-reduction process. A chromatographic cleaning process involving a strong anion exchanger can be utilized to remove such unstable and nondesirable forms of Hb.

  9. Structure of mammalian respiratory complex I.

    PubMed

    Zhu, Jiapeng; Vinothkumar, Kutti R; Hirst, Judy

    2016-08-18

    Complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in the cell, powers ATP synthesis in mammalian mitochondria by using the reducing potential of NADH to drive protons across the inner mitochondrial membrane. Mammalian complex I (ref. 1) contains 45 subunits, comprising 14 core subunits that house the catalytic machinery (and are conserved from bacteria to humans) and a mammalian-specific cohort of 31 supernumerary subunits. Knowledge of the structures and functions of the supernumerary subunits is fragmentary. Here we describe a 4.2-Å resolution single-particle electron cryomicroscopy structure of complex I from Bos taurus. We have located and modelled all 45 subunits, including the 31 supernumerary subunits, to provide the entire structure of the mammalian complex. Computational sorting of the particles identified different structural classes, related by subtle domain movements, which reveal conformationally dynamic regions and match biochemical descriptions of the 'active-to-de-active' enzyme transition that occurs during hypoxia. Our structures therefore provide a foundation for understanding complex I assembly and the effects of mutations that cause clinically relevant complex I dysfunctions, give insights into the structural and functional roles of the supernumerary subunits and reveal new information on the mechanism and regulation of catalysis. PMID:27509854

  10. Distribution, adaptation and physiological meaning of thiols from vertebrate hemoglobins.

    PubMed

    Reischl, Evaldo; Dafre, Alcir Luiz; Franco, Jeferson Luis; Wilhelm Filho, Danilo

    2007-01-01

    In the present review, the sequences of hemoglobins (Hb) of 267 adult vertebrate species belonging to eight major vertebrate taxa are examined for the presence and location of cysteinyl residues in an attempt at correlation with their ecophysiology. Essentially, all vertebrates have surface cysteinyl residues in Hb molecules whereby their thiol groups may become highly reactive. Thiol-rich Hbs may display eight or more thiols per tetramer. In vertebrates so far examined, the cysteinyl residues occur in 44 different sequence positions in alpha chains and 41 positions in beta chains. Most of them are conservatively located and occur in only a few positions in Teleostei, Aves and Mammalia, whereas they are dispersed in Amphibia. The internal cysteinyl residue alpha104 is ubiquitous in vertebrates. Residue beta93 is highly conserved in reptiles, birds and mammals. The number of cysteine residues per tetramer with solvent access varies in vertebrates, mammalians and bony fish having the lowest number of external residues, whereas nearly all external cysteine residues in Aves and Lepidosauria are of the surface crevice type. In cartilaginous fish, amphibians, Crocodylidae and fresh water turtles, a substantial portion of the solvent accessible thiols are of the totally external type. Recent evidence shows that some Hb thiol groups are highly reactive and undergo extensive and reversible S-thiolation, and that they may be implicated in interorgan redox equilibrium processes. Participation of thiol groups in nitric oxide ((*)NO) metabolism has also been proved. The evidence argues for a new physiologically relevant role for Hb via involvement in free radical and antioxidant metabolism. PMID:17368111

  11. 40 CFR 799.9530 - TSCA in vitro mammalian cell gene mutation test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 33 2012-07-01 2012-07-01 false TSCA in vitro mammalian cell gene... MIXTURE TESTING REQUIREMENTS Health Effects Test Guidelines § 799.9530 TSCA in vitro mammalian cell gene.... The in vitro mammalian cell gene mutation test can be used to detect gene mutations induced...

  12. 40 CFR 799.9530 - TSCA in vitro mammalian cell gene mutation test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false TSCA in vitro mammalian cell gene... MIXTURE TESTING REQUIREMENTS Health Effects Test Guidelines § 799.9530 TSCA in vitro mammalian cell gene.... The in vitro mammalian cell gene mutation test can be used to detect gene mutations induced...

  13. 40 CFR 799.9530 - TSCA in vitro mammalian cell gene mutation test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false TSCA in vitro mammalian cell gene... MIXTURE TESTING REQUIREMENTS Health Effects Test Guidelines § 799.9530 TSCA in vitro mammalian cell gene.... The in vitro mammalian cell gene mutation test can be used to detect gene mutations induced...

  14. 40 CFR 799.9530 - TSCA in vitro mammalian cell gene mutation test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 33 2013-07-01 2013-07-01 false TSCA in vitro mammalian cell gene... MIXTURE TESTING REQUIREMENTS Health Effects Test Guidelines § 799.9530 TSCA in vitro mammalian cell gene.... The in vitro mammalian cell gene mutation test can be used to detect gene mutations induced...

  15. Triplet state magnetic resonance and fluorescence spectroscopy of metal-substituted hemoglobins.

    PubMed Central

    Polm, M W; Schaafsma, T J

    1997-01-01

    Fluorescence detected magnetic resonance (FDMR) spectra detected at 596 nm of zinc-substituted hemoglobins at 4.2 K show a split D-E transition, which is not observed for zinc protoporphyrins ligated by methylimidazole in glasses. Incorporation of the zinc heme into the globin pocket is also accompanied by a blue shift of the fluorescence of 20 nm at 4.2 K. FDMR spectra recorded at 576 nm do not show the D-E splitting. The D-E splitting and the huge blue shift are not observed for the magnesium-substituted hemoglobins. Fluorescence measurements at 4.2 K and 77 K, and EPR measurements at 110 K, were carried out to obtain information about the ligation states of the zinc and magnesium protoporphyrins in glasses and in hemoglobin. The results are explained by considering ligation effects and distortion of the porphyrin plane. Images FIGURE 12 PMID:8994622

  16. [Development and challenge of modified hemoglobins as red blood cell substitutes].

    PubMed

    Lu, Xiu-Ling

    2006-01-01

    The problems of blood shortage and the virus infection risk of blood transfusion have promoted the study of blood substitutes. Modified hemoglobin has become the focus of the challenges research because of its excellent oxygen carrying ability. To overcome the toxicity effect on direct use of purified native hemoglobin, various modification technologies have been developed, including diaspirin cross-linking, glutaraldehyde polymerization, O-raffinose polymerization, polyethylene glycol conjugation, liposome encapsulation and biodegradable polymer encapsulation. Some of the products have been in clinical trials, and one of the products has been approved in a country for clinical use. Research on red blood cell substitutes in China has also developed fast. This paper provides an overview of the history and current status in development of different hemoglobin-based red blood cell substitutes, especially the problems encountered, the challenges faced, and the prospects in future.

  17. Red cell substitutes from hemoglobin--do we start all over again?

    PubMed

    Kluger, Ronald

    2010-08-01

    Red cells are the oxygen-carrying components of blood. In modern medical practice, transfusions are given as suspensions of type-matched red cells in saline to replace lost blood, preventing organ damage and allowing for recovery. Since red cells cannot be stored for more than about 40 days and because they can transmit infections, alternative materials for transfusions were developed to replace the oxygenation function of the red cells. One approach involves chemically stabilizing hemoglobin, the oxygen-carrying protein of the red cell, while also adjusting its oxygenation properties to replicate that of the red cell. Evaluation of clinical trials of all products led to the conclusion that none that were tested would be suitable for clinical use [Natanson C, Kern SJ, Lurie P, Banks SM, Wolfe SM: Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. J Am Med Assoc 2008, 299:2304-2312]. Most notably, the materials increased blood pressure and some were associated with increased risk of heart attacks. More recently, it was found that materials from covalent addition of polyethylene glycol polymers (PEG) to hemoglobin do not elicit the undesired effects on blood pressure [Vandegriff K, Bellelli A, Samaja M, Malavalli A, Brunori M, Winslow RM: Rates of NO binding to MP4, a non-hypertensive polyethylene glycol-conjugated hemoglobin. FASEB J 2003, 17:A183; Vandegriff KD, Malavalli A, Wooldridge J, Lohman J, Winslow RM: MP4: a new nonvasoactive PEG-Hb conjugate. Transfusion 2003, 43:509-516]. Also, materials with higher oxygen affinity than red cells are able to provide oxygenation at the sites in capillaries that have the most critical need for oxygen [Villela NR, Cabrales P, Tsai AG, Intaglietta M: Microcirculatory effects of changing blood hemoglobin oxygen affinity during hemorrhagic shock resuscitation in an experimental model. Shock 2009, 31:645-652]. It had been considered that the origin of the negative effects

  18. Biphasic Oxidation of Oxy-Hemoglobin in Bloodstains

    PubMed Central

    Bremmer, Rolf H.; de Bruin, Daniel M.; de Joode, Maarten; Buma, Wybren Jan; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2011-01-01

    Background In forensic science, age determination of bloodstains can be crucial in reconstructing crimes. Upon exiting the body, bloodstains transit from bright red to dark brown, which is attributed to oxidation of oxy-hemoglobin (HbO2) to met-hemoglobin (met-Hb) and hemichrome (HC). The fractions of HbO2, met-Hb and HC in a bloodstain can be used for age determination of bloodstains. In this study, we further analyze the conversion of HbO2 to met-Hb and HC, and determine the effect of temperature and humidity on the conversion rates. Methodology The fractions of HbO2, met-Hb and HC in a bloodstain, as determined by quantitative analysis of optical reflectance spectra (450–800 nm), were measured as function of age, temperature and humidity. Additionally, Optical Coherence Tomography around 1300 nm was used to confirm quantitative spectral analysis approach. Conclusions The oxidation rate of HbO2 in bloodstains is biphasic. At first, the oxidation of HbO2 is rapid, but slows down after a few hours. These oxidation rates are strongly temperature dependent. However, the oxidation of HbO2 seems to be independent of humidity, whereas the transition of met-Hb into HC strongly depends on humidity. Knowledge of these decay rates is indispensable for translating laboratory results into forensic practice, and to enable bloodstain age determination on the crime scene. PMID:21789186

  19. Stability of blood carbon monoxide and hemoglobins during heating.

    PubMed

    Seto, Y; Kataoka, M; Tsuge, K

    2001-09-15

    The effects of heating on hemoglobin (Hb) and carbon monoxide (CO) levels in human blood were investigated by in vitro experiments. Head-space gas chromatography (HS-GC) using a molecular sieve 5A stationary phase and thermal conductivity detection was adopted for the measurement of CO gas, and spectrophotometric methods were used for the measurement of various Hb forms, protein and heme contents. Deteriorated absorbance spectra were observed for heat-treated blood samples, and double wavelength spectrophotometry was proven to give wrong percent saturation of carboxyhemoglobin content (% CO-Hb). The blood sample taken from one fatal fire casualty gave significantly higher % CO-Hb measured spectrophotometrically, compared to that by HS-GC. Control blood or purified Hb solution, which was saturated with CO in designated extent, was heated in a sealed vial. Under the incubation below 54 degrees C, all Hb forms were stable, except for oxyhemoglobin (Hb-O(2)), which was partially oxidized to met-hemoglobin (Met-Hb). In contrast, under the incubation at 65 degrees C, Met-Hb was denatured completely to be insoluble, and Hb-O(2) was partially denatured via Met-Hb formation. CO-Hb was resistant against heating. The difference of heat susceptibility and precipitability among Hb forms resulted in artificial increase of % CO-Hb. During heating, spontaneous CO was produced from blood.

  20. Redox reactions of hemoglobin: mechanisms of toxicity and control.

    PubMed

    Mollan, Todd L; Alayash, Abdu I

    2013-06-10

    In the last several years, significant work has been done studying hemoglobin (Hb) oxidative reactions and clearance mechanisms using both in vitro and in vivo model systems. One active research area involves the study of molecular chaperones and other proteins that are thought to mitigate the toxicity of acellular Hb. For example, the plasma protein haptoglobin (Hp) and the pre-erythroid protein alpha-hemoglobin-stabilizing protein (AHSP) bind to acellular Hb and alpha-subunits of Hb, respectively, to reduce these adverse effects. Moreover, there has been significant work studying hemopexin and alpha-1 microglobulin, both of which are thought to be involved with hemin degradation. These studies have coincided with the timely publication of the first crystal structure of the Hb-Hp complex. In constructing this Forum, we have invited a number of researchers in the area of Hb and myoglobin (Mb) redox biochemistry, as well as those who have contributed fundamentally to our knowledge of Hp function. Our goal has been to update this critically important research area, because we believe that it will ultimately impact the practice of transfusion medicine in a number of important ways.

  1. Interaction of recombinant octameric hemoglobin with endothelial cells.

    PubMed

    Gaucher, Caroline; Domingues-Hamdi, Élisa; Prin-Mathieu, Christine; Menu, Patrick; Baudin-Creuza, Véronique

    2015-02-01

    Hemoglobin-based oxygen carriers (HBOCs) may generate oxidative stress, vasoconstriction and inflammation. To reduce these undesirable vasoactive properties, we increased hemoglobin (Hb) molecular size by genetic engineering with octameric Hb, recombinant (r) HbβG83C. We investigate the potential side effects of rHbβG83C on endothelial cells. The rHbβG83C has no impact on cell viability, and induces a huge repression of endothelial nitric oxide synthase gene transcription, a marker of vasomotion. No induction of Intermolecular-Adhesion Molecule 1 and E-selectin (inflammatory markers) transcription was seen. In the presence of rHbβG83C, the transcription of heme oxygenase-1 (oxidative stress marker) is weakly increased compared to the two other HBOCs (references) or Voluven (control). This genetically engineered octameric Hb, based on a human Hb βG83C mutant, leads to little impact at the level of endothelial cell inflammatory response and thus appears as an interesting molecule for HBOC development.

  2. Mammalian Wax Biosynthesis

    PubMed Central

    Cheng, Jeffrey B.; Russell, David W.

    2009-01-01

    Wax monoesters are synthesized by the esterification of fatty alcohols and fatty acids. A mammalian enzyme that catalyzes this reaction has not been isolated. We used expression cloning to identify cDNAs encoding a wax synthase in the mouse preputial gland. The wax synthase gene is located on the X chromosome and encodes a member of the acyltransferase family of enzymes that synthesize neutral lipids. Expression of wax synthase in cultured cells led to the formation of wax monoesters from straight chain saturated, unsaturated, and polyunsaturated fatty alcohols and acids. Polyisoprenols also were incorporated into wax monoesters by the enzyme. The wax synthase had little or no ability to synthesize cholesteryl esters, diacylglycerols, or triacylglycerols, whereas other acyltransferases, including the acyl-CoA:monoacylglycerol acyltransferase 1 and 2 enzymes and the acyl-CoA:diacylglycerol acyltransferase 1 and 2 enzymes, exhibited modest wax monoester synthesis activities. Confocal light microscopy indicated that the wax synthase was localized in membranes of the endoplasmic reticulum. Wax synthase mRNA was abundant in tissues rich in sebaceous glands such as the preputial gland and eyelid and was present at lower levels in other tissues. Coexpression of cDNAs specifying fatty acyl-CoA reductase 1 and wax synthase led to the synthesis of wax monoesters. The data suggest that wax monoester synthesis in mammals involves a two step biosynthetic pathway catalyzed by fatty acyl-CoA reductase and wax synthase enzymes. PMID:15220349

  3. Mammalian Wax Biosynthesis

    PubMed Central

    Cheng, Jeffrey B.; Russell, David W.

    2009-01-01

    The conversion of fatty acids to fatty alcohols is required for the synthesis of wax monoesters and ether lipids. The mammalian enzymes that synthesize fatty alcohols have not been identified. Here, an in silico approach was used to discern two putative reductase enzymes designated FAR1 and FAR2. Expression studies in intact cells showed that FAR1 and FAR2 cDNAs encoded isozymes that reduced fatty acids to fatty alcohols. Fatty acyl-CoA esters were the substrate of FAR1, and the enzyme required NADPH as a cofactor. FAR1 preferred saturated and unsaturated fatty acids of 16 or 18 carbons as substrates, whereas FAR2 preferred saturated fatty acids of 16 or 18 carbons. Confocal light microscopy indicated that FAR1 and FAR2 were localized in the peroxisome. The FAR1 mRNA was detected in many mouse tissues with the highest level found in the preputial gland, a modified sebaceous gland. The FAR2 mRNA was more restricted in distribution and most abundant in the eyelid, which contains wax-laden meibomian glands. Both FAR mRNAs were present in the brain, a tissue rich in ether lipids. The data suggest that fatty alcohol synthesis in mammals is accomplished by two fatty acyl-CoA reductase isozymes that are expressed at high levels in tissues known to synthesize wax monoesters and ether lipids. PMID:15220348

  4. Mammalian Gut Immunity

    PubMed Central

    Chassaing, Benoit; Kumar, Manish; Baker, Mark T.; Singh, Vishal; Vijay-Kumar, Matam

    2016-01-01

    The mammalian intestinal tract is the largest immune organ in the body and comprises cells from non-hemopoietic (epithelia, Paneth cells, goblet cells) and hemopoietic (macrophages, dendritic cells, T-cells) origin, and is also a dwelling for trillions of microbes collectively known as the microbiota. The homeostasis of this large microbial biomass is prerequisite to maintain host health by maximizing beneficial symbiotic relationships and minimizing the risks of living in such close proximity. Both microbiota and host immune system communicate with each other to mutually maintain homeostasis in what could be called a “love–hate relationship.” Further, the host innate and adaptive immune arms of the immune system cooperate and compensate each other to maintain the equilibrium of a highly complex gut ecosystem in a stable and stringent fashion. Any imbalance due to innate or adaptive immune deficiency or aberrant immune response may lead to dysbiosis and low-grade to robust gut inflammation, finally resulting in metabolic diseases. PMID:25163502

  5. Hemoglobin istanbul: substitution of glutamine for histidine in a proximal histidine (F8(92)β)

    PubMed Central

    Aksoy, M.; Erdem, S.; Efremov, G. D.; Wilson, J. B.; Huisman, T. H. J.; Schroeder, W. A.; Shelton, J. R.; Shelton, J. B.; Ulitin, O. N.; Müftüoğlu, A.

    1972-01-01

    A presumably spontaneous mutation has resulted in the formation of Hemoglobin (Hb) Istanbul in which glutamine is substituted for histidine in the proximal position of the β-chain (F8(92)). The anemia and other physiological effects that occur in the presence of Hb Istanbul were much ameliorated by splenectomy. Hb Istanbul is a relatively unstable molecule which produces a rather moderate case of “unstable hemoglobin hemolytic anemia.” In the determination of structure, a method of preferential cleavage of an aspartyl-proline bond at residues 99-100 of the β-chain was used. Images PMID:4639022

  6. Mini-hemoglobins from nemertean worms.

    PubMed

    Vandergon, Thomas L; Riggs, Austen F

    2008-01-01

    Hemoglobins (Hbs) found in members of the phylum Nemertea are smaller than any other known Hb molecules. These mini-Hbs have been of great interest because of their unique three-dimensional structure and their stable ligand-binding properties. Also of interest is the expression of mini-Hb in neural tissue, body wall muscle tissue, and red blood cells. This chapter outlines methods that may be used to isolate and purify functional mini-Hbs from all three tissue types in nemertean worms.

  7. Neutral changes during divergent evolution of hemoglobins

    NASA Technical Reports Server (NTRS)

    Jukes, T. H.

    1978-01-01

    A comparison of the mRNAs for rabbit and human beta-hemoglobins shows that synonymous changes in codons have accumulated three times as rapidly as nucleotide replacements that produced changes in amino acids. This agrees with predictions based on the so-called neutral theory. In addition, seven codon changes that appear to be single-base changes (according to maximum parsimony) are actually two-base changes. This indicates that the construction of primordial sequences is of limited significance when based on inferences that assume minimum base changes for amino acid replacements.

  8. The German ISS-experiment Cellular Responses to Radiation in Space (CERASP): The effects of single and combined space flight conditions on mammalian cells

    NASA Astrophysics Data System (ADS)

    Hellweg, C. E.; Thelen, M.; Arenz, A.; Baumstark-Khan, C.

    The combined action of ionizing radiation and microgravity will continue to influence future manned space missions, with special risks for astronauts on the Moon surface or for long duration missions to Mars. There is increasing evidence that basic cellular functions are sensitive not only to radiation but also to microgravity. Previous space flight experiments gave contradictory results: from inhibition of DNA repair by microgravity to enhancement, whereas others did not detect any influence of microgravity on repair. At the Radiation Biology Department of the German Aerospace Center (DLR), recombinant bacterial and mammalian cell systems were developed as reporters for cellular signal transduction modulation by genotoxic environmental conditions. The space experiment “Cellular Responses to Radiation in Space” (CERASP) to be performed at the International Space Station (ISS) will make use of such reporter cell lines thereby supplying basic information on the cellular response to radiation applied in microgravity. One of the biological endpoints will be survival reflected by radiation-dependent reduction of constitutive expression of the enhanced variant of green fluorescent protein (EGFP). A second end-point will be gene activation by space flight conditions in mammalian cells, based on fluorescent promoter reporter systems using the destabilized d2EGFP variant. The promoter element to be investigated reflects the activity of the nuclear factor kappa B (NF-κB) pathway. The NF-κB family of proteins plays a major role in the inflammatory and immune response, cell proliferation and differentiation, apoptosis and tumor genesis. Results obtained with X-rays and accelerated heavy ions produced at the French heavy ion accelerator GANIL imply that densely ionizing radiation has a stronger potential to activate NF-κB dependent gene expression than sparsely ionizing radiation. The correlation of NF-κB activation to negative regulation of apoptosis could favor

  9. Stem Cells in Mammalian Gonads.

    PubMed

    Wu, Ji; Ding, Xinbao; Wang, Jian

    2016-01-01

    Stem cells have great value in clinical application because of their ability to self-renew and their potential to differentiate into many different cell types. Mammalian gonads, including testes for males and ovaries for females, are composed of germline and somatic cells. In male mammals, spermatogonial stem cells maintain spermatogenesis which occurs continuously in adult testis. Likewise, a growing body of evidence demonstrated that female germline stem cells could be found in mammalian ovaries. Meanwhile, prior studies have shown that somatic stem cells exist in both testes and ovaries. In this chapter, we focus on mammalian gonad stem cells and discuss their characteristics as well as differentiation potentials.

  10. Light Scattering and Absorption Studies of Sickle Cell Hemoglobin

    NASA Astrophysics Data System (ADS)

    Kim-Shapiro, Daniel

    1997-11-01

    The use of physical techniques has been very important in understanding the pathophysiology of sickle cell disease. In particular, light scattering and absorption studies have been used to measure the kinetics of sickle cell hemoglobin polymerization and depolymerization (melting). The theory of sickle cell polymerization that has been derived and tested by these methods has not only led to an increased understanding of the pathophysiology of the disease but has also led to improved treatment strategies. Sickle cell disease effects about 1 out of 600 people of African descent born in the United States. The disease is caused by a mutant form of hemoglobin (the oxygen transporting molecule in the blood), hemoglobin S (HbS), which differs from normal adult hemoglobin by the substitution of a single amino acid for another. The polymerization of HbS, which occurs under conditions of low oxygen pressure, causes distortion and increased rigidity of the sickle red blood cell that leads to blockage of the capillaries and a host of resulting complications. The disease is associated with tissue damage, severe painful crises and a high degree of mortality. Light scattering studies of purified HbS and whole cells (conducted by F.A. Ferrone, J. Hofrichter, W.A. Eaton, and their associates) have been used to determine the mechanism of HbS polymerization. Polymerization will generally not occur when the hemoglobin is in an oxygen-rich environment. The question is, when HbS is rapidly deoxygenated (as it is when going from the lungs to the tissues) what is the kinetics of polymerization? Photolysis methods were used to rapidly deoxygenate HbS and light scattering was used as a function of time to measure the kinetics of polymerization. Polarized light scattering may be a more effective way to measure polymer content than total intensity light scattering. It was found that no polymerization occurs during a period of time called the delay time and subsequent polymerization occurs

  11. Polymeric nanoparticles for hemoglobin-based oxygen carriers.

    PubMed

    Piras, Anna Maria; Dessy, Alberto; Chiellini, Federica; Chiellini, Emo; Farina, Claudio; Ramelli, Massimiliano; Della Valle, Elena

    2008-10-01

    This article reports on the current status of the research on blood substitutes with particular attention on hemoglobin-based oxygen carriers (HBOCs). Insights on the physiological role of hemoglobin are reported in the view of the development of both acellular and cellular hemoglobin-based oxygen carriers. Attention is then focused on biocompatible polymeric materials that find application as matrices for cellular based HBOCs and on the strategies employed to avoid methemoglobin formation. Results are reported regarding the use of bioerodible polymeric matrices based on hemiesters of alternating copolymer (maleic anhydride-co-butyl vinyl ether) for the preparation of hemoglobin loaded nanoparticles.

  12. WAXS studies of the structural diversity of hemoglobin in solution.

    SciTech Connect

    Makowski, L.; Bardhan, J.; Gore, D.; Lal, J.; Mandava, S.; Park, S.; Rodi, D. J.; Ho, N. T.; Ho, C.; Fischetti, R. F.

    2011-01-01

    Specific ligation states of hemoglobin are, when crystallized, capable of taking on multiple quaternary structures. The relationship between these structures, captured in crystal lattices, and hemoglobin structure in solution remains uncertain. Wide-angle X-ray solution scattering (WAXS) is a sensitive probe of protein structure in solution that can distinguish among similar structures and has the potential to contribute to these issues. We used WAXS to assess the relationships among the structures of human and bovine hemoglobins in different liganded forms in solution. WAXS data readily distinguished among the various forms of hemoglobins. WAXS patterns confirm some of the relationships among hemoglobin structures that have been defined through crystallography and NMR and extend others. For instance, methemoglobin A in solution is, as expected, nearly indistinguishable from HbCO A. Interestingly, for bovine hemoglobin, the differences between deoxy-Hb, methemoglobin and HbCO are smaller than the corresponding differences in human hemoglobin. WAXS data were also used to assess the spatial extent of structural fluctuations of various hemoglobins in solution. Dynamics has been implicated in allosteric control of hemoglobin, and increased dynamics has been associated with lowered oxygen affinity. Consistent with that notion, WAXS patterns indicate that deoxy-Hb A exhibits substantially larger structural fluctuations than HbCO A. Comparisons between the observed WAXS patterns and those predicted on the basis of atomic coordinate sets suggest that the structures of Hb in different liganded forms exhibit clear differences from known crystal structure.

  13. Characterization of the hemoglobin of the backswimmer Anisops deanei (Hemiptera).

    PubMed

    Wawrowski, Agnes; Matthews, Philip G D; Gleixner, Eva; Kiger, Laurent; Marden, Michael C; Hankeln, Thomas; Burmester, Thorsten

    2012-09-01

    While O(2)-binding hemoglobin-like proteins are present in many insects, prominent amounts of hemoglobin have only been found in a few species. Backswimmers of the genera Anisops and Buenoa (Notonectidae) have high concentrations of hemoglobin in the large tracheal cells of the abdomen. Oxygen from the hemoglobin is delivered to a gas bubble and controls the buoyant density, which enables the bugs to maintain their position without swimming and to remain stationary in the mid-water zone where they hunt for prey. We have obtained the cDNA sequences of three Anisops deanei hemoglobin chains by RT-PCR and RACE techniques. The deduced amino acid sequences show an unusual insertion of a single amino acid in the conserved helix E, but this does not affect protein stability or ligand binding kinetics. Recombinant A. deanei hemoglobin has an oxygen affinity of P(50) = 2.4 kPa (18 torr) and reveals the presence of a dimeric fraction or two different conformations. The absorption spectra demonstrate that the Anisops hemoglobin is a typical pentacoordinate globin. Phylogenetic analyses show that the backswimmer hemoglobins evolved within Heteroptera and most likely originated from an intracellular hemoglobin with divergent function. PMID:22575160

  14. 21 CFR 864.7470 - Glycosylated hemoglobin assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... diabetes and to determine the proper insulin dosage for a patient. Elevated levels of glycosylated hemoglobin indicate uncontrolled diabetes in a patient. (b) Classification. Class II (performance standards)....

  15. 21 CFR 864.7470 - Glycosylated hemoglobin assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... diabetes and to determine the proper insulin dosage for a patient. Elevated levels of glycosylated hemoglobin indicate uncontrolled diabetes in a patient. (b) Classification. Class II (performance standards)....

  16. 21 CFR 864.7470 - Glycosylated hemoglobin assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... diabetes and to determine the proper insulin dosage for a patient. Elevated levels of glycosylated hemoglobin indicate uncontrolled diabetes in a patient. (b) Classification. Class II (performance standards)....

  17. 21 CFR 864.7470 - Glycosylated hemoglobin assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... diabetes and to determine the proper insulin dosage for a patient. Elevated levels of glycosylated hemoglobin indicate uncontrolled diabetes in a patient. (b) Classification. Class II (performance standards)....

  18. 21 CFR 864.7470 - Glycosylated hemoglobin assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... diabetes and to determine the proper insulin dosage for a patient. Elevated levels of glycosylated hemoglobin indicate uncontrolled diabetes in a patient. (b) Classification. Class II (performance standards)....

  19. Application of a gold electrode, modified by a self-assembled monolayer of 2-mercaptodecylhydroquinone, to the electroanalysis of hemoglobin.

    PubMed

    Zhang, Jingdong; Seo, Kyoungja; Jeon, Il Cheol

    2003-02-01

    A gold electrode modified by a self-assembled monolayer of 2-mercaptodecylhydroquinone (H(2)Q(CH(2))(10)SH) was applied to investigate the electrochemical response of hemoglobin in aerated buffer solutions. Compared with a bare gold electrode, the monolayer of H(2)Q(CH(2))(10)SH could suppress the reduction wave of dissolved oxygen in the buffer while effectively promoting the rate of electron transfer between hemoglobin and the electrode. Thus, a convenient way for electroanalysis of hemoglobin in air was achieved at the H(2)Q(CH(2))(10)SH/Au electrode. A linear relationship existed between peak current and concentration of hemoglobin in the range 1 x 10(-7)-1 x 10(-6) mol L(-1).

  20. Hemoglobin alpha in the blood vessel wall

    PubMed Central

    Butcher, Joshua T.; Johnson, Tyler; Beers, Jody; Columbus, Linda; Isakson, Brant E

    2014-01-01

    Hemoglobin has been studied and well haracterized in red blood cells for over one hundred years. However, new work has indicated that the hemoglobin alpha subunit (Hbα) is also found within the blood vessel wall, where it appears to localize at the myoendothelial junction (MEJ) and plays a role in regulating nitric oxide (NO) signaling between endothelium and smooth muscle. This discovery has created a new paradigm for control of endothelial nitric oxide synthase activity, nitric oxide diffusion, and ultimately, control of vascular tone and blood pressure. This review will discuss the current knowledge of hemoglobin’s properties as a gas exchange molecule in the blood stream, and extrapolate the properties of Hbα biology to the MEJ signaling domain. Specifically, we propose that Hbα is present at the MEJ to regulate NO release and diffusion in a restricted physical space, which would have powerful implications for the regulation of blood flow in peripheral resistance arteries. PMID:24832680

  1. Rare hemoglobin variants in Tunisian population.

    PubMed

    Zorai, A; Moumni, I; Mosbahi, I; Douzi, K; Chaouachi, D; Guemira, F; Abbes, S

    2015-04-01

    During the last 30 years, many studies concerning hemoglobinopathies were realized among Tunisians. More than twenty different thalassemic alleles were detected on the β-globin gene, and less are affecting the α-globin genes. Unusual hemoglobin (Hb) variants other than Hb S, Hb C, and Hb O-arab, which are the most frequent variants in Tunisia, were also detected. Eight Tunisian subjects were studied at phenotypic and molecular levels. Hematological indices and hemoglobin (Hb) pattern were performed by alkaline electrophoresis and isoelectric focusing (IEF),and the Hb fractions were quantitated by cation exchange HPLC. On genomic level, coding regions were amplified by polymerase chain reaction (PCR) followed by a sequencing of the purified PCR products using the dye terminator method. Seven uncommon Hb variants were detected and described for the first time among Tunisians. HbA2-Tunis [δ46(CD5), Gly → Glu, GGG → GAG] is the newly described δ-chain variant in our laboratory, and some other variants (Hb Constant Spring, G San Jose, and Hb J-Bangkok) are very uncommon in the Mediterranean region. We present here an updated review of the Hb variants detected among Tunisians. Twenty-one rare Hb variants were detected affecting the α1-, α2-, δ-, γ-, and β-globin genes, leading in some cases to a severe phenotype especially when the stability is completely altered. The ethnical history of Tunisia could explain this important variability of the observed rare Hb variants. PMID:24905386

  2. Mammalian DNA Repair. Final Report

    SciTech Connect

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  3. Polysome analysis of mammalian cells.

    PubMed

    He, Shan L; Green, Rachel

    2013-01-01

    To assess the global translational level of mammalian cells (see similar protocols for bacteria and yeast on Analysis of polysomes from bacteria, Polysome Profile Analysis - Yeast and Polysome analysis for determining mRNA and ribosome association in Saccharomyces cerevisiae).

  4. Maturation of the mammalian secretome

    PubMed Central

    Simpson, Jeremy C; Mateos, Alvaro; Pepperkok, Rainer

    2007-01-01

    A recent use of quantitative proteomics to determine the constituents of the endoplasmic reticulum and Golgi complex is discussed in the light of other available methodologies for cataloging the proteins associated with the mammalian secretory pathway. PMID:17472737

  5. Inhibitory potential of pure isoflavonoids, red clover, and alfalfa extracts on hemoglobin glycosylation

    PubMed Central

    Hosseini, Mohsen; Asgary, Sedigheh; Najafi, Somayeh

    2015-01-01

    BACKGROUND Non-enzymatic glycosylation of hemoglobin is complications of diabetes. Antioxidant system imbalance can result in the emergence of free radicals’ destructive effects in the long-term. Red clover (Trifolium pratense L.) and alfalfa (Medicago sativa L.) contain isoflavonoids and have antioxidant activity. This experimental study evaluated the inhibitory activity of pure isoflavonoids (daidzein and genistein), red clover and alfalfa extracts on hemoglobin glycosylation. METHODS This study was performed in Iran. Stock solution of hydroalcoholic extracts of red clover and alfalfa in concentrations of 1 and 10 g/100 ml and stock solution of daidzein and genistein in concentrations of 250 ng, 500 ng, 25 µg and 250 µg/100 ml were prepared as case groups. Control group was without hydroalcoholic extracts of plants and pure isoflavonoids. All experiments were performed in triplicate. Hemoglobin was prepared and antioxidant activities were investigated to estimate degree of nonenzymatic hemoglobin glycosylation. RESULTS There was no significantly difference between used extracts (extract of red clover and alfalfa) and control of the hemoglobin glycosylation but using daidzein (P = 0.046, 0.029 and 0.021, respectively) and genistein (P = 0.034, 0.036 and 0.028) significantly inhibited (P < 0.050) this reaction in 25 µg/100 ml, 250 and 500 ng/100 ml concentrations when compared to control. in 25 µg/100 ml, 250 ng and 500 ng/100 ml concentrations percentage of inhibition were 32, 80 and 74.5% respectively with used of daidzein and were 21, 83 and 76% respectively with consumption of genistein. CONCLUSION According to decrease of glycation of hemoglobin with isoflavonoids, two used plant in this study containing isoflavonoid may be useful on diabetes. PMID:26405442

  6. Hemoglobin Targets and Blood Transfusions in Hemodialysis Patients without Symptomatic Cardiac Disease Receiving Erythropoietin Therapy

    PubMed Central

    Foley, Robert N.; Curtis, Bryan M.; Parfrey, Patrick S.

    2008-01-01

    Background and objectives: Optimal hemoglobin targets for chronic kidney disease patients receiving erythropoiesis-stimulating agents remain controversial. The effects of different hemoglobin targets on blood transfusion requirements have not been well characterized, despite their relevance to clinical decision-making. Design, setting, participants, & measurements: Five hundred ninety-six incident hemodialysis patients without symptomatic cardiac disease were randomly assigned to hemoglobin targets of 9.5 to 11.5 g/dl or 13.5 to 14.5 g/dl for 96 wk using epoetin alfa as primary therapy and changes in left ventricular structure as the primary outcome (previously reported). Patients were masked to treatment assignment. Blood transfusion data were prospectively collected at 4-wk intervals. Results: The mean age and prior duration of dialysis therapy of the study population were 50.8 and 0.8 yr, respectively. Previously reported mortality was similar in low and high-target subjects, at 4.7 (95% confidence interval 3.0, 7.3) and 3.1 (1.8, 5.4) per hundred patient years, respectively. Transfusion rates were 0.66 (0.59, 0.74) units of blood per year in low and 0.26 (0.22, 0.32) in high-target subjects (P < 0.0001). Hemoglobin level at transfusion (7.7 [7.5, 7.9]) versus 8.1 [7.6, 8.5] g/dl) were similar with both groups. High hemoglobin target was a significant predictor of time to first transfusion independent of baseline associations (hazard ratio = 0.42; 95% confidence interval = 0.26 − 0.67). Conclusions: In hemodialysis patients with comparatively low mortality risks, normal hemoglobin targets may reduce the need for transfusions. PMID:18922988

  7. Hypergravity signal transduction and gene expression in cultured mammalian cells

    NASA Technical Reports Server (NTRS)

    Kumei, Y.; Whitson, P. A.

    1994-01-01

    A number of studies have been conducted during space flight and with clinostats and centrifuges, suggesting that gravity effects the proliferation and differentiation of mammalian cells in vitro. However, little is known about the mechanisms by which mammalian cells respond to changes in gravitational stress. This paper summarizes studies designed to clarify the effects of hypergravity on the cultured human HeLa cells and to investigate the mechanism of hypergravity signal transduction in these cells.

  8. Mitochondrial Respiration and Hemoglobin Gene Expression in Barley Aleurone Tissue.

    PubMed Central

    Nie, X.; Hill, R. D.

    1997-01-01

    Previous studies have shown that plant hemoglobin (Hb) mRNA is expressed in barley (Hordeum vulgare L.) aleurone layers during hypoxia. We have examined the effect of a number of respiratory inhibitors on barley aleurone layers to determine the factors that influence Hb gene expression. Respiratory inhibitors that reduce O2 consumption, such as CO, cyanide, and antimycin A, strongly enhanced Hb mRNA levels. Treatment with the oxidative phosphorylation uncoupler 2,4-dinitrophenol markedly increased O2 consumption and had a similar positive effect on Hb gene expression. Hb transcript levels were also stimulated by the ATP synthase inhibitor oligomycin. The results suggest that the expression of Hb is not directly influenced by O2 usage or availability but is influenced by the availability of ATP in the tissue. PMID:12223746

  9. Hemoglobin switching in sheep and goats: occurrence of hemoglobins A and C in the same red cell.

    PubMed

    Nienhuis, A W; Bunn, H F

    1974-09-13

    Sheep and goats switch from the synthesis of hemoglobin A (alpha(2)beta(2)(A)) to hemoglobin C (alpha(2)beta(2)(C)) when made anemic. We have demonstrated the existence of the asymmetrical hybrid hemoglobin, alpha(2)beta(A)beta(C), in the circulating red cells of anemic sheep. These erythroid cells, therefore, synthesized both A and C hemoglobin simultaneously. Thus, the switch appears to be mediated by selective gene expression rather than by a clonal or cellular selective mechanism. PMID:4469671

  10. Influence of mutations at the proximal histidine position on the Fe-O2 bond in hemoglobin from density functional theory

    NASA Astrophysics Data System (ADS)

    Todde, Guido; Hovmöller, Sven; Laaksonen, Aatto

    2016-03-01

    Four mutated hemoglobin (Hb) variants and wild type hemoglobin as a reference have been investigated using density functional theory methods focusing on oxygen binding. Dispersion-corrected B3LYP functional is used and found to provide reliable oxygen binding energies. It also correctly reproduces the spin distribution of both bound and free heme groups as well as provides correct geometries at their close vicinity. Mutations in hemoglobin are not only an intrigued biological problem and it is also highly important to understand their effects from a clinical point of view. This study clearly shows how even small structural differences close to the heme group can have a significant effect in reducing the oxygen binding of mutated hemoglobins and consequently affecting the health condition of the patient suffering from the mutations. All of the studied mutated Hb variants did exhibit much weaker binding of molecular oxygen compared to the wild type of hemoglobin.

  11. Chlorpromazine inhibits mitosis of mammalian cells.

    PubMed

    Boder, G B; Paul, D C; Williams, D C

    1983-09-01

    Chlorpromazine (CPZ) at minimally effective concentrations accumulates mammalian cells in mitosis without lethal effects on the cells. Star-metaphase morphology similar to effects seen with classical antimitotic compounds probably results from the preferential action of CPZ on a specific class of microtubules--the pole-to-pole microtubules of the mitotic spindle. At CPZ concentrations of 8 X 10(-6) M, flow cytometry indicates no effect of CPZ on the progress of cells through phases of the cell cycle other than mitosis (M). These results suggest a possible mechanism for toxic side effects of CPZ in man such as granulocytopenia and light sensitization.

  12. Selenite-induced variation in glutathione peroxidase activity of three mammalian cell lines: no effect on radiation-induced cell killing or DNA strand breakage

    SciTech Connect

    Sandstroem, B.E.C.; Carlsson, J.; Marklund, S.L.

    1989-02-01

    The selenium-dependent glutathione peroxidase activities of three mammalian cell lines, HT29, P31, and N-18, cultured in medium with low serum content, increased about 2-, 5-, and 40-fold, respectively, after supplementation with 100 nM selenite. Catalase, CuZn superoxide dismutase, and Mn superoxide dismutase activities were not generally influenced by selenite supplementation, and there was only a minor nonselenium-dependent glutathione peroxidase activity in the investigated cell lines. Gamma-irradiated control and selenite-supplemented cells showed no changes in the surviving fractions, as estimated by clonogenic survival or (/sup 3/H)-thymidine uptake, nor were there any significant differences between the two groups in the induction of DNA strand breaks after gamma irradiation under repairing (37 degrees C) or nonrepairing (0 degrees C) conditions. The results suggest that selenium-dependent glutathione peroxidase does not contribute significantly to the radiation resistance of cultured mammalian cells.

  13. Effects of Listeria monocytogenes EGD-e and Salmonella enterica ser. Typhimurium LT2 chitinases on intracellular survival in Dictyostelium discoideum and mammalian cell lines.

    PubMed

    Frederiksen, Rikki F; Leisner, Jørgen J

    2015-05-01

    Some bacterial pathogens produce chitinases as virulence factors during host infection. The molecular target of such enzymes in non-chitinous hosts remains uncertain. We studied the importance of Listeria monocytogenes EGD-e and Salmonella enterica ser. Typhimurium LT2 chitinases for intracellular survival in Dictyostelium discoideum, and for Salmonella, also infection of mammalian cell lines, and a mouse model. The Salmonella chitinase did not contribute significantly to infection of D. discoideum, mammalian cell lines or mice. However, survival in D. discoideum was clearly reduced for Listeria mutants deficient of ChiB (8-fold) or deficient of both ChiA and ChiB (22-fold). Our findings suggest that chitinases from the two species play different roles in virulence.

  14. A time- and cost-effective strategy to sequence mammalian Y Chromosomes: an application to the de novo assembly of gorilla Y.

    PubMed

    Tomaszkiewicz, Marta; Rangavittal, Samarth; Cechova, Monika; Campos Sanchez, Rebeca; Fescemyer, Howard W; Harris, Robert; Ye, Danling; O'Brien, Patricia C M; Chikhi, Rayan; Ryder, Oliver A; Ferguson-Smith, Malcolm A; Medvedev, Paul; Makova, Kateryna D

    2016-04-01

    The mammalian Y Chromosome sequence, critical for studying male fertility and dispersal, is enriched in repeats and palindromes, and thus, is the most difficult component of the genome to assemble. Previously, expensive and labor-intensive BAC-based techniques were used to sequence the Y for a handful of mammalian species. Here, we present a much faster and more affordable strategy for sequencing and assembling mammalian Y Chromosomes of sufficient quality for most comparative genomics analyses and for conservation genetics applications. The strategy combines flow sorting, short- and long-read genome and transcriptome sequencing, and droplet digital PCR with novel and existing computational methods. It can be used to reconstruct sex chromosomes in a heterogametic sex of any species. We applied our strategy to produce a draft of the gorilla Y sequence. The resulting assembly allowed us to refine gene content, evaluate copy number of ampliconic gene families, locate species-specific palindromes, examine the repetitive element content, and produce sequence alignments with human and chimpanzee Y Chromosomes. Our results inform the evolution of the hominine (human, chimpanzee, and gorilla) Y Chromosomes. Surprisingly, we found the gorilla Y Chromosome to be similar to the human Y Chromosome, but not to the chimpanzee Y Chromosome. Moreover, we have utilized the assembled gorilla Y Chromosome sequence to design genetic markers for studying the male-specific dispersal of this endangered species.

  15. A time- and cost-effective strategy to sequence mammalian Y Chromosomes: an application to the de novo assembly of gorilla Y

    PubMed Central

    Tomaszkiewicz, Marta; Rangavittal, Samarth; Cechova, Monika; Sanchez, Rebeca Campos; Fescemyer, Howard W.; Harris, Robert; Ye, Danling; O'Brien, Patricia C.M.; Chikhi, Rayan; Ryder, Oliver A.; Ferguson-Smith, Malcolm A.; Medvedev, Paul; Makova, Kateryna D.

    2016-01-01

    The mammalian Y Chromosome sequence, critical for studying male fertility and dispersal, is enriched in repeats and palindromes, and thus, is the most difficult component of the genome to assemble. Previously, expensive and labor-intensive BAC-based techniques were used to sequence the Y for a handful of mammalian species. Here, we present a much faster and more affordable strategy for sequencing and assembling mammalian Y Chromosomes of sufficient quality for most comparative genomics analyses and for conservation genetics applications. The strategy combines flow sorting, short- and long-read genome and transcriptome sequencing, and droplet digital PCR with novel and existing computational methods. It can be used to reconstruct sex chromosomes in a heterogametic sex of any species. We applied our strategy to produce a draft of the gorilla Y sequence. The resulting assembly allowed us to refine gene content, evaluate copy number of ampliconic gene families, locate species-specific palindromes, examine the repetitive element content, and produce sequence alignments with human and chimpanzee Y Chromosomes. Our results inform the evolution of the hominine (human, chimpanzee, and gorilla) Y Chromosomes. Surprisingly, we found the gorilla Y Chromosome to be similar to the human Y Chromosome, but not to the chimpanzee Y Chromosome. Moreover, we have utilized the assembled gorilla Y Chromosome sequence to design genetic markers for studying the male-specific dispersal of this endangered species. PMID:26934921

  16. A time- and cost-effective strategy to sequence mammalian Y Chromosomes: an application to the de novo assembly of gorilla Y.

    PubMed

    Tomaszkiewicz, Marta; Rangavittal, Samarth; Cechova, Monika; Campos Sanchez, Rebeca; Fescemyer, Howard W; Harris, Robert; Ye, Danling; O'Brien, Patricia C M; Chikhi, Rayan; Ryder, Oliver A; Ferguson-Smith, Malcolm A; Medvedev, Paul; Makova, Kateryna D

    2016-04-01

    The mammalian Y Chromosome sequence, critical for studying male fertility and dispersal, is enriched in repeats and palindromes, and thus, is the most difficult component of the genome to assemble. Previously, expensive and labor-intensive BAC-based techniques were used to sequence the Y for a handful of mammalian species. Here, we present a much faster and more affordable strategy for sequencing and assembling mammalian Y Chromosomes of sufficient quality for most comparative genomics analyses and for conservation genetics applications. The strategy combines flow sorting, short- and long-read genome and transcriptome sequencing, and droplet digital PCR with novel and existing computational methods. It can be used to reconstruct sex chromosomes in a heterogametic sex of any species. We applied our strategy to produce a draft of the gorilla Y sequence. The resulting assembly allowed us to refine gene content, evaluate copy number of ampliconic gene families, locate species-specific palindromes, examine the repetitive element content, and produce sequence alignments with human and chimpanzee Y Chromosomes. Our results inform the evolution of the hominine (human, chimpanzee, and gorilla) Y Chromosomes. Surprisingly, we found the gorilla Y Chromosome to be similar to the human Y Chromosome, but not to the chimpanzee Y Chromosome. Moreover, we have utilized the assembled gorilla Y Chromosome sequence to design genetic markers for studying the male-specific dispersal of this endangered species. PMID:26934921

  17. Sickle hemoglobin gelation. Reaction order and critical nucleus size.

    PubMed Central

    Behe, M J; Englander, S W

    1978-01-01

    Sickle hemoglobin (Hb S) gelation displays kinetics consistent with a rate-limiting nucleation step. The approximate size of the critical nucleus can be inferred from the order of the reaction with respect to Hb S activity, but determination of the reaction order is complicated by the fact that Hb S activity is substantially different from Hb S concentration at the high protein concentrations required for gelation. Equilibrium and kinetic experiments on Hb S gelation were designed to evaluate the relative activity coefficient of Hb S as a function of concentration. These experiments used non-Hb S proteins to mimic, and thus evaluate, the effect on activity coefficients of increasing Hb S concentration. At Hb S concentrations near 20% the change in Hb S activity coefficient generates two-thirds of the apparent dependence of nucleation rate on Hb S concentration. When this effect is explicitly accounted for, the nucleation reaction is seen to be approximately 10th-order with respect to effective number concentration of Hb S. The closeness of the reaction order to the number of strands in models of Hb S fibers suggests a nucleus close to the size of one turn of the Hb S fiber. These experiments introduce a new approach to the study of Hb S gelation, the equal activity isotherm, used here also to show that Hb S.Hb A (normal adult hemoglobin) hybrids do incorporate into growing nuclei and stable microtubules but that A.S hybridization is neutral with respect to promotion of Hb S nucleation and the sol-gel equilibrium. PMID:667302

  18. The LSD1 inhibitor RN-1 recapitulates the fetal pattern of hemoglobin synthesis in baboons (P. anubis).

    PubMed

    Rivers, Angela; Vaitkus, Kestis; Ibanez, Vinzon; Ruiz, Maria Armila; Jagadeeswaran, Ramasamy; Saunthararajah, Yogen; Cui, Shuaiying; Engel, James D; DeSimone, Joseph; Lavelle, Donald

    2016-06-01

    Increased fetal hemoglobin levels lessen the severity of symptoms and increase the lifespan of patients with sickle cell disease. Hydroxyurea, the only drug currently approved for the treatment of sickle cell disease, is not effective in a large proportion of patients and therefore new pharmacological agents that increase fetal hemoglobin levels have long been sought. Recent studies identifying LSD-1 as a repressor of γ-globin expression led to experiments demonstrating that the LSD-1 inhibitor RN-1 increased γ-globin expression in the sickle cell mouse model. Because the arrangement and developmental stage-specific expression pattern of the β-like globin genes is highly conserved between man and baboon, the baboon model remains the best predictor of activity of fetal hemoglobin-inducing agents in man. In this report, we demonstrate that RN-1 increases γ-globin synthesis, fetal hemoglobin, and F cells to high levels in both anemic and non-anemic baboons with activity comparable to decitabine, the most potent fetal hemoglobin-inducing agent known. RN-1 not only restores high levels of fetal hemoglobin but causes the individual 5' Iγ- and 3' Vγ-globin chains to be synthesized in the ratio characteristic of fetal development. Increased fetal hemoglobin was associated with increased levels of acetylated Histone H3, H3K4Me2, H3K4Me3, and RNA polymerase II at the γ-globin gene, and diminished γ-globin promoter DNA methylation. RN-1 is likely to induce clinically relevant levels of fetal hemoglobin in patients with sickle cell disease, although careful titration of the dose may be required to minimize myelotoxicity. PMID:26858356

  19. The LSD1 inhibitor RN-1 recapitulates the fetal pattern of hemoglobin synthesis in baboons (P. anubis)

    PubMed Central

    Rivers, Angela; Vaitkus, Kestis; Ibanez, Vinzon; Ruiz, Maria Armila; Jagadeeswaran, Ramasamy; Saunthararajah, Yogen; Cui, Shuaiying; Engel, James D.; DeSimone, Joseph; Lavelle, Donald

    2016-01-01

    Increased fetal hemoglobin levels lessen the severity of symptoms and increase the lifespan of patients with sickle cell disease. Hydroxyurea, the only drug currently approved for the treatment of sickle cell disease, is not effective in a large proportion of patients and therefore new pharmacological agents that increase fetal hemoglobin levels have long been sought. Recent studies identifying LSD-1 as a repressor of γ-globin expression led to experiments demonstrating that the LSD-1 inhibitor RN-1 increased γ-globin expression in the sickle cell mouse model. Because the arrangement and developmental stage-specific expression pattern of the β-like globin genes is highly conserved between man and baboon, the baboon model remains the best predictor of activity of fetal hemoglobin-inducing agents in man. In this report, we demonstrate that RN-1 increases γ-globin synthesis, fetal hemoglobin, and F cells to high levels in both anemic and non-anemic baboons with activity comparable to decitabine, the most potent fetal hemoglobin-inducing agent known. RN-1 not only restores high levels of fetal hemoglobin but causes the individual 5′ Iγ- and 3′ Vγ-globin chains to be synthesized in the ratio characteristic of fetal development. Increased fetal hemoglobin was associated with increased levels of acetylated Histone H3, H3K4Me2, H3K4Me3, and RNA polymerase II at the γ-globin gene, and diminished γ-globin promoter DNA methylation. RN-1 is likely to induce clinically relevant levels of fetal hemoglobin in patients with sickle cell disease, although careful titration of the dose may be required to minimize myelotoxicity. PMID:26858356

  20. 21 CFR 866.5470 - Hemoglobin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... hemoglobin (the oxygen-carrying pigment in red blood cells) in blood, urine, plasma, or other body fluids. Measurements of free hemoglobin aid in the diagnosis of various hematologic disorders, such as sickle cell anemia, Fanconi's anemia (a rare inherited disease), aplastic anemia (bone marrow does not produce...