Science.gov

Sample records for mammalian receptor repertoire

  1. Pharmacology of mammalian olfactory receptors.

    PubMed

    Smith, Richard S; Peterlin, Zita; Araneda, Ricardo C

    2013-01-01

    Mammalian species have evolved a large and diverse number of odorant receptors (ORs). These proteins comprise the largest family of G-protein-coupled receptors (GPCRs) known, amounting to ~1,000-different receptors in the rodent. From the perspective of olfactory coding, the availability of such a vast number of chemosensory receptors poses several fascinating questions; in addition, such a large repertoire provides an attractive biological model to study ligand-receptor interactions. The limited functional expression of these receptors in heterologous systems, however, has greatly hampered attempts to deorphanize them. We have employed a successful approach that combines electrophysiological and imaging techniques to analyze the response profiles of single sensory neurons. Our approach has enabled us to characterize the "odor space" of a population of native aldehyde receptors and the molecular range of a genetically engineered receptor, OR-I7.

  2. Mammalian odorant receptors: functional evolution and variation

    PubMed Central

    Jiang, Yue; Matsunami, Hiroaki

    2015-01-01

    In mammals, the perception of smell starts with the activation of odorant receptors (ORs) by volatile molecules in the environment. The mammalian OR repertoire has been subject to rapid evolution, and is highly diverse within the human population. Recent advances in the functional expression and ligand identification of ORs allow for functional analysis of OR evolution, and reveal that changes in OR protein sequences translate into high degrees of functional variations. Moreover, in several cases the functional variation of a single OR affects the perception of its cognate odor ligand, providing clues as to how an odor is coded at the receptor level. PMID:25660959

  3. Functional Evolution of Mammalian Odorant Receptors

    PubMed Central

    Adipietro, Kaylin A.; Mainland, Joel D.; Matsunami, Hiroaki

    2012-01-01

    The mammalian odorant receptor (OR) repertoire is an attractive model to study evolution, because ORs have been subjected to rapid evolution between species, presumably caused by changes of the olfactory system to adapt to the environment. However, functional assessment of ORs in related species remains largely untested. Here we investigated the functional properties of primate and rodent ORs to determine how well evolutionary distance predicts functional characteristics. Using human and mouse ORs with previously identified ligands, we cloned 18 OR orthologs from chimpanzee and rhesus macaque and 17 mouse-rat orthologous pairs that are broadly representative of the OR repertoire. We functionally characterized the in vitro responses of ORs to a wide panel of odors and found similar ligand selectivity but dramatic differences in response magnitude. 87% of human-primate orthologs and 94% of mouse-rat orthologs showed differences in receptor potency (EC50) and/or efficacy (dynamic range) to an individual ligand. Notably dN/dS ratio, an indication of selective pressure during evolution, does not predict functional similarities between orthologs. Additionally, we found that orthologs responded to a common ligand 82% of the time, while human OR paralogs of the same subfamily responded to the common ligand only 33% of the time. Our results suggest that, while OR orthologs tend to show conserved ligand selectivity, their potency and/or efficacy dynamically change during evolution, even in closely related species. These functional changes in orthologs provide a platform for examining how the evolution of ORs can meet species-specific demands. PMID:22807691

  4. Selection of the lamprey VLRC antigen receptor repertoire.

    PubMed

    Holland, Stephen J; Gao, Mingming; Hirano, Masayuki; Iyer, Lakshminarayan M; Luo, Ming; Schorpp, Michael; Cooper, Max D; Aravind, L; Mariuzza, Roy A; Boehm, Thomas

    2014-10-14

    The alternative adaptive immune system of jawless vertebrates is based on different isotypes of variable lymphocyte receptors (VLRs) that are composed of leucine-rich repeats (LRRs) and expressed by distinct B- and T-like lymphocyte lineages. VLRB is expressed by B-like cells, whereas VLRA and VLRC are expressed by two T-like lineages that develop in the thymoid, a thymus-like structure in lamprey larvae. In each case, stepwise combinatorial insertions of different types of short donor LRR cassettes into incomplete germ-line genes are required to generate functional VLR gene assemblies. It is unknown, however, whether the diverse repertoires of VLRs that are expressed by peripheral blood lymphocytes are shaped by selection after their assembly. Here, we identify signatures of selection in the peripheral repertoire of VLRC antigen receptors that are clonally expressed by one of the T-like cell types in lampreys. Selection strongly favors VLRC molecules containing four internal variable leucine-rich repeat (LRRV) modules, although VLRC assemblies encoding five internal modules are initially equally frequent. In addition to the length selection, VLRC molecules in VLRC(+) peripheral lymphocytes exhibit a distinct pattern of high entropy sites in the N-terminal LRR1 module, which is inserted next to the germ-line-encoded LRRNT module. This is evident in comparisons to VLRC gene assemblies found in the thymoid and to VLRC gene assemblies found in some VLRA(+) cells. Our findings are the first indication to our knowledge that selection operates on a VLR repertoire and provide a framework to establish the mechanism by which this selection occurs during development of the VLRC(+) lymphocyte lineage.

  5. Strategies for B-Cell Receptor Repertoire Analysis in Primary Immunodeficiencies: From Severe Combined Immunodeficiency to Common Variable Immunodeficiency

    PubMed Central

    IJspeert, Hanna; Wentink, Marjolein; van Zessen, David; Driessen, Gertjan J.; Dalm, Virgil A. S. H.; van Hagen, Martin P.; Pico-Knijnenburg, Ingrid; Simons, Erik J.; van Dongen, Jacques J. M.; Stubbs, Andrew P.; van der Burg, Mirjam

    2015-01-01

    The antigen receptor repertoires of B- and T-cells form the basis of the adaptive immune response. The repertoires should be sufficiently diverse to recognize all possible pathogens. However, careful selection is needed to prevent responses to self or harmless antigens. Limited antigen receptor repertoire diversity leads to immunodeficiency, whereas unselected or misdirected repertoires can result in autoimmunity. The antigen receptor repertoire harbors information about abnormalities in many immunological disorders. Recent developments in next generation sequencing allow the analysis of the antigen receptor repertoire in much greater detail than ever before. Analyzing the antigen receptor repertoire in patients with mutations in genes responsible for the generation of the antigen receptor repertoire will give new insights into repertoire formation and selection. In this perspective, we describe strategies and considerations for analysis of the naive and antigen-selected B-cell repertoires in primary immunodeficiency patients with a focus on severe combined immunodeficiency and common variable immunodeficiency. PMID:25904919

  6. Ghrelin Receptors in Non-Mammalian Vertebrates

    PubMed Central

    Kaiya, Hiroyuki; Kangawa, Kenji; Miyazato, Mikiya

    2012-01-01

    The growth hormone secretagogue-receptor (GHS-R) was discovered in humans and pigs in 1996. The endogenous ligand, ghrelin, was discovered 3 years later, in 1999, and our understanding of the physiological significance of the ghrelin system in vertebrates has grown steadily since then. Although the ghrelin system in non-mammalian vertebrates is a subject of great interest, protein sequence data for the receptor in non-mammalian vertebrates has been limited until recently, and related biological information has not been well organized. In this review, we summarize current information related to the ghrelin receptor in non-mammalian vertebrates. PMID:23882259

  7. Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals.

    PubMed

    Grus, Wendy E; Shi, Peng; Zhang, Ya-ping; Zhang, Jianzhi

    2005-04-19

    Pheromones are chemicals emitted and sensed by conspecifics to elicit social and sexual responses and are perceived in terrestrial vertebrates primarily by the vomeronasal organ (VNO). Pheromone receptors in the mammalian VNO are encoded by the V1R and V2R gene superfamilies. The V1R superfamily contains 187 and 102 putatively functional genes in the mouse and rat, respectively. To investigate whether this large repertoire size is typical among mammals with functional VNOs, we here describe the V1R repertoires of dog, cow, and opossum based on their draft genome sequences. The dog and cow have only 8 and 32 intact V1R genes, respectively. Thus, the intact V1R repertoire size varies by at least 23-fold among placental mammals with functional VNOs. To our knowledge, this size ratio represents the greatest among-species variation in gene family size of all mammalian gene families. Phylogenetic analysis of placental V1R genes suggests multiple losses of ancestral genes in carnivores and artiodactyls and gains of many new genes by gene duplication in rodents, manifesting massive gene births and deaths. We also identify 49 intact opossum V1R genes and discover independent expansions of the repertoire in placentals and marsupials. We further show a concordance between the V1R repertoire size and the complexity of VNO morphology, suggesting that the latter could indicate the sophistication of pheromone communications within species. In sum, our results demonstrate tremendous diversity and rapid evolution of mammalian V1R gene inventories and caution the generalization of VNO biology from rodents to all mammals.

  8. Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals

    PubMed Central

    Grus, Wendy E.; Shi, Peng; Zhang, Ya-ping; Zhang, Jianzhi

    2005-01-01

    Pheromones are chemicals emitted and sensed by conspecifics to elicit social and sexual responses and are perceived in terrestrial vertebrates primarily by the vomeronasal organ (VNO). Pheromone receptors in the mammalian VNO are encoded by the V1R and V2R gene superfamilies. The V1R superfamily contains 187 and 102 putatively functional genes in the mouse and rat, respectively. To investigate whether this large repertoire size is typical among mammals with functional VNOs, we here describe the V1R repertoires of dog, cow, and opossum based on their draft genome sequences. The dog and cow have only 8 and 32 intact V1R genes, respectively. Thus, the intact V1R repertoire size varies by at least 23-fold among placental mammals with functional VNOs. To our knowledge, this size ratio represents the greatest among-species variation in gene family size of all mammalian gene families. Phylogenetic analysis of placental V1R genes suggests multiple losses of ancestral genes in carnivores and artiodactyls and gains of many new genes by gene duplication in rodents, manifesting massive gene births and deaths. We also identify 49 intact opossum V1R genes and discover independent expansions of the repertoire in placentals and marsupials. We further show a concordance between the V1R repertoire size and the complexity of VNO morphology, suggesting that the latter could indicate the sophistication of pheromone communications within species. In sum, our results demonstrate tremendous diversity and rapid evolution of mammalian V1R gene inventories and caution the generalization of VNO biology from rodents to all mammals. PMID:15790682

  9. Sequence Analysis of Bitter Taste Receptor Gene Repertoires in Different Ruminant Species

    PubMed Central

    Monteiro Ferreira, Ana; Tomás Marques, Andreia; Bhide, Mangesh; Cubric-Curik, Vlatka; Hollung, Kristin; Knight, Christopher Harold; Raundrup, Katrine; Lippolis, John; Palmer, Mitchell; Sales-Baptista, Elvira; Araújo, Susana Sousa; de Almeida, André Martinho

    2015-01-01

    Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste receptor cells in the gustatory papillae. Our work aims at exploring the phylogenetic relationships of T2R gene sequences within different ruminant species. To accomplish this goal, we gathered a collection of ruminant species with different feeding behaviors and for which no genome data is available: American bison, chamois, elk, European bison, fallow deer, goat, moose, mouflon, muskox, red deer, reindeer and white tailed deer. The herbivores chosen for this study belong to different taxonomic families and habitats, and hence, exhibit distinct foraging behaviors and diet preferences. We describe the first partial repertoires of T2R gene sequences for these species obtained by direct sequencing. We then consider the homology and evolutionary history of these receptors within this ruminant group, and whether it relates to feeding type classification, using MEGA software. Our results suggest that phylogenetic proximity of T2R genes corresponds more to the traditional taxonomic groups of the species rather than reflecting a categorization by feeding strategy. PMID:26061084

  10. Mammalian Gravity Receptors: Structure and Metabolism

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    1985-01-01

    Calcium metabolism in mammalian gravity receptors is examined. To accomplish this objective it is necessary to study both the mineral deposits of the receptors, the otoconia, and the sensory areas themselves, the saccular and utricular maculas. The main focus was to elucidate the natures of the organic and inorganic phases of the crystalline masses, first in rat otoconia but more recently in otoliths and otoconia of a comparative series of vertebrates. Some of the ultrastructural findings in rat maculas, however, have prompted a more thorough study of the organization of the hair cells and innervation patterns in graviceptors.

  11. Diversity and divergence of the glioma-infiltrating T-cell receptor repertoire

    PubMed Central

    Sims, Jennifer S.; Grinshpun, Boris; Feng, Yaping; Ung, Timothy H.; Neira, Justin A.; Samanamud, Jorge L.; Canoll, Peter; Shen, Yufeng; Sims, Peter A.; Bruce, Jeffrey N.

    2016-01-01

    Although immune signaling has emerged as a defining feature of the glioma microenvironment, how the underlying structure of the glioma-infiltrating T-cell population differs from that of the blood from which it originates has been difficult to measure directly in patients. High-throughput sequencing of T-cell receptor (TCR) repertoires (TCRseq) provides a population-wide statistical description of how T cells respond to disease. We have defined immunophenotypes of whole repertoires based on TCRseq of the α- and β-chains from glioma tissue, nonneoplastic brain tissue, and peripheral blood from patients. Using information theory, we partitioned the diversity of these TCR repertoires into that from the distribution of VJ cassette combinations and diversity due to VJ-independent factors, such as selection due to antigen binding. Tumor-infiltrating lymphocytes (TILs) possessed higher VJ-independent diversity than nonneoplastic tissue, stratifying patients according to tumor grade. We found that the VJ-independent components of tumor-associated repertoires diverge more from their corresponding peripheral repertoires than T-cell populations in nonneoplastic brain tissue, particularly for low-grade gliomas. Finally, we identified a “signature” set of TCRs whose use in peripheral blood is associated with patients exhibiting low TIL divergence and is depleted in patients with highly divergent TIL repertoires. This signature is detectable in peripheral blood, and therefore accessible noninvasively. We anticipate that these immunophenotypes will be foundational to monitoring and predicting response to antiglioma vaccines and immunotherapy. PMID:27261081

  12. Largest vertebrate vomeronasal type 1 receptor gene repertoire in the semiaquatic platypus.

    PubMed

    Grus, Wendy E; Shi, Peng; Zhang, Jianzhi

    2007-10-01

    Vertebrate vomeronasal chemoreception plays important roles in many aspects of an organism's daily life, such as mating, territoriality, and foraging. Vomeronasal type 1 receptors (V1Rs) and vomeronasal type 2 receptors (V2Rs), 2 large families of G protein-coupled receptors, serve as vomeronasal receptors to bind to various pheromones and odorants. Contrary to the previous observations of reduced olfaction in aquatic and semiaquatic mammals, we here report the surprising finding that the platypus, a semiaquatic monotreme, has the largest V1R repertoire and nearly largest combined repertoire of V1Rs and V2Rs of all vertebrates surveyed, with 270 intact genes and 579 pseudogenes in the V1R family and 15 intact genes, 55 potentially intact genes, and 57 pseudogenes in the V2R family. Phylogenetic analysis shows a remarkable expansion of the V1R repertoire and a moderate expansion of the V2R repertoire in platypus since the separation of monotremes from placentals and marsupials. Our results challenge the view that olfaction is unimportant to aquatic mammals and call for further study into the role of vomeronasal reception in platypus physiology and behavior.

  13. Selective manipulation of the human T-cell receptor repertoire expressed by thymocytes in organ culture.

    PubMed Central

    Merkenschlager, M; Fisher, A G

    1992-01-01

    A recently described organ culture system for human thymocytes is shown to support the generation of a diverse T-cell receptor repertoire in vitro: thymocytes of the alpha beta lineage, including representatives of the V beta families 5.2/5.3, 6.7, and 8, accounted for the majority of T-cell receptor-positive cells throughout a 3-week culture period. Thymocytes bearing gamma delta receptors were also identified, particularly among the CD4 CD8 double-negative subset. The T-cell receptor repertoire expressed in organ culture responded to experimental manipulation with staphylococcal enterotoxins. Staphylococcal enterotoxin D (a powerful activator of human peripheral T cells expressing V beta 5.2/5.3 receptors) caused a marked reduction of V beta 5.2/5.3 expression, as determined with the V beta-specific antibody 42/1C1. Evidence is presented that this loss of V beta 5.2/5.3 expression resulted from the selective deletion of activated thymocytes by apoptosis, in concert with T-cell receptor modulation. These effects of staphylococcal enterotoxin D were specific (since staphylococcal enterotoxin E did not influence V beta 5.2/5.3 expression) and V beta-selective (since expression of V beta 6.7 remained unaffected by staphylococcal enterotoxin D). On the basis of these observations, we suggest that thymic organ culture provides a powerful approach to study the generation of the human T-cell repertoire. Images PMID:1584760

  14. Atlantic salmon possesses two clusters of type I interferon receptor genes on different chromosomes, which allows for a larger repertoire of interferon receptors than in zebrafish and mammals.

    PubMed

    Sun, Baojian; Greiner-Tollersrud, Linn; Koop, Ben F; Robertsen, Børre

    2014-12-01

    Mammalian type I interferons (IFNs) signal through a receptor composed of the IFNAR1 and IFNAR2 chains. In zebrafish two-cysteine IFNs utilize a receptor composed of CRFB1 and CRFB5, while four-cysteine IFNs signal through a receptor formed by CRFB2 and CRFB5. In the present work two CRFB clusters were identified in different chromosomes of Atlantic salmon. Genes of three CRFB5s, one CRFB1, one CRFB2 and the novel CRFB5x were identified, cloned and studied functionally. All CRFBs were expressed in 10 different organs, but the relative expression of CRFBs varied. Mx-reporter assay was used to study which CRFBs might be involved in receptors for salmon IFNa, IFNb and IFNc. The results of Mx-reporter assays suggest that IFNa signals through a receptor composed of CRFB1a as the long chain and either CRFB5a, CRFB5b or CRFB5c as the short chain; IFNc signals through a receptor with CRFB5a or CRFB5c as the short chain while IFNb may signal through a receptor with CRFB5x as a short chain. Taken together, the present work demonstrates that Atlantic salmon has a more diverse repertoire of type I IFN receptors compared to zebrafish or mammals.

  15. Identification of a Bitter-Taste Receptor Gene Repertoire in Different Lagomorphs Species

    PubMed Central

    Ferreira, Ana M.; Marques, Andreia T.; Fontanesi, Luca; Thulin, Carl-Gustaf; Sales-Baptista, Elvira; Araújo, Susana S.; Almeida, André M.

    2016-01-01

    The repertoires of bitter-taste receptor (T2R) gene have been described for several animal species, but these data are still scarce for Lagomorphs. The aim of the present work is to identify potential repertoires of T2R in several Lagomorph species, covering a wide geographical distribution. We studied these genes in Lepus timidus, L. europaeus, Oryctolagus cuniculus algirus, Romerolagus diazi, and Sylvilagus floridanus, using O. cuniculus cuniculus as control species for PCR and DNA sequencing. We studied the identities of the DNA sequences and built the corresponding phylogenetic tree. Sequencing was successful for both subspecies of O. cuniculus for all T2R genes studied, for five genes in Lepus, and for three genes in R. diazi and S. floridanus. We describe for the first time the partial repertoires of T2R genes for Lagomorphs species, other than the common rabbit. Our phylogenetic analyses indicate that sequence proximity levels follow the established taxonomic classification. PMID:27092177

  16. Diversification of the antigen-specific T cell receptor repertoire after varicella zoster vaccination

    PubMed Central

    Qi, Qian; Cavanagh, Mary M.; Le Saux, Sabine; NamKoong, Hong; Kim, Chulwoo; Turgano, Emerson; Liu, Yi; Wang, Chen; Mackey, Sally; Swan, Gary E.; Dekker, Cornelia L.; Olshen, Richard A.; Boyd, Scott D.; Weyand, Cornelia M.; Tian, Lu; Goronzy, Jörg J.

    2016-01-01

    Diversity and size of the antigen-specific T cell receptor (TCR) repertoire are two critical determinants for successful control of chronic infection. Varicella zoster virus (VZV) that establishes latency during childhood is able to escape control mechanisms, in particular with increasing age. We examined the TCR diversity of VZV-reactive CD4 T cells in individuals older than 50 years by studying three identical twin pairs and three unrelated individuals before and after vaccination with live attenuated VZV. While all individuals had a small number of dominant T cell clones, the breadth of the VZV-specific repertoire differed markedly. A genetic influence was seen for the sharing of individual TCR sequences from antigen-reactive cells, but not for repertoire richness or the selection of dominant clones. VZV vaccination favored the expansion of infrequent VZV antigen-reactive TCRs including those from naïve T cells with lesser boosting of dominant T cell clones. Thus, vaccination does not reinforce the in vivo selection occurred during chronic infection but leads to a diversification of the VZV-reactive T cell repertoire. However, a single booster immunization seems insufficient to establish new clonal dominance. Our results suggest that repertoire analysis of antigen-specific TCRs can be an important read-out to assess whether a vaccination was able to generate memory cells in clonal sizes that are necessary for immune protection. PMID:27030598

  17. The Evolution of Mammalian Olfactory Receptor Genes

    PubMed Central

    Issel-Tarver, L.; Rine, J.

    1997-01-01

    We performed a comparative study of four subfamilies of olfactory receptor genes first identified in the dog to assess changes in the gene family during mammalian evolution, and to begin linking the dog genetic map to that of humans. The human subfamilies were localized to chromosomes 7, 11, and 19. The two subfamilies that were tightly linked in the dog genome were also tightly linked in the human genome. The four subfamilies were compared in human (primate), horse (perissodactyl), and a variety of artiodactyls and carnivores. Some changes in gene number were detected, but overall subfamily size appeared to have been established before the divergence of these mammals 60-100 million years ago. PMID:9017400

  18. Contrasted Evolution of the Vomeronasal Receptor Repertoires in Mammals and Squamate Reptiles

    PubMed Central

    Brykczynska, Urszula; Tzika, Athanasia C.; Rodriguez, Ivan; Milinkovitch, Michel C.

    2013-01-01

    The vomeronasal organ (VNO) is an olfactory structure that detects pheromones and environmental cues. It consists of sensory neurons that express evolutionary unrelated groups of transmembrane chemoreceptors. The predominant V1R and V2R receptor repertoires are believed to detect airborne and water-soluble molecules, respectively. It has been suggested that the shift in habitat of early tetrapods from water to land is reflected by an increase in the ratio of V1R/V2R genes. Snakes, which have a very large VNO associated with a sophisticated tongue delivery system, are missing from this analysis. Here, we use RNA-seq and RNA in situ hybridization to study the diversity, evolution, and expression pattern of the corn snake vomeronasal receptor repertoires. Our analyses indicate that snakes and lizards retain an extremely limited number of V1R genes but exhibit a large number of V2R genes, including multiple lineages of reptile-specific and snake-specific expansions. We finally show that the peculiar bigenic pattern of V2R vomeronasal receptor gene transcription observed in mammals is conserved in squamate reptiles, hinting at an important but unknown functional role played by this expression strategy. Our results do not support the hypothesis that the shift to a vomeronasal receptor repertoire dominated by V1Rs in mammals reflects the evolutionary transition of early tetrapods from water to land. This study sheds light on the evolutionary dynamics of the vomeronasal receptor families in vertebrates and reveals how mammals and squamates differentially adapted the same ancestral vomeronasal repertoire to succeed in a terrestrial environment. PMID:23348039

  19. Contrasted evolution of the vomeronasal receptor repertoires in mammals and squamate reptiles.

    PubMed

    Brykczynska, Urszula; Tzika, Athanasia C; Rodriguez, Ivan; Milinkovitch, Michel C

    2013-01-01

    The vomeronasal organ (VNO) is an olfactory structure that detects pheromones and environmental cues. It consists of sensory neurons that express evolutionary unrelated groups of transmembrane chemoreceptors. The predominant V1R and V2R receptor repertoires are believed to detect airborne and water-soluble molecules, respectively. It has been suggested that the shift in habitat of early tetrapods from water to land is reflected by an increase in the ratio of V1R/V2R genes. Snakes, which have a very large VNO associated with a sophisticated tongue delivery system, are missing from this analysis. Here, we use RNA-seq and RNA in situ hybridization to study the diversity, evolution, and expression pattern of the corn snake vomeronasal receptor repertoires. Our analyses indicate that snakes and lizards retain an extremely limited number of V1R genes but exhibit a large number of V2R genes, including multiple lineages of reptile-specific and snake-specific expansions. We finally show that the peculiar bigenic pattern of V2R vomeronasal receptor gene transcription observed in mammals is conserved in squamate reptiles, hinting at an important but unknown functional role played by this expression strategy. Our results do not support the hypothesis that the shift to a vomeronasal receptor repertoire dominated by V1Rs in mammals reflects the evolutionary transition of early tetrapods from water to land. This study sheds light on the evolutionary dynamics of the vomeronasal receptor families in vertebrates and reveals how mammals and squamates differentially adapted the same ancestral vomeronasal repertoire to succeed in a terrestrial environment.

  20. The mammalian beta-tubulin repertoire: hematopoietic expression of a novel, heterologous beta-tubulin isotype

    PubMed Central

    1986-01-01

    We describe the structure of a novel and unusually heterologous beta- tubulin isotype (M beta 1) isolated from a mouse bone marrow cDNA library, and a second isotype (M beta 3) isolated from a mouse testis cDNA library. Comparison of M beta 1 and M beta 3 with the completed (M beta 4, M beta 5) or extended (M beta 2) sequence of three previously described beta-tubulin isotypes shows that each includes a distinctive carboxy-terminal region, in addition to multiple amino acid substitutions throughout the polypeptide chain. In every case where a mammalian interspecies comparison can be made, both the carboxy- terminal and internal amino acid substitutions that distinguish one isotype from another are absolutely conserved. We conclude that these characteristic differences are important in determining functional distinctions between different kinds of microtubule. The amino acid homologies between M beta 2, M beta 3, M beta 4, and M beta 5 are in the range of 95-97%; however the homology between M beta 1 and all the other isotypes is very much less (78%). The dramatic divergence in M beta 1 is due to multiple changes that occur throughout the polypeptide chain. The overall level of expression of M beta 1 is low, and is restricted to those tissues (bone marrow, spleen, developing liver and lung) that are active in hematopoiesis in the mouse. We predict that the M beta 1 isotype is functionally specialized for assembly into the mammalian marginal band. PMID:3782288

  1. T cell receptor repertoires after adoptive transfer of expanded allogeneic regulatory T cells.

    PubMed

    Theil, A; Wilhelm, C; Kuhn, M; Petzold, A; Tuve, S; Oelschlägel, U; Dahl, A; Bornhäuser, M; Bonifacio, E; Eugster, A

    2017-02-01

    Regulatory T cell (Treg ) therapy has been exploited in autoimmune disease, solid organ transplantation and in efforts to prevent or treat graft-versus-host disease (GVHD). However, our knowledge on the in-vivo persistence of transfused Treg is limited. Whether Treg transfusion leads to notable changes in the overall Treg repertoire or whether longevity of Treg in the periphery is restricted to certain clones is unknown. Here we use T cell receptor alpha chain sequencing (TCR-α-NGS) to monitor changes in the repertoire of Treg upon polyclonal expansion and after subsequent adoptive transfer. We applied TCR-α-NGS to samples from two patients with chronic GVHD who received comparable doses of stem cell donor derived expanded Treg . We found that in-vitro polyclonal expansion led to notable repertoire changes in vitro and that Treg cell therapy altered the peripheral Treg repertoire considerably towards that of the infused cell product, to different degrees, in each patient. Clonal changes in the peripheral blood were transient and correlated well with the clinical parameters. We suggest that T cell clonotype analyses using TCR sequencing should be considered as a means to monitor longevity and fate of adoptively transferred T cells.

  2. CTLA4 blockade broadens the peripheral T cell receptor repertoire

    PubMed Central

    Robert, Lidia; Tsoi, Jennifer; Wang, Xiaoyan; Emerson, Ryan; Homet, Blanca; Chodon, Thinle; Mok, Stephen; Huang, Rong Rong; Cochran, Alistair J.; Comin-Anduix, Begonya; Koya, Richard C.; Graeber, Thomas G.; Robins, Harlan; Ribas, Antoni

    2014-01-01

    Purpose To evaluate the immunomodulatory effects of CTLA-4 blockade with tremelimumab in peripheral blood mononuclear cells (PBMC). Experimental Design We used next generation sequencing to study the complementarity determining region 3 (CDR3) from the rearranged T cell receptor (TCR) variable beta (V-beta) in PBMC of 21 patients, at baseline and 30–60 days after receiving tremelimumab. Results After receiving tremelimumab there was a median of 30% increase in unique productive sequences of TCR V-beta CDR3 in 19 out of 21 patients, and a median decrease of 30% in only 2 out of 21 patients. These changes were significant for richness (p=0.01) and for Shannon index diversity (p=0.04). In comparison, serially collected PBMC from four healthy donors did not show a significant change in TCR V-beta CDR3 diversity over one year. There was a significant difference in the total unique productive TCR V-beta CDR3 sequences between patients experiencing toxicity with tremelimumab compared to patients without toxicity (p=0.05). No relevant differences were noted between clinical responders and non-responders. Conclusions CTLA4 blockade with tremelimumab diversifies the peripheral T cell pool, representing a pharmacodynamic effect of how this class of antibodies modulates the human immune system. PMID:24583799

  3. The repertoire of G protein-coupled receptors in the sea squirt Ciona intestinalis

    PubMed Central

    2008-01-01

    Background G protein-coupled receptors (GPCRs) constitute a large family of integral transmembrane receptor proteins that play a central role in signal transduction in eukaryotes. The genome of the protochordate Ciona intestinalis has a compact size with an ancestral complement of many diversified gene families of vertebrates and is a good model system for studying protochordate to vertebrate diversification. An analysis of the Ciona repertoire of GPCRs from a comparative genomic perspective provides insight into the evolutionary origins of the GPCR signalling system in vertebrates. Results We have identified 169 gene products in the Ciona genome that code for putative GPCRs. Phylogenetic analyses reveal that Ciona GPCRs have homologous representatives from the five major GRAFS (Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin) families concomitant with other vertebrate GPCR repertoires. Nearly 39% of Ciona GPCRs have unambiguous orthologs of vertebrate GPCR families, as defined for the human, mouse, puffer fish and chicken genomes. The Rhodopsin family accounts for ~68% of the Ciona GPCR repertoire wherein the LGR-like subfamily exhibits a lineage specific gene expansion of a group of receptors that possess a novel domain organisation hitherto unobserved in metazoan genomes. Conclusion Comparison of GPCRs in Ciona to that in human reveals a high level of orthology of a protochordate repertoire with that of vertebrate GPCRs. Our studies suggest that the ascidians contain the basic ancestral complement of vertebrate GPCR genes. This is evident at the subfamily level comparisons since Ciona GPCR sequences are significantly analogous to vertebrate GPCR subfamilies even while exhibiting Ciona specific genes. Our analysis provides a framework to perform future experimental and comparative studies to understand the roles of the ancestral chordate versions of GPCRs that predated the divergence of the urochordates and the vertebrates. PMID:18452600

  4. Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing.

    PubMed

    Freeman, J Douglas; Warren, René L; Webb, John R; Nelson, Brad H; Holt, Robert A

    2009-10-01

    T-cell receptor (TCR) genomic loci undergo somatic V(D)J recombination, plus the addition/subtraction of nontemplated bases at recombination junctions, in order to generate the repertoire of structurally diverse T cells necessary for antigen recognition. TCR beta subunits can be unambiguously identified by their hypervariable CDR3 (Complement Determining Region 3) sequence. This is the site of V(D)J recombination encoding the principal site of antigen contact. The complexity and dynamics of the T-cell repertoire remain unknown because the potential repertoire size has made conventional sequence analysis intractable. Here, we use 5'-RACE, Illumina sequencing, and a novel short read assembly strategy to sample CDR3(beta) diversity in human T lymphocytes from peripheral blood. Assembly of 40.5 million short reads identified 33,664 distinct TCR(beta) clonotypes and provides precise measurements of CDR3(beta) length diversity, usage of nontemplated bases, sequence convergence, and preferences for TRBV (T-cell receptor beta variable gene) and TRBJ (T-cell receptor beta joining gene) gene usage and pairing. CDR3 length between conserved residues of TRBV and TRBJ ranged from 21 to 81 nucleotides (nt). TRBV gene usage ranged from 0.01% for TRBV17 to 24.6% for TRBV20-1. TRBJ gene usage ranged from 1.6% for TRBJ2-6 to 17.2% for TRBJ2-1. We identified 1573 examples of convergence where the same amino acid translation was specified by distinct CDR3(beta) nucleotide sequences. Direct sequence-based immunoprofiling will likely prove to be a useful tool for understanding repertoire dynamics in response to immune challenge, without a priori knowledge of antigen.

  5. Evaluation of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and Adults

    PubMed Central

    IJspeert, Hanna; van Schouwenburg, Pauline A.; van Zessen, David; Pico-Knijnenburg, Ingrid; Driessen, Gertjan J.; Stubbs, Andrew P.; van der Burg, Mirjam

    2016-01-01

    Upon antigen recognition via their B cell receptor (BR), B cells migrate to the germinal center where they undergo somatic hypermutation (SHM) to increase their affinity for the antigen, and class switch recombination (CSR) to change the effector function of the secreted antibodies. These steps are essential to create an antigen-experienced BR repertoire that efficiently protects the body against pathogens. At the same time, the BR repertoire should be selected to protect against responses to self-antigen or harmless antigens. Insights into the processes of SHM, selection, and CSR can be obtained by studying the antigen-experienced BR repertoire. Currently, a large reference data set of healthy children and adults, which ranges from neonates to the elderly, is not available. In this study, we analyzed the antigen-experienced repertoire of 38 healthy donors (HD), ranging from cord blood to 74 years old, by sequencing IGA and IGG transcripts using next generation sequencing. This resulted in a large, freely available reference data set containing 412,890 IGA and IGG transcripts. We used this data set to study mutation levels, SHM patterns, antigenic selection, and CSR from birth to elderly HD. Only small differences were observed in SHM patterns, while the mutation levels increase in early childhood and stabilize at 6 years of age at around 7%. Furthermore, comparison of the antigen-experienced repertoire with sequences from the naive immune repertoire showed that features associated with autoimmunity such as long CDR3 length and IGHV4-34 usage are reduced in the antigen-experienced repertoire. Moreover, IGA2 and IGG2 usage was increased in HD in higher age categories, while IGG1 usage was decreased. In addition, we studied clonal relationship in the different samples. Clonally related sequences were found with different subclasses. Interestingly, we found transcripts with the same CDR1–CDR3 sequence, but different subclasses. Together, these data suggest that

  6. Diet Shapes the Evolution of the Vertebrate Bitter Taste Receptor Gene Repertoire

    PubMed Central

    Li, Diyan; Zhang, Jianzhi

    2014-01-01

    Vertebrate Tas2r taste receptors bind to bitter compounds, which are typically poisonous, to elicit bitter sensation to prevent the ingestion of toxins. Previous studies noted a marked variation in the number of Tas2r genes among species, but the underlying cause is unclear. To address this question, we compile the Tas2r gene repertoires from 41 mammals, 4 birds, 2 reptiles, 1 amphibian, and 6 fishes. The number of intact Tas2r genes varies from 0 in the bottlenose dolphin to 51 in the Western clawed frog, with numerous expansions and contractions of the gene family throughout vertebrates, especially among tetrapods. The Tas2r gene number in a species correlates with the fraction of plants in its diet. Because plant tissues contain more toxic compounds than animal tissues do, our observation supports the hypothesis that dietary toxins are a major selective force shaping the diversity of the Tas2r repertoire. PMID:24202612

  7. Taste and odorant receptors of the coelacanth--a gene repertoire in transition.

    PubMed

    Picone, Barbara; Hesse, Uljana; Panji, Sumir; Van Heusden, Peter; Jonas, Mario; Christoffels, Alan

    2014-09-01

    G-protein coupled chemosensory receptors (GPCR-CRs) aid in the perception of odors and tastes in vertebrates. So far, six GPCR-CR families have been identified that are conserved in most vertebrate species. Phylogenetic analyses indicate differing evolutionary dynamics between teleost fish and tetrapods. The coelacanth Latimeria chalumnae belongs to the lobe-finned fishes, which represent a phylogenetic link between these two groups. We searched the genome of L. chalumnae for GPCR-CRs and found that coelacanth taste receptors are more similar to those in tetrapods than in teleost fish: two coelacanth T1R2s co-segregate with the tetrapod T1R2s that recognize sweet substances, and our phylogenetic analyses indicate that the teleost T1R2s are closer related to T1R1s (umami taste receptors) than to tetrapod T1R2s. Furthermore, coelacanths are the first fish with a large repertoire of bitter taste receptors (58 T2Rs). Considering current knowledge on feeding habits of coelacanths the question arises if perception of bitter taste is the only function of these receptors. Similar to teleost fish, coelacanths have a variety of olfactory receptors (ORs) necessary for perception of water-soluble substances. However, they also have seven genes in the two tetrapod OR subfamilies predicted to recognize airborne molecules. The two coelacanth vomeronasal receptor families are larger than those in teleost fish, and similar to tetrapods and form V1R and V2R monophyletic clades. This may point to an advanced development of the vomeronasal organ as reported for lungfish. Our results show that the intermediate position of Latimeria in the phylogeny is reflected in its GPCR-CR repertoire.

  8. Genomic variation in the vomeronasal receptor gene repertoires of inbred mice

    PubMed Central

    2012-01-01

    Background Vomeronasal receptors (VRs), expressed in sensory neurons of the vomeronasal organ, are thought to bind pheromones and mediate innate behaviours. The mouse reference genome has over 360 functional VRs arranged in highly homologous clusters, but the vast majority are of unknown function. Differences in these receptors within and between closely related species of mice are likely to underpin a range of behavioural responses. To investigate these differences, we interrogated the VR gene repertoire from 17 inbred strains of mice using massively parallel sequencing. Results Approximately half of the 6222 VR genes that we investigated could be successfully resolved, and those that were unambiguously mapped resulted in an extremely accurate dataset. Collectively VRs have over twice the coding sequence variation of the genome average; but we identify striking non-random distribution of these variants within and between genes, clusters, clades and functional classes of VRs. We show that functional VR gene repertoires differ considerably between different Mus subspecies and species, suggesting these receptors may play a role in mediating behavioural adaptations. Finally, we provide evidence that widely-used, highly inbred laboratory-derived strains have a greatly reduced, but not entirely redundant capacity for differential pheromone-mediated behaviours. Conclusions Together our results suggest that the unusually variable VR repertoires of mice have a significant role in encoding differences in olfactory-mediated responses and behaviours. Our dataset has expanded over nine fold the known number of mouse VR alleles, and will enable mechanistic analyses into the genetics of innate behavioural differences in mice. PMID:22908939

  9. Sequence analysis of a bitter taste receptor gene repertoires in different ruminant species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste r...

  10. The truncated TrkB receptor influences mammalian sleep

    PubMed Central

    Watson, Adam J.; Henson, Kyle; Dorsey, Susan G.

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin hypothesized to play an important role in mammalian sleep expression and regulation. In order to investigate the role of the truncated receptor for BDNF, TrkB.T1, in mammalian sleep, we examined sleep architecture and sleep regulation in adult mice constitutively lacking this receptor. We find that TrkB.T1 knockout mice have increased REM sleep time, reduced REM sleep latency, and reduced sleep continuity. These results demonstrate a novel role for the TrkB.T1 receptor in sleep expression and provide new insights into the relationship between BDNF, psychiatric illness, and sleep. PMID:25502751

  11. A Large Repertoire of Parasite Epitopes Matched by a Large Repertoire of Host Immune Receptors in an Invertebrate Host/Parasite Model

    PubMed Central

    Moné, Yves; Gourbal, Benjamin; Duval, David; Du Pasquier, Louis; Kieffer-Jaquinod, Sylvie; Mitta, Guillaume

    2010-01-01

    For many decades, invertebrate immunity was believed to be non-adaptive, poorly specific, relying exclusively on sometimes multiple but germ-line encoded innate receptors and effectors. But recent studies performed in different invertebrate species have shaken this paradigm by providing evidence for various types of somatic adaptations at the level of putative immune receptors leading to an enlarged repertoire of recognition molecules. Fibrinogen Related Proteins (FREPs) from the mollusc Biomphalaria glabrata are an example of these putative immune receptors. They are known to be involved in reactions against trematode parasites. Following not yet well understood somatic mechanisms, the FREP repertoire varies considerably from one snail to another, showing a trend towards an individualization of the putative immune repertoire almost comparable to that described from vertebrate adaptive immune system. Nevertheless, their antigenic targets remain unknown. In this study, we show that a specific set of these highly variable FREPs from B. glabrata forms complexes with similarly highly polymorphic and individually variable mucin molecules from its specific trematode parasite S. mansoni (Schistosoma mansoni Polymorphic Mucins: SmPoMucs). This is the first evidence of the interaction between diversified immune receptors and antigenic variant in an invertebrate host/pathogen model. The same order of magnitude in the diversity of the parasite epitopes and the one of the FREP suggests co-evolutionary dynamics between host and parasite regarding this set of determinants that could explain population features like the compatibility polymorphism observed in B. glabrata/S. mansoni interaction. In addition, we identified a third partner associated with the FREPs/SmPoMucs in the immune complex: a Thioester containing Protein (TEP) belonging to a molecular category that plays a role in phagocytosis or encapsulation following recognition. The presence of this last partner in this

  12. Statistical inference of the generation probability of T-cell receptors from sequence repertoires.

    PubMed

    Murugan, Anand; Mora, Thierry; Walczak, Aleksandra M; Callan, Curtis G

    2012-10-02

    Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune system diversity. This process, known as "VDJ recombination", is implemented via a series of stochastic molecular events involving gene choices and random nucleotide insertions between, and deletions from, genes. We use large sequence repertoires of the variable CDR3 region of human CD4+ T-cell receptor beta chains to infer the statistical properties of these basic biochemical events. Because any given CDR3 sequence can be produced in multiple ways, the probability distribution of hidden recombination events cannot be inferred directly from the observed sequences; we therefore develop a maximum likelihood inference method to achieve this end. To separate the properties of the molecular rearrangement mechanism from the effects of selection, we focus on nonproductive CDR3 sequences in T-cell DNA. We infer the joint distribution of the various generative events that occur when a new T-cell receptor gene is created. We find a rich picture of correlation (and absence thereof), providing insight into the molecular mechanisms involved. The generative event statistics are consistent between individuals, suggesting a universal biochemical process. Our probabilistic model predicts the generation probability of any specific CDR3 sequence by the primitive recombination process, allowing us to quantify the potential diversity of the T-cell repertoire and to understand why some sequences are shared between individuals. We argue that the use of formal statistical inference methods, of the kind presented in this paper, will be essential for quantitative understanding of the generation and evolution of diversity in the adaptive immune system.

  13. High Throughput Sequencing of T Cell Antigen Receptors Reveals a Conserved TCR Repertoire.

    PubMed

    Hou, Xianliang; Lu, Chong; Chen, Sisi; Xie, Qian; Cui, Guangying; Chen, Jianing; Chen, Zhi; Wu, Zhongwen; Ding, Yulong; Ye, Ping; Dai, Yong; Diao, Hongyan

    2016-03-01

    The T-cell receptor (TCR) repertoire is a mirror of the human immune system that reflects processes caused by infections, cancer, autoimmunity, and aging. Next-generation sequencing has become a powerful tool for deep TCR profiling. Herein, we used this technology to study the repertoire features of TCR beta chain in the blood of healthy individuals.Peripheral blood samples were collected from 10 healthy donors. T cells were isolated with anti-human CD3 magnetic beads according to the manufacturer's protocol. We then combined multiplex-PCR, Illumina sequencing, and IMGT/High V-QUEST to analyze the characteristics and polymorphisms of the TCR.Most of the individual T cell clones were present at very low frequencies, suggesting that they had not undergone clonal expansion. The usage frequencies of the TCR beta variable, beta joining, and beta diversity gene segments were similar among T cells from different individuals. Notably, the usage frequency of individual nucleotides and amino acids within complementarity-determining region (CDR3) intervals was remarkably consistent between individuals. Moreover, our data show that terminal deoxynucleotidyl transferase activity was biased toward the insertion of G (31.92%) and C (27.14%) over A (21.82%) and T (19.12%) nucleotides.Some conserved features could be observed in the composition of CDR3, which may inform future studies of human TCR gene recombination.

  14. High Throughput Sequencing of T Cell Antigen Receptors Reveals a Conserved TCR Repertoire

    PubMed Central

    Hou, Xianliang; Lu, Chong; Chen, Sisi; Xie, Qian; Cui, Guangying; Chen, Jianing; Chen, Zhi; Wu, Zhongwen; Ding, Yulong; Ye, Ping; Dai, Yong; Diao, Hongyan

    2016-01-01

    Abstract The T-cell receptor (TCR) repertoire is a mirror of the human immune system that reflects processes caused by infections, cancer, autoimmunity, and aging. Next-generation sequencing has become a powerful tool for deep TCR profiling. Herein, we used this technology to study the repertoire features of TCR beta chain in the blood of healthy individuals. Peripheral blood samples were collected from 10 healthy donors. T cells were isolated with anti-human CD3 magnetic beads according to the manufacturer's protocol. We then combined multiplex-PCR, Illumina sequencing, and IMGT/High V-QUEST to analyze the characteristics and polymorphisms of the TCR. Most of the individual T cell clones were present at very low frequencies, suggesting that they had not undergone clonal expansion. The usage frequencies of the TCR beta variable, beta joining, and beta diversity gene segments were similar among T cells from different individuals. Notably, the usage frequency of individual nucleotides and amino acids within complementarity-determining region (CDR3) intervals was remarkably consistent between individuals. Moreover, our data show that terminal deoxynucleotidyl transferase activity was biased toward the insertion of G (31.92%) and C (27.14%) over A (21.82%) and T (19.12%) nucleotides. Some conserved features could be observed in the composition of CDR3, which may inform future studies of human TCR gene recombination. PMID:26962778

  15. Birds Generally Carry a Small Repertoire of Bitter Taste Receptor Genes.

    PubMed

    Wang, Kai; Zhao, Huabin

    2015-09-04

    As they belong to the most species-rich class of tetrapod vertebrates, birds have long been believed to possess an inferior taste system. However, the bitter taste is fundamental in birds to recognize dietary toxins (which are typically bitter) in potential food sources. To characterize the evolution of avian bitter taste receptor genes (Tas2rs) and to test whether dietary toxins have shaped the repertoire size of avian Tas2rs, we examined 48 genomes representing all but 3 avian orders. The total number of Tas2r genes was found to range from 1 in the domestic pigeon to 12 in the bar-tailed trogon, with an average of 4, which suggested that a much smaller Tas2r gene repertoire exists in birds than in other vertebrates. Furthermore, we uncovered a positive correlation between the number of putatively functional Tas2rs and the abundance of potential toxins in avian diets. Because plant products contain more toxins than animal tissues and insects release poisonous defensive secretions, we hypothesized that herbivorous and insectivorous birds may demand more functional Tas2rs than carnivorous birds feeding on noninsect animals. Our analyses appear to support this hypothesis and highlight the critical role of taste perception in birds.

  16. Birds Generally Carry a Small Repertoire of Bitter Taste Receptor Genes

    PubMed Central

    Wang, Kai; Zhao, Huabin

    2015-01-01

    As they belong to the most species-rich class of tetrapod vertebrates, birds have long been believed to possess an inferior taste system. However, the bitter taste is fundamental in birds to recognize dietary toxins (which are typically bitter) in potential food sources. To characterize the evolution of avian bitter taste receptor genes (Tas2rs) and to test whether dietary toxins have shaped the repertoire size of avian Tas2rs, we examined 48 genomes representing all but 3 avian orders. The total number of Tas2r genes was found to range from 1 in the domestic pigeon to 12 in the bar-tailed trogon, with an average of 4, which suggested that a much smaller Tas2r gene repertoire exists in birds than in other vertebrates. Furthermore, we uncovered a positive correlation between the number of putatively functional Tas2rs and the abundance of potential toxins in avian diets. Because plant products contain more toxins than animal tissues and insects release poisonous defensive secretions, we hypothesized that herbivorous and insectivorous birds may demand more functional Tas2rs than carnivorous birds feeding on noninsect animals. Our analyses appear to support this hypothesis and highlight the critical role of taste perception in birds. PMID:26342138

  17. Localization of Mineralocorticoid Receptors at Mammalian Synapses

    DTIC Science & Technology

    2010-12-15

    synaptic potentiation. Nat Neurosci 11: 868–870. 10. Karst H, Berger S, Turiault M, Tronche F, Schutz G, et al. (2005) Mineralocorticoid receptors are...and centrally regulated functions. Kidney Int 57: 1329–1336. 14. Joels M, Karst H, DeRijk R, de Kloet ER (2008) The coming out of the brain...mineralocorticoid receptor. Trends Neurosci 31: 1–7. 15. Karst H, Berger S, Erdmann G, Schutz G, Joels M (2010) Metaplasticity of amygdalar responses to the

  18. The heterogeneous allelic repertoire of human toll-like receptor (TLR) genes.

    PubMed

    Georgel, Philippe; Macquin, Cécile; Bahram, Seiamak

    2009-11-17

    Toll-Like Receptors (TLR) are critical elements of the innate arm of the vertebrate immune system. They constitute a multigenic family of receptors which collectively bind a diverse array of--exogeneous as well as endogeneous--ligands. An exponential burst of knowledge has defined their biological role in fight against infections and generation/modulation of auto-immune disorders. Hence, they could at least be conceptually recognized--despite being structurally unrelated - as innate counterparts to Major Histocompatibility Complex (MHC) molecules--equally recognizing antigenic ligands (albeit structurally more homogeneous i.e., peptides), again derived from self and/or non-self sources--preeminent this time in adaptive immunity. Our great disparities in face of infections and/or susceptibility to auto-immune diseases have provoked an intense search for genetic explanations, in part satisfied by the extraordinary MHC allelic repertoire. An equally in-depth and systematic analysis of TLR diversity is lacking despite numerous independent reports of a growing number of SNPs within these loci. The work described here aims at providing a preliminary picture of the allelic repertoire--and not purely SNPs--of all 10 human TLR coding sequences (with exception of TLR3) within a single cohort of up to 100 individuals. It appears from our work that TLR are unequally polymorphic: TLR2 (DNA alleles: 7/protein alleles: 3), 4 (4/3), 7 (6/3), 8 (9/2) and 9 (8/3) being comparatively least diverse whereas TLR1 (11/10), 5 (14/12), 6 (10/8) and 10 (15/10) show a substantial number of alleles. In addition to allelic assignment of a large number of SNPs, 10 new polymorphic positions were hereby identified. Hence this work depicts a first overview of the diversity of almost all human TLR genes, a prelude for large-scale population genetics as well as genetic association studies.

  19. Smallest bitter taste receptor (T2Rs) gene repertoire in carnivores.

    PubMed

    Hu, Ling-Ling; Shi, Peng

    2013-06-01

    Bitter taste reception is presumably associated with dietary selection, preventing animals from ingesting potentially harmful compounds. Accordingly, carnivores, who encounter these toxic substances less often, should have fewer genes associated with bitter taste reception compared with herbivores and omnivores. To investigate the genetic basis of bitter taste reception, we confirmed bitter taste receptor (T2R) genes previously found in the genome sequences of two herbivores (cow and horse), two omnivores (mouse and rat) and one carnivore (dog). We also identified, for the first time, the T2R repertoire from the genome of other four carnivore species (ferret, giant panda, polar bear and cat) and detected 17-20 bitter receptor genes from the five carnivore genomes, including 12-16 intact genes, 0-1 partial but putatively functional genes, and 3-8 pseudogenes. Both the intact T2R genes and the total T2R gene number among carnivores were the smallest among the tested species, supporting earlier speculations that carnivores have fewer T2R genes, herbivores an intermediate number, and omnivores the largest T2R gene repertoire. To further explain the genetic basis for this disparity, we constructed a phylogenetic tree, which showed most of the T2R genes from the five carnivores were one-to-one orthologs across the tree, suggesting that carnivore T2Rs were conserved among mammals. Similarly, the small carnivore T2R family size was likely due to rare duplication events. Collectively, these results strengthen arguments for the connection between T2R gene family size, diet and habit.

  20. Glycosaminoglycan receptors facilitate infection of mammalian cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A growing list of viruses has been reported to use more than one receptor for binding and internalization during infection of the host cell. Sialic acid residues or glycosaminoglycans, such as heparin sulfate, frequently function in this scenario, as a first contact, charge based, low affinity bindi...

  1. Assembly-based inference of B-cell receptor repertoires from short read RNA sequencing data with V’DJer

    PubMed Central

    Mose, Lisle E.; Selitsky, Sara R.; Bixby, Lisa M.; Marron, David L.; Iglesia, Michael D.; Serody, Jonathan S.; Perou, Charles M.; Vincent, Benjamin G.; Parker, Joel S.

    2016-01-01

    Motivation: B-cell receptor (BCR) repertoire profiling is an important tool for understanding the biology of diverse immunologic processes. Current methods for analyzing adaptive immune receptor repertoires depend upon PCR amplification of VDJ rearrangements followed by long read amplicon sequencing spanning the VDJ junctions. While this approach has proven to be effective, it is frequently not feasible due to cost or limited sample material. Additionally, there are many existing datasets where short-read RNA sequencing data are available but PCR amplified BCR data are not. Results: We present here V’DJer, an assembly-based method that reconstructs adaptive immune receptor repertoires from short-read RNA sequencing data. This method captures expressed BCR loci from a standard RNA-seq assay. We applied this method to 473 Melanoma samples from The Cancer Genome Atlas and demonstrate V’DJer’s ability to accurately reconstruct BCR repertoires from short read mRNA-seq data. Availability and Implementation: V’DJer is implemented in C/C ++, freely available for academic use and can be downloaded from Github: https://github.com/mozack/vdjer Contact: benjamin_vincent@med.unc.edu or parkerjs@email.unc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27559159

  2. An altered repertoire of T cell receptor V gene expression by rheumatoid synovial fluid T lymphocytes.

    PubMed Central

    Lunardi, C; Marguerie, C; So, A K

    1992-01-01

    The pattern of T cell receptor V gene expression by lymphocytes from rheumatoid synovial fluid and paired peripheral blood samples was compared using a polymerase chain reaction (PCR)-based assay. Eight rheumatoid arthritis (RA) patients who had varying durations of disease (from 2 to 20 years) were studied. In all patients there was evidence of a different pattern of V gene expression between the two compartments. Significantly increased expression of at least one V alpha or V beta gene family by synovial fluid T cells was observed in all the patients studied. Three different V alpha (V alpha 10, 15 and 18) and three V beta (V beta 4, 5 and 13) families were commonly elevated. Sequencing of synovial V beta transcripts demonstrated that the basis of increased expression of selected V gene families in the synovial fluid was due to the presence of dominant clonotypes within those families, which constituted up to 53% of the sequences isolated from one particular synovial V gene family. There were considerable differences in the NDJ sequences found in synovial and peripheral blood T cell receptor (TCR) transcripts of the same V beta gene family. These data suggest that the TCR repertoire in the two compartments differs, and that antigen-driven expansion of particular synovial T cell populations is a component of rheumatoid synovitis, and is present in all stages of the disease. PMID:1458680

  3. The gentle touch receptors of mammalian skin.

    PubMed

    Zimmerman, Amanda; Bai, Ling; Ginty, David D

    2014-11-21

    The skin is our largest sensory organ, transmitting pain, temperature, itch, and touch information to the central nervous system. Touch sensations are conveyed by distinct combinations of mechanosensory end organs and the low-threshold mechanoreceptors (LTMRs) that innervate them. Here we explore the various structures underlying the diverse functions of cutaneous LTMR end organs. Beyond anchoring of LTMRs to the surrounding dermis and epidermis, recent evidence suggests that the non-neuronal components of end organs play an active role in signaling to LTMRs and may physically gate force-sensitive channels in these receptors. Combined with LTMR intrinsic properties, the balance of these factors comprises the response properties of mechanosensory neurons and, thus, the neural encoding of touch.

  4. Structure of a mammalian ryanodine receptor.

    PubMed

    Zalk, Ran; Clarke, Oliver B; des Georges, Amédée; Grassucci, Robert A; Reiken, Steven; Mancia, Filippo; Hendrickson, Wayne A; Frank, Joachim; Marks, Andrew R

    2015-01-01

    Ryanodine receptors (RyRs) mediate the rapid release of calcium (Ca(2+)) from intracellular stores into the cytosol, which is essential for numerous cellular functions including excitation-contraction coupling in muscle. Lack of sufficient structural detail has impeded understanding of RyR gating and regulation. Here we report the closed-state structure of the 2.3-megadalton complex of the rabbit skeletal muscle type 1 RyR (RyR1), solved by single-particle electron cryomicroscopy at an overall resolution of 4.8 Å. We fitted a polyalanine-level model to all 3,757 ordered residues in each protomer, defining the transmembrane pore in unprecedented detail and placing all cytosolic domains as tertiary folds. The cytosolic assembly is built on an extended α-solenoid scaffold connecting key regulatory domains to the pore. The RyR1 pore architecture places it in the six-transmembrane ion channel superfamily. A unique domain inserted between the second and third transmembrane helices interacts intimately with paired EF-hands originating from the α-solenoid scaffold, suggesting a mechanism for channel gating by Ca(2+).

  5. Genomic architecture of MHC-linked odorant receptor gene repertoires among 16 vertebrate species.

    PubMed

    Santos, Pablo Sandro Carvalho; Kellermann, Thomas; Uchanska-Ziegler, Barbara; Ziegler, Andreas

    2010-09-01

    The recent sequencing and assembly of the genomes of different organisms have shown that almost all vertebrates studied in detail so far have one or more clusters of genes encoding odorant receptors (OR) in close physical linkage to the major histocompatibility complex (MHC). It has been postulated that MHC-linked OR genes could be involved in MHC-influenced mate choice, comprising both pre- as well as post-copulatory mechanisms. We have therefore carried out a systematic comparison of protein sequences of these receptors from the genomes of man, chimpanzee, gorilla, orangutan, rhesus macaque, mouse, rat, dog, cat, cow, pig, horse, elephant, opossum, frog and zebra fish (amounting to a total of 559 protein sequences) in order to identify OR families exhibiting evolutionarily conserved MHC linkage. In addition, we compared the genomic structure of this region within these 16 species, accounting for presence or absence of OR gene families, gene order, transcriptional orientation and linkage to the MHC or framework genes. The results are presented in the form of gene maps and phylogenetic analyses that reveal largely concordant repertoires of gene families, at least among tetrapods, although each of the eight taxa studied (primates, rodents, ungulates, carnivores, proboscids, marsupials, amphibians and teleosts) exhibits a typical architecture of MHC (or MHC framework loci)-linked OR genes. Furthermore, the comparison of the genomic organization of this region has implications for phylogenetic relationships between closely related taxa, especially in disputed cases such as the evolutionary history of even- and odd-toed ungulates and carnivores. Finally, the largely conserved linkage between distinct OR genes and the MHC supports the concept that particular alleles within a given haplotype function in a concerted fashion during self-/non-self-discrimination processes in reproduction.

  6. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates

    PubMed Central

    Brunet, Frédéric G.; Volff, Jean-Nicolas; Schartl, Manfred

    2016-01-01

    The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75% after 1R/2R, 64.4% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling. PMID:27260203

  7. Murinization of Internalin Extends Its Receptor Repertoire, Altering Listeria monocytogenes Cell Tropism and Host Responses

    PubMed Central

    Tsai, Yu-Huan; Disson, Olivier; Bierne, Hélène; Lecuit, Marc

    2013-01-01

    Listeria monocytogenes (Lm) is an invasive foodborne pathogen that leads to severe central nervous system and maternal-fetal infections. Lm ability to actively cross the intestinal barrier is one of its key pathogenic properties. Lm crosses the intestinal epithelium upon the interaction of its surface protein internalin (InlA) with its host receptor E-cadherin (Ecad). InlA-Ecad interaction is species-specific, does not occur in wild-type mice, but does in transgenic mice expressing human Ecad and knock-in mice expressing humanized mouse Ecad. To study listeriosis in wild-type mice, InlA has been “murinized” to interact with mouse Ecad. Here, we demonstrate that, unexpectedly, murinized InlA (InlAm) mediates not only Ecad-dependent internalization, but also N-cadherin-dependent internalization. Consequently, InlAm-expressing Lm targets not only goblet cells expressing luminally-accessible Ecad, as does Lm in humanized mice, but also targets villous M cells, which express luminally-accessible N-cadherin. This aberrant Lm portal of entry results in enhanced innate immune responses and intestinal barrier damage, both of which are not observed in wild-type Lm-infected humanized mice. Murinization of InlA therefore not only extends the host range of Lm, but also broadens its receptor repertoire, providing Lm with artifactual pathogenic properties. These results challenge the relevance of using InlAm-expressing Lm to study human listeriosis and in vivo host responses to this human pathogen. PMID:23737746

  8. Identification of Complete Repertoire of Apis florea Odorant Receptors Reveals Complex Orthologous Relationships with Apis mellifera.

    PubMed

    Karpe, Snehal D; Jain, Rikesh; Brockmann, Axel; Sowdhamini, Ramanathan

    2016-09-26

    We developed a computational pipeline for homology based identification of the complete repertoire of olfactory receptor (OR) genes in the Asian honey bee species, Apis florea Apis florea is phylogenetically the most basal honey bee species and also the most distant sister species to the Western honey bee Apis mellifera, for which all OR genes had been identified before. Using our pipeline, we identified 180 OR genes in A. florea, which is very similar to the number of ORs identified in A. mellifera (177 ORs). Many characteristics of the ORs including gene structure, synteny of tandemly repeated ORs and basic phylogenetic clustering are highly conserved. The composite phylogenetic tree of A. florea and A. mellifera ORs could be divided into 21 clades which are in harmony with the existing Hymenopteran tree. However, we found a few nonorthologous OR relationships between both species as well as independent pseudogenization of ORs suggesting separate evolutionary changes. Particularly, a subgroup of the OR gene clade XI, which had been hypothesized to code cuticular hydrocarbon receptors showed a high number of species-specific ORs RNAseq analysis detected a total number of 145 OR transcripts in male and 162 in female antennae. Most of the OR genes were highly expressed on the female antennae. However, we detected five distinct male-biased OR genes, out of which three genes (AfOr11, AfOr18, AfOr170P) were shown to be male-biased in A. mellifera, too, thus corroborating a behavioral function in sex-pheromone communication.

  9. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates.

    PubMed

    Brunet, Frédéric G; Volff, Jean-Nicolas; Schartl, Manfred

    2016-06-03

    The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75% after 1R/2R, 64.4% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling.

  10. Deciphering the Receptor Repertoire Encoding Specific Odorants by Time-Lapse Single-Cell Array Cytometry

    PubMed Central

    Suzuki, Masato; Yoshimoto, Nobuo; Shimono, Ken; Kuroda, Shun’ichi

    2016-01-01

    Mammals can recognize a vast number of odorants by using olfactory receptors (ORs) known as G protein-coupled receptors. The OR gene family is one of the most diverse gene families in mammalian genomes. Because of the vast combinations of ORs and odorants, few ORs have thus far been linked to specific odorants. Here, we established a functional screening method for OR genes by using a microchamber array containing >5,400 single olfactory epithelium-derived cells from mice applied to time-lapse single-cell array cytometry. This method facilitated the prompt isolation of single olfactory sensory neurons (OSNs) responding to the odorant of interest. Subsequent single-cell RT-PCR allowed us to isolate the genes encoding respective ORs. By using volatile molecules recognized as biomarkers for lung cancers, this method could deorphanize ORs and thereby reconstitute the OR-mediated signaling cascade in HEK293T cells. Thus, our system could be applied to identify any receptor by using specific ligands in the fields of physiopathology and pharmacology. PMID:26832639

  11. Repertoire of virus-derived small RNAs produced by mosquito and mammalian cells in response to dengue virus infection.

    PubMed

    Schirtzinger, Erin E; Andrade, Christy C; Devitt, Nicholas; Ramaraj, Thiruvarangan; Jacobi, Jennifer L; Schilkey, Faye; Hanley, Kathryn A

    2015-02-01

    RNA interference (RNAi) is the major defense of many arthropods against arthropod-borne RNA viruses (arboviruses), but the role of RNAi in vertebrate immunity to arboviruses is not clear. RNA viruses can trigger RNAi in vertebrate cells, but the vertebrate interferon response may obscure this interaction. We quantified virus-derived small RNAs (vRNAs) generated by mosquito (U4.4) cells and interferon-deficient (Vero) and interferon-competent (HuH-7) mammalian cells infected with a single isolate of mosquito-borne dengue virus. Mosquito cells produced significantly more vRNAs than mammalian cells, and mosquito cell vRNAs were derived from both the positive- and negative-sense dengue genomes whereas mammalian cell vRNAs were derived primarily from positive-sense genome. Mosquito cell vRNAs were predominantly 21 nucleotides in length whereas mammalian cell vRNAs were between 12 and 36 nucleotides with a modest peak at 24 nucleotides. Hot-spots, regions of the virus genome that generated a disproportionate number of vRNAs, overlapped among the cell lines.

  12. Recognition of Bacterial Signal Peptides by Mammalian Formyl Peptide Receptors

    PubMed Central

    Bufe, Bernd; Schumann, Timo; Kappl, Reinhard; Bogeski, Ivan; Kummerow, Carsten; Podgórska, Marta; Smola, Sigrun; Hoth, Markus; Zufall, Frank

    2015-01-01

    Formyl peptide receptors (FPRs) are G-protein-coupled receptors that function as chemoattractant receptors in innate immune responses. Here we perform systematic structure-function analyses of FPRs from six mammalian species using structurally diverse FPR peptide agonists and identify a common set of conserved agonist properties with typical features of pathogen-associated molecular patterns. Guided by these results, we discover that bacterial signal peptides, normally used to translocate proteins across cytoplasmic membranes, are a vast family of natural FPR agonists. N-terminally formylated signal peptide fragments with variable sequence and length activate human and mouse FPR1 and FPR2 at low nanomolar concentrations, thus establishing FPR1 and FPR2 as sensitive and broad signal peptide receptors. The vomeronasal receptor mFpr-rs1 and its sequence orthologue hFPR3 also react to signal peptides but are much more narrowly tuned in signal peptide recognition. Furthermore, all signal peptides examined here function as potent activators of the innate immune system. They elicit robust, FPR-dependent calcium mobilization in human and mouse leukocytes and trigger a range of classical innate defense mechanisms, such as the production of reactive oxygen species, metalloprotease release, and chemotaxis. Thus, bacterial signal peptides constitute a novel class of immune activators that are likely to contribute to mammalian immune defense against bacteria. This evolutionarily conserved detection mechanism combines structural promiscuity with high specificity and enables discrimination between bacterial and eukaryotic signal sequences. With at least 175,542 predicted sequences, bacterial signal peptides represent the largest and structurally most heterogeneous class of G-protein-coupled receptor agonists currently known for the innate immune system. PMID:25605714

  13. Killer immunoglobulin-like receptor repertoire analysis in a Caucasian Spanish cohort with inflammatory bowel disease.

    PubMed

    López-Hernández, Ruth; Campillo, Jose A; Legaz, Isabel; Valdés, Mariano; Salama, Hortensia; Boix, Francisco; Hernández-Martínez, A M; Eguia, Jorge; González-Martínez, G; Moya-Quiles, Maria R; Minguela, Alfredo; García-Alonso, Ana; Carballo, Fernando; Muro, Manuel

    2016-11-01

    Immunological molecules are implicated in inflammatory disorders, including inflammatory bowel disease (IBD; Crohn disease [CD] and ulcerative colitis [UC]). Killer cell immunoglobulin-like receptors (KIRs) are also genetically variable proteins involved in immune function. They are expressed by NK cells and certain T lymphocytes, regulate specificity and function by interaction with HLA Class I molecules, may be either inhibitory or activating and are polymorphic both in terms of alleles and haplotype gene content. Genetic associations between activating KIRs and certain autoimmune and inflammatory diseases have been reported; however, a possible association between KIR and IBD remains unclear. The aim of this study was to determine the relationship between KIR repertoire and IBD pathologies in a Spanish cohort. KIR variability was analyzed using PCR-sequence specific oligonucleotide probes (SSOP). Inhibitory KIR2DL5 was found more frequently in UC and IBD patient groups than in healthy controls (P = 0.028 and P = 0.01, respectively), as was activating KIR2DS1 (P = 0.02, Pc > 0.05, UC vs. Controls; P = 0.001, Pc = 0.01, IBD vs Controls; P = 0.01, Pc > 0.05, Controls vs CR), KIR2DS5 (P = 0.0028, Pc = 0.04, Controls vs UC; P = 0.0001, Pc = 0.0017, Controls vs IBD; P = 0.01, Pc > 0.05, Controls vs CD) and KIR3DS1 (P = 0.012, Pc > 0.05, Controls vs IBD). Our data suggest that imbalance between activating and inhibitory KIR may partially explain the different pathogeneses of these IBDs and that there is a hypothetical role for the telomeric B region (which contains both KIR2DS5 and KIR2DS1) in these diseases.

  14. Evolutionary redesign of the Atlantic cod (Gadus morhua L.) Toll-like receptor repertoire by gene losses and expansions.

    PubMed

    Solbakken, Monica H; Tørresen, Ole K; Nederbragt, Alexander J; Seppola, Marit; Gregers, Tone F; Jakobsen, Kjetill S; Jentoft, Sissel

    2016-04-29

    Genome sequencing of the teleost Atlantic cod demonstrated loss of the Major Histocompatibility Complex (MHC) class II, an extreme gene expansion of MHC class I and gene expansions and losses in the innate pattern recognition receptor (PRR) family of Toll-like receptors (TLR). In a comparative genomic setting, using an improved version of the genome, we characterize PRRs in Atlantic cod with emphasis on TLRs demonstrating the loss of TLR1/6, TLR2 and TLR5 and expansion of TLR7, TLR8, TLR9, TLR22 and TLR25. We find that Atlantic cod TLR expansions are strongly influenced by diversifying selection likely to increase the detectable ligand repertoire through neo- and subfunctionalization. Using RNAseq we find that Atlantic cod TLRs display likely tissue or developmental stage-specific expression patterns. In a broader perspective, a comprehensive vertebrate TLR phylogeny reveals that the Atlantic cod TLR repertoire is extreme with regards to losses and expansions compared to other teleosts. In addition we identify a substantial shift in TLR repertoires following the evolutionary transition from an aquatic vertebrate (fish) to a terrestrial (tetrapod) life style. Collectively, our findings provide new insight into the function and evolution of TLRs in Atlantic cod as well as the evolutionary history of vertebrate innate immunity.

  15. Evolutionary redesign of the Atlantic cod (Gadus morhua L.) Toll-like receptor repertoire by gene losses and expansions

    PubMed Central

    Solbakken, Monica H.; Tørresen, Ole K.; Nederbragt, Alexander J.; Seppola, Marit; Gregers, Tone F.; Jakobsen, Kjetill S.; Jentoft, Sissel

    2016-01-01

    Genome sequencing of the teleost Atlantic cod demonstrated loss of the Major Histocompatibility Complex (MHC) class II, an extreme gene expansion of MHC class I and gene expansions and losses in the innate pattern recognition receptor (PRR) family of Toll-like receptors (TLR). In a comparative genomic setting, using an improved version of the genome, we characterize PRRs in Atlantic cod with emphasis on TLRs demonstrating the loss of TLR1/6, TLR2 and TLR5 and expansion of TLR7, TLR8, TLR9, TLR22 and TLR25. We find that Atlantic cod TLR expansions are strongly influenced by diversifying selection likely to increase the detectable ligand repertoire through neo- and subfunctionalization. Using RNAseq we find that Atlantic cod TLRs display likely tissue or developmental stage-specific expression patterns. In a broader perspective, a comprehensive vertebrate TLR phylogeny reveals that the Atlantic cod TLR repertoire is extreme with regards to losses and expansions compared to other teleosts. In addition we identify a substantial shift in TLR repertoires following the evolutionary transition from an aquatic vertebrate (fish) to a terrestrial (tetrapod) life style. Collectively, our findings provide new insight into the function and evolution of TLRs in Atlantic cod as well as the evolutionary history of vertebrate innate immunity. PMID:27126702

  16. MHC class I–specific inhibitory receptors and their ligands structure diverse human NK-cell repertoires toward a balance of missing self-response

    PubMed Central

    Yawata, Nobuyo; Draghi, Monia; Partheniou, Fotini; Little, Ann-Margaret; Parham, Peter

    2008-01-01

    Variegated expression of 6 inhibitory HLA class I–specific receptors on primary NK cells was studied using high-dimension flow cytometry in 58 humans to understand the structure and function of NK-cell repertoires. Sixty-four subsets expressing all possible receptor com-binations were present in each repertoire, and the frequency of receptor-null cells varied among the donors. Enhancement in missing-self response between NK subsets varied substantially where subset responses were defined by donor KIR/HLA allotypes, reflecting the differences in interaction between inhibitory receptors and their ligands. This contrasted to the enhancement conferred by NKG2A, which was constant and of intermediate strength. We infer a mechanism that modulates frequencies of the NK subsets displaying diverse levels of missing-self response, a system that reduces the presence of KIR-expressing subsets that display either too strong or too weak a response and effectively replaces them with NKG2A-expressing cells in the repertoire. Through this high-resolution analysis of inhibitory receptor expression, 5 types of NK-cell repertoire were defined by their content of NKG2A+/NKG2A− cells, frequency of receptor-null cells, and degree of KIR receptor coexpression. The analyses provide new perspective on how personalized human NK-cell repertoires are structured. PMID:18583565

  17. High-throughput Analysis of Mammalian Olfactory Receptors: Measurement of Receptor Activation via Luciferase Activity

    PubMed Central

    Trimmer, Casey; Snyder, Lindsey L.; Mainland, Joel D.

    2014-01-01

    Odorants create unique and overlapping patterns of olfactory receptor activation, allowing a family of approximately 1,000 murine and 400 human receptors to recognize thousands of odorants. Odorant ligands have been published for fewer than 6% of human receptors1-11. This lack of data is due in part to difficulties functionally expressing these receptors in heterologous systems. Here, we describe a method for expressing the majority of the olfactory receptor family in Hana3A cells, followed by high-throughput assessment of olfactory receptor activation using a luciferase reporter assay. This assay can be used to (1) screen panels of odorants against panels of olfactory receptors; (2) confirm odorant/receptor interaction via dose response curves; and (3) compare receptor activation levels among receptor variants. In our sample data, 328 olfactory receptors were screened against 26 odorants. Odorant/receptor pairs with varying response scores were selected and tested in dose response. These data indicate that a screen is an effective method to enrich for odorant/receptor pairs that will pass a dose response experiment, i.e. receptors that have a bona fide response to an odorant. Therefore, this high-throughput luciferase assay is an effective method to characterize olfactory receptors—an essential step toward a model of odor coding in the mammalian olfactory system. PMID:24961834

  18. Short latency compound action potentials from mammalian gravity receptor organs

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Jones, S. M.

    1999-01-01

    Gravity receptor function was characterized in four mammalian species using far-field vestibular evoked potentials (VsEPs). VsEPs are compound action potentials of the vestibular nerve and central relays that are elicited by linear acceleration ramps applied to the cranium. Rats, mice, guinea pigs, and gerbils were studied. In all species, response onset occurred within 1.5 ms of the stimulus onset. Responses persisted during intense (116 dBSPL) wide-band (50 to 50 inverted question mark omitted inverted question mark000 Hz) forward masking, whereas auditory responses to intense clicks (112 dBpeSPL) were eliminated under the same conditions. VsEPs remained after cochlear extirpation but were eliminated following bilateral labyrinthectomy. Responses included a series of positive and negative peaks that occurred within 8 ms of stimulus onset (range of means at +6 dBre: 1.0 g/ms: P1=908 to 1062 micros, N1=1342 to 1475 micros, P2=1632 to 1952 micros, N2=2038 to 2387 micros). Mean response amplitudes at +6 dBre: 1.0 g/ms ranged from 0.14 to 0.99 microV. VsEP input/output functions revealed latency slopes that varied across peaks and species ranging from -19 to -51 micros/dB. Amplitude-intensity slopes also varied ranging from 0.04 to 0.08 microV/dB for rats and mice. Latency values were comparable to those of birds although amplitudes were substantially smaller in mammals. VsEP threshold values were considerably higher in mammals compared to birds and ranged from -8.1 to -10.5 dBre 1.0 g/ms across species. These results support the hypothesis that mammalian gravity receptors are less sensitive to dynamic stimuli than are those of birds.

  19. CARbodies: Human Antibodies Against Cell Surface Tumor Antigens Selected From Repertoires Displayed on T Cell Chimeric Antigen Receptors

    PubMed Central

    Alonso-Camino, Vanesa; Sánchez-Martín, David; Compte, Marta; Nuñez-Prado, Natalia; Diaz, Rosa M; Vile, Richard; Alvarez-Vallina, Luis

    2013-01-01

    A human single-chain variable fragment (scFv) antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs). The repertoire was fused to a first-generation T cell receptor ζ (TCRζ)-based chimeric antigen receptor (CAR). We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system. After three rounds of activation-selection there was a clear repertoire restriction, with the emergence dominant clones. The CARbodies were purified from bacterial cultures as soluble and active proteins. Furthermore, to validate its potential application for adoptive cell therapy, human T cells were transduced with a LV encoding a second-generation costimulatory CAR (CARv2) bearing the selected CARbodies. Transduced human primary T cells expressed significant levels of the CARbodies-based CARv2 fusion protein on the cell surface, and importantly could be specifically activated, after stimulation with tumor cells. This approach is a promising tool for the generation of antibodies fully adapted to the display format (CAR) and the selection context (cell synapse), which could extend the scope of current adoptive cell therapy strategies with CAR-redirected T cells. PMID:23695536

  20. Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function

    PubMed Central

    Albuquerque, Edson X.; Pereira, Edna F. R.; Alkondon, Manickavasagom; Rogers, Scott W.

    2009-01-01

    The classical studies of nicotine by Langley at the turn of the 20th century introduced the concept of a “receptive substance,” from which the idea of a “receptor” came to light. Subsequent studies aided by the Torpedo electric organ, a rich source of muscle-type nicotinic receptors (nAChRs), and the discovery of α-bungarotoxin, a snake toxin that binds pseudo-irreversibly to the muscle nAChR, resulted in the muscle nAChR being the best characterized ligand-gated ion channel hitherto. With the advancement of functional and genetic studies in the late 1980s, the existence of nAChRs in the mammalian brain was confirmed and the realization that the numerous nAChR subtypes contribute to the psychoactive properties of nicotine and other drugs of abuse and to the neuropathology of various diseases, including Alzheimer’s, Parkinson’s, and schizophrenia, has since emerged. This review provides a comprehensive overview of these findings and the more recent revelations of the impact that the rich diversity in function and expression of this receptor family has on neuronal and nonneuronal cells throughout the body. Despite these numerous developments, our understanding of the contributions of specific neuronal nAChR subtypes to the many facets of physiology throughout the body remains in its infancy. PMID:19126755

  1. Functional promiscuity in a mammalian chemosensory system: extensive expression of vomeronasal receptors in the main olfactory epithelium of mouse lemurs

    PubMed Central

    Hohenbrink, Philipp; Dempewolf, Silke; Zimmermann, Elke; Mundy, Nicholas I.; Radespiel, Ute

    2014-01-01

    The vomeronasal organ (VNO) is functional in most terrestrial mammals, though progressively reduced in the primate lineage, and is used for intraspecific communication and predator recognition. Vomeronasal receptor (VR) genes comprise two families of chemosensory genes (V1R and V2R) that have been considered to be specific for the VNO. However, recently a large number of VRs were reported to be expressed in the main olfactory epithelium (MOE) of mice, but there is little knowledge of the expression of these genes outside of rodents. To explore the function of VR genes in mammalian evolution, we analyzed and compared the expression of 64 V1R and 2 V2R genes in the VNO and the MOE of the gray mouse lemur (Microcebus murinus), the primate with the largest known VR repertoire. We furthermore compared expression patterns in adults of both sexes and seasons, and in an infant. A large proportion (83–97%) of the VR loci was expressed in the VNO of all individuals. The repertoire in the infant was as rich as in adults, indicating reliance on olfactory communication from early postnatal development onwards. In concordance with mice, we also detected extensive expression of VRs in the MOE, with proportions of expressed loci in individuals ranging from 29 to 45%. TRPC2, which encodes a channel protein crucial for signal transduction via VRs, was co-expressed in the MOE in all individuals indicating likely functionality of expressed VR genes in the MOE. In summary, the large VR repertoire in mouse lemurs seems to be highly functional. Given the differences in the neural pathways of MOE and VNO signals, which project to higher cortical brain centers or the limbic system, respectively, this raises the intriguing possibility that the evolution of MOE-expression of VRs enabled mouse lemurs to adaptively diversify the processing of VR-encoded olfactory information. PMID:25309343

  2. Distinctive selection mechanisms govern the T cell receptor repertoire of peripheral CD4-CD8- alpha/beta T cells

    PubMed Central

    1992-01-01

    The T cell receptor (TCR) repertoire of CD4+ and CD8+ alpha/beta T cells is heavily influenced by positive and negative selection events that occur during T cell development in the thymus. The coreceptors CD4 and CD8 appear to be essential for this selection to occur. To gain insight into whether T cells that express TCR alpha/beta but lack either coreceptor (CD4- CD8- TCR alpha/beta or alpha/beta double- negative [DN] cells) are also subject to positive and negative selection, and whether selection can occur in the absence of coreceptors, we have performed an extensive immunogenetic analysis of the TCR V beta repertoire of alpha/beta DN cells in lymph nodes of normal mice. Our results show that alpha/beta DN cells appear to be unaffected by clonal deletion of V beta 5 and V beta 11 in I-E- expressing mice, and do not undergo deletion of V beta 6- and V beta 8.1-expressing T cells in Mls-1a-positive mice. They are also unaffected by positive selection of V beta 17a+ T cells in the context of I-Aq. The results suggest that most selection events require the participation of CD4 and CD8, while alpha/beta DN cells are unselected. This argues that most alpha/beta DN cells probably have never expressed CD4 or CD8. However, a unique form of repertoire selection occurs: enrichment of V beta 17a+ alpha/beta DN cells in I-E+ mice. This could be an instance of coreceptor-independent selection. PMID:1512537

  3. Evidence for increased olfactory receptor gene repertoire size in two nocturnal bird species with well-developed olfactory ability

    PubMed Central

    Steiger, Silke S; Fidler, Andrew E; Kempenaers, Bart

    2009-01-01

    Background In vertebrates, the molecular basis of the sense of smell is encoded by members of a large gene family, namely olfactory receptor (OR) genes. Both the total number of OR genes and the proportion of intact OR genes in a genome may indicate the importance of the sense of smell for an animal. There is behavioral, physiological, and anatomical evidence that some bird species, in particular nocturnal birds, have a well developed sense of smell. Therefore, we hypothesized that nocturnal birds with good olfactory abilities have evolved (i) more OR genes and (ii) more intact OR genes than closely related and presumably less 'olfaction-dependent' day-active avian taxa. Results We used both non-radioactive Southern hybridization and PCR with degenerate primers to investigate whether two nocturnal bird species that are known to rely on olfactory cues, the brown kiwi (Apteryx australis) and the kakapo (Strigops habroptilus), have evolved a larger OR gene repertoire than their day-active, closest living relatives (for kiwi the emu Dromaius novaehollandiae, rhea Rhea americana, and ostrich Struthio camelus and for kakapo the kaka Nestor meridionalis and kea Nestor notabilis). We show that the nocturnal birds did not have a significantly higher proportion of intact OR genes. However, the estimated total number of OR genes was larger in the two nocturnal birds than in their relatives. Conclusion Our results suggest that ecological niche adaptations such as daily activity patterns may have shaped avian OR gene repertoires. PMID:19467156

  4. The dynamics of T-cell receptor repertoire diversity following thymus transplantation for DiGeorge anomaly.

    PubMed

    Ciupe, Stanca M; Devlin, Blythe H; Markert, M Louise; Kepler, Thomas B

    2009-06-01

    T cell populations are regulated both by signals specific to the T-cell receptor (TCR) and by signals and resources, such as cytokines and space, that act independently of TCR specificity. Although it has been demonstrated that disruption of either of these pathways has a profound effect on T-cell development, we do not yet have an understanding of the dynamical interactions of these pathways in their joint shaping of the T cell repertoire. Complete DiGeorge Anomaly is a developmental abnormality that results in the failure of the thymus to develop, absence of T cells, and profound immune deficiency. After receiving thymic tissue grafts, patients suffering from DiGeorge anomaly develop T cells derived from their own precursors but matured in the donor tissue. We followed three DiGeorge patients after thymus transplantation to utilize the remarkable opportunity these subjects provide to elucidate human T-cell developmental regulation. Our goal is the determination of the respective roles of TCR-specific vs. TCR-nonspecific regulatory signals in the growth of these emerging T-cell populations. During the course of the study, we measured peripheral blood T-cell concentrations, TCRbeta V gene-segment usage and CDR3-length spectratypes over two years or more for each of the subjects. We find, through statistical analysis based on a novel stochastic population-dynamic T-cell model, that the carrying capacity corresponding to TCR-specific resources is approximately 1000-fold larger than that of TCR-nonspecific resources, implying that the size of the peripheral T-cell pool at steady state is determined almost entirely by TCR-nonspecific mechanisms. Nevertheless, the diversity of the TCR repertoire depends crucially on TCR-specific regulation. The estimated strength of this TCR-specific regulation is sufficient to ensure rapid establishment of TCR repertoire diversity in the early phase of T cell population growth, and to maintain TCR repertoire diversity in the face of

  5. Blood T-cell receptor diversity decreases during the course of HIV infection, but the potential for a diverse repertoire persists

    PubMed Central

    Young, Jennifer J.; Schmidt, Diane; Zhang, Qianjun; Hoh, Rebecca; Busch, Michael; Martin, Jeffrey; Deeks, Steven; McCune, Joseph M.

    2012-01-01

    HIV infection results in a decrease in circulating CD4+ T-cell and naive T-cell numbers. If such losses were associated with an erosion of T-cell receptor (TCR) repertoire diversity in the peripheral T-cell pool, this might exacerbate the state of persistent immunodeficiency. Existing methods for the analysis of the TCR repertoire have demonstrated skewed distributions of TCR genes in HIV-infected subjects but cannot directly measure TCR diversity. Here we used AmpliCot, a quantitative assay based on DNA hybridization kinetics, to measure TCR diversity in a cross-sectional comparison of 19 HIV-infected persons to 18 HIV-uninfected controls. HIV-infected persons had a 10-fold decrease in total TCR repertoire diversity in 1.5 mL of blood compared with uninfected controls, with decreased diversity correlating most closely with a lower CD4+ T-cell percentage. Nonetheless, the TCR repertoire diversity of sort-purified T-cell subpopulations in HIV-infected and HIV-uninfected subjects was comparable. These observations suggest that the TCR repertoire diversity changes in whole blood during HIV disease progression are primarily the result of changes in the number and proportion of T-cell subpopulations and that most HIV-infected persons may retain a sufficiently diverse TCR repertoire to permit immune reconstitution with antiretroviral therapy alone, without thymopoiesis. PMID:22371879

  6. Mining human antibody repertoires

    PubMed Central

    2010-01-01

    Human monoclonal antibodies (mAbs) have become drugs of choice for the management of an increasing number of human diseases. Human antibody repertoires provide a rich source for human mAbs. Here we review the characteristics of natural and non-natural human antibody repertoires and their mining with non-combinatorial and combinatorial strategies. In particular, we discuss the selection of human mAbs from naïve, immune, transgenic and synthetic human antibody repertoires using methods based on hybridoma technology, clonal expansion of peripheral B cells, single-cell PCR, phage display, yeast display and mammalian cell display. Our reliance on different strategies is shifting as we gain experience and refine methods to the efficient generation of human mAbs with superior pharmacokinetic and pharmacodynamic properties. PMID:20505349

  7. Functional characterization of ecdysone receptor gene switches in mammalian cells.

    PubMed

    Panguluri, Siva K; Kumar, Prasanna; Palli, Subba R

    2006-12-01

    Regulated expression of transgene is essential in basic research as well as for many therapeutic applications. The main purpose of the present study is to understand the functioning of the ecdysone receptor (EcR)-based gene switch in mammalian cells and to develop improved versions of EcR gene switches. We utilized EcR mutants to develop new EcR gene switches that showed higher ligand sensitivity and higher magnitude of induction of reporter gene expression in the presence of ligand. We also developed monopartite versions of EcR gene switches with reduced size of the components that are accommodated into viral vectors. Ligand binding assays revealed that EcR alone could not bind to the nonsteroidal ligand, RH-2485. The EcR's heterodimeric partner, ultraspiracle, is required for efficient binding of EcR to the ligand. The essential role of retinoid X receptor (RXR) or its insect homolog, ultraspiracle, in EcR function is shown by RXR knockdown experiments using RNAi. Chromatin immunoprecipitation assays demonstrated that VP16 (activation domain, AD):GAL4(DNA binding domain, DBD):EcR(ligand binding domain, LBD) or GAL4(DBD):EcR(LBD) fusion proteins can bind to GAL4 response elements in the absence of ligand. The VP16(AD) fusion protein of a chimera between human and locust RXR could heterodimerize with GAL4(DBD):EcR(LBD) in the absence of ligand but the VP16(AD) fusion protein of Homo sapiens RXR requires ligand for its heterodimerization with GAL4(DBD):EcR(LBD).

  8. A comparison of reptilian and avian olfactory receptor gene repertoires: Species-specific expansion of group γ genes in birds

    PubMed Central

    Steiger, Silke S; Kuryshev, Vladimir Y; Stensmyr, Marcus C; Kempenaers, Bart; Mueller, Jakob C

    2009-01-01

    Background The detection of odorants is mediated by olfactory receptors (ORs). ORs are G-protein coupled receptors that form a remarkably large protein superfamily in vertebrate genomes. We used data that became available through recent sequencing efforts of reptilian and avian genomes to identify the complete OR gene repertoires in a lizard, the green anole (Anolis carolinensis), and in two birds, the chicken (Gallus gallus) and the zebra finch (Taeniopygia guttata). Results We identified 156 green anole OR genes, including 42 pseudogenes. The OR gene repertoire of the two bird species was substantially larger with 479 and 553 OR gene homologs in the chicken and zebra finch, respectively (including 111 and 221 pseudogenes, respectively). We show that the green anole has a higher fraction of intact OR genes (~72%) compared with the chicken (~66%) and the zebra finch (~38%). We identified a larger number and a substantially higher proportion of intact OR gene homologs in the chicken genome than previously reported (214 versus 82 genes and 66% versus 15%, respectively). Phylogenetic analysis showed that lizard and bird OR gene repertoires consist of group α, θ and γ genes. Interestingly, the vast majority of the avian OR genes are confined to a large expansion of a single branch (the so called γ-c clade). An analysis of the selective pressure on the paralogous genes of each γ-c clade revealed that they have been subjected to adaptive evolution. This expansion appears to be bird-specific and not sauropsid-specific, as it is lacking from the lizard genome. The γ-c expansions of the two birds do not intermix, i.e., they are lineage-specific. Almost all (group γ-c) OR genes mapped to the unknown chromosome. The remaining OR genes mapped to six homologous chromosomes plus three to four additional chromosomes in the zebra finch and chicken. Conclusion We identified a surprisingly large number of potentially functional avian OR genes. Our data supports recent

  9. The Missense of Smell: Functional Variability in the Human Odorant Receptor Repertoire

    PubMed Central

    Keller, Andreas; Li, Yun R.; Zhou, Ting; Trimmer, Casey; Snyder, Lindsey L.; Moberly, Andrew H.; Adipietro, Kaylin A.; Liu, Wen Ling L.; Zhuang, Hanyi; Zhan, Senmiao; Lee, Somin S.; Lin, Abigail; Matsunami, Hiroaki

    2014-01-01

    Humans have approximately 400 intact odorant receptors, but each individual has a unique set of genetic variations that lead to variation in olfactory perception. We used a heterologous assay to determine how often genetic polymorphisms in odorant receptors alter receptor function. We identified agonists for 18 odorant receptors and found that 63% of the odorant receptors we examined had polymorphisms that altered in vitro function. On average, two individuals differ functionally at over 30% of their odorant receptor alleles. To show that these in vitro results are relevant to olfactory perception, we verified that variations in OR10G4 genotype explain over 15% of the observed variation in perceived intensity and over 10% of the observed variation in perceived valence for the high affinity in vitro agonist guaiacol, but do not explain phenotypic variation for the lower affinity agonists vanillin and ethyl vanillin. PMID:24316890

  10. Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land

    PubMed Central

    Shi, Peng; Zhang, Jianzhi

    2007-01-01

    Two evolutionarily unrelated superfamilies of G-protein coupled receptors, V1Rs and V2Rs, bind pheromones and “ordinary” odorants to initiate vomeronasal chemical senses in vertebrates, which play important roles in many aspects of an organism’s daily life such as mating, territoriality, and foraging. To study the macroevolution of vomeronasal sensitivity, we identified all V1R and V2R genes from the genome sequences of 11 vertebrates. Our analysis suggests the presence of multiple V1R and V2R genes in the common ancestor of teleost fish and tetrapods and reveals an exceptionally large among-species variation in the sizes of these gene repertoires. Interestingly, the ratio of the number of intact V1R genes to that of V2R genes increased by ∼50-fold as land vertebrates evolved from aquatic vertebrates. A similar increase was found for the ratio of the number of class II odorant receptor (OR) genes to that of class I genes, but not in other vertebrate gene families. Because V1Rs and class II ORs have been suggested to bind to small airborne chemicals, whereas V2Rs and class I ORs recognize water-soluble molecules, these increases reflect a rare case of adaptation to terrestrial life at the gene family level. Several gene families known to function in concert with V2Rs in the mouse are absent outside rodents, indicating rapid changes of interactions between vomeronasal receptors and their molecular partners. Taken together, our results demonstrate the exceptional evolutionary fluidity of vomeronasal receptors, making them excellent targets for studying the molecular basis of physiological and behavioral diversity and adaptation. PMID:17210926

  11. Contrasting Patterns of Evolutionary Diversification in the Olfactory Repertoires of Reptile and Bird Genomes

    PubMed Central

    Vandewege, Michael W.; Mangum, Sarah F.; Gabaldón, Toni; Castoe, Todd A.; Ray, David A.; Hoffmann, Federico G.

    2016-01-01

    Olfactory receptors (ORs) are membrane proteins that mediate the detection of odorants in the environment, and are the largest vertebrate gene family. Comparative studies of mammalian genomes indicate that OR repertoires vary widely, even between closely related lineages, as a consequence of frequent OR gains and losses. Several studies also suggest that mammalian OR repertoires are influenced by life history traits. Sauropsida is a diverse group of vertebrates group that is the sister group to mammals, and includes birds, testudines, squamates, and crocodilians, and represents a natural system to explore predictions derived from mammalian studies. In this study, we analyzed olfactory receptor (OR) repertoire variation among several representative species and found that the number of intact OR genes in sauropsid genomes analyzed ranged over an order of magnitude, from 108 in the green anole to over 1,000 in turtles. Our results suggest that different sauropsid lineages have highly divergent OR repertoire composition that derive from lineage-specific combinations of gene expansions, losses, and retentions of ancestral OR genes. These differences also suggest that varying degrees of adaption related to life history have shaped the unique OR repertoires observed across sauropsid lineages. PMID:26865070

  12. The scavenger receptor repertoire in six cnidarian species and its putative role in cnidarian-dinoflagellate symbiosis

    PubMed Central

    Neubauer, Emilie F.; Poole, Angela Z.; Davy, Simon K.

    2016-01-01

    Many cnidarians engage in a mutualism with endosymbiotic photosynthetic dinoflagellates that forms the basis of the coral reef ecosystem. Interpartner interaction and regulation includes involvement of the host innate immune system. Basal metazoans, including cnidarians have diverse and complex innate immune repertoires that are just beginning to be described. Scavenger receptors (SR) are a diverse superfamily of innate immunity genes that recognize a broad array of microbial ligands and participate in phagocytosis of invading microbes. The superfamily includes subclades named SR-A through SR-I that are categorized based on the arrangement of sequence domains including the scavenger receptor cysteine rich (SRCR), the C-type lectin (CTLD) and the CD36 domains. Previous functional and gene expression studies on cnidarian-dinoflagellate symbiosis have implicated SR-like proteins in interpartner communication and regulation. In this study, we characterized the SR repertoire from a combination of genomic and transcriptomic resources from six cnidarian species in the Class Anthozoa. We combined these bioinformatic analyses with functional experiments using the SR inhibitor fucoidan to explore a role for SRs in cnidarian symbiosis and immunity. Bioinformatic searches revealed a large diversity of SR-like genes that resembled SR-As, SR-Bs, SR-Es and SR-Is. SRCRs, CTLDs and CD36 domains were identified in multiple sequences in combinations that were highly homologous to vertebrate SRs as well as in proteins with novel domain combinations. Phylogenetic analyses of CD36 domains of the SR-B-like sequences from a diversity of metazoans grouped cnidarian with bilaterian sequences separate from other basal metazoans. All cnidarian sequences grouped together with moderate support in a subclade separately from bilaterian sequences. Functional experiments were carried out on the sea anemone Aiptasia pallida that engages in a symbiosis with Symbiodinium minutum (clade B1

  13. IMPre: An Accurate and Efficient Software for Prediction of T- and B-Cell Receptor Germline Genes and Alleles from Rearranged Repertoire Data

    PubMed Central

    Zhang, Wei; Wang, I-Ming; Wang, Changxi; Lin, Liya; Chai, Xianghua; Wu, Jinghua; Bett, Andrew J.; Dhanasekaran, Govindarajan; Casimiro, Danilo R.; Liu, Xiao

    2016-01-01

    Large-scale study of the properties of T-cell receptor (TCR) and B-cell receptor (BCR) repertoires through next-generation sequencing is providing excellent insights into the understanding of adaptive immune responses. Variable(Diversity)Joining [V(D)J] germline genes and alleles must be characterized in detail to facilitate repertoire analyses. However, most species do not have well-characterized TCR/BCR germline genes because of their high homology. Also, more germline alleles are required for humans and other species, which limits the capacity for studying immune repertoires. Herein, we developed “Immune Germline Prediction” (IMPre), a tool for predicting germline V/J genes and alleles using deep-sequencing data derived from TCR/BCR repertoires. We developed a new algorithm, “Seed_Clust,” for clustering, produced a multiway tree for assembly and optimized the sequence according to the characteristics of rearrangement. We trained IMPre on human samples of T-cell receptor beta (TRB) and immunoglobulin heavy chain and then tested it on additional human samples. Accuracy of 97.7, 100, 92.9, and 100% was obtained for TRBV, TRBJ, IGHV, and IGHJ, respectively. Analyses of subsampling performance for these samples showed IMPre to be robust using different data quantities. Subsequently, IMPre was tested on samples from rhesus monkeys and human long sequences: the highly accurate results demonstrated IMPre to be stable with animal and multiple data types. With rapid accumulation of high-throughput sequence data for TCR and BCR repertoires, IMPre can be applied broadly for obtaining novel genes and a large number of novel alleles. IMPre is available at https://github.com/zhangwei2015/IMPre. PMID:27867380

  14. The full repertoire of Drosophila gustatory receptors for detecting an aversive compound

    PubMed Central

    Shim, Jaewon; Lee, Youngseok; Jeong, Yong Taek; Kim, Yonjung; Lee, Min Goo; Montell, Craig; Moon, Seok Jun

    2015-01-01

    The ability to detect toxic compounds in foods is essential for animal survival. However, the minimal subunit composition of gustatory receptors required for sensing aversive chemicals in Drosophila is unknown. Here we report that three gustatory receptors, GR8a, GR66a and GR98b function together in the detection of L-canavanine, a plant-derived insecticide. Ectopic co-expression of Gr8a and Gr98b in Gr66a-expressing, bitter-sensing gustatory receptor neurons (GRNs) confers responsiveness to L-canavanine. Furthermore, misexpression of all three Grs enables salt- or sweet-sensing GRNs to respond to L-canavanine. Introduction of these Grs in sweet-sensing GRNs switches L-canavanine from an aversive to an attractive compound. Co-expression of GR8a, GR66a and GR98b in Drosophila S2 cells induces an L-canavanine-activated nonselective cation conductance. We conclude that three GRs collaborate to produce a functional L-canavanine receptor. Thus, our results clarify the full set of GRs underlying the detection of a toxic tastant that drives avoidance behaviour in an insect. PMID:26568264

  15. Structural and Functional Similarity of Amphibian Constitutive Androstane Receptor with Mammalian Pregnane X Receptor

    PubMed Central

    Mathäs, Marianne; Burk, Oliver; Gödtel-Armbrust, Ute; Herlyn, Holger; Wojnowski, Leszek; Windshügel, Björn

    2014-01-01

    The nuclear receptors and xenosensors constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2) induce the expression of xenobiotic metabolizing enzymes and transporters, which also affects various endobiotics. While human and mouse CAR feature a high basal activity and low induction upon ligand exposure, we recently identified two constitutive androstane receptors in Xenopus laevis (xlCARα and β) that possess PXR-like characteristics such as low basal activity and activation in response to structurally diverse compounds. Using a set of complementary computational and biochemical approaches we provide evidence for xlCARα being the structural and functional counterpart of mammalian PXR. A three-dimensional model of the xlCARα ligand-binding domain (LBD) reveals a human PXR-like L-shaped ligand binding pocket with a larger volume than the binding pockets in human and murine CAR. The shape and amino acid composition of the ligand-binding pocket of xlCAR suggests PXR-like binding of chemically diverse ligands which was confirmed by biochemical methods. Similarly to PXR, xlCARα possesses a flexible helix 11’. Modest increase in the recruitment of coactivator PGC-1α may contribute to the enhanced basal activity of three gain-of-function xlCARα mutants humanizing key LBD amino acid residues. xlCARα and PXR appear to constitute an example of convergent evolution. PMID:24797902

  16. A tetrapod-like repertoire of innate immune receptors and effectors for coelacanths.

    PubMed

    Boudinot, Pierre; Zou, Jun; Ota, Tatsuya; Buonocore, Francesco; Scapigliati, Giuseppe; Canapa, Adriana; Cannon, John; Litman, Gary; Hansen, John D

    2014-09-01

    The recent availability of both robust transcriptome and genome resources for coelacanth (Latimeria chalumnae) has led to unique discoveries for coelacanth immunity such as the lack of IgM, a central component of adaptive immunity. This study was designed to more precisely address the origins and evolution of gene families involved in the initial recognition and response to microbial pathogens, which effect innate immunity. Several multigene families involved in innate immunity are addressed, including: Toll-like receptors (TLRs), retinoic acid inducible gene 1 (RIG1)-like receptors (RLRs), the nucleotide-binding domain and leucine-rich repeat containing proteins (NLRs), diverse immunoglobulin domain-containing proteins (DICP) and modular domain immune-type receptors (MDIRs). Our analyses also include the tripartite motif-containing proteins (TRIM), which are involved in pathogen recognition as well as the positive regulation of antiviral immunity. Finally, this study addressed some of the downstream effectors of the antimicrobial response including IL-1 family members, type I and II interferons (IFN) and IFN-stimulated effectors (ISGs). Collectively, the genes and gene families in coelacanth that effect innate immune functions share characteristics both in content, structure and arrangement with those found in tetrapods but not in teleosts. The findings support the sister group relationship of coelacanth fish with tetrapods.

  17. A tetrapod-like repertoire of innate immune receptors and effectors for coelacanths

    USGS Publications Warehouse

    Boudinot, Pierre; Zou, Jun; Ota, Tatsuya; Buonocore, Francesco; Scapigliati, Giuseppe; Canapa, Adriana; Cannon, John; Litman, Gary; Hansen, John D.

    2014-01-01

    The recent availability of both robust transcriptome and genome resources for coelacanth (Latimeria chalumnae) has led to unique discoveries for coelacanth immunity such as the lack of IgM, a central component of adaptive immunity. This study was designed to more precisely address the origins and evolution of gene families involved in the initial recognition and response to microbial pathogens, which effect innate immunity. Several multigene families involved in innate immunity are addressed, including: Toll-like receptors (TLRs), retinoic acid inducible gene 1 (RIG1)-like receptors (RLRs), the nucleotide-binding domain and leucine-rich repeat containing proteins (NLRs), diverse immunoglobulin domain-containing proteins (DICP) and modular domain immune-type receptors (MDIRs). Our analyses also include the tripartite motif-containing proteins (TRIM), which are involved in pathogen recognition as well as the positive regulation of antiviral immunity. Finally, this study addressed some of the downstream effectors of the antimicrobial response including IL-1 family members, type I and II interferons (IFN) and IFN-stimulated effectors (ISGs). Collectively, the genes and gene families in coelacanth that effect innate immune functions share characteristics both in content, structure and arrangement with those found in tetrapods but not in teleosts. The findings support the sister group relationship of coelacanth fish with tetrapods.

  18. Cargo binding promotes KDEL receptor clustering at the mammalian cell surface

    NASA Astrophysics Data System (ADS)

    Becker, Björn; Shaebani, M. Reza; Rammo, Domenik; Bubel, Tobias; Santen, Ludger; Schmitt, Manfred J.

    2016-06-01

    Transmembrane receptor clustering is a ubiquitous phenomenon in pro- and eukaryotic cells to physically sense receptor/ligand interactions and subsequently translate an exogenous signal into a cellular response. Despite that receptor cluster formation has been described for a wide variety of receptors, ranging from chemotactic receptors in bacteria to growth factor and neurotransmitter receptors in mammalian cells, a mechanistic understanding of the underlying molecular processes is still puzzling. In an attempt to fill this gap we followed a combined experimental and theoretical approach by dissecting and modulating cargo binding, internalization and cellular response mediated by KDEL receptors (KDELRs) at the mammalian cell surface after interaction with a model cargo/ligand. Using a fluorescent variant of ricin toxin A chain as KDELR-ligand (eGFP-RTAH/KDEL), we demonstrate that cargo binding induces dose-dependent receptor cluster formation at and subsequent internalization from the membrane which is associated and counteracted by anterograde and microtubule-assisted receptor transport to preferred docking sites at the plasma membrane. By means of analytical arguments and extensive numerical simulations we show that cargo-synchronized receptor transport from and to the membrane is causative for KDELR/cargo cluster formation at the mammalian cell surface.

  19. Comparative analysis of NK cell receptor repertoire in adults and very elderly subjects with cytomegalovirus infection.

    PubMed

    Juárez-Vega, Guillermo; Rangel-Ramírez, Velia; Monsiváis-Urenda, Adriana; Niño-Moreno, Perla; Garcia-Sepúlveda, Christian; Noyola, Daniel E; González-Amaro, Roberto

    2017-01-16

    Human cytomegalovirus (HCMV) infection in children and young adults has been associated with changes in the innate immune system. We herein analyzed the possible effect of very long term HCMV infection on the expression of several NK cell receptors. Ninety HCMV-seropositive individuals were included and classified as young adults (n=30), elderly (n=30) and very elderly subjects (n=30). A peripheral blood sample was obtained and the expression of NK cell receptors (NKG2A, NKG2C, ILT2, CD161, KIR2DL1, KIR3DL1, and KIR3DL2) by NK and other lymphocyte subsets was assessed by flow cytometry. In addition, the frequency of the sixteen KIR genes was analyzed by polymerase chain reaction. We found a significant increase in the number of NKG2C+ NK and T cells in elderly individuals compared to young adults accompanied by an opposite trend in the number of NKG2A+ lymphocytes, and ILT2+ cells were also increased in elderly individuals. A significant increase in the levels of CD3-CD56+NKG2C+CD57+ cells was also detected in the elderly groups. Finally, KIR gene analysis revealed that the KIR genotype 2 was significantly less frequent in the elderly individuals. Our results support that long-term infection by HCMV exerts a significant progressive effect on the innate immune system.

  20. Mammalian glycosylation in immunity.

    PubMed

    Marth, Jamey D; Grewal, Prabhjit K

    2008-11-01

    Glycosylation produces a diverse and abundant repertoire of glycans, which are collectively known as the glycome. Glycans are one of the four fundamental macromolecular components of all cells, and are highly regulated in the immune system. Their diversity reflects their multiple biological functions that encompass ligands for proteinaceous receptors known as lectins. Since the discovery that selectins and their glycan ligands are important for the regulation of leukocyte trafficking, it has been shown that additional features of the vertebrate immune system are also controlled by endogenous cellular glycosylation. This Review focuses on the emerging immunological roles of the mammalian glycome.

  1. Yeast as a model system for mammalian seven-transmembrane segment receptors

    SciTech Connect

    Jeansonne, N.E.

    1994-05-01

    Investigators have used the budding yeast Saccharomyces cerevisiae as a model system in which to study the {beta}-adrenergic receptor, the T-cell receptor pathway, initiation of mammalian DNA replication, initiation of mammalian transcription, secretion, the CDC2 kinase system, cell cycle control, and aging, as well as the function of oncogenes. This list continues to growth with the discovery of an immunoglobulin heavy-chain binding homologue in yeast, an Rb binding protein homologue, and a possible yeast arrestin. Yeast is relatively easy to maintain, to grow, and to genetically manipulate. A single gene can be overexpressed, selectively mutated or deleted from its chromosomal location. In this way, the in vivo function of a gene can be studied. It has become reasonable to consider yeast as a model system for studying the seven transmembrane segments (7-TMS) receptor family. Currently, subtypes of the {beta}-adrenergic receptor are being studied in yeast. The receptor and its G{sub {alpha}}-G-protein, trigger the mating pheromone receptor pathway. This provides a powerful assay for determining receptor function. Studies expressing the muscarinic cholinergic receptor in yeast are underway. The yeast pheromone receptor belongs to this receptor family, sharing sequences and secondary structure homology. An effective strategy has been to identify a yeast pathway or process which is homologous to a mammalian system. The pathway is delineated in yeast, identifying other genetic components. Then yeast genes are used to screen for human homologues of these components. The putative human homologues are then expressed in yeast and in mammalian cells to determine function. When this type of {open_quotes}mixing and matching{close_quotes} works, yeast genetics can be a powerful tool. 115 refs.

  2. Induction of Direct Antimicrobial Activity Through Mammalian Toll-Like Receptors

    NASA Astrophysics Data System (ADS)

    Thoma-Uszynski, Sybille; Stenger, Steffen; Takeuchi, Osamu; Ochoa, Maria Teresa; Engele, Matthias; Sieling, Peter A.; Barnes, Peter F.; Röllinghoff, Martin; Bölcskei, Pal L.; Wagner, Manfred; Akira, Shizuo; Norgard, Michael V.; Belisle, John T.; Godowski, Paul J.; Bloom, Barry R.; Modlin, Robert L.

    2001-02-01

    The mammalian innate immune system retains from Drosophila a family of homologous Toll-like receptors (TLRs) that mediate responses to microbial ligands. Here, we show that TLR2 activation leads to killing of intracellular Mycobacterium tuberculosis in both mouse and human macrophages, through distinct mechanisms. In mouse macrophages, bacterial lipoprotein activation of TLR2 leads to a nitric oxide-dependent killing of intracellular tubercle bacilli, but in human monocytes and alveolar macrophages, this pathway was nitric oxide-independent. Thus, mammalian TLRs respond (as Drosophila Toll receptors do) to microbial ligands and also have the ability to activate antimicrobial effector pathways at the site of infection.

  3. Normalization of the peripheral blood T cell receptor V beta repertoire after cultured postnatal human thymic transplantation in DiGeorge syndrome.

    PubMed

    Davis, C M; McLaughlin, T M; Watson, T J; Buckley, R H; Schiff, S E; Hale, L P; Haynes, B F; Markert, M L

    1997-03-01

    Complete DiGeorge syndrome is an immunodeficiency disease characterized by thymic aplasia and the absence of functioning peripheral T cells. A patient with this syndrome was transplanted with cultured postnatal human thymic tissue. Within 5 weeks of transplantation, flow cytometry, T cell receptor V beta sequence analysis, and cell function studies showed the presence of oligoclonal populations of nonfunctional clonally expanded peripheral T cells that were derived from pretransplantation T cells present in the skin. However, at 3 months posttransplantation, a biopsy of the transplanted thymus showed normal intrathymic T cell maturation of host T cells with normal TCR V beta expression on thymocytes. By 9 months postransplantation, peripheral T cell function was restored and the TCR V beta repertoire became polyclonal, coincident with the appearance of normal T cell function. These data suggest that the transplanted thymus was responsible for the establishment of a new T cell repertoire via thymopoiesis in the chimeric thymic graft.

  4. Frequent expansions of the bitter taste receptor gene repertoire during evolution of mammals in the Euarchontoglires clade.

    PubMed

    Hayakawa, Takashi; Suzuki-Hashido, Nami; Matsui, Atsushi; Go, Yasuhiro

    2014-08-01

    Genome studies of mammals in the superorder Euarchontoglires (a clade that comprises the orders Primates, Dermoptera, Scandentia, Rodentia, and Lagomorpha) are important for understanding the biological features of humans, particularly studies of medical model animals such as macaques and mice. Furthermore, the dynamic ecoevolutionary signatures of Euarchontoglires genomes may be discovered because many species in this clade are characterized by their successful adaptive radiation to various ecological niches. In this study, we investigated the evolutionary trajectory of bitter taste receptor genes (TAS2Rs) in 28 Euarchontoglires species based on homology searches of 39 whole-genome assemblies. The Euarchontoglires species possessed variable numbers of intact TAS2Rs, which ranged from 16 to 40, and their last common ancestor had at least 26 intact TAS2Rs. The gene tree showed that there have been at least seven lineage-specific events involving massive gene duplications. Gene duplications were particularly evident in the ancestral branches of anthropoids (the anthropoid cluster), which may have promoted the adaptive evolution of anthropoid characteristics, such as a trade-off between olfaction and other senses and the development of herbivorous characteristics. Subsequent whole-gene deletions of anthropoid cluster TAS2Rs in hominoid species suggest ongoing ectopic homologous recombination in the anthropoid cluster. These findings provide insights into the roles of adaptive sensory evolution in various ecological niches and important clues related to the molecular mechanisms that underlie taste diversity in Euarchontoglires mammalian species, including humans.

  5. Predominant role of T cell receptor (TCR)-alpha chain in forming preimmune TCR repertoire revealed by clonal TCR reconstitution system.

    PubMed

    Yokosuka, Tadashi; Takase, Kan; Suzuki, Misao; Nakagawa, Yohko; Taki, Shinsuke; Takahashi, Hidemi; Fujisawa, Takehiko; Arase, Hisashi; Saito, Takashi

    2002-04-15

    The CDR3 regions of T cell receptor (TCR)-alpha and -beta chains play central roles in the recognition of antigen (Ag)-MHC complex. TCR repertoire is created on the basis of Ag recognition specificity by CDR3s. To analyze the potential spectrum of TCR-alpha and -beta to exhibit Ag specificity and generate TCR repertoire, we established hundreds of TCR transfectants bearing a single TCR-alpha or -beta chain derived from a cytotoxic T cell (CTL) clone, RT-1, specific for HIVgp160 peptide, and randomly picked up TCR-beta or -alpha chains. Surprisingly, one-third of such TCR-beta containing random CDR3 beta from naive T cells of normal mice could reconstitute the antigen-reactive TCR coupling with RT-1 TCR-alpha. A similar dominant function of TCR-alpha in forming Ag-specific TCR, though low-frequency, was obtained for lymphocytic choriomeningitis virus-specific TCR. Subsequently, we generated TCR-alpha and/or -beta transgenic (Tg) mice specific for HIVgp160 peptide, and analyzed the TCR repertoire of Ag-specific CTLs. Similar to the results from TCR reconstitution, TCR-alpha Tg generated CTLs with heterogeneous TCR-beta, whereas TCR-beta Tg-induced CTLs bearing a single TCR-alpha. These findings of Ag recognition with minimum involvement of CDR3 beta expand our understanding regarding the flexibility of the spectrum of TCR and suggest a predominant role of TCR-alpha chain in determining the preimmune repertoire of Ag-specific TCR.

  6. Biased T-cell receptor repertoires in patients with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome).

    PubMed

    Pierdominici, M; Mazzetta, F; Caprini, E; Marziali, M; Digilio, M C; Marino, B; Aiuti, A; Amati, F; Russo, G; Novelli, G; Pandolfi, F; Luzi, G; Giovannetti, A

    2003-05-01

    Chromosome 22q11.2 deletion (del22q11.2) syndrome (DiGeorge syndrome/velocardiofacial syndrome) is a common syndrome typically consisting of congenital heart disease, hypoparathyroidism, developmental delay and immunodeficiency. Although a broad range of immunologic defects have been described in these patients, limited information is currently available on the diversity of the T-cell receptor (TCR) variable beta (BV) chain repertoire. The TCRBV repertoires of nine patients with del22q11.2 syndrome were determined by flow cytometry, fragment size analysis of the third complementarity determining region (CDR3 spectratyping) and sequencing of V(D)J regions. The rate of thymic output and the phenotype and function of peripheral T cells were also studied. Expanded TCRBV families were detected by flow cytometry in both CD4+ and CD8+ T cells. A decreased diversity of TCR repertoires was also demonstrated by CDR3 spectratyping, showing altered CDR3 profiles in the majority of TCRBV families investigated. The oligoclonal nature of abnormal peaks detected by CDR3 spectratyping was confirmed by the sequence analysis of the V(D)J regions. Thymic output, evaluated by measuring TCR rearrangement excision circles (TRECs), was significantly decreased in comparison with age-matched controls. Finally, a significant up-regulation in the percentage, but not in the absolute count, of activated CD4+ T cells (CD95+, CCR5+, HLA-DR+), IFN-gamma - and IL-2-expressing T cells was detected. These findings suggest that the diversity of CD4 and CD8 TCRBV repertoires is decreased in patients with del22q11.2 syndrome, possibly as a result of either impaired thymic function and/or increased T-cell activation.

  7. A high density of tertiary lymphoid structure B cells in lung tumors is associated with increased CD4+ T cell receptor repertoire clonality

    PubMed Central

    Zhu, Wei; Germain, Claire; Liu, Zheng; Sebastian, Yinong; Devi, Priyanka; Knockaert, Samantha; Brohawn, Philip; Lehmann, Kim; Damotte, Diane; Validire, Pierre; Yao, Yihong; Valge-Archer, Viia; Hammond, Scott A; Dieu-Nosjean, Marie-Caroline; Higgs, Brandon W

    2015-01-01

    T and B cell receptor (TCR and BCR, respectively) Vβ or immunoglobulin heavy chain complementarity-determining region 3 sequencing allows monitoring of repertoire changes through recognition, clonal expansion, affinity maturation, and T or B cell activation in response to antigen. TCR and BCR repertoire analysis can advance understanding of antitumor immune responses in the tumor microenvironment. TCR and BCR repertoires of sorted CD4+, CD8+ or CD19+ cells in tumor, non-tumoral distant tissue (NT), and peripheral compartments (blood/draining lymph node [P]) from 47 non-small cell lung cancer (NSCLC) patients (agemedian = 68 y) were sequenced. The clonotype spectra were assessed among different tissues and correlated with clinical and immunological parameters. In all tissues, CD4+ and CD8+ TCR repertoires had greater clonality relative to CD19+ BCR. CD4+ T cells exhibited greater clonality in NT compared to tumor (p = 0.002) and P (p < 0.001), concentrated among older patients (age > 68). Younger patients exhibited greater CD4+ T cell diversity in P compared to older patients (p = 0.05), and greater CD4+ T cell clonality in tumor relative to P (p < 0.001), with fewer shared clonotypes between tumor and P than older patients (p = 0.04). More interestingly, greater CD4+ and CD8+ T cell clonality in tumor and P, respectively (both p = 0.05), correlated with high density of tumor-associated tertiary lymphoid structure (TLS) B cells, a biomarker of higher overall survival in NSCLC. Results indicate distinct adaptive immune responses in NSCLC, where peripheral T cell diversity is modulated by age, and tumor T cell clonal expansion is favored by the presence of TLSs in the tumor microenvironment. PMID:26587322

  8. Functional synergy between cholecystokinin receptors CCKAR and CCKBR in mammalian brain development.

    PubMed

    Nishimura, Sayoko; Bilgüvar, Kaya; Ishigame, Keiko; Sestan, Nenad; Günel, Murat; Louvi, Angeliki

    2015-01-01

    Cholecystokinin (CCK), a peptide hormone and one of the most abundant neuropeptides in vertebrate brain, mediates its actions via two G-protein coupled receptors, CCKAR and CCKBR, respectively active in peripheral organs and the central nervous system. Here, we demonstrate that the CCK receptors have a dynamic and largely reciprocal expression in embryonic and postnatal brain. Using compound homozygous mutant mice lacking the activity of both CCK receptors, we uncover their additive, functionally synergistic effects in brain development and demonstrate that CCK receptor loss leads to abnormalities of cortical development, including defects in the formation of the midline and corpus callosum, and cortical interneuron migration. Using comparative transcriptome analysis of embryonic neocortex, we define the molecular mechanisms underlying these defects. Thus we demonstrate a developmental, hitherto unappreciated, role of the two CCK receptors in mammalian neocortical development.

  9. Functional Synergy between Cholecystokinin Receptors CCKAR and CCKBR in Mammalian Brain Development

    PubMed Central

    Nishimura, Sayoko; Bilgüvar, Kaya; Ishigame, Keiko; Sestan, Nenad; Günel, Murat; Louvi, Angeliki

    2015-01-01

    Cholecystokinin (CCK), a peptide hormone and one of the most abundant neuropeptides in vertebrate brain, mediates its actions via two G-protein coupled receptors, CCKAR and CCKBR, respectively active in peripheral organs and the central nervous system. Here, we demonstrate that the CCK receptors have a dynamic and largely reciprocal expression in embryonic and postnatal brain. Using compound homozygous mutant mice lacking the activity of both CCK receptors, we uncover their additive, functionally synergistic effects in brain development and demonstrate that CCK receptor loss leads to abnormalities of cortical development, including defects in the formation of the midline and corpus callosum, and cortical interneuron migration. Using comparative transcriptome analysis of embryonic neocortex, we define the molecular mechanisms underlying these defects. Thus we demonstrate a developmental, hitherto unappreciated, role of the two CCK receptors in mammalian neocortical development. PMID:25875176

  10. Mammalian. beta. /sub 1/- and. beta. /sub 2/-adrenergic receptors: immunological and structural comparison

    SciTech Connect

    Moxham, C.P.; George, S.T.; Graziano, M.P.; Brandwein, H.J.; Malbon, C.C.

    1986-11-05

    ..beta../sub 1/- and ..beta../sub 2/-adrenergic receptors, pharmacologically distinct proteins, have been reported to be structurally dissimilar. In the present study three techniques were employed to compare the nature of mammalian ..beta../sub 1/- and ..beta../sub 2/-adrenergic receptors. Antibodies against each of the receptor subtypes were raised separately. Polyclonal antisera against ..beta../sub 1/-receptors of rat fat cells were raised in mice, and antisera against ..beta../sub 2/-receptors of guinea pig lung were raised in rabbits. Receptors purified from rat fat cells (..beta../sub 1/-), S49 mouse lymphoma cells (..beta../sub 2/-), and rat liver (..beta../sub 2/-) were probed with these antisera. Each anti-receptor antisera demonstrated the ability to immunoprecipitate purified receptors of both ..beta../sub 1/- and ..beta../sub 2/-subtypes. The mobility of ..beta..-receptors subjected to polyacrylamide gel electrophoresis was probed using antireceptor antibodies and nitrocellulose blots of the gels. Fat cell ..beta../sub 1/-adrenergic receptors display M/sub r/ = 67,000 under reducing conditions and M/sub r/ = 54,000 under nonreducing conditions, as previously reported. Both ..beta../sub 1/- and ..beta../sub 2/-receptors displayed this same shift in electrophoretic mobility observed in the presence as compared to the absence of disulfide bridge-reducing agents, as detected both by autoradiography of the radiolabeled receptors and by immunoblotting of native receptors. Finally, isoelectric focusing of purified radioiodinated ..beta../sub 1/- and ..beta../sub 2/-adrenergic receptors revealed identical isoelectric points. These data are the first to provide analyses of immunological, structural, and biochemical features of ..beta../sub 1/- and ..beta../sub 2/-subtypes in tandem and underscore the structural similarities that exist between these pharmacologically distinct receptors.

  11. Genetic dissection of the signaling domain of a mammalian steroid receptor in yeast.

    PubMed Central

    Garabedian, M J; Yamamoto, K R

    1992-01-01

    The mechanism of signal transduction by steroid receptor proteins is complex and not yet understood. We describe here a facile genetic strategy for dissection of the rat glucocorticoid receptor "signaling domain," a region of the protein that binds and transduces the hormonal signal. We found that the characteristics of signal transduction by the receptor expressed in yeast were similar to those of endogenous receptors in mammalian cells. Interestingly, the rank order of particular ligands differed between species with respect to receptor binding and biological efficacy. This suggests that factors in addition to the receptor alone must determine or influence ligand efficacy in vivo. To obtain a collection of receptors with distinct defects in signal transduction, we screened in yeast an extensive series of random point mutations introduced in that region in vitro. Three phenotypic classes were obtained: one group failed to bind hormone, a second displayed altered ligand specificity, and a third bound hormone but lacked regulatory activity. Our results demonstrate that analysis of glucocorticoid receptor action in yeast provides a general approach for analyzing the mechanism of signaling by the nuclear receptor family and may facilitate identification of non-receptor factors that participate in this process. Images PMID:1457829

  12. β-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus.

    PubMed

    O'Dell, Thomas J; Connor, Steven A; Guglietta, Ryan; Nguyen, Peter V

    2015-09-01

    Encoding new information in the brain requires changes in synaptic strength. Neuromodulatory transmitters can facilitate synaptic plasticity by modifying the actions and expression of specific signaling cascades, transmitter receptors and their associated signaling complexes, genes, and effector proteins. One critical neuromodulator in the mammalian brain is norepinephrine (NE), which regulates multiple brain functions such as attention, perception, arousal, sleep, learning, and memory. The mammalian hippocampus receives noradrenergic innervation and hippocampal neurons express β-adrenergic receptors, which are known to play important roles in gating the induction of long-lasting forms of synaptic potentiation. These forms of long-term potentiation (LTP) are believed to importantly contribute to long-term storage of spatial and contextual memories in the brain. In this review, we highlight the contributions of noradrenergic signaling in general and β-adrenergic receptors in particular, toward modulating hippocampal LTP. We focus on the roles of NE and β-adrenergic receptors in altering the efficacies of specific signaling molecules such as NMDA and AMPA receptors, protein phosphatases, and translation initiation factors. Also, the roles of β-adrenergic receptors in regulating synaptic "tagging" and "capture" of LTP within synaptic networks of the hippocampus are reviewed. Understanding the molecular and cellular bases of noradrenergic signaling will enrich our grasp of how the brain makes new, enduring memories, and may shed light on credible strategies for improving mental health through treatment of specific disorders linked to perturbed memory processing and dysfunctional noradrenergic synaptic transmission.

  13. Immunological studies on the structure and function of the nicotinic acetylcholine receptor in mammalian muscle

    SciTech Connect

    Gu, Y.

    1989-01-01

    The specificity of the antibodies in the serum of a patient with myasthenia gravis for a the {alpha}-bungarotoxin binding sites of the acetylcholine receptor (AChR) was examined using AChRs in the C2 mouse muscle cell line as a model. The antibodies were shown to be specific for one of the two toxin-binding sites. The effect of the antibodies in this myasthenic serum on the functional response of the receptor to cholinergic agonists was also examined using carbamylcholine-induced {sup 22}Na uptake into C2 myotubes as a measured of the receptor function. Antibodies specific for the {gamma}, {delta}, and {epsilon} subunit, respectively, of mammalian muscle AChRs were developed using subunit-specific synthetic peptides as antigens. Using these antibodies and monoclonal antibodies for other subunits as probes, I have identified four ({alpha}, {beta}, {gamma}, and {delta}) subunits of mammalian muscle AChRs on immunoblots. When AChRs from embryonic, neonatal, normal and denervated adult muscles were compared on immunoblots, the {alpha}, {beta}, and {delta} subunits were identical in all four receptor preparations, with or without endoglycosidase digestion. The spatial and temporal distribution of the {gamma}- and {epsilon}- AChRs in developing and in denervated muscles corresponds to the distribution of AChRs with slow and fast channels, respectively, and that the development changes in the channel properties of the receptor arise from a change in the subunit composition of the receptor, in which the {gamma} is replaced by {epsilon}.

  14. Phase description of the Huber-Braun neuron model for mammalian cold receptors

    NASA Astrophysics Data System (ADS)

    Freund, J. A.; Finke, C.; Braun, H. A.; Feudel, U.

    2013-10-01

    The spiking activity of mammalian cold receptors is described by the Huber-Braun neuron model. Sweeping temperature as a control parameter across a biologically relevant range this model exhibits a complex bifurcation structure seen in the sequence of interspike intervals. The model's distinctive feature is the interaction between a fast spike generating dynamics and a slow subthreshold oscillation. Viewing the spike generation as a cycle, the dynamics may also be modeled phenomenologically by two phases, one for the spike cycle and the second for the slow subthreshold oscillation. In fact, a phase model of temperature-dependent mammalian cold receptors was already proposed by Roper et al. (2000). Here we follow their approach and investigate to what extent this model is able to reproduce the bifurcation patterns of the Huber-Braun model. Special attention is paid to the tonic firing to bursting transition observed in the low temperature range.

  15. Neurotrophins and their receptors in early development of the mammalian nervous system.

    PubMed

    Bartkowska, Katarzyna; Turlejski, Kris; Djavadian, Rouzanna L

    2010-01-01

    Neurotrophins belonging to the class of growth factors and including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5) are widely recognized as essential factors in the developing central nervous system (CNS). Neurotrophins are synthesized as precursor forms (proneurotrophins). Mature forms of neurotrophins exert their effect by binding to specific tyrosine kinases receptors (TrkA, TrkB and TrkC) as well as via the p75 receptor, a member of the tumor necrosis factor receptor superfamily while proneurotrophins interact with the receptor p75 or co-receptor complex of p75 and sortilin, that is a Vps10p domain-containing transmembrane protein. Expression of neurotrophins corresponds with the onset of neurogenesis in developing mammalian species. BDNF is low in early embryonic stages of development, while NT-3 highly expresses in the developing CNS. Expression of neurotrophins receptors mainly overlaps at early development. Data concerning early distribution of neurotrophins and their receptors in the nervous system and results in mice with targeted disruptions of neurotrophin or receptor genes show that neurotrophins and their receptors play distinct roles in control and regulation of the most crucial developmental processes such as proliferation, migration, differentiation, survival, apoptosis and synaptic plasticity.

  16. Elabela-apelin receptor signaling pathway is functional in mammalian systems.

    PubMed

    Wang, Zhi; Yu, Daozhan; Wang, Mengqiao; Wang, Qilong; Kouznetsova, Jennifer; Yang, Rongze; Qian, Kun; Wu, Wenjun; Shuldiner, Alan; Sztalryd, Carole; Zou, Minghui; Zheng, Wei; Gong, Da-Wei

    2015-02-02

    Elabela (ELA) or Toddler is a recently discovered hormone which is required for normal development of heart and vasculature through activation of apelin receptor (APJ), a G protein-coupled receptor (GPCR), in zebrafish. The present study explores whether the ELA-APJ signaling pathway is functional in the mammalian system. Using reverse-transcription PCR, we found that ELA is restrictedly expressed in human pluripotent stem cells and adult kidney whereas APJ is more widely expressed. We next studied ELA-APJ signaling pathway in reconstituted mammalian cell systems. Addition of ELA to HEK293 cells over-expressing GFP-AJP fusion protein resulted in rapid internalization of the fusion receptor. In Chinese hamster ovarian (CHO) cells over-expressing human APJ, ELA suppresses cAMP production with EC50 of 11.1 nM, stimulates ERK1/2 phosphorylation with EC50 of 14.3 nM and weakly induces intracellular calcium mobilization. Finally, we tested ELA biological function in human umbilical vascular endothelial cells and showed that ELA induces angiogenesis and relaxes mouse aortic blood vessel in a dose-dependent manner through a mechanism different from apelin. Collectively, we demonstrate that the ELA-AJP signaling pathways are functional in mammalian systems, indicating that ELA likely serves as a hormone regulating the circulation system in adulthood as well as in embryonic development.

  17. Elabela-Apelin Receptor Signaling Pathway is Functional in Mammalian Systems

    PubMed Central

    Wang, Zhi; Yu, Daozhan; Wang, Mengqiao; Wang, Qilong; Kouznetsova, Jennifer; Yang, Rongze; Qian, Kun; Wu, Wenjun; Shuldiner, Alan; Sztalryd, Carole; Zou, Minghui; Zheng, Wei; Gong, Da-Wei

    2015-01-01

    Elabela (ELA) or Toddler is a recently discovered hormone which is required for normal development of heart and vasculature through activation of apelin receptor (APJ), a G protein-coupled receptor (GPCR), in zebrafish. The present study explores whether the ELA-APJ signaling pathway is functional in the mammalian system. Using reverse-transcription PCR, we found that ELA is restrictedly expressed in human pluripotent stem cells and adult kidney whereas APJ is more widely expressed. We next studied ELA-APJ signaling pathway in reconstituted mammalian cell systems. Addition of ELA to HEK293 cells over-expressing GFP-AJP fusion protein resulted in rapid internalization of the fusion receptor. In Chinese hamster ovarian (CHO) cells over-expressing human APJ, ELA suppresses cAMP production with EC50 of 11.1 nM, stimulates ERK1/2 phosphorylation with EC50 of 14.3 nM and weakly induces intracellular calcium mobilization. Finally, we tested ELA biological function in human umbilical vascular endothelial cells and showed that ELA induces angiogenesis and relaxes mouse aortic blood vessel in a dose-dependent manner through a mechanism different from apelin. Collectively, we demonstrate that the ELA-AJP signaling pathways are functional in mammalian systems, indicating that ELA likely serves as a hormone regulating the circulation system in adulthood as well as in embryonic development. PMID:25639753

  18. Effects of Insecticidal Ketones Present in Mint Plants on GABAA Receptor from Mammalian Neurons

    PubMed Central

    Sánchez-Borzone, Mariela Eugenia; Marin, Leticia Delgado; García, Daniel Asmed

    2017-01-01

    Background: The genus Mentha, an important member of the Lamiaceae family, is represented by many species commonly known as mint. The insecticidal activity of Mentha oil and its main components has been tested and established against various insects/pests. Among these, the ketone monoterpenes that are most common in different Mentha species demonstrated insect toxicity, with pulegone being the most active, followed by carvone and menthone. Considering that the GABAA receptor (GABAA-R) is one of the main insecticide targets on neurons, and that pulegone would modulate the insect GABA system, it may be expected that the insecticidal properties of Mentha ketones are mediated by their interaction with this receptor. Objective: In order to discern the pharmacological actions of these products when used as insecticides on mammalian organisms, we evaluated the pharmacologic activity of ketones, commonly present in Mentha plants, on native GABAA-R from rats. Materials and Methods: Determination of ketones effects on allosterically enhanced benzodiazepine binding, using primary cultures of cortical neurons, which express functional receptors and MTT assay to evaluate their cell toxicity. Results: Our results seem to indicate that ketone components of Mentha, with proven repellent or insecticide activity, were able to behave as GABAA-R negative allosteric modulators in murine cells and consequently could exhibit convulsant activity in mammalians. Only pulegone at the highest assayed concentration (2 mM) showed a significant reduction in cell viability after exposure for 24 hr. Conclusion: The present results strongly suggest that the ketone components of Mentha are able to exhibit convulsant activity in mammalian organisms, but functional assays and in vivo experiments would be necessary to corroborate this proposed action. SUMMARY The pharmacological activity of insecticide ketones, commonly present in Mentha plants, was evaluated on native GABAA receptor from mammalian

  19. The T-cell Receptor Repertoire Influences the Tumor Microenvironment and Is Associated with Survival in Aggressive B-cell Lymphoma.

    PubMed

    Keane, Colm; Gould, Clare; Jones, Kimberley; Hamm, David; Talaulikar, Dipti; Ellis, Jonathan; Vari, Frank; Birch, Simone; Han, Erica; Wood, Peter; Le-Cao, Kim-Anh; Green, Michael R; Crooks, Pauline; Jain, Sanjiv; Tobin, Josh; Steptoe, Raymond J; Gandhi, Maher K

    2017-04-01

    Purpose: To investigate the relationship between the intra-tumoral T-cell receptor (TCR) repertoire and the tumor microenvironment (TME) in de novo diffuse large B-cell lymphoma (DLBCL) and the impact of TCR on survival.Experimental Design: We performed high-throughput unbiased TCRβ sequencing on a population-based cohort of 92 patients with DLBCL treated with conventional (i.e., non-checkpoint blockade) frontline "R-CHOP" therapy. Key immune checkpoint genes within the TME were digitally quantified by nanoString. The primary endpoints were 4-year overall survival (OS) and progression-free survival (PFS).Results: The TCR repertoire within DLBCL nodes was abnormally narrow relative to non-diseased nodal tissues (P < 0.0001). In DLBCL, a highly dominant single T-cell clone was associated with inferior 4-year OS rate of 60.0% [95% confidence interval (CI), 31.7%-79.6%], compared with 79.8% in patients with a low dominant clone (95% CI, 66.7%-88.5%; P = 0.005). A highly dominant clone also predicted inferior 4-year PFS rate of 46.6% (95% CI, 22.5%-76.6%) versus 72.6% (95% CI, 58.8%-82.4%, P = 0.008) for a low dominant clone. In keeping, clonal expansions were most pronounced in the EBV(+) DLBCL subtype that is known to express immunogenic viral antigens and is associated with particularly poor outcome. Increased T-cell diversity was associated with significantly elevated PD-1, PD-L1, and PD-L2 immune checkpoint molecules.Conclusions: Put together, these findings suggest that the TCR repertoire is a key determinant of the TME. Highly dominant T-cell clonal expansions within the TME are associated with poor outcome in DLBCL treated with conventional frontline therapy. Clin Cancer Res; 23(7); 1820-8. ©2016 AACR.

  20. Moonlighting glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH): an evolutionarily conserved plasminogen receptor on mammalian cells.

    PubMed

    Chauhan, Anoop Singh; Kumar, Manoj; Chaudhary, Surbhi; Patidar, Anil; Dhiman, Asmita; Sheokand, Navdeep; Malhotra, Himanshu; Raje, Chaaya Iyengar; Raje, Manoj

    2017-03-15

    Prokaryotic pathogens establish infection in mammals by capturing the proteolytic enzyme plasminogen (Plg) onto their surface to digest host extracellular matrix (ECM). One of the bacterial surface Plg receptors is the multifunctional glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In a defensive response, the host mounts an inflammatory response, which involves infiltration of leukocytes to sites of inflammation. This requires macrophage exit from the blood and migration across basement membranes, a phenomenon dependent on proteolytic remodeling of the ECM utilizing Plg. The ability of Plg to facilitate inflammatory cell recruitment critically depends on receptors on the surface of phagocyte cells. Utilizing a combination of biochemical, cellular, knockdown, and in vivo approaches, we demonstrated that upon inflammation, macrophages recruit GAPDH onto their surface to carry out the same task of capturing Plg to digest ECM to aid rapid phagocyte migration and combat the invading pathogens. We propose that GAPDH is an ancient, evolutionarily conserved receptor that plays a key role in the Plg-dependent regulation of macrophage recruitment in the inflammatory response to microbial aggression, thus pitting prokaryotic GAPDH against mammalian GAPDH, with both involved in a conserved role of Plg activation on the surface of their respective cells, to conflicting ends.-Chauhan, A. S., Kumar, M., Chaudhary, S., Patidar, A., Dhiman, A., Sheokand, N., Malhotra, H., Raje, C. I., Raje, M. Moonlighting glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH): an evolutionarily conserved plasminogen receptor on mammalian cells.

  1. Generation of Novel Traj18-Deficient Mice Lacking Vα14 Natural Killer T Cells with an Undisturbed T Cell Receptor α-Chain Repertoire

    PubMed Central

    Dashtsoodol, Nyambayar; Shigeura, Tomokuni; Ozawa, Ritsuko; Harada, Michishige; Kojo, Satoshi; Watanabe, Takashi; Koseki, Haruhiko; Nakayama, Manabu; Ohara, Osamu; Taniguchi, Masaru

    2016-01-01

    Invariant Vα14 natural killer T (NKT) cells, characterized by the expression of a single invariant T cell receptor (TCR) α chain encoded by rearranged Trav11 (Vα14)-Traj18 (Jα18) gene segments in mice, and TRAV10 (Vα24)-TRAJ18 (Jα18) in humans, mediate adjuvant effects to activate various effector cell types in both innate and adaptive immune systems that facilitates the potent antitumor effects. It was recently reported that the Jα18-deficient mouse described by our group in 1997 harbors perturbed TCRα repertoire, which raised concerns regarding the validity of some of the experimental conclusions that have been made using this mouse line. To resolve this concern, we generated a novel Traj18-deficient mouse line by specifically targeting the Traj18 gene segment using Cre-Lox approach. Here we showed the newly generated Traj18-deficient mouse has, apart from the absence of Traj18, an undisturbed TCRα chain repertoire by using next generation sequencing and by detecting normal generation of Vα19Jα33 expressing mucosal associated invariant T cells, whose development was abrogated in the originally described Jα18-KO mice. We also demonstrated here the definitive requirement for NKT cells in the protection against tumors and their potent adjuvant effects on antigen-specific CD8 T cells. PMID:27064277

  2. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors.

    PubMed

    Schmutz, Isabelle; Ripperger, Jürgen A; Baeriswyl-Aebischer, Stéphanie; Albrecht, Urs

    2010-02-15

    Mammalian circadian clocks provide a temporal framework to synchronize biological functions. To obtain robust rhythms with a periodicity of about a day, these clocks use molecular oscillators consisting of two interlocked feedback loops. The core loop generates rhythms by transcriptional repression via the Period (PER) and Cryptochrome (CRY) proteins, whereas the stabilizing loop establishes roughly antiphasic rhythms via nuclear receptors. Nuclear receptors also govern many pathways that affect metabolism and physiology. Here we show that the core loop component PER2 can coordinate circadian output with the circadian oscillator. PER2 interacts with nuclear receptors including PPARalpha and REV-ERBalpha and serves as a coregulator of nuclear receptor-mediated transcription. Consequently, PER2 is rhythmically bound at the promoters of nuclear receptor target genes in vivo. In this way, the circadian oscillator can modulate the expression of nuclear receptor target genes like Bmal1, Hnf1alpha, and Glucose-6-phosphatase. The concept that PER2 may propagate clock information to metabolic pathways via nuclear receptors adds an important facet to the clock-dependent regulation of biological networks.

  3. Molecular piracy of mammalian interleukin-8 receptor type B by herpesvirus saimiri.

    PubMed

    Ahuja, S K; Murphy, P M

    1993-10-05

    Viruses are known to acquire and modify the genes of their hosts to attain a survival advantage in the host environment. Herpesvirus saimiri (HVS) is a T-lymphotropic virus that causes fatal lymphoproliferative diseases in several non-human primates. The gene ECRF3 of HVS was most likely acquired from a primate host. ECRF3 encodes a putative seven-transmembrane-domain receptor that is remotely related (approximately 30% amino acid identity) to the known mammalian alpha and beta chemokine receptors, namely interleukin-8 receptor (IL8R) types A and B and the MIP-1 alpha/RANTES receptor, respectively. Chemokines regulate the trafficking, activation, and, in some cases, proliferation of myeloid and lymphoid cell types. We now show that ECRF3 encodes a functional receptor for the alpha chemokines IL-8, GRO/melanoma growth stimulatory activity (MGSA), and NAP-2 but not for beta chemokines, a specificity identical to that of IL8RB. Paradoxically, IL8RA shares 77% amino acid identity with IL8RB but is not a receptor for GRO/MGSA or NAP-2. This is the first functional characterization of a viral seven-transmembrane-domain receptor. It suggests a novel role for alpha chemokines in the pathogenesis of HVS infection by transmembrane signaling via the product of ECRF3.

  4. T cell receptor repertoire for a viral epitope in humans is diversified by tolerance to a background major histocompatibility complex antigen

    PubMed Central

    1995-01-01

    Two unusual characteristics of the memory response to the immunodominant Epstein-Barr virus (EBV) epitope FLRGRAYGL, which associates with HLA B8, have provided an unique opportunity to investigate self tolerance and T cell receptor (TCR) plasticity in humans. First, the response is exceptionally restricted, dominated by cytotoxic T lymphocytes (CTL) with identical TCR protein sequences (Argaet, V. P., C. W. Schmidt, S. R. Burrows, S. L. Silins, M. G. Kurilla, D. L. Doolan, A. Suhrbier, D. J. Moss, E. Kieff, T. B. Sculley, and I. S. Misko. 1994. J. Exp. Med. 180:2335-2340). Second, CTL expressing this receptor are cross-reactive with the alloantigen HLA B* 4402 on uninfected cells (Burrows, S. R., R. Khanna, J. M. Burrows, and D. J. Moss. 1994. J. Exp. Med. 179:1155-1161). No CTL using this conserved public TCR could be reactivated from the peripheral blood of EBV exposed individuals expressing both HLA B8 and B*4402, demonstrating the clonal inactivation of potentially self- reactive T cells in humans. A significant FLRGRAYGL-specific response was still apparent, however, and TCR sequence analysis of multiple CTL clones revealed an oligoclonal TCR repertoire for this determinant within these individuals, using diverse V and J gene segments and CDR3 regions. In addition, a significant public TCR component was identified in which several distinct alpha/beta rearrangements are shared by CTL clones from a number of unrelated HLA B8+, B*4402+ donors. The striking dominance of public TCR in the response to this EBV epitope suggests a strong genetic bias in TCR gene recombination. Fine specificity analysis using peptide analogues showed that, of six different antigen receptors for FLRGRAYGL/HLA B8, none associate closely with the peptide's full array of potential TCR contact residues. Whereas the HLA B*4402-cross-reactive receptor binds amino acids toward the COOH terminus of the peptide, others preferentially favor an NH2-terminal determinant, presumably evading an area

  5. Inositol 1,4,5-trisphosphate receptors selectively localized to the acrosomes of mammalian sperm

    PubMed Central

    1995-01-01

    Calcium flux is required for the mammalian sperm acrosome reaction, an exocytotic event triggered by egg binding, which results in a dramatic rise in sperm intracellular calcium. Calcium-dependent membrane fusion results in the release of enzymes that facilitate sperm penetration through the zona pellucida during fertilization. We have characterized inositol 1,4,5-trisphosphate (IP3)-gated calcium channels and upstream components of the phosphoinositide signaling system in mammalian sperm. Peptide antibodies colocalized G alpha q/11 and the beta 1 isoform of phospholipase C (PLC beta 1) to the anterior acrosomal region of mouse sperm. Western blotting using a polyclonal antibody directed against purified brain IP3 receptor (IP3R) identified a specific 260 kD band in 1% Triton X-100 extracts of rat, hamster, mouse and dog sperm. In each species, IP3R immunostaining localized to the acrosome cap. Scatchard analysis of [3H]IP3 binding to rat sperm sonicates revealed a curvilinear plot with high affinity (Kd = 26 nM, Bmax = 30 pmol/mg) and low affinity (Kd = 1.6 microM, Bmax = 550 pmol/mg) binding sites, reflecting among the highest receptor densities in mammalian tissue. Immunoelectron microscopy confirmed the acrosomal localization in rat sperm. The IP3R fractionated with acrosomes by discontinuous sucrose gradient centrifugation and was enriched in the medium of acrosome- reacted sperm. ATP-dependent 45Ca2+ loading of digitonin permeabilized rat sperm was decreased by 45% in the presence of 10 microM IP3. The IP3-mediated release of calcium was blocked by heparin. Thapsigargin, a sequiterpene lactone inhibitor of the microsomal Ca(2+)-ATPase, stimulated the acrosome reaction of mouse sperm to the same extent as the Ca2+ ionophore, A23187. The failure of caffeine and ryanodine to affect calcium accumulation suggested that thapsigargin acted through an IP3-sensitive store. The presence of G alpha q/11, PLC beta 1 and a functional IP3R in the anterior acrosomal region

  6. Motif-based construction of a functional map for mammalian olfactory receptors.

    PubMed

    Liu, Agatha H; Zhang, Xinmin; Stolovitzky, Gustavo A; Califano, Andrea; Firestein, Stuart J

    2003-05-01

    We applied an automatic and unsupervised system to a nearly complete database of mammalian odor receptor genes. The generated motifs and gene classification were subjected to extensive and systematic downstream analysis to obtain biological insights. Two major results from this analysis were: (1) a map of sequence motifs that may correlate with function and (2) the corresponding receptor classes in which members of each class are likely to share specific functions. We have discovered motifs that have been implicated in structural integrity and posttranslational modification, as well as motifs very likely to be directly involved in ligand binding. We further propose a combinatorial molecular hypothesis, based on unique combinations of the observed motifs, that provides a foundation for understanding the generation of a large number of ligand binding sites.

  7. TrkB receptors are required for follicular growth and oocyte survival in the mammalian ovary

    PubMed Central

    Paredes, Alfonso; Romero, Carmen; Dissen, Gregory A.; DeChiara, Tom M.; Reichardt, Louis; Cornea, Anda; Ojeda, Sergio R.; Xu, Baoji

    2009-01-01

    Although it is well established that both follicular assembly and the initiation of follicle growth in the mammalian ovary occur independently of pituitary hormone support, the factors controlling these processes remain poorly understood. We now report that neurotrophins (NTs) signaling via TrkB receptors are required for the growth of newly formed follicles. Both neurotrophin-4/5 (NT-4) and brain-derived neurotrophic factor (BDNF), the preferred TrkB ligands, are expressed in the infantile mouse ovary. Initially, they are present in oocytes, but this site of expression switches to granulosa cells after the newly assembled primordial follicles develop into growing primary follicles. Full-length kinase domain-containing TrkB receptors are expressed at low and seemingly unchanging levels in the oocytes and granulosa cells of both primordial and growing follicles. In contrast, a truncated TrkB isoform lacking the intracellular domain of the receptor is selectively expressed in oocytes, where it is targeted to the cell membrane as primary follicles initiate growth. Using gene-targeted mice lacking all TrkB isoforms, we show that the ovaries of these mice or those lacking both NT-4 and BDNF suffer a stage-selective deficiency in early follicular development that compromises the ability of follicles to grow beyond the primary stage. Proliferation of granulosa cells— required for this transition—and expression of FSH receptors (FSHR), which reflects the degree of biochemical differentiation of growing follicles, are reduced in trkB-null mice. Ovaries from these animals grafted under the kidney capsule of wild-type mice fail to sustain follicular growth and show a striking loss of follicular organization, preceded by massive oocyte death. These results indicate that TrkB receptors are required for the early growth of ovarian follicles and that they exert this function by primarily supporting oocyte development as well as providing granulosa cells with a proliferative

  8. Ecological adaptation determines functional mammalian olfactory subgenomes

    PubMed Central

    Hayden, Sara; Bekaert, Michaël; Crider, Tess A.; Mariani, Stefano; Murphy, William J.; Teeling, Emma C.

    2010-01-01

    The ability to smell is governed by the largest gene family in mammalian genomes, the olfactory receptor (OR) genes. Although these genes are well annotated in the finished human and mouse genomes, we still do not understand which receptors bind specific odorants or how they fully function. Previous comparative studies have been taxonomically limited and mostly focused on the percentage of OR pseudogenes within species. No study has investigated the adaptive changes of functional OR gene families across phylogenetically and ecologically diverse mammals. To determine the extent to which OR gene repertoires have been influenced by habitat, sensory specialization, and other ecological traits, to better understand the functional importance of specific OR gene families and thus the odorants they bind, we compared the functional OR gene repertoires from 50 mammalian genomes. We amplified more than 2000 OR genes in aquatic, semi-aquatic, and flying mammals and coupled these data with 48,000 OR genes from mostly terrestrial mammals, extracted from genomic projects. Phylogenomic, Bayesian assignment, and principle component analyses partitioned species by ecotype (aquatic, semi-aquatic, terrestrial, flying) rather than phylogenetic relatedness, and identified OR families important for each habitat. Functional OR gene repertoires were reduced independently in the multiple origins of aquatic mammals and were significantly divergent in bats. We reject recent neutralist views of olfactory subgenome evolution and correlate specific OR gene families with physiological requirements, a preliminary step toward unraveling the relationship between specific odors and respective OR gene families. PMID:19952139

  9. Sperm proteasomes degrade sperm receptor on the egg zona pellucida during mammalian fertilization.

    PubMed

    Zimmerman, Shawn W; Manandhar, Gaurishankar; Yi, Young-Joo; Gupta, Satish K; Sutovsky, Miriam; Odhiambo, John F; Powell, Michael D; Miller, David J; Sutovsky, Peter

    2011-02-23

    Despite decades of research, the mechanism by which the fertilizing spermatozoon penetrates the mammalian vitelline membrane, the zona pellucida (ZP) remains one of the unexplained fundamental events of human/mammalian development. Evidence has been accumulating in support of the 26S proteasome as a candidate for echinoderm, ascidian and mammalian egg coat lysin. Monitoring ZP protein degradation by sperm during fertilization is nearly impossible because those few spermatozoa that penetrate the ZP leave behind a virtually untraceable residue of degraded proteins. We have overcome this hurdle by designing an experimentally consistent in vitro system in which live boar spermatozoa are co-incubated with ZP-proteins (ZPP) solubilized from porcine oocytes. Using this assay, mimicking sperm-egg interactions, we demonstrate that the sperm-borne proteasomes can degrade the sperm receptor protein ZPC. Upon coincubation with motile spermatozoa, the solubilized ZPP, which appear to be ubiquitinated, adhered to sperm acrosomal caps and induced acrosomal exocytosis/formation of the acrosomal shroud. The degradation of the sperm receptor protein ZPC was assessed by Western blotting band-densitometry and proteomics. A nearly identical pattern of sperm receptor degradation, evident already within the first 5 min of coincubation, was observed when the spermatozoa were replaced with the isolated, enzymatically active, sperm-derived proteasomes. ZPC degradation was blocked by proteasomal inhibitors and accelerated by ubiquitin-aldehyde(UBAL), a modified ubiquitin protein that stimulates proteasomal proteolysis. Such a degradation pattern of ZPC is consistent with in vitro fertilization studies, in which proteasomal inhibitors completely blocked fertilization, and UBAL increased fertilization and polyspermy rates. Preincubation of intact zona-enclosed ova with isolated active sperm proteasomes caused digestion, abrasions and loosening of the exposed zonae, and significantly reduced

  10. Enterotoxin/guanylin receptor type guanylyl cyclases in non-mammalian vertebrates.

    PubMed

    Nakauchi, Mina; Suzuki, Norio

    2005-05-01

    Cyclic GMP is a ubiquitous intracellular second messenger produced by guanylyl cyclases (GCs). The enterotoxin/guanylin receptor type membrane GC (designated as GC-C in mammals) is activated by exogenous ligands such as heat-stable enterotoxins (STa), small peptides secreted by some pathogenic strains of Escherichia coli which cause severe secretory diarrhea and also activated by endogenous ligands such as guanylin and uroguanylin. The STa/guanylin receptor type membrane GC, as well as other type membrane GCs, is composed of an extracellular domain, a single transmembrane domain, and an intracellular region comprising a kinase-like domain and a catalytic domain. The STa/guanylin receptor type membrane GC is identified in various vertebrates including fishes, amphibians, reptiles, and birds, implying that it serves some important and undefined physiological roles in the intestine of non-mammalian vertebrates, e.g. the regulation of water and salt absorption. In mammals, only a single membrane GC (GC-C) is known to be the STa/guanylin receptor. On the contrary, two membrane GC cDNAs are cloned from the intestine of the European eel Anguilla anguilla (GC-C1 and GC-C2) and the medaka fish Oryzias latipes (OlGC6 and OlGC9). OlGC6 and OlGC9 are structurally distinct and show different ligand responsibility. Accumulated evidences indicate that the transcriptional regulatory mechanism of the human GC-C gene is different from that of the corresponding medaka fish GC gene; the human GC-C gene is regulated by Cdx2 and/or HNF-4, and the medaka fish OlGC6 gene is regulated by OlPC4, which is a medaka fish homologue of the mammalian transcriptional positive co-factor 4 (PC4). Furthermore, the transcriptional regulatory mechanism of the OlGC9 gene is different from those of both the OlGC6 and human GC-C genes, indicating that the study on these two medaka fish GCs will be useful for further understanding of the STa/guanylin receptor type membrane GC in the vertebrates.

  11. Functional coupling of a mammalian somatostatin receptor to the yeast pheromone response pathway.

    PubMed Central

    Price, L A; Kajkowski, E M; Hadcock, J R; Ozenberger, B A; Pausch, M H

    1995-01-01

    A detailed analysis of structural and functional aspects of G-protein-coupled receptors, as well as discovery of novel pharmacophores that exert their effects on members of this class of receptors, will be facilitated by development of a yeast-based bioassay. To that end, yeast strains that functionally express the rat somatostatin receptor subtype 2 (SSTR2) were constructed. High-affinity binding sites for somatostatin ([125I-Tyr-11]S-14) comparable to those in native tissues were detected in yeast membrane extracts at levels equivalent to the alpha-mating pheromone receptor (Ste2p). Somatostatin-dependent growth of strains modified by deletion of genes encoding components of the pheromone response pathway was detected through induction of a pheromone-responsive HIS3 reporter gene, enabling cells to grow on medium lacking histidine. Dose-dependent growth responses to S-14 and related SSTR2 subtype-selective agonists that were proportional to the affinity of the ligands for SSTR2 were observed. The growth response required SSTR2, G alpha proteins, and an intact signal transduction pathway. The sensitivity of the bioassay was affected by intracellular levels of the G alpha protein. A mutation in the SST2 gene, which confers supersensitivity to pheromone, was found to significantly enhance the growth response to S-14. In sst2 delta cells, SSTR2 functionally interacted with both a chimeric yeast/mammalian G alpha protein and the yeast G alpha protein, Gpa1p; to promote growth. These yeast strains should serve as a useful in vivo reconstitution system for examination of molecular interactions of the G-protein-coupled receptors and G proteins. PMID:7565771

  12. Aldehyde Recognition and Discrimination by Mammalian Odorant Receptors via Functional Group-Specific Hydration Chemistry

    PubMed Central

    2015-01-01

    The mammalian odorant receptors (ORs) form a chemical-detecting interface between the atmosphere and the nervous system. This large gene family is composed of hundreds of membrane proteins predicted to form as many unique small molecule binding niches within their G-protein coupled receptor (GPCR) framework, but very little is known about the molecular recognition strategies they use to bind and discriminate between small molecule odorants. Using rationally designed synthetic analogs of a typical aliphatic aldehyde, we report evidence that among the ORs showing specificity for the aldehyde functional group, a significant percentage detect the aldehyde through its ability to react with water to form a 1,1-geminal (gem)-diol. Evidence is presented indicating that the rat OR-I7, an often-studied and modeled OR known to require the aldehyde function of octanal for activation, is likely one of the gem-diol activated receptors. A homology model based on an activated GPCR X-ray structure provides a structural hypothesis for activation of OR-I7 by the gem-diol of octanal. PMID:25181321

  13. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors.

    PubMed

    Tomizawa, Motohiro; Casida, John E

    2003-01-01

    Neonicotinoids, the most important new class of synthetic insecticides of the past three decades, are used to control sucking insects both on plants and on companion animals. Imidacloprid (the principal example), nitenpyram, acetamiprid, thiacloprid, thiamethoxam, and others act as agonists at the insect nicotinic acetylcholine receptor (nAChR). The botanical insecticide nicotine acts at the same target without the neonicotinoid level of effectiveness or safety. Fundamental differences between the nAChRs of insects and mammals confer remarkable selectivity for the neonicotinoids. Whereas ionized nicotine binds at an anionic subsite in the mammalian nAChR, the negatively tipped ("magic" nitro or cyano) neonicotinoids interact with a proposed unique subsite consisting of cationic amino acid residue(s) in the insect nAChR. Knowledge reviewed here of the functional architecture and molecular aspects of the insect and mammalian nAChRs and their neonicotinoid-binding site lays the foundation for continued development and use of this new class of safe and effective insecticides.

  14. The role of tumor necrosis factor receptor superfamily members in mammalian brain development, function and homeostasis.

    PubMed

    Twohig, Jason P; Cuff, Simone M; Yong, Audrey A; Wang, Eddie C Y

    2011-01-01

    Tumor necrosis factor receptor superfamily (TNFRSF) members were initially identified as immunological mediators, and are still commonly perceived as immunological molecules. However, our understanding of the diversity of TNFRSF members' roles in mammalian physiology has grown significantly since the first discovery of TNFRp55 (TNFRSF1) in 1975. In particular, the last decade has provided evidence for important roles in brain development, function and the emergent field of neuronal homeostasis. Recent evidence suggests that TNFRSF members are expressed in an overlapping regulated pattern during neuronal development, participating in the regulation of neuronal expansion, growth, differentiation and regional pattern development. This review examines evidence for non-immunological roles of TNFRSF members in brain development, function and maintenance under normal physiological conditions. In addition, several aspects of brain function during inflammation will also be described, when illuminating and relevant to the non-immunological role of TNFRSF members. Finally, key questions in the field will be outlined.

  15. Quantitative T cell repertoire analysis by deep cDNA sequencing of T cell receptor α and β chains using next-generation sequencing (NGS)

    PubMed Central

    Fang, Hua; Yamaguchi, Rui; Liu, Xiao; Daigo, Yataro; Yew, Poh Yin; Tanikawa, Chizu; Matsuda, Koichi; Imoto, Seiya; Miyano, Satoru; Nakamura, Yusuke

    2015-01-01

    Immune responses play a critical role in various disease conditions including cancer and autoimmune diseases. However, to date, there has not been a rapid, sensitive, comprehensive, and quantitative analysis method to examine T-cell or B-cell immune responses. Here, we report a new approach to characterize T cell receptor (TCR) repertoire by sequencing millions of cDNA of TCR α and β chains in combination with a newly-developed algorithm. Using samples from lung cancer patients treated with cancer peptide vaccines as a model, we demonstrate that detailed information of the V-(D)-J combination along with complementary determining region 3 (CDR3) sequences can be determined. We identified extensive abnormal splicing of TCR transcripts in lung cancer samples, indicating the dysfunctional splicing machinery in T lymphocytes by prior chemotherapy. In addition, we found three potentially novel TCR exons that have not been described previously in the reference genome. This newly developed TCR NGS platform can be applied to better understand immune responses in many disease areas including immune disorders, allergies, and organ transplantations. PMID:25964866

  16. Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals

    PubMed Central

    Matsui, Atsushi; Touhara, Kazushige

    2014-01-01

    Olfactory receptors (ORs) detect odors in the environment, and OR genes constitute the largest multigene family in mammals. Numbers of OR genes vary greatly among species—reflecting the respective species' lifestyles—and this variation is caused by frequent gene gains and losses during evolution. However, whether the extent of gene gains/losses varies among individual gene lineages and what might generate such variation is unknown. To answer these questions, we used a newly developed phylogeny-based method to classify >10,000 intact OR genes from 13 placental mammal species into 781 orthologous gene groups (OGGs); we then compared the OGGs. Interestingly, African elephants had a surprisingly large repertoire (∼2000) of functional OR genes encoded in enlarged gene clusters. Additionally, OR gene lineages that experienced more gene duplication had weaker purifying selection, and Class II OR genes have evolved more dynamically than those in Class I. Some OGGs were highly expanded in a lineage-specific manner, while only three OGGs showed complete one-to-one orthology among the 13 species without any gene gains/losses. These three OGGs also exhibited highly conserved amino acid sequences; therefore, ORs in these OGGs may have physiologically important functions common to every placental mammal. This study provides a basis for inferring OR functions from evolutionary trajectory. PMID:25053675

  17. Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals.

    PubMed

    Niimura, Yoshihito; Matsui, Atsushi; Touhara, Kazushige

    2014-09-01

    Olfactory receptors (ORs) detect odors in the environment, and OR genes constitute the largest multigene family in mammals. Numbers of OR genes vary greatly among species--reflecting the respective species' lifestyles--and this variation is caused by frequent gene gains and losses during evolution. However, whether the extent of gene gains/losses varies among individual gene lineages and what might generate such variation is unknown. To answer these questions, we used a newly developed phylogeny-based method to classify >10,000 intact OR genes from 13 placental mammal species into 781 orthologous gene groups (OGGs); we then compared the OGGs. Interestingly, African elephants had a surprisingly large repertoire (∼ 2000) of functional OR genes encoded in enlarged gene clusters. Additionally, OR gene lineages that experienced more gene duplication had weaker purifying selection, and Class II OR genes have evolved more dynamically than those in Class I. Some OGGs were highly expanded in a lineage-specific manner, while only three OGGs showed complete one-to-one orthology among the 13 species without any gene gains/losses. These three OGGs also exhibited highly conserved amino acid sequences; therefore, ORs in these OGGs may have physiologically important functions common to every placental mammal. This study provides a basis for inferring OR functions from evolutionary trajectory.

  18. Analysis of T cell receptor repertoire of muscle-infiltrating T lymphocytes in polymyositis. Restricted V alpha/beta rearrangements may indicate antigen-driven selection.

    PubMed Central

    Mantegazza, R; Andreetta, F; Bernasconi, P; Baggi, F; Oksenberg, J R; Simoncini, O; Mora, M; Cornelio, F; Steinman, L

    1993-01-01

    Polymyositis is an inflammatory myopathy characterized by mononuclear cell infiltration of muscle tissue. Myocytotoxic T lymphocytes have been recognized in the infiltrates, but the muscle antigen, target of the immune attack, has not been identified. Molecular characterization of the variable regions of T cell receptors (TCRs) on the infiltrating lymphocytes can be expected to provide insights into the pathogenic process. The V alpha/beta TCR repertoire was investigated by RNA-PCR in muscle biopsies from 15 polymyositis patients and 16 controls (6 Duchenne muscular dystrophy and 10 with no inflammatory or dystrophic myopathy). A variety of rearranged variable TCR genes was found in polymyositis, V alpha 1, V alpha 5, V beta 1, and V beta 15 being the most common (present in 60-100% of patients). In Duchenne muscular dystrophy patients TCR V alpha or beta rearrangements were found although no restriction was observed; no rearrangements were found in muscles from the other controls. Sequence analysis revealed the presence of the J beta 2.1 region in 90% of the V beta 15 clones studied, no random N additions in the diversity region, and a common motif within the CDR3 region. These results suggest that selection of muscle-infiltrating T lymphocytes is antigen driven in polymyositis. Images PMID:8514895

  19. Eye on the B-ALL: B-cell receptor repertoires reveal persistence of numerous B-lymphoblastic leukemia subclones from diagnosis to relapse

    PubMed Central

    Bashford-Rogers, R J M; Nicolaou, K A; Bartram, J; Goulden, N J; Loizou, L; Koumas, L; Chi, J; Hubank, M; Kellam, P; Costeas, P A; Vassiliou, G S

    2016-01-01

    The strongest predictor of relapse in B-cell acute lymphoblastic leukemia (B-ALL) is the level of persistence of tumor cells after initial therapy. The high mutation rate of the B-cell receptor (BCR) locus allows high-resolution tracking of the architecture, evolution and clonal dynamics of B-ALL. Using longitudinal BCR repertoire sequencing, we find that the BCR undergoes an unexpectedly high level of clonal diversification in B-ALL cells through both somatic hypermutation and secondary rearrangements, which can be used for tracking the subclonal composition of the disease and detect minimal residual disease with unprecedented sensitivity. We go on to investigate clonal dynamics of B-ALL using BCR phylogenetic analyses of paired diagnosis-relapse samples and find that large numbers of small leukemic subclones present at diagnosis re-emerge at relapse alongside a dominant clone. Our findings suggest that in all informative relapsed patients, the survival of large numbers of clonogenic cells beyond initial chemotherapy is a surrogate for inherent partial chemoresistance or inadequate therapy, providing an increased opportunity for subsequent emergence of fully resistant clones. These results frame early cytoreduction as an important determinant of long-term outcome. PMID:27211266

  20. The T Cell Response to the Contact Sensitizer Paraphenylenediamine Is Characterized by a Polyclonal Diverse Repertoire of Antigen-Specific Receptors

    PubMed Central

    Oakes, Theres; Popple, Amy Lee; Williams, Jason; Best, Katharine; Heather, James M.; Ismail, Mazlina; Maxwell, Gavin; Gellatly, Nichola; Dearman, Rebecca J.; Kimber, Ian; Chain, Benny

    2017-01-01

    Paraphenylenediamine (PPD) is a common component of hair dyes and black henna tattoos and can cause skin sensitization and allergic contact dermatitis (ACD). The cutaneous inflammatory reaction associated with ACD is driven by both CD4+ and CD8+ T cells. However, the characteristics of such responses with respect to clonal breadth and magnitude are poorly defined. In this study, we have characterized the in vitro recall response of peripheral blood T cells prepared from PPD-allergic individuals to a PPD–human serum albumin (HSA) conjugate (PPD–HSA). Quantitative high throughput sequencing was used to characterize the changes in the repertoire of T cell receptor (TCR) α and β genes after exposure to antigen in vitro. The PPD conjugate induced expansion of T cells carrying selected TCRs, with around 800 sequences (around 1%) being 8 or more times as abundant after culture than before. The expanded sequences showed strong skewing of V and J usage, consistent with an antigen-driven clonal expansion. The complementarity-determining region 3 sequences of the expanded TCRs could be grouped into several families of related amino acid sequence, but the overall diversity of the expanded sample was not much less than that of a random sample of the same size. The results suggest a model in which PPD–HSA conjugate stimulates a broad diversity of TCRs, with a wide range of stimulation strengths, which manifest as different degrees of in vitro expansion. PMID:28261218

  1. The T Cell Response to the Contact Sensitizer Paraphenylenediamine Is Characterized by a Polyclonal Diverse Repertoire of Antigen-Specific Receptors.

    PubMed

    Oakes, Theres; Popple, Amy Lee; Williams, Jason; Best, Katharine; Heather, James M; Ismail, Mazlina; Maxwell, Gavin; Gellatly, Nichola; Dearman, Rebecca J; Kimber, Ian; Chain, Benny

    2017-01-01

    Paraphenylenediamine (PPD) is a common component of hair dyes and black henna tattoos and can cause skin sensitization and allergic contact dermatitis (ACD). The cutaneous inflammatory reaction associated with ACD is driven by both CD4+ and CD8+ T cells. However, the characteristics of such responses with respect to clonal breadth and magnitude are poorly defined. In this study, we have characterized the in vitro recall response of peripheral blood T cells prepared from PPD-allergic individuals to a PPD-human serum albumin (HSA) conjugate (PPD-HSA). Quantitative high throughput sequencing was used to characterize the changes in the repertoire of T cell receptor (TCR) α and β genes after exposure to antigen in vitro. The PPD conjugate induced expansion of T cells carrying selected TCRs, with around 800 sequences (around 1%) being 8 or more times as abundant after culture than before. The expanded sequences showed strong skewing of V and J usage, consistent with an antigen-driven clonal expansion. The complementarity-determining region 3 sequences of the expanded TCRs could be grouped into several families of related amino acid sequence, but the overall diversity of the expanded sample was not much less than that of a random sample of the same size. The results suggest a model in which PPD-HSA conjugate stimulates a broad diversity of TCRs, with a wide range of stimulation strengths, which manifest as different degrees of in vitro expansion.

  2. Pharmacological profile of zacopride and new quaternarized fluorobenzamide analogues on mammalian α7 nicotinic acetylcholine receptor.

    PubMed

    Bourdin, Céline M; Lebreton, Jacques; Mathé-Allainmat, Monique; Thany, Steeve H

    2015-08-15

    From quaternarization of quinuclidine enantiomers of 2-fluoro benzamide LMA10203 in dichloromethane, the corresponding N-chloromethyl derivatives LMA10227 and LMA10228 were obtained. Here, we compared the agonist action of known zacopride and its 2-fluoro benzamide analogues, LMA10203, LMA10227 and LMA10228 against mammalian homomeric α7 nicotinic acetylcholine receptor expressed in Xenopus oocytes. We found that LMA10203 was a partial agonist of α7 receptor with a pEC50 value of 4.25 ± 0.06 μM whereas LMA10227 and LMA10228 were poorly active on α7 homomeric nicotinic receptor. LMA10227 and LMA10228 were identified as antagonists of acetylcholine-induced currents with IC50 values of 28.4 μM and 39.3 μM whereas LMA10203 and zacopride possessed IC50 values of 8.07 μM and 7.04 μM, respectively. Moreover, despite their IC50 values, LMA10227 was the most potent inhibitor of nicotine-induced current amplitudes (65.7 ± 2.1% inhibition). LMA10203 and LMA10228 had the same inhibitory effects (26.5 ± 7.5% and 33.2 ± 4.1%, respectively), whereas zacopride had no significant inhibitory effect (4.37 ± 4%) on nicotine-induced responses. Our results revealed different pharmacological properties between the four compounds on acetylcholine and nicotine currents. The mode of action of benzamide compounds may need to be reinterpreted with respect to the potential role of α7 receptor.

  3. Invertebrate Iridescent Virus 6, a DNA Virus, Stimulates a Mammalian Innate Immune Response through RIG-I-Like Receptors

    PubMed Central

    Ahlers, Laura R. H.; Bastos, Reginaldo G.; Hiroyasu, Aoi

    2016-01-01

    Insects are not only major vectors of mammalian viruses, but are also host to insect-restricted viruses that can potentially be transmitted to mammals. While mammalian innate immune responses to arboviruses are well studied, less is known about how mammalian cells respond to viruses that are restricted to infect only invertebrates. Here we demonstrate that IIV-6, a DNA virus of the family Iridoviridae, is able to induce a type I interferon-dependent antiviral immune response in mammalian cells. Although IIV-6 is a DNA virus, we demonstrate that the immune response activated during IIV-6 infection is mediated by the RIG-I-like receptor (RLR) pathway, and not the canonical DNA sensing pathway via cGAS/STING. We further show that RNA polymerase III is required for maximal IFN-β secretion, suggesting that viral DNA is transcribed by this enzyme into an RNA species capable of activating the RLR pathway. Finally, we demonstrate that the RLR-driven mammalian innate immune response to IIV-6 is functionally capable of protecting cells from subsequent infection with the arboviruses Vesicular Stomatitis virus and Kunjin virus. These results represent a novel example of an invertebrate DNA virus activating a canonically RNA sensing pathway in the mammalian innate immune response, which reduces viral load of ensuing arboviral infection. PMID:27824940

  4. [The role of the class A scavenger receptors, SR-A and MARCO, in the immune system. Part 1. The structure of receptors, their ligand binding repertoires and ability to initiate intracellular signaling].

    PubMed

    Józefowski, Szczepan

    2012-02-29

    Recognition of pathogens by innate immune cells is mediated by pattern recognition receptors (PRR), which include scavenger receptors (SR). The class A SR, SR-A/CD204 and MARCO, are characterized by the presence of collagenous and SR cysteine-rich domains in their extracellular portions. Both receptors are expressed mainly on macrophages and dendritic cells. Thanks to their ability to bind to a wide range of polyanionic ligands, the class A SR may participate in numerous functions of these cells, such as endocytosis, and adhesion to extracellular matrix and to other cells. Among SR-A ligands are oxidized lipoproteins and β-amyloid fibrils, which link SR-A to the pathogenesis of arteriosclerosis and Alzheimer's disease. Despite the demonstration of class A SR involvement in so many processes, the lack of selective ligands precluded reaching definite conclusions concerning their signaling abilities. Using specific receptor ligation with antibodies, we showed that SR-A and MARCO trigger intracellular signaling, modulating pro-inflammatory and microbicidal activities of macrophages. Surprisingly, despite similarities in structure and ligand binding repertoires, SR-A and MARCO exert opposite effects on interleukin-12 (IL-12) production in macrophages. SR-A ligation also stimulated H₂O₂ and IL-10 production, but had no effect on the release of several other cytokines. These limited effects of specific SR-A ligation contrast with generalized enhancement of immune responses observed in SR-A-deficient mice. Recent studies have revealed that many of these effects of SR-A deficiency may be caused by compensatory changes in the expression of other receptors and/or disinhibition of signal transduction from receptors belonging to the Toll/IL-1R family, rather than by the loss of the receptor function of SR-A.

  5. A novel IL-1 receptor, cloned from B cells by mammalian expression, is expressed in many cell types.

    PubMed Central

    McMahan, C J; Slack, J L; Mosley, B; Cosman, D; Lupton, S D; Brunton, L L; Grubin, C E; Wignall, J M; Jenkins, N A; Brannan, C I

    1991-01-01

    cDNA clones corresponding to an Mr approximately 80,000 receptor (type I receptor) for interleukin-1 (IL-1) have been isolated previously by mammalian expression. Here, we report the use of an improved expression cloning method to isolate human and murine cDNA clones encoding a second type (Mr approximately 60,000) of IL-1 receptor (type II receptor). The mature type II IL-1 receptor consists of (i) a ligand binding portion comprised of three immunoglobulin-like domains; (ii) a single transmembrane region; and (iii) a short cytoplasmic domain of 29 amino acids. This last contrasts with the approximately 215 amino acid cytoplasmic domain of the type I receptor, and suggests that the two IL-1 receptors may interact with different signal transduction pathways. The type II receptor is expressed in a number of different tissues, including both B and T lymphocytes, and can be induced in several cell types by treatment with phorbol ester. Both IL-1 receptors appear to be well conserved in evolution, and map to the same chromosomal location. Like the type I receptor, the human type II IL-1 receptor can bind all three forms of IL-1 (IL-1 alpha, IL-1 beta and IL-1ra). Vaccinia virus contains an open reading frame bearing strong resemblance to the type II IL-1 receptor. Images PMID:1833184

  6. miRNAome analysis of the mammalian neuronal nicotinic acetylcholine receptor gene family.

    PubMed

    Hogan, Eric M; Casserly, Alison P; Scofield, Michael D; Mou, Zhongming; Zhao-Shea, Rubing; Johnson, Chris W; Tapper, Andrew R; Gardner, Paul D

    2014-12-01

    Nicotine binds to and activates a family of ligand-gated ion channels, neuronal nicotinic acetylcholine receptors (nAChRs). Chronic nicotine exposure alters the expression of various nAChR subtypes, which likely contributes to nicotine dependence; however, the underlying mechanisms regulating these changes remain unclear. A growing body of evidence indicates that microRNAs (miRNAs) may be involved in nAChR regulation. Using bioinformatics, miRNA library screening, site-directed mutagenesis, and gene expression analysis, we have identified a limited number of miRNAs that functionally interact with the 3'-untranslated regions (3' UTRs) of mammalian neuronal nAChR subunit genes. In silico analyses revealed specific, evolutionarily conserved sites within the 3' UTRs through which the miRNAs regulate gene expression. Mutating these sites disrupted miRNA regulation confirming the in silico predictions. In addition, the miRNAs that target nAChR 3' UTRs are expressed in mouse brain and are regulated by chronic nicotine exposure. Furthermore, we show that expression of one of these miRNAs, miR-542-3p, is modulated by nicotine within the mesocorticolimbic reward pathway. Importantly, overexpression of miR-542-3p led to a decrease in the protein levels of its target, the nAChR β2 subunit. Bioinformatic analysis suggests that a number of the miRNAs play a general role in regulating cholinergic signaling. Our results provide evidence for a novel mode of nicotine-mediated regulation of the mammalian nAChR gene family.

  7. The Linguistic Repertoire Revisited

    ERIC Educational Resources Information Center

    Busch, Brigitta

    2012-01-01

    This article argues for the relevance of poststructuralist approaches to the notion of a linguistic repertoire and introduces the notion of language portraits as a basis for empirical study of the way in which speakers conceive and represent their heteroglossic repertoires. The first part of the article revisits Gumperz's notion of a linguistic…

  8. Evidence of positive selection at codon sites localized in extracellular domains of mammalian CC motif chemokine receptor proteins

    PubMed Central

    2010-01-01

    Background CC chemokine receptor proteins (CCR1 through CCR10) are seven-transmembrane G-protein coupled receptors whose signaling pathways are known for their important roles coordinating immune system responses through targeted trafficking of white blood cells. In addition, some of these receptors have been identified as fusion proteins for viral pathogens: for example, HIV-1 strains utilize CCR5, CCR2 and CCR3 proteins to obtain cellular entry in humans. The extracellular domains of these receptor proteins are involved in ligand-binding specificity as well as pathogen recognition interactions. In mammals, the majority of chemokine receptor genes are clustered together; in humans, seven of the ten genes are clustered in the 3p21-24 chromosome region. Gene conversion events, or exchange of DNA sequence between genes, have been reported in chemokine receptor paralogs in various mammalian lineages, especially between the cytogenetically closely located pairs CCR2/5 and CCR1/3. Datasets of mammalian orthologs for each gene were analyzed separately to minimize the potential confounding impact of analyzing highly similar sequences resulting from gene conversion events. Molecular evolution approaches and the software package Phylogenetic Analyses by Maximum Likelihood (PAML) were utilized to investigate the signature of selection that has acted on the mammalian CC chemokine receptor (CCR) gene family. The results of neutral vs. adaptive evolution (positive selection) hypothesis testing using Site Models are reported. In general, positive selection is defined by a ratio of nonsynonymous/synonymous nucleotide changes (dN/dS, or ω) >1. Results Of the ten mammalian CC motif chemokine receptor sequence datasets analyzed, only CCR2 and CCR3 contain amino acid codon sites that exhibit evidence of positive selection using site based hypothesis testing in PAML. Nineteen of the twenty codon sites putatively indentified as likely to be under positive selection code for amino acid

  9. Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina.

    PubMed

    Ho, T; Vessey, K A; Fletcher, E L

    2014-09-26

    Extracellular adenosine 5'-triphosphate (eATP) acts as a neurotransmitter within the retina and brain, activating a range of ionotropic P2X and metabotropic P2Y receptors. In this study, the specific localization of the P2X4 receptor (P2X4-R) subunit was evaluated in the retina using fluorescence immunohistochemistry and pre-embedding immuno-electron microscopy. Punctate P2X4-R labeling was largely localized to the inner and outer plexiform layers of mouse, rat and cat retinae. In the mouse outer retina, double-labeling of P2X4-R with the horizontal cell marker, calbindin, revealed P2X4-R immunoreactivity (P2X4-R-IR) on horizontal cell somata and processes. In the inner retina, P2X4-R expression was found closely associated with rod and cone bipolar cell terminals, and the punctate labeling was observed on calretinin-positive amacrine cells. Using immuno-electron microscopy, P2X4-Rs were observed on processes post-synaptic to photoreceptor and bipolar cell terminals, likely representing horizontal, amacrine and ganglion cells, respectively. Furthermore, P2X4-R expression was also observed on Müller cells, astrocytes and microglia. These data suggest a role for P2X4-Rs in the lateral inhibitory pathways of the retina, modulating neuronal function of photoreceptors and bipolar cells. The expression on macro- and microglial cells implicates a role for P2X4-Rs in glial signaling, tissue homeostasis and immunosurveillance within the mammalian retina.

  10. Pharmacological and biochemical properties of the benzodiazepine-GABA receptor in codfish brain in comparison with mammalian brain

    SciTech Connect

    Deng, L.

    1989-01-01

    The GABA receptor of codfish brain is encoded by an ancestral gene of the mammalian GABA receptor based on phylogenetic studies. The mammalian GABA receptor consists of at least two subunits ({beta} and {alpha}) which could be photoaffinity labeled by the GABA agonist ({sup 3}H)muscimol (57 kDa) and the benzodiazepine (BZ) agonist ({sup 3}H)flunitrazepam (52 kDa), respectively. In contrast, electrophoresis of codfish GABA receptor photoaffinity labeled by the same ligands showed a single radioactive peak on sodium dodecyl surface polyarcylamide gel, giving rise to a relative molecular weight of 56-57 kDa equivalent to the {beta} subunit of 57 kDa in mammals. The homogeneity of purified receptor using benzodiazepine (Ro 7-1986/1) affinity chromatography was further verified by two-dimensional gel electrophoresis based on isoelectric point and molecular weight, in addition to a single band on a silver stained gel and specific activity. The receptor density and affinity constant for ({sup 3}H)muscimol and ({sup 3}H)flunitrazepam are comparable to those in bovine, rate, and human brain.

  11. Involvement of Mammalian RF-Amide Peptides and Their Receptors in the Modulation of Nociception in Rodents.

    PubMed

    Ayachi, Safia; Simonin, Frédéric

    2014-01-01

    Mammalian RF-amide peptides, which all share a conserved carboxyl-terminal Arg-Phe-NH2 sequence, constitute a family of five groups of neuropeptides that are encoded by five different genes. They act through five G-protein-coupled receptors and each group of peptide binds to and activates mostly one receptor: RF-amide related peptide group binds to NPFFR1, neuropeptide FF group to NPFFR2, pyroglutamylated RF-amide peptide group to QRFPR, prolactin-releasing peptide group to prolactin-releasing peptide receptor, and kisspeptin group to Kiss1R. These peptides and their receptors have been involved in the modulation of several functions including reproduction, feeding, and cardiovascular regulation. Data from the literature now provide emerging evidence that all RF-amide peptides and their receptors are also involved in the modulation of nociception. This review will present the current knowledge on the involvement in rodents of the different mammalian RF-amide peptides and their receptors in the modulation of nociception in basal and chronic pain conditions as well as their modulatory effects on the analgesic effects of opiates.

  12. Involvement of Mammalian RF-Amide Peptides and Their Receptors in the Modulation of Nociception in Rodents

    PubMed Central

    Ayachi, Safia; Simonin, Frédéric

    2014-01-01

    Mammalian RF-amide peptides, which all share a conserved carboxyl-terminal Arg–Phe–NH2 sequence, constitute a family of five groups of neuropeptides that are encoded by five different genes. They act through five G-protein-coupled receptors and each group of peptide binds to and activates mostly one receptor: RF-amide related peptide group binds to NPFFR1, neuropeptide FF group to NPFFR2, pyroglutamylated RF-amide peptide group to QRFPR, prolactin-releasing peptide group to prolactin-releasing peptide receptor, and kisspeptin group to Kiss1R. These peptides and their receptors have been involved in the modulation of several functions including reproduction, feeding, and cardiovascular regulation. Data from the literature now provide emerging evidence that all RF-amide peptides and their receptors are also involved in the modulation of nociception. This review will present the current knowledge on the involvement in rodents of the different mammalian RF-amide peptides and their receptors in the modulation of nociception in basal and chronic pain conditions as well as their modulatory effects on the analgesic effects of opiates. PMID:25324831

  13. Distinct and non-overlapping T cell receptor repertoires expanded by DNA vaccination in wild-type and HER-2 transgenic BALB/c mice.

    PubMed

    Rolla, Simona; Nicoló, Chiara; Malinarich, Silvia; Orsini, Massimiliano; Forni, Guido; Cavallo, Federica; Ria, Francesco

    2006-12-01

    Central tolerance to tumor-associated Ags is an immune-escape mechanism that significantly limits the TCR repertoires available for tumor eradication. The repertoires expanded in wild-type BALB/c and rat-HER-2/neu (rHER-2) transgenic BALB-neuT mice following DNA immunization against rHER-2 were compared by spectratyping the variable (V)beta and the joining (J)beta CDR 3. Following immunization, BALB/c mice raised a strong response. Every mouse used one or more CD8+ T cell rearrangements of the Vbeta9-Jbeta1.2 segments characterized by distinct length of the CDR3 and specific for 63-71 or 1206-1214 rHER-2 peptides. In addition, two CD4+ T cell rearrangements recurred in >50% of mice. Instead, BALB-neuT mice displayed a limited response to rHER-2. Their repertoire is smaller and uses different rearrangements confined to CD4+ T cells. Thus, central tolerance in BALB-neuT mice acts by silencing the BALB/c mice self-reactive repertoire and reducing the size of the CD8+ T cell component. CD8+ and CD4+ T cells from both wild-type and transgenic mice home to tumors. This definition of the T cell repertoires available is critical to the designing of immunological maneuvers able to elicit an effective immune reaction against HER-2-driven carcinogenesis.

  14. T cell receptor genes in a series of class I major histocompatibility complex-restricted cytotoxic T lymphocyte clones specific for a Plasmodium berghei nonapeptide: implications for T cell allelic exclusion and antigen-specific repertoire

    PubMed Central

    1991-01-01

    We report here the first extensive study of a T cell repertoire for a class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocyte (CTL) response. We have found that the T cell receptors (TCRs) carried by 28 H-2Kd-restricted CTL clones specific for a single Plasmodium berghei circumsporozoite nonapeptide are highly diverse in terms of V alpha, J alpha, and J beta segments and aminoacid composition of the junctional regions. However, despite this extensive diversity, a high proportion of the TCRs contain the same V beta segment. These results are in contrast to most previously reported T cell responses towards class II MHC-peptide complexes, where the TCR repertoires appeared to be much more limited. In our study, the finding of a dominant V beta in the midst of otherwise highly diverse TCRs suggests the importance of the V beta segment in shaping the T cell repertoire specific for a given MHC-peptide complex. As an additional finding, we observed that nearly all clones have rearranged both TCR alpha loci. Moreover, as many as one-third of the CTL clones that we analyzed apparently display two productive alpha rearrangements. This argues against a regulated model of sequential recombination at the alpha locus and consequently raises the question of whether allelic exclusion of the TCR alpha chain is achieved at all. PMID:1836010

  15. Bispecific T-cells Expressing Polyclonal Repertoire of Endogenous γδ T-cell Receptors and Introduced CD19-specific Chimeric Antigen Receptor

    PubMed Central

    Deniger, Drew C; Switzer, Kirsten; Mi, Tiejuan; Maiti, Sourindra; Hurton, Lenka; Singh, Harjeet; Huls, Helen; Olivares, Simon; Lee, Dean A; Champlin, Richard E; Cooper, Laurence JN

    2013-01-01

    Even though other γδ T-cell subsets exhibit antitumor activity, adoptive transfer of γδ Tcells is currently limited to one subset (expressing Vγ9Vδ2 T-cell receptor (TCR)) due to dependence on aminobisphosphonates as the only clinically appealing reagent for propagating γδ T cells. Therefore, we developed an approach to propagate polyclonal γδ T cells and rendered them bispecific through expression of a CD19-specific chimeric antigen receptor (CAR). Peripheral blood mononuclear cells (PBMC) were electroporated with Sleeping Beauty (SB) transposon and transposase to enforce expression of CAR in multiple γδ T-cell subsets. CAR+γδ T cells were expanded on CD19+ artificial antigen-presenting cells (aAPC), which resulted in >109 CAR+γδ T cells from <106 total cells. Digital multiplex assay detected TCR mRNA coding for Vδ1, Vδ2, and Vδ3 with Vγ2, Vγ7, Vγ8, Vγ9, and Vγ10 alleles. Polyclonal CAR+γδ T cells were functional when TCRγδ and CAR were stimulated and displayed enhanced killing of CD19+ tumor cell lines compared with CARnegγδ T cells. CD19+ leukemia xenografts in mice were reduced with CAR+γδ T cells compared with control mice. Since CAR, SB, and aAPC have been adapted for human application, clinical trials can now focus on the therapeutic potential of polyclonal γδ T cells. PMID:23295945

  16. Functional expression of mammalian receptors and membrane channels in different cells.

    PubMed

    Eifler, Nora; Duckely, Myriam; Sumanovski, Lazar T; Egan, Terrance M; Oksche, Alexander; Konopka, James B; Lüthi, Anita; Engel, Andreas; Werten, Paul J L

    2007-08-01

    In native tissues, the majority of medically important membrane proteins is only present at low concentrations, making their overexpression in recombinant systems a prerequisite for structural studies. Here, we explore the commonly used eukaryotic expression systems-yeast, baculovirus/insect cells (Sf9) and Semliki Forest Virus (SFV)/mammalian cells-for the expression of seven different eukaryotic membrane proteins from a variety of protein families. The expression levels, quality, biological activity, localization and solubility of all expressed proteins are compared in order to identify the advantages of one system over the other. SFV-transfected mammalian cell lines provide the closest to native environment for the expression of mammalian membrane proteins, and they exhibited the best overall performance. But depending on the protein, baculovirus-infected Sf9 cells performed almost as well as mammalian cells. The lowest expression levels for the proteins tested here were obtained in yeast.

  17. The N-methyl-D-aspartate neurotransmitter receptor is a mammalian brain target for the dinoflagellate Pfiesteria piscicida toxin.

    PubMed

    El-Nabawi, A; Quesenberry, M; Saito, K; Silbergeld, E; Vasta, G; Eldefrawi, A

    2000-11-15

    Blooms of Pfiesteria piscicida, a dinoflagellate in eastern U.S. coastal rivers, are believed to secrete toxins that kill fish and produce short-term memory loss in humans. Only one or two of Pfiesteria's multiple stages secrete the toxin, and only under certain environmental conditions. Thus, neither the presence of Pfiesteria nor fish kill alone can be indicative of toxin presence. The objective of this study was to identify the mammalian molecular brain target for the toxin that is associated with decrements in memory. Seven rat brain neurotransmitter receptors were selected to study because of their reported roles in cognitive function: receptors for nicotine, muscarine, AMPA/kainate, N-methyl-D-aspartate (NMDA), gamma-aminobutyric acid, and dopamine 1 and 2. The effects of 17 environmental and laboratory samples on radioactive ligand binding to these receptors were studied. Of the seven receptors, binding only to the NMDA receptor was inhibited by only the two Pfiesteria-containing waters (identified by PCR) that also killed fish, and not by any of the other 15 samples tested. It is suggested that inhibition of NMDA-receptor binding is the cause of memory loss in exposed humans. Thus, it could be a useful biomarker for the toxin's presence in rivers for decisions on closures and for identification of the fractions containing the toxin during its purification. Knowledge of the toxin's molecular target, and how it affects its function, also leads to suggestions for therapeutics to use in animal models.

  18. Phosphoinositide-3-Kinase Is the Primary Mediator of Phosphoinositide-Dependent Inhibition in Mammalian Olfactory Receptor Neurons

    PubMed Central

    Ukhanov, Kirill; Corey, Elizabeth; Ache, Barry W.

    2016-01-01

    Odorants inhibit as well as excite primary olfactory receptor neurons (ORNs) in many animal species. Growing evidence suggests that inhibition of mammalian ORNs is mediated by phosphoinositide (PI) signaling through activation of phosphoinositide 3-kinase (PI3K), and that canonical adenylyl cyclase III signaling and PI3K signaling interact to provide the basis for ligand-induced selective signaling. As PI3K is known to act in concert with phospholipase C (PLC) in some cellular systems, the question arises as to whether they work together to mediate inhibitory transduction in mammalian ORNs. The present study is designed to test this hypothesis. While we establish that multiple PLC isoforms are expressed in the transduction zone of rat ORNs, that odorants can activate PLC in ORNs in situ, and that pharmacological blockade of PLC enhances the excitatory response to an odorant mixture in some ORNs in conjunction with PI3K blockade, we find that by itself PLC does not account for an inhibitory response. We conclude that PLC does not make a measurable independent contribution to odor-evoked inhibition, and that PI3K is the primary mediator of PI-dependent inhibition in mammalian ORNs. PMID:27147969

  19. Fc receptor-mediated, antibody-dependent enhancement of bacteriophage lambda-mediated gene transfer in mammalian cells.

    PubMed

    Sapinoro, Ramil; Volcy, Ketna; Rodrigo, W W Shanaka I; Schlesinger, Jacob J; Dewhurst, Stephen

    2008-04-10

    Lambda phage vectors mediate gene transfer in cultured mammalian cells and in live mice, and in vivo phage-mediated gene expression is increased when mice are pre-immunized with bacteriophage lambda. We now show that, like eukaryotic viruses, bacteriophage vectors are subject to Fc receptor-mediated, antibody-dependent enhancement of infection in mammalian cells. Antibody-dependent enhancement of phage gene transfer required FcgammaRI, but not its associated gamma-chain, and was not supported by other FcgammaR family members (FcgammaRIIA, FcgammaRIIB, and FcgammaRIII). Studies using chlorpromazine and latrunculin A revealed an important role for clathrin-mediated endocytosis (chlorpromazine) and actin filaments (latrunculin A) in antibody-enhanced phage gene transfer. This was confirmed by experiments using inhibitors of endosomal acidification (bafilomycin A1, monensin) and by immunocytochemical colocalization of internalized phage particles with early endosome-associated protein-1 (EAA1). In contrast, microtubule-targeting agents (nocodazole, taxol) increased the efficiency of antibody-enhanced phage gene transfer. These results reveal an unexpected antibody-dependent, FcgammaRI-mediated enhancement of phage transduction in mammalian cells, and suggest new approaches to improve bacteriophage-mediated gene transfer.

  20. Insight into pattern of codon biasness and nucleotide base usage in serotonin receptor gene family from different mammalian species.

    PubMed

    Dass, J Febin Prabhu; Sudandiradoss, C

    2012-07-15

    5-HT (5-Hydroxy-tryptamine) or serotonin receptors are found both in central and peripheral nervous system as well as in non-neuronal tissues. In the animal and human nervous system, serotonin produces various functional effects through a variety of membrane bound receptors. In this study, we focus on 5-HT receptor family from different mammals and examined the factors that account for codon and nucleotide usage variation. A total of 110 homologous coding sequences from 11 different mammalian species were analyzed using relative synonymous codon usage (RSCU), correspondence analysis (COA) and hierarchical cluster analysis together with nucleotide base usage frequency of chemically similar amino acid codons. The mean effective number of codon (ENc) value of 37.06 for 5-HT(6) shows very high codon bias within the family and may be due to high selective translational efficiency. The COA and Spearman's rank correlation reveals that the nucleotide compositional mutation bias as the major factors influencing the codon usage in serotonin receptor genes. The hierarchical cluster analysis suggests that gene function is another dominant factor that affects the codon usage bias, while species is a minor factor. Nucleotide base usage was reported using Goldman, Engelman, Stietz (GES) scale reveals the presence of high uracil (>45%) content at functionally important hydrophobic regions. Our in silico approach will certainly help for further investigations on critical inference on evolution, structure, function and gene expression aspects of 5-HT receptors family which are potential antipsychotic drug targets.

  1. T cell receptor repertoire differences between African Americans and Caucasians associated with polymorphism of the TCRBV3S1 (V{beta}3.1) gene

    SciTech Connect

    De Inocencio, J.; Glass, D.N.; Hirsch, R.

    1995-05-01

    The generation of TCR diversity occurs primarily through rearrangement of germline DNA. Genetic polymorphism of the TCR chains appears to be a rarer mechanism for generating repertoire differences between races. Flow cytometric analysis of the TCR V{beta} repertoire in a population of healthy African Americans (n = 30) and Caucasians (n = 30) revealed a significant difference in the frequency of cells bearing V{beta}3.1, but not V{beta}2, V{beta}5.1, V{beta}5.2-5.3, V{beta}6.7, V{beta}8.1-8.2, V{beta}12.1, V{beta}13.3, or V{beta}19. African Americans had a significantly lower frequency of V{beta}3.1{sup +} cells, in both the CD4{sup +} (2.55 {+-} 0.36% vs 4.85 {+-} 0.43%, p = 0.0001) and the CD8{sup +} (3.03 {+-} 0.54% vs 5.32 {+-} 0.57%, p = 0.004) population than did Caucasians, and this difference was independent of the age of the individuals. Analysis of genomic DNA revealed that the observed differences in frequency of V{beta}3.1{sup +} cells correlated with a recently described polymorphism of the recombination signal sequence of the TCRBV3S1 gene. Allele 1, associated with a lower frequency of V{beta}3.1{sup +} cells, was more commonly present in African Americans (0.68 vs 0.43), whereas allele 2, associated with a higher frequency of V{beta}3.1{sup +} cells, was more commonly present in Caucasians (0.31 vs 0.56). This study demonstrates the potential for TCR repertoire differences, based on genetic polymorphism, between African Americans and Caucasians. 31 refs., 2 figs., 5 tabs.

  2. Classification of inhibitory amino acid receptors in the mammalian nervous system.

    PubMed

    Simmonds, M A

    1986-01-01

    Electrophysiological and pharmacological evidence is summarized for the existence of an inhibitory receptor system operated by glycine and another two separate systems operated by gamma-aminobutyric acid (GABA) through GABA-A and GABA-B receptors, respectively. Claims for subclasses of GABA-A receptor are critically reviewed and found not-proven. A quantitative pharmacological profile of the GABA-A receptor and associated regulatory sites for picrotoxin, barbiturates and benzodiazepines on the dorsal funiculus of the rat cuneate nucleus is described. When compared with this profile and the pharmacological properties of the glycine receptor complex, the effects of taurine cannot be entirely explained by actions on these two receptor systems.

  3. P2Y Receptors in the Mammalian Nervous System: Pharmacology, Ligands and Therapeutic Potential

    PubMed Central

    Weisman, Gary A.; Woods, Lucas T.; Erb, Laurie; Seye, Cheikh I.

    2015-01-01

    P2Y receptors for extracellular nucleotides are coupled to activation of a variety of G proteins and stimulate diverse intracellular signaling pathways that regulate functions of cell types that comprise the central nervous system (CNS). There are 8 different subtypes of P2Y receptor expressed in cells of the CNS that are activated by a select group of nucleotide agonists. Here, the agonist selectivity of these 8 P2Y receptor subtypes is reviewed with an emphasis on synthetic agonists with high potency and resistance to degradation by extracellular nucleotidases that have potential applications as therapeutic agents. In addition, the recent identification of a wide variety of subtype-selective antagonists is discussed, since these compounds are critical for discerning cellular responses mediated by activation of individual P2Y receptor subtypes. The functional expression of P2Y receptor subtypes in cells that comprise the CNS is also reviewed and the role of each subtype in the regulation of physiological and pathophysiological responses is considered. Other topics include the role of P2Y receptors in the regulation of blood-brain barrier integrity and potential interactions between different P2Y receptor subtypes that likely impact tissue responses to extracellular nucleotides in the CNS. Overall, current research suggests that P2Y receptors in the CNS regulate repair mechanisms that are triggered by tissue damage, inflammation and disease and thus P2Y receptors represent promising targets for the treatment of neurodegenerative diseases. PMID:22963441

  4. Expression of neurotrophins and their receptors in the mammalian ovary is developmentally regulated: changes at the time of folliculogenesis.

    PubMed

    Dissen, G A; Hirshfield, A N; Malamed, S; Ojeda, S R

    1995-10-01

    An emerging body of evidence suggests that neurotrophins not only promote neuronal survival and differentiation, but can also target nonneuronal cells for their actions. Neurotrophins initiate their biological effects by binding to cell membrane tyrosine kinase receptors of the trk protooncogene family. In addition, all neurotrophins recognize with similar affinity a different receptor molecule known as p75 nerve growth factor receptor (p75 NGFR) or low affinity NGFR, which appears to interact with the trk receptors to potentiate their response to neurotrophins. The mature mammalian ovary has been shown to synthesize several neurotrophins, including nerve growth factor (NGF), neurotrophin 3 (NT-3), and neurotrophin 4/5 (NT-4/5). The ovary also expresses some of the neurotrophin receptors, including p75 NGFR, trkB [the receptor for NT-4/5 and brain-derived neurotropic factor (BDNF)], and trkA (the NGF receptor). The present experiments were undertaken to determine whether neurotrophins and their receptors are expressed at the time of definitive ovarian histogenesis, and whether any of them exhibit a developmental pattern of expression related to the completion of folliculogenesis. Immunohistochemical identification of p75 NGFR in rat embryonic ovaries revealed that the receptor is predominantly expressed in mesenchymal cells. By gestational day 18, these cells have formed pockets that enclose presumptive pregranulosa cells and groups of oocytes into ovigerous cords. Immediately after birth, the ovigerous cords are subdivided, resulting in the abrupt formation of primordial follicles between 24-48 h after birth. Consistent with these observations, the p75 NGFR messenger RNA (mRNA) content increased after birth and remained elevated at the time of follicular assembly. The NGF and trkA genes showed a different pattern of expression, as the ovarian content of both NGF and trkA mRNA decreased at the time of folliculogenesis. In contrast to the drop in NGF and trkA m

  5. Characterization of [3H]-CGP54626A binding to heterodimeric GABAB receptors stably expressed in mammalian cells

    PubMed Central

    Green, Andrew; Walls, Steven; Wise, Alan; Green, Richard H; Martin, Amanda K; Marshall, Fiona H

    2000-01-01

    Functional human GABAB(1a,2) and GABAB(1b,2) receptors have been stably expressed in mammalian CHO K1 cells.Detailed characterization of GABAB ligand binding at each of the receptors has been compared using [3H]-CGP54626A. In cell membranes fractions, [3H]-CGP54626A bound to a single site with a KD of 1.51±1.12 nM, Bmax of 2.02±0.17 pmoles mg protein−1 and 0.86±0.20 nM, Bmax of 5.19±0.57 pmoles mg protein−1 for GABAB(1a,2) and GABAB(1b,2) respectively.In competition binding assays the rank order was identical for both GABAB receptors. For known GABAB agonists the rank order was CGP27492>SKF97541=CGP46381>GABA>Baclofen and for GABAB antagonists the rank order was CGP54262A>CGP55845>CGP52432>SCH 50911>CGP51176>CGP36742=CGP35348 ⩾2-OH Saclofen ⩾ABPA.The allosteric effect of calcium cations was also investigated. The effect of removal of CaCl2 from the binding assay conditions was ligand dependent to either cause a decrease in ligand affinity or to have no significant effect. However, these effects were similar for both GABAB receptors.A whole cell, scintillation proximity binding assay was used to determine agonist affinity at exclusively heterodimeric GABAB receptors. In competition assays, the rank order was the same for both GABAB(1a,2) and GABAB(1b,2) and consistent with that seen with cell membrane fractions.These data suggest that, in terms of ligand binding, the currently identified isoforms of the GABAB receptor are pharmacologically indistinguishable. PMID:11139457

  6. Ligand-dependent interactions of the Ah receptor with coactivators in a mammalian two-hybrid assay

    SciTech Connect

    Zhang Shu; Rowlands, Craig; Safe, Stephen

    2008-03-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a high affinity ligand for the aryl hydrocarbon receptor (AhR). In this study, we investigated structure-dependent differences in activation of the AhR by a series of halogenated aromatic hydrocarbons. TCDD, 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PeCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), and 3,3',4,4',5-pentachlorobiphenyl (PCB126) induced CYP1A1-dependent activities in HEK293 human embryonic kidney, Panc1 pancreatic cancer, and Hepa1c1c7 mouse hepatoma cell lines. There was a structure-dependent difference in the efficacy of TCDF and PCB126 in HEK293 and Panc1 cells since induced CYP1A1 mRNA levels were lower than observed for the other congeners. A mammalian two-hybrid assay in cells transfected with GAL4-coactivator and AhR-VP16 chimeras was used to investigate structure-dependent interactions of these chimeras in Panc1, HEK293, and Hepa1c1c7 cells. The reporter construct pGAL4-luc contains five tandem GAL4 response elements linked to the luciferase gene and the GAL4-coactivator chimeras express several coactivators including steroid receptor coactivator 1 (SRC-1), SRC-2 and SRC-3, the mediator coactivator TRAP220, coactivator associated arginine methyl transferase 1 (CARM-1), and peroxisome proliferator-activated receptor {gamma} coactivator 1 (PGC-1). Results of the mammalian two-hybrid studies clearly demonstrate that activation of pGAL4-luc in cells transfected with VP-AhR and GAL4-coactivator chimeras is dependent on the structure of the HAH congener, cell context, and coactivator, suggesting that the prototypical HAH congeners used in this study exhibit selective AhR modulator activity.

  7. Nanoscale organization of beta2-adrenergic receptor-Venus fusion protein domains on the surface of mammalian cells.

    PubMed

    Vobornik, Dusan; Rouleau, Yanouchka; Haley, Jennifer; Bani-Yaghoub, Mahmud; Taylor, Rod; Johnston, Linda J; Pezacki, John Paul

    2009-04-24

    Adrenergic receptors are a key component of nanoscale multiprotein complexes that are responsible for controlling the beat rate in a mammalian heart. We demonstrate the ability of near-field scanning optical microscopy (NSOM) to visualize beta(2)-adrenergic receptors (beta(2)AR) fused to the GFP analogue Venus at the nanoscale on HEK293 cells. The expression of the beta(2)AR-Venus fusion protein was tightly controlled using a tetracycline-induced promoter. Both the size and density of the observed nanoscale domains are dependent on the level of induction and thus the level of protein expression. At concentrations between 100 and 700 ng/ml of inducer doxycycline, the size of domains containing the beta(2)AR-Venus fusion protein appears to remain roughly constant, but the number of domains per cell increase. At 700 ng/ml doxycycline the functional receptors are organized into domains with an average diameter of 150 nm with a density similar to that observed for the native protein on primary murine cells. By contrast, larger micron-sized domains of beta(2)AR are observed in the membrane of the HEK293 cells that stably overexpress beta(2)AR-GFP and beta(2)AR-eYFP. We conclude that precise chemical control of gene expression is highly advantageous for the use beta(2)AR-Venus fusion proteins as models for beta(2)AR function. These observations are critical for designing future cell models and assays based on beta(2)AR, since the receptor biology is consistent with a relatively low density of nanoscale receptor domains.

  8. Nanoscale organization of {beta}{sub 2}-adrenergic receptor-Venus fusion protein domains on the surface of mammalian cells

    SciTech Connect

    Vobornik, Dusan; Rouleau, Yanouchka; Haley, Jennifer; Bani-Yaghoub, Mahmud; Taylor, Rod; Johnston, Linda J.; Pezacki, John Paul

    2009-04-24

    Adrenergic receptors are a key component of nanoscale multiprotein complexes that are responsible for controlling the beat rate in a mammalian heart. We demonstrate the ability of near-field scanning optical microscopy (NSOM) to visualize {beta}{sub 2}-adrenergic receptors ({beta}{sub 2}AR) fused to the GFP analogue Venus at the nanoscale on HEK293 cells. The expression of the {beta}{sub 2}AR-Venus fusion protein was tightly controlled using a tetracycline-induced promoter. Both the size and density of the observed nanoscale domains are dependent on the level of induction and thus the level of protein expression. At concentrations between 100 and 700 ng/ml of inducer doxycycline, the size of domains containing the {beta}{sub 2}AR-Venus fusion protein appears to remain roughly constant, but the number of domains per cell increase. At 700 ng/ml doxycycline the functional receptors are organized into domains with an average diameter of 150 nm with a density similar to that observed for the native protein on primary murine cells. By contrast, larger micron-sized domains of {beta}{sub 2}AR are observed in the membrane of the HEK293 cells that stably overexpress {beta}{sub 2}AR-GFP and {beta}{sub 2}AR-eYFP. We conclude that precise chemical control of gene expression is highly advantageous for the use {beta}{sub 2}AR-Venus fusion proteins as models for {beta}{sub 2}AR function. These observations are critical for designing future cell models and assays based on {beta}{sub 2}AR, since the receptor biology is consistent with a relatively low density of nanoscale receptor domains.

  9. Lactococcal bacteriophage p2 receptor-binding protein structure suggests a common ancestor gene with bacterial and mammalian viruses.

    PubMed

    Spinelli, Silvia; Desmyter, Aline; Verrips, C Theo; de Haard, Hans J W; Moineau, Sylvain; Cambillau, Christian

    2006-01-01

    Lactococcus lactis is a Gram-positive bacterium used extensively by the dairy industry for the manufacture of fermented milk products. The double-stranded DNA bacteriophage p2 infects specific L. lactis strains using a receptor-binding protein (RBP) located at the tip of its noncontractile tail. We have solved the crystal structure of phage p2 RBP, a homotrimeric protein composed of three domains: the shoulders, a beta-sandwich attached to the phage; the neck, an interlaced beta-prism; and the receptor-recognition head, a seven-stranded beta-barrel. We used the complex of RBP with a neutralizing llama VHH domain to identify the receptor-binding site. Structural similarity between the recognition-head domain of phage p2 and those of adenoviruses and reoviruses, which invade mammalian cells, suggests that these viruses, despite evolutionary distant targets, lack of sequence similarity and the different chemical nature of their genomes (DNA versus RNA), might have a common ancestral gene.

  10. The anthelmintic pyrantel acts as a low efficacious agonist and an open-channel blocker of mammalian acetylcholine receptors.

    PubMed

    Rayes, D; De Rosa, M J; Spitzmaul, G; Bouzat, C

    2001-08-01

    Pyrantel is an anthelmintic which acts as an agonist of nicotinic receptors (AChRs) of nematodes and exerts its therapeutic effects by depolarizing their muscle membranes. Here we explore at the single-channel level the action of pyrantel at mammalian muscle AChR. AChR currents are elicited by pyrantel. However, openings do not appear in clearly identifiable clusters over a range of pyrantel concentrations (1-300 microM). The mean open time decreases as a function of concentration, indicating an additional open-channel block. Single-channel recordings in the presence of high ACh concentrations and pyrantel demonstrate that the anthelmintic acts as a high-affinity open-channel blocker. When analyzed in terms of a sequential blocking scheme, the calculated forward rate constant for the blocking process is 8x10(7) M(-1) x s(-1), the apparent dissociation constant is 8 microM at a membrane potential of -70 mV and the process is voltage dependent. Pyrantel displaces alpha-bungarotoxin binding but the concentration dependence of equilibrium binding is shifted towards higher concentrations with respect to that of ACh binding. Thus, by acting at the binding site pyrantel activates mammalian AChRs with low efficacy, and by sterical blockade of the pore, the activated channels are then rapidly inhibited.

  11. Juno is the egg Izumo receptor and is essential for mammalian fertilisation

    PubMed Central

    Bianchi, Enrica; Doe, Brendan; Goulding, David; Wright, Gavin J.

    2014-01-01

    Fertilisation occurs when sperm and egg recognise each other and fuse to form a new, genetically distinct organism. The molecular basis of sperm-egg recognition is unknown, but is likely to require interactions between receptor proteins displayed on their surface. Izumo1 is an essential sperm cell surface protein, but its egg receptor has remained a mystery. Here, we identify Juno as the receptor for Izumo1 on mouse eggs, and show this interaction is conserved within mammals. Female mice lacking Juno are infertile and Juno-deficient eggs do not fuse with normal sperm. Rapid shedding of Juno from the oolemma after fertilisation suggests a mechanism for the membrane block to polyspermy, ensuring eggs normally fuse with just a single sperm. Our discovery of an essential receptor pair at the nexus of conception provides opportunities for the rational development of new fertility treatments and contraceptives. PMID:24739963

  12. Expression and Function of Serotonin 2A and 2B Receptors in the Mammalian Respiratory Network

    PubMed Central

    Koch, Uwe R.; Bischoff, Anna-Maria; Kron, Miriam; Bock, Nathalie; Manzke, Till

    2011-01-01

    Neurons of the respiratory network in the lower brainstem express a variety of serotonin receptors (5-HTRs) that act primarily through adenylyl cyclase. However, there is one receptor family including 5-HT2A, 5-HT2B, and 5-HT2C receptors that are directed towards protein kinase C (PKC). In contrast to 5-HT2ARs, expression and function of 5-HT2BRs within the respiratory network are still unclear. 5-HT2BR utilizes a Gq-mediated signaling cascade involving calcium and leading to activation of phospholipase C and IP3/DAG pathways. Based on previous studies, this signal pathway appears to mediate excitatory actions on respiration. In the present study, we analyzed receptor expression in pontine and medullary regions of the respiratory network both at the transcriptional and translational level using quantitative RT-PCR and self-made as well as commercially available antibodies, respectively. In addition we measured effects of selective agonists and antagonists for 5-HT2ARs and 5-HT2BRs given intra-arterially on phrenic nerve discharges in juvenile rats using the perfused brainstem preparation. The drugs caused significant changes in discharge activity. Co-administration of both agonists revealed a dominance of the 5-HT2BR. Given the nature of the signaling pathways, we investigated whether intracellular calcium may explain effects observed in the respiratory network. Taken together, the results of this study suggest a significant role of both receptors in respiratory network modulation. PMID:21789169

  13. Lineweaver-Burk analysis for the blocking effects of mammalian dopamine receptor antagonists on dopamine-induced currents in Achatina giant neurones.

    PubMed

    Emaduddin, M; Takeuchi, H

    1996-10-01

    1. We had demonstrated (Emaduddin et al., 1995) the blocking effects of the three mammalian dopamine receptor antagonists, (+/-)-SKF83566 (mammalian dopamine D1-like receptor antagonist), (+)-UH232 (D2 and D3-like receptor antagonist) and (+/-)-sulpiride (D2-like receptor antagonist) on the dose (pressure duration)-response curves of dopamine in the three giant neurone types, LVMN (left visceral multiple spike neurone), d-RPeAN (dorsal-right pedal anterior neurone) and v-LCDN (ventral-left cerebral distinct neurone), of Achatina fulica Férussac under voltage clamp. In the present study, we analyzed these data by Lineweaver-Burk plot. 2. Dopamine-induced inward currents (Iin) of the two neurone types, LVMN and d-RPeAN, were blocked by (+/-)-SKF83566 and (+)-UH232 in partly noncompetitive and partly uncompetitive manners. (+/-)-Sulpiride had no effect on these currents. 3. In contrast, dopamine-induced outward current (Iout) of v-LCDN was inhibited competitively by (+/-)-sulpiride and noncompetitively by (+)-UH232. (+/-)-SKF83566 had no effect on this current. 4. Therefore, we consider that the pharmacological features of the dopamine receptors of Achatina neurones are not identical in detail to those of the mammalian dopamine receptors.

  14. Mammalian pheromones.

    PubMed

    Liberles, Stephen D

    2014-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors.

  15. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  16. ß-Adrenergic Receptor Signaling and Modulation of Long-Term Potentiation in the Mammalian Hippocampus

    ERIC Educational Resources Information Center

    O'Dell, Thomas J.; Connor, Steven A.; Guglietta, Ryan; Nguyen, Peter V.

    2015-01-01

    Encoding new information in the brain requires changes in synaptic strength. Neuromodulatory transmitters can facilitate synaptic plasticity by modifying the actions and expression of specific signaling cascades, transmitter receptors and their associated signaling complexes, genes, and effector proteins. One critical neuromodulator in the…

  17. REACTIVITY PROFILE OF LIGANDS OF MAMMALIAN RETINOIC ACID RECEPTORS: A PRELIMINARY COREPA ANALYSIS

    EPA Science Inventory

    Retinoic acid and associated derivatives comprise a class of endogenous hormones that bind to and activate different families of retinoic acid receptors (RARs, RXRs), and control many aspects of vertebrate development. Identification of potential RAR and RXR ligands is of interes...

  18. Functional differences between junctional and extrajunctional adrenergic receptor activation in mammalian ventricle

    PubMed Central

    Ajijola, Olujimi A.; Vaseghi, Marmar; Zhou, Wei; Yamakawa, Kentaro; Benharash, Peyman; Hadaya, Joseph; Lux, Robert L.; Mahajan, Aman

    2013-01-01

    Increased cardiac sympathetic activation worsens dispersion of repolarization and is proarrhythmic. The functional differences between intrinsic nerve stimulation and adrenergic receptor activation remain incompletely understood. This study was undertaken to determine the functional differences between efferent cardiac sympathetic nerve stimulation and direct adrenergic receptor activation in porcine ventricles. Female Yorkshire pigs (n = 13) underwent surgical exposure of the heart and stellate ganglia. A 56-electrode sock was placed over the ventricles to record epicardial electrograms. Animals underwent bilateral sympathetic stimulation (BSS) (n = 8) or norepinephrine (NE) administration (n = 5). Activation recovery intervals (ARIs) were measured at each electrode before and during BSS or NE. The degree of ARI shortening during BSS or NE administration was used as a measure of functional nerve or adrenergic receptor density. During BSS, ARI shortening was nonuniform across the epicardium (F value 9.62, P = 0.003), with ARI shortening greatest in the mid-basal lateral right ventricle and least in the midposterior left ventricle (LV) (mean normalized values: 0.9 ± 0.08 vs. 0.56 ± 0.08; P = 0.03). NE administration resulted in greater ARI shortening in the LV apex than basal segments [0.91 ± 0.04 vs. 0.63 ± 0.05 (averaged basal segments); P = 0.003]. Dispersion of ARIs increased in 50% and 60% of the subjects undergoing BSS and NE, respectively, but decreased in the others. There is nonuniform response to cardiac sympathetic activation of both porcine ventricles, which is not fully explained by adrenergic receptor density. Different pools of adrenergic receptors may mediate the cardiac electrophysiological effects of efferent sympathetic nerve activity and circulating catecholamines. PMID:23241324

  19. Function and dysfunction of mammalian membrane guanylyl cyclase receptors: lessons from genetic mouse models and implications for human diseases.

    PubMed

    Kuhn, Michaela

    2009-01-01

    Besides soluble guanylyl cyclase (GC), the receptor for NO, there are seven plasma membrane forms of guanylyl cyclase (GC) receptors, enzymes that synthesize the second-messenger cyclic GMP (cGMP). All membrane GCs (GC-A to GC-G) share a basic topology, which consists of an extracellular ligand binding domain, a short transmembrane region, and an intracellular domain that contains the catalytic (GC) region. Although the presence of the extracellular domain suggests that all these enzymes function as receptors, specific ligands have been identified for only four of them (GC-A through GC-D). GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure and volume homeostasis and also local antihypertrophic and antifibrotic actions in the heart. GC-B, the specific receptor for C-type natriuretic peptide, has a critical role in endochondral ossification. GC-C mediates the effects of guanylin and uroguanylin on intestinal electrolyte and water transport and epithelial cell growth and differentiation. GC-E and GC-F are colocalized within the same photoreceptor cells of the retina and have an important role in phototransduction. Finally, GC-D and GC-G appear to be pseudogenes in the human. In rodents, GC-D is exclusively expressed in the olfactory neuroepithelium, with chemosensory functions. GC-G is the last member of the membrane GC form to be identified. No other mammalian transmembrane GCs are predicted on the basis of gene sequence repositories. In contrast to the other orphan receptor GCs, GC-G has a broad tissue distribution in rodents, including the lung, intestine, kidney, skeletal muscle, and sperm, raising the possibility that there is another yet to be discovered family of cGMP-generating ligands. This chapter reviews the structure and functions of membrane GCs, with special focus on the insights gained to date from genetically modified mice and the role of alterations of these ligand/receptor systems in human

  20. Analysis of the T-cell receptor beta-chain variable-region (V beta) repertoire in monozygotic twins discordant for human immunodeficiency virus: evidence for perturbations of specific V beta segments in CD4+ T cells of the virus-positive twins.

    PubMed Central

    Rebai, N; Pantaleo, G; Demarest, J F; Ciurli, C; Soudeyns, H; Adelsberger, J W; Vaccarezza, M; Walker, R E; Sekaly, R P; Fauci, A S

    1994-01-01

    We analyzed the T-cell receptor (TCR) V beta repertoire in human immunodeficiency virus type 1 (HIV-1)-infected individuals at different stages of disease. To circumvent the effect of HLA and other loci on the expressed TCR repertoire, we compared the TCR repertoire in nine pairs of monozygotic twins who were discordant for HIV infection. A semiquantitative polymerase chain reaction (PCR) assay and flow cytometry enabled us to show distinct differences in the V beta repertoire in the HIV-positive twin compared with the HIV-negative twin. By combining PCR and cytofluorometry, these differences were restricted to a specific set of TCR V beta segments, with members of the V beta 13 family perturbed in six out of seven cases and those of the V beta 21 family perturbed in four out of seven cases studied. Most of the other V beta families remained unchanged. Our results provide direct evidence for a skewed TCR repertoire in HIV infection. Images PMID:7906416

  1. Acquisition of a Reading Repertoire.

    ERIC Educational Resources Information Center

    Powell, William R.

    Drawing on results from informal reading inventories and studies of oral reading behavior, a theory is presented to describe the process of learning to read. Reading is seen to be broader than a skill and more like a repertoire with many abilities, aptitudes, and special accomplishments performing in concert. This repertoire is acquired in four…

  2. Comparative expression study of the endo-G protein coupled receptor (GPCR) repertoire in human glioblastoma cancer stem-like cells, U87-MG cells and non malignant cells of neural origin unveils new potential therapeutic targets.

    PubMed

    Fève, Marie; Saliou, Jean-Michel; Zeniou, Maria; Lennon, Sarah; Carapito, Christine; Dong, Jihu; Van Dorsselaer, Alain; Junier, Marie-Pierre; Chneiweiss, Hervé; Cianférani, Sarah; Haiech, Jacques; Kilhoffer, Marie-Claude

    2014-01-01

    Glioblastomas (GBMs) are highly aggressive, invasive brain tumors with bad prognosis and unmet medical need. These tumors are heterogeneous being constituted by a variety of cells in different states of differentiation. Among these, cells endowed with stem properties, tumor initiating/propagating properties and particularly resistant to chemo- and radiotherapies are designed as the real culprits for tumor maintenance and relapse after treatment. These cells, termed cancer stem-like cells, have been designed as prominent targets for new and more efficient cancer therapies. G-protein coupled receptors (GPCRs), a family of membrane receptors, play a prominent role in cell signaling, cell communication and crosstalk with the microenvironment. Their role in cancer has been highlighted but remains largely unexplored. Here, we report a descriptive study of the differential expression of the endo-GPCR repertoire in human glioblastoma cancer stem-like cells (GSCs), U-87 MG cells, human astrocytes and fetal neural stem cells (f-NSCs). The endo-GPCR transcriptome has been studied using Taqman Low Density Arrays. Of the 356 GPCRs investigated, 138 were retained for comparative studies between the different cell types. At the transcriptomic level, eight GPCRs were specifically expressed/overexpressed in GSCs. Seventeen GPCRs appeared specifically expressed in cells with stem properties (GSCs and f-NSCs). Results of GPCR expression at the protein level using mass spectrometry and proteomic analysis are also presented. The comparative GPCR expression study presented here gives clues for new pathways specifically used by GSCs and unveils novel potential therapeutic targets.

  3. TCR repertoires of intratumoral T-cell subsets.

    PubMed

    Linnemann, Carsten; Mezzadra, Riccardo; Schumacher, Ton N M

    2014-01-01

    The infiltration of human tumors by T cells is a common phenomenon, and over the past decades, it has become increasingly clear that the nature of such intratumoral T-cell populations can predict disease course. Furthermore, intratumoral T cells have been utilized therapeutically in clinical studies of adoptive T-cell therapy. In this review, we describe how novel methods that are either based on T-cell receptor (TCR) sequencing or on cancer exome analysis allow the analysis of the tumor reactivity and antigen-specificity of the intratumoral TCR repertoire with unprecedented detail. Furthermore, we discuss studies that have started to utilize these techniques to probe the link between cancer exomes and the intratumoral TCR pool. Based on the observation that both the cancer epitope repertoire and intratumoral TCR repertoire appear highly individual, we outline strategies, such as 'autologous TCR gene therapy', that exploit the tumor-resident TCR repertoire for the development of personalized immunotherapy.

  4. Mechanisms of anabolic androgenic steroid inhibition of mammalian ɛ-subunit-containing GABAA receptors

    PubMed Central

    Jones, Brian L; Whiting, Paul J; Henderson, Leslie P

    2006-01-01

    GABAergic transmission regulates the activity of gonadotrophin-releasing hormone (GnRH) neurons in the preoptic area/hypothalamus that control the onset of puberty and the expression of reproductive behaviours. One of the hallmarks of illicit use of anabolic androgenic steroids (AAS) is disruption of behaviours under neuroendocrine control. GnRH neurons are among a limited population of cells that express high levels of the ɛ-subunit of the GABAA receptor. To better understand the actions of AAS on neuroendocrine mechanisms, we have characterized modulation of GABAA receptor-mediated currents in mouse native GnRH neurons and in heterologous cells expressing recombinant α2β3ɛ-receptors. GnRH neurons exhibited robust currents in response to millimolar concentrations of GABA and a picrotoxin (PTX)-sensitive, bicuculline-insensitive current that probably arises from spontaneous openings of GABAA receptors. The AAS 17α-methyltestosterone (17α-MeT) inhibited spontaneous and GABA-evoked currents in GnRH neurons. For recombinant α2β3ɛ-receptors, 17α-MeT inhibited phasic and tonic GABA-elicited responses, accelerated desensitization and slowed paired pulse response recovery. Single channel analysis indicated that GABA-evoked events could be described by three open dwell components and that 17α-MeT enhanced residence in the intermediate dwell state. This AAS also inhibited a PTX-sensitive, spontaneous current (open probability, ∼0.15–0.2) in a concentration-dependent fashion (IC50 ≈ 9 μm). Kinetic modelling indicated that the inhibition induced by 17α-MeT occurs by an allosteric block in which the AAS interacts preferentially with a closed state and promotes accumulation in that state. Finally, studies with a G302S mutant ɛ-subunit suggest that this residue within the transmembrane domain TM2 plays a role in mediating AAS binding and modulation. In sum, our results indicate that inclusion of the ɛ-subunit significantly alters the profile of AAS

  5. Differential properties of type I and type II benzodiazepine receptors in mammalian CNS neurones.

    PubMed Central

    Yakushiji, T.; Shirasaki, T.; Munakata, M.; Hirata, A.; Akaike, N.

    1993-01-01

    1. The effects of benzodiazepine receptor (BZR) partial agonists, Y-23684 and CL218,872, were compared with its full agonist, diazepam, on gamma-aminobutyric acid (GABA)-induced Cl- current (ICl) in acutely dissociated rat cerebral cortex (CTX), cerebellar Purkinje (CPJ) and spinal ventral horn (SVH) neurones, by the whole-cell mode patch-clamp technique. 2. The GABA-induced responses were essentially the same in both SVH and CPJ neurones, but the KD value of the GABA response in CTX neurone was lower than those in the other two brain regions. 3. Enhancement of the GABA response by the two partial agonists was about one-third of that by diazepam in the SVH neurones (where type II subtype of BZR, BZ2, is predominant), whereas these partial agonists potentiated the GABA response as much as diazepam in CPJ neurones (where the type I subtype of BZR, BZ1, is predominant). In CTX neurones where both type I and II variants are expressed, the augmentation ratio of the GABA response by diazepam was between the values in CPJ and SVH neurones. 4. In concentration-response relationships of BZR partial agonists, the threshold concentrations, KD values and maximal augmentation ratio of the GABA response were similar in all CTX, CPJ and SVH neurones. Also, in all preparations, the threshold concentration and KD values of diazepam action were 10 fold less than those induced by partial agonists. 5. All BZR agonists shifted the concentration-response relationship for GABA to the left without changing the maximum current amplitude, indicating that activation of both BZ1 and BZ2 increase the affinity of the GABAA receptor for GABA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8395299

  6. A Role for the Chemokine Receptor CCR6 in Mammalian Sperm Motility and Chemotaxis

    PubMed Central

    Caballero-Campo, Pedro; Buffone, Mariano G.; Benencia, Fabian; Conejo-García, José R.; Rinaudo, Paolo F.; Gerton, George L.

    2013-01-01

    Although recent evidence indicates that several chemokines and defensins, well-known as inflammatory mediators, are expressed in the male and female reproductive tracts, the location and functional significance of chemokine networks in sperm physiology and sperm reproductive tract interactions are poorly understood. To address this deficiency in our knowledge, we examined the expression and function in sperm of CCR6, a receptor common to several chemoattractant peptides, and screened several reproductive tract fluids for the presence of specific ligands. CCR6 protein is present in mouse and human sperm and mainly localized in the sperm tail with other minor patterns in sperm from mice (neck and acrosomal region) and men (neck and midpiece regions). As expected from the protein immunoblotting and immunofluorescence results, mouse Ccr6 mRNA is expressed in the testis. Furthermore, the Defb29 mRNA encoding the CCR6 ligand, β-defensin DEFB29, is expressed at high levels in the epididymis. As determined by protein chip analysis, several chemokines (including some that act through CCR6, such as CCL20/MIP-3α (formerly Macrophage Inflammatory Protein 3α) and protein hormones were present in human follicular fluid, endometrial secretions, and seminal plasma. In functional chemotaxis assays, capacitated human sperm exhibited a directional movement towards CCL20, and displayed modifications in motility parameters. Our data indicate that chemokine ligand/receptor interactions in the male and female genital tracts promote sperm motility and chemotaxis under non-inflammatory conditions. Therefore, some of the physiological reactions mediated by CCR6 ligands in male reproduction extend beyond a pro-inflammatory response and might find application in clinical reproduction and/or contraception. PMID:23765988

  7. Differential properties of type I and type II benzodiazepine receptors in mammalian CNS neurones.

    PubMed

    Yakushiji, T; Shirasaki, T; Munakata, M; Hirata, A; Akaike, N

    1993-07-01

    1. The effects of benzodiazepine receptor (BZR) partial agonists, Y-23684 and CL218,872, were compared with its full agonist, diazepam, on gamma-aminobutyric acid (GABA)-induced Cl- current (ICl) in acutely dissociated rat cerebral cortex (CTX), cerebellar Purkinje (CPJ) and spinal ventral horn (SVH) neurones, by the whole-cell mode patch-clamp technique. 2. The GABA-induced responses were essentially the same in both SVH and CPJ neurones, but the KD value of the GABA response in CTX neurone was lower than those in the other two brain regions. 3. Enhancement of the GABA response by the two partial agonists was about one-third of that by diazepam in the SVH neurones (where type II subtype of BZR, BZ2, is predominant), whereas these partial agonists potentiated the GABA response as much as diazepam in CPJ neurones (where the type I subtype of BZR, BZ1, is predominant). In CTX neurones where both type I and II variants are expressed, the augmentation ratio of the GABA response by diazepam was between the values in CPJ and SVH neurones. 4. In concentration-response relationships of BZR partial agonists, the threshold concentrations, KD values and maximal augmentation ratio of the GABA response were similar in all CTX, CPJ and SVH neurones. Also, in all preparations, the threshold concentration and KD values of diazepam action were 10 fold less than those induced by partial agonists. 5. All BZR agonists shifted the concentration-response relationship for GABA to the left without changing the maximum current amplitude, indicating that activation of both BZ1 and BZ2 increase the affinity of the GABAA receptor for GABA. 6. The results are important in clarifying the mechanism of anxiety and might explain the anxioselectivity of BZR partial agonists.

  8. Activation of Presynaptic GABAB(1a,2) Receptors Inhibits Synaptic Transmission at Mammalian Inhibitory Cholinergic Olivocochlear–Hair Cell Synapses

    PubMed Central

    Wedemeyer, Carolina; Zorrilla de San Martín, Javier; Ballestero, Jimena; Gómez-Casati, María Eugenia; Torbidoni, Ana Vanesa; Fuchs, Paul A.; Bettler, Bernhard; Elgoyhen, Ana Belén

    2013-01-01

    The synapse between olivocochlear (OC) neurons and cochlear mechanosensory hair cells is cholinergic, fast, and inhibitory. The inhibitory sign of this cholinergic synapse is accounted for by the activation of Ca2+-permeable postsynaptic α9α10 nicotinic receptors coupled to the opening of hyperpolarizing Ca2+-activated small-conductance type 2 (SK2)K+ channels. Acetylcholine (ACh) release at this synapse is supported by both P/Q- and N-type voltage-gated calcium channels (VGCCs). Although the OC synapse is cholinergic, an abundant OC GABA innervation is present along the mammalian cochlea. The role of this neurotransmitter at the OC efferent innervation, however, is for the most part unknown. We show that GABA fails to evoke fast postsynaptic inhibitory currents in apical developing inner and outer hair cells. However, electrical stimulation of OC efferent fibers activates presynaptic GABAB(1a,2) receptors [GABAB(1a,2)Rs] that downregulate the amount of ACh released at the OC–hair cell synapse, by inhibiting P/Q-type VGCCs. We confirmed the expression of GABABRs at OC terminals contacting the hair cells by coimmunostaining for GFP and synaptophysin in transgenic mice expressing GABAB1–GFP fusion proteins. Moreover, coimmunostaining with antibodies against the GABA synthetic enzyme glutamic acid decarboxylase and synaptophysin support the idea that GABA is directly synthesized at OC terminals contacting the hair cells during development. Thus, we demonstrate for the first time a physiological role for GABA in cochlear synaptic function. In addition, our data suggest that the GABAB1a isoform selectively inhibits release at efferent cholinergic synapses. PMID:24068816

  9. Antisense Oligonucleotides Targeting Parasite Inositol 1,4,5-Trisphosphate Receptor Inhibits Mammalian Host Cell Invasion by Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Hashimoto, Muneaki; Nara, Takeshi; Hirawake, Hiroko; Morales, Jorge; Enomoto, Masahiro; Mikoshiba, Katsuhiko

    2014-02-01

    Chagas disease is caused by an intracellular parasitic protist, Trypanosoma cruzi. As there are no highly effective drugs against this agent that also demonstrate low toxicity, there is an urgent need for development of new drugs to treat Chagas disease. We have previously demonstrated that the parasite inositol 1,4,5-trisphosphate receptor (TcIP3R) is crucial for invasion of the mammalian host cell by T. cruzi. Here, we report that TcIP3R is a short-lived protein and that its expression is significantly suppressed in trypomastigotes. Treatment of trypomastigotes, an infective stage of T. cruzi, with antisense oligonucleotides specific to TcIP3R deceased TcIP3R protein levels and impaired trypomastigote invasion of host cells. Due to the resulting instability and very low expression level of TcIP3R in trypomastigotes indicates that TcIP3R is a promising target for antisense therapy in Chagas disease.

  10. Deep mutational scanning of an antibody against epidermal growth factor receptor using mammalian cell display and massively parallel pyrosequencing.

    PubMed

    Forsyth, Charles M; Juan, Veronica; Akamatsu, Yoshiko; DuBridge, Robert B; Doan, Minhtam; Ivanov, Alexander V; Ma, Zhiyuan; Polakoff, Dixie; Razo, Jennifer; Wilson, Keith; Powers, David B

    2013-01-01

    We developed a method for deep mutational scanning of antibody complementarity-determining regions (CDRs) that can determine in parallel the effect of every possible single amino acid CDR substitution on antigen binding. The method uses libraries of full length IgGs containing more than 1000 CDR point mutations displayed on mammalian cells, sorted by flow cytometry into subpopulations based on antigen affinity and analyzed by massively parallel pyrosequencing. Higher, lower and neutral affinity mutations are identified by their enrichment or depletion in the FACS subpopulations. We applied this method to a humanized version of the anti-epidermal growth factor receptor antibody cetuximab, generated a near comprehensive data set for 1060 point mutations that recapitulates previously determined structural and mutational data for these CDRs and identified 67 point mutations that increase affinity. The large-scale, comprehensive sequence-function data sets generated by this method should have broad utility for engineering properties such as antibody affinity and specificity and may advance theoretical understanding of antibody-antigen recognition.

  11. VCP, the mammalian homolog of cdc48, is tyrosine phosphorylated in response to T cell antigen receptor activation.

    PubMed Central

    Egerton, M; Ashe, O R; Chen, D; Druker, B J; Burgess, W H; Samelson, L E

    1992-01-01

    Activation of T cells through the T cell antigen receptor (TCR) results in the rapid tyrosine phosphorylation of a number of cellular proteins, one of the earliest being a 100 kDa protein. We have sought to identify this 100 kDa substrate by partially purifying the protein by antiphosphotyrosine (APT) affinity purification, in order to obtain amino acid sequence data and, using this information, to isolate the cDNA clone encoding the molecule. We report here that the amino acid sequence data showed pp100 to be the murine equivalent of porcine valosin containing protein (VCP), a finding confirmed from the cloning and sequencing of the murine pp100 cDNA. Sequence analysis has shown VCP to be a member of a family of ATP binding, homo-oligomeric proteins, and the mammalian homolog of Saccharomyces cerevisiae cdc48p, a protein essential to the completion of mitosis in yeast. We also provide proof that both endogenous and expressed murine VCP are tyrosine phosphorylated in response to T cell activation. Thus we have identified a novel component of the TCR mediated tyrosine kinase activation pathway that may provide a link between TCR ligation and cell cycle control. Images PMID:1382975

  12. [Relaxin-3 and relaxin family peptide receptors--from structure to functions of a newly discovered mammalian brain system].

    PubMed

    Kania, Alan; Lewandowski, Marian H; Błasiak, Anna

    2014-01-01

    Relaxin-3, a member of the relaxin peptide family, was discovered in 2001 as a homologue of relaxin--a well-known reproductive hormone. However, it is the brain which turned out to be a major expression site of this newly discovered peptide. Both its molecular structure and expression pattern were shown to be very conserved among vertebrates. Extensive research carried out since the discovery of relaxin-3 contributed to the significant progress in our knowledge regarding this neuropeptide. The endogenous relaxin-3 receptor (RXFP3) was identified and the anatomy of the yet uncharacterized mammalian brain system was described, with nucleus incertus as the main center of relaxin-3 expression. Not only its diffusive projections throughout the whole brain, which reach various brain structures such as the hippocampus, septum, intergeniculate leaflet or amygdala, but also functional studies of the relaxin-3/RXFP3 signaling system, allowed this brain network to be classified as one of the ascending nonspecific brain systems. Thus far, research depicts the connection of relaxin-3 with phenomena such as feeding behavior, spatial memory, sleep/wake cycle or modulation of pituitary gland hormone secretion. Responsiveness of relaxin-3 neurons to stress factors and the strong orexigenic effect exerted by this peptide suggest its participation in modulation of feeding by stress, in particular of the chronic type. The discovery of relaxin-3 opened a new research field which will contribute to our better understanding of the neurobiological basis of feeding disorders.

  13. Evaluation of the repertoire of the TonB-dependent receptors of Haemophilus ducreyi for their role in virulence in humans.

    PubMed

    Leduc, Isabelle; Banks, Keith E; Fortney, Kate R; Patterson, Kristine B; Billings, Steve D; Katz, Barry P; Spinola, Stanley M; Elkins, Christopher

    2008-04-15

    Haemophilus ducreyi contains 3 TonB-dependent receptors: the hemoglobin receptor HgbA, which is required for virulence in humans; the heme receptor TdhA; and an uncharacterized conserved hypothetical protein TdX (HD0646). A double tdX/tdhA mutant (FX527) was constructed on the background of a human-passaged variant of strain 35000 (35000HP). Six volunteers were infected with 35000HP at 3 sites on one arm and with FX527 at 3 sites on the other. The pustule formation rate was 55.6% (95% confidence interval [CI], 35.7%-75.4%) at 18 parent-strain sites and 44.4% (95% CI, 15.0%-73.9%) at 18 mutant-strain sites (P = .51). Similar amounts of 35000HP and FX527 were recovered from pustules in semiquantitative culture. Thus, TdX and TdhA are not necessary for virulence, whereas HgbA is both necessary and sufficient for virulence in humans. The data suggest that hemoglobin is the sole source of heme/iron used by H. ducreyi in vivo and has implications for the potential of HgbA as a vaccine.

  14. Isotopic labeling of mammalian G protein-coupled receptors (GPCRs) heterologously expressed in Caenorhabditis elegans*

    PubMed Central

    Salom, David; Cao, Pengxiu; Yuan, Yiyuan; Miyagi, Masaru; Feng, Zhaoyang; Palczewski, Krzysztof

    2015-01-01

    High-resolution structural determination and dynamic characterization of membrane proteins by nuclear magnetic resonance (NMR) require their isotopic labeling. Although a number of labeled eukaryotic membrane proteins have been successfully expressed in bacteria, they lack posttranslational modifications and usually need to be refolded from inclusion bodies. This shortcoming of bacterial expression systems is particularly detrimental for the functional expression of G protein-coupled receptors (GPCRs), the largest family of drug targets, due to their inherent instability. In this work we show that proteins expressed by a eukaryotic organism can be isotopically labeled and produced with a quality and quantity suitable for NMR characterization. Using our previously described expression system in Caenorhabditis elegans, we showed the feasibility of labeling proteins produced by these worms with 15N,13C by providing them with isotopically labeled bacteria. 2H labeling also was achieved by growing C. elegans in presence of 70% heavy water. Bovine rhodopsin, simultaneously expressed in muscular and neuronal worm tissues, was employed as the ‘test’ GPCR to demonstrate the viability of this approach. Although the worms’ cell cycle was slightly affected by the presence of heavy isotopes, the final protein yield and quality was appropriate for NMR structural characterization. PMID:25461480

  15. Mammalian SRP receptor switches the Sec61 translocase from Sec62 to SRP-dependent translocation

    PubMed Central

    Jadhav, Bhalchandra; McKenna, Michael; Johnson, Nicholas; High, Stephen; Sinning, Irmgard; Pool, Martin R.

    2015-01-01

    Two distinct pathways deliver secretory proteins to the Sec61 protein translocase in the endoplasmic reticulum membrane. The canonical pathway requires the signal recognition particle (SRP) and its cognate receptor (SR), and targets ribosome-associated proteins to the Sec translocase. The SRP-independent pathway requires the Sec translocase-associated ER membrane protein Sec62 and can be uncoupled from translation. Here we show that SR switches translocons to SRP-dependent translocation by displacing Sec62. This activity localizes to the charged linker region between the longin and GTPase domains of SRα. Using truncation variants, crosslinking and translocation assays reveals two elements with distinct functions as follows: one rearranges the translocon, displacing Sec62 from Sec61. A second promotes ribosome binding and is conserved between all eukaryotes. These specific regions in SRα reprogramme the Sec translocon and facilitate recruitment of ribosome-nascent chain complexes. Overall, our study identifies an important function of SR, which mechanistically links two seemingly independent modes of translocation. PMID:26634806

  16. Human cytomegalovirus infection downregulates vitamin-D receptor in mammalian cells.

    PubMed

    Rieder, Franz J J; Gröschel, Charlotte; Kastner, Marie-Theres; Kosulin, Karin; Laengle, Johannes; Zadnikar, Rene; Marculescu, Rodrig; Schneider, Martina; Lion, Thomas; Bergmann, Michael; Kallay, Enikö; Steininger, Christoph

    2017-01-01

    Vitamin D (VD) is essential for the human body and involved in a wide variety of critical physiological processes including bone, muscle, and cardiovascular health, as well as innate immunity and antimicrobial responses. Here, we elucidated the significance of the VD system in cytomegalovirus (CMV) infection, which is one of the most common opportunistic infections in immunocompromised or -suppressed patients. We found that expression of vitamin D receptor (VDR) was downregulated in CMV-infected cells within 12h [hrs] post infection [p.i.] to 12% relative to VDR expression in mock-infected fibroblasts and did not recover during the CMV replication cycle of 96h. None of the biologically active metabolites of VD, cholecalciferol, calcidiol, or calcitriol, inhibit CMV replication significantly in human fibroblasts. In a feedback loop, expression of CYP24A1 dropped to 3% by 12h p.i. and expression of CYP27B1 increased gradually during the replication cycle of CMV to 970% probably as a consequence of VDR inhibition. VDR expression was not downregulated during influenza virus or adenovirus replication. The potent synthetic vitamin D analog EB-1089 was not able to inhibit CMV replication or antagonize its effect on VDR expression. Only CMV replication, and none of the other viral pathogens evaluated, inhibited the vitamin D system in vitro. In view of the pleiotropism of VDR, CMV-mediated downregulation may have far-reaching virological, immunological, and clinical implications and thus warrant further evaluations in vitro and in vivo.

  17. Ionotropic glutamate receptors: Which ones, when, and where in the mammalian neocortex.

    PubMed

    Hadzic, Minela; Jack, Alexander; Wahle, Petra

    2017-03-01

    A multitude of 18 iGluR receptor subunits, many of which are diversified by splicing and RNA editing, localize to >20 excitatory and inhibitory neocortical neuron types defined by physiology, morphology, and transcriptome in addition to various types of glial, endothelial, and blood cells. Here we have compiled the published expression of iGluR subunits in the areas and cell types of developing and adult cortex of rat, mouse, carnivore, bovine, monkey, and human as determined with antibody- and mRNA-based techniques. iGluRs are differentially expressed in the cortical areas and in the species, and all have a unique developmental pattern. Differences are quantitative rather than a mere absence/presence of expression. iGluR are too ubiquitously expressed and of limited use as markers for areas or layers. A focus has been the iGluR profile of cortical interneuron types. For instance, GluK1 and GluN3A are enriched in, but not specific for, interneurons; moreover, the interneurons expressing these subunits belong to different types. Adressing the types is still a major hurdle because type-specific markers are lacking, and the frequently used neuropeptide/CaBP signatures are subject to regulation by age and activity and vary as well between species and areas. RNA-seq reveals almost all subunits in the two morphofunctionally characterized interneuron types of adult cortical layer I, suggesting a fairly broad expression at the RNA level. It remains to be determined whether all proteins are synthesized, to which pre- or postsynaptic subdomains in a given neuron type they localize, and whether all are involved in synaptic transmission. J. Comp. Neurol. 525:976-1033, 2017. © 2016 Wiley Periodicals, Inc.

  18. Genetics, Receptor Binding, Replication, and Mammalian Transmission of H4 Avian Influenza Viruses Isolated from Live Poultry Markets in China

    PubMed Central

    Liang, Libin; Deng, Guohua; Shi, Jianzhong; Wang, Shuai; Zhang, Qianyi; Kong, Huihui; Gu, Chunyang; Guan, Yuntao; Suzuki, Yasuo; Li, Yanbing; Jiang, Yongping; Tian, Guobin; Liu, Liling

    2015-01-01

    ABSTRACT H4 avian influenza virus (AIV) is one of the most prevalent influenza virus subtypes in the world. However, whether H4 AIVs pose a threat to public health remains largely unclear. Here, we analyzed the phylogenetic relationships, receptor binding properties, replication, and transmissibility in mammals of H4 AIVs isolated from live poultry markets in China between 2009 and 2012. Genomic sequence analysis of 36 representative H4 viruses revealed 32 different genotypes, indicating that these viruses are undergoing complex and frequent reassortment events. All 32 viruses tested could replicate in the respiratory organs of infected mice without prior adaptation. Receptor binding analysis demonstrated that the H4 AIVs bound to α-2,6-linked glycans, although they retained the binding preference for α-2,3-linked glycans. When we tested the direct-contact transmission of 10 H4 viruses in guinea pigs, we found that three viruses did not transmit to any of the contact animals, one virus transmitted to one of three contact animals, and six viruses transmitted to all three contact animals. When we further tested the respiratory droplet transmissibility of four of the viruses that transmitted efficiently via direct contact, we found that three of them could transmit to one or two of the five exposed animals. Our study demonstrates that the current circulating H4 AIVs can infect, replicate in, and transmit to mammalian hosts, thereby posing a potential threat to human health. These findings emphasize the continual need for enhanced surveillance of H4 AIVs. IMPORTANCE Numerous surveillance studies have documented the wide distribution of H4 AIVs throughout the world, yet the biological properties of H4 viruses have not been well studied. In this study, we found that multiple genotypes of H4 viruses are cocirculating in the live poultry markets of China and that H4 viruses can replicate in mice, possess human-type receptor binding specificity, and transmit between

  19. Characterization of subtype-specific antibodies to the human D5 dopamine receptor: studies in primate brain and transfected mammalian cells.

    PubMed

    Bergson, C; Mrzljak, L; Lidow, M S; Goldman-Rakic, P S; Levenson, R

    1995-04-11

    To achieve a better understanding of how D5 dopamine receptors mediate the actions of dopamine in brain, we have developed antibodies specific for the D5 receptor. D5 antibodies reacted with recombinant baculovirus-infected Sf9 cells expressing the D5 receptor but not with the D1 receptor or a variety of other catecholaminergic and muscarinic receptors. Epitope-tagged D5 receptors expressed in mammalian cells were reactive with both D5 antibodies and an epitope-specific probe. A mixture of N-linked glycosylated polypeptides and higher molecular-mass species was detected on immunoblots of membrane fractions of D5-transfected cells and also of primate brain. D5 receptor antibodies intensely labeled pyramidal neurons in the prefrontal cortex, whereas spiny medium-sized neurons and aspiny large interneurons of the caudate nucleus were relatively lightly labeled. Antibodies to the D5 dopamine receptor should prove important in experimentally determining specific roles for the D5 and D1 receptors in cortical processes and diseases.

  20. Comparative Expression Study of the Endo–G Protein Coupled Receptor (GPCR) Repertoire in Human Glioblastoma Cancer Stem-like Cells, U87-MG Cells and Non Malignant Cells of Neural Origin Unveils New Potential Therapeutic Targets

    PubMed Central

    Lennon, Sarah; Carapito, Christine; Dong, Jihu; Van Dorsselaer, Alain; Junier, Marie-Pierre; Chneiweiss, Hervé; Cianférani, Sarah; Haiech, Jacques; Kilhoffer, Marie-Claude

    2014-01-01

    Glioblastomas (GBMs) are highly aggressive, invasive brain tumors with bad prognosis and unmet medical need. These tumors are heterogeneous being constituted by a variety of cells in different states of differentiation. Among these, cells endowed with stem properties, tumor initiating/propagating properties and particularly resistant to chemo- and radiotherapies are designed as the real culprits for tumor maintenance and relapse after treatment. These cells, termed cancer stem-like cells, have been designed as prominent targets for new and more efficient cancer therapies. G-protein coupled receptors (GPCRs), a family of membrane receptors, play a prominent role in cell signaling, cell communication and crosstalk with the microenvironment. Their role in cancer has been highlighted but remains largely unexplored. Here, we report a descriptive study of the differential expression of the endo-GPCR repertoire in human glioblastoma cancer stem-like cells (GSCs), U-87 MG cells, human astrocytes and fetal neural stem cells (f-NSCs). The endo-GPCR transcriptome has been studied using Taqman Low Density Arrays. Of the 356 GPCRs investigated, 138 were retained for comparative studies between the different cell types. At the transcriptomic level, eight GPCRs were specifically expressed/overexpressed in GSCs. Seventeen GPCRs appeared specifically expressed in cells with stem properties (GSCs and f-NSCs). Results of GPCR expression at the protein level using mass spectrometry and proteomic analysis are also presented. The comparative GPCR expression study presented here gives clues for new pathways specifically used by GSCs and unveils novel potential therapeutic targets. PMID:24662753

  1. CCDI: a new ligand that modulates mammalian type 1 ryanodine receptor (RyR1)

    PubMed Central

    Tian, Chengju; Shao, Chun Hong; Padanilam, Christina; Ezell, Edward; Singh, Jaipaul; Kutty, Shelby; Bidasee, Keshore R

    2014-01-01

    Background and Purpose Ryanodine receptors (RyRs) are Ca2+-release channels on the sarco(endo)plasmic reticulum that modulate a wide array of physiological functions. Three RyR isoforms are present in cells: RyR1, RyR2 and RyR3. To date, there are no reports on ligands that modulate RyR in an isoform-selective manner. Such ligands are not only valuable research tools, but could serve as intermediates for development of therapeutics. Experimental approach Pyrrole-2-carboxylic acid and 1,3-dicyclohexylcarbodiimide were allowed to react in carbon tetrachloride for 24 h at low temperatures and pressures. The chemical structures of the two products isolated were elucidated using NMR spectrometry, mass spectrometry and elemental analyses. [3H]-ryanodine binding, lipid bilayer and time-lapsed confocal imaging were used to determine their effects on RyR isoforms. Key results The major product, 2-cyclohexyl-3-cyclohexylimino-2, 3, dihydro–pyrrolo[1,2-c]imidazol-1-one (CCDI) dose-dependently potentiated Ca2+-dependent binding of [3H]-ryanodine to RyR1, with no significant effects on [3H]-ryanodine binding to RyR2 or RyR3. CCDI also reversibly increased the open probability (Po) of RyR1 with minimal effects on RyR2 and RyR3. CCDI induced Ca2+ transients in C2C12 skeletal myotubes, but not in rat ventricular myocytes. This effect was blocked by pretreating cells with ryanodine. The minor product 2-cyclohexyl-pyrrolo[1,2-c]imidazole-1,3-dione had no effect on either [3H]-ryanodine binding or Po of RyR1, RyR2 and RyR3. Conclusions and implications A new ligand that preferentially modulates RyR1 was identified. In addition to being an important research tool, the pharmacophore of this small molecule could serve as a template for the synthesis of other isoform-selective modulators of RyRs. PMID:24819467

  2. ORA1, a Zebrafish Olfactory Receptor Ancestral to All Mammalian V1R Genes, Recognizes 4-Hydroxyphenylacetic Acid, a Putative Reproductive Pheromone

    PubMed Central

    Behrens, Maik; Frank, Oliver; Rawel, Harshadrai; Ahuja, Gaurav; Potting, Christoph; Hofmann, Thomas; Meyerhof, Wolfgang; Korsching, Sigrun

    2014-01-01

    The teleost v1r-related ora genes are a small, highly conserved olfactory receptor gene family of only six genes, whose direct orthologues can be identified in lineages as far as that of cartilaginous fish. However, no ligands for fish olfactory receptor class A related genes (ORA) had been uncovered so far. Here we have deorphanized the ORA1 receptor using heterologous expression and calcium imaging. We report that zebrafish ORA1 recognizes with high specificity and sensitivity 4-hydroxyphenylacetic acid. The carboxyl group of this compound is required in a particular distance from the aromatic ring, whereas the hydroxyl group in the para-position is not essential, but strongly enhances the binding efficacy. Low concentrations of 4-hydroxyphenylacetic acid elicit increases in oviposition frequency in zebrafish mating pairs. This effect is abolished by naris closure. We hypothesize that 4-hydroxyphenylacetic acid might function as a pheromone for reproductive behavior in zebrafish. ORA1 is ancestral to mammalian V1Rs, and its putative function as pheromone receptor is reminiscent of the role of several mammalian V1Rs as pheromone receptors. PMID:24831010

  3. High-throughput mapping of the promoters of the mouse olfactory receptor genes reveals a new type of mammalian promoter and provides insight into olfactory receptor gene regulation

    PubMed Central

    Clowney, E. Josephine; Magklara, Angeliki; Colquitt, Bradley M.; Pathak, Nidhi; Lane, Robert P.; Lomvardas, Stavros

    2011-01-01

    The olfactory receptor (OR) genes are the largest mammalian gene family and are expressed in a monogenic and monoallelic fashion in olfactory neurons. Using a high-throughput approach, we mapped the transcription start sites of 1085 of the 1400 murine OR genes and performed computational analysis that revealed potential transcription factor binding sites shared by the majority of these promoters. Our analysis produced a hierarchical model for OR promoter recognition in which unusually high AT content, a unique epigenetic signature, and a stereotypically positioned O/E site distinguish OR promoters from the rest of the murine promoters. Our computations revealed an intriguing correlation between promoter AT content and evolutionary plasticity, as the most AT-rich promoters regulate rapidly evolving gene families. Within the AT-rich promoter category the position of the TATA-box does not correlate with the transcription start site. Instead, a spike in GC composition might define the exact location of the TSS, introducing the concept of “genomic contrast” in transcriptional regulation. Finally, our experiments show that genomic neighborhood rather than promoter sequence correlates with the probability of different OR genes to be expressed in the same olfactory cell. PMID:21705439

  4. Tumor Necrosis Factor Receptor Associated Factor 2 Signaling Provokes Adverse Cardiac Remodeling in the Adult Mammalian Heart

    PubMed Central

    Divakaran, Vijay G.; Evans, Sarah; Topkara, Veli K.; Diwan, Abhinav; Burchfield, Jana; Gao, Feng; Dong, Jianwen; Tzeng, Huei-Ping; Sivasubramanian, Natarajan; Barger, Philip M.; Mann, Douglas L.

    2013-01-01

    Background Tumor necrosis factor (TNF) superfamily ligands that provoke a dilated cardiac phenotype signal through a common scaffolding protein termed TNF receptor associated factor 2 (TRAF2); however, virtually nothing is known with regard to TRAF2 signaling in the adult mammalian heart. Methods and Results We generated multiple founder lines of mice with cardiac restricted overexpression of TRAF2 and characterized the phenotype of mice with higher expression levels of TRAF2 (MHC-TRAF2HC). MHC-TRAF2HC transgenic mice developed a time-dependent increase in cardiac hypertrophy, LV dilation and adverse LV remodeling, and a significant decrease in LV +dP/dt and −dP/dt when compared to littermate (LM) controls (p < 0.05 compared to LM). During the early phases of LV remodeling there was a significant increase in total matrix metalloproteinase (MMP) activity that corresponded with a decrease in total myocardial fibrillar collagen content. As the MHC-TRAF2HC mice aged, there was a significant decrease in total MMP activity accompanied by an increase in total fibrillar collagen content and an increase in myocardial tissue inhibitor of metalloproteinase-1 levels. There was a significant increase in NF-κB activation at 4 – 12 weeks and JNK activation at 4 weeks in the MHCs TRAF2HC mice. Transciptional profiling revealed that > 95% of the hypertrophic/dilated cardiomyopathy-related genes that were significantly upregulated genes in the MHC-TRAF2HC hearts contained κB elements in their promoters. Conclusions These results show for the first time that targeted overexpression of TRAF2 is sufficient to mediate adverse cardiac remodeling in the heart. PMID:23493088

  5. Cell Type Specific Spatial and Functional Coupling Between Mammalian Brain Kv2.1 K+ Channels and Ryanodine Receptors

    PubMed Central

    Mandikian, Danielle; Bocksteins, Elke; Parajuli, Laxmi Kumar; Bishop, Hannah I.; Cerda, Oscar; Shigemoto, Ryuichi; Trimmer, James S.

    2014-01-01

    The Kv2.1 voltage-gated K+ channel is widely expressed throughout mammalian brain where it contributes to dynamic activity-dependent regulation of intrinsic neuronal excitability. Here we show that somatic plasma membrane Kv2.1 clusters are juxtaposed to clusters of intracellular ryanodine receptor (RyR) Ca2+-release channels in mouse brain neurons, most prominently in medium spiny neurons (MSNs) of the striatum. Electron microscopy-immunogold labeling shows that in MSNs, plasma membrane Kv2.1 clusters are adjacent to subsurface cisternae, placing Kv2.1 in close proximity to sites of RyR-mediated Ca2+ release. Immunofluorescence labeling in transgenic mice expressing GFP in specific MSN populations reveals the most prominent juxtaposed Kv2.1-RyR clusters in indirect pathway MSNs. Kv2.1 in both direct and indirect pathway MSNs exhibits markedly lower levels of labeling with phosphospecific antibodies directed against the S453, S563, and S603 phosphorylation site compared to levels observed in neocortical neurons, although labeling for Kv2.1 phosphorylation at S563 was significantly lower in indirect pathway MSNs compared to those in the direct pathway. Finally, acute stimulation of RyRs in heterologous cells causes a rapid hyperpolarizing shift in the voltage-dependence of activation of Kv2.1, typical of Ca2+/calcineurin-dependent Kv2.1 dephosphorylation. Together, these studies reveal that striatal MSNs are distinct in their expression of clustered Kv2.1 at plasma membrane sites juxtaposed to intracellular RyRs, as well as in Kv2.1 phosphorylation state. Differences in Kv2.1 expression and phosphorylation between MSNs in direct and indirect pathways provide a cell- and circuit-specific mechanism for coupling intracellular Ca2+ release to phosphorylation-dependent regulation of Kv2.1 to dynamically impact intrinsic excitability. PMID:24962901

  6. Autoradiographic distribution of 5-HT7 receptors in the human brain using [3H]mesulergine: comparison to other mammalian species

    PubMed Central

    Martín-Cora, Francisco J; Pazos, Angel

    2003-01-01

    The main aim of this investigation was to delineate the distribution of the 5-HT7 receptor in human brain. Autoradiographic studies in guinea-pig and rat brain were also carried out in order to revisit and compare the anatomical distribution of 5-HT7 receptors in different mammalian species.Binding studies were performed in rat frontal cortex membranes using 10 nM [3H]mesulergine in the presence of raclopride (10 μM) and DOI (0.8 μM). Under these conditions, a binding site with pharmacological characteristics consistent with those of the 5-HT7 receptors was identified (rank order of binding affinity values: 5-CT>5-HT>5-MeOT>mesulergine ≈methiothepin>8-OH-DPAT=spiperone ≈(+)-butaclamol≫imipramine ≈(±)-pindolol≫ondansetron ≈clonidine ≈prazosin).The autoradiographic studies revealed that the anatomical distribution of 5-HT7 receptors throughout the human brain was heterogenous. High densities were found over the caudate and putamen nuclei, the pyramidal layer of the CA2 field of the hippocampus, the centromedial thalamic nucleus, and the dorsal raphe nucleus. The inner layer of the frontal cortex, the dentate gyrus of the hippocampus, the subthalamic nucleus and superior colliculus, among others, presented intermediate concentrations of 5-HT7 receptors. A similar brain anatomical distribution of 5-HT7 receptors was observed in all three mammalian species studied.By using [3H]mesulergine, we have mapped for the first time the anatomical distribution of 5-HT7 receptors in the human brain, overcoming the limitations previously found in radiometric studies with other radioligands, and also revisiting the distribution in guinea-pig and rat brain. PMID:14656806

  7. Mutant Thyroid Hormone Receptors (TRs) Isolated from Distinct Cancer Types Display Distinct Target Gene Specificities: a Unique Regulatory Repertoire Associated with Two Renal Clear Cell Carcinomas

    PubMed Central

    Rosen, Meghan D.; Chan, Ivan H.

    2011-01-01

    Thyroid hormone receptors (TRs) are hormone-regulated transcription factors that regulate a diverse array of biological activities, including metabolism, homeostasis, and development. TRs also serve as tumor suppressors, and aberrant TR function (via mutation, deletion, or altered expression) is associated with a spectrum of both neoplastic and endocrine diseases. A particularly high frequency of TR mutations has been reported in renal clear cell carcinoma (RCCC) and in hepatocellular carcinoma (HCC). We have shown that HCC-TR mutants regulate only a fraction of the genes targeted by wild-type TRs but have gained the ability to regulate other, unique, targets. We have suggested that this altered gene recognition may contribute to the neoplastic phenotype. Here, to determine the generality of this phenomenon, we examined a distinct set of TR mutants associated with RCCC. We report that two different TR mutants, isolated from independent RCCC tumors, possess greatly expanded target gene specificities that extensively overlap one another, but only minimally overlap that of the wild-type TRs, or those of two HCC-TR mutants. Many of the genes targeted by either or both RCCC-TR mutants have been previously implicated in RCCC and include a series of metallothioneins, solute carriers, and genes involved in glycolysis and energy metabolism. We propose as a hypothesis that TR mutations from RCCC and HCC may play tissue-specific roles in carcinogenesis, and that the divergent target gene recognition patterns of TR mutants isolated from the two different types of tumors may arise from different selective pressures during development of RCCC vs. HCC. PMID:21622534

  8. Analysis of the T-cell receptor repertoire of human T-cell leukemia virus type 1 (HTLV-1) Tax-specific CD8+ cytotoxic T lymphocytes from patients with HTLV-1-associated disease: evidence for oligoclonal expansion.

    PubMed

    Utz, U; Banks, D; Jacobson, S; Biddison, W E

    1996-02-01

    Human T-cell leukemia virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic, progressive neurological disease characterized by marked degeneration of the spinal cord and the presence of antibodies against HTLV-1. Patients with HAM/TSP, but not asymptomatic carriers, show very high precursor frequencies of HTLV-1-specific CD8+ T cells in peripheral blood and cerebrospinal fluid, suggestive of a role of these T cells in the pathogenesis of the disease. In HLA-A2+ HAM/TSP patients, HTLV-1-specific T cells were demonstrated to be directed predominantly against one HTLV-1 epitope, namely, Tax11-19. In the present study, we analyzed HLA-A2-restricted HTLV-1 Tax11-19-specific cytotoxic T cells from three patients with HAM/TSP. An analysis of the T-cell receptor (TCR) repertoire of these cells revealed an absence of restricted variable (V) region usage. Different combinations of TCR V alpha and V beta genes were utilized between, but also within, the individual patients for the recognition of Tax11-19. Sequence analysis of the TCR showed evidence for an oligoclonal expansion of few founder T cells in each patient. Apparent structural motifs were identified for the CDR3 regions of the TCR beta chains. One T-cell clone could be detected within the same patient over a period of 3 years. We suggest that these in vivo clonally expanded T cells might play a role in the pathogenesis of HAM/TSP and provide information on HTLV-1-specific TCR which may elucidate the nature of the T cells that infiltrate the central nervous system in HAM/TSP patients.

  9. Hacking the genetic code of mammalian cells.

    PubMed

    Schwarzer, Dirk

    2009-07-06

    A genetic shuttle: The highlighted article, which was recently published by Schultz, Geierstanger and co-workers, describes a straightforward scheme for enlarging the genetic code of mammalian cells. An orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for a new amino acid can be evolved in E. coli and subsequently transferred into mammalian cells. The feasibility of this approach was demonstrated by adding a photocaged lysine derivative to the genetic repertoire of a human cell line.

  10. Ultrasensitive detection of amines by a trace amine-associated receptor.

    PubMed

    Zhang, Jingji; Pacifico, Rodrigo; Cawley, Dillon; Feinstein, Paul; Bozza, Thomas

    2013-02-13

    The mammalian main olfactory pathway detects volatile chemicals using two families of G-protein-coupled receptors: a large repertoire of canonical odorant receptors and a much smaller set of trace amine-associated receptors (TAARs). The TAARs are evolutionarily conserved in vertebrates, including humans, suggesting an indispensible role in olfaction. However, little is known about the functional properties of TAARs when expressed in native olfactory sensory neurons. Here we describe experiments using gene targeting, electrophysiology, and optical imaging to study the response properties of TAAR-expressing sensory neurons and their associated glomeruli in mice. We show that olfactory sensory neurons that express a subset of the TAAR repertoire are preferentially responsive to amines. In addition, neurons expressing specific TAARs, TAAR3 or TAAR4, are highly sensitive and are also broadly tuned-responding to structurally diverse amines. Surprisingly, we find that TAAR4 is exquisitely sensitive, with apparent affinities for a preferred ligand, phenylethylamine, rivaling those seen with mammalian pheromone receptors. We provide evidence that this unprecedented sensitivity is mediated via receptor coupling to the canonical odorant transduction cascade. The data suggest that the TAARs are evolutionarily retained in the olfactory receptor repertoire to mediate high-sensitivity detection of a biologically relevant class of odorous stimuli.

  11. Endogenous mammalian RF-amide peptides, including PrRP, kisspeptin and 26RFa, modulate nociception and morphine analgesia via NPFF receptors.

    PubMed

    Elhabazi, Khadija; Humbert, Jean-Paul; Bertin, Isabelle; Schmitt, Martine; Bihel, Frédéric; Bourguignon, Jean-Jacques; Bucher, Bernard; Becker, Jérôme A J; Sorg, Tania; Meziane, Hamid; Petit-Demoulière, Benoit; Ilien, Brigitte; Simonin, Frédéric

    2013-12-01

    Mammalian RF-amide peptides are encoded by five different genes and act through five different G protein-coupled receptors. RF-amide-related peptides-1 and -3, neuropeptides AF and FF, Prolactin releasing peptides, Kisspeptins and RFa peptides are currently considered endogenous peptides for NPFF1, NPFF2, GPR10, GPR54 and GPR103 receptors, respectively. However, several studies suggest that the selectivity of these peptides for their receptors is low and indicate that expression patterns for receptors and their corresponding ligands only partially overlap. In this study, we took advantage of the cloning of the five human RF-amide receptors to systematically examine their affinity for and their activation by all human RF-amide peptides. Binding experiments, performed on membranes from CHO cells expressing GPR10, GPR54 and GPR103 receptors, confirmed their high affinity and remarkable selectivity for their cognate ligands. Conversely, NPFF1 and NPFF2 receptors displayed high affinity for all RF-amide peptides. Moreover, GTPγS and cAMP experiments showed that almost all RF-amide peptides efficiently activate NPFF1 and NPFF2 receptors. As NPFF is known to modulate morphine analgesia, we undertook a systematic analysis in mice of the hyperalgesic and anti morphine-induced analgesic effects of a representative set of endogenous RF-amide peptides. All of them induced hyperalgesia and/or prevented morphine analgesia following intracerebroventricular administration. Importantly, these effects were prevented by administration of RF9, a highly selective NPFF1/NPFF2 antagonist. Altogether, our results show that all endogenous RF-amide peptides display pain-modulating properties and point to NPFF receptors as essential players for these effects.

  12. The brain-uterus connection: brain derived neurotrophic factor (BDNF) and its receptor (Ntrk2) are conserved in the mammalian uterus.

    PubMed

    Wessels, Jocelyn M; Wu, Liang; Leyland, Nicholas A; Wang, Hongmei; Foster, Warren G

    2014-01-01

    The neurotrophins are neuropeptides that are potent regulators of neurite growth and survival. Although mainly studied in the brain and nervous system, recent reports have shown that neurotrophins are expressed in multiple target tissues and cell types throughout the body. Additionally, dysregulation of neurotrophins has been linked to several disease conditions including Alzheimer's, Parkinson's, Huntington's, psychiatric disorders, and cancer. Brain derived neurotrophic factor (BDNF) is a member of the neurotrophin family that elicits its actions through the neurotrophic tyrosine receptor kinase type 2 (Ntrk2). Together BDNF and Ntrk2 are capable of activating the adhesion, angiogenesis, apoptosis, and proliferation pathways. These pathways are prominently involved in reproductive physiology, yet a cross-species examination of BDNF and Ntrk2 expression in the mammalian uterus is lacking. Herein we demonstrated the conserved nature of BDNF and Ntrk2 across several mammalian species by mRNA and protein sequence alignment, isolated BDNF and Ntrk2 transcripts in the uterus by Real-Time PCR, localized both proteins to the glandular and luminal epithelium, vascular smooth muscle, and myometrium of the uterus, determined that the major isoforms expressed in the human endometrium were pro-BDNF, and truncated Ntrk2, and finally demonstrated antibody specificity. Our findings suggest that BDNF and Ntrk2 are transcribed, translated, and conserved across mammalian species including human, mouse, rat, pig, horse, and the bat.

  13. Measurement of Bluetongue Virus Binding to a Mammalian Cell Surface Receptor by an In Situ Immune Fluorescent Staining Technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A quantifiable in situ immune fluorescent assay (IFA) was developed to measure bluetongue virus (BTV) binding to mammalian cells. The utility of the assay was demonstrated with both Chinese hamster ovary (CHO) and bovine pulmonary artery endothelial (CPAE) cells. Since heparin sulfate (HS) has been ...

  14. Cytotoxic activity of Bacillus thuringiensis Cry proteins on mammalian cells transfected with cadherin-like Cry receptor gene of Bombyx mori (silkworm).

    PubMed Central

    Tsuda, Yoko; Nakatani, Fumiki; Hashimoto, Keiko; Ikawa, Satoshi; Matsuura, Chikako; Fukada, Takashi; Sugimoto, Kenji; Himeno, Michio

    2003-01-01

    Cry1Aa, an insecticidal protein produced by Bacillus thuringiensis, has been shown to bind to cadherin-like protein, BtR175, in Bombyx mori (silkworm) midgut. We previously reported three variant alleles of BtR175 (BtR175a, b and c). When transiently expressed in COS7 cells, all the three BtR175 variants bound to Cry1Aa. We stably expressed BtR175b in HEK293 cells. These BtR175b-expressing cells swelled and died in the presence of activated Cry1Aa in a dose- and time-dependent manner, showing that BtR175b itself can impart Cry1Aa-susceptibility to mammalian cells. These cells were more susceptible to Cry1Aa than to Cry1Ab and Cry1Ac. Since dispersed B. mori midgut cells were reported to be highly susceptible to Cry1Ac, this result suggested that other Cry1Ac-specific receptor(s) were simultaneously working with BtR175 in the midgut cells. Advantages are also discussed of applying these transfected mammalian cells to toxicity assays of mutant Cry proteins. PMID:12403648

  15. Reconstructing and mining the B cell repertoire with ImmunediveRsity.

    PubMed

    Cortina-Ceballos, Bernardo; Godoy-Lozano, Elizabeth Ernestina; Sámano-Sánchez, Hugo; Aguilar-Salgado, Andrés; Velasco-Herrera, Martín Del Castillo; Vargas-Chávez, Carlos; Velázquez-Ramírez, Daniel; Romero, Guillermo; Moreno, José; Téllez-Sosa, Juan; Martínez-Barnetche, Jesús

    2015-01-01

    The B cell antigen receptor repertoire is highly diverse and constantly modified by clonal selection. High-throughput DNA sequencing (HTS) of the lymphocyte repertoire (Rep-Seq) represents a promising technology to explore such diversity ex-vivo and assist in the identification of antigen-specific antibodies based on molecular signatures of clonal selection. Therefore, integrative tools for repertoire reconstruction and analysis from antibody sequences are needed. We developed ImmunediveRity, a stand-alone pipeline primarily based in R programming for the integral analysis of B cell repertoire data generated by HTS. The pipeline integrates GNU software and in house scripts to perform quality filtering, sequencing noise correction and repertoire reconstruction based on V, D and J segment assignment, clonal origin and unique heavy chain identification. Post-analysis scripts generate a wealth of repertoire metrics that in conjunction with a rich graphical output facilitates sample comparison and repertoire mining. Its performance was tested with raw and curated human and mouse 454-Roche sequencing benchmarks providing good approximations of repertoire structure. Furthermore, ImmunediveRsity was used to mine the B cell repertoire of immunized mice with a model antigen, allowing the identification of previously validated antigen-specific antibodies, and revealing different and unexpected clonal diversity patterns in the post-immunization IgM and IgG compartments. Although ImmunediveRsity is similar to other recently developed tools, it offers significant advantages that facilitate repertoire analysis and repertoire mining. ImmunediveRsity is open source and free for academic purposes and it runs on 64 bit GNU/Linux and MacOS. Available at: https://bitbucket.org/ImmunediveRsity/immunediversity/.

  16. The carboxy-terminal tail or the intracellular loop 3 is required for β-arrestin-dependent internalization of a mammalian type II GnRH receptor.

    PubMed

    Madziva, Michael T; Mkhize, Nonhlanhla N; Flanagan, Colleen A; Katz, Arieh A

    2015-08-15

    The type II GnRH receptor (GnRH-R2) in contrast to mammalian type I GnRH receptor (GnRH-R1) has a cytosolic carboxy-terminal tail. We investigated the role of β-arrestin 1 in GnRH-R2-mediated signalling and mapped the regions in GnRH-R2 required for recruitment of β-arrestin, employing internalization assays. We show that GnRH-R2 activation of ERK is dependent on β-arrestin and protein kinase C. Appending the tail of GnRH-R2 to GnRH-R1 enabled GRK- and β-arrestin-dependent internalization of the chimaeric receptor. Surprisingly, carboxy-terminally truncated GnRH-R2 retained β-arrestin and GRK-dependent internalization, suggesting that β-arrestin interacts with additional elements of GnRH-R2. Mutating serine and threonine or basic residues of intracellular loop 3 did not abolish β-arrestin 1-dependent internalization but a receptor lacking these basic residues and the carboxy-terminus showed no β-arrestin 1-dependent internalization. Our results suggest that basic residues at the amino-terminal end of intracellular loop 3 or the carboxy-terminal tail are required for β-arrestin dependent internalization.

  17. Requirement of full TCR repertoire for regulatory T cells to maintain intestinal homeostasis.

    PubMed

    Nishio, Junko; Baba, Minato; Atarashi, Koji; Tanoue, Takeshi; Negishi, Hideo; Yanai, Hideyuki; Habu, Sonoko; Hori, Shohei; Honda, Kenya; Taniguchi, Tadatsugu

    2015-10-13

    The regulation of intestinal homeostasis by the immune system involves the dynamic interplay between gut commensal microbiota and resident immune cells. It is well known that a large and diverse lymphocyte antigen receptor repertoire enables the immune system to recognize and respond to a wide range of invading pathogens. There is also an emerging appreciation for a critical role the T-cell receptor (TCR) repertoire serves in the maintenance of peripheral tolerance by regulatory T cells (Tregs). Nevertheless, how the diversity of the TCR repertoire in Tregs affects intestinal homeostasis remains unknown. To address this question, we studied mice whose T cells express a restricted TCR repertoire. We observed the development of spontaneous colitis, accompanied by the induction of T-helper type 17 cells in the colon that is driven by gut commensal microbiota. We provide further evidence that a restricted TCR repertoire causes a loss of tolerogenicity to microbiota, accompanied by a paucity of peripherally derived, Helios(-) Tregs and hyperactivation of migratory dendritic cells. These results thus reveal a new facet of the TCR repertoire in which Tregs require a diverse TCR repitoire for intestinal homeostasis, suggesting an additional driving force in the evolutional significance of the TCR repertoire.

  18. Origin and evolution of the T cell repertoire after posttransplantation cyclophosphamide

    PubMed Central

    Kanakry, Christopher G.; Coffey, David G.; Towlerton, Andrea M.H.; Vulic, Ante; Storer, Barry E.; Chou, Jeffrey; Robins, Harlan S.; O’Donnell, Paul V.; Warren, Edus H.

    2016-01-01

    Posttransplantation cyclophosphamide (PTCy) effectively prevents graft-versus-host disease (GVHD), but its immunologic impact is poorly understood. We assessed lymphocyte reconstitution via flow cytometry (n = 74) and antigen receptor sequencing (n = 35) in recipients of myeloablative, HLA-matched allogeneic BM transplantation using PTCy. Recovering T cells were primarily phenotypically effector memory with lower T cell receptor β (TRB) repertoire diversity than input donor repertoires. Recovering B cells were predominantly naive with immunoglobulin heavy chain locus (IGH) repertoire diversity similar to donors. Numerical T cell reconstitution and TRB diversity were strongly associated with recipient cytomegalovirus seropositivity. Global similarity between input donor and recipient posttransplant repertoires was uniformly low at 1–2 months after transplant but increased over the balance of the first posttransplant year. Blood TRB repertoires at ≥3 months after transplant were often dominated by clones present in the donor blood/marrow memory CD8+ compartment. Limited overlap was observed between the TRB repertoires of T cells infiltrating the skin or gastrointestinal tract versus the blood. Although public TRB sequences associated with herpesvirus- or alloantigen-specific CD8+ T cells were detected in some patients, posttransplant TRB and IGH repertoires were unique to each individual. These data define the immune dynamics occurring after PTCy and establish a benchmark against which immune recovery after other transplantation approaches can be compared. PMID:27213183

  19. The Past, Present, and Future of Immune Repertoire Biology – The Rise of Next-Generation Repertoire Analysis

    PubMed Central

    Six, Adrien; Mariotti-Ferrandiz, Maria Encarnita; Chaara, Wahiba; Magadan, Susana; Pham, Hang-Phuong; Lefranc, Marie-Paule; Mora, Thierry; Thomas-Vaslin, Véronique; Walczak, Aleksandra M.; Boudinot, Pierre

    2013-01-01

    T and B cell repertoires are collections of lymphocytes, each characterized by its antigen-specific receptor. We review here classical technologies and analysis strategies developed to assess immunoglobulin (IG) and T cell receptor (TR) repertoire diversity, and describe recent advances in the field. First, we describe the broad range of available methodological tools developed in the past decades, each of which answering different questions and showing complementarity for progressive identification of the level of repertoire alterations: global overview of the diversity by flow cytometry, IG repertoire descriptions at the protein level for the identification of IG reactivities, IG/TR CDR3 spectratyping strategies, and related molecular quantification or dynamics of T/B cell differentiation. Additionally, we introduce the recent technological advances in molecular biology tools allowing deeper analysis of IG/TR diversity by next-generation sequencing (NGS), offering systematic and comprehensive sequencing of IG/TR transcripts in a short amount of time. NGS provides several angles of analysis such as clonotype frequency, CDR3 diversity, CDR3 sequence analysis, V allele identification with a quantitative dimension, therefore requiring high-throughput analysis tools development. In this line, we discuss the recent efforts made for nomenclature standardization and ontology development. We then present the variety of available statistical analysis and modeling approaches developed with regards to the various levels of diversity analysis, and reveal the increasing sophistication of those modeling approaches. To conclude, we provide some examples of recent mathematical modeling strategies and perspectives that illustrate the active rise of a “next-generation” of repertoire analysis. PMID:24348479

  20. Ligand specificity and affinity of BT-R1, the Bacillus thuringiensis Cry1A toxin receptor from Manduca sexta, expressed in mammalian and insect cell cultures.

    PubMed Central

    Keeton, T P; Bulla, L A

    1997-01-01

    The Manduca sexta receptor for the Bacillus thuringiensis Cry1Aa, Cry1Ab, and Cry1Ac toxins, BT-R1, has been expressed in heterologous cell culture, and its ligand binding characteristics have been determined. When transfected with the BT-R1 cDNA, insect and mammalian cell cultures produce a binding protein of approximately 195 kDa, in contrast to natural BT-R1 from M. sexia, which has an apparent molecular weight of 210 kDa. Transfection of cultured Spodoptera frugiperda cells with the BT-R1 cDNA imparts Cry1A-specific high-affinity binding activity typical of membranes prepared from larval M. sexta midguts. Competition assays with BT-R1 prepared from larval M. sexta midguts and transiently expressed in cell culture reveal virtually identical affinities for the Cry1Aa, Cry1Ab, and Cry1Ac toxins, clearly demonstrating the absolute specificity of the receptor for toxins of the lepidopteran-specific Cry1A family. BT-R1 therefore remains the only M. sexta Cry1A binding protein to be purified, cloned, and functionally expressed in heterologous cell culture, and for the first time, we are able to correlate the Cry1Aa, Cry1Ab, and Cry1Ac toxin sensitivities of M. sexta to the identity and ligand binding characteristics of a single midgut receptor molecule. PMID:9292994

  1. Loss of the repressor REST in uterine fibroids promotes aberrant G protein-coupled receptor 10 expression and activates mammalian target of rapamycin pathway

    PubMed Central

    Varghese, Binny V.; Koohestani, Faezeh; McWilliams, Michelle; Colvin, Arlene; Gunewardena, Sumedha; Kinsey, William H.; Nowak, Romana A.; Nothnick, Warren B.; Chennathukuzhi, Vargheese M.

    2013-01-01

    Uterine fibroids (leiomyomas) are the most common tumors of the female reproductive tract, occurring in up to 77% of reproductive-aged women, yet molecular pathogenesis remains poorly understood. A role for atypically activated mammalian target of rapamycin (mTOR) pathway in the pathogenesis of uterine fibroids has been suggested in several studies. We identified that G protein-coupled receptor 10 [GPR10, a putative signaling protein upstream of the phosphoinositide 3-kinase–protein kinase B/AKT–mammalian target of rapamycin (PI3K/AKT–mTOR) pathway] is aberrantly expressed in uterine fibroids. The activation of GPR10 by its cognate ligand, prolactin releasing peptide, promotes PI3K–AKT–mTOR pathways and cell proliferation specifically in cultured primary leiomyoma cells. Additionally, we report that RE1 suppressing transcription factor/neuron-restrictive silencing factor (REST/NRSF), a known tumor suppressor, transcriptionally represses GPR10 in the normal myometrium, and that the loss of REST in fibroids permits GPR10 expression. Importantly, mice overexpressing human GPR10 in the myometrium develop myometrial hyperplasia with excessive extracellular matrix deposition, a hallmark of uterine fibroids. We demonstrate previously unrecognized roles for GPR10 and its upstream regulator REST in the pathogenesis of uterine fibroids. Importantly, we report a unique genetically modified mouse model for a gene that is misexpressed in uterine fibroids. PMID:23284171

  2. Recombinant receptor-binding domain of SARS-CoV spike protein expressed in mammalian, insect and E. coli cells elicits potent neutralizing antibody and protective immunity.

    PubMed

    Du, Lanying; Zhao, Guangyu; Chan, Chris C S; Sun, Shihui; Chen, Min; Liu, Zhonghua; Guo, Hongxiang; He, Yuxian; Zhou, Yusen; Zheng, Bo-Jian; Jiang, Shibo

    2009-10-10

    Severe acute respiratory syndrome (SARS) is a newly emerging infectious disease. The potential recurrence of the disease from animal reservoirs highlights the significance of development of safe and efficient vaccines to prevent a future SARS epidemic. In this study, we expressed the recombinant receptor-binding domain (rRBD) in mammalian (293T) cells, insect (Sf9) cells, and E. coli, respectively, and compared their immunogenicity and protection against SARS-CoV infection in an established mouse model. Our results show that all rRBD proteins expressed in the above systems maintained intact conformation, being able to induce highly potent neutralizing antibody responses and complete protective immunity against SARS-CoV challenge in mice, albeit the rRBD expressed in 293T cells elicited stronger humoral immune responses with significantly higher neutralizing activity (P<0.05) than those expressed in Sf9 and E. coli cells. These results suggest that all three rRBDs are effective in eliciting immune responses and protection against SARS-CoV and any of the above expression systems can be used for production of rRBD-based SARS subunit vaccines. Preference will be given to rRBD expressed in mammalian cells for future evaluation of the vaccine efficacy in a non-human primate model of SARS because of its ability to refold into a native conformation more readily and to induce higher level of neutralizing antibody responses than those expressed in E. coli and insect cells.

  3. Trade-offs in antibody repertoires to complex antigens

    PubMed Central

    Childs, Lauren M.; Baskerville, Edward B.; Cobey, Sarah

    2015-01-01

    Pathogens vary in their antigenic complexity. While some pathogens such as measles present a few relatively invariant targets to the immune system, others such as malaria display considerable antigenic diversity. How the immune response copes in the presence of multiple antigens, and whether a trade-off exists between the breadth and efficacy of antibody (Ab)-mediated immune responses, are unsolved problems. We present a theoretical model of affinity maturation of B-cell receptors (BCRs) during a primary infection and examine how variation in the number of accessible antigenic sites alters the Ab repertoire. Naive B cells with randomly generated receptor sequences initiate the germinal centre (GC) reaction. The binding affinity of a BCR to an antigen is quantified via a genotype–phenotype map, based on a random energy landscape, that combines local and distant interactions between residues. In the presence of numerous antigens or epitopes, B-cell clones with different specificities compete for stimulation during rounds of mutation within GCs. We find that the availability of many epitopes reduces the affinity and relative breadth of the Ab repertoire. Despite the stochasticity of somatic hypermutation, patterns of immunodominance are strongly shaped by chance selection of naive B cells with specificities for particular epitopes. Our model provides a mechanistic basis for the diversity of Ab repertoires and the evolutionary advantage of antigenically complex pathogens. PMID:26194759

  4. Trade-offs in antibody repertoires to complex antigens.

    PubMed

    Childs, Lauren M; Baskerville, Edward B; Cobey, Sarah

    2015-09-05

    Pathogens vary in their antigenic complexity. While some pathogens such as measles present a few relatively invariant targets to the immune system, others such as malaria display considerable antigenic diversity. How the immune response copes in the presence of multiple antigens, and whether a trade-off exists between the breadth and efficacy of antibody (Ab)-mediated immune responses, are unsolved problems. We present a theoretical model of affinity maturation of B-cell receptors (BCRs) during a primary infection and examine how variation in the number of accessible antigenic sites alters the Ab repertoire. Naive B cells with randomly generated receptor sequences initiate the germinal centre (GC) reaction. The binding affinity of a BCR to an antigen is quantified via a genotype-phenotype map, based on a random energy landscape, that combines local and distant interactions between residues. In the presence of numerous antigens or epitopes, B-cell clones with different specificities compete for stimulation during rounds of mutation within GCs. We find that the availability of many epitopes reduces the affinity and relative breadth of the Ab repertoire. Despite the stochasticity of somatic hypermutation, patterns of immunodominance are strongly shaped by chance selection of naive B cells with specificities for particular epitopes. Our model provides a mechanistic basis for the diversity of Ab repertoires and the evolutionary advantage of antigenically complex pathogens.

  5. Modulation of mammalian dendritic GABAA receptor function by the kinetics of Cl− and HCO3− transport

    PubMed Central

    Staley, Kevin J; Proctor, William R

    1999-01-01

    During prolonged activation of dendritic GABAA receptors, the postsynaptic membrane response changes from hyperpolarization to depolarization. One explanation for the change in direction of the response is that opposing HCO3− and Cl− fluxes through the GABAA ionophore diminish the electrochemical gradient driving the hyperpolarizing Cl− flux, so that the depolarizing HCO3− flux dominates. Here we demonstrate that the necessary conditions for this mechanism are present in rat hippocampal CA1 pyramidal cell dendrites. Prolonged GABAA receptor activation in low-HCO3− media decreased the driving force for dendritic but not somatic Cl− currents. Prolonged GABAA receptor activation in low-Cl− media containing physiological HCO3− concentrations did not degrade the driving force for dendritic or somatic HCO3− gradients. Dendritic Cl− transport was measured in three ways: from the rate of recovery of GABAA receptor-mediated currents between paired dendritic GABA applications, from the rate of recovery between paired synaptic GABAA receptor-mediated currents, and from the predicted vs. actual increase in synaptic GABAA receptor-mediated currents at progressively more positive test potentials. These experiments yielded estimates of the maximum transport rate (vmax) for Cl− transport of 5 to 7 mmol l−1 s−1, and indicated that vmax could be exceeded by GABAA receptor-mediated Cl− influx. The affinity of the Cl− transporter was calculated in experiments in which the reversal potential for Cl− (ECl) was measured from the GABAA reversal potential in low-HCO3− media during Cl− loading from the recording electrode solution. The calculated KD was 15 mM. Using a standard model of membrane potential, these conditions are demonstrated to be sufficient to produce the experimentally observed, activity-dependent GABAA depolarizing response in pyramidal cell dendrites. PMID:10457084

  6. Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms.

    PubMed

    Acevedo, JeanMarie; Santana-Almansa, Alexandra; Matos-Vergara, Nikol; Marrero-Cordero, Luis René; Cabezas-Bou, Ernesto; Díaz-Ríos, Manuel

    2016-02-01

    Caffeine is a potent psychostimulant that can have significant and widely variable effects on the activity of multiple neuronal pathways. The most pronounced caffeine-induced behavioral effect seen in rodents is to increase locomotor activity which has been linked to a dose-dependent inhibition of A1 and A(2A) receptors. The effects of caffeine at the level of the lumbar spinal central pattern generator (CPG) network for hindlimb locomotion are lacking. We assessed the effects of caffeine to the locomotor function of the spinal CPG network via extracellular ventral root recordings using the isolated neonatal mouse spinal cord preparation. Addition of caffeine and of an A1 receptor antagonist significantly decreased the cycle period accelerating the ongoing locomotor rhythm, while decreasing burst duration reversibly in most preparations suggesting the role of A1 receptors as the primary target of caffeine. Caffeine and an A1 receptor antagonist failed to stimulate ongoing locomotor activity in the absence of dopamine or in the presence of a D1 receptor antagonist supporting A1/D1 receptor-dependent mechanism of action. The use of caffeine or an A1 receptor blocker failed to stimulate an ongoing locomotor rhythm in the presence of a blocker of the cAMP-dependent protein kinase (PKA) supporting the need of this intracellular pathway for the modulatory effects of caffeine to occur. These results support a stimulant effect of caffeine on the lumbar spinal network controlling hindlimb locomotion through the inhibition of A1 receptors and subsequent activation of D1 receptors via a PKA-dependent intracellular mechanism.

  7. A model for the evolution of the mammalian t-cell receptor α/δ and μ loci based on evidence from the duckbill Platypus.

    PubMed

    Parra, Zuly E; Lillie, Mette; Miller, Robert D

    2012-10-01

    The specific recognition of antigen by T cells is critical to the generation of adaptive immune responses in vertebrates. T cells recognize antigen using a somatically diversified T-cell receptor (TCR). All jawed vertebrates use four TCR chains called α, β, γ, and δ, which are expressed as either a αβ or γδ heterodimer. Nonplacental mammals (monotremes and marsupials) are unusual in that their genomes encode a fifth TCR chain, called TCRµ, whose function is not known but is also somatically diversified like the conventional chains. The origins of TCRµ are also unclear, although it appears distantly related to TCRδ. Recent analysis of avian and amphibian genomes has provided insight into a model for understanding the evolution of the TCRδ genes in tetrapods that was not evident from humans, mice, or other commonly studied placental (eutherian) mammals. An analysis of the genes encoding the TCRδ chains in the duckbill platypus revealed the presence of a highly divergent variable (V) gene, indistinguishable from immunoglobulin heavy (IgH) chain V genes (VH) and related to V genes used in TCRµ. They are expressed as part of TCRδ repertoire (VHδ) and similar to what has been found in frogs and birds. This, however, is the first time a VHδ has been found in a mammal and provides a critical link in reconstructing the evolutionary history of TCRµ. The current structure of TCRδ and TCRµ genes in tetrapods suggests ancient and possibly recurring translocations of gene segments between the IgH and TCRδ genes, as well as translocations of TCRδ genes out of the TCRα/δ locus early in mammals, creating the TCRµ locus.

  8. Comparative analysis of the feline immunoglobulin repertoire.

    PubMed

    Steiniger, Sebastian C J; Glanville, Jacob; Harris, Douglas W; Wilson, Thomas L; Ippolito, Gregory C; Dunham, Steven A

    2017-01-25

    Next-Generation Sequencing combined with bioinformatics is a powerful tool for analyzing the large number of DNA sequences present in the expressed antibody repertoire and these data sets can be used to advance a number of research areas including antibody discovery and engineering. The accurate measurement of the immune repertoire sequence composition, diversity and abundance is important for understanding the repertoire response in infections, vaccinations and cancer immunology and could also be useful for elucidating novel molecular targets. In this study 4 individual domestic cats (Felis catus) were subjected to antibody repertoire sequencing with total number of sequences generated 1079863 for VH for IgG, 1050824 VH for IgM, 569518 for VK and 450195 for VL. Our analysis suggests that a similar VDJ expression patterns exists across all cats. Similar to the canine repertoire, the feline repertoire is dominated by a single subgroup, namely VH3. The antibody paratope of felines showed similar amino acid variation when compared to human, mouse and canine counterparts. All animals show a similarly skewed VH CDR-H3 profile and, when compared to canine, human and mouse, distinct differences are observed. Our study represents the first attempt to characterize sequence diversity in the expressed feline antibody repertoire and this demonstrates the utility of using NGS to elucidate entire antibody repertoires from individual animals. These data provide significant insight into understanding the feline immune system function.

  9. Cellular senescence or EGFR signaling induces Interleukin 6 (IL-6) receptor expression controlled by mammalian target of rapamycin (mTOR)

    PubMed Central

    Garbers, Christoph; Kuck, Fabian; Aparicio-Siegmund, Samadhi; Konzak, Kirstin; Kessenbrock, Mareike; Sommerfeld, Annika; Häussinger, Dieter; Lang, Philipp A; Brenner, Dirk; Mak, Tak W.; Rose-John, Stefan; Essmann, Frank; Schulze-Osthoff, Klaus; Piekorz, Roland P; Scheller, Jürgen

    2013-01-01

    Interleukin 6 (IL-6) signaling plays a role in inflammation, cancer, and senescence. Here, we identified soluble IL-6 receptor (sIL-6R) as a member of the senescence-associated secretory phenotype (SASP). Senescence-associated sIL-6R upregulation was mediated by mammalian target of rapamycin (mTOR). sIL-6R was mainly generated by a disintegrin and metalloprotease 10 (ADAM10)-dependent ectodomain shedding to enable IL-6 trans-signaling. In vivo, heterozygous PTEN-knockout mice exhibited higher mTOR activity and increased sIL-6R levels. Moreover, aberrant EGF receptor (EGFR) activation triggered IL-6 synthesis. In analogy to senescence, EGFR-induced activation of mTOR also induced IL-6R expression and sIL-6R generation. Hence, mTOR activation reprograms IL-6 non-responder cells into IL-6 responder cells. Our data suggest that mTOR serves as a central molecular switch to facilitate cellular IL-6 classic and trans-signaling via IL-6R upregulation with direct implications for cellular senescence and tumor development. PMID:24047696

  10. Identification of mRNAs coding for mammalian-type melanin-concentrating hormone and its receptors in the scalloped hammerhead shark Sphyrna lewini.

    PubMed

    Mizusawa, Kanta; Amiya, Noriko; Yamaguchi, Yoko; Takabe, Souichirou; Amano, Masafumi; Breves, Jason P; Fox, Bradley K; Grau, E Gordon; Hyodo, Susumu; Takahashi, Akiyoshi

    2012-10-01

    Melanin-concentrating hormone (MCH) is a neuromodulator, synthesized in the hypothalamus, that regulates both appetite and energy homeostasis in mammals. MCH was initially identified in teleost fishes as a pituitary gland hormone that induced melanin aggregation in chromatophores in the skin; however, this function of MCH has not been observed in other vertebrates. Recent studies suggest that MCH is involved in teleost feeding behavior, spurring the hypothesis that the original function of MCH in early vertebrates was appetite regulation. The present study reports the results of cDNAs cloning encoding preproMCH and two MCH receptors from an elasmobranch fish, Sphyrna lewini, a member of Chondrichthyes, the earliest diverged class in gnathostomes. The putative MCH peptide is composed of 19 amino acids, similar in length to the mammalian MCH. Reverse-transcription polymerase chain reaction revealed that MCH is expressed in the hypothalamus in S. lewini MCH cell bodies and fibers were identified by immunochemistry in the hypothalamus, but not in the pituitary gland, suggesting that MCH is not released via the pituitary gland into general circulation. MCH receptor genes mch-r1 and mch-r2 were expressed in the S. lewini hypothalamus, but were not found in the skin. These results indicate that MCH does not have a peripheral function, such as a melanin-concentrating effect, in the skin of S. lewini hypothalamic MCH mRNA levels were not affected by fasting, suggesting that feeding conditions might not affect the expression of MCH in the hypothalamus.

  11. Dysregulation of B Cell Repertoire Formation in Myasthenia Gravis Patients Revealed through Deep Sequencing.

    PubMed

    Vander Heiden, Jason A; Stathopoulos, Panos; Zhou, Julian Q; Chen, Luan; Gilbert, Tamara J; Bolen, Christopher R; Barohn, Richard J; Dimachkie, Mazen M; Ciafaloni, Emma; Broering, Teresa J; Vigneault, Francois; Nowak, Richard J; Kleinstein, Steven H; O'Connor, Kevin C

    2017-02-15

    Myasthenia gravis (MG) is a prototypical B cell-mediated autoimmune disease affecting 20-50 people per 100,000. The majority of patients fall into two clinically distinguishable types based on whether they produce autoantibodies targeting the acetylcholine receptor (AChR-MG) or muscle specific kinase (MuSK-MG). The autoantibodies are pathogenic, but whether their generation is associated with broader defects in the B cell repertoire is unknown. To address this question, we performed deep sequencing of the BCR repertoire of AChR-MG, MuSK-MG, and healthy subjects to generate ∼518,000 unique VH and VL sequences from sorted naive and memory B cell populations. AChR-MG and MuSK-MG subjects displayed distinct gene segment usage biases in both VH and VL sequences within the naive and memory compartments. The memory compartment of AChR-MG was further characterized by reduced positive selection of somatic mutations in the VH CDR and altered VH CDR3 physicochemical properties. The VL repertoire of MuSK-MG was specifically characterized by reduced V-J segment distance in recombined sequences, suggesting diminished VL receptor editing during B cell development. Our results identify large-scale abnormalities in both the naive and memory B cell repertoires. Particular abnormalities were unique to either AChR-MG or MuSK-MG, indicating that the repertoires reflect the distinct properties of the subtypes. These repertoire abnormalities are consistent with previously observed defects in B cell tolerance checkpoints in MG, thereby offering additional insight regarding the impact of tolerance defects on peripheral autoimmune repertoires. These collective findings point toward a deformed B cell repertoire as a fundamental component of MG.

  12. Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines.

    PubMed

    Müller, Marcel A; Raj, V Stalin; Muth, Doreen; Meyer, Benjamin; Kallies, Stephan; Smits, Saskia L; Wollny, Robert; Bestebroer, Theo M; Specht, Sabine; Suliman, Tasnim; Zimmermann, Katrin; Binger, Tabea; Eckerle, Isabella; Tschapka, Marco; Zaki, Ali M; Osterhaus, Albert D M E; Fouchier, Ron A M; Haagmans, Bart L; Drosten, Christian

    2012-12-11

    A new human coronavirus (hCoV-EMC) has emerged very recently in the Middle East. The clinical presentation resembled that of the severe acute respiratory syndrome (SARS) as encountered during the epidemic in 2002/2003. In both cases, acute renal failure was observed in humans. HCoV-EMC is a member of the same virus genus as SARS-CoV but constitutes a sister species. Here we investigated whether it might utilize angiotensin-converting enzyme 2 (ACE2), the SARS-CoV receptor. Knowledge of the receptor is highly critical because the restriction of the SARS receptor to deep compartments of the human respiratory tract limited the spread of SARS. In baby hamster kidney (BHK) cells, lentiviral transduction of human ACE2 (hACE2) conferred permissiveness and replication for SARS-CoV but not for hCoV-EMC. Monkey and human kidney cells (LLC-MK2, Vero, and 769-P) and swine kidney cells were permissive for both viruses, but only SARS-CoV infection could be blocked by anti-hACE2 antibody and could be neutralized by preincubation of virus with soluble ACE2. Our data show that ACE2 is neither necessary nor sufficient for hCoV-EMC replication. Moreover, hCoV-EMC, but not SARS-CoV, replicated in cell lines from Rousettus, Rhinolophus, Pipistrellus, Myotis, and Carollia bats, representing four major chiropteran families from both suborders. As human CoV normally cannot replicate in bat cells from different families, this suggests that hCoV-EMC might use a receptor molecule that is conserved in bats, pigs, and humans, implicating a low barrier against cross-host transmission. IMPORTANCE A new human coronavirus (hCoV) emerged recently in the Middle East. The disease resembled SARS (severe acute respiratory syndrome), causing a fatal epidemic in 2002/2003. Coronaviruses have a reservoir in bats and because this novel virus is related to SARS-CoV, we investigated whether it might replicate in bat cells and use the same receptor (angiotensin-converting enzyme 2 [ACE2]). This knowledge is

  13. Analysis of subcomponents of the gamma-aminobutyric acid/benzodiazepine receptor macromolecular complex in mammalian central nervous system

    SciTech Connect

    McCabe, R.T.

    1987-01-01

    Since the presence of endogenous gamma-aminobutyric acid (GABA) may affect benzodiazepine binding to tissue sections in autoradiographic studies, a protocol designed to check for this influence has been investigated. (/sup 3/H)Flunitrazepam (1 nM) was used to label benzodiazepine receptors for autoradiographic localization. Bicuculline was added to the incubation medium of an additional set of tissue sections to antagonize any potential effect of endogenous GABA. Binding in these sections was compared to that occurring in another set in which excess GABA was added to create further GABA enhancement. Binding was also compared to adjacent sections which were treated similarly but also preincubated in distilled-deionized water to burst the cells by osmotic shock and eliminate endogenous GABA, thereby preventing any effect on benzodiazepine binding. The results indicated that endogenous GABA is indeed present in the slide-mounted tissue sections and is affecting benzodiazepine receptor binding differentially in various regions of the brain depending on the density of GABAergic innervation. Scatchard analysis of saturation data demonstrated that the alteration in BZ binding due to GABA was a result of a change in the affinity rather than number of receptors present.

  14. The Herbicide Atrazine Activates Endocrine Gene Networks via Non-Steroidal NR5A Nuclear Receptors in Fish and Mammalian Cells

    PubMed Central

    Suzawa, Miyuki; Ingraham, Holly A.

    2008-01-01

    Atrazine (ATR) remains a widely used broadleaf herbicide in the United States despite the fact that this s-chlorotriazine has been linked to reproductive abnormalities in fish and amphibians. Here, using zebrafish we report that environmentally relevant ATR concentrations elevated zcyp19a1 expression encoding aromatase (2.2 µg/L), and increased the ratio of female to male fish (22 µg/L). ATR selectively increased zcyp19a1, a known gene target of the nuclear receptor SF-1 (NR5A1), whereas zcyp19a2, which is estrogen responsive, remained unchanged. Remarkably, in mammalian cells ATR functions in a cell-specific manner to upregulate SF-1 targets and other genes critical for steroid synthesis and reproduction, including Cyp19A1, StAR, Cyp11A1, hCG, FSTL3, LHß, INHα, αGSU, and 11ß-HSD2. Our data appear to eliminate the possibility that ATR directly affects SF-1 DNA- or ligand-binding. Instead, we suggest that the stimulatory effects of ATR on the NR5A receptor subfamily (SF-1, LRH-1, and zff1d) are likely mediated by receptor phosphorylation, amplification of cAMP and PI3K signaling, and possibly an increase in the cAMP-responsive cellular kinase SGK-1, which is known to be upregulated in infertile women. Taken together, we propose that this pervasive and persistent environmental chemical alters hormone networks via convergence of NR5A activity and cAMP signaling, to potentially disrupt normal endocrine development and function in lower and higher vertebrates. PMID:18461179

  15. The herbicide atrazine activates endocrine gene networks via non-steroidal NR5A nuclear receptors in fish and mammalian cells.

    PubMed

    Suzawa, Miyuki; Ingraham, Holly A

    2008-05-07

    Atrazine (ATR) remains a widely used broadleaf herbicide in the United States despite the fact that this s-chlorotriazine has been linked to reproductive abnormalities in fish and amphibians. Here, using zebrafish we report that environmentally relevant ATR concentrations elevated zcyp19a1 expression encoding aromatase (2.2 microg/L), and increased the ratio of female to male fish (22 microg/L). ATR selectively increased zcyp19a1, a known gene target of the nuclear receptor SF-1 (NR5A1), whereas zcyp19a2, which is estrogen responsive, remained unchanged. Remarkably, in mammalian cells ATR functions in a cell-specific manner to upregulate SF-1 targets and other genes critical for steroid synthesis and reproduction, including Cyp19A1, StAR, Cyp11A1, hCG, FSTL3, LHss, INHalpha, alphaGSU, and 11ss-HSD2. Our data appear to eliminate the possibility that ATR directly affects SF-1 DNA- or ligand-binding. Instead, we suggest that the stimulatory effects of ATR on the NR5A receptor subfamily (SF-1, LRH-1, and zff1d) are likely mediated by receptor phosphorylation, amplification of cAMP and PI3K signaling, and possibly an increase in the cAMP-responsive cellular kinase SGK-1, which is known to be upregulated in infertile women. Taken together, we propose that this pervasive and persistent environmental chemical alters hormone networks via convergence of NR5A activity and cAMP signaling, to potentially disrupt normal endocrine development and function in lower and higher vertebrates.

  16. Disease etiology and diagnosis by TCR repertoire analysis goes viral.

    PubMed

    Attaf, Meriem; Sewell, Andrew K

    2016-11-01

    The importance of T-cell receptor (TCR) repertoire diversity is highlighted in murine models of immunodeficiency and in many human pathologies. However, the true extent of TCR diversity and how this diversity varies in health and disease is poorly understood. In a previous issue of the European Journal of Immunology, Lossius et al. [Eur. J. Immunol. 2014. 44: 3439-3452] dissected the composition of the TCR repertoire in the context of multiple sclerosis (MS) using high-throughput sequencing of TCR-β chains in cerebrospinal fluid samples and blood. The authors demonstrated that the TCR repertoire of the CSF was largely distinct from the blood and enriched in EBV-reactive CD8(+) T cells in MS patients. Studies of this kind have long been hindered by technical limitations and remain scarce in the literature. However, TCR sequencing methodologies are progressing apace and will undoubtedly shed light on the genetic basis of T-cell responses and the ontogeny of T-cell-mediated diseases, such as MS.

  17. Mammalian olfactory receptors: molecular mechanisms of odorant detection, 3D-modeling, and structure-activity relationships.

    PubMed

    Persuy, Marie-Annick; Sanz, Guenhaël; Tromelin, Anne; Thomas-Danguin, Thierry; Gibrat, Jean-François; Pajot-Augy, Edith

    2015-01-01

    This chapter describes the main characteristics of olfactory receptor (OR) genes of vertebrates, including generation of this large multigenic family and pseudogenization. OR genes are compared in relation to evolution and among species. OR gene structure and selection of a given gene for expression in an olfactory sensory neuron (OSN) are tackled. The specificities of OR proteins, their expression, and their function are presented. The expression of OR proteins in locations other than the nasal cavity is regulated by different mechanisms, and ORs display various additional functions. A conventional olfactory signal transduction cascade is observed in OSNs, but individual ORs can also mediate different signaling pathways, through the involvement of other molecular partners and depending on the odorant ligand encountered. ORs are engaged in constitutive dimers. Ligand binding induces conformational changes in the ORs that regulate their level of activity depending on odorant dose. When present, odorant binding proteins induce an allosteric modulation of OR activity. Since no 3D structure of an OR has been yet resolved, modeling has to be performed using the closest G-protein-coupled receptor 3D structures available, to facilitate virtual ligand screening using the models. The study of odorant binding modes and affinities may infer best-bet OR ligands, to be subsequently checked experimentally. The relationship between spatial and steric features of odorants and their activity in terms of perceived odor quality are also fields of research that development of computing tools may enhance.

  18. Chronic Exposure to Anabolic Androgenic Steroids Alters Neuronal Function in the Mammalian Forebrain via Androgen Receptor- and Estrogen Receptor-Mediated Mechanisms

    PubMed Central

    Penatti, Carlos A A; Porter, Donna M; Henderson, Leslie P

    2009-01-01

    Anabolic androgenic steroids (AAS) can promote detrimental effects on social behaviors for which γ-aminobutyric acid type A (GABAA) receptor-mediated circuits in the forebrain play a critical role. While all AAS bind to androgen receptors (AR), they may also be aromatized to estrogens and thus potentially impart effects via estrogen receptors (ER). Chronic exposure of wild type male mice to a combination of chemically distinct AAS increased action potential (AP) frequency, selective GABAA receptor subunit mRNAs, and GABAergic synaptic current decay in the medial preoptic area (mPOA). Experiments performed with pharmacological agents and in AR-deficient Tfm mutant mice suggest that the AAS-dependent enhancement of GABAergic transmission in wild type mice is AR-mediated. In AR-deficient mice, the AAS elicited dramatically different effects, decreasing AP frequency, sIPSC amplitude and frequency and the expression of selective GABAA receptor subunit mRNAs. Surprisingly, in the absence of AR signaling, the data indicate that the AAS do not act as ER agonists, but rather suggest a novel in vivo action in which the AAS inhibit aromatase and impair endogenous ER signaling. These results show that the AAS have the capacity to alter neuronal function in the forebrain via multiple steroid signaling mechanisms and suggest that effects of these steroids in the brain will depend not only on the balance of AR- vs. ER-mediated regulation for different target genes, but also on the ability of these drugs to alter steroid metabolism and thus the endogenous steroid milieu. PMID:19812324

  19. Chronic exposure to anabolic androgenic steroids alters neuronal function in the mammalian forebrain via androgen receptor- and estrogen receptor-mediated mechanisms.

    PubMed

    Penatti, Carlos A A; Porter, Donna M; Henderson, Leslie P

    2009-10-07

    Anabolic androgenic steroids (AAS) can promote detrimental effects on social behaviors for which GABA type A (GABA(A)) receptor-mediated circuits in the forebrain play a critical role. While all AAS bind to androgen receptors (AR), they may also be aromatized to estrogens and thus potentially impart effects via estrogen receptors (ER). Chronic exposure of wild-type male mice to a combination of chemically distinct AAS increased action potential (AP) frequency, selective GABA(A) receptor subunit mRNAs, and GABAergic synaptic current decay in the medial preoptic area (mPOA). Experiments performed with pharmacological agents and in AR-deficient Tfm mutant mice suggest that the AAS-dependent enhancement of GABAergic transmission in wild-type mice is AR-mediated. In AR-deficient mice, the AAS elicited dramatically different effects, decreasing AP frequency, spontaneous IPSC amplitude and frequency and the expression of selective GABA(A) receptor subunit mRNAs. Surprisingly, in the absence of AR signaling, the data indicate that the AAS do not act as ER agonists, but rather suggest a novel in vivo action in which the AAS inhibit aromatase and impair endogenous ER signaling. These results show that the AAS have the capacity to alter neuronal function in the forebrain via multiple steroid signaling mechanisms and suggest that effects of these steroids in the brain will depend not only on the balance of AR- versus ER-mediated regulation for different target genes, but also on the ability of these drugs to alter steroid metabolism and thus the endogenous steroid milieu.

  20. IMonitor: A Robust Pipeline for TCR and BCR Repertoire Analysis

    PubMed Central

    Zhang, Wei; Du, Yuanping; Su, Zheng; Wang, Changxi; Zeng, Xiaojing; Zhang, Ruifang; Hong, Xueyu; Nie, Chao; Wu, Jinghua; Cao, Hongzhi; Xu, Xun; Liu, Xiao

    2015-01-01

    The advance of next generation sequencing (NGS) techniques provides an unprecedented opportunity to probe the enormous diversity of the immune repertoire by deep sequencing T-cell receptors (TCRs) and B-cell receptors (BCRs). However, an efficient and accurate analytical tool is still on demand to process the huge amount of data. We have developed a high-resolution analytical pipeline, Immune Monitor (“IMonitor”) to tackle this task. This method utilizes realignment to identify V(D)J genes and alleles after common local alignment. We compare IMonitor with other published tools by simulated and public rearranged sequences, and it demonstrates its superior performance in most aspects. Together with this, a methodology is developed to correct the PCR and sequencing errors and to minimize the PCR bias among various rearranged sequences with different V and J gene families. IMonitor provides general adaptation for sequences from all receptor chains of different species and outputs useful statistics and visualizations. In the final part of this article, we demonstrate its application on minimal residual disease detection in patients with B-cell acute lymphoblastic leukemia. In summary, this package would be of widespread usage for immune repertoire analysis. PMID:26297338

  1. Activation of Relaxin Family Receptor 1 from Different Mammalian Species by Relaxin Peptide and Small-Molecule Agonist ML290

    PubMed Central

    Huang, Zaohua; Myhr, Courtney; Bathgate, Ross A. D.; Ho, Brian A.; Bueno, Amaya; Hu, Xin; Xiao, Jingbo; Southall, Noel; Barnaeva, Elena; Agoulnik, Irina U.; Marugan, Juan J.; Ferrer, Marc; Agoulnik, Alexander I.

    2015-01-01

    Relaxin peptide (RLN), which signals through the relaxin family peptide 1 (RXFP1) GPCR receptor, has shown therapeutic effects in an acute heart failure clinical trial. We have identified a small-molecule agonist of human RXFP1, ML290; however, it does not activate the mouse receptor. To find a suitable animal model for ML290 testing and to gain mechanistic insights into the interaction of various ligands with RXFP1, we have cloned rhesus macaque, pig, rabbit, and guinea pig RXFP1s and analyzed their activation by RLN and ML290. HEK293T cells expressing macaque or pig RXFP1 responded to relaxin and ML290 treatment as measured by an increase of cAMP production. Guinea pig RXFP1 responded to relaxin but had very low response to ML290 treatment only at highest concentrations used. The rabbit RXFP1 amino acid sequence was the most divergent, with a number of unique substitutions within the ectodomain and the seven-transmembrane domain (7TM). Two splice variants of rabbit RXFP1 derived through alternative splicing of the fourth exon were identified. In contrast to the other species, rabbit RXFP1s were activated by ML290, but not with human, pig, mouse, or rabbit RLNs. Using FLAG-tagged constructs, we have shown that both rabbit RXFP1 variants are expressed on the cell surface. No binding of human Eu-labeled RLN to rabbit RXFP1 was detected, suggesting that in this species, RXFP1 might be non-functional. We used chimeric rabbit–human and guinea pig–human constructs to identify regions important for RLN or ML290 receptor activation. Chimeras with the human ectodomain and rabbit 7TM domain were activated by RLN, whereas substitution of part of the guinea pig 7TM domain with the human sequence only partially restored ML290 activation, confirming the allosteric mode of action for the two ligands. Our data demonstrate that macaque and pig models can be used for ML290 testing. PMID:26347712

  2. The ancestral gene repertoire of animal stem cells.

    PubMed

    Alié, Alexandre; Hayashi, Tetsutaro; Sugimura, Itsuro; Manuel, Michaël; Sugano, Wakana; Mano, Akira; Satoh, Nori; Agata, Kiyokazu; Funayama, Noriko

    2015-12-22

    Stem cells are pivotal for development and tissue homeostasis of multicellular animals, and the quest for a gene toolkit associated with the emergence of stem cells in a common ancestor of all metazoans remains a major challenge for evolutionary biology. We reconstructed the conserved gene repertoire of animal stem cells by transcriptomic profiling of totipotent archeocytes in the demosponge Ephydatia fluviatilis and by tracing shared molecular signatures with flatworm and Hydra stem cells. Phylostratigraphy analyses indicated that most of these stem-cell genes predate animal origin, with only few metazoan innovations, notably including several partners of the Piwi machinery known to promote genome stability. The ancestral stem-cell transcriptome is strikingly poor in transcription factors. Instead, it is rich in RNA regulatory actors, including components of the "germ-line multipotency program" and many RNA-binding proteins known as critical regulators of mammalian embryonic stem cells.

  3. The ancestral gene repertoire of animal stem cells

    PubMed Central

    Alié, Alexandre; Hayashi, Tetsutaro; Sugimura, Itsuro; Manuel, Michaël; Sugano, Wakana; Mano, Akira; Satoh, Nori; Agata, Kiyokazu; Funayama, Noriko

    2015-01-01

    Stem cells are pivotal for development and tissue homeostasis of multicellular animals, and the quest for a gene toolkit associated with the emergence of stem cells in a common ancestor of all metazoans remains a major challenge for evolutionary biology. We reconstructed the conserved gene repertoire of animal stem cells by transcriptomic profiling of totipotent archeocytes in the demosponge Ephydatia fluviatilis and by tracing shared molecular signatures with flatworm and Hydra stem cells. Phylostratigraphy analyses indicated that most of these stem-cell genes predate animal origin, with only few metazoan innovations, notably including several partners of the Piwi machinery known to promote genome stability. The ancestral stem-cell transcriptome is strikingly poor in transcription factors. Instead, it is rich in RNA regulatory actors, including components of the “germ-line multipotency program” and many RNA-binding proteins known as critical regulators of mammalian embryonic stem cells. PMID:26644562

  4. Ric-3 chaperone-mediated stable cell-surface expression of the neuronal α7 nicotinic acetylcholine receptor in mammalian cells

    PubMed Central

    Vallés, Ana Sofía; Roccamo, Ana M; Barrantes, Francisco J

    2009-01-01

    Aim: Studies of the α7-type neuronal nicotinic acetylcholine receptor (AChR), one of the receptor forms involved in many physiologically relevant processes in the central nervous system, have been hampered by the inability of this homomeric protein to assemble in most heterologous expression systems. In a recent study, it was shown that the chaperone Ric-3 is necessary for the maturation and functional expression of α7-type AChRs1. The current work aims at obtaining and characterizing a cell line with high functional expression of the human α7 AChR. Methods: Ric-3 cDNA was incorporated into SHE-P1-hα7 cells expressing the α7-type AChR. Functional studies were undertaken using single-channel patch-clamp recordings. Equilibrium and kinetic [125I]α-bungarotoxin binding assays, as well as fluorescence microscopy using fluorescent α-bungarotoxin, anti-α7 antibody, and GFP-α7 were performed on the new clone. Results: The human α7-type AChR was stably expressed in a new cell line, which we coined SHE-P1-hα7-Ric-3, by co-expression of the chaperone Ric-3. Cell-surface AChRs exhibited [125I]αBTX saturable binding with an apparent KD of about 55 nmol/L. Fluorescence microscopy revealed dispersed and micro-clustered AChR aggregates at the surface of SHE-P1-hα7-Ric-3 cells. Larger micron-sized clusters were observed in the absence of receptor-clustering proteins or upon aggregation with anti-α7 antibodies. In contrast, chaperone-less SHE-P1-hα7 cells expressed only intracellular α7 AChRs and failed to produce detectable single-channel currents. Conclusion: The production of a stable and functional cell line of neuroepithelial lineage with robust cell-surface expression of neuronal α7-type AChR, as reported here, constitutes an important advance in the study of homomeric receptors in mammalian cells. PMID:19498422

  5. The mammalian 43-kD acetylcholine receptor-associated protein (RAPsyn) is expressed in some nonmuscle cells

    PubMed Central

    1989-01-01

    Torpedo electric organ and vertebrate neuromuscular junctions contain the receptor-associated protein of the synapse (RAPsyn) (previously referred to as the 43K protein), a nonactin, 43,000-Mr peripheral membrane protein associated with the cytoplasmic face of postsynaptic membranes at areas of high nicotinic acetylcholine receptor (AChR) density. Although not directly demonstrated, several lines of evidence suggest that RAPsyn is involved in the synthesis and/or maintenance of such AChR clusters. Microscopic and biochemical studies had previously indicated that RAPsyn expression is restricted to differentiated, AChR- synthesizing cells. Our recent finding that RAPsyn is also produced in undifferentiated myocytes (Frail, D.E., L.S. Musil, a. Bonanno, and J.P. Merlie, 1989. Neuron. 2:1077-1086) led to to examine whether RAPsyn is synthesized in cell types that never express AChR (i.e., cells of other than skeletal muscle origin). Various primary and established rodent cell lines were metabolically labeled with [35S]methionine, and extracts were immunoprecipitated with a monospecific anti-RAPsyn serum. Analysis of these immunoprecipitates by SDS-PAGE revealed detectable RAPsyn synthesis in some (notably fibroblast and Leydig tumor cell lines and primary cardiac cells) but not all (hepatocyte- and lymphocyte-derived) cell types. These results were further substantiated by peptide mapping studies of RAPsyn immunoprecipitated from different cells and quantitation of RAPsyn- encoding mRNA levels in mouse tissues. RAPsyn synthesized in both muscle and nonmuscle cells was shown to be tightly associated with membranes. These findings demonstrate that RAPsyn is not specific to skeletal muscle-derived cells and imply that it may function in a capacity either in addition to or instead of AChR clustering. PMID:2469679

  6. Evaluation of the role of g protein-coupled receptor kinase 3 in desensitization of mouse odorant receptors in a Mammalian cell line and in olfactory sensory neurons.

    PubMed

    Kato, Aya; Reisert, Johannes; Ihara, Sayoko; Yoshikawa, Keiichi; Touhara, Kazushige

    2014-11-01

    Thousands of odors are sensed and discriminated by G protein-coupled odorant receptors (ORs) expressed in olfactory sensory neurons (OSNs). G protein-coupled receptor kinases (GRKs) may have a role in desensitization of ORs. However, whether ORs are susceptible to agonist-dependent desensitization and whether GRKs affect odorant responsiveness of OSNs are currently unknown. Here we show that GRK3 attenuated the agonist responsiveness of a specific mouse odorant receptor for eugenol (mOR-EG) upon agonist pretreatment in HEK293 cells, but GRK3 did not affect the response amplitude or the recovery kinetics upon repeated agonist stimulation. We performed electrophysiological recordings of single OSNs which expressed mOR-EG and green fluorescent protein (GFP) in the presence or absence of GRK3. The kinetics and amplitude of agonist responsiveness of individual GFP-labeled mOR-EG neurons were not significantly affected by the absence of GRK3. These results indicate that the role of GRK3 in attenuating ORs responsiveness in OSNs may have been overestimated.

  7. Evaluation of the Role of G Protein-Coupled Receptor Kinase 3 in Desensitization of Mouse Odorant Receptors in a Mammalian Cell Line and in Olfactory Sensory Neurons

    PubMed Central

    Kato, Aya; Reisert, Johannes; Ihara, Sayoko; Yoshikawa, Keiichi

    2014-01-01

    Thousands of odors are sensed and discriminated by G protein-coupled odorant receptors (ORs) expressed in olfactory sensory neurons (OSNs). G protein-coupled receptor kinases (GRKs) may have a role in desensitization of ORs. However, whether ORs are susceptible to agonist-dependent desensitization and whether GRKs affect odorant responsiveness of OSNs are currently unknown. Here we show that GRK3 attenuated the agonist responsiveness of a specific mouse odorant receptor for eugenol (mOR-EG) upon agonist pretreatment in HEK293 cells, but GRK3 did not affect the response amplitude or the recovery kinetics upon repeated agonist stimulation. We performed electrophysiological recordings of single OSNs which expressed mOR-EG and green fluorescent protein (GFP) in the presence or absence of GRK3. The kinetics and amplitude of agonist responsiveness of individual GFP-labeled mOR-EG neurons were not significantly affected by the absence of GRK3. These results indicate that the role of GRK3 in attenuating ORs responsiveness in OSNs may have been overestimated. PMID:25313015

  8. Receptor binding profile of neuropeptide gamma and its fragments: comparison with the nonmammalian peptides carassin and ranakinin at three mammalian tachykinin receptors.

    PubMed

    Badgery-Parker, T; Lovas, S; Conlon, J M; Burcher, E

    1993-01-01

    The tachykinin binding site preferences of neuropeptide gamma (NP gamma), its C-terminal fragments AcNP gamma(3-21), AcNP gamma(5-21), AcNP gamma(7-21), and AcNP gamma(9-21), other mammalian tachykinins, and the nonmammalian tachykinins ranakinin and carassin were examined in membrane binding competition studies. [125I]-Bolton-Hunter [Sar9,Met(O2)11]SP (BHSarSP), [125I]-neurokinin A (INKA) and [125I]-Bolton-Hunter scyliorhinin II (BHScyII) were used to investigate NK-1, NK-2, and NK-3 sites, in rat submandibular gland, gastric fundus, and brain, respectively. Elongation of the neurokinin A molecule does not appear to influence binding to rat tachykinin NK-1 and NK-2 binding sites. Ranakinin has affinity for the NK-1 and NK-2 site similar to that of substance P and neurokinin A, respectively, but has low affinity for the NK-3 site. Despite its structural similarities to neuropeptide gamma, carassin has only moderate affinity for rat tachykinin binding sites. Possession of an acidic residue at position 4 appears critical for binding to rat NK-2 sites.

  9. Association of CD8(+) T lymphocyte repertoire spreading with the severity of DRESS syndrome.

    PubMed

    Niu, Jun; Jia, Qingzhu; Ni, Qingshan; Yang, Yi; Chen, Gang; Yang, Xichuan; Zhai, Zhifang; Yu, Haili; Guan, Peng; Lin, Regina; Song, Zhiqiang; Li, Qi-Jing; Hao, Fei; Zhong, Hua; Wan, Ying

    2015-04-23

    T-cell receptor (TCR)-mediated cross-recognition is a major mechanism in the pathogenesis of drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome. However, the characteristics of the TCR repertoire and the clinical significance of repertoire reformation throughout the course of DRESS are unknown. Here, we isolated CD4(+) and CD8(+) T-cells from peripheral blood of 8 DRESS patients at 10-day intervals and, sequenced CDR3-regions of the TCRB chain by high-throughput sequencing to analyze the dynamic reformation in the T-cell repertoire hierarchy. Compared with healthy donors, T-cell expanded in peripheral repertoires from DRESS patient. The extent of fluctuation of dominant CD8(+) T-cell clones, but not of CD4(+) counterparts, correlated positively with the clinical severity and helped classify the enrolled subjects into "fluctuant" and "flat" repertoire groups. The anti-herpesvirus response, which was measured using anti-EBV/HHV antibodies, and the proportion of the homologous CD8(+) EBV-specific clonotypes, in the "fluctuant" group was substantial higher than that in the "flat" group. Furthermore, autoimmune sequelae were observed in a cured "fluctuant" patient. Collectively, the clinical relevance of the fluctuant CD8(+) T-cell repertoires supports the notion that herpes virus-mediated continuously de novo priming of newly pathogenic CD8(+) T-cell clones is an alternate mechanism responsible for the pathogenicity of DRESS.

  10. Coevolution of intelligence, behavioral repertoire, and lifespan.

    PubMed

    Ghirlanda, Stefano; Enquist, Magnus; Lind, Johan

    2014-02-01

    Across many taxa, intriguing positive correlations exist between intelligence (measured by proxy as encephalization), behavioral repertoire size, and lifespan. Here we argue, through a simple theoretical model, that such correlations arise from selection pressures for efficient learning of behavior sequences. We define intelligence operationally as the ability to disregard unrewarding behavior sequences, without trying them out, in the search for rewarding sequences. We show that increasing a species' behavioral repertoire increases the number of rewarding behavior sequences that can be performed, but also the time required to learn such sequences. This trade-off results in an optimal repertoire size that decreases rapidly with increasing sequence length. Behavioral repertoire size can be increased by increasing intelligence or lengthening the lifespan, giving rise to the observed correlations between these traits.

  11. An electrophysiological analysis of the effects of noradrenaline and alpha-receptor antagonists on neuromuscular transmission in mammalian muscular arteries.

    PubMed

    Holman, M E; Surprenant, A

    1980-01-01

    1 The effects of exogenously applied noradrenaline (NA) and alpha-adrenoceptor antagonists on the mechanical and intracellularly recorded responses to perivascular nerve stimulation were examined in the rabbit ear artery, rabbit saphenous artery and rat tail artery. 2 Excitatory junction potentials (e.j.ps) and action potentials recorded from these smooth muscles were not blocked or depressed by phentolamine, phenoxybenzamine, prazosin, or labetolol in concentrations as high as 10 microgram/ml. Phentolamine (1 to 10 microgram/ml) depressed neurally-evoked contractions of the ear and saphenous, but not the tail artery, and also depressed the contractions produced by direct muscle stimulation in the ear and saphenous arteries. Prazosin and labetolol (0.1 to 10 microgram/ml) had no effect on the neurally evoked contractile response in any of the arteries examined. 3 The amplitude of the steady-state e.j.p. during repetitive stimulation at 0.45 to 2 Hz was increased by phentolamine or phenoxybenzamine but not by prazosin or labetolol. Phentolamine and phenoxybenzamine also increased the amplitude of the e.j.p. evoked by a single stimulus in the majority of the preparations. 4 Concentrations of NA greater than or equal to 1 microgram/ml depolarized the smooth muscle while concentrations greater than or equal to 0.5 microgram/ml depressed the amplitude of the e.j.ps recorded from these arteries. alpha-Antagonists did not suppress either the NA-induced membrane depolarization or depression of e.j.ps. 5 These observations call into question the physiological relevance of both pre- and postsynaptic alpha-receptors in regard to adrenergic neuromuscular transmission in muscular arteries.

  12. Nerve growth factor receptor immunoreactivity is transiently associated with the subplate neurons of the mammalian cerebral cortex

    SciTech Connect

    Allendoerfer, K.L.; Shelton, D.L.; Shooter, E.M.; Shatz, C.J. )

    1990-01-01

    Nerve growth factor and its receptor (NGFR) are known to be present in diverse embryonic and neonatal central nervous system tissues, including the cerebral cortex. However, the identity of the cortical cells expressing NGFR immunoreactivity has not been established. We have used immunolabeling coupled with (3H)thymidine autoradiography to identify such cells in ferret and cat brain. Polyclonal antibodies raised against a synthetic peptide corresponding to a conserved amino acid sequence of the NGFR were used for this purpose. Western (immunologic) blot analyses show that these antibodies specifically recognize NGFR and precursor proteins. In both species, NGFR immunoreactivity is primarily associated with the early generated and transient subplate neuron population of the developing neocortex, as indicated by the following evidence: the immunoreactive cells (i) are located directly beneath the developing cortical plate, (ii) frequently have the inverted pyramid shape characteristic of subplate neurons, and (iii) can be labeled by an injection of (3H)thymidine on embryonic day (E) 28, a time when only subplate neurons are being generated. Intense NGFR immunostaining is seen on the cell bodies of these neurons as early as E30, several days after their last round of cell division, and this immunostaining remains strong for approximately 3 weeks. The NGFR immunoreactivity begins to decline around E52 and has disappeared from the region altogether by E60, at which time subplate neurons begin to die. The cellular localization and timing of expression suggest that the NGFR may play a role in the maintenance of subplate neurons and in the maturation of the cerebral cortex.

  13. Insights into immune system development and function from mouse T-cell repertoires

    PubMed Central

    Sethna, Zachary; Elhanati, Yuval; Dudgeon, Chrissy S.; Callan, Curtis G.; Levine, Arnold J.; Mora, Thierry; Walczak, Aleksandra M.

    2017-01-01

    The ability of the adaptive immune system to respond to arbitrary pathogens stems from the broad diversity of immune cell surface receptors. This diversity originates in a stochastic DNA editing process (VDJ recombination) that acts on the surface receptor gene each time a new immune cell is created from a stem cell. By analyzing T-cell receptor (TCR) sequence repertoires taken from the blood and thymus of mice of different ages, we quantify the changes in the VDJ recombination process that occur from embryo to young adult. We find a rapid increase with age in the number of random insertions and a dramatic increase in diversity. Because the blood accumulates thymic output over time, blood repertoires are mixtures of different statistical recombination processes, and we unravel the mixture statistics to obtain a picture of the time evolution of the early immune system. Sequence repertoire analysis also allows us to detect the statistical impact of selection on the output of the VDJ recombination process. The effects we find are nearly identical between thymus and blood, suggesting that our analysis mainly detects selection for proper folding of the TCR receptor protein. We further find that selection is weaker in laboratory mice than in humans and it does not affect the diversity of the repertoire. PMID:28196891

  14. FGF signaling repertoire of the indirect developing hemichordate Ptychodera flava.

    PubMed

    Fan, Tzu-Pei; Su, Yi-Hsien

    2015-12-01

    Fibroblast growth factors (FGFs) are a group of ligands that play multiple roles during development by transducing signals through FGF receptors (FGFRs) to downstream factors. At least 22 FGF ligands and 4 receptors have been identified in vertebrates, while six to eight FGF ligands and a single FGFR are present in invertebrate chordates, such as tunicates and amphioxus. The chordate FGFs can be categorized into at least seven subfamilies, and the members of which expanded during the evolution of early vertebrates. In contrast, only one FGF and two FGFRs have been found in sea urchins. Thus, it is unclear whether the FGF subfamilies duplicated in the lineage leading to the chordates, or sea urchins lost several fgf genes. Analyses of the FGF signaling repertoire in hemichordates, which together with echinoderms form the closest group to the chordates, may provide insights into the evolution of FGF signaling in deuterostomes. In this study, we identified five FGFs and three FGFRs from Ptychodera flava, an indirect-developing hemichordate acorn worm. Phylogenetic analyses revealed that hemichordates possess a conserved FGF8/17/18 in addition to several putative hemichordate-specific FGFs. Analyses of sequence similarity and protein domain organizations suggested that the sea urchin and hemichordate FGFRs arose from independent lineage-specific duplications. Furthermore, the acorn worm fgf and fgfr genes were demonstrated to be expressed during P. flava embryogenesis. These results set the foundations for further functional studies of FGF signaling in hemichordates and provided insights into the evolutionary history of the FGF repertoire.

  15. Peroxisome proliferator-activated receptor-γ agonist inhibits the mammalian target of rapamycin signaling pathway and has a protective effect in a rat model of status epilepticus

    PubMed Central

    SAN, YONG-ZHI; LIU, YU; ZHANG, YU; SHI, PING-PING; ZHU, YU-LAN

    2015-01-01

    Peroxisome proliferator-activated receptor γ (PPAR-γ) has a protective role in several neurological diseases. The present study investigated the effect of the PPAR-γ agonist, pioglitazone, on the mammalian target of rapamycin (mTOR) signaling pathway in a rat model of pentylenetetrazol (PTZ)-induced status epilepticus (SE). The investigation proceeded in two stages. First, the course of activation of the mTOR signaling pathway in PTZ-induced SE was examined to determine the time-point of peak activity, as reflected by phopshorylated (p)-mTOR/mTOR and p-S6/S6 ratios. Subsequently, pioglitazone was administrated intragastrically to investigate its effect on the mTOR signaling pathway, through western blot and immunochemical analyses. The levels of the interleukin (IL)-1β and IL-6 inflammatory cytokines were detected using ELISA, and neuronal loss was observed via Nissl staining. In the first stage of experimentation, the mTOR signaling pathway was activated, and the p-mTOR/mTOR and p-S6/S6 ratios peaked on the third day. Compared with the vehicle treated-SE group, pretreatment with pioglitazone was associated with the loss of fewer neurons, lower levels of IL-1β and IL-6, and inhibition of the activation of the mTOR signaling pathway. Therefore, the mTOR signaling pathway was activated in the PTZ-induced SE rat model, and the PPAR-γ agonist, pioglitazone, had a neuroprotective effect, by inhibiting activation of the mTOR pathway and preventing the increase in the levels of IL-1β and IL-6. PMID:25891824

  16. Concentration dependence of sodium permeation and sodium ion interactions in the cyclic AMP-gated channels of mammalian olfactory receptor neurons.

    PubMed

    Balasubramanian, S; Lynch, J W; Barry, P H

    1997-09-01

    The dependence of currents through the cyclic nucleotide-gated (CNG) channels of mammalian olfactory receptor neurons (ORNs) on the concentration of NaCl was studied in excised inside-out patches from their dendritic knobs using the patch-clamp technique. With a saturating concentration (100 microM) of adenosine 3',5'-cyclic monophosphate (cAMP), the changes in the reversal potential of macroscopic currents were studied at NaCl concentrations from 25 to 300 mM. In symmetrical NaCl solutions without the addition of divalent cations, the current-voltage relations were almost linear, reversing close to 0 mV. When the external NaCl concentration was maintained at 150 mM and the internal concentrations were varied, the reversal potentials of the cAMP-activated currents closely followed the Na+ equilibrium potential indicating that PCl/PNa approximately 0. However, at low external NaCl concentrations (< or = 100 mM) there was some significant chloride permeability. Our results further indicated that Na+ currents through these channels: (i) did not obey the independence principle; (ii) showed saturation kinetics with K(m)s in the range of 100-150 mM and (iii) displayed a lack of voltage dependence of conductance in asymmetric solutions that suggested that ion-binding sites were situated midway along the channel. Together, these characteristics indicate that the permeation properties of the olfactory CNG channels are significantly different from those of photoreceptor CNG channels.

  17. The mammalian target of rapamycin complex 1 (mTORC1) in breast cancer: the impact of oestrogen receptor and HER2 pathways.

    PubMed

    Jerjees, Dena A; Negm, Ola H; Alabdullah, M Layth; Mirza, Sameer; Alkaabi, Methaq; Hameed, Mohamed R; Abduljabbar, Rezvan; Muftah, Abir; Nolan, Chris C; Green, Andrew R; Tighe, Patrick J; Band, Vimla; Ellis, Ian O; Rakha, Emad A

    2015-02-01

    The mammalian target of rapamycin complex 1 (mTORC1) is a downstream of the PI3K/Akt pathway which affects cancer development. mTORC1 has many downstream signalling effectors that can enhance different cellular responses. This study aims to investigate the expression of mTORC1 in breast cancer (BC) and correlate it with key clinicopathological and molecular features of BC especially to proteins related to oestrogen receptor (ER) and HER2 pathways in different BC classes. Moreover, mTORC1 expression was assessed in 6 BC cell lines including ER+ and ER- cell lines with and without HER2 transfection. Immunohistochemistry was used to assess the expression of phospho (p) mTORC1 in a large (n = 1300) annotated BC series prepared as tissue microarray. Reverse phase protein array (RPPA) was used to assess its expression in the different BC cell lines. The expression of p-mTORC1 was cytoplasmic with moderate/high expression noted in 44 % of BC. p-mTORC1 expression was associated with clinicopathological variables characteristic of good prognosis. Positive correlation with ER, ER-related proteins AKT, PI3K and luminal differentiation markers were observed in the whole series and in the ER+HER2- subgroup. Association with HER2 was mainly observed in the ER-negative class. RPPA indicated that p-mTORC1 expression was mainly related to ER expression and with better outcome in the Akt positive tumours. p-mTORC1 is associated with good prognostic features. Its expression is related to ER and ER related proteins in addition to AKT and PI3K. Its relation with HER2 expression is mainly seen in the absence of ER expression.

  18. Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein.

    PubMed

    Boulay, G; Zhu, X; Peyton, M; Jiang, M; Hurst, R; Stefani, E; Birnbaumer, L

    1997-11-21

    Hormonal stimulation of Gq-protein coupled receptors triggers Ca2+ mobilization from internal stores. This is followed by a Ca2+ entry through the plasma membrane. Drosophila Trp and Trpl proteins have been implicated in Ca2+ entry and three mammalian homologues of Drosophila Trp/Trpl, hTrp1, hTrp3 and bTrp4 (also bCCE) have been cloned and expressed. Using mouse brain RNA as template, we report here the polymerase chain reaction-based cloning and functional expression of a novel Trp, mTrp6. The cDNA encodes a protein of 930 amino acids, the sequence of which is 36.8, 36.3, 43.1, 38.6, and 74. 1% identical to Drosophila Trp and Trpl, bovine Trp4, and human Trp1 and Trp3, respectively. Transient expression of mTrp6 in COS.M6 cells by transfection of the full-length mTrp6 cDNA increases Ca2+ entry induced by stimulation of co-transfected M5 muscarinic acetylcholine receptor with carbachol (CCh), as seen by dual wavelength fura 2 fluorescence ratio measurements. The mTrp6-mediated increase in Ca2+ entry activity was blocked by SKF-96365 and La3+. Ca2+ entry activity induced by thapsigargin was similar in COS cells transfected with or without the mTrp6 cDNA. The thapsigargin-stimulated Ca2+ entry could not be further stimulated by CCh in control cells but was markedly increased in mTrp6-transfected cells. Records of whole cell transmembrane currents developed in response to voltage ramps from -80 to +40 mV in control HEK cells and HEK cells stably expressing mTrp6 revealed the presence of a muscarinic receptor responsive non-selective cation conductance in Trp6 cells that was absent in control cells. Our data support the hypothesis that mTrp6 encodes an ion channel subunit that mediates Ca2+ entry stimulated by a G-protein coupled receptor, but not Ca2+ entry stimulated by intracellular Ca2+ store depletion.

  19. Characterization of the Sortase Repertoire in Bacillus anthracis

    PubMed Central

    Fouet, Agnès

    2011-01-01

    LPXTG proteins, present in most if not all Gram-positive bacteria, are known to be anchored by sortases to the bacterial peptidoglycan. More than one sortase gene is often encoded in a bacterial species, and each sortase is supposed to specifically anchor given LPXTG proteins, depending of the sequence of the C-terminal cell wall sorting signal (cwss), bearing an LPXTG motif or another recognition sequence. B. anthracis possesses three sortase genes. B. anthracis sortase deleted mutant strains are not affected in their virulence. To determine the sortase repertoires, we developed a genetic screen using the property of the gamma phage to lyse bacteria only when its receptor, GamR, an LPXTG protein, is exposed at the surface. We identified 10 proteins that contain a cell wall sorting signal and are covalently anchored to the peptidoglycan. Some chimeric proteins yielded phage lysis in all sortase mutant strains, suggesting that cwss proteins remained surface accessible in absence of their anchoring sortase, probably as a consequence of membrane localization of yet uncleaved precursor proteins. For definite assignment of the sortase repertoires, we consequently relied on a complementary test, using a biochemical approach, namely immunoblot experiments. The sortase anchoring nine of these proteins has thus been determined. The absence of virulence defect of the sortase mutants could be a consequence of the membrane localization of the cwss proteins. PMID:22076158

  20. Comprehensive assessment of peripheral blood TCRβ repertoire in infectious mononucleosis and chronic active EBV infection patients.

    PubMed

    Liu, Shenglin; Zhang, Qian; Huang, Dongli; Zhang, Wenli; Zhong, Fengluan; Feng, Jia; Chen, Xueru; Meng, Qingxiang; Chen, Xiaofan; Zhang, Wei; Zhang, Hongyu

    2017-04-01

    Epstein-Barr virus (EBV) primary infection is usually asymptomatic, but it sometimes progresses to infectious mononucleosis (IM). Occasionally, some people develop chronic active EBV infection (CAEBV) with underlying immunodeficiency, which belongs to a continuous spectrum of EBV-associated lymphoproliferative disorders (EBV(+) LPD) with heterogeneous clinical presentations and high mortality. It has been well established that T cell-mediated immune response plays a critical role in the disease evolution of EBV infection. Recently, high-throughput sequencing of the hypervariable complementarity-determining region 3 (CDR3) segments of the T cell receptor (T cell receptor β (TCRβ)) has emerged as a sensitive approach to assess the T cell repertoire. In this study, we fully characterized the diversity of peripheral blood TCRβ repertoire in IM (n = 6) and CAEBV patients (n = 5) and EBV-seropositive controls (n = 5). Compared with the healthy EBV-seropositive controls, both IM and CAEBV patients demonstrate a significant decrease in peripheral blood TCRβ repertoire diversity, basically, including narrowed repertoire breadth, highly expanded clones, and skewed CDR3 length distribution. However, there is no significant difference between IM and CAEBV patients. Furthermore, we observed some disease-related preferences in TRBV/TRBJ usage and combinations, as well as lots of T cell clones shared by different groups (unique or overlapped) involved in public T cell responses, which provide more detailed insights into the divergent disease evolution.

  1. Evolution and function of the TCR Vgamma9 chain repertoire: It's good to be public.

    PubMed

    Pauza, C David; Cairo, Cristiana

    2015-07-01

    Lymphocytes expressing a T cell receptor (TCR) composed of Vgamma9 and Vdelta2 chains represent a minor fraction of human thymocytes. Extrathymic selection throughout post-natal life causes the proportion of cells with a Vgamma9-JP rearrangement to increase and elevates the capacity for responding to non-peptidic phosphoantigens. Extrathymic selection is so powerful that phosphoantigen-reactive cells comprise about 1 in 40 circulating memory T cells in healthy adults and the subset expands rapidly upon infection or in response to malignancy. Skewing of the gamma delta TCR repertoire is accompanied by selection for public gamma chain sequences such that many unrelated individuals overlap extensive in their circulating repertoire. This type of selection implies the presence of a monomorphic antigen-presenting molecule that is an object of current research but remains incompletely defined. While selection on a monomorphic presenting molecule may seem unusual, similar mechanisms shape the alpha beta T cell repertoire including the extreme examples of NKT or mucosal-associated invariant T cells (MAIT) and the less dramatic amplification of public Vbeta chain rearrangements driven by individual MHC molecules and associated with resistance to viral pathogens. Selecting and amplifying public T cell receptors whether alpha beta or gamma delta, are important steps in developing an anticipatory TCR repertoire. Cell clones expressing public TCR can accelerate the kinetics of response to pathogens and impact host survival.

  2. Gestural communication of the gorilla (Gorilla gorilla): repertoire, intentionality and possible origins.

    PubMed

    Genty, Emilie; Breuer, Thomas; Hobaiter, Catherine; Byrne, Richard W

    2009-05-01

    Social groups of gorillas were observed in three captive facilities and one African field site. Cases of potential gesture use, totalling 9,540, were filtered by strict criteria for intentionality, giving a corpus of 5,250 instances of intentional gesture use. This indicated a repertoire of 102 gesture types. Most repertoire differences between individuals and sites were explicable as a consequence of environmental affordances and sampling effects: overall gesture frequency was a good predictor of universality of occurrence. Only one gesture was idiosyncratic to a single individual, and was given only to humans. Indications of cultural learning were few, though not absent. Six gestures appeared to be traditions within single social groups, but overall concordance in repertoires was almost as high between as within social groups. No support was found for the ontogenetic ritualization hypothesis as the chief means of acquisition of gestures. Many gestures whose form ruled out such an origin, i.e. gestures derived from species-typical displays, were used as intentionally and almost as flexibly as gestures whose form was consistent with learning by ritualization. When using both classes of gesture, gorillas paid specific attention to the attentional state of their audience. Thus, it would be unwarranted to divide ape gestural repertoires into 'innate, species-typical, inflexible reactions' and 'individually learned, intentional, flexible communication'. We conclude that gorilla gestural communication is based on a species-typical repertoire, like those of most other mammalian species but very much larger. Gorilla gestures are not, however, inflexible signals but are employed for intentional communication to specific individuals.

  3. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  4. Age-related changes in natural killer cell repertoires: impact on NK cell function and immune surveillance.

    PubMed

    Manser, Angela R; Uhrberg, Markus

    2016-04-01

    A key feature of human natural killer (NK) cells, which enables efficient recognition of infected and malignant target cells, is the expression of HLA class I-specific receptors of the KIR and NKG2 gene families. Cell-to-cell variability in receptor expression leads to the formation of complex NK cell repertoires. As outlined here, NK cells go through major changes from newborns to adults characterized by downregulation of the inhibitory NKG2A receptor and concomitant upregulation of KIR family members. This process is completed in young adults, and in the majority of individuals, KIR/NKG2A repertoires remain remarkably stable until old age. Nonetheless, age-related factors have the potential to majorly influence the complexity of NK cell repertoires: Firstly infection with HCMV is associated with major clonal expansions of terminally differentiated NKG2C- and KIR-expressing NK cells in certain individuals. Secondly, ineffective hematopoiesis can lead to immature and less diversified NK cell repertoires as observed in myelodysplastic syndrome (MDS), a malignant disease of the elderly. Thus, whereas in the majority of elderly the NK cell compartment appears to be highly stable in terms of function and phenotype, in a minority of subjects a breakdown of NK cell repertoire diversity is observed that might influence immune surveillance and healthy aging.

  5. N-linked glycosylation is required for plasma membrane localization of D5, but not D1, dopamine receptors in transfected mammalian cells.

    PubMed

    Karpa, K D; Lidow, M S; Pickering, M T; Levenson, R; Bergson, C

    1999-11-01

    We have analyzed the role of N-linked glycosylation in functional cell surface expression of the D1 and D5 dopamine receptor subtypes. Treatment of transfected HEK 293 cells with tunicamycin, an inhibitor of N-linked oligosaccharide addition, was found to prevent localization of D5 receptors in the plasma membrane. In contrast, tunicamycin treatment had no effect on the plasma membrane localization of the D1 receptor. Polymerase chain reaction mutagenesis was used to generate a panel of D5 receptors containing mutations in the three predicted sites of N-linked glycosylation. Expression of mutant receptors indicated that glycosylation of residue N7 was the major determinant of D5 receptor plasma membrane localization. Mutation of a comparable site in the D1 receptor at position N5 had no effect on the delivery of the D1 receptor to the cell surface. Tunicamycin treatment during receptor biosynthesis, but not N-glycosidase F digestion of mature receptors, abrogated binding of the D5 receptor antagonist [(3)H]SCH23390, suggesting that while oligosaccharide moieties play a key role in the cell surface expression of D5 receptors, they do not appear to contribute to the receptor's ligand binding properties. Together, our data indicate a differential requirement for N-linked glycosylation in functional cell surface expression of D1 and D5 dopamine receptors.

  6. Tissue-specific expressed antibody variable gene repertoires.

    PubMed

    Briney, Bryan S; Willis, Jordan R; Finn, Jessica A; McKinney, Brett A; Crowe, James E

    2014-01-01

    Recent developments in genetic technologies allow deep analysis of the sequence diversity of immune repertoires, but little work has been reported on the architecture of immune repertoires in mucosal tissues. Antibodies are the key to prevention of infections at the mucosal surface, but it is currently unclear whether the B cell repertoire at mucosal surfaces reflects the dominant antibodies found in the systemic compartment or whether mucosal tissues harbor unique repertoires. We examined the expressed antibody variable gene repertoires from 10 different human tissues using RNA samples derived from a large number of individuals. The results revealed that mucosal tissues such as stomach, intestine and lung possess unique antibody gene repertoires that differed substantially from those found in lymphoid tissues or peripheral blood. Mutation frequency analysis of mucosal tissue repertoires revealed that they were highly mutated, with little evidence for the presence of naïve B cells, in contrast to blood. Mucosal tissue repertoires possessed longer heavy chain complementarity determining region 3 loops than lymphoid tissue repertoires. We also noted a large increase in frequency of both insertions and deletions in the small intestine antibody repertoire. These data suggest that mucosal immune repertoires are distinct in many ways from the systemic compartment.

  7. High-Throughput Sequencing-Based Immune Repertoire Study during Infectious Disease

    PubMed Central

    Hou, Dongni; Chen, Cuicui; Seely, Eric John; Chen, Shujing; Song, Yuanlin

    2016-01-01

    The selectivity of the adaptive immune response is based on the enormous diversity of T and B cell antigen-specific receptors. The immune repertoire, the collection of T and B cells with functional diversity in the circulatory system at any given time, is dynamic and reflects the essence of immune selectivity. In this article, we review the recent advances in immune repertoire study of infectious diseases, which were achieved by traditional techniques and high-throughput sequencing (HTS) techniques. HTS techniques enable the determination of complementary regions of lymphocyte receptors with unprecedented efficiency and scale. This progress in methodology enhances the understanding of immunologic changes during pathogen challenge and also provides a basis for further development of novel diagnostic markers, immunotherapies, and vaccines. PMID:27630639

  8. Developmental regulation of the human antibody repertoire.

    PubMed

    Schroeder, H W; Mortari, F; Shiokawa, S; Kirkham, P M; Elgavish, R A; Bertrand, F E

    1995-09-29

    The ability to respond to antigen develops in a programmed fashion during ontogeny. In human, "fetal" immunoglobulin gene segment utilization appears biased towards a small set of evolutionarily conserved V gene segments. Many of these gene segments are also used in antibodies with antigen specificities that do not arise until after infancy. The human fetus primarily regulates the diversity of the antibody repertoire through control of the H (heavy) chain CDR 3, which is generated by VDJ joining and forms the center of the antigen-binding site. Molecular modeling suggests that limitations in the length and composition of fetal CDR 3 intervals result in antibodies that contain a relatively "flat" antigen-binding surface that could serve to maximize the number of different interactions possible between the antibody and potential antigens. We propose that these limitations in the sequence and structure of H chain CDR 3 contribute to the low affinity and multireactivity of fetal antibody repertoires. The specific mechanisms used to generate a restricted fetal repertoire appear to differ between human and mouse. Nevertheless, included in the final products of both human and mouse fetal B cells will be antibodies that are quite homologous in composition and structure. The precise role that these antibodies play in the development of immunocompetence remains to be elucidated.

  9. Vocal repertoire of the social giant otter.

    PubMed

    Leuchtenberger, Caroline; Sousa-Lima, Renata; Duplaix, Nicole; Magnusson, William E; Mourão, Guilherme

    2014-11-01

    According to the "social intelligence hypothesis," species with complex social interactions have more sophisticated communication systems. Giant otters (Pteronura brasiliensis) live in groups with complex social interactions. It is likely that the vocal communication of giant otters is more sophisticated than previous studies suggest. The objectives of the current study were to describe the airborne vocal repertoire of giant otters in the Pantanal area of Brazil, to analyze call types within different behavioral contexts, and to correlate vocal complexity with level of sociability of mustelids to verify whether or not the result supports the social intelligence hypothesis. The behavior of nine giant otters groups was observed. Vocalizations recorded were acoustically and statistically analyzed to describe the species' repertoire. The repertoire was comprised by 15 sound types emitted in different behavioral contexts. The main behavioral contexts of each sound type were significantly associated with the acoustic variable ordination of different sound types. A strong correlation between vocal complexity and sociability was found for different species, suggesting that the communication systems observed in the family mustelidae support the social intelligence hypothesis.

  10. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications

    PubMed Central

    2013-01-01

    Background Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (GNAT) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L). Results Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one GNAT, one GNAI, two OT/VP-Rs and one CACNA1-L gene. This chromosome was quadrupled in 2R. Subsequent gene losses resulted in a set of five visual opsin genes, three GNAT and GNAI genes, six OT/VP-R genes and four CACNA1-L genes. These regions were duplicated again in 3R resulting in additional teleost genes for some of the families. Major chromosomal rearrangements have taken place in the teleost genomes. By comparison with the corresponding chromosomal regions in the spotted gar, which diverged prior to 3R, we could time these rearrangements to post-3R. Conclusions We present an extensive analysis of the paralogon housing the visual opsin, GNAT and GNAI, OT/VP-R, and CACNA1-L gene families. The combined data imply that the early vertebrate WGD events contributed to the

  11. Agonist and antagonists induce homodimerization and mixed ligand heterodimerization of human progesterone receptors in vivo by a mammalian two-hybrid assay.

    PubMed

    Leonhardt, S A; Altmann, M; Edwards, D P

    1998-12-01

    This study utilizes the mammalian two-hybrid system to examine the role of ligand in the dimerization of human progesterone receptor (hPR). The GAL4 DNA-binding domain and the herpes simplex virus VP16 transactivation domain were fused to the amino terminus of full-length hPR (both the A and B isoforms) to produce chimeric proteins. PR dimerization was detected by the ability of cotransfected GAL4/PR and VP16/PR chimeras in COS cells to induce expression of a reporter gene under the control of GAL4-binding sites (pG5CAT). Hormone agonist-dependent interactions were observed between the two like isoforms of PR (A-A and B-B) and between PR-A and PR-B (A-B), indicating that hormone can stimulate the formation of the three possible dimeric forms of PR within cells. In contrast, neither type I (ZK98299) nor type II (RU486, ZK112993) progestin antagonists stimulated interaction between these same hybrid PR proteins. However, activation of the VP16/PR chimera by antagonists on a progesterone response element-controlled reporter gene (DHRE-E1b-CAT) was only a fraction (4-13%) of that stimulated by agonist R5020. One possibility for the failure to detect an induction in the two-hybrid assay is antagonist-induced repression of the activity of the VP16/PR fusion protein rather than a failure of antagonists to stimulate interaction between the hybrid proteins. To test this idea, an UP-1 carboxyl-terminal truncation mutant of PR was used to construct the two-hybrid proteins. PR-UP-1 selectively binds antagonists, but not agonists, and is fully activated in response to antagonists. Both types of progestin antagonists stimulated interactions between GAL4/PR(UP-1) and VP16/PR(UP-1) hybrid proteins, indicating that antagonists are capable of stimulating PR dimerization in cells and do not function by disrupting or preventing dimerization. To determine whether PR bound to an antagonist can dimerize in whole cells with PR bound to agonist, GAL4/PR(UP-1) was paired in the two

  12. IgRepertoireConstructor: a novel algorithm for antibody repertoire construction and immunoproteogenomics analysis

    PubMed Central

    Safonova, Yana; Bonissone, Stefano; Kurpilyansky, Eugene; Starostina, Ekaterina; Lapidus, Alla; Stinson, Jeremy; DePalatis, Laura; Sandoval, Wendy; Lill, Jennie; Pevzner, Pavel A.

    2015-01-01

    The analysis of concentrations of circulating antibodies in serum (antibody repertoire) is a fundamental, yet poorly studied, problem in immunoinformatics. The two current approaches to the analysis of antibody repertoires [next generation sequencing (NGS) and mass spectrometry (MS)] present difficult computational challenges since antibodies are not directly encoded in the germline but are extensively diversified by somatic recombination and hypermutations. Therefore, the protein database required for the interpretation of spectra from circulating antibodies is custom for each individual. Although such a database can be constructed via NGS, the reads generated by NGS are error-prone and even a single nucleotide error precludes identification of a peptide by the standard proteomics tools. Here, we present the IgRepertoireConstructor algorithm that performs error-correction of immunosequencing reads and uses mass spectra to validate the constructed antibody repertoires. Availability and implementation: IgRepertoireConstructor is open source and freely available as a C++ and Python program running on all Unix-compatible platforms. The source code is available from http://bioinf.spbau.ru/igtools. Contact: ppevzner@ucsd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26072509

  13. Endogenous antigen presentation by autoantigen-transfected Epstein-Barr virus-lymphoblastoid cells. I. Generation of human thyroid peroxidase-reactive T cells and their T cell receptor repertoire.

    PubMed Central

    Martin, A; Magnusson, R P; Kendler, D L; Concepcion, E; Ben-Nun, A; Davies, T F

    1993-01-01

    To develop a model for endogenous thyroid autoantigen presentation, we transfected EBV-transformed B lymphoblastoid cell lines (EBV-LCL), established from patients with autoimmune thyroid disease and normal controls, with cDNA for the human thyroid autoantigen thyroid peroxidase (hTPO). hTPO-antigen presentation to patient peripheral blood T cells was demonstrated after stimulation in vitro for 7 d with irradiated hTPO-transfected or untransfected autologous EBV-LCL. Anti-hTPO-reactive T cells were subsequently cloned in the presence of irradiated, autologous hTPO-transfected EBV-LCL and IL-2.10 T cell-cloned lines exhibited specific hTPO-induced proliferation (stimulation indices of 2.1-7.9) towards autologous hTPO-transfected EBV-LCL, and were subjected to human T cell receptor (hTCR) V gene analysis, using the PCR for the detection of V alpha and V beta hTcR gene families. The results indicated a preferential use of hTCR V alpha 1 and/or V alpha 3 in 9 of the 10 lines. In contrast, hTCR V beta gene family use was more variable. These data demonstrate a model for the endogenous presentation of human thyroid peroxidase in the absence of other thyroid specific antigens. The high frequency of antigen-specific T cells obtained from PBMC using this technique will facilitate further studies at both the functional and hTCR V gene level. Images PMID:7682574

  14. The Potential Repertoire of the Innate Immune System in the Bladder: Expression of Pattern Recognition Receptors in the Rat Bladder and a Rat Urothelial Cell Line (MYP3 cells)

    PubMed Central

    Hughes, Francis M.; Turner, David P.; Purves, J. Todd

    2015-01-01

    Purpose The urothelium is a frontline sensor of the lower urinary tract, sampling the bladder lumen and stimulating an immune response to infectious and noxious agents. Pattern recognition receptors (PRRs) recognize such agents and coordinate the innate response, often by forming inflammasomes that activate caspase-1 and the release of Interleukin-1β. We have shown the presence of one PRR (NLRP3) in the urothelia and its central role in the inflammatory response to cyclophosphamide. The purpose of this study was to 1) assess the likely range of the PPR response by assessing the repertior present in the rat bladder and 2) determine the utility of the MYP3 rat urothelia cell line for in vitro studies by assessing it’s PPR repertior and functional responsiveness. Methods Immunohistochemistry was performed for seven PPRs (NLRP1, NLRP3, NLRP6, NLRP7, NLRP12, NLRC4 and AIM2) on bladder sections and MYP3 cells. For functionality, MYP3 cells were challanged with the quinessential NLRP3 activator ATP and assessed for caspase-1 activation. Results All PPRs examined were expressed in the bladder and localized to the urothelial layer with several also in the detrusor (none in the interstitia). MYP3 cells also expressed all PRRs with a variable intracellular location. ATP stimulated caspase-1 activity in MYP3 cells in a dose-dependent manner that was reduced by knockdown of NLRP3 expression. Conclusion The results suggest that the bladder possesses the capacity to initiate an innate immune response to a wide array of uropathological agents and the MYP3 cells will provide an excellent investigational tool for this field. PMID:26490556

  15. Distinctive properties of identical twins' TCR repertoires revealed by high-throughput sequencing.

    PubMed

    Zvyagin, Ivan V; Pogorelyy, Mikhail V; Ivanova, Marina E; Komech, Ekaterina A; Shugay, Mikhail; Bolotin, Dmitry A; Shelenkov, Andrey A; Kurnosov, Alexey A; Staroverov, Dmitriy B; Chudakov, Dmitriy M; Lebedev, Yuri B; Mamedov, Ilgar Z

    2014-04-22

    Adaptive immunity in humans is provided by hypervariable Ig-like molecules on the surface of B and T cells. The final set of these molecules in each organism is formed under the influence of two forces: individual genetic traits and the environment, which includes the diverse spectra of alien and self-antigens. Here we assess the impact of individual genetic factors on the formation of the adaptive immunity by analyzing the T-cell receptor (TCR) repertoires of three pairs of monozygous twins by next-generation sequencing. Surprisingly, we found that an overlap between the TCR repertoires of monozygous twins is similar to an overlap between the TCR repertoires of nonrelated individuals. However, the number of identical complementary determining region 3 sequences in two individuals is significantly increased for twin pairs in the fraction of highly abundant TCR molecules, which is enriched by the antigen-experienced T cells. We found that the initial recruitment of particular TCR V genes for recombination and subsequent selection in the thymus is strictly determined by individual genetic factors. J genes of TCRs are selected randomly for recombination; however, the subsequent selection in the thymus gives preference to some α but not β J segments. These findings provide a deeper insight into the mechanism of TCR repertoire generation.

  16. Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes.

    PubMed

    Warren, René L; Freeman, J Douglas; Zeng, Thomas; Choe, Gina; Munro, Sarah; Moore, Richard; Webb, John R; Holt, Robert A

    2011-05-01

    Massively parallel sequencing is a useful approach for characterizing T-cell receptor diversity. However, immune receptors are extraordinarily difficult sequencing targets because any given receptor variant may be present in very low abundance and may differ legitimately by only a single nucleotide. We show that the sensitivity of sequence-based repertoire profiling is limited by both sequencing depth and sequencing accuracy. At two timepoints, 1 wk apart, we isolated bulk PBMC plus naïve (CD45RA+/CD45RO-) and memory (CD45RA-/CD45RO+) T-cell subsets from a healthy donor. From T-cell receptor beta chain (TCRB) mRNA we constructed and sequenced multiple libraries to obtain a total of 1.7 billion paired sequence reads. The sequencing error rate was determined empirically and used to inform a high stringency data filtering procedure. The error filtered data yielded 1,061,522 distinct TCRB nucleotide sequences from this subject which establishes a new, directly measured, lower limit on individual T-cell repertoire size and provides a useful reference set of sequences for repertoire analysis. TCRB nucleotide sequences obtained from two additional donors were compared to those from the first donor and revealed limited sharing (up to 1.1%) of nucleotide sequences among donors, but substantially higher sharing (up to 14.2%) of inferred amino acid sequences. For each donor, shared amino acid sequences were encoded by a much larger diversity of nucleotide sequences than were unshared amino acid sequences. We also observed a highly statistically significant association between numbers of shared sequences and shared HLA class I alleles.

  17. Recruitment of activating NK-cell receptors 2B4 and NKG2D to membrane microdomains in mammalian cells is dependent on their transmembrane regions.

    PubMed

    Gütgemann, Stephan A; Sandusky, Mina M; Wingert, Sabine; Claus, Maren; Watzl, Carsten

    2015-04-01

    Membrane microdomains play an important role in the regulation of natural killer (NK) cell activities. These cholesterol-rich membrane domains are enriched at the activating immunological synapse and several activating NK-cell receptors are known to localize to membrane microdomains upon receptor engagement. In contrast, inhibitory receptors do not localize in these specialized membrane domains. In addition, the functional competence of educated NK cells correlates with a confinement of activating receptors in membrane microdomains. However, the molecular basis for this confinement is unknown. Here, we investigate the structural requirements for the recruitment of the human-activating NK-cell receptors NKG2D and 2B4 to detergent-resistant membrane fractions in the murine BA/F3 cell line and in the human NK-cell line NKL. This stimulation-dependent recruitment occurred independently of the intracellular domains of the receptors. However, either interfering with the association between NKG2D and DAP10, or mutating the transmembrane region of 2B4 impacted the recruitment of the receptors to detergent-resistant membrane fractions and modulated the function of 2B4 in NK cells. Our data suggest a potential interaction between the transmembrane region of NK-cell receptors and membrane lipids as a molecular mechanism involved in determining the membrane confinement of activating NK-cell receptors.

  18. Sulfation of the FLAG epitope is affected by co-expression of G protein-coupled receptors in a mammalian cell model

    PubMed Central

    Hunter, Morag Rose; Grimsey, Natasha Lillia; Glass, Michelle

    2016-01-01

    G protein-coupled receptors (GPCRs) are important therapeutic targets and therefore extensively studied. Like most transmembrane proteins, there has been considerable difficulty in developing reliable specific antibodies for them. To overcome this, epitope tags are often used to facilitate antibody recognition in studies on fundamental receptor signalling and trafficking. In our study of cannabinoid CB1/dopamine D2 interactions we sought to generate HEK293 cells expressing FLAG-tagged D2 for use in antibody-based assays of GPCR localisation and trafficking activity, however observed that stable FLAG-hD2 expression was particularly challenging to maintain. In contrast, when expressed in cell lines expressing hCB1 robust and stable FLAG-hD2 expression was observed. We hypothesised that co-expression of CB1 might stabilise surface FLAG-hD2 expression, and therefore investigated this further. Here, we describe the observation that co-expression of either cannabinoid CB1 or CB2 receptors in HEK293 decreases the sulfation of a FLAG epitope appended at the N-terminus of the dopamine D2 receptor. Sulfation alters epitope recognition by some anti-FLAG antibodies, leading to the detection of fewer receptors, even though expression is maintained. This demonstrates that cannabinoid receptor expression modifies posttranslational processing of the FLAG-hD2 receptor, and importantly, has wider implications for the utilisation and interpretation of receptor studies involving epitope tags. PMID:27273047

  19. Systematic Comparative Evaluation of Methods for Investigating the TCRβ Repertoire

    PubMed Central

    Zhang, Ruifang; Du, Yuanping; Hong, Xueyu; Cao, Hongzhi; Su, Zheng; Wang, Changxi; Wu, Jinghua; Nie, Chao; Xu, Xun; Kristiansen, Karsten

    2016-01-01

    High-throughput sequencing has recently been applied to profile the high diversity of antibodyome/B cell receptors (BCRs) and T cell receptors (TCRs) among immune cells. To date, Multiplex PCR (MPCR) and 5’RACE are predominately used to enrich rearranged BCRs and TCRs. Both approaches have advantages and disadvantages; however, a systematic evaluation and direct comparison of them would benefit researchers in the selection of the most suitable method. In this study, we used both pooled control plasmids and spiked-in cells to benchmark the MPCR bias. RNA from three healthy donors was subsequently processed with the two methods to perform a comparative evaluation of the TCR β chain sequences. Both approaches demonstrated high reproducibility (R2 = 0.9958 and 0.9878, respectively). No differences in gene usage were identified for most V/J genes (>60%), and an average of 52.03% of the CDR3 amino acid sequences overlapped. MPCR exhibited a certain degree of bias, in which the usage of several genes deviated from 5’RACE, and some V-J pairings were lost. In contrast, there was a smaller rate of effective data from 5’RACE (11.25% less compared with MPCR). Nevertheless, the methodological variability was smaller compared with the biological variability. Through direct comparison, these findings provide novel insights into the two experimental methods, which will prove to be valuable in immune repertoire research and its interpretation. PMID:27019362

  20. Estimating the Diversity, Completeness, and Cross-Reactivity of the T Cell Repertoire

    PubMed Central

    Zarnitsyna, Veronika I.; Evavold, Brian D.; Schoettle, Louis N.; Blattman, Joseph N.; Antia, Rustom

    2013-01-01

    In order to recognize and combat a diverse array of pathogens the immune system has a large repertoire of T cells having unique T cell receptors (TCRs) with only a few clones specific for any given antigen. We discuss how the number of different possible TCRs encoded in the genome (the potential repertoire) and the number of different TCRs present in an individual (the realized repertoire) can be measured. One puzzle is that the potential repertoire greatly exceeds the realized diversity of naïve T cells within any individual. We show that the existing hypotheses fail to explain why the immune system has the potential to generate far more diversity than is used in an individual, and propose an alternative hypothesis of “evolutionary sloppiness.” Another immunological puzzle is why mice and humans have similar repertoires even though humans have over 1000-fold more T cells. We discuss how the idea of the “protecton,” the smallest unit of protection, might explain this discrepancy and estimate the size of “protecton” based on available precursor frequencies data. We then consider T cell cross-reactivity – the ability of a T cell clone to respond to more than one epitope. We extend existing calculations to estimate the extent of expected cross-reactivity between the responses to different pathogens. Our results are consistent with two observations: a low probability of observing cross-reactivity between the immune responses to two randomly chosen pathogens; and the ensemble of memory cells being sufficiently diverse to generate cross-reactive responses to new pathogens. PMID:24421780

  1. Presynaptic localization of GluK5 in rod photoreceptors suggests a novel function of high affinity glutamate receptors in the mammalian retina

    PubMed Central

    Frotscher, Michael

    2017-01-01

    Kainate receptors mediate glutamatergic signaling through both pre- and presynaptic receptors. Here, we studied the expression of the high affinity kainate receptor GluK5 in the mouse retina. Double-immunofluoresence labeling and electron microscopic analysis revealed a presynaptic localization of GluK5 in the outer plexiform layer. Unexpectedly, we found GluK5 almost exclusively localized to the presynaptic ribbon of photoreceptor terminals. Moreover, in GluK5-deficient mutant mice the structural integrity of synaptic ribbons was severely altered pointing to a novel function of GluK5 in organizing synaptic ribbons in the presynaptic terminals of rod photoreceptors. PMID:28235022

  2. Development of a Robust Mammalian Cell-based Assay for Studying Recombinant α4 β1/3 δ GABAA Receptor Subtypes.

    PubMed

    Falk-Petersen, Christina B; Søgaard, Rikke; Madsen, Kenneth L; Klein, Anders B; Frølund, Bente; Wellendorph, Petrine

    2017-03-16

    δ-Containing GABAA receptors are located extrasynaptically and mediate tonic inhibition. Their involvement in brain physiology positions them as interesting drug targets. There is thus a continued interest in establishing reliable recombinant expression systems for δ-containing GABAA receptors. Inconveniently, the recombinant expression of especially α4 β1/3 δ receptors has been found to be notoriously difficult, due to mixed receptor populations and/or stoichiometries and differential pharmacology depending on the expression system used. With the aim of developing a facile and robust 96-well format cell-based assay for extrasynaptic α4 β1/3 δ receptors, we have engineered and validated a HEK293 Flp-In(™) cell line stably expressing the human δ-subunit. Upon co-transfection of α4 and β1/3 subunits, at optimized ratios, we have established a well-defined system for expressing α4 β1/3 δ receptors and used the fluorescence-based FLIPR Membrane Potential (FMP) assay to evaluate their pharmacology. Using the known reference compounds GABA and THIP, ternary α4 β1/3 δ and binary α4 β1/3 receptors could be distinguished based on potency and kinetic profiles but not efficacy. As expected, DS2 was able to potentiate only δ-containing receptors, whereas Zn(2+) had an inhibitory effect only at binary receptors. By contrast, the hitherto reported δ-selective compounds, AA29504 and 3-OH-2'MeO6MF were non-selective. The expression system was further validated using patch clamp electrophysiology, in which the superagonism of THIP was confirmed. The established FMP assay setup, based on transient expression of human α4 and β1/3 subunits into a δ-subunit stable HEK293 Flp-In(™) cell line, portrays a simple 96-well format assay as a useful supplement to electrophysiological recordings on δ-containing GABAA receptors. This article is protected by copyright. All rights reserved.

  3. Efficient signal transduction by a chimeric yeast-mammalian G protein alpha subunit Gpa1-Gsalpha covalently fused to the yeast receptor Ste2.

    PubMed Central

    Medici, R; Bianchi, E; Di Segni, G; Tocchini-Valentini, G P

    1997-01-01

    Saccharomyces cerevisiae uses G protein-coupled receptors for signal transduction. We show that a fusion protein between the alpha-factor receptor (Ste2) and the Galpha subunit (Gpa1) transduces the signal efficiently in yeast cells devoid of the endogeneous STE2 and GPA1 genes. To evaluate the function of different domains of Galpha, a chimera between the N-terminal region of yeast Gpa1 and the C-terminal region of rat Gsalpha has been constructed. This chimeric Gpa1-Gsalpha is capable of restoring viability to haploid gpa1Delta cells, but signal transduction is prevented. This is consistent with evidence showing that the C-terminus of the homologous Galpha is required for receptor-G protein recognition. Surprisingly, a fusion protein between Ste2 and Gpa1-Gsalpha is able to transduce the signal efficiently. It appears, therefore, that the C-terminus of Galpha is mainly responsible for bringing the G protein into the close proximity of the receptor's intracellular domains, thus ensuring efficient coupling, rather than having a particular role in transmitting the signal. To confirm this conclusion, we show that two proteins interacting with each other (such as Snf1 and Snf4, or Ras and Raf), each of them fused either to the receptor or to the chimeric Galpha, allow efficient signal transduction. PMID:9405353

  4. An Annotated Guide and Interactive Database for Solo Horn Repertoire

    ERIC Educational Resources Information Center

    Schouten, Sarah

    2012-01-01

    Given the horn's lengthy history, it is not surprising that many scholars have examined the evolution of the instrument from the natural horn to the modern horn and its expansive repertoire. Numerous dissertations, theses, and treatises illuminate specific elements of the horn's solo repertoire; however, no scholar has produced a…

  5. Programming in the Zone: Repertoire Selection for the Large Ensemble

    ERIC Educational Resources Information Center

    Hopkins, Michael

    2013-01-01

    One of the great challenges ensemble directors face is selecting high-quality repertoire that matches the musical and technical levels of their ensembles. Thoughtful repertoire selection can lead to increased student motivation as well as greater enthusiasm for the music program from parents, administrators, teachers, and community members. Common…

  6. Structural repertoire of immunoglobulin λ light chains.

    PubMed

    Chailyan, Anna; Marcatili, Paolo; Cirillo, Davide; Tramontano, Anna

    2011-05-01

    The immunoglobulin λ isotype is present in nearly all vertebrates and plays an important role in the human immune system. Despite its importance, few systematic studies have been performed to analyze the structural conformation of its variable regions, contrary to what is the case for κ and heavy chains. We show here that an analysis of the structures of λ chains allows the definition of a discrete set of recurring conformations (canonical structures) of their hypervariable loops and, most importantly, the identification of sequence constraints that can be used to predict their structure. We also show that the structural repertoire of λ chains is different and more varied than that of the κ chains, consistently with the current view of the involvement of the two major light-chain families in complementary strategies of the immune system to ensure a fine tuning between diversity and stability in antigen recognition.

  7. Deep sequencing and human antibody repertoire analysis

    PubMed Central

    Boyd, Scott D; Crowe, James E

    2016-01-01

    In the past decade, high-throughput DNA sequencing (HTS) methods and improved approaches for isolating antigen-specific B cells and their antibody genes have been applied in many areas of human immunology. This work has greatly increased our understanding of human antibody repertoires and the specific clones responsible for protective immunity or immune-mediated pathogenesis. Although the principles underlying selection of individual B cell clones in the intact immune system are still under investigation, the combination of more powerful genetic tracking of antibody lineage development and functional testing of the encoded proteins promises to transform therapeutic antibody discovery and optimization. Here, we highlight recent advances in this fast-moving field. PMID:27065089

  8. The evolution of farnesoid X, vitamin D, and pregnane X receptors: insights from the green-spotted pufferfish (Tetraodon nigriviridis) and other non-mammalian species

    PubMed Central

    2011-01-01

    Background The farnesoid X receptor (FXR), pregnane X receptor (PXR), and vitamin D receptor (VDR) are three closely related nuclear hormone receptors in the NR1H and 1I subfamilies that share the property of being activated by bile salts. Bile salts vary significantly in structure across vertebrate species, suggesting that receptors binding these molecules may show adaptive evolutionary changes in response. We have previously shown that FXRs from the sea lamprey (Petromyzon marinus) and zebrafish (Danio rerio) are activated by planar bile alcohols found in these two species. In this report, we characterize FXR, PXR, and VDR from the green-spotted pufferfish (Tetraodon nigriviridis), an actinopterygian fish that unlike the zebrafish has a bile salt profile similar to humans. We utilize homology modelling, docking, and pharmacophore studies to understand the structural features of the Tetraodon receptors. Results Tetraodon FXR has a ligand selectivity profile very similar to human FXR, with strong activation by the synthetic ligand GW4064 and by the primary bile acid chenodeoxycholic acid. Homology modelling and docking studies suggest a ligand-binding pocket architecture more similar to human and rat FXRs than to lamprey or zebrafish FXRs. Tetraodon PXR was activated by a variety of bile acids and steroids, although not by the larger synthetic ligands that activate human PXR such as rifampicin. Homology modelling predicts a larger ligand-binding cavity than zebrafish PXR. We also demonstrate that VDRs from the pufferfish and Japanese medaka were activated by small secondary bile acids such as lithocholic acid, whereas the African clawed frog VDR was not. Conclusions Our studies provide further evidence of the relationship between both FXR, PXR, and VDR ligand selectivity and cross-species variation in bile salt profiles. Zebrafish and green-spotted pufferfish provide a clear contrast in having markedly different primary bile salt profiles (planar bile alcohols for

  9. Life in groups: the roles of oxytocin in mammalian sociality.

    PubMed

    Anacker, Allison M J; Beery, Annaliese K

    2013-12-11

    In recent decades, scientific understanding of the many roles of oxytocin (OT) in social behavior has advanced tremendously. The focus of this research has been on maternal attachments and reproductive pair-bonds, and much less is known about the substrates of sociality outside of reproductive contexts. It is now apparent that OT influences many aspects of social behavior including recognition, trust, empathy, and other components of the behavioral repertoire of social species. This review provides a comparative perspective on the contributions of OT to life in mammalian social groups. We provide background on the functions of OT in maternal attachments and the early social environment, and give an overview of the role of OT circuitry in support of different mating systems. We then introduce peer relationships in group-living rodents as a means for studying the importance of OT in non-reproductive affiliative behaviors. We review species differences in oxytocin receptor (OTR) distributions in solitary and group-living species of South American tuco-tucos and in African mole-rats, as well as singing mice. We discuss variation in OTR levels with seasonal changes in social behavior in female meadow voles, and the effects of OT manipulations on peer huddling behavior. Finally, we discuss avenues of promise for future investigation, and relate current findings to research in humans and non-human primates. There is growing evidence that OT is involved in social selectivity, including increases in aggression toward social outgroups and decreased huddling with unfamiliar individuals, which may support existing social structures or relationships at the expense of others. OT's effects reach beyond maternal attachment and pair bonds to play a role in affiliative behavior underlying "friendships", organization of broad social structures, and maintenance of established social relationships with individuals or groups.

  10. Mammalian synthetic biology: emerging medical applications.

    PubMed

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-06

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes.

  11. Mammalian synthetic biology: emerging medical applications

    PubMed Central

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M.; Krams, Rob

    2015-01-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  12. LXRα and LXRβ Nuclear Receptors Evolved in the Common Ancestor of Gnathostomes

    PubMed Central

    Fonseca, Elza; Ruivo, Raquel; Lopes-Marques, Mónica; Zhang, Huixian; Santos, Miguel M.; Venkatesh, Byrappa

    2017-01-01

    Nuclear receptors (NRs) regulate numerous aspects of the endocrine system. They mediate endogenous and exogenous cues, ensuring a homeostatic control of development and metabolism. Gene duplication, loss and mutation have shaped the repertoire and function of NRs in metazoans. Here, we examine the evolution of a pivotal orchestrator of cholesterol metabolism in vertebrates, the liver X receptors (LXRs). Previous studies suggested that LXRα and LXRβ genes emerged in the mammalian ancestor. However, we show through genome analysis and functional assay that bona fide LXRα and LXRβ orthologues are present in reptiles, coelacanth and chondrichthyans but not in cyclostomes. These findings show that LXR duplicated before gnathostome radiation, followed by asymmetric paralogue loss in some lineages. We suggest that a tighter control of cholesterol levels in vertebrates was achieved through the exploitation of a wider range of oxysterols, an ability contingent on ligand-binding pocket remodeling. PMID:28057729

  13. Differences in transcriptomic profile and IgA repertoire between jejunal and ileal Peyer's patches.

    PubMed

    Levast, Benoît; De Monte, Michèle; Melo, Sandrine; Chevaleyre, Claire; Berri, Mustapha; Salmon, Henri; Meurens, François

    2010-02-01

    In many species such as sheep and pig, there are two types of Peyer's patches (PP): several discrete patches in the jejunum and a long and continuous patch in the ileum. Most of the immunoglobulin A in the gut is generated by B-cells in the PP germinal centers. Moreover, swine like ovine ileal PP might be important for antigen independent B-cell repertoire diversification. We examined, by quantitative real-time PCR, the expression of 36 transcripts of antimicrobial peptides, chemokines, interleukines, Toll-like receptors and transcription factors from both PP and we highlighted the differences by a principal component analysis. Ileal PP was characterized by a higher mRNA expression of CCL28, IL5, IL10, TLR2 and TLR4 while jejunal PP showed higher mRNA expression of antimicrobial peptides, CCL25, FOXP3, IL4, T-Bet, TSLP and SOCS2. Then, we analyzed some VDJ rearrangements to assess immunoglobulin repertoire diversity in jejunal and ileal PP from weaned piglets. The IgA and IgM repertoires were more diverse in ileal than in jejunal piglet PP. All these results could be related to the rarefaction of interfollicular T-cell zone and the presence in ileal versus jejunal lumen of a more diversified microflora. These findings shed a light on the functional differences between both PP.

  14. Immune Repertoire Profiling Reveals that Clonally Expanded B and T Cells Infiltrating Diseased Human Kidneys Can Also Be Tracked in Blood

    PubMed Central

    Schaller, Susanne; Suessner, Susanne; Sunzenauer, Judith; Reindl-Schwaighofer, Roman; Weiss, Richard; Winkler, Stephan; Gabriel, Christian; Danzer, Martin; Oberbauer, Rainer

    2015-01-01

    Recent advances in high-throughput sequencing allow for the competitive analysis of the human B and T cell immune repertoire. In this study we compared Immunoglobulin and T cell receptor repertoires of lymphocytes found in kidney and blood samples of 10 patients with various renal diseases based on next-generation sequencing data. We used Biomed-2 primer panels and ImmunExplorer software to sequence, analyze and compare complementarity determining regions and V-(D)-J elements. While generally an individual’s renal receptor repertoire is different from the repertoire present in blood, 94% (30/32) of the lymphocytes with clonal expansion in kidney can also be traced in blood however, not all of these clonotypes are equally abundant. Summarizing the data of all analyzed patients, 68% of highly expanded T cell clonotypes and 30% of the highly expanded B cell clonotypes that have infiltrated the kidney can be found amongst the five most abundant clonotypes in blood. In addition, complementarity determining region 3 sequences of the immunoglobulin heavy chains are on average more diverse than T cell receptor beta chains. Immune repertoire analysis of tissue infiltrating B and T cells adds new approaches to the assessment of adaptive immune response in kidney diseases. Our data suggest that expanded clonotypes in the tissues might be traceable in blood samples in the course of treatment or the natural history of the disease. PMID:26600245

  15. Immune Tolerance Maintained by Cooperative Interactions between T Cells and Antigen Presenting Cells Shapes a Diverse TCR Repertoire

    PubMed Central

    Best, Katharine; Chain, Benny; Watkins, Chris

    2015-01-01

    The T cell population in an individual needs to avoid harmful activation by self peptides while maintaining the ability to respond to an unknown set of foreign peptides. This property is acquired by a combination of thymic and extra-thymic mechanisms. We extend current models for the development of self/non-self discrimination to consider the acquisition of self-tolerance as an emergent system level property of the overall T cell receptor repertoire. We propose that tolerance is established at the level of the antigen presenting cell/T cell cluster, which facilitates and integrates cooperative interactions between T cells of different specificities. The threshold for self-reactivity is therefore imposed at a population level, and not at the level of the individual T cell/antigen encounter. Mathematically, the model can be formulated as a linear programing optimization problem that can be implemented as a multiplicative update algorithm, which shows a rapid convergence to a stable state. The model constrains self-reactivity within a predefined threshold, but maintains repertoire diversity and cross reactivity which are key characteristics of human T cell immunity. We show further that the size of individual clones in the model repertoire becomes heterogeneous, and that new clones can establish themselves even when the repertoire has stabilized. Our study combines the salient features of the “danger” model of self/non-self discrimination with the concepts of quorum sensing, and extends repertoire generation models to encompass the establishment of tolerance. Furthermore, the dynamic and continuous repertoire reshaping, which underlies tolerance in this model, suggests opportunities for therapeutic intervention to achieve long-term tolerance following transplantation. PMID:26300880

  16. The all-or-none role of innervation in expression of apamin receptor and of apamin-sensitive Ca2+-activated K+ channel in mammalian skeletal muscle.

    PubMed

    Schmid-Antomarchi, H; Renaud, J F; Romey, G; Hugues, M; Schmid, A; Lazdunski, M

    1985-04-01

    The long-lasting after-hyperpolarization(s) (AHP) that follows the action potential in rat myotubes differentiated in culture is due to Ca2+-activated K+ channels. These channels have the property to be specifically blocked by the bee venom toxin apamin at low concentrations. Apamin has been used in this work to analyze, by electrophysiological and biochemical techniques, the role of innervation in expression of these important channels. The main results are as follows: (i) Long-lasting AHP that follows the action potential in rat myotubes in culture disappears when myotubes are cocultured with nerve cells from the spinal cord under the conditions of in vitro innervation. (ii) Extensor digitorum longus muscles from adult rats have action potentials that are not followed by AHP but AHP are systematically recorded after muscle denervation and they are blocked by apamin. (iii) Specific 125I-labeled apamin binding is undetectable in innervated muscle fibers but it becomes detectable 2-4 days after muscle denervation to be maximal 10 days after denervation. (iv) Apamin receptors detected with 125I-labeled apamin are present at fetal stages with biochemical characteristics identical to those found in myotubes in culture. The receptor number decreases as maturation proceeds and 125I-labeled apamin receptors completely disappear after the first week of postnatal life, in parallel with the disappearance of multi-innervation. All these results taken together strongly suggest an all-or-none effect of innervation on the expression of apamin-sensitive Ca2+-activated K+ channels.

  17. Histone recognition and nuclear receptor co-activator functions of Drosophila Cara Mitad, a homolog of the N-terminal portion of mammalian MLL2 and MLL3

    PubMed Central

    Chauhan, Chhavi; Zraly, Claudia B.; Parilla, Megan; Diaz, Manuel O.; Dingwall, Andrew K.

    2012-01-01

    MLL2 and MLL3 histone lysine methyltransferases are conserved components of COMPASS-like co-activator complexes. In vertebrates, the paralogous MLL2 and MLL3 contain multiple domains required for epigenetic reading and writing of the histone code involved in hormone-stimulated gene programming, including receptor-binding motifs, SET methyltransferase, HMG and PHD domains. The genes encoding MLL2 and MLL3 arose from a common ancestor. Phylogenetic analyses reveal that the ancestral gene underwent a fission event in some Brachycera dipterans, including Drosophila species, creating two independent genes corresponding to the N- and C-terminal portions. In Drosophila, the C-terminal SET domain is encoded by trithorax-related (trr), which is required for hormone-dependent gene activation. We identified the cara mitad (cmi) gene, which encodes the previously undiscovered N-terminal region consisting of PHD and HMG domains and receptor-binding motifs. The cmi gene is essential and its functions are dosage sensitive. CMI associates with TRR, as well as the EcR-USP receptor, and is required for hormone-dependent transcription. Unexpectedly, although the CMI and MLL2 PHDf3 domains could bind histone H3, neither showed preference for trimethylated lysine 4. Genetic tests reveal that cmi is required for proper global trimethylation of H3K4 and that hormone-stimulated transcription requires chromatin binding by CMI, methylation of H3K4 by TRR and demethylation of H3K27 by the demethylase UTX. The evolutionary split of MLL2 into two distinct genes in Drosophila provides important insight into distinct epigenetic functions of conserved readers and writers of the histone code. PMID:22569554

  18. Histone recognition and nuclear receptor co-activator functions of Drosophila cara mitad, a homolog of the N-terminal portion of mammalian MLL2 and MLL3.

    PubMed

    Chauhan, Chhavi; Zraly, Claudia B; Parilla, Megan; Diaz, Manuel O; Dingwall, Andrew K

    2012-06-01

    MLL2 and MLL3 histone lysine methyltransferases are conserved components of COMPASS-like co-activator complexes. In vertebrates, the paralogous MLL2 and MLL3 contain multiple domains required for epigenetic reading and writing of the histone code involved in hormone-stimulated gene programming, including receptor-binding motifs, SET methyltransferase, HMG and PHD domains. The genes encoding MLL2 and MLL3 arose from a common ancestor. Phylogenetic analyses reveal that the ancestral gene underwent a fission event in some Brachycera dipterans, including Drosophila species, creating two independent genes corresponding to the N- and C-terminal portions. In Drosophila, the C-terminal SET domain is encoded by trithorax-related (trr), which is required for hormone-dependent gene activation. We identified the cara mitad (cmi) gene, which encodes the previously undiscovered N-terminal region consisting of PHD and HMG domains and receptor-binding motifs. The cmi gene is essential and its functions are dosage sensitive. CMI associates with TRR, as well as the EcR-USP receptor, and is required for hormone-dependent transcription. Unexpectedly, although the CMI and MLL2 PHDf3 domains could bind histone H3, neither showed preference for trimethylated lysine 4. Genetic tests reveal that cmi is required for proper global trimethylation of H3K4 and that hormone-stimulated transcription requires chromatin binding by CMI, methylation of H3K4 by TRR and demethylation of H3K27 by the demethylase UTX. The evolutionary split of MLL2 into two distinct genes in Drosophila provides important insight into distinct epigenetic functions of conserved readers and writers of the histone code.

  19. A phosphorylation cascade in the basal ganglia of the mammalian brain: regulation by the D-1 dopamine receptor. A mathematical model of known biochemical reactions.

    PubMed

    Kebabian, J W

    1997-01-01

    Stimulation of the dopamine D-1 receptor in the corpus striatum initiates a cascade of biochemical events. These events include: activation of adenylate cyclase, stimulation of cAMP-dependent protein kinase, protein phosphorylation and inhibition of phosphoprotein phosphotase-1. This article presents and discusses a mathematical model of these biochemical events (and their dependence upon the concentration of cytosolic calcium). According to this model, the activity of calcineurin (which is regulated by the concentration of cytosolic calcium ions) counterbalances the activity of the "D-1 cascade". The combined activity of the "D-1 cascade" and calcineurin can regulate the activity of calcium- and calmodulin-dependent protein kinase II.

  20. Human Gut Microbiota: Repertoire and Variations

    PubMed Central

    Lagier, Jean-Christophe; Million, Matthieu; Hugon, Perrine; Armougom, Fabrice; Raoult, Didier

    2012-01-01

    The composition of human gut microbiota and their relationship with the host and, consequently, with human health and disease, presents several challenges to microbiologists. Originally dominated by culture-dependent methods for exploring this ecosystem, the advent of molecular tools has revolutionized our ability to investigate these relationships. However, many biases that have led to contradictory results have been identified. Microbial culturomics, a recent concept based on a use of several culture conditions with identification by MALDI-TOF followed by the genome sequencing of the new species cultured had allowed a complementarity with metagenomics. Culturomics allowed to isolate 31 new bacterial species, the largest human virus, the largest bacteria, and the largest Archaea from human. Moreover, some members of this ecosystem, such as Eukaryotes, giant viruses, Archaea, and Planctomycetes, have been neglected by the majority of studies. In addition, numerous factors, such as age, geographic provenance, dietary habits, antibiotics, or probiotics, can influence the composition of the microbiota. Finally, in addition to the countless biases associated with the study techniques, a considerable limitation to the interpretation of studies of human gut microbiota is associated with funding sources and transparency disclosures. In the future, studies independent of food industry funding and using complementary methods from a broad range of both culture-based and molecular tools will increase our knowledge of the repertoire of this complex ecosystem and host-microbiota mutualism. PMID:23130351

  1. Human gut microbiota: repertoire and variations.

    PubMed

    Lagier, Jean-Christophe; Million, Matthieu; Hugon, Perrine; Armougom, Fabrice; Raoult, Didier

    2012-01-01

    The composition of human gut microbiota and their relationship with the host and, consequently, with human health and disease, presents several challenges to microbiologists. Originally dominated by culture-dependent methods for exploring this ecosystem, the advent of molecular tools has revolutionized our ability to investigate these relationships. However, many biases that have led to contradictory results have been identified. Microbial culturomics, a recent concept based on a use of several culture conditions with identification by MALDI-TOF followed by the genome sequencing of the new species cultured had allowed a complementarity with metagenomics. Culturomics allowed to isolate 31 new bacterial species, the largest human virus, the largest bacteria, and the largest Archaea from human. Moreover, some members of this ecosystem, such as Eukaryotes, giant viruses, Archaea, and Planctomycetes, have been neglected by the majority of studies. In addition, numerous factors, such as age, geographic provenance, dietary habits, antibiotics, or probiotics, can influence the composition of the microbiota. Finally, in addition to the countless biases associated with the study techniques, a considerable limitation to the interpretation of studies of human gut microbiota is associated with funding sources and transparency disclosures. In the future, studies independent of food industry funding and using complementary methods from a broad range of both culture-based and molecular tools will increase our knowledge of the repertoire of this complex ecosystem and host-microbiota mutualism.

  2. Immunoglobulins, antibody repertoire and B cell development.

    PubMed

    Butler, J E; Zhao, Y; Sinkora, M; Wertz, N; Kacskovics, I

    2009-03-01

    Swine share with most placental mammals the same five antibody isotypes and same two light chain types. Loci encoding lambda, kappa and Ig heavy chains appear to be organized as they are in other mammals. Swine differ from rodents and primates, but are similar to rabbits in using a single VH family (VH3) to encode their variable heavy chain domain, but not the family used by cattle, another artiodactyl. Distinct from other hoofed mammals and rodents, Ckappa:Clambda usage resembles the 1:1 ratio seen in primates. Since IgG subclasses diversified after speciation, same name subclass homologs do not exist among swine and other mammals unless very closely related. Swine possess six putative IgG subclasses that appear to have diversified by gene duplication and exon shuffle while retaining motifs that can bind to FcgammaRs, FcRn, C1q, protein A and protein G. The epithelial chorial placenta of swine and the precosial nature of their offspring have made piglets excellent models for studies on fetal antibody repertoire development and on the postnatal role of gut colonization, maternal colostrum and neonatal infection on the development of adaptive immunity during the "critical window" of immunological development. This chapter traces the study of the humoral immune system of this species through its various eras of discovery and compiles the results in tables and figures that should be a useful reference for educators and investigators.

  3. Kinetic study of N-type calcium current modulation by delta-opioid receptor activation in the mammalian cell line NG108-15.

    PubMed Central

    Toselli, M; Tosetti, P; Taglietti, V

    1999-01-01

    The voltage-dependent inhibition of N-type Ca2+ channel current by the delta-opioid agonist [D-pen2, D-pen5]-enkephalin (DPDPE) was investigated in the mammalian cell line NG108-15 with 10 microM nifedipine to block L-type channels, with whole-cell voltage clamp methods. In in vitro differentiated NG108-15 cells DPDPE reversibly decreased omega-conotoxin GVIA-sensitive Ba2+ currents in a concentration-dependent way. Inhibition was maximal with 1 microM DPDPE (66% at 0 mV) and was characterized by a slowing of Ba2+ current activation at low test potentials. Both inhibition and kinetic slowing were attenuated at more positive potentials and could be relieved up to 90% by strong conditioning depolarizations. The kinetics of removal of inhibition (de-inhibition) and of its retrieval (re-inhibition) were also voltage dependent. Both de-inhibition and re-inhibition were single exponentials and, in the voltage range from -20 to +10 mV, had significantly different time constants at a given membrane potential, the time course of re-inhibition being faster than that of de-inhibition. The kinetics of de-inhibition at -20 mV and of reinhibition at -40 mV were also concentration dependent, both processes becoming slower at lower agonist concentrations. The rate of de-inhibition at +80/+120 mV was similar to that of Ca2+ channel activation at the same potentials measured during application of DPDPE (approximately 7 ms), both processes being much slower than channel activation in controls (<1 ms). Moreover, the amplitude but not the time course of tail currents changed as the depolarization to +80/+120 mV was made longer. The state-dependent properties of DPDPE Ca2+ channel inhibition could be simulated by a model that assumes that inhibition by DPDPE results from voltage- and concentration-dependent binding of an inhibitory molecule to the N-type channel. PMID:10233071

  4. How reliable are the methods for estimating repertoire size?

    PubMed

    Botero, Carlos A; Mudge, Andrew E; Koltz, Amanda M; Hochachka, Wesley M; Vehrencamp, Sandra L

    2008-12-01

    Quantifying signal repertoire size is a critical first step towards understanding the evolution of signal complexity. However, counting signal types can be so complicated and time consuming when repertoire size is large, that this trait is often estimated rather than measured directly. We studied how three common methods for repertoire size quantification (i.e., simple enumeration, curve-fitting and capture-recapture analysis) are affected by sample size and presentation style using simulated repertoires of known sizes. As expected, estimation error decreased with increasing sample size and varied among presentation styles. More surprisingly, for all but one of the presentation styles studied, curve-fitting and capture-recapture analysis yielded errors of similar or greater magnitude than the errors researchers would make by simply assuming that the number of types in an incomplete sample is the true repertoire size. Our results also indicate that studies based on incomplete samples are likely to yield incorrect ranking of individuals and spurious correlations with other parameters regardless of the technique of choice. Finally, we argue that biological receivers face similar difficulties in quantifying repertoire size than human observers and we explore some of the biological implications of this hypothesis.

  5. Repertoire of intensive care unit pneumonia microbiota.

    PubMed

    Bousbia, Sabri; Papazian, Laurent; Saux, Pierre; Forel, Jean Marie; Auffray, Jean-Pierre; Martin, Claude; Raoult, Didier; La Scola, Bernard

    2012-01-01

    Despite the considerable number of studies reported to date, the causative agents of pneumonia are not completely identified. We comprehensively applied modern and traditional laboratory diagnostic techniques to identify microbiota in patients who were admitted to or developed pneumonia in intensive care units (ICUs). During a three-year period, we tested the bronchoalveolar lavage (BAL) of patients with ventilator-associated pneumonia, community-acquired pneumonia, non-ventilator ICU pneumonia and aspiration pneumonia, and compared the results with those from patients without pneumonia (controls). Samples were tested by amplification of 16S rDNA, 18S rDNA genes followed by cloning and sequencing and by PCR to target specific pathogens. We also included culture, amoeba co-culture, detection of antibodies to selected agents and urinary antigen tests. Based on molecular testing, we identified a wide repertoire of 160 bacterial species of which 73 have not been previously reported in pneumonia. Moreover, we found 37 putative new bacterial phylotypes with a 16S rDNA gene divergence ≥ 98% from known phylotypes. We also identified 24 fungal species of which 6 have not been previously reported in pneumonia and 7 viruses. Patients can present up to 16 different microorganisms in a single BAL (mean ± SD; 3.77 ± 2.93). Some pathogens considered to be typical for ICU pneumonia such as Pseudomonas aeruginosa and Streptococcus species can be detected as commonly in controls as in pneumonia patients which strikingly highlights the existence of a core pulmonary microbiota. Differences in the microbiota of different forms of pneumonia were documented.

  6. Transcription factor repertoire of homeostatic eosinophilopoiesis

    PubMed Central

    Bouffi, Carine; Kartashov, Andrey V.; Schollaert, Kaila L.; Chen, Xiaoting; Bacon, W. Clark; Weirauch, Matthew T.; Barski, Artem; Fulkerson, Patricia C.

    2015-01-01

    The production of mature eosinophils is a tightly orchestrated process with the aim to sustain normal eosinophil levels in tissues while also maintaining low numbers of these complex and sensitive cells in the blood. To identify regulators of homeostatic eosinophilopoiesis in mice, we took a global approach to identify genome-wide transcriptome and epigenome changes that occur during homeostasis at critical developmental stages, including eosinophil-lineage commitment and lineage maturation. Our analyses revealed a markedly greater number of transcriptome alterations associated with eosinophil maturation (1199 genes) than with eosinophil-lineage commitment (490 genes), highlighting the greater transcriptional investment necessary for differentiation. Eosinophil progenitors (EoPs) were noted to express high levels of granule proteins and contain granules with an ultrastructure distinct from that of mature resting eosinophils. Our analyses also delineated a 976-gene eosinophil-lineage transcriptome that included a repertoire of 56 transcription factors, many of which have never previously been associated with eosinophils. EoPs and eosinophils, but not granulocyte-monocyte progenitors (GMPs) or neutrophils, expressed Helios and Aiolos, members of the Ikaros family of transcription factors, which regulate gene expression via modulation of chromatin structure and DNA accessibility. Epigenetic studies revealed a distinct distribution of active chromatin marks between genes induced with lineage commitment and genes induced with cell maturation during eosinophil development. In addition, Aiolos and Helios binding sites were significantly enriched in genes expressed by EoPs and eosinophils with active chromatin, highlighting a potential novel role for Helios and Aiolos in regulating gene expression during eosinophil development. PMID:26268651

  7. Molecular profiling of activated olfactory neurons identifies odorant receptors for odors in vivo

    PubMed Central

    Jiang, Yue; Gong, Naihua Natalie; Hu, Xiaoyang Serene; Ni, Mengjue Jessica; Pasi, Radhika

    2015-01-01

    The mammalian olfactory system uses a large family of odorant receptors to detect and discriminate amongst a myriad of volatile odor molecules. Understanding odor coding requires comprehensive mapping between odorant receptors and corresponding odors. Here we present high–throughput in vivo identification of odorant receptor repertoires responding to odorants, using phosphorylated ribosome immunoprecipitation of mRNA from olfactory epithelium of odor–stimulated mice followed by RNA–Seq. This approach screens the endogenously expressed odorant receptors against an odor in one set of experiments, using awake and freely behaving mice. In combination with validations in a heterologous system, we identify sets of odorant receptors for two odorants, acetophenone and 2,5–dihydro–2,4,5–trimethylthiazoline (TMT), encompassing 69 odorant receptor–odorant pairs. We also identified shared amino acid residues specific to the acetophenone or TMT receptors, and developed models to predict receptor activation by acetophenone. This study provides a means to understand the combinatorial coding of odors in vivo. PMID:26322927

  8. Molecular basis determining inhibition/activation of nociceptive receptor TRPA1 protein: a single amino acid dictates species-specific actions of the most potent mammalian TRPA1 antagonist.

    PubMed

    Banzawa, Nagako; Saito, Shigeru; Imagawa, Toshiaki; Kashio, Makiko; Takahashi, Kenji; Tominaga, Makoto; Ohta, Toshio

    2014-11-14

    The transient receptor potential ankyrin 1 (TRPA1) is a Ca(2+)-permeable, nonselective cation channel mainly expressed in a subset of nociceptive neurons. TRPA1 functions as a cellular sensor detecting mechanical, chemical, and thermal stimuli. Because TRPA1 is considered to be a key player in nociception and inflammatory pain, TRPA1 antagonists have been developed as analgesic agents. Recently, by utilizing species differences, we identified the molecular basis of the antagonistic action of A967079, one of the most potent mammalian TRPA1 antagonists. Here, we show a unique effect of A967079 on TRPA1 from diverse vertebrate species, i.e. it acts as an agonist but not as an antagonist for chicken and frog TRPA1s. By characterizing chimeric channels of human and chicken TRPA1s, as well as point mutants, we found that a single specific amino acid residue located within the putative fifth transmembrane domain was involved in not only the stimulatory but also the inhibitory actions of A967079. AP18, structurally related to A967079, exerted similar pharmacological properties to A967079. Our findings and previous reports on species differences in the sensitivity to TRPA1 antagonists supply useful information in the search for novel analgesic medicines targeting TRPA1.

  9. Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma.

    PubMed

    Makinoshima, Hideki; Takita, Masahiro; Saruwatari, Koichi; Umemura, Shigeki; Obata, Yuuki; Ishii, Genichiro; Matsumoto, Shingo; Sugiyama, Eri; Ochiai, Atsushi; Abe, Ryo; Goto, Koichi; Esumi, Hiroyasu; Tsuchihara, Katsuya

    2015-07-10

    Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells.

  10. CMV reactivation drives posttransplant T-cell reconstitution and results in defects in the underlying TCRβ repertoire

    PubMed Central

    Suessmuth, Yvonne; Mukherjee, Rithun; Watkins, Benjamin; Koura, Divya T.; Finstermeier, Knut; Desmarais, Cindy; Stempora, Linda; Horan, John T.; Langston, Amelia; Qayed, Muna; Khoury, Hanna J.; Grizzle, Audrey; Cheeseman, Jennifer A.; Conger, Jason A.; Robertson, Jennifer; Garrett, Aneesah; Kirk, Allan D.; Waller, Edmund K.; Blazar, Bruce R.; Mehta, Aneesh K.; Robins, Harlan S.

    2015-01-01

    Although cytomegalovirus (CMV) reactivation has long been implicated in posttransplant immune dysfunction, the molecular mechanisms that drive this phenomenon remain undetermined. To address this, we combined multiparameter flow cytometric analysis and T-cell subpopulation sorting with high-throughput sequencing of the T-cell repertoire, to produce a thorough evaluation of the impact of CMV reactivation on T-cell reconstitution after unrelated-donor hematopoietic stem cell transplant. We observed that CMV reactivation drove a >50-fold specific expansion of Granzyme Bhigh/CD28low/CD57high/CD8+ effector memory T cells (Tem) and resulted in a linked contraction of all naive T cells, including CD31+/CD4+ putative thymic emigrants. T-cell receptor β (TCRβ) deep sequencing revealed a striking contraction of CD8+ Tem diversity due to CMV-specific clonal expansions in reactivating patients. In addition to querying the topography of the expanding CMV-specific T-cell clones, deep sequencing allowed us, for the first time, to exhaustively evaluate the underlying TCR repertoire. Our results reveal new evidence for significant defects in the underlying CD8 Tem TCR repertoire in patients who reactivate CMV, providing the first molecular evidence that, in addition to driving expansion of virus-specific cells, CMV reactivation has a detrimental impact on the integrity and heterogeneity of the rest of the T-cell repertoire. This trial was registered at www.clinicaltrials.gov as #NCT01012492. PMID:25852054

  11. Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes

    PubMed Central

    Seay, Howard R.; Yusko, Erik; Rothweiler, Stephanie J.; Zhang, Lin; Posgai, Amanda L.; Campbell-Thompson, Martha; Emerson, Ryan O.; Kaddis, John S.; Ko, Dave; Nakayama, Maki; Smith, Mia J.; Cambier, John C.; Pugliese, Alberto; Atkinson, Mark A.; Robins, Harlan S.; Brusko, Todd M.

    2016-01-01

    The adaptive immune repertoire plays a critical role in type 1 diabetes (T1D) pathogenesis. However, efforts to characterize B cell and T cell receptor (TCR) profiles in T1D subjects have been largely limited to peripheral blood sampling and restricted to known antigens. To address this, we collected pancreatic draining lymph nodes (pLN), “irrelevant” nonpancreatic draining lymph nodes, peripheral blood mononuclear cells (PBMC), and splenocytes from T1D subjects (n = 18) and control donors (n = 9) as well as pancreatic islets from 1 T1D patient; from these tissues, we collected purified CD4+ conventional T cells (Tconv), CD4+ Treg, CD8+ T cells, and B cells. By conducting high-throughput immunosequencing of the TCR β chain (TRB) and B cell receptor (BCR) immunoglobulin heavy chain (IGH) on these samples, we sought to analyze the molecular signature of the lymphocyte populations within these tissues and of T1D. Ultimately, we observed a highly tissue-restricted CD4+ repertoire, while up to 24% of CD8+ clones were shared among tissues. We surveyed our data set for previously described proinsulin- and glutamic acid decarboxylase 65–reactive (GAD65-reactive) receptors, and interestingly, we observed a TRB with homology to a known GAD65-reactive TCR (clone GAD4.13) present in 7 T1D donors (38.9%), representing >25% of all productive TRB within Tconv isolated from the pLN of 1 T1D subject. These data demonstrate diverse receptor signatures at the nucleotide level and enriched autoreactive clones at the amino acid level, supporting the utility of coupling immunosequencing data with knowledge of characterized autoreactive receptors. PMID:27942583

  12. Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes.

    PubMed

    Seay, Howard R; Yusko, Erik; Rothweiler, Stephanie J; Zhang, Lin; Posgai, Amanda L; Campbell-Thompson, Martha; Vignali, Marissa; Emerson, Ryan O; Kaddis, John S; Ko, Dave; Nakayama, Maki; Smith, Mia J; Cambier, John C; Pugliese, Alberto; Atkinson, Mark A; Robins, Harlan S; Brusko, Todd M

    2016-12-08

    The adaptive immune repertoire plays a critical role in type 1 diabetes (T1D) pathogenesis. However, efforts to characterize B cell and T cell receptor (TCR) profiles in T1D subjects have been largely limited to peripheral blood sampling and restricted to known antigens. To address this, we collected pancreatic draining lymph nodes (pLN), "irrelevant" nonpancreatic draining lymph nodes, peripheral blood mononuclear cells (PBMC), and splenocytes from T1D subjects (n = 18) and control donors (n = 9) as well as pancreatic islets from 1 T1D patient; from these tissues, we collected purified CD4(+) conventional T cells (Tconv), CD4(+) Treg, CD8(+) T cells, and B cells. By conducting high-throughput immunosequencing of the TCR β chain (TRB) and B cell receptor (BCR) immunoglobulin heavy chain (IGH) on these samples, we sought to analyze the molecular signature of the lymphocyte populations within these tissues and of T1D. Ultimately, we observed a highly tissue-restricted CD4(+) repertoire, while up to 24% of CD8(+) clones were shared among tissues. We surveyed our data set for previously described proinsulin- and glutamic acid decarboxylase 65-reactive (GAD65-reactive) receptors, and interestingly, we observed a TRB with homology to a known GAD65-reactive TCR (clone GAD4.13) present in 7 T1D donors (38.9%), representing >25% of all productive TRB within Tconv isolated from the pLN of 1 T1D subject. These data demonstrate diverse receptor signatures at the nucleotide level and enriched autoreactive clones at the amino acid level, supporting the utility of coupling immunosequencing data with knowledge of characterized autoreactive receptors.

  13. Biological effects of exogenous adenosine 5 prime -triphosphate on cultured mammalian cells: Evidence for a receptor mechanism and its regulation by desensitization

    SciTech Connect

    Gonzalez, F.A.

    1989-01-01

    Exogenous adenosine 5{prime}-triphosphate (ATP) mobilized intracellular calcium in human carcinoma A43l cells and in Swiss 3T3 and 3T6 mouse fibroblasts by increasing inositol trisphosphate similar to well down growth factors (platelet-derived growth factor (PDGF), epidermal growth factor (EGF), bradykinin (BK), serum). Calcium mobilization was examined by video imaging of fura-2 fluorescence is single cells, following the radioactive isotope {sup 45}Ca, and monitoring the decrease in fluorescence of cells loaded with chlortetracycline. Uridine 5{prime}-triphosphate, but not other nucleotides, mimicked ATP. Single-cell analysis revealed synchronous responses in 10 sec to ATP, BK or serum, while PDGF (3T3) and EGF (A431) produced slower signals with significant cell-to-cell variation. PDGF desensitized 3T3 cells to ATP and BK added 100 sec later but ATP or BK did not desensitized to PDGF. Homologous desensitization was seen with all agonists. Heterologous desensitization was also observed in A431 cells where ATP desensitized to serum, but serum did not to ATP. ATP-stimulated calcium entry was detected after 10 sec in A431 cells, but not in Swiss 3T6 cells. Entry started before significant efflux had occurred and did not fit the capacitance model of Putney. A 2-3 hr ATP pretreatment produced a homologous desensitization state that required 20 hr to disappear, probably due to down-regulation of the putative ATP receptors.

  14. Anticoagulant repertoire of the hookworm Ancylostoma caninum.

    PubMed

    Stassens, P; Bergum, P W; Gansemans, Y; Jespers, L; Laroche, Y; Huang, S; Maki, S; Messens, J; Lauwereys, M; Cappello, M; Hotez, P J; Lasters, I; Vlasuk, G P

    1996-03-05

    Hookworms are hematophagous nematodes that infect a wide range of mammalian hosts, including humans. There has been speculation for nearly a century as to the identity of the anticoagulant substances) used by these organisms to subvert host hemostasis. Using molecular cloning, we describe a family of potent small protein (75-84 amino acids) anticoagulants from the hookworm Ancylostoma caninum termed AcAP (A. caninum anticoagulant protein). Two recombinant AcAP members (AcAP5 and AcAP6) directly inhibited the catalytic activity of blood coagulation factor Xa (fXa), while a third form (AcAPc2) predominantly inhibited the catalytic activity of a complex composed of blood coagulation factor VIIa and tissue factor (fVIIa/TF). The inhibition of fVIIa/TF was by a unique mechanism that required the initial formation of a binary complex of the inhibitor with fXa at a site on the enzyme that is distinct from the catalytic center (exo-site). The sequence of AcAPc2 as well as the utilization of an exo-site on fXa distinguishes this inhibitor from the mammalian anticoagulant TFPI (tissue factor pathway inhibitor), which is functionally equivalent with respect to fXa-dependent inhibition of fIIa/TF. The relative sequence positions of the reactive site residues determined for AcAP5 with the homologous regions in AcAP6 and AcAPc2 as well as the pattern of 10 cysteine residues present in each of the inhibitors suggest that the AcAPs are distantly related to the family of small protein serine protease inhibitors found in the nonhematophagous nematode Ascaris lumbricoides var. suum.

  15. Accurate and High-Coverage Immune Repertoire Sequencing Reveals Characteristics of Antibody Repertoire Diversification in Young Children with Malaria

    NASA Astrophysics Data System (ADS)

    Jiang, Ning

    Accurately measuring the immune repertoire sequence composition, diversity, and abundance is important in studying repertoire response in infections, vaccinations, and cancer immunology. Using molecular identifiers (MIDs) to tag mRNA molecules is an effective method in improving the accuracy of immune repertoire sequencing (IR-seq). However, it is still difficult to use IR-seq on small amount of clinical samples to achieve a high coverage of the repertoire diversities. This is especially challenging in studying infections and vaccinations where B cell subpopulations with fewer cells, such as memory B cells or plasmablasts, are often of great interest to study somatic mutation patterns and diversity changes. Here, we describe an approach of IR-seq based on the use of MIDs in combination with a clustering method that can reveal more than 80% of the antibody diversity in a sample and can be applied to as few as 1,000 B cells. We applied this to study the antibody repertoires of young children before and during an acute malaria infection. We discovered unexpectedly high levels of somatic hypermutation (SHM) in infants and revealed characteristics of antibody repertoire development in young children that would have a profound impact on immunization in children.

  16. Involvement of opsins in mammalian sperm thermotaxis

    PubMed Central

    Pérez-Cerezales, Serafín; Boryshpolets, Sergii; Afanzar, Oshri; Brandis, Alexander; Nevo, Reinat; Kiss, Vladimir; Eisenbach, Michael

    2015-01-01

    A unique characteristic of mammalian sperm thermotaxis is extreme temperature sensitivity, manifested by the capacity of spermatozoa to respond to temperature changes of <0.0006 °C as they swim their body-length distance. The identity of the sensing system that confers this exceptional sensitivity on spermatozoa is not known. Here we show that the temperature-sensing system of mammalian spermatozoa involves opsins, known to be G-protein-coupled receptors that act as photosensors in vision. We demonstrate by molecular, immunological, and functional approaches that opsins are present in human and mouse spermatozoa at specific sites, which depend on the species and the opsin type, and that they are involved in sperm thermotaxis via two signalling pathways—the phospholipase C and the cyclic-nucleotide pathways. Our results suggest that, depending on the context and the tissue, mammalian opsins act not only as photosensors but also as thermosensors. PMID:26537127

  17. Characterization of the G protein coupling of a somatostatin receptor to the K+ATP channel in insulin-secreting mammalian HIT and RIN cell lines.

    PubMed Central

    Ribalet, B; Eddlestone, G T

    1995-01-01

    1. The G protein-mediated coupling of a somatostatin (somatotropin-releasing inhibitory factor; SRIF) receptor to the ATP-dependent K+ channel (K+ATP channel) has been studied in insulin-secreting cells using the patch clamp technique. 2. In excised outside-out patches, the concentration-dependent stimulation of the K+ATP channel by SRIF was biphasic. Stimulation reached a maximum at 15 nM (EC50 = 5.5 nM), then decayed to a minimum at 50 nM and returned to maximum stimulation at 500 nM. 3. In cell-attached patches, bath-applied SRIF caused K+ATP channel stimulation in most experiments. In a few cases, however, SRIF suppressed channel activity, a response that was reversed by addition of dibutyryl cyclic AMP (DBcAMP). Channel stimulation by SRIF or by DBcAMP did not occur in the presence of glucose. 4. In excised inside-out patches, the alpha-subunits of Gi or G(o)-type G proteins stimulated the K+ATP channel (EC50 = 29 and 42 pM, respectively). The K+ATP channel stimulation by alpha i- or alpha o-subunits had no effect on the concentration-dependent inhibition by ATP. 5. In excised inside-out patches, K+ATP channel activity was reduced by inhibitors of protein kinase C (PKC) and stimulated by a PKC activator. The stimulatory effect of PKC was unaffected by the presence of pertussis toxin, but stimulation by exogenous alpha-subunits of the G protein Gi or G(o) was prevented by PKC inhibitors. 6. From these data we deduce that SRIF can affect K+ATP channel activity directly via a membrane-delimited pathway or indirectly via a pathway requiring diffusible messengers. In the former case, alpha i/alpha o may either enhance PLC activity, stimulating PKC and thus inducing K+ATP channel phosphorylation with consequent increase of activity, or channel phosphorylation by PKC may facilitate a direct stimulation of the channel by alpha i/alpha o. In the latter case, an alpha i/alpha o-induced fall in cAMP contributes to reduced PKA-mediated phosphorylation and suppression of

  18. Repertoires of Spike Avalanches Are Modulated by Behavior and Novelty

    PubMed Central

    Ribeiro, Tiago L.; Ribeiro, Sidarta; Copelli, Mauro

    2016-01-01

    Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here, we show that spike avalanches, recorded from hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation. PMID:27047341

  19. Silent performances: Are "repertoires" really post-Kuhnian?

    PubMed

    Sample, Matthew

    2017-02-01

    Ankeny and Leonelli (2016) propose "repertoires" as a new way to understand the stability of certain research programs as well as scientific change in general. By bringing a more complete range of social, material, and epistemic elements into one framework, they position their work as a correction to the Kuhnian impulse in philosophy of science and other areas of science studies. I argue that this "post-Kuhnian" move is not complete, and that repertoires maintain an internalist perspective. Comparison with an alternative framework, the "sociotechnical imaginaries" of Jasanoff and Kim (2015), illustrates precisely which elements of practice are externalized by Ankeny and Leonelli. Specifically, repertoires discount the role of audience, without whom the repertoires of science are unintelligible, and lack an explicit place for ethical and political imagination, which provide meaning for otherwise mechanical promotion of particular research programs. This comparison reveals, I suggest, two distinct modes of scholarship, one internalist and the other critical. While repertoires can be modified to meet the needs of critical STS scholars and to completely reject Kuhn's internalism, whether or not we do so depends on what we want our scholarship to achieve.

  20. The molecular evolution of the vertebrate behavioural repertoire

    PubMed Central

    2016-01-01

    How the sophisticated vertebrate behavioural repertoire evolved remains a major question in biology. The behavioural repertoire encompasses the set of individual behavioural components that an organism uses when adapting and responding to changes in its external world. Although unicellular organisms, invertebrates and vertebrates share simple reflex responses, the fundamental mechanisms that resulted in the complexity and sophistication that is characteristic of vertebrate behaviours have only recently been examined. A series of behavioural genetic experiments in mice and humans support a theory that posited the importance of synapse proteome expansion in generating complexity in the behavioural repertoire. Genome duplication events, approximately 550 Ma, produced expansion in the synapse proteome that resulted in increased complexity in synapse signalling mechanisms that regulate components of the behavioural repertoire. The experiments demonstrate the importance to behaviour of the gene duplication events, the diversification of paralogues and sequence constraint. They also confirm the significance of comparative proteomic and genomic studies that identified the molecular origins of synapses in unicellular eukaryotes and the vertebrate expansion in proteome complexity. These molecular mechanisms have general importance for understanding the repertoire of behaviours in different species and for human behavioural disorders arising from synapse gene mutations. PMID:26598730

  1. Repertoires of Spike Avalanches Are Modulated by Behavior and Novelty.

    PubMed

    Ribeiro, Tiago L; Ribeiro, Sidarta; Copelli, Mauro

    2016-01-01

    Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here, we show that spike avalanches, recorded from hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation.

  2. Characteristics of the TCR Vβ repertoire in imatinib-resistant chronic myeloid leukemia patients with ABL mutations.

    PubMed

    Xu, Ling; Lu, YuHong; Lai, Jing; Yu, Wei; Zhang, YiKai; Jin, ZhenYi; Xu, Yan; Chen, Jie; Zha, XianFeng; Chen, ShaoHua; Yang, LiJian; Li, YangQiu

    2015-12-01

    Diversity in the T cell receptor (TCR) repertoire provides a miniature defense ability for the T cell immune system that may be related to tumor initiation and progression. Understanding the T cell immune status of leukemia patients is critical for establishing specific immunotherapies. Previous studies have reported abnormal TCR repertoires and clonally expanded TCR Vβ T cells in chronic myeloid leukemia in chronic phase (CP-CML). In this study, we investigated the distribution and clonality of the TCR Vβ repertoire in 4 cases with imatinib-resistant CML in blast crisis (BC-CML) with abelson murine leukemia viral oncogene homolog 1 (ABL1) kinase domain mutations (KDMs). Examination of TCR V expression and clonality was performed by reverse transcription-polymerase chain reaction (RT-PCR) and GeneScan analysis. Significantly skewed TCR Vβ repertoires were observed in BC-CML patients with different KDMs, and 4 to 8 oligoclonally expanded TCR Vβ subfamilies could be identified in each sample. Intriguingly, a relatively highly expanded Vβ9 clone with the same length as complementarity- determining region 3 (CDR3) (139 bp) was found in all three CML patients in lymphoid blast crisis (LBC-CML) who had different KDMs, but the clone was not detected in the only CML patient in myeloid blast crisis (MBC-CML). In conclusion, restricted TCR Vβ repertoire expression and decreased clone complexity was a general phenomenon observed in the BC-CML patients with different KDMs, indicating the T-cell immunodeficiency of these patients. In addition, clonally expanded Vβ9 T cell clones may indicate a specific immune response to leukemia-associated antigens in LBC-CML patients.

  3. A new mechanism shapes the naïve CD8(+) T cell repertoire: the selection for full diversity.

    PubMed

    Gonçalves, Pedro; Ferrarini, Marco; Molina-Paris, Carmen; Lythe, Grant; Vasseur, Florence; Lim, Annik; Rocha, Benedita; Azogui, Orly

    2017-05-01

    During thymic T cell differentiation, TCR repertoires are shaped by negative, positive and agonist selection. In the thymus and in the periphery, repertoires are also shaped by strong inter-clonal and intra-clonal competition to survive death by neglect. Understanding the impact of these events on the T cell repertoire requires direct evaluation of TCR expression in peripheral naïve T cells. Several studies have evaluated TCR diversity, with contradictory results. Some of these studies had intrinsic technical limitations since they used material obtained from T cell pools, preventing the direct evaluation of clonal sizes. Indeed with these approaches, identical TCRs may correspond to different cells expressing the same receptor, or to several amplicons from the same T cell. We here overcame this limitation by evaluating TCRB expression in individual naïve CD8(+) T cells. Of the 2269 Tcrb sequences we obtained from 13 mice, 99% were unique. Mathematical analysis of the data showed that the average number of naïve peripheral CD8(+) T cells expressing the same TCRB is 1.1 cell. Since TCRA co-expression studies could only increase repertoire diversity, these results reveal that the number of naïve T cells with unique TCRs approaches the number of naïve cells. Since thymocytes undergo multiple rounds of divisions after TCRB rearrangement and 3-5% of thymocytes survive thymic selection events the number of cells expressing the same TCRB was expected to be much higher. Thus, these results suggest a new repertoire selection mechanism, which strongly selects for full TCRB diversity.

  4. Nicotinic acetylcholine receptors: from basic science to therapeutics.

    PubMed

    Hurst, Raymond; Rollema, Hans; Bertrand, Daniel

    2013-01-01

    Substantial progress in the identification of genes encoding for a large number of proteins responsible for various aspects of neurotransmitter release, postsynaptic detection and downstream signaling, has advanced our understanding of the mechanisms by which neurons communicate and interact. Nicotinic acetylcholine receptors represent a large and well-characterized family of ligand-gated ion channels that is expressed broadly throughout the central and peripheral nervous system, and in non-neuronal cells. With 16 mammalian genes identified that encode for nicotinic receptors and the ability of the subunits to form heteromeric or homomeric receptors, the repertoire of conceivable receptor subtype combinations is enormous and offers unique possibilities for the design and development of new therapeutics that target nicotinic acetylcholine receptors. The aim of this review is to provide the reader with recent insights in nicotinic acetylcholine receptors from genes, structure and function to diseases, and with the latest findings on the pharmacology of these receptors. Although so far only a few nicotinic drugs have been marketed or are in late stage development, much progress has been made in the design of novel chemical entities that are being explored for the treatment of various diseases, including addiction, depression, ADHD, cognitive deficits in schizophrenia and Alzheimer's disease, pain and inflammation. A pharmacological analysis of these compounds, including those that were discontinued, can improve our understanding of the pharmacodynamic and pharmacokinetic requirements for nicotinic 'drug-like' molecules and will reveal if hypotheses on therapies based on targeting specific nicotinic receptor subtypes have been adequately tested in the clinic.

  5. Mindful relating: exploring mindfulness and emotion repertoires in intimate relationships.

    PubMed

    Wachs, Karen; Cordova, James V

    2007-10-01

    This study tested the theory that mindfulness contributes to greater intimate relationship satisfaction by fostering more relationally skillful emotion repertoires. A sample of married couples was administered measures of mindful awareness, emotion skills, and marital quality. We hypothesized that mindfulness would be associated with both marital quality and partners' emotion skills and that the association between mindfulness and marital quality would be mediated by emotion repertoire skill. Findings suggested that emotion skills and mindfulness are both related to marital adjustment, and that skilled emotion repertoires, specifically those associated with identifying and communicating emotions, as well as the regulation of anger expression, fully mediate the association between mindfulness and marital quality. Theoretical implications are discussed.

  6. Mammalian-derived respiratory allergens - implications for diagnosis and therapy of individuals allergic to furry animals.

    PubMed

    Nilsson, Ola B; van Hage, Marianne; Grönlund, Hans

    2014-03-01

    Furry animals cause respiratory allergies in a significant proportion of the population. A majority of all mammalian allergens are spread as airborne particles, and several have been detected in environments where furry animals are not normally kept. The repertoire of allergens from each source belongs to a restricted number of allergen families. Classification of allergen families is particularly important for the characterization of allergenicity and cross-reactivity of allergens. In fact, major mammalian allergens are taken from only three protein families, i.e. the secretoglobin, lipocalin and kallikrein families. In particular, the lipocalin superfamily harbours major allergens in all important mammalian allergen sources, and cross-reactivity between lipocalin allergens may explain cross-species sensitization between mammals. The identification of single allergen components is of importance to improve diagnosis and therapy of allergic patients using component-resolved diagnostics and allergen-specific immunotherapy (ASIT) respectively. Major disadvantages with crude allergen extracts for these applications emphasize the benefits of careful characterization of individual allergens. Furthermore, detailed knowledge of the characteristics of an allergen is crucial to formulate attenuated allergy vaccines, e.g. hypoallergens. The diverse repertoires of individual allergens from different mammalian species influence the diagnostic potential and clinical efficacy of ASIT to furry animals. As such, detailed knowledge of individual allergens is essential for adequate clinical evaluation. This review compiles current knowledge of the allergen families of mammalian species, and discusses how this information may be used for improved diagnosis and therapy of individuals allergic to mammals.

  7. Extracellular complexes of the hematopoietic human and mouse CSF-1 receptor are driven by common assembly principles.

    PubMed

    Elegheert, Jonathan; Desfosses, Ambroise; Shkumatov, Alexander V; Wu, Xiongwu; Bracke, Nathalie; Verstraete, Kenneth; Van Craenenbroeck, Kathleen; Brooks, Bernard R; Svergun, Dmitri I; Vergauwen, Bjorn; Gutsche, Irina; Savvides, Savvas N

    2011-12-07

    The hematopoietic colony stimulating factor-1 receptor (CSF-1R or FMS) is essential for the cellular repertoire of the mammalian immune system. Here, we report a structural and mechanistic consensus for the assembly of human and mouse CSF-1:CSF-1R complexes. The EM structure of the complete extracellular assembly of the human CSF-1:CSF-1R complex reveals how receptor dimerization by CSF-1 invokes a ternary complex featuring extensive homotypic receptor contacts and striking structural plasticity at the extremities of the complex. Studies by small-angle X-ray scattering of unliganded hCSF-1R point to large domain rearrangements upon CSF-1 binding, and provide structural evidence for the relevance of receptor predimerization at the cell surface. Comparative structural and binding studies aiming to dissect the assembly principles of human and mouse CSF-1R complexes, including a quantification of the CSF-1/CSF-1R species cross-reactivity, show that bivalent cytokine binding to receptor coupled to ensuing receptor-receptor interactions are common denominators in extracellular complex formation.

  8. Naive CD8⁺ T-cell precursors display structured TCR repertoires and composite antigen-driven selection dynamics.

    PubMed

    Neller, Michelle A; Ladell, Kristin; McLaren, James E; Matthews, Katherine K; Gostick, Emma; Pentier, Johanne M; Dolton, Garry; Schauenburg, Andrea J A; Koning, Dan; Fontaine Costa, Ana Isabel C A; Watkins, Thomas S; Venturi, Vanessa; Smith, Corey; Khanna, Rajiv; Miners, Kelly; Clement, Mathew; Wooldridge, Linda; Cole, David K; van Baarle, Debbie; Sewell, Andrew K; Burrows, Scott R; Price, David A; Miles, John J

    2015-08-01

    Basic parameters of the naive antigen (Ag)-specific T-cell repertoire in humans remain poorly defined. Systematic characterization of this 'ground state' immunity in comparison with memory will allow a better understanding of clonal selection during immune challenge. Here, we used high-definition cell isolation from umbilical cord blood samples to establish the baseline frequency, phenotype and T-cell antigen receptor (TCR) repertoire of CD8(+) T-cell precursor populations specific for a range of viral and self-derived Ags. Across the board, these precursor populations were phenotypically naive and occurred with hierarchical frequencies clustered by Ag specificity. The corresponding patterns of TCR architecture were highly ordered and displayed partial overlap with adult memory, indicating biased structuring of the T-cell repertoire during Ag-driven selection. Collectively, these results provide new insights into the complex nature and dynamics of the naive T-cell compartment.

  9. Patients benefit from the addition of KIR repertoire data to the donor selection procedure for unrelated haematopoietic stem cell transplantation.

    PubMed

    Schellekens, Jennifer; Rozemuller, Erik H; Petersen, Eefke J; van den Tweel, Jan G; Verdonck, Leo F; Tilanus, Marcel G J

    2008-02-01

    Killer cell immunoglobulin-like receptors (KIRs) expressed on donor natural killer (NK) cells are important for induction of NK cell alloreactivity in haematopoietic stem cell transplantation (HSCT). Current criteria in the selection procedure of an unrelated donor do not account for this potential NK alloresponse. In this study the KIR gene repertoire of 21 HSCT patients and all their potential, unrelated donors (N=64) has been identified by the sequence-specific priming (SSP) procedure. KIR genotype characteristics are correlated with HLA and clinical data. These data show that for 16 cases an HLA compatible alternative donor was available. Among those 16 were 8 donors with a favourable predicted NK alloreactivity directed against the leukaemic cells. In conclusion, it is feasible and clinically relevant to add the KIR repertoire to the unrelated donor selection procedure.

  10. PD-1 identifies the patient-specific CD8⁺ tumor-reactive repertoire infiltrating human tumors.

    PubMed

    Gros, Alena; Robbins, Paul F; Yao, Xin; Li, Yong F; Turcotte, Simon; Tran, Eric; Wunderlich, John R; Mixon, Arnold; Farid, Shawn; Dudley, Mark E; Hanada, Ken-Ichi; Almeida, Jorge R; Darko, Sam; Douek, Daniel C; Yang, James C; Rosenberg, Steven A

    2014-05-01

    Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8⁺ lymphocytes. The lack of biomarkers limits the ability to study these cells and develop strategies to enhance clinical efficacy and extend this therapy to other malignancies. Here, we evaluated unique phenotypic traits of CD8⁺ TILs and TCR β chain (TCRβ) clonotypic frequency in melanoma tumors to identify patient-specific repertoires of tumor-reactive CD8⁺ lymphocytes. In all 6 tumors studied, expression of the inhibitory receptors programmed cell death 1 (PD-1; also known as CD279), lymphocyte-activation gene 3 (LAG-3; also known as CD223), and T cell immunoglobulin and mucin domain 3 (TIM-3) on CD8⁺ TILs identified the autologous tumor-reactive repertoire, including mutated neoantigen-specific CD8⁺ lymphocytes, whereas only a fraction of the tumor-reactive population expressed the costimulatory receptor 4-1BB (also known as CD137). TCRβ deep sequencing revealed oligoclonal expansion of specific TCRβ clonotypes in CD8⁺PD-1⁺ compared with CD8⁺PD-1- TIL populations. Furthermore, the most highly expanded TCRβ clonotypes in the CD8⁺ and the CD8⁺PD-1⁺ populations recognized the autologous tumor and included clonotypes targeting mutated antigens. Thus, in addition to the well-documented negative regulatory role of PD-1 in T cells, our findings demonstrate that PD-1 expression on CD8⁺ TILs also accurately identifies the repertoire of clonally expanded tumor-reactive cells and reveal a dual importance of PD-1 expression in the tumor microenvironment.

  11. Massively Parallel RNA Sequencing Identifies a Complex Immune Gene Repertoire in the lophotrochozoan Mytilus edulis

    PubMed Central

    Philipp, Eva E. R.; Kraemer, Lars; Melzner, Frank; Poustka, Albert J.; Thieme, Sebastian; Findeisen, Ulrike; Schreiber, Stefan; Rosenstiel, Philip

    2012-01-01

    The marine mussel Mytilus edulis and its closely related sister species are distributed world-wide and play an important role in coastal ecology and economy. The diversification in different species and their hybrids, broad ecological distribution, as well as the filter feeding mode of life has made this genus an attractive model to investigate physiological and molecular adaptations and responses to various biotic and abiotic environmental factors. In the present study we investigated the immune system of Mytilus, which may contribute to the ecological plasticity of this species. We generated a large Mytilus transcriptome database from different tissues of immune challenged and stress treated individuals from the Baltic Sea using 454 pyrosequencing. Phylogenetic comparison of orthologous groups of 23 species demonstrated the basal position of lophotrochozoans within protostomes. The investigation of immune related transcripts revealed a complex repertoire of innate recognition receptors and downstream pathway members including transcripts for 27 toll-like receptors and 524 C1q domain containing transcripts. NOD-like receptors on the other hand were absent. We also found evidence for sophisticated TNF, autophagy and apoptosis systems as well as for cytokines. Gill tissue and hemocytes showed highest expression of putative immune related contigs and are promising tissues for further functional studies. Our results partly contrast with findings of a less complex immune repertoire in ecdysozoan and other lophotrochozoan protostomes. We show that bivalves are interesting candidates to investigate the evolution of the immune system from basal metazoans to deuterostomes and protostomes and provide a basis for future molecular work directed to immune system functioning in Mytilus. PMID:22448234

  12. High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire.

    PubMed

    DeKosky, Brandon J; Ippolito, Gregory C; Deschner, Ryan P; Lavinder, Jason J; Wine, Yariv; Rawlings, Brandon M; Varadarajan, Navin; Giesecke, Claudia; Dörner, Thomas; Andrews, Sarah F; Wilson, Patrick C; Hunicke-Smith, Scott P; Willson, C Grant; Ellington, Andrew D; Georgiou, George

    2013-02-01

    Each B-cell receptor consists of a pair of heavy and light chains. High-throughput sequencing can identify large numbers of heavy- and light-chain variable regions (V(H) and V(L)) in a given B-cell repertoire, but information about endogenous pairing of heavy and light chains is lost after bulk lysis of B-cell populations. Here we describe a way to retain this pairing information. In our approach, single B cells (>5 × 10(4) capacity per experiment) are deposited in a high-density microwell plate (125 pl/well) and lysed in situ. mRNA is then captured on magnetic beads, reverse transcribed and amplified by emulsion V(H):V(L) linkage PCR. The linked transcripts are analyzed by Illumina high-throughput sequencing. We validated the fidelity of V(H):V(L) pairs identified by this approach and used the method to sequence the repertoire of three human cell subsets-peripheral blood IgG(+) B cells, peripheral plasmablasts isolated after tetanus toxoid immunization and memory B cells isolated after seasonal influenza vaccination.

  13. The expressed TCRβ CDR3 repertoire is dominated by conserved DNA sequences in channel catfish.

    PubMed

    Findly, R Craig; Niagro, Frank D; Dickerson, Harry W

    2017-03-01

    We analyzed by high-throughput sequencing T cell receptor beta CDR3 repertoires expressed by αβ T cells in outbred channel catfish before and after an immunizing infection with the parasitic protozoan Ichthyophthirius multifiliis. We compared CDR3 repertoires in caudal fin before infection and at three weeks after infection, and in skin, PBL, spleen and head kidney at seven and twenty-one weeks after infection. Public clonotypes with the same CDR3 amino acid sequence were expressed by αβ T cells that underwent clonal expansion following development of immunity. These clonally expanded αβ T cells were primarily located in spleen and skin, which is a site of infection. Although multiple DNA sequences were expected to code for each public clonotype, each public clonotype was predominately coded by an identical CDR3 DNA sequence in combination with the same J gene in all fish. The processes underlying this shared use of CDR3 DNA sequences are not clear.

  14. Rep-Seq: uncovering the immunological repertoire through next-generation sequencing

    PubMed Central

    Benichou, Jennifer; Ben-Hamo, Rotem; Louzoun, Yoram; Efroni, Sol

    2012-01-01

    Recent scientific discoveries fuelled by the application of next-generation DNA and RNA sequencing technologies highlight the striking impact of these platforms in characterizing multiple aspects in genomics research. This technology has been used in the study of the B-cell and T-cell receptor repertoire. The novelty of immunosequencing comes from the recent rapid development of techniques and the exponential reduction in cost of sequencing. Here, we describe some of the technologies, which we collectively refer to as Rep-Seq (repertoire sequencing), to portray achievements in the field and to present the essential and inseparable role of next-generation sequencing to the understanding of entities in immune response. The large Rep-Seq data sets that should be available in the near future call for new computational algorithms to segue the transition from ‘classic’ molecular-based analysis to system-wide analysis. The combination of new algorithms with high-throughput data will form the basis for possible new clinical implications in personalized medicine and deeper understanding of immune behaviour and immune response. PMID:22043864

  15. Unique Features of Fish Immune Repertoires: Particularities of Adaptive Immunity Within the Largest Group of Vertebrates.

    PubMed

    Magadan, Susana; Sunyer, Oriol J; Boudinot, Pierre

    2015-01-01

    Fishes (i.e., teleost fishes) are the largest group of vertebrates. Although their immune system is based on the fundamental receptors, pathways, and cell types found in all groups of vertebrates, fishes show a diversity of particular features that challenge some classical concepts of immunology. In this chapter, we discuss the particularities of fish immune repertoires from a comparative perspective. We examine how allelic exclusion can be achieved when multiple Ig loci are present, how isotypic diversity and functional specificity impact clonal complexity, how loss of the MHC class II molecules affects the cooperation between T and B cells, and how deep sequencing technologies bring new insights about somatic hypermutation in the absence of germinal centers. The unique coexistence of two distinct B-cell lineages respectively specialized in systemic and mucosal responses is also discussed. Finally, we try to show that the diverse adaptations of immune repertoires in teleosts can help in understanding how somatic adaptive mechanisms of immunity evolved in parallel in different lineages across vertebrates.

  16. Immunology (1955-1975): the natural selection theory, the two signal hypothesis and positive repertoire selection.

    PubMed

    Forsdyke, Donald R

    2012-01-01

    Observations suggesting the existence of natural antibody prior to exposure of an organism to the corresponding antigen, led to the natural selection theory of antibody formation of Jerne in 1955, and to the two signal hypothesis of Forsdyke in 1968. Aspects of these were not only first discoveries but also foundational discoveries in that they influenced contemporaries in a manner that, from our present vantage point, appears to have been constructive. Jerne's later hypothesis (1971, European Journal of Immunology 1: 1-9), that antibody-like receptors on lymphocytes were selected over evolutionary time for reactivity with the major histocompatibility complex (MHC) antigens of the species, was a first, but it was incorrect, and was foundational only to the extent that it emphasized the need to explain the Simonsen phenomenon. Although easily construed as derivative of Jerne (1971), the affinity/avidity model of Forsdyke (1975, Journal of Theoretical Biology 52: 187-198), which predicted that cell-surface components, including MHC antigens, would restrict antigen-reactivity by somatically shaping lymphocyte repertoires, was actually an extension of the two signal hypothesis. While presenting a mechanism for the positive selection of lymphocyte repertoires, and explaining the Simonsen phenomenon, the affinity/avidity model was not foundational in that it had to be independently rediscovered. For science to advance optimally we must seek to close temporal gaps so that first discoveries are also foundational. Listening to young scientists may be part of the solution.

  17. Unique Features of Fish Immune Repertoires: Particularities of Adaptive Immunity Within the Largest Group of Vertebrates

    PubMed Central

    Sunyer, Oriol J.

    2016-01-01

    Fishes (i.e., teleost fishes) are the largest group of vertebrates. Although their immune system is based on the fundamental receptors, pathways, and cell types found in all groups of vertebrates, fishes show a diversity of particular features that challenge some classical concepts of immunology. In this chapter, we discuss the particularities of fish immune repertoires from a comparative perspective. We examine how allelic exclusion can be achieved when multiple Ig loci are present, how isotypic diversity and functional specificity impact clonal complexity, how loss of the MHC class II molecules affects the cooperation between T and B cells, and how deep sequencing technologies bring new insights about somatic hypermutation in the absence of germinal centers. The unique coexistence of two distinct B-cell lineages respectively specialized in systemic and mucosal responses is also discussed. Finally, we try to show that the diverse adaptations of immune repertoires in teleosts can help in understanding how somatic adaptive mechanisms of immunity evolved in parallel in different lineages across vertebrates. PMID:26537384

  18. Mammalian gravity receptors: Structure and metabolism

    NASA Technical Reports Server (NTRS)

    Ross, M.

    1984-01-01

    High performance liquid chromatography (HPLC) instrumentation was used for amino acid analysis of rat otoconial complexes. The amino acids of otoconial complexes pooled by origin from only 10 rats were analyzed. It is indicated that it should be possible to analyze complexes from only three rats, and perhaps fewer, which means that the method should be applicable to material from space flow rats. It is suggested that the organic otoconial phase is comparable in its complement of acidic amino acids to other calcium carbonate containing materials such as fish otoliths and certain mollusk shells. The organic material is high in acidic amino acids; and the relative proportions of aspirate, glutamate, threonine and serine appear to be similar to those found in neogastropod shells. Its significance to the evolution of biomineralization processes occurring in the animal kingdom is emphasized.

  19. The Case for a Database of Musical Repertoire

    ERIC Educational Resources Information Center

    Beheshti, Setareh

    2010-01-01

    Finding new repertoire poses endless obstacles for musicians. Often the search for an unknown piece or composer presents such an unforeseen challenge that the actual aesthetic and technical success of the work becomes secondary. A major contributing factor is the lack of an accessible and centralized database. Many notable bibliographic reference…

  20. Linking Experiences with Emotions and the Development of Interpretive Repertoires

    ERIC Educational Resources Information Center

    McRae, Norah I.

    2010-01-01

    In this paper I consider the case of one student, Todd Alexander, through analyzing the transcripts of his interviews between him and his teacher (Wolff-Michael Roth). I examine the role that emotions play in the development of the interpretive repertoires that Todd employed as he talked about his scientific and his religious beliefs. I identify…

  1. Perspectives on Linguistic Repertoires in Adult Multilinguals: An Epilogue

    ERIC Educational Resources Information Center

    Gorter, Durk

    2017-01-01

    This article introduces this special issue by declaring that the studies contained here build on the idea that multilinguals, in the sense of learners or speakers that have more than two languages in their linguistic repertoire, are different from bilinguals and monolinguals in various ways. Several authors in the area of third language…

  2. A Review of Training Intraverbal Repertoires: Can Precision Teaching Help?

    ERIC Educational Resources Information Center

    Cihon, Traci M.

    2007-01-01

    Intraverbal behavior is common in conversation and academic and professional settings. Many individuals with disabilities fail to acquire intraverbal repertoires. Some individuals who do acquire intraverbal behavior fail to acquire responses that are functional and complete. Research has examined procedures to establish or increase intraverbal…

  3. Deep sequencing of immune repertoires during bovine development and in response to respiratory pathogen challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vertebrate immune systems generate diverse repertoires of antibodies capable of mediating response to a variety of antigens. Single-molecule circular consensus sequencing permits the sequencing of expressed antibody repertoires at previously unattainable depths of coverage and accuracy. We examined...

  4. Accelerated Loss of TCR Repertoire Diversity in Common Variable Immunodeficiency

    PubMed Central

    Wong, Gabriel K.; Millar, David; Penny, Sarah; Heather, James M.; Mistry, Punam; Buettner, Nico; Bryon, Jane; Huissoon, Aarnoud P.

    2016-01-01

    Although common variable immunodeficiency (CVID) has long been considered as a group of primary Ab deficiencies, growing experimental data now suggest a global disruption of the entire adaptive immune response in a segment of patients. Oligoclonality of the TCR repertoire was previously demonstrated; however, the manner in which it relates to other B cell and T cell findings reported in CVID remains unclear. Using a combination approach of high-throughput TCRβ sequencing and multiparametric flow cytometry, we compared the TCR repertoire diversity between various subgroups of CVID patients according to their B cell immunophenotypes. Our data suggest that the reduction in repertoire diversity is predominantly restricted to those patients with severely reduced class-switched memory B cells and an elevated level of CD21lo B cells (Freiburg 1a), and may be driven by a reduced number of naive T cells unmasking underlying memory clonality. Moreover, our data indicate that this loss in repertoire diversity progresses with advancing age far exceeding the expected physiological rate. Radiological evidence supports the loss in thymic volume, correlating with the decrease in repertoire diversity. Evidence now suggests that primary thymic failure along with other well-described B cell abnormalities play an important role in the pathophysiology in Freiburg group 1a patients. Clinically, our findings emphasize the integration of combined B and T cell testing to identify those patients at the greatest risk for infection. Future work should focus on investigating the link between thymic failure and the severe reduction in class-switched memory B cells, while gathering longitudinal laboratory data to examine the progressive nature of the disease. PMID:27481850

  5. Mammalian development in space

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  6. Mammalian development in space.

    PubMed

    Ronca, April E

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  7. BRILIA: Integrated Tool for High-Throughput Annotation and Lineage Tree Assembly of B-Cell Repertoires

    PubMed Central

    Lee, Donald W.; Khavrutskii, Ilja V.; Wallqvist, Anders; Bavari, Sina; Cooper, Christopher L.; Chaudhury, Sidhartha

    2017-01-01

    The somatic diversity of antigen-recognizing B-cell receptors (BCRs) arises from Variable (V), Diversity (D), and Joining (J) (VDJ) recombination and somatic hypermutation (SHM) during B-cell development and affinity maturation. The VDJ junction of the BCR heavy chain forms the highly variable complementarity determining region 3 (CDR3), which plays a critical role in antigen specificity and binding affinity. Tracking the selection and mutation of the CDR3 can be useful in characterizing humoral responses to infection and vaccination. Although tens to hundreds of thousands of unique BCR genes within an expressed B-cell repertoire can now be resolved with high-throughput sequencing, tracking SHMs is still challenging because existing annotation methods are often limited by poor annotation coverage, inconsistent SHM identification across the VDJ junction, or lack of B-cell lineage data. Here, we present B-cell repertoire inductive lineage and immunosequence annotator (BRILIA), an algorithm that leverages repertoire-wide sequencing data to globally improve the VDJ annotation coverage, lineage tree assembly, and SHM identification. On benchmark tests against simulated human and mouse BCR repertoires, BRILIA correctly annotated germline and clonally expanded sequences with 94 and 70% accuracy, respectively, and it has a 90% SHM-positive prediction rate in the CDR3 of heavily mutated sequences; these are substantial improvements over existing methods. We used BRILIA to process BCR sequences obtained from splenic germinal center B cells extracted from C57BL/6 mice. BRILIA returned robust B-cell lineage trees and yielded SHM patterns that are consistent across the VDJ junction and agree with known biological mechanisms of SHM. By contrast, existing BCR annotation tools, which do not account for repertoire-wide clonal relationships, systematically underestimated both the size of clonally related B-cell clusters and yielded inconsistent SHM frequencies. We demonstrate

  8. Territory Tenure Increases with Repertoire Size in Brownish-Flanked Bush Warbler

    PubMed Central

    Xia, Canwei; Wei, Chentao; Zhang, Yanyun

    2015-01-01

    Song repertoire size is often cited as a classic example of a secondary sexual trait in birds. Models of sexual selection and empirical tests of their predictions have often related secondary sexual traits to longevity. However, the relationship between repertoire size and longevity is unclear. Using capture-mark-recapture studies in two populations of the brownish-flanked bush warbler Cettia fortipes, we found that males with a repertoire size of three maintained territory tenure for a longer duration than did males with a repertoire size of two. These results provide evidence that even a minimal difference in repertoire size can serve as a potential signal of territory tenure capability. PMID:25822524

  9. RECOMBINANT ANDROGEN RECEPTOR (AR) BINDING ACROSS VERTEBRATE SPECIES: COMPARISON OF BINDING OF ENVIRONMENTAL COMPOUNDS TO HUMAN, RAINBOW TROUT AND FATHEAD MINNOW AR.

    EPA Science Inventory

    In vitro screening assays designed to identify androgen mimics or antagonists typically use mammalian (rat, human) androgen receptors (AR). Although the amino acid sequences of receptors from nonmammalian vertebrates are not identical to the mammalian receptors, it is uncertain ...

  10. Linking experiences with emotions and the development of interpretive repertoires

    NASA Astrophysics Data System (ADS)

    McRae, Norah I.

    2010-03-01

    In this paper I consider the case of one student, Todd Alexander, through analyzing the transcripts of his interviews between him and his teacher (Wolff-Michael Roth). I examine the role that emotions play in the development of the interpretive repertoires that Todd employed as he talked about his scientific and his religious beliefs. I identify how lived experiences support the development of emotions and what educational conditions are necessary to allow for appropriate lived experiences. In so doing we might be able to support educational conditions that result in interpretive repertoires that allow for acceptance of multiple perspectives with a moral grounding, leading to students who are well positioned to be valuable contributors to society.

  11. Tracing antigen signatures in the human IgE repertoire

    PubMed Central

    Marth, Katharina; Novatchkova, Maria; Focke-Tejkl, Margarete; Jenisch, Stefan; Jäger, Siegfried; Kabelitz, Dieter; Valenta, Rudolf

    2010-01-01

    Allergen recognition by IgE antibodies is a key event in allergic inflammation. In this study, the IgE IGHV repertoires of individuals with allergy to the major birch pollen allergen, Bet v 1, were analyzed over a four years period of allergen exposure by RT-PCR and sequencing of cDNA. Approximately half of the IgE transcripts represented non-redundant sequences, which belonged to seventeen different IGHV genes. Most variable regions contained somatic mutations but also non-mutated sequences were identified. There was no evidence for relevant increases of somatic mutations over time of allergen exposure. Highly similar IgE variable regions were found after four years of allergen exposure in the same and in genetically non-related individuals. Our results indicate that allergens select and shape a limited number of similar IgE variable regions in the human IgE repertoire. PMID:20573403

  12. Emerging studies of human HIV-specific antibody repertoires

    PubMed Central

    Hicar, Mark D.; Kalams, Spyros A.; Spearman, Paul W.; Crowe, James E.

    2010-01-01

    There has been an explosion of interest in the human B cell response to HIV infection of late. Recent advances in techniques for isolation of human antibodies and antibody secreting cell lines have facilitated a rapid expansion in the number of antibodies available for study. Early analysis of these repertoires reveals interesting features of the HIV-specific antibody response. HIV-specific repertoires exhibit a high level of clonality in circulating cells, and high levels of somatic mutations within the antibody variable gene segments. It appears that many if not most antibodies in circulation bind to virus envelope conformations that are found only in complex oligomeric structures on virion particles or virus-like particles. The rapid isolation of large panels of novel human neutralizing antibodies promises to reveal new insights into the fundamental principles underlying antibody-mediated neutralization of HIV. PMID:20510738

  13. Tracing antigen signatures in the human IgE repertoire.

    PubMed

    Marth, Katharina; Novatchkova, Maria; Focke-Tejkl, Margarete; Jenisch, Stefan; Jäger, Siegfried; Kabelitz, Dieter; Valenta, Rudolf

    2010-08-01

    Allergen recognition by IgE antibodies is a key event in allergic inflammation. In this study, the IgE IGHV repertoires of individuals with allergy to the major birch pollen allergen, Bet v 1, were analyzed over a four years period of allergen exposure by RT-PCR and sequencing of cDNA. Approximately half of the IgE transcripts represented non-redundant sequences, which belonged to seventeen different IGHV genes. Most variable regions contained somatic mutations but also non-mutated sequences were identified. There was no evidence for relevant increases of somatic mutations over time of allergen exposure. Highly similar IgE variable regions were found after four years of allergen exposure in the same and in genetically non-related individuals. Our results indicate that allergens select and shape a limited number of similar IgE variable regions in the human IgE repertoire.

  14. From rabbit antibody repertoires to rabbit monoclonal antibodies

    PubMed Central

    Weber, Justus; Peng, Haiyong; Rader, Christoph

    2017-01-01

    In this review, we explain why and how rabbit monoclonal antibodies have become outstanding reagents for laboratory research and increasingly for diagnostic and therapeutic applications. Starting with the unique ontogeny of rabbit B cells that affords highly distinctive antibody repertoires rich in in vivo pruned binders of high diversity, affinity and specificity, we describe the generation of rabbit monoclonal antibodies by hybridoma technology, phage display and alternative methods, along with an account of successful humanization strategies. PMID:28336958

  15. Fit to play: the fitness effect on physically challenging flute repertoire.

    PubMed

    Borkowski, Jennifer A

    2011-03-01

    This case study was done to determine whether physical fitness plays a part in performing flute repertoire. Most repertoire allows performers the choice of where to breathe. However, there exists a "brute" repertoire where breathing is prescribed by the composer, which poses physical challenges for performers. The author contrasted pieces from traditional repertoire with Heinz Holliger's (t)air(e), which requires passages of breath-holding and measured inhalations. The author was tested for cardiovascular fitness (VO2max) and corresponded these levels to pulse rates while playing at baseline and 6 months after undertaking a physical fitness program. After the exercise program, expertise with standard repertoire combined with the unmeasured variables of resonance, openness of the chest and oral cavities, embouchure size, and air speed saw little improvement with increased fitness levels. However, when air regulation is out of the performer's control, the effect of cardiovascular training brought the "brute" repertoire into the same range of difficulty as the standard repertoire.

  16. Small nucleolar RNAs that guide modification in trypanosomatids: repertoire, targets, genome organisation, and unique functions.

    PubMed

    Uliel, Shai; Liang, Xue-hai; Unger, Ron; Michaeli, Shulamit

    2004-03-29

    Small nucleolar RNAs constitute a family of newly discovered non-coding small RNAs, most of which function in guiding RNA modifications. Two prevalent types of modifications are 2'-O-methylation and pseudouridylation. The modification is directed by the formation of a canonical small nucleolar RNA-target duplex. Initially, RNA-guided modification was shown to take place on rRNA, but recent studies suggest that small nuclear RNA, mRNA, tRNA, and the trypanosome spliced leader RNA also undergo guided modifications. Trypanosomes contain more modifications and potentially more small nucleolar RNAs than yeast, and the increased number of modifications may help to preserve ribosome function under adverse environmental conditions during the cycling between the insect and mammalian host. The genome organisation in clusters carrying the two types of small nucleolar RNAs, C/D and H/ACA-like RNAs, resembles that in plants. However, the trypanosomatid H/ACA RNAs are similar to those found in Archaea and are composed of a single hairpin that may represent the primordial H/ACA RNA. In this review we summarise this new field of trypanosome small nucleolar RNAs, emphasising the open questions regarding the number of small nucleolar RNAs, the repertoire, genome organisation, and the unique function of guided modifications in these protozoan parasites.

  17. Harnessing gene conversion in chicken B cells to create a human antibody sequence repertoire.

    PubMed

    Schusser, Benjamin; Yi, Henry; Collarini, Ellen J; Izquierdo, Shelley Mettler; Harriman, William D; Etches, Robert J; Leighton, Philip A

    2013-01-01

    Transgenic chickens expressing human sequence antibodies would be a powerful tool to access human targets and epitopes that have been intractable in mammalian hosts because of tolerance to conserved proteins. To foster the development of the chicken platform, it is beneficial to validate transgene constructs using a rapid, cell culture-based method prior to generating fully transgenic birds. We describe a method for the expression of human immunoglobulin variable regions in the chicken DT40 B cell line and the further diversification of these genes by gene conversion. Chicken VL and VH loci were knocked out in DT40 cells and replaced with human VK and VH genes. To achieve gene conversion of human genes in chicken B cells, synthetic human pseudogene arrays were inserted upstream of the functional human VK and VH regions. Proper expression of chimeric IgM comprised of human variable regions and chicken constant regions is shown. Most importantly, sequencing of DT40 genetic variants confirmed that the human pseudogene arrays contributed to the generation of diversity through gene conversion at both the Igl and Igh loci. These data show that engineered pseudogene arrays produce a diverse pool of human antibody sequences in chicken B cells, and suggest that these constructs will express a functional repertoire of chimeric antibodies in transgenic chickens.

  18. Determinism and stochasticity during maturation of the zebrafish antibody repertoire

    PubMed Central

    Jiang, Ning; Weinstein, Joshua A.; Penland, Lolita; White, Richard A.; Fisher, Daniel S.; Quake, Stephen R.

    2011-01-01

    It is thought that the adaptive immune system of immature organisms follows a more deterministic program of antibody creation than is found in adults. We used high-throughput sequencing to characterize the diversifying antibody repertoire in zebrafish over five developmental time points. We found that the immune system begins in a highly stereotyped state with preferential use of a small number of V (variable) D (diverse) J (joining) gene segment combinations, but that this stereotypy decreases dramatically as the zebrafish mature, with many of the top VDJ combinations observed in 2-wk-old zebrafish virtually disappearing by 1 mo. However, we discovered that, in the primary repertoire, there are strong correlations in VDJ use that increase with zebrafish maturity, suggesting that VDJ recombination involves a level of deterministic programming that is unexpected. This stereotypy is masked by the complex diversification processes of antibody maturation; the variation and lack of correlation in full repertoires between individuals appears to be derived from randomness in clonal expansion during the affinity maturation process. These data provide a window into the mechanisms of VDJ recombination and diversity creation and allow us to better understand how the adaptive immune system achieves diversity. PMID:21393572

  19. The APC/C in female mammalian meiosis I.

    PubMed

    Homer, Hayden

    2013-08-01

    The anaphase-promoting complex or cyclosome (APC/C) orchestrates a meticulously controlled sequence of proteolytic events critical for proper cell cycle progression, the details of which have been most extensively elucidated during mitosis. It has become apparent, however, that the APC/C, particularly when acting in concert with its Cdh1 co-activator (APC/C(Cdh1)), executes a staggeringly diverse repertoire of functions that extend its remit well outside the bounds of mitosis. Findings over the past decade have not only earmarked mammalian oocyte maturation as one such case in point but have also begun to reveal a complex pattern of APC/C regulation that underpins many of the oocyte's unique developmental attributes. This review will encompass the latest findings pertinent to the APC/C, especially APC/C(Cdh1), in mammalian oocytes and how its activity and substrates shape the stop-start tempo of female mammalian first meiotic division and the challenging requirement for assembling spindles in the absence of centrosomes.

  20. Radial stretch reveals distinct populations of mechanosensitive mammalian somatosensory neurons

    PubMed Central

    Bhattacharya, Martha R. C.; Bautista, Diana M.; Wu, Karin; Haeberle, Henry; Lumpkin, Ellen A.; Julius, David

    2008-01-01

    Primary afferent somatosensory neurons mediate our sense of touch in response to changes in ambient pressure. Molecules that detect and transduce thermal stimuli have been recently identified, but mechanisms underlying mechanosensation, particularly in vertebrate organisms, remain enigmatic. Traditionally, mechanically evoked responses in somatosensory neurons have been assessed one cell at a time by recording membrane currents in response to application of focal pressure, suction, or osmotic challenge. Here, we used radial stretch in combination with live-cell calcium imaging to gain a broad overview of mechanosensitive neuronal subpopulations. We found that different stretch intensities activate distinct subsets of sensory neurons as defined by size, molecular markers, or pharmacological attributes. In all subsets, stretch-evoked responses required extracellular calcium, indicating that mechanical force triggers calcium influx. This approach extends the repertoire of stimulus paradigms that can be used to examine mechanotransduction in mammalian sensory neurons, facilitating future physiological and pharmacological studies. PMID:19060212

  1. Mammalian sperm morphometry.

    PubMed Central

    Gage, M J

    1998-01-01

    Understanding the adaptive significance of sperm form and function has been a challenge to biologists because sperm are highly specialized cells operating at a microscopic level in a complex environment. A fruitful course of investigation has been to use the comparative approach. This comparative study attempts to address some fundamental questions of the evolution of mammalian sperm morphometry. Data on sperm morphometry for 445 mammalian species were collated from published sources. I use contemporary phylogenetic analysis to control for the inherent non-independence of species and explore relationships between the morphometric dimensions of the three essential spermatozoal components: head, mid-piece and flagellum. Energy for flagellar action is metabolized by the mitochondrial-dense mid-piece and these combine to propel the sperm head, carrying the male haplotype, to the ovum. I therefore search for evolutionary associations between sperm morphometry and body mass, karyotype and the duration of oestrus. In contrast to previous findings, there is no inverse correlation between body weight and sperm length. Sperm mid-piece and flagellum lengths are positively associated with both head length and area, and the slopes of these relationships are discussed. Flagellum length is positively associated with mid-piece length but, in contrast to previous research and after phylogenetic control, I find no relationship between flagellum length and the volume of the mitochondrial sheath. Sperm head dimensions are not related to either genome mass or chromosome number, and there are no relationships between sperm morphometry and the duration of oestrus. PMID:9474794

  2. Among B cell non-Hodgkin's lymphomas, MALT lymphomas express a unique antibody repertoire with frequent rheumatoid factor reactivity.

    PubMed

    Bende, Richard J; Aarts, Wilhelmina M; Riedl, Robert G; de Jong, Daphne; Pals, Steven T; van Noesel, Carel J M

    2005-04-18

    We analyzed the structure of antigen receptors of a comprehensive panel of mature B non-Hodgkin's lymphomas (B-NHLs) by comparing, at the amino acid level, their immunoglobulin (Ig)V(H)-CDR3s with CDR3 sequences present in GenBank. Follicular lymphomas, diffuse large B cell lymphomas, Burkitt's lymphomas, and myelomas expressed a CDR3 repertoire comparable to that of normal B cells. Mantle cell lymphomas and B cell chronic lymphocytic leukemias (B-CLLs) expressed clearly restricted albeit different CDR3 repertoires. Lymphomas of mucosa-associated lymphoid tissues (MALTs) were unique as 8 out of 45 (18%) of gastric- and 13 out of 32 (41%) of salivary gland-MALT lymphomas expressed B cell antigen receptors with strong CDR3 homology to rheumatoid factors (RFs). Of note, the RF-CDR3 homology without exception included N-region-encoded residues in the hypermutated IgV(H) genes, indicating that they were stringently selected for reactivity with auto-IgG. By in vitro binding studies with 10 MALT lymphoma-derived antibodies, we showed that seven of these cases, of which four with RF-CDR3 homology, indeed possessed strong RF reactivity. Of one MALT lymphoma, functional proof for selection of subclones with high RF affinity was obtained. Interestingly, RF-CDR3 homology and t(11;18) appeared to be mutually exclusive features and RF-CDR3 homology was not encountered in any of the 19 pulmonary MALT lymphomas studied.

  3. Imprint of 5-azacytidine on the natural killer cell repertoire during systemic treatment for high-risk myelodysplastic syndrome.

    PubMed

    Sohlberg, Ebba; Pfefferle, Aline; Andersson, Sandra; Baumann, Bettina C; Hellström-Lindberg, Eva; Malmberg, Karl-Johan

    2015-10-27

    5-azacytidine (5-aza) is a hypomethylating agent approved for the treatment of high-risk myelodysplastic syndrome (MDS). It is assumed to act by demethylating tumor suppressor genes and via direct cytotoxic effects on malignant cells. In vitro treatment with hypomethylating agents has profound effects on the expression of killer-cell immunoglobulin-like (KIR) receptors on natural killer (NK) cells, as these receptors are epigenetically regulated via methylation of the promoters. Here we investigated the influence of 5-aza on the NK-cell repertoire during cytokine-induced proliferation in vitro and homeostatic proliferation in vivo in patients with high-risk MDS. In vitro treatment of NK cells from both healthy donors and MDS patients with low doses of 5-aza led to a significant increase in expression of multiple KIRs, but only in cells that had undergone several rounds of cell division. Proliferating 5-aza exposed NK cells exhibited increased IFN-γ production and degranulation towards tumor target cells. MDS patients had lower proportions of educated KIR-expressing NK cells than healthy controls but after systemic treatment with 5-aza, an increased proportion of Ki-67+ NK cells expressed multiple KIRs suggesting uptake of 5-aza in cycling cells in vivo. Hence, these results suggest that systemic treatment with 5-aza may shape the NK cell repertoire, in particular during homeostatic proliferation, thereby boosting NK cell-mediated recognition of malignant cells.

  4. Flexible knowledge repertoires: communication by leaders in trauma teams

    PubMed Central

    2012-01-01

    Background In emergency situations, it is important for the trauma team to efficiently communicate their observations and assessments. One common communication strategy is “closed-loop communication”, which can be described as a transmission model in which feedback is of great importance. The role of the leader is to create a shared goal in order to achieve consensus in the work for the safety of the patient. The purpose of this study was to analyze how formal leaders communicate knowledge, create consensus, and position themselves in relation to others in the team. Methods Sixteen trauma teams were audio- and video-recorded during high fidelity training in an emergency department. Each team consisted of six members: one surgeon or emergency physician (the designated team leader), one anaesthesiologist, one nurse anaesthetist, one enrolled nurse from the theatre ward, one registered nurse and one enrolled nurse from the emergency department (ED). The communication was transcribed and analyzed, inspired by discourse psychology and Strauss’ concept of “negotiated order”. The data were organized and coded in NVivo 9. Results The findings suggest that leaders use coercive, educational, discussing and negotiating strategies to work things through. The leaders in this study used different repertoires to convey their knowledge to the team, in order to create a common goal of the priorities of the work. Changes in repertoires were dependent on the urgency of the situation and the interaction between team members. When using these repertoires, the leaders positioned themselves in different ways, either on an authoritarian or a more egalitarian level. Conclusion This study indicates that communication in trauma teams is complex and consists of more than just transferring messages quickly. It also concerns what the leaders express, and even more importantly, how they speak to and involve other team members. PMID:22747848

  5. Delineation of a Conserved Arrestin-Biased Signaling Repertoire In Vivo

    PubMed Central

    Martin, Bronwen; Gesty-Palmer, Diane; Cheung, Huey; Johnson, Calvin; Patel, Shamit; Becker, Kevin G.; Wood, William H.; Zhang, Yongqing; Lehrmann, Elin; Luttrell, Louis M.

    2015-01-01

    Biased G protein–coupled receptor agonists engender a restricted repertoire of downstream events from their cognate receptors, permitting them to produce mixed agonist-antagonist effects in vivo. While this opens the possibility of novel therapeutics, it complicates rational drug design, since the in vivo response to a biased agonist cannot be reliably predicted from its in cellula efficacy. We have employed novel informatic approaches to characterize the in vivo transcriptomic signature of the arrestin pathway-selective parathyroid hormone analog [d-Trp12, Tyr34]bovine PTH(7-34) in six different murine tissues after chronic drug exposure. We find that [d-Trp12, Tyr34]bovine PTH(7-34) elicits a distinctive arrestin-signaling focused transcriptomic response that is more coherently regulated across tissues than that of the pluripotent agonist, human PTH(1-34). This arrestin-focused network is closely associated with transcriptional control of cell growth and development. Our demonstration of a conserved arrestin-dependent transcriptomic signature suggests a framework within which the in vivo outcomes of arrestin-biased signaling may be generalized. PMID:25637603

  6. High-throughput sequencing reveals an altered T cell repertoire in X-linked agammaglobulinemia

    PubMed Central

    Ramesh, Manish; Simchoni, Noa; Hamm, David; Cunningham-Rundles, Charlotte

    2015-01-01

    To examine the T cell receptor structure in the absence of B cells, the TCR β CDR3 was sequenced from DNA of 15 X-linked agammaglobulinemia (XLA) subjects and 18 male controls, using the Illumina HiSeq platform and the ImmunoSEQ analyzer. V gene usage and the V–J combinations, derived from both productive and nonproductive sequences, were significantly different between XLA samples and controls. Although the CDR3 length was similar for XLA and control samples, the CDR3 region of the XLA T cell receptor contained significantly fewer deletions and insertions in V, D, and J gene segments, differences intrinsic to the V(D)J recombination process and not due to peripheral T cell selection. XLA CDR3s demonstrated fewer charged amino acid residues, more sharing of CDR3 sequences, and almost completely lacked a population of highly modified Vβ gene segments found in control DNA, suggesting both a skewed and contracted T cell repertoire in XLA. PMID:26360253

  7. panhandling repertoires and routines for overcoming the nonperson treatment

    PubMed Central

    Lankenau, Stephen E.

    2007-01-01

    In this article, I present panhandling as a dynamic undertaking that requires conscious actions and purposeful modifications of self, performances, and emotions to gain the attention and interest of passersby. I show that describing and theorizing panhandling in terms of dramaturgical routines is useful in understanding the interactions and exchanges that constitute panhandling. In addition, repertoires rightly portray panhandlers as agents engaging the social world rather than as passive social types. From this perspective, sidewalks serve as stages on which panhandlers confront and overcome various forms of the nonperson treatment. The research is based on a street ethnography of homeless panhandlers living in Washington, DC. PMID:17541452

  8. Units of analysis and kinetic structure of behavioral repertoires

    PubMed Central

    Thompson, Travis; Lubinski, David

    1986-01-01

    It is suggested that molar streams of behavior are constructed of various arrangements of three elementary constituents (elicited, evoked, and emitted response classes). An eight-cell taxonomy is elaborated as a framework for analyzing and synthesizing complex behavioral repertoires based on these functional units. It is proposed that the local force binding functional units into a smoothly articulated kinetic sequence arises from temporally arranged relative response probability relationships. Behavioral integration is thought to reflect the joint influence of the organism's hierarchy of relative response probabilities, fluctuating biological states, and the arrangement of environmental and behavioral events in time. PMID:16812461

  9. What are the commonalities governing the behavior of humoral immune recognitive repertoires?

    PubMed

    Cohn, Melvin

    2006-01-01

    The humoral repertoire of immune systems is large, random and somatically selected. It is derived from a germline selected repertoire by a variety of diversification mechanisms, complementation of subunits, mutation and gene conversion. However derived, the end-product must be able to recognize and rid a vast variety of pathogens. This is accomplished by viewing antigens as combinatorials of epitopes, an astuce that permits a small repertoire to respond sufficiently rapidly to a vast antigenic universe. A somatically generated repertoire, however, requires a solution to two problems. First, a somatic mechanism for a self-nonself discrimination has to be put in place. Second, the repertoire has to be coupled to the effector mechanisms in a coherent fashion. The rules governing these two mechanisms are species-independent and delineate the parameters of all immune repertoires, whatever the somatic mechanism used to generate them.

  10. The mammalian blastocyst.

    PubMed

    Frankenberg, Stephen R; de Barros, Flavia R O; Rossant, Janet; Renfree, Marilyn B

    2016-01-01

    The blastocyst is a mammalian invention that carries the embryo from cleavage to gastrulation. For such a simple structure, it exhibits remarkable diversity in its mode of formation, morphology, longevity, and intimacy with the uterine endometrium. This review explores this diversity in the light of the evolution of viviparity, comparing the three main groups of mammals: monotremes, marsupials, and eutherians. The principal drivers in blastocyst evolution were loss of yolk coupled with evolution of the placenta. An important outcome of blastocyst development is differentiation of two extraembryonic lineages (trophoblast and hypoblast) that contribute to the placenta. While in many species trophoblast segregation is often coupled with blastocyst formation, in marsupials and at least some Afrotherians, these events do not coincide. Thus, many questions regarding the conservation of molecular mechanisms controlling these events are of great interest but currently unresolved. For further resources related to this article, please visit the WIREs website.

  11. The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes.

    PubMed

    Hevers, W; Lüddens, H

    1998-08-01

    The amino acid gamma-aminobutyric-acid (GABA) prevails in the CNS as an inhibitory neurotransmitter that mediates most of its effects through fast GABA-gated Cl(-)-channels (GABAAR). Molecular biology uncovered the complex subunit architecture of this receptor channel, in which a pentameric assembly derived from five of at least 17 mammalian subunits, grouped in the six classes alpha, beta, gamma, delta, sigma and epsilon, permits a vast number of putative receptor isoforms. The subunit composition of a particular receptor determines the specific effects of allosterical modulators of the GABAARs like benzodiazepines (BZs), barbiturates, steroids, some convulsants, polyvalent cations, and ethanol. To understand the physiology and diversity of GABAARs, the native isoforms have to be identified by their localization in the brain and by their pharmacology. In heterologous expression systems, channels require the presence of alpha, beta, and gamma subunits in order to mimic the full repertoire of native receptor responses to drugs, with the BZ pharmacology being determined by the particular alpha and gamma subunit variants. Little is known about the functional properties of the beta, delta, and epsilon subunit classes and only a few receptor subtype-specific substances like loreclezole and furosemide are known that enable the identification of defined receptor subtypes. We will summarize the pharmacology of putative receptor isoforms and emphasize the characteristics of functional channels. Knowledge of the complex pharmacology of GABAARs might eventually enable site-directed drug design to further our understanding of GABA-related disorders and of the complex interaction of excitatory and inhibitory mechanisms in neuronal processing.

  12. Gestural communication in subadult bonobos (Pan paniscus): repertoire and use.

    PubMed

    Pika, Simone; Liebal, Katja; Tomasello, Michael

    2005-01-01

    This article aims to provide an inventory of the communicative gestures used by bonobos (Pan paniscus), based on observations of subadult bonobos and descriptions of gestural signals and similar behaviors in wild and captive bonobo groups. In addition, we focus on the underlying processes of social cognition, including learning mechanisms and flexibility of gesture use (such as adjustment to the attentional state of the recipient). The subjects were seven bonobos, aged 1-8 years, living in two different groups in captivity. Twenty distinct gestures (one auditory, eight tactile, and 11 visual) were recorded. We found individual differences and similar degrees of concordance of the gestural repertoires between and within groups, which provide evidence that ontogenetic ritualization is the main learning process involved. There is suggestive evidence, however, that some form of social learning may be responsible for the acquisition of special gestures. Overall, the present study establishes that the gestural repertoire of bonobos can be characterized as flexible and adapted to various communicative circumstances, including the attentional state of the recipient. Differences from and similarities to the other African ape species are discussed.

  13. Evolving a Behavioral Repertoire for a Walking Robot.

    PubMed

    Cully, A; Mouret, J-B

    2016-01-01

    Numerous algorithms have been proposed to allow legged robots to learn to walk. However, most of these algorithms are devised to learn walking in a straight line, which is not sufficient to accomplish any real-world mission. Here we introduce the Transferability-based Behavioral Repertoire Evolution algorithm (TBR-Evolution), a novel evolutionary algorithm that simultaneously discovers several hundreds of simple walking controllers, one for each possible direction. By taking advantage of solutions that are usually discarded by evolutionary processes, TBR-Evolution is substantially faster than independently evolving each controller. Our technique relies on two methods: (1) novelty search with local competition, which searches for both high-performing and diverse solutions, and (2) the transferability approach, which combines simulations and real tests to evolve controllers for a physical robot. We evaluate this new technique on a hexapod robot. Results show that with only a few dozen short experiments performed on the robot, the algorithm learns a repertoire of controllers that allows the robot to reach every point in its reachable space. Overall, TBR-Evolution introduced a new kind of learning algorithm that simultaneously optimizes all the achievable behaviors of a robot.

  14. B cell repertoire expansion occurs in meningeal ectopic lymphoid tissue

    PubMed Central

    Lehmann-Horn, Klaus; Wang, Sheng-zhi; Sagan, Sharon A.; Zamvil, Scott S.

    2016-01-01

    Ectopic lymphoid tissues (ELT) can be found in multiple sclerosis (MS) and other organ-specific inflammatory conditions. Whether ELT in the meninges of central nervous system (CNS) autoimmune disease exhibit local germinal center (GC) activity remains unknown. In an experimental autoimmune encephalomyelitis model of CNS autoimmunity, we found activation-induced cytidine deaminase, a GC-defining enzyme, in meningeal ELT (mELT) densely populated by B and T cells. To determine GC activity in mELT, we excised meningeal lymphoid aggregates using laser capture microscopy and evaluated B cell repertoires in mELT and secondary lymphoid organs by next-generation immune repertoire sequencing. We found immunoglobulin heavy chain variable region sequences that were unique to mELT and had accumulated functionally relevant somatic mutations, together indicating localized antigen-driven affinity maturation. Our results suggest that B cells in mELT actively participate in CNS autoimmunity, which may be relevant to mELT in MS and ELT in other chronic inflammatory conditions. PMID:27942581

  15. Fitness of cell-mediated immunity independent of repertoire diversity.

    PubMed

    AbuAttieh, Mouhammed; Rebrovich, Michelle; Wettstein, Peter J; Vuk-Pavlovic, Zvezdana; Limper, Andrew H; Platt, Jeffrey L; Cascalho, Marilia

    2007-03-01

    Fitness of cell-mediated immunity is thought to depend on TCR diversity; however, this concept has not been tested formally. We tested the concept using JH(-/-) mice that lack B cells and have TCR Vbeta diversity <1% that of wild-type mice and quasimonoclonal (QM) mice with oligoclonal B cells and TCR Vbeta diversity 7% that of wild-type mice. Despite having a TCR repertoire contracted >99% and defective lymphoid organogenesis, JH(-/-) mice rejected H-Y-incompatible skin grafts as rapidly as wild-type mice. JH(-/-) mice exhibited T cell priming by peptide and delayed-type hypersensitivity, although these responses were less than normal owing either to TCR repertoire contraction or defective lymphoid organogenesis. QM mice with TCR diversity contracted >90%, and normal lymphoid organs rejected H-Y incompatible skin grafts as rapidly as wild type mice and exhibited normal T cell priming and normal delayed-type hypersensitivity reactions. QM mice also resisted Pneumocystis murina like wild-type mice. Thus, cell-mediated immunity can function normally despite contractions of TCR diversity >90% and possibly >99%.

  16. The mimetic repertoire of the spotted bowerbird Ptilonorhynchus maculatus

    NASA Astrophysics Data System (ADS)

    Kelley, Laura A.; Healy, Susan D.

    2011-06-01

    Although vocal mimicry in songbirds is well documented, little is known about the function of such mimicry. One possibility is that the mimic produces the vocalisations of predatory or aggressive species to deter potential predators or competitors. Alternatively, these sounds may be learned in error as a result of their acoustic properties such as structural simplicity. We determined the mimetic repertoires of a population of male spotted bowerbirds Ptilonorhynchus maculatus, a species that mimics predatory and aggressive species. Although male mimetic repertoires contained an overabundance of vocalisations produced by species that were generally aggressive, there was also a marked prevalence of mimicry of sounds that are associated with alarm such as predator calls, alarm calls and mobbing calls, irrespective of whether the species being mimicked was aggressive or not. We propose that it may be the alarming context in which these sounds are first heard that may lead both to their acquisition and to their later reproduction. We suggest that enhanced learning capability during acute stress may explain vocal mimicry in many species that mimic sounds associated with alarm.

  17. Antibody Subclass Repertoire and Graft Outcome Following Solid Organ Transplantation

    PubMed Central

    Valenzuela, Nicole M.; Hickey, Michelle J.; Reed, Elaine F.

    2016-01-01

    Long-term outcomes in solid organ transplantation are constrained by the development of donor-specific alloantibodies (DSA) against human leukocyte antigen (HLA) and other targets, which elicit antibody-mediated rejection (ABMR). However, antibody-mediated graft injury represents a broad continuum, from extensive complement activation and tissue damage compromising the function of the transplanted organ, to histological manifestations of endothelial cell injury and mononuclear cell infiltration but without concurrent allograft dysfunction. In addition, while transplant recipients with DSA as a whole fare worse than those without, a substantial minority of patients with DSA do not experience poorer graft outcome. Taken together, these observations suggest that not all DSA are equally pathogenic. Antibody effector functions are controlled by a number of factors, including antibody concentration, antigen availability, and antibody isotype/subclass. Antibody isotype is specified by many integrated signals, including the antigen itself as well as from antigen-presenting cells or helper T cells. To date, a number of studies have described the repertoire of IgG subclasses directed against HLA in pretransplant patients and evaluated the clinical impact of different DSA IgG subclasses on allograft outcome. This review will summarize what is known about the repertoire of antibodies to HLA and non-HLA targets in transplantation, focusing on the distribution of IgG subclasses, as well as the general biology, etiology, and mechanisms of injury of different humoral factors. PMID:27822209

  18. The Role of Atomic Repertoires in Complex Behavior

    PubMed Central

    Palmer, David C

    2012-01-01

    Evolution and reinforcement shape adaptive forms and adaptive behavior through many cycles of blind variation and selection, and therein lie their parsimony and power. Human behavior is distinctive in that this shaping process is commonly “short circuited”: Critical variations are induced in a single trial. The processes by which this economy is accomplished have a common feature: They all exploit one or more atomic repertoires, elementary units of behavior each under control of a distinctive stimulus. By appropriate arrangements of these discriminative stimuli, an indefinite number of permutations of atomic units can be evoked. When such a permutation satisfies a second contingency, it can come under control of the relevant context, and the explicit arrangement of discriminative stimuli will no longer be required. Consequently, innovations in adaptive behavior can spread rapidly through the population. A consideration of atomic repertoires informs our interpretation of generalized operants and other phenomena that are otherwise difficult to explain. Observational learning is discussed as a case in point. PMID:22942536

  19. Origination of the Protein Fold Repertoire from Oily Pluripotent Peptides

    PubMed Central

    Mannige, Ranjan V.

    2014-01-01

    While the repertoire of protein folds that exists today underlies most of life’s capabilities, our mechanistic picture of protein fold origination is incomplete. This paper discusses a hypothetical mechanism for the emergence of the protein fold repertoire from highly dynamic and collapsed peptides, exemplified by peptides with high oil content or hydrophobicity. These peptides are called pluripotent to emphasize their capacity to evolve into numerous folds transiently available to them. As evidence, the paper will discuss previous simulation work on the superior fold evolvability of oily peptides, trace (“fossil”) evidence within proteomes seen today, and a general relationship between protein dynamism and evolvability. Aside from implications on the origination of protein folds, the hypothesis implies that the vanishing utility of a random peptide in protein origination may be relatively exaggerated, as some random peptides with a certain composition (e.g., oily) may fare better than others. In later sections, the hypothesis is discussed in the context of existing discussions regarding the spontaneous origination of biomolecules. PMID:28250375

  20. Expression of mammalian membrane proteins in mammalian cells using Semliki Forest virus vectors.

    PubMed

    Lundstrom, Kenneth

    2010-01-01

    One of the major bottlenecks in drug screening and structural biology on membrane proteins has for a long time been the expression of recombinant protein in sufficient quality and quantity. The expression has been evaluated in all existing expression systems, from cell-free translation and bacterial systems to expression in animal cells. In contrast to soluble proteins, the expression levels have been relatively low due to the following reasons: The topology of membrane proteins requires special, posttranslational processing, folding, and insertion into membranes, which often are mammalian cell specific. Despite these strict demands, functional membrane proteins (G protein-coupled receptors, ion channels, and transporters) have been successfully expressed in bacterial, yeast, and insect cells. A general drawback observed in prokaryotic cells is that accumulation of foreign protein in membranes is toxic and results in growth arrest and therefore low yields of recombinant protein.In this chapter, the focus is on expression of recombinant mammalian membrane proteins in mammalian host cells, particularly applying Semliki Forest virus (SFV) vectors. Replication-deficient SFV vectors are rapidly generated at high titers in BHK-21 (Baby Hamster Kidney) cells, which then are applied for a broad range of mammalian and nonmammalian cells. The SFV system has provided high expression levels of topologically different proteins, especially for membrane proteins. Robust ligand-binding assays and functional coupling to G proteins and electrophysiological recordings have made the SFV system an attractive tool in drug discovery. Furthermore, the high susceptibility of SFV vectors to primary neurons has allowed various applications in neuroscience. Establishment of large-scale production in mammalian adherent and suspension cultures has allowed production of hundreds of milligrams of membrane proteins that has allowed their submission to serious structural biology approaches. In this

  1. Mammalian clock output mechanisms.

    PubMed

    Kalsbeek, Andries; Yi, Chun-Xia; Cailotto, Cathy; la Fleur, Susanne E; Fliers, Eric; Buijs, Ruud M

    2011-06-30

    In mammals many behaviours (e.g. sleep-wake, feeding) as well as physiological (e.g. body temperature, blood pressure) and endocrine (e.g. plasma corticosterone concentration) events display a 24 h rhythmicity. These 24 h rhythms are induced by a timing system that is composed of central and peripheral clocks. The highly co-ordinated output of the hypothalamic biological clock not only controls the daily rhythm in sleep-wake (or feeding-fasting) behaviour, but also exerts a direct control over many aspects of hormone release and energy metabolism. First, we present the anatomical connections used by the mammalian biological clock to enforce its endogenous rhythmicity on the rest of the body, especially the neuro-endocrine and energy homoeostatic systems. Subsequently, we review a number of physiological experiments investigating the functional significance of this neuro-anatomical substrate. Together, this overview of experimental data reveals a highly specialized organization of connections between the hypothalamic pacemaker and neuro-endocrine system as well as the pre-sympathetic and pre-parasympathetic branches of the autonomic nervous system.

  2. The Mammalian Septin Interactome

    PubMed Central

    Neubauer, Katharina; Zieger, Barbara

    2017-01-01

    Septins are GTP-binding and membrane-interacting proteins with a highly conserved domain structure involved in various cellular processes, including cytoskeleton organization, cytokinesis, and membrane dynamics. To date, 13 different septin genes have been identified in mammals (SEPT1 to SEPT12 and SEPT14), which can be classified into four distinct subgroups based on the sequence homology of their domain structure (SEPT2, SEPT3, SEPT6, and SEPT7 subgroup). The family members of these subgroups have a strong affinity for other septins and form apolar tri-, hexa-, or octameric complexes consisting of multiple septin polypeptides. The first characterized core complex is the hetero-trimer SEPT2-6-7. Within these complexes single septins can be exchanged in a subgroup-specific manner. Hexamers contain SEPT2 and SEPT6 subgroup members and SEPT7 in two copies each whereas the octamers additionally comprise two SEPT9 subgroup septins. The various isoforms seem to determine the function and regulation of the septin complex. Septins self-assemble into higher-order structures, including filaments and rings in orders, which are typical for different cell types. Misregulation of septins leads to human diseases such as neurodegenerative and bleeding disorders. In non-dividing cells such as neuronal tissue and platelets septins have been associated with exocytosis. However, many mechanistic details and roles attributed to septins are poorly understood. We describe here some important mammalian septin interactions with a special focus on the clinically relevant septin interactions. PMID:28224124

  3. A Rosetta stone of mammalian genetics.

    PubMed

    Nadeau, J H; Grant, P L; Mankala, S; Reiner, A H; Richardson, J E; Eppig, J T

    1995-01-26

    The Mammalian Comparative Database provides genetic maps of mammalian species. Comparative maps are valuable aids for predicting linkages, developing animal models and studying genome organization and evolution.

  4. Stem Cells in Mammalian Gonads.

    PubMed

    Wu, Ji; Ding, Xinbao; Wang, Jian

    Stem cells have great value in clinical application because of their ability to self-renew and their potential to differentiate into many different cell types. Mammalian gonads, including testes for males and ovaries for females, are composed of germline and somatic cells. In male mammals, spermatogonial stem cells maintain spermatogenesis which occurs continuously in adult testis. Likewise, a growing body of evidence demonstrated that female germline stem cells could be found in mammalian ovaries. Meanwhile, prior studies have shown that somatic stem cells exist in both testes and ovaries. In this chapter, we focus on mammalian gonad stem cells and discuss their characteristics as well as differentiation potentials.

  5. TRGV and TRDV repertoire distribution and clonality of T cells from umbilical cord blood.

    PubMed

    Li, Yangqiu; Chen, Shaohua; Yang, Lijian; Li, Bo; Chan, John Yeuk-Hon; Cai, Dongqing

    2009-01-01

    Umbilical cord blood (CB) has been used as a valuable source of hematopoietic stem cells for allogeneic transplantation, specific CTL response and immunotherapy for decades. We previously analyzed the distribution and clonality of T-cell receptor alpha and beta variable region (TRAV) and (TRBV) of the subfamily T cell receptors in T cells from umbilical cord blood. Recent data indicated that gammadelta(+) T cells may play an important role in mediating the graft versus leukemia effect after stem cells transplantation and in anti-cancer response. In order to further characterize the repertoire of CB T-cells, the frequency of alphabeta(+) and gammadelta(+) T cells were examined in CB by FACS. The CDR3 size of 4 TRGV and 8 TRDV subfamily genes were analyzed in mononuclear cells (MCs) from 16 CB samples, using RT-PCR and genescan technique. To determine the expression level of TRGV subfamily genes, we performed quantitative analysis of TRGVI-III subfamilies by real-time PCR. Low percentage of CD3(+)TCRgammadelta(+) cells was observed in CB. The frequency of expression in TRGVI, TRGVII and TRGVIII in CBMCs was 93.75%, 81.25% and 56.25%, respectively. The mean value of the number of expressed TRDV subfamilies in CBMCs is higher than that from adult peripheral blood (PB) group. The frequently expressed members in CB were TRDV1 (100%), TRDV2 (93.75%), TRDV8 (93.75%) and TRDV3 (81.25%), respectively. The frequencies of TRDV5 and TRDV8 in CBMCs were significantly higher than those from PBMCs. Most of the PCR products of TRGV and TRDV subfamilies from 10 CB samples displayed polyclonal rearrangement pattern, whereas one or two PCR products from 6 CB samples showed oligoclonality or biclonality. In contrast, PCR products from 9 of 10 adult healthy controls contained at least an oligoclonal peak in different TRGV or TRDV subfamilies respectively. The pattern of TRGV subfamily expression level in CBMCs was TRGVI>TRGVIII>TRGVII, and in contrast, TRGVII>TRGVI>TRGVIII was found in

  6. Using Lag Schedules to Strengthen the Intraverbal Repertoires of Children with Autism

    ERIC Educational Resources Information Center

    Contreras, Bethany P.; Betz, Alison M.

    2016-01-01

    Previous research has demonstrated the utility of using lag schedules of reinforcement to increase response variability of children with autism. However, little research has evaluated whether the lag schedule promotes variability from within an already-established repertoire or expands the current repertoire by promoting the use of new responses…

  7. Lineage Structure of the Human Antibody Repertoire in Response to Influenza Vaccination

    PubMed Central

    Jiang, Ning; He, Jiankui; Weinstein, Joshua A.; Penland, Lolita; Sasaki, Sanae; He, Xiao-Song; Dekker, Cornelia L.; Zheng, Nai-ying; Huang, Min; Sullivan, Meghan; Wilson, Patrick C.; Greenberg, Harry B.; Davis, Mark M.; Fisher, Daniel S.; Quake, Stephen R.

    2013-01-01

    The human antibody repertoire is one of the most important defenses against infectious disease, and the development of vaccines has enabled the conferral of targeted protection to specific pathogens. However, there are many challenges to measuring and analyzing the immunoglobulin sequence repertoire, such as the fact that each B cell contains a distinct antibody sequence encoded in its genome, that the antibody repertoire is not constant but changes over time, and the high similarity between antibody sequences. We have addressed this challenge by using high-throughput long read sequencing to perform immunogenomic characterization of expressed human antibody repertoires in the context of influenza vaccination. Informatic analysis of 5 million antibody heavy chain sequences from healthy individuals allowed us to perform global characterizations of isotype distributions, determine the lineage structure of the repertoire and measure age and antigen related mutational activity. Our analysis of the clonal structure and mutational distribution of individuals’ repertoires shows that elderly subjects have a decreased number of lineages but an increased pre-vaccination mutation load in their repertoire and that some of these subjects have an oligoclonal character to their repertoire in which the diversity of the lineages is greatly reduced relative to younger subjects. We have thus shown that global analysis of the immune system’s clonal structure provides direct insight into the effects of vaccination and provides a detailed molecular portrait of age-related effects. PMID:23390249

  8. Repertoires: How to Transform a Project into a Research Community

    PubMed Central

    Leonelli, Sabina; Ankeny, Rachel A.

    2015-01-01

    How effectively communities of scientists come together and co-operate is crucial both to the quality of research outputs and to the extent to which such outputs integrate insights, data and methods from a variety of fields, laboratories and locations around the globe. This essay focuses on the ensemble of material and social conditions that makes it possible for a short-term collaboration, set up to accomplish a specific task, to give rise to relatively stable communities of researchers. We refer to these distinctive features as repertoires, and investigate their development and implementation across three examples of collaborative research in the life sciences. We conclude that whether a particular project ends up fostering the emergence of a resilient research community is partly determined by the degree of attention and care devoted by researchers to material and social elements beyond the specific research questions under consideration. PMID:26412866

  9. Natural Cytotoxicity Receptors: Broader Expression Patterns and Functions in Innate and Adaptive Immune Cells

    PubMed Central

    Hudspeth, Kelly; Silva-Santos, Bruno; Mavilio, Domenico

    2013-01-01

    Natural cytotoxicity receptors (NCRs) have been classically defined as activating receptors delivering potent signals to Natural Killer (NK) cells in order to lyze harmful cells and to produce inflammatory cytokines. Indeed, the elicitation of NK cell effector functions after engagement of NCRs with their ligands on tumor or virus infected cells without the need for prior antigen recognition is one of the main mechanisms that allow a rapid clearance of target cells. The three known NCRs, NKp46, NKp44, and NKp30, comprise a family of germ-line encoded Ig-like trans-membrane (TM) receptors. Until recently, NCRs were thought to be NK cell specific surface molecules, thus making it possible to easily distinguish NK cells from phenotypically similar cell types. Moreover, it has also been found that the surface expression of NKp46 is conserved on NK cells across mammalian species. This discovery allowed for the use of NKp46 as a reliable marker to identify NK cells in different animal models, a comparison that was not possible before due to the lack of a common and comprehensive receptor repertoire between different species. However, several studies over the recent few years indicated that NCR expression is not exclusively confined to NK cells, but is also present on populations of T as well as of NK-like lymphocytes. These insights raised the hypothesis that the induced expression of NCRs on certain T cell subsets is governed by defined mechanisms involving the engagement of the T cell receptor (TCR) and the action of pro-inflammatory cytokines. In turn, the acquisition of NCRs by T cell subsets is also associated with a functional independence of these Ig-like TM receptors from TCR signaling. Here, we review these novel findings with respect to NCR-mediated functions of NK cells and we also discuss the functional consequences of NCR expression on non-NK cells, with a particular focus on the T cell compartment. PMID:23518691

  10. Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination

    PubMed Central

    Lee, Jiwon; Boutz, Daniel R; Chromikova, Veronika; Joyce, M Gordon; Vollmers, Christopher; Leung, Kwanyee; Horton, Andrew P; DeKosky, Brandon J; Lee, Chang-Han; Lavinder, Jason J; Murrin, Ellen M; Chrysostomou, Constantine; Hoi, Kam Hon; Tsybovsky, Yaroslav; Thomas, Paul V; Druz, Aliaksandr; Zhang, Baoshan; Zhang, Yi; Wang, Lingshu; Kong, Wing-Pui; Park, Daechan; Popova, Lyubov I; Dekker, Cornelia L; Davis, Mark M; Carter, Chalise E; Ross, Ted M; Ellington, Andrew D; Wilson, Patrick C; Marcotte, Edward M; Mascola, John R; Ippolito, Gregory C; Krammer, Florian; Quake, Stephen R; Kwong, Peter D; Georgiou, George

    2017-01-01

    Molecular understanding of serological immunity to influenza has been confounded by the complexity of the polyclonal antibody response in humans. Here we used high-resolution proteomics analysis of immunoglobulin (referred to as Ig-seq) coupled with high-throughput sequencing of transcripts encoding B cell receptors (BCR-seq) to quantitatively determine the antibody repertoire at the individual clonotype level in the sera of young adults before and after vaccination with trivalent seasonal influenza vaccine. The serum repertoire comprised between 40 and 147 clonotypes that were specific to each of the three monovalent components of the trivalent influenza vaccine, with boosted pre-existing clonotypes accounting for ~60% of the response. An unexpectedly high fraction of serum antibodies recognized both the H1 and H3 monovalent vaccines. Recombinant versions of these H1 + H3 cross-reactive antibodies showed broad binding to hemagglutinins (HAs) from previously circulating virus strains; several of these antibodies, which were prevalent in the serum of multiple donors, recognized the same conserved epitope in the HA head domain. Although the HA-head-specific H1 + H3 antibodies did not show neutralization activity in vitro, they protected mice against infection with the H1N1 and H3N2 virus strains when administered before or after challenge. Collectively, our data reveal unanticipated insights regarding the serological response to influenza vaccination and raise questions about the added benefits of using a quadrivalent vaccine instead of a trivalent vaccine. PMID:27820605

  11. GvL effects in T-prolymphocytic leukemia: evidence from MRD kinetics and TCR repertoire analyses.

    PubMed

    Sellner, L; Brüggemann, M; Schlitt, M; Knecht, H; Herrmann, D; Reigl, T; Krejci, A; Bystry, V; Darzentas, N; Rieger, M; Dietrich, S; Luft, T; Ho, A D; Kneba, M; Dreger, P

    2016-12-12

    Allogeneic stem cell transplantation (alloSCT) is used for treating patients with T-prolymphocytic leukemia (T-PLL). However, direct evidence of GvL activity in T-PLL is lacking. We correlated minimal residual disease (MRD) kinetics with immune interventions and T-cell receptor (TCR) repertoire diversity alterations in patients after alloSCT for T-PLL. Longitudinal quantitative MRD monitoring was performed by clone-specific real-time PCR of TCR rearrangements (n=7), and TCR repertoire diversity assessment by next-generation sequencing (NGS; n=3) Although post-transplant immunomodulation (immunosuppression tapering or donor lymphocyte infusions) resulted in significant reduction (>1 log) of MRD levels in 7 of 10 occasions, durable MRD clearance was observed in only two patients. In all three patients analyzed by TCR-NGS, MRD responses were reproducibly associated with a shift from a clonal, T-PLL-driven profile to a polyclonal signature. Novel clonotypes that could explain a clonal GvL effect did not emerge. In conclusion, TCR-based MRD quantification appears to be a suitable tool for monitoring and guiding treatment interventions in T-PLL. The MRD responses to immune modulation observed here provide first molecular evidence for GvL activity in T-PLL which, however, may be often only transient and reliant on a poly-/oligoclonal rather than a monoclonal T-cell response.Bone Marrow Transplantation advance online publication, 12 December 2016; doi:10.1038/bmt.2016.305.

  12. Maturation of the mammalian secretome

    PubMed Central

    Simpson, Jeremy C; Mateos, Alvaro; Pepperkok, Rainer

    2007-01-01

    A recent use of quantitative proteomics to determine the constituents of the endoplasmic reticulum and Golgi complex is discussed in the light of other available methodologies for cataloging the proteins associated with the mammalian secretory pathway. PMID:17472737

  13. Mammalian DNA Repair. Final Report

    SciTech Connect

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  14. Mammalian social odours: attraction and individual recognition

    PubMed Central

    Brennan, Peter A; Kendrick, Keith M

    2006-01-01

    Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent–offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor. The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory

  15. Maintenance of the EBV-specific CD8+ TCRαβ repertoire in immunosuppressed lung transplant recipients

    PubMed Central

    Nguyen, Thi HO; Bird, Nicola L; Grant, Emma J; Miles, John J; Thomas, Paul G; Kotsimbos, Tom C; Mifsud, Nicole A; Kedzierska, Katherine

    2017-01-01

    Epstein-Barr virus (EBV) is one of the most common viruses in humans, capable of causing life-threatening infections and cancers in immunocompromised individuals. Although CD8+ T cells provide key protection against EBV, the persistence and dynamics of specific T-cell receptor (TCR) clones during immunosuppression in transplant patients is largely unknown. For the first time, we used a novel single-cell TCRαβ multiplex-nested reverse transcriptase PCR to dissect TCRαβ clonal diversity within GLCTLVAML (GLC)-specific CD8+ T cells in healthy individuals and immunocompromised lung transplant recipients. The GLC peptide presented by HLA-A*02:01 is one of the most immunogenic T-cell targets from the EBV proteome. We found that the GLC-specific TCRαβ repertoire was heavily biased toward TRAV5 and encompassed five classes of public TCRαβs, suggesting that these clonotypes are preferentially utilized following infection. We identified that a common TRAV5 was diversely paired with different TRAJ and TRBV/TRBJ genes, in both immunocompetent and immunocompromised individuals, with an average of 12 different TCRαβ clonotypes/donor. Moreover, pre-transplant GLC-specific TCRαβ repertoires were relatively stable over 1 year post transplant under immunosuppression in the absence or presence of EBV reactivation. In addition, we provide the first evidence of early GLC-specific CD8+ T cells at 87 days post transplant, which preceded clinical EBV detection at 242 days in an EBV-seronegative patient receiving a lung allograft from an EBV-seropositive donor. This was associated with a relatively stable TCRαβ repertoire after CD8+ T-cell expansion. Our findings provide insights into the composition and temporal dynamics of the EBV-specific TCRαβ repertoire in immunocompromised transplant patients and suggest that the early detection of EBV-specific T cells might be a predictor of ensuing EBV blood viremia. PMID:27507557

  16. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans.

    PubMed

    Muegge, Brian D; Kuczynski, Justin; Knights, Dan; Clemente, Jose C; González, Antonio; Fontana, Luigi; Henrissat, Bernard; Knight, Rob; Gordon, Jeffrey I

    2011-05-20

    Coevolution of mammals and their gut microbiota has profoundly affected their radiation into myriad habitats. We used shotgun sequencing of microbial community DNA and targeted sequencing of bacterial 16S ribosomal RNA genes to gain an understanding of how microbial communities adapt to extremes of diet. We sampled fecal DNA from 33 mammalian species and 18 humans who kept detailed diet records, and we found that the adaptation of the microbiota to diet is similar across different mammalian lineages. Functional repertoires of microbiome genes, such as those encoding carbohydrate-active enzymes and proteases, can be predicted from bacterial species assemblages. These results illustrate the value of characterizing vertebrate gut microbiomes to understand host evolutionary histories at a supraorganismal level.

  17. Immunoglobulin gene repertoire in ocular adnexal lymphomas: hints on the nature of the antigenic stimulation.

    PubMed

    Dagklis, A; Ponzoni, M; Govi, S; Cangi, M G; Pasini, E; Charlotte, F; Vino, A; Doglioni, C; Davì, F; Lossos, I S; Ntountas, I; Papadaki, T; Dolcetti, R; Ferreri, A J M; Stamatopoulos, K; Ghia, P

    2012-04-01

    Evidence from certain geographical areas links lymphomas of the ocular adnexa marginal zone B-cell lymphomas (OAMZL) with Chlamydophila psittaci (Cp) infection, suggesting that lymphoma development is dependent upon chronic stimulation by persistent infections. Notwithstanding that, the actual immunopathogenetical mechanisms have not yet been elucidated. As in other B-cell lymphomas, insight into this issue, especially with regard to potential selecting ligands, could be provided by analysis of the immunoglobulin (IG) receptors of the malignant clones. To this end, we studied the molecular features of IGs in 44 patients with OAMZL (40% Cp-positive), identifying features suggestive of a pathogenic mechanism of autoreactivity. Herein, we show that lymphoma cells express a distinctive IG repertoire, with electropositive antigen (Ag)-binding sites, reminiscent of autoantibodies (auto-Abs) recognizing DNA. Additionally, five (11%) cases of OAMZL expressed IGs homologous with autoreactive Abs or IGs of patients with chronic lymphocytic leukemia, a disease known for the expression of autoreactive IGs by neoplastic cells. In contrast, no similarity with known anti-Chlamydophila Abs was found. Taken together, these results strongly indicate that OAMZL may originate from B cells selected for their capability to bind Ags and, in particular, auto-Ags. In OAMZL associated with Cp infection, the pathogen likely acts indirectly on the malignant B cells, promoting the development of an inflammatory milieu, where auto-Ags could be exposed and presented, driving proliferation and expansion of self-reactive B cells.

  18. Extremely long range chromatin loops link topological domains to facilitate a diverse antibody repertoire

    PubMed Central

    Montefiori, Lindsey; Wuerffel, Robert; Roqueiro, Damian; Lajoie, Bryan; Guo, Changying; Gerasimova, Tatiana; De, Supriyo; Wood, William; Becker, Kevin G.; Dekker, Job; Liang, Jie; Sen, Ranjan; Kenter, Amy L.

    2015-01-01

    SUMMARY Early B cell development is characterized by large scale Igh locus contraction prior to V(D)J recombination to facilitate a highly diverse Ig repertoire. However, an understanding of the molecular architecture that mediates locus contraction remains unclear. We have combined high resolution chromosome conformation capture (3C) techniques with 3D DNA FISH to identify three conserved topological sub-domains. Each of these topological folds encompasses a major VH gene family that become juxtaposed in pro-B cells via Mb-scale chromatin looping. The transcription factor Pax5 organizes the sub-domain that spans the VHJ558 gene family. In its absence the J558 VH genes fail to associate with the proximal VH genes, thereby providing a plausible explanation for reduced VHJ558 gene rearrangements in Pax5-deficient pro-B cells. We propose that Igh locus contraction is the cumulative effect of several independently controlled chromatin sub-domains that provide the structural infrastructure to coordinate optimal antigen receptor assembly. PMID:26804913

  19. The application of real-time PCR to the analysis of T cell repertoires

    PubMed Central

    Wettstein, Peter; Strausbauch, Michael; Therneau, Terry; Borson, Nancy

    2008-01-01

    The diversity of T-cell populations is determined by the spectrum of antigen-specific T-cell receptors (TCRs) that are heterodimers of α and β subunits encoded by rearranged combinations of variable (AV and BV), joining (AJ and BJ), and constant region genes (AC and BC). We have developed a novel approach for analysis of β transcript diversity in mice with a real-time PCR-based method that uses a matrix of BV- and BJ-specific primers to amplify 240 distinct BV–BJ combinations. Defined endpoints (Ct values) and dissociation curves are generated for each BV–BJ combination and the Ct values are consolidated in a matrix that characterizes the β transcript diversity of each RNA sample. Relative diversities of BV–BJ combinations in individual RNA samples are further described by estimates of scaled entropy. A skin allograft system was used to demonstrate that dissection of repertoires into 240 BV–BJ combinations increases efficiency of identifying and sequencing β transcripts that are overrepresented at inflammatory sites. These BV–BJ matrices should generate greater investigation in laboratory and clinical settings due to increased throughput, resolution and identification of overrepresented TCR transcripts. PMID:18835849

  20. Structural repertoire of HIV-1-neutralizing antibodies targeting the CD4 supersite in 14 donors

    PubMed Central

    Zhou, Tongqing; Lynch, Rebecca M.; Chen, Lei; Acharya, Priyamvada; Wu, Xueling; Doria-Rose, Nicole A.; Joyce, M. Gordon; Lingwood, Daniel; Soto, Cinque; Bailer, Robert T.; Ernandes, Michael J.; Kong, Rui; Longo, Nancy S.; Louder, Mark K.; McKee, Krisha; O’Dell, Sijy; Schmidt, Stephen D.; Tran, Lillian; Yang, Zhongjia; Druz, Aliaksandr; Luongo, Timothy S.; Moquin, Stephanie; Srivatsan, Sanjay; Yang, Yongping; Zhang, Baoshan; Zheng, Anqi; Pancera, Marie; Kirys, Tatsiana; Georgiev, Ivelin S.; Gindin, Tatyana; Peng, Hung-Pin; Yang, An-Suei; Mullikin, James C.; Gray, Matthew D.; Stamatatos, Leonidas; Burton, Dennis R.; Koff, Wayne C.; Cohen, Myron S.; Haynes, Barton F.; Casazza, Joseph P.; Connors, Mark; Corti, Davide; Lanzavecchia, Antonio; Sattentau, Quentin J.; Weiss, Robin A.; West, Anthony P.; Bjorkman, Pamela J.; Scheid, Johannes F.; Nussenzweig, Michel C.; Shapiro, Lawrence; Mascola, John R.; Kwong, Peter D.

    2015-01-01

    The site on the HIV-1 gp120 glycoprotein that binds the CD4 receptor is recognized by broadly reactive antibodies, several of which neutralize over 90% of HIV-1 strains. To understand how antibodies achieve such neutralization, we isolated CD4-binding-site (CD4bs) antibodies and analyzed 16 co-crystal structures –8 determined here– of CD4bs antibodies from 14 donors. The 16 antibodies segregated by recognition mode and developmental ontogeny into two types: CDR H3-dominated and VH-gene-restricted. Both could achieve greater than 80% neutralization breadth, and both could develop in the same donor. Although paratope chemistries differed, all 16 gp120-CD4bs antibody complexes showed geometric similarity, with antibody-neutralization breadth correlating with antibody-angle of approach relative to the most effective antibody of each type. The repertoire for effective recognition of the CD4 supersite thus comprises antibodies with distinct paratopes arrayed about two optimal geometric orientations, one achieved by CDR H3 ontogenies and the other achieved by VH-gene-restricted ontogenies. PMID:26004070

  1. Standardizing scavenger receptor nomenclature.

    PubMed

    Prabhudas, Mercy; Bowdish, Dawn; Drickamer, Kurt; Febbraio, Maria; Herz, Joachim; Kobzik, Lester; Krieger, Monty; Loike, John; Means, Terry K; Moestrup, Soren K; Post, Steven; Sawamura, Tatsuya; Silverstein, Samuel; Wang, Xiang-Yang; El Khoury, Joseph

    2014-03-01

    Scavenger receptors constitute a large family of proteins that are structurally diverse and participate in a wide range of biological functions. These receptors are expressed predominantly by myeloid cells and recognize a variety of ligands, including endogenous and modified host-derived molecules and microbial pathogens. There are currently eight classes of scavenger receptors, many of which have multiple names, leading to inconsistencies and confusion in the literature. To address this problem, a workshop was organized by the U.S. National Institute of Allergy and Infectious Diseases, National Institutes of Health to help develop a clear definition of scavenger receptors and a standardized nomenclature based on that definition. Fifteen experts in the scavenger receptor field attended the workshop and, after extensive discussion, reached a consensus regarding the definition of scavenger receptors and a proposed scavenger receptor nomenclature. Scavenger receptors were defined as cell surface receptors that typically bind multiple ligands and promote the removal of non-self or altered-self targets. They often function by mechanisms that include endocytosis, phagocytosis, adhesion, and signaling that ultimately lead to the elimination of degraded or harmful substances. Based on this definition, nomenclature and classification of these receptors into 10 classes were proposed. The discussion and nomenclature recommendations described in this report only refer to mammalian scavenger receptors. The purpose of this article is to describe the proposed mammalian nomenclature and classification developed at the workshop and to solicit additional feedback from the broader research community.

  2. Evolution of an expanded mannose receptor gene family.

    PubMed

    Staines, Karen; Hunt, Lawrence G; Young, John R; Butter, Colin

    2014-01-01

    Sequences of peptides from a protein specifically immunoprecipitated by an antibody, KUL01, that recognises chicken macrophages, identified a homologue of the mammalian mannose receptor, MRC1, which we called MRC1L-B. Inspection of the genomic environment of the chicken gene revealed an array of five paralogous genes, MRC1L-A to MRC1L-E, located between conserved flanking genes found either side of the single MRC1 gene in mammals. Transcripts of all five genes were detected in RNA from a macrophage cell line and other RNAs, whose sequences allowed the precise definition of spliced exons, confirming or correcting existing bioinformatic annotation. The confirmed gene structures were used to locate orthologues of all five genes in the genomes of two other avian species and of the painted turtle, all with intact coding sequences. The lizard genome had only three genes, one orthologue of MRC1L-A and two orthologues of the MRC1L-B antigen gene resulting from a recent duplication. The Xenopus genome, like that of most mammals, had only a single MRC1-like gene at the corresponding locus. MRC1L-A and MRC1L-B genes had similar cytoplasmic regions that may be indicative of similar subcellular migration and functions. Cytoplasmic regions of the other three genes were very divergent, possibly indicating the evolution of a new functional repertoire for this family of molecules, which might include novel interactions with pathogens.

  3. Characterization of the Olfactory Receptors Expressed in Human Spermatozoa

    PubMed Central

    Flegel, Caroline; Vogel, Felix; Hofreuter, Adrian; Schreiner, Benjamin S. P.; Osthold, Sandra; Veitinger, Sophie; Becker, Christian; Brockmeyer, Norbert H.; Muschol, Michael; Wennemuth, Gunther; Altmüller, Janine; Hatt, Hanns; Gisselmann, Günter

    2016-01-01

    The detection of external cues is fundamental for human spermatozoa to locate the oocyte in the female reproductive tract. This task requires a specific chemoreceptor repertoire that is expressed on the surface of human spermatozoa, which is not fully identified to date. Olfactory receptors (ORs) are candidate molecules and have been attributed to be involved in sperm chemotaxis and chemokinesis, indicating an important role in mammalian spermatozoa. An increasing importance has been suggested for spermatozoal RNA, which led us to investigate the expression of all 387 OR genes. This study provides the first comprehensive analysis of OR transcripts in human spermatozoa of several individuals by RNA-Seq. We detected 91 different transcripts in the spermatozoa samples that could be aligned to annotated OR genes. Using stranded mRNA-Seq, we detected a class of these putative OR transcripts in an antisense orientation, indicating a different function, rather than coding for a functional OR protein. Nevertheless, we were able to detect OR proteins in various compartments of human spermatozoa, indicating distinct functions in human sperm. A panel of various OR ligands induced Ca2+ signals in human spermatozoa, which could be inhibited by mibefradil. This study indicates that a variety of ORs are expressed at the mRNA and protein level in human spermatozoa. PMID:26779489

  4. "Is English Also the Place Where I Belong?": Linguistic Biographies and Expanding Communicative Repertoires in Central Java

    ERIC Educational Resources Information Center

    Zentz, Lauren

    2015-01-01

    This article employs the term "communicative repertoire" in order to highlight that when one learns any new "language", one introduces new communicative resources into a unified communicative repertoire. As repertoires represent such singular "grammars" in individuals' minds, learned communicative resources can…

  5. Impact of clonal competition for peptide-MHC complexes on the CD8[superscript +] T-cell repertoire selection in a persistent viral infection

    SciTech Connect

    Wynn, Katherine K.; Fulton, Zara; Cooper, Leanne; Silins, Sharon L.; Gras, Stephanie; Archbold, Julia K.; Tynan, Fleur E.; Miles, John J.; McCluskey, James; Burrows, Scott R.; Rossjohn, Jamie; Khanna, Rajiv

    2008-04-29

    CD8{sup +} T-cell responses to persistent viral infections are characterized by the accumulation of an oligoclonal T-cell repertoire and a reduction in the naive T-cell pool. However, the precise mechanism for this phenomenon remains elusive. Here we show that human cytomegalovirus (HCMV)-specific CD8{sup +} T cells recognizing distinct epitopes from the pp65 protein and restricted through an identical HLA class I allele (HLA B*3508) exhibited either a highly conserved public T-cell repertoire or a private, diverse T-cell response, which was uniquely altered in each donor following in vitro antigen exposure. Selection of a public T-cell receptor (TCR) was coincident with an atypical major histocompatibility complex (MHC)-peptide structure, in that the epitope adopted a helical conformation that bulged from the peptide-binding groove, while a diverse TCR profile was observed in response to the epitope that formed a flatter, more 'featureless' landscape. Clonotypes with biased TCR usage demonstrated more efficient recognition of virus-infected cells, a greater CD8 dependency, and were more terminally differentiated in their phenotype when compared with the T cells expressing diverse TCR. These findings provide new insights into our understanding on how the biology of antigen presentation in addition to the structural features of the pMHC-I might shape the T-cell repertoire and its phenotype.

  6. Dacarbazine treatment before peptide vaccination enlarges T-cell repertoire diversity of melan-a-specific, tumor-reactive CTL in melanoma patients.

    PubMed

    Palermo, Belinda; Del Bello, Duilia; Sottini, Alessandra; Serana, Federico; Ghidini, Claudia; Gualtieri, Novella; Ferraresi, Virginia; Catricalà, Caterina; Belardelli, Filippo; Proietti, Enrico; Natali, Pier Giorgio; Imberti, Luisa; Nisticò, Paola

    2010-09-15

    Combination of chemotherapy and immunotherapy to increase the effectiveness of an antitumor immune response is currently regarded as an attractive antitumor strategy. In a pilot clinical trial, we have recently documented an increase of melanoma antigen A (Melan-A)-specific, tumor-reactive, long-lasting effector-memory CD8(+) T cells after the administration of dacarbazine (DTIC) 1 day before peptide vaccination in melanoma patients. Global transcriptional analysis revealed a DTIC-induced activation of genes involved in the immune response and leukocyte activation. To identify the possible mechanisms underlying this improved immune response, we have compared the endogenous and the treatment-induced anti-Melan-A response at the clonal level in patients treated with the vaccine alone or with DTIC plus vaccine. We report a progressive widening of T-cell receptor (TCR) repertoire diversity, accompanied by high avidity and tumor reactivity, only in Melan-A-specific T-cell clones of patients treated with chemoimmunotherapy, with a trend toward longer survival. Differently, patients treated with vaccine alone showed a tendency to narrowing the TCR repertoire diversity, accompanied by a decrease of tumor lytic activity in one patient. Collectively, our findings indicate that DTIC plus vaccination shapes the TCR repertoire in terms of diversity and antitumor response, suggesting that this combined therapy could be effective in preventing melanoma relapse.

  7. Electroporation into Cultured Mammalian Embryos

    NASA Astrophysics Data System (ADS)

    Nomura, Tadashi; Takahashi, Masanori; Osumi, Noriko

    Over the last century, mammalian embryos have been used extensively as a common animal model to investigate fundamental questions in the field of developmental biology. More recently, the establishment of transgenic and gene-targeting systems in laboratory mice has enabled researchers to unveil the genetic mechanisms under lying complex developmental processes (Mak, 2007). However, our understanding of cell—cell interactions and their molecular basis in the early stages of mammalian embryogenesis is still very fragmentary. One of the major problems is the difficulty of precise manipulation and limited accessibility to mammalian embryos via uterus wall. Unfortunately, existing tissue and organotypic culture systems per se do not fully recapitulate three-dimensional, dynamic processes of organogenesis observed in vivo. Although transgenic animal technology and virus-mediated gene delivery are useful to manipulate gene expression, these techniques take much time and financial costs, which limit their use.

  8. On the Origin and Evolution of Vertebrate Olfactory Receptor Genes: Comparative Genome Analysis Among 23 Chordate Species

    PubMed Central

    2009-01-01

    Olfaction is a primitive sense in organisms. Both vertebrates and insects have receptors for detecting odor molecules in the environment, but the evolutionary origins of these genes are different. Among studied vertebrates, mammals have ∼1,000 olfactory receptor (OR) genes, whereas teleost fishes have much smaller (∼100) numbers of OR genes. To investigate the origin and evolution of vertebrate OR genes, I attempted to determine near-complete OR gene repertoires by searching whole-genome sequences of 14 nonmammalian chordates, including cephalochordates (amphioxus), urochordates (ascidian and larvacean), and vertebrates (sea lamprey, elephant shark, five teleost fishes, frog, lizard, and chicken), followed by a large-scale phylogenetic analysis in conjunction with mammalian OR genes identified from nine species. This analysis showed that the amphioxus has >30 vertebrate-type OR genes though it lacks distinctive olfactory organs, whereas all OR genes appear to have been lost in the urochordate lineage. Some groups of genes (θ, κ, and λ) that are phylogenetically nested within vertebrate OR genes showed few gene gains and losses, which is in sharp contrast to the evolutionary pattern of OR genes, suggesting that they are actually non-OR genes. Moreover, the analysis demonstrated a great difference in OR gene repertoires between aquatic and terrestrial vertebrates, reflecting the necessity for the detection of water-soluble and airborne odorants, respectively. However, a minor group (β) of genes that are atypically present in both aquatic and terrestrial vertebrates was also found. These findings should provide a critical foundation for further physiological, behavioral, and evolutionary studies of olfaction in various organisms. PMID:20333175

  9. An altered T cell repertoire in MECL-1-deficient mice.

    PubMed

    Basler, Michael; Moebius, Jacqueline; Elenich, Laura; Groettrup, Marcus; Monaco, John J

    2006-06-01

    Immunoproteasome subunits low-molecular mass polypeptide (LMP)2 and LMP7 affect Ag presentation by MHC class I molecules. In the present study, we investigated the function of the third immunosubunit LMP10/multicatalytic endopeptidase complex-like (MECL)-1 (beta2i) in MECL-1 gene-targeted mice. The number of CD8+ splenocytes in MECL-1-/- mice was 20% lower than in wild-type mice. Infection with lymphocytic choriomeningitis virus (LCMV) elicited a markedly reduced cytotoxic T cell (CTL) response to the LCMV epitopes GP276-286/Db and NP205-212/Kb in MECL-1-/- mice. The weak CTL response to GP276-286/Db was not due to an impaired generation of this epitope but was attributed to a decreased precursor frequency of GP276-286/Db-specific T cells. The expansion of TCR-Vbeta10+ T cells, which contain GP276-286/Db-specific cells, was reduced in LCMV-infected MECL-1-/- mice. Taken together, our data reveal an in vivo function of MECL-1 in codetermining the T cell repertoire for an antiviral CTL response.

  10. A comprehensive repertoire of prokaryotic species identified in human beings.

    PubMed

    Hugon, Perrine; Dufour, Jean-Charles; Colson, Philippe; Fournier, Pierre-Edouard; Sallah, Kankoe; Raoult, Didier

    2015-10-01

    The compilation of the complete prokaryotic repertoire associated with human beings as commensals or pathogens is a major goal for the scientific and medical community. The use of bacterial culture techniques remains a crucial step to describe new prokaryotic species. The large number of officially acknowledged bacterial species described since 1980 and the recent increase in the number of recognised pathogenic species have highlighted the absence of an exhaustive compilation of species isolated in human beings. By means of a thorough investigation of several large culture databases and a search of the scientific literature, we built an online database containing all human-associated prokaryotic species described, whether or not they had been validated and have standing in nomenclature. We list 2172 species that have been isolated in human beings. They were classified in 12 different phyla, mostly in the Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes phyla. Our online database is useful for both clinicians and microbiologists and forms part of the Human Microbiome Project, which aims to characterise the whole human microbiota and help improve our understanding of the human predisposition and susceptibility to infectious agents.

  11. Acoustic and behavioral repertoires of the hippopotamus (Hippopotamus amphibius).

    PubMed

    Maust-Mohl, Maria; Soltis, Joseph; Reiss, Diana

    2015-08-01

    This study describes the acoustic and behavioral repertoires of the common hippopotamus (Hippopotamus amphibius). Simultaneous audio and video recordings were collected of male and female hippos at Disney's Animal Kingdom(®). Visual inspection of spectrograms resulted in classifying signals into three main categories (burst of air, tonal, and pulsed) produced in-air, underwater, or simultaneously in both mediums. Of the total acoustic signals, most were produced underwater (80%), and the majority of the total signals were tonal (54%). Using multivariate analysis of the acoustic parameters, 11 signal types were described and differentiated. In the burst of air category, chuffs and snorts were distinguished by minimum and peak frequency, and bubble displays were described. In the tonal category, grunts, groans, screams, and whines were distinguished by several frequency measures (e.g., minimum, maximum, fundamental, peak frequency). Wheeze honks were tonal signals that often involved a chorus of overlapping calls. In the pulsed category, click trains, croaks, and growls were distinguished by frequency and duration. Video analysis demonstrated that chuffs, groans, and whines were associated with submissive contexts, while snorts, grunts, and growls were associated with dominance contexts. These results provide further information about the acoustic signals and concurrent behavior of hippos.

  12. Plasticity of the Chemoreceptor Repertoire in Drosophila melanogaster

    PubMed Central

    Zhou, Shanshan; Stone, Eric A.; Mackay, Trudy F. C.; Anholt, Robert R. H.

    2009-01-01

    For most organisms, chemosensation is critical for survival and is mediated by large families of chemoreceptor proteins, whose expression must be tuned appropriately to changes in the chemical environment. We asked whether expression of chemoreceptor genes that are clustered in the genome would be regulated independently; whether expression of certain chemoreceptor genes would be especially sensitive to environmental changes; whether groups of chemoreceptor genes undergo coordinated rexpression; and how plastic the expression of chemoreceptor genes is with regard to sex, development, reproductive state, and social context. To answer these questions we used Drosophila melanogaster, because its chemosensory systems are well characterized and both the genotype and environment can be controlled precisely. Using customized cDNA microarrays, we showed that chemoreceptor genes that are clustered in the genome undergo independent transcriptional regulation at different developmental stages and between sexes. Expression of distinct subgroups of chemoreceptor genes is sensitive to reproductive state and social interactions. Furthermore, exposure of flies only to odor of the opposite sex results in altered transcript abundance of chemoreceptor genes. These genes are distinct from those that show transcriptional plasticity when flies are allowed physical contact with same or opposite sex members. We analyzed covariance in transcript abundance of chemosensory genes across all environmental conditions and found that they segregated into 20 relatively small, biologically relevant modules of highly correlated transcripts. This finely pixilated modular organization of the chemosensory subgenome enables fine tuning of the expression of the chemoreceptor repertoire in response to ecologically relevant environmental and physiological conditions. PMID:19816562

  13. Gene repertoire of amoeba-associated giant viruses.

    PubMed

    Colson, Philippe; Raoult, Didier

    2010-01-01

    Acanthamoeba polyphaga mimivirus, Marseillevirus, and Sputnik, a virophage, are intra-amoebal viruses that have been isolated from water collected in cooling towers. They have provided fascinating data and have raised exciting questions about viruses definition and evolution. Mimivirus and Marseillevirus have been classified in the nucleo-cytoplasmic large DNA viruses (NCLDVs) class. Their genomes are the largest and fifth largest viral genomes sequenced so far. The gene repertoire of these amoeba-associated viruses can be divided into four groups: the core genome, genes acquired by lateral gene transfer, duplicated genes, and ORFans. Open reading frames (ORFs) that have homologs in the NCLDVs core gene set represent 2.9 and 6.1% of the Mimivirus and Marseillevirus gene contents, respectively. A substantial proportion of the Mimivirus, Marseillevirus and Sputnik ORFs exhibit sequence similarities to homologs found in bacteria, archaea, eukaryotes or viruses. The large amount of chimeric genes in these viral genomes might have resulted from acquisitions by lateral gene transfers, implicating sympatric bacteria and viruses with an intra-amoebal lifestyle. In addition, lineage-specific gene expansion may have played a major role in the genome shaping. Altogether, the data so far accumulated on amoeba-associated giant viruses are a powerful incentive to isolate and study additional strains to gain better understanding of their pangenome.

  14. Schizophyllum commune has an extensive and functional alternative splicing repertoire

    PubMed Central

    Gehrmann, Thies; Pelkmans, Jordi F.; Lugones, Luis G.; Wösten, Han A. B.; Abeel, Thomas; Reinders, Marcel J. T.

    2016-01-01

    Recent genome-wide studies have demonstrated that fungi possess the machinery to alternatively splice pre-mRNA. However, there has not been a systematic categorization of the functional impact of alternative splicing in a fungus. We investigate alternative splicing and its functional consequences in the model mushroom forming fungus Schizophyllum commune. Alternative splicing was demonstrated for 2,285 out of 12,988 expressed genes, resulting in 20% additional transcripts. Intron retentions were the most common alternative splicing events, accounting for 33% of all splicing events, and 43% of the events in coding regions. On the other hand, exon skipping events were rare in coding regions (1%) but enriched in UTRs where they accounted for 57% of the events. Specific functional groups, including transcription factors, contained alternatively spliced genes. Alternatively spliced transcripts were regulated differently throughout development in 19% of the 2,285 alternatively spliced genes. Notably, 69% of alternatively spliced genes have predicted alternative functionality by loss or gain of functional domains, or by acquiring alternative subcellular locations. S. commune exhibits more alternative splicing than any other studied fungus. Taken together, alternative splicing increases the complexity of the S. commune proteome considerably and provides it with a rich repertoire of alternative functionality that is exploited dynamically. PMID:27659065

  15. The antigenic repertoire of premalignant and high-risk lesions.

    PubMed

    Marquez, Juan Pablo; Stanton, Sasha E; Disis, Mary L

    2015-04-01

    Prophylactic vaccines have been a major advance in preventing the development of infections after exposure to pathogens. When contemplating an effective approach to cancer prevention, vaccines offer unique advantages over other more standard approaches: First, once appropriately stimulated, antigen-specific T cells will travel to all sites of disease and eradicate cells bearing the proteins to which the T cells have been primed by vaccination. Second, successful immunization will further result in the development of immunologic memory, providing lifelong immunologic surveillance. There is evidence of an adaptive tumor immune infiltrate even at the earliest stages of breast and colon cancer development. Furthermore, there is measurable immunity to lesion-associated antigens present in patients who will eventually develop malignancy even before cancer is clinically evident. Recent studies are beginning to unmask the preinvasive antigenic repertoire for these two malignancies. Preliminary experiments in transgenic mouse models of mammary and intestinal tumors suggest that immunization against antigens expressed in preinvasive and high-risk lesions may be effective in preventing the development of invasive malignancy.

  16. Comprehensive Repertoire of Foldable Regions within Whole Genomes

    PubMed Central

    Faure, Guilhem; Callebaut, Isabelle

    2013-01-01

    In order to get a comprehensive repertoire of foldable domains within whole proteomes, including orphan domains, we developed a novel procedure, called SEG-HCA. From only the information of a single amino acid sequence, SEG-HCA automatically delineates segments possessing high densities in hydrophobic clusters, as defined by Hydrophobic Cluster Analysis (HCA). These hydrophobic clusters mainly correspond to regular secondary structures, which together form structured or foldable regions. Genome-wide analyses revealed that SEG-HCA is opposite of disorder predictors, both addressing distinct structural states. Interestingly, there is however an overlap between the two predictions, including small segments of disordered sequences, which undergo coupled folding and binding. SEG-HCA thus gives access to these specific domains, which are generally poorly represented in domain databases. Comparison of the whole set of SEG-HCA predictions with the Conserved Domain Database (CDD) also highlighted a wide proportion of predicted large (length >50 amino acids) segments, which are CDD orphan. These orphan sequences may either correspond to highly divergent members of already known families or belong to new families of domains. Their comprehensive description thus opens new avenues to investigate new functional and/or structural features, which remained so far uncovered. Altogether, the data described here provide new insights into the protein architecture and organization throughout the three kingdoms of life. PMID:24204229

  17. Loss of naïve T-cells and repertoire constriction predict poor response to vaccination in old primates1

    PubMed Central

    Čičin-Šain, Luka; Smyk-Paerson, Sue; Currier, Noreen; Byrd, Laura; Koudelka, Caroline; Robinson, Tammie; Swarbrick, Gwendolyn; Tackitt, Shane; Legasse, Alfred; Fischer, Miranda; Nikolich-Zugich, Dragana; Park, Byung; Hobbs, Theodore; Doane, Cynthia J.; Mori, Motomi; Axthelm, Michael T.; Lewinsohn, Deborah A.; Nikolich-Žugich, Janko

    2012-01-01

    Aging is usually accompanied by diminished immune protection upon infection or vaccination. While aging results in well-characterized changes in the T-cell compartment of long-lived, outbred, and pathogen-exposed organisms, their relevance for primary antigen responses remain unclear. Therefore, it remains unclear whether and to what extent the loss of naïve T-cells, their partial replacement by oligoclonal memory populations, and the consequent constriction of T-cell receptor (TCR) repertoire, limit the antigen responses in aging primates. PMID:20483749

  18. Saccharomyces cerevisiae Produces a Yeast Substance that Exhibits Estrogenic Activity in Mammalian Systems

    NASA Astrophysics Data System (ADS)

    Feldman, David; Stathis, Peter A.; Hirst, Margaret A.; Price Stover, E.; Do, Yung S.; Kurz, Walter

    1984-06-01

    Partially purified lipid extracts of Saccharomyces cerevisiae contain a substance that displaces tritiated estradiol from rat uterine cytosol estrogen receptors. The yeast product induces estrogenic bioresponses in mammalian systems as measured by induction of progesterone receptors in cultured MCF-7 human breast cancer cells and by a uterotrophic response and progesterone receptor induction after administration to ovariectomized mice. The findings raise the possibility that bakers' yeast may be a source of environmental estrogens.

  19. Invariance and restriction toward a limited set of self-antigens characterize neonatal IgM antibody repertoires and prevail in autoreactive repertoires of healthy adults.

    PubMed

    Mouthon, L; Nobrega, A; Nicolas, N; Kaveri, S V; Barreau, C; Coutinho, A; Kazatchkine, M D

    1995-04-25

    Analysis of the reactivity of IgM with self-antigens in tissues by a quantitative immunoblotting technique showed striking invariance among newborns in the human and in the mouse. The self-reactive repertoire of IgM of adults was also markedly conserved; it comprised most anti-self reactivities that prevailed among neonates. Multivariate analysis confirmed the homogeneity of IgM repertoires of neonates toward self- and non-self-antigens. Multivariate analysis discriminated between newborn and adult repertoires for reactivity with two of five sources of self-proteins and with non-self-antigens. Our observations support the concept that naturally activated B lymphocytes are selected early in development and throughout life for reactivity with a restricted set of self-antigens.

  20. Invariance and restriction toward a limited set of self-antigens characterize neonatal IgM antibody repertoires and prevail in autoreactive repertoires of healthy adults.

    PubMed Central

    Mouthon, L; Nobrega, A; Nicolas, N; Kaveri, S V; Barreau, C; Coutinho, A; Kazatchkine, M D

    1995-01-01

    Analysis of the reactivity of IgM with self-antigens in tissues by a quantitative immunoblotting technique showed striking invariance among newborns in the human and in the mouse. The self-reactive repertoire of IgM of adults was also markedly conserved; it comprised most anti-self reactivities that prevailed among neonates. Multivariate analysis confirmed the homogeneity of IgM repertoires of neonates toward self- and non-self-antigens. Multivariate analysis discriminated between newborn and adult repertoires for reactivity with two of five sources of self-proteins and with non-self-antigens. Our observations support the concept that naturally activated B lymphocytes are selected early in development and throughout life for reactivity with a restricted set of self-antigens. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7731992

  1. Long-Term Modulation of Electrical Synapses in the Mammalian Thalamus

    NASA Astrophysics Data System (ADS)

    Landisman, Carole E.; Connors, Barry W.

    2005-12-01

    Electrical synapses are common between inhibitory neurons in the mammalian thalamus and neocortex. Synaptic modulation, which allows flexibility of communication between neurons, has been studied extensively at chemical synapses, but modulation of electrical synapses in the mammalian brain has barely been examined. We found that the activation of metabotropic glutamate receptors, via endogenous neurotransmitter or by agonist, causes long-term reduction of electrical synapse strength between the inhibitory neurons of the rat thalamic reticular nucleus.

  2. Mining the human autoantibody repertoire: isolation of potent IL17A-neutralizing monoclonal antibodies from a patient with thymoma.

    PubMed

    Beerli, Roger R; Bauer, Monika; Fritzer, Andrea; Rosen, Lindsey B; Buser, Regula B; Hanner, Markus; Maudrich, Melanie; Nebenfuehr, Mario; Toepfer, Jorge Alejandro Sepulveda; Mangold, Susanne; Bauer, Anton; Holland, Steven M; Browne, Sarah K; Meinke, Andreas

    2014-01-01

    Anti-cytokine autoantibodies have been widely reported to be present in human plasma, both in healthy subjects and in patients with underlying autoimmune conditions, such as autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) or thymic epithelial neoplasms. While often asymptomatic, they can cause or facilitate a wide range of diseases including opportunistic infections. The potential therapeutic value of specific neutralizing anti-cytokine autoantibodies has not been thoroughly investigated. Here we used mammalian cell display to isolate IL17A-specific antibodies from a thymoma patient with proven high-titer autoantibodies against the same. We identified 3 distinct clonotypes that efficiently neutralized IL17A in a cell-based in vitro assay. Their potencies were comparable to those of known neutralizing antibodies, including 2, AIN457 (secukinumab) and ixekizumab that are currently in clinical development for the treatment of various inflammatory disorders. These data clearly demonstrate that the human autoantibody repertoire can be mined for antibodies with high therapeutic potential for clinical development.

  3. Mining the human autoantibody repertoire: Isolation of potent IL17A-neutralizing monoclonal antibodies from a patient with thymoma

    PubMed Central

    Beerli, Roger R; Bauer, Monika; Fritzer, Andrea; Rosen, Lindsey B; Buser, Regula B; Hanner, Markus; Maudrich, Melanie; Nebenfuehr, Mario; Toepfer, Jorge Alejandro Sepulveda; Mangold, Susanne; Bauer, Anton; Holland, Steven M; Browne, Sarah K; Meinke, Andreas

    2014-01-01

    Anti-cytokine autoantibodies have been widely reported to be present in human plasma, both in healthy subjects and in patients with underlying autoimmune conditions, such as autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) or thymic epithelial neoplasms. While often asymptomatic, they can cause or facilitate a wide range of diseases including opportunistic infections. The potential therapeutic value of specific neutralizing anti-cytokine autoantibodies has not been thoroughly investigated. Here we used mammalian cell display to isolate IL17A-specific antibodies from a thymoma patient with proven high-titer autoantibodies against the same. We identified 3 distinct clonotypes that efficiently neutralized IL17A in a cell-based in vitro assay. Their potencies were comparable to those of known neutralizing antibodies, including 2, AIN457 (secukinumab) and ixekizumab that are currently in clinical development for the treatment of various inflammatory disorders. These data clearly demonstrate that the human autoantibody repertoire can be mined for antibodies with high therapeutic potential for clinical development. PMID:25484038

  4. Positive emotions broaden the scope of attention and thought-action repertoires

    PubMed Central

    Fredrickson, Barbara L.; Branigan, Christine

    2011-01-01

    The broaden-and-build theory (Fredrickson, 1998, 2001) hypothesises that positive emotions broaden the scope of attention and thought-action repertoires. Two experiments with 104 college students tested these hypotheses. In each, participants viewed a film that elicited (a) amusement, (b) contentment, (c) neutrality, (d) anger, or (e) anxiety. Scope of attention was assessed using a global-local visual processing task (Experiment 1) and thought-action repertoires were assessed using a Twenty Statements Test (Experiment 2). Compared to a neutral state, positive emotions broadened the scope of attention in Experiment 1 and thought-action repertoires in Experiment 2. In Experiment 2, negative emotions, relative to a neutral state, narrowed thought-action repertoires. Implications for promoting emotional well-being and physical health are discussed. PMID:21852891

  5. Robust estimates of overall immune-repertoire diversity from high-throughput measurements on samples

    PubMed Central

    Kaplinsky, Joseph; Arnaout, Ramy

    2016-01-01

    The diversity of an organism's B- and T-cell repertoires is both clinically important and a key measure of immunological complexity. However, diversity is hard to estimate by current methods, because of inherent uncertainty in the number of B- and T-cell clones that will be missing from a blood or tissue sample by chance (the missing-species problem), inevitable sampling bias, and experimental noise. To solve this problem, we developed Recon, a modified maximum-likelihood method that outputs the overall diversity of a repertoire from measurements on a sample. Recon outputs accurate, robust estimates by any of a vast set of complementary diversity measures, including species richness and entropy, at fractional repertoire coverage. It also outputs error bars and power tables, allowing robust comparisons of diversity between individuals and over time. We apply Recon to in silico and experimental immune-repertoire sequencing data sets as proof of principle for measuring diversity in large, complex systems. PMID:27302887

  6. Natural and man-made V-gene repertoires for antibody discovery

    PubMed Central

    Finlay, William J. J.; Almagro, Juan C.

    2012-01-01

    Antibodies are the fastest-growing segment of the biologics market. The success of antibody-based drugs resides in their exquisite specificity, high potency, stability, solubility, safety, and relatively inexpensive manufacturing process in comparison with other biologics. We outline here the structural studies and fundamental principles that define how antibodies interact with diverse targets. We also describe the antibody repertoires and affinity maturation mechanisms of humans, mice, and chickens, plus the use of novel single-domain antibodies in camelids and sharks. These species all utilize diverse evolutionary solutions to generate specific and high affinity antibodies and illustrate the plasticity of natural antibody repertoires. In addition, we discuss the multiple variations of man-made antibody repertoires designed and validated in the last two decades, which have served as tools to explore how the size, diversity, and composition of a repertoire impact the antibody discovery process. PMID:23162556

  7. The RNA-binding protein repertoire of Arabidopsis thaliana

    PubMed Central

    Marondedze, Claudius; Thomas, Ludivine; Serrano, Natalia L.; Lilley, Kathryn S.; Gehring, Chris

    2016-01-01

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses. PMID:27405932

  8. The gestural repertoire of the wild bonobo (Pan paniscus): a mutually understood communication system.

    PubMed

    Graham, Kirsty E; Furuichi, Takeshi; Byrne, Richard W

    2017-03-01

    In animal communication, signallers and recipients are typically different: each signal is given by one subset of individuals (members of the same age, sex, or social rank) and directed towards another. However, there is scope for signaller-recipient interchangeability in systems where most signals are potentially relevant to all age-sex groups, such as great ape gestural communication. In this study of wild bonobos (Pan paniscus), we aimed to discover whether their gestural communication is indeed a mutually understood communicative repertoire, in which all individuals can act as both signallers and recipients. While past studies have only examined the expressed repertoire, the set of gesture types that a signaller deploys, we also examined the understood repertoire, the set of gestures to which a recipient reacts in a way that satisfies the signaller. We found that most of the gestural repertoire was both expressed and understood by all age and sex groups, with few exceptions, suggesting that during their lifetimes all individuals may use and understand all gesture types. Indeed, as the number of overall gesture instances increased, so did the proportion of individuals estimated to both express and understand a gesture type. We compared the community repertoire of bonobos to that of chimpanzees, finding an 88 % overlap. Observed differences are consistent with sampling effects generated by the species' different social systems, and it is thus possible that the repertoire of gesture types available to Pan is determined biologically.

  9. Changes of TCR repertoire diversity in colorectal cancer after Erbitux (cetuximab) in combination with chemotherapy.

    PubMed

    Luo, Wei; He, Wen-Ting; Wen, Qian; Chen, Shu; Wu, Jing; Chen, Xiang-Ping; Ma, Li

    2014-01-01

    We have previous found a positive correlation between post-therapy TCR repertoire normalization and remission of colorectal cancer (CRC) patients following fluorouracil, leucovorin, and irinotecan (FOLFIRI) plus bevacizumab or Rh-endostatin therapy. To further define the TCR repertoire diversity changes following treatment in CRC patients, and confirm its potential prognostic value, the present study extended the sample size of follow-up and used an alternative therapy regime to investigate changes of TCR repertoires following Erbitux plus FOLFIRI therapy. Inclusion and exclusion criteria have been established to screen out 26 patients to receive Erbitux plus FOLFIRI therapy. Efficacy and toxicity assessment have been made for them after 3 months' treatment as well as the TCR repertoire diversity has been determined. A CDR3 complex scoring system was used to quantify the diversity of TCR repertoire. The results showing that the diversity of CD4(+) T cells in PR group was significantly higher than that of SD and PD groups, and the difference was enlargement after treatment. The diversity of CD8(+) T cells in PR group has no difference before and after treatment, but significant decrease in SD and PD group after treatment. In conclusion, analysis the diversity of T cell repertoire has an important prognosis value for CRC patients.

  10. Temporal regularity increases with repertoire complexity in the Australian pied butcherbird's song

    PubMed Central

    Taylor, Hollis; Scharff, Constance; Rothenberg, David; Parra, Lucas C.; Tchernichovski, Ofer

    2016-01-01

    Music maintains a characteristic balance between repetition and novelty. Here, we report a similar balance in singing performances of free-living Australian pied butcherbirds. Their songs include many phrase types. The more phrase types in a bird's repertoire, the more diverse the singing performance can be. However, without sufficient temporal organization, avian listeners may find diverse singing performances difficult to perceive and memorize. We tested for a correlation between the complexity of song repertoire and the temporal regularity of singing performance. We found that different phrase types often share motifs (notes or stereotyped groups of notes). These shared motifs reappeared in strikingly regular temporal intervals across different phrase types, over hundreds of phrases produced without interruption by each bird. We developed a statistical estimate to quantify the degree to which phrase transition structure is optimized for maximizing the regularity of shared motifs. We found that transition probabilities between phrase types tend to maximize regularity in the repetition of shared motifs, but only in birds of high repertoire complexity. Conversely, in birds of low repertoire complexity, shared motifs were produced with less regularity. The strong correlation between repertoire complexity and motif regularity suggests that birds possess a mechanism that regulates the temporal placement of shared motifs in a manner that takes repertoire complexity into account. We discuss alternative musical, mechanistic and ecological explanations to this effect. PMID:27703699

  11. Novel underwater soundscape: acoustic repertoire of plainfin midshipman fish.

    PubMed

    McIver, Eileen L; Marchaterre, Margaret A; Rice, Aaron N; Bass, Andrew H

    2014-07-01

    Toadfishes are among the best-known groups of sound-producing (vocal) fishes and include species commonly known as toadfish and midshipman. Although midshipman have been the subject of extensive investigation of the neural mechanisms of vocalization, this is the first comprehensive, quantitative analysis of the spectro-temporal characters of their acoustic signals and one of the few for fishes in general. Field recordings of territorial, nest-guarding male midshipman during the breeding season identified a diverse vocal repertoire composed of three basic sound types that varied widely in duration, harmonic structure and degree of amplitude modulation (AM): 'hum', 'grunt' and 'growl'. Hum duration varied nearly 1000-fold, lasting for minutes at a time, with stable harmonic stacks and little envelope modulation throughout the sound. By contrast, grunts were brief, ~30-140 ms, broadband signals produced both in isolation and repetitively as a train of up to 200 at intervals of ~0.5-1.0 s. Growls were also produced alone or repetitively, but at variable intervals of the order of seconds with durations between those of grunts and hums, ranging 60-fold from ~200 ms to 12 s. Growls exhibited prominent harmonics with sudden shifts in pulse repetition rate and highly variable AM patterns, unlike the nearly constant AM of grunt trains and flat envelope of hums. Behavioral and neurophysiological studies support the hypothesis that each sound type's unique acoustic signature contributes to signal recognition mechanisms. Nocturnal production of these sounds against a background chorus dominated constantly for hours by a single sound type, the multi-harmonic hum, reveals a novel underwater soundscape for fish.

  12. Enhanced repertoire of brain dynamical states during the psychedelic experience.

    PubMed

    Tagliazucchi, Enzo; Carhart-Harris, Robin; Leech, Robert; Nutt, David; Chialvo, Dante R

    2014-11-01

    The study of rapid changes in brain dynamics and functional connectivity (FC) is of increasing interest in neuroimaging. Brain states departing from normal waking consciousness are expected to be accompanied by alterations in the aforementioned dynamics. In particular, the psychedelic experience produced by psilocybin (a substance found in "magic mushrooms") is characterized by unconstrained cognition and profound alterations in the perception of time, space and selfhood. Considering the spontaneous and subjective manifestation of these effects, we hypothesize that neural correlates of the psychedelic experience can be found in the dynamics and variability of spontaneous brain activity fluctuations and connectivity, measurable with functional Magnetic Resonance Imaging (fMRI). Fifteen healthy subjects were scanned before, during and after intravenous infusion of psilocybin and an inert placebo. Blood-Oxygen Level Dependent (BOLD) temporal variability was assessed computing the variance and total spectral power, resulting in increased signal variability bilaterally in the hippocampi and anterior cingulate cortex. Changes in BOLD signal spectral behavior (including spectral scaling exponents) affected exclusively higher brain systems such as the default mode, executive control, and dorsal attention networks. A novel framework enabled us to track different connectivity states explored by the brain during rest. This approach revealed a wider repertoire of connectivity states post-psilocybin than during control conditions. Together, the present results provide a comprehensive account of the effects of psilocybin on dynamical behavior in the human brain at a macroscopic level and may have implications for our understanding of the unconstrained, hyper-associative quality of consciousness in the psychedelic state.

  13. Bottleneck Effects on Genetic Variance for Courtship Repertoire

    PubMed Central

    Meffert, L. M.

    1995-01-01

    Bottleneck effects on evolutionary potential in mating behavior were addressed through assays of additive genetic variances and resulting phenotypic responses to drift in the courtship repertoires of six two-pair founder-flush lines and two control populations of the housefly. A simulation addressed the complication that an estimate of the genetic variance for a courtship trait (e.g., male performance vigor or the female requirement for copulation) must involve assays against the background behavior of the mating partners. The additive ``environmental'' effect of the mating partner's phenotype simply dilutes the net parent-offspring covariance for a trait. However, if there is an interaction with this ``environmental'' component, negative parent-offspring covariances can result under conditions of high incompatibility between the population's distributions for male performance and female choice requirements, despite high levels of genetic variance. All six bottlenecked lines exhibited significant differentiation from the controls in at least one measure of the parent-offspring covariance for male performance or female choice (estimated by 50 parent-son and 50 parent-daughter covariances for 10 courtship traits per line) which translated to significant phenotypic drift. However, the average effect across traits or across lines did not yield a significant net increase in genetic variance due to bottlenecks. Concerted phenotypic differentiation due to the founder-flush event provided indirect evidence of directional dominance in a subset of traits. Furthermore, indirect evidence of genotype-environment interactions (potentially producing genotype-genotype effects) was found in the negative parent-offspring covariances predicted by the male-female interaction simulation and by the association of the magnitude of phenotypic drift with the absolute value of the parent-offspring covariance. Hence, nonadditive genetic effects on mating behavior may be important in

  14. The complete salmonid IGF-IR gene repertoire and its transcriptional response to disease

    PubMed Central

    Alzaid, Abdullah; Martin, Samuel A. M.; Macqueen, Daniel J.

    2016-01-01

    The insulin-like growth factor (IGF) receptor (IGF-IR) is necessary for IGF signalling and has essential roles in cellular growth. In teleost fish, two distinct IGF-IR duplicates are conserved called IGF-IRa and IGF-IRb. However, while a salmonid-specific whole genome duplication (ssWGD) is known to have expanded several key genes within the IGF axis, its impact on the IGF-IR repertoire remains unresolved. Using bioinformatic and phylogenetic approaches, we establish that salmonids retain two IGF-IRa paralogues from ssWGD and a single IGF-IRb copy. We measured the tissue-specific and developmental transcriptional regulation of each IGF-IR gene, revealing tight co-expression between the IGF-IRa paralogues, but expression divergence comparing IGF-IRa and IGF-IRb genes. We also examined the regulation of each IGF-IR gene in fish challenged by bacterial and viral infections, adding to recent reports that the IGF axis has roles linking growth and immunity. While whole salmonid fry showed a small upregulation of IGF-IR expression during both types of infection, bacterial challenge caused striking downregulation of IGF-IRa1 and IGF-IRa2 in head kidney and spleen of adult fish, alongside genes coding IGF hormones, highlighting a strong repression of IGF-signalling in primary immune tissues. The reported immune-responsive regulation of IGF-IR genes adds to an emerging body of evidence that supports important cross-talk between master growth and immune pathways in vertebrates. PMID:27748369

  15. Romantic love: a mammalian brain system for mate choice.

    PubMed

    Fisher, Helen E; Aron, Arthur; Brown, Lucy L

    2006-12-29

    Mammals and birds regularly express mate preferences and make mate choices. Data on mate choice among mammals suggest that this behavioural 'attraction system' is associated with dopaminergic reward pathways in the brain. It has been proposed that intense romantic love, a human cross-cultural universal, is a developed form of this attraction system. To begin to determine the neural mechanisms associated with romantic attraction in humans, we used functional magnetic resonance imaging (fMRI) to study 17 people who were intensely 'in love'. Activation specific to the beloved occurred in the brainstem right ventral tegmental area and right postero-dorsal body of the caudate nucleus. These and other results suggest that dopaminergic reward and motivation pathways contribute to aspects of romantic love. We also used fMRI to study 15 men and women who had just been rejected in love. Preliminary analysis showed activity specific to the beloved in related regions of the reward system associated with monetary gambling for uncertain large gains and losses, and in regions of the lateral orbitofrontal cortex associated with theory of mind, obsessive/compulsive behaviours and controlling anger. These data contribute to our view that romantic love is one of the three primary brain systems that evolved in avian and mammalian species to direct reproduction. The sex drive evolved to motivate individuals to seek a range of mating partners; attraction evolved to motivate individuals to prefer and pursue specific partners; and attachment evolved to motivate individuals to remain together long enough to complete species-specific parenting duties. These three behavioural repertoires appear to be based on brain systems that are largely distinct yet interrelated, and they interact in specific ways to orchestrate reproduction, using both hormones and monoamines. Romantic attraction in humans and its antecedent in other mammalian species play a primary role: this neural mechanism motivates

  16. The diversity of the HLA-E-restricted peptide repertoire explains the immunological impact of the Arg107Gly mismatch.

    PubMed

    Celik, Alexander A; Kraemer, Thomas; Huyton, Trevor; Blasczyk, Rainer; Bade-Döding, Christina

    2016-01-01

    Human leukocyte antigen (HLA)-E molecules are potent inhibitors of NK cell-mediated killing. Low in polymorphisms, two alleles are widely expressed among diverse populations: HLA-E*01:01 and HLA-E*01:03. Both alleles are distinguished by one SNP resulting in the substitution Arg107Gly. Both alleles present a limited set of peptides derived from class I leader sequences physiologically; however, HLA-E*01:01 presents non-canonical peptides in the absence of HLA class I molecules. To further assess the functional differences between both alleles, we analyzed the peptide repertoire of HLA-E*01:03 by applying soluble HLA technology followed by mass-spectrometric peptide sequencing. HLA-E*01:03 restricted peptides showed a length of 9-17 amino acids and differed in their biophysical properties, no overlap in the peptide repertoire of both allelic variants could be observed; however, both alleles shared marginal peptides from the same proteomic content. Artificial APCs expressing empty HLA-E*01:01 or E*01:03 molecules were generated and stabilized using cognate HLA class I-derived peptide ligands to analyze the impact of residue 107 within the HLA-E heavy chain on the NKG2/CD94 receptor engagement. Differences in peptide stabilization could be translated to the density and half-life time of peptide-HLA-E molecules on the cell surface that subsequently impacted NK cell inhibition as verified by cytotoxicity assays. Taken together, these data illustrate functional differences of HLA-E allelic variants induced by a single amino acid. Furthermore, the function of HLA-E in pathophysiologic situations when the HLA processing machinery is interrupted seems to be more emphasized than previously described, implying a crucial role for HLA-E in tumor or viral immune episodes.

  17. Bioenergetics of Mammalian Sperm Capacitation

    PubMed Central

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-01-01

    After ejaculation, the mammalian male gamete must undergo the capacitation process, which is a prerequisite for egg fertilization. The bioenergetics of sperm capacitation is poorly understood despite its fundamental role in sustaining the biochemical and molecular events occurring during gamete activation. Glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) are the two major metabolic pathways producing ATP which is the primary source of energy for spermatozoa. Since recent data suggest that spermatozoa have the ability to use different metabolic substrates, the main aim of this work is to present a broad overview of the current knowledge on the energy-producing metabolic pathways operating inside sperm mitochondria during capacitation in different mammalian species. Metabolism of glucose and of other energetic substrates, such as pyruvate, lactate, and citrate, is critically analyzed. Such knowledge, besides its obvious importance for basic science, could eventually translate into the development of novel strategies for treatment of male infertility, artificial reproduction, and sperm selection methods. PMID:24791005

  18. Area and mammalian elevational diversity.

    PubMed

    McCain, Christy M

    2007-01-01

    Elevational gradients hold enormous potential for understanding general properties of biodiversity. Like latitudinal gradients, the hypotheses for diversity patterns can be grouped into historical explanations, climatic drivers, and spatial hypotheses. The spatial hypotheses include the species-area effect and spatial constraint (mid-domain effect null models). I test these two spatial hypotheses using regional diversity patterns for mammals (non-volant small mammals and bats) along 34 elevational gradients spanning 24.4 degrees S-40.4 degrees N latitude. There was high variability in the fit to the species-area hypothesis and the mid-domain effect. Both hypotheses can be eliminated as primary drivers of elevational diversity. Area and spatial constraint both represent sources of error rather than mechanisms underlying these mammalian diversity patterns. Similar results are expected for other vertebrate taxa, plants, and invertebrates since they show comparable distributions of elevational diversity patterns to mammalian patterns.

  19. Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires

    PubMed Central

    DeKosky, Brandon J.; Lungu, Oana I.; Park, Daechan; Johnson, Erik L.; Charab, Wissam; Chrysostomou, Constantine; Kuroda, Daisuke; Ellington, Andrew D.; Ippolito, Gregory C.; Gray, Jeffrey J.; Georgiou, George

    2016-01-01

    Elucidating how antigen exposure and selection shape the human antibody repertoire is fundamental to our understanding of B-cell immunity. We sequenced the paired heavy- and light-chain variable regions (VH and VL, respectively) from large populations of single B cells combined with computational modeling of antibody structures to evaluate sequence and structural features of human antibody repertoires at unprecedented depth. Analysis of a dataset comprising 55,000 antibody clusters from CD19+CD20+CD27− IgM-naive B cells, >120,000 antibody clusters from CD19+CD20+CD27+ antigen–experienced B cells, and >2,000 RosettaAntibody-predicted structural models across three healthy donors led to a number of key findings: (i) VH and VL gene sequences pair in a combinatorial fashion without detectable pairing restrictions at the population level; (ii) certain VH:VL gene pairs were significantly enriched or depleted in the antigen-experienced repertoire relative to the naive repertoire; (iii) antigen selection increased antibody paratope net charge and solvent-accessible surface area; and (iv) public heavy-chain third complementarity-determining region (CDR-H3) antibodies in the antigen-experienced repertoire showed signs of convergent paired light-chain genetic signatures, including shared light-chain third complementarity-determining region (CDR-L3) amino acid sequences and/or Vκ,λ–Jκ,λ genes. The data reported here address several longstanding questions regarding antibody repertoire selection and development and provide a benchmark for future repertoire-scale analyses of antibody responses to vaccination and disease. PMID:27114511

  20. Quantitative Comparison of Abundance Structures of Generalized Communities: From B-Cell Receptor Repertoires to Microbiomes

    PubMed Central

    Saeedghalati, Mohammadkarim; Farahpour, Farnoush; Lange, Anja; Westendorf, Astrid M.; Seifert, Marc; Küppers, Ralf

    2017-01-01

    The community, the assemblage of organisms co-existing in a given space and time, has the potential to become one of the unifying concepts of biology, especially with the advent of high-throughput sequencing experiments that reveal genetic diversity exhaustively. In this spirit we show that a tool from community ecology, the Rank Abundance Distribution (RAD), can be turned by the new MaxRank normalization method into a generic, expressive descriptor for quantitative comparison of communities in many areas of biology. To illustrate the versatility of the method, we analyze RADs from various generalized communities, i.e. assemblages of genetically diverse cells or organisms, including human B cells, gut microbiomes under antibiotic treatment and of different ages and countries of origin, and other human and environmental microbial communities. We show that normalized RADs enable novel quantitative approaches that help to understand structures and dynamics of complex generalized communities. PMID:28114391

  1. Mammalian Polyamine Metabolism and Function

    PubMed Central

    Pegg, Anthony E.

    2009-01-01

    Summary Polyamines are ubiquitous small basic molecules that play multiple essential roles in mammalian physiology. Their cellular content is highly regulated and there is convincing evidence that altered metabolism is involvement in many disease states. Drugs altering polyamine levels may therefore have a variety of important targets. This review will summarize the current state of understanding of polyamine metabolism and function, the regulation of polyamine content, and heritable pathological conditions that may be derived from altered polyamine metabolism. PMID:19603518

  2. GLUTs and mammalian sperm metabolism.

    PubMed

    Bucci, Diego; Rodriguez-Gil, Juan Enrique; Vallorani, Claudia; Spinaci, Marcella; Galeati, Giovanna; Tamanini, Carlo

    2011-01-01

    Mammalian cells use glucides as a substrate that can be catabolized through glycolitic pathways or oxidative phosphorylation, used as a source of reducing potential, or used for anabolic aims. An important role in supplying cells with energy is played by different membrane proteins that can actively (sodium-dependent glucose transporters) or passively (glucose transporters; GLUT) transport hexoses through the lipidic bilayer. In particular, GLUTs are a family of 13 proteins that facilitate the transport of sugars and have a peculiar distribution in different tissues as well as a particular affinity for substrates. These proteins are also present in mature sperm cells, which, in fact, need carriers for uptake energetic sources that are important for maintaining cell basic activity as well as specific functions, such as motility and fertilization ability. Likewise, several GLUTs have been studied in various mammalian species (man, bull, rat, mouse, boar, dog, stallion, and donkey) to point out both their actual presence or absence and their localization on plasma membrane. The aim of this work is to give an overall picture of the studies available on GLUTs in mammalian spermatozoa at this moment, pointing out the species peculiarity, the possible role of these proteins, and the potential future research on this item.

  3. IQGAP Family Members in Yeast, Dictyostelium, and Mammalian Cells

    PubMed Central

    Shannon, Katie B.

    2012-01-01

    IQGAPs are a family of scaffolding proteins with multiple domains, named for the IQ motifs and GTPase activating protein (GAP) related domains. Despite their GAP homology, IQGAP proteins act as effectors for GTP-bound GTPases of the Ras superfamily and do not stimulate GTP hydrolysis. IQGAPs are found in eukaryotic cells from yeast to human, and localize to actin-containing structures such as lamellipodia, membrane ruffles, cell-cell adhesions, phagocytic cups, and the actomyosin ring formed during cytokinesis. Mammalian IQGAPs also act as scaffolds for signaling pathways. IQGAPs perform their myriad functions through association with a large number of proteins including filamentous actin (F-actin), GTPases, calcium-binding proteins, microtubule binding proteins, kinases, and receptors. The focus of this paper is on recent studies describing new binding partners, mechanisms of regulation, and biochemical and physiological functions of IQGAPs in yeast, amoeba, and mammalian cells. PMID:22505937

  4. The role of olfactory stimulus in adult mammalian neurogenesis.

    PubMed

    Arisi, Gabriel M; Foresti, Maira L; Mukherjee, Sanjib; Shapiro, Lee A

    2012-02-14

    Neurogenesis occurs in the adult mammalian brain in discrete regions related to olfactory sensory signaling and integration. The olfactory receptor cell population is in constant turn-over through local progenitor cells. Also, newborn neurons are added to the olfactory bulbs through a major migratory route from the subventricular zone, the rostral migratory stream. The olfactory bulbs project to different brain structures, including: piriform cortex, amygdala, entorhinal cortex, striatum and hippocampus. These structures play important roles in odor identification, feeding behavior, social interactions, reproductive behavior, behavioral reinforcement, emotional responses, learning and memory. In all of these regions neurogenesis has been described in normal and in manipulated mammalian brain. These data are reviewed in the context of a sensory-behavioral hypothesis on adult neurogenesis that olfactory input modulates neurogenesis in many different regions of the brain.

  5. Ghrelin: a multifunctional hormone in non-mammalian vertebrates.

    PubMed

    Kaiya, Hiroyuki; Miyazato, Mikiya; Kangawa, Kenji; Peter, Richard E; Unniappan, Suraj

    2008-02-01

    In mammals, ghrelin is a non-amidated peptide hormone, existing in both acylated and non-acylated forms, produced mainly from the X/A or ghrelin cells present in the mucosal layer of the stomach. Ghrelin is a natural ligand of the growth hormone (GH) secretagogue-receptor (GHS-R), and functions primarily as a GH-releasing hormone and an orexigen, as well as having several other biological actions. Among non-mammalian vertebrates, amino acid sequence of ghrelin has been reported in two species of cartilaginous fish, seven species of teleosts, two species of amphibians, one species of reptile and six species of birds. The structure and functions of ghrelin are highly conserved among vertebrates. This review presents a concise overview of ghrelin biology in non-mammalian vertebrates.

  6. A Comparison of the Olfactory Gene Repertoires of Adults and Larvae in the Noctuid Moth Spodoptera littoralis

    PubMed Central

    Poivet, Erwan; Gallot, Aurore; Montagné, Nicolas; Glaser, Nicolas; Legeai, Fabrice; Jacquin-Joly, Emmanuelle

    2013-01-01

    To better understand the olfactory mechanisms in a lepidopteran pest model species, the cotton leafworm Spodoptera littoralis, we have recently established a partial transcriptome from adult antennae. Here, we completed this transcriptome using next generation sequencing technologies, namely 454 and Illumina, on both adult antennae and larval tissues, including caterpillar antennae and maxillary palps. All sequences were assembled in 77,643 contigs. Their analysis greatly enriched the repertoire of chemosensory genes in this species, with a total of 57 candidate odorant-binding and chemosensory proteins, 47 olfactory receptors, 6 gustatory receptors and 17 ionotropic receptors. Using RT-PCR, we conducted the first exhaustive comparison of olfactory gene expression between larvae and adults in a lepidopteran species. All the 127 candidate olfactory genes were profiled for expression in male and female adult antennae and in caterpillar antennae and maxillary palps. We found that caterpillars expressed a smaller set of olfactory genes than adults, with a large overlap between these two developmental stages. Two binding proteins appeared to be larvae-specific and two others were adult-specific. Interestingly, comparison between caterpillar antennae and maxillary palps revealed numerous organ-specific transcripts, suggesting the complementary involvement of these two organs in larval chemosensory detection. Adult males and females shared the same set of olfactory transcripts, except two male-specific candidate pheromone receptors, two male-specific and two female-specific odorant-binding proteins. This study identified transcripts that may be important for sex-specific or developmental stage-specific chemosensory behaviors. PMID:23565215

  7. CD161(+) Tconv and CD161(+) Treg Share a Transcriptional and Functional Phenotype despite Limited Overlap in TCRβ Repertoire.

    PubMed

    Duurland, Chantal L; Brown, Chrysothemis C; O'Shaughnessy, Ryan F L; Wedderburn, Lucy R

    2017-01-01

    Human regulatory T cells (Treg) are important in immune regulation, but can also show plasticity in specific settings. CD161 is a lectin-like receptor and its expression identifies an effector-like Treg population. Here, we determined how CD161(+) Treg relate to CD161(+) conventional T cells (Tconv). Transcriptional profiling identified a shared transcriptional signature between CD161(+) Tconv and CD161(+) Treg, which is associated with T helper (Th)1 and Th17 cells, and tissue homing, including high expression of gut-homing receptors. Upon retinoic acid (RA) exposure, CD161(+) T cells were more enriched for CCR9(+) and integrin α4(+)β7(+) cells than CD161(-) T cells. In addition, CD161(+) Tconv and CD161(+) Treg were enriched at the inflamed site in autoimmune arthritis, and both CD161(+) and CD161(-) Treg from the inflamed site were suppressive in vitro. CD161(+) T cells from the site of autoimmune arthritis showed a diminished gut-homing phenotype and blunted response to RA suggesting prior imprinting by RA in the gut or at peripheral sites rather than during synovial inflammation. TCRβ repertoires of CD161(+) and CD161(-) Tconv and Treg from blood showed limited overlap whereas there was clear overlap between CD161(+) and CD161(-) Tconv, and CD161(+) and CD161(-) Treg from the inflamed site suggesting that the inflamed environment may alter CD161 levels, potentially contributing to disease pathogenesis.

  8. CD161+ Tconv and CD161+ Treg Share a Transcriptional and Functional Phenotype despite Limited Overlap in TCRβ Repertoire

    PubMed Central

    Duurland, Chantal L.; Brown, Chrysothemis C.; O’Shaughnessy, Ryan F. L.; Wedderburn, Lucy R.

    2017-01-01

    Human regulatory T cells (Treg) are important in immune regulation, but can also show plasticity in specific settings. CD161 is a lectin-like receptor and its expression identifies an effector-like Treg population. Here, we determined how CD161+ Treg relate to CD161+ conventional T cells (Tconv). Transcriptional profiling identified a shared transcriptional signature between CD161+ Tconv and CD161+ Treg, which is associated with T helper (Th)1 and Th17 cells, and tissue homing, including high expression of gut-homing receptors. Upon retinoic acid (RA) exposure, CD161+ T cells were more enriched for CCR9+ and integrin α4+β7+ cells than CD161− T cells. In addition, CD161+ Tconv and CD161+ Treg were enriched at the inflamed site in autoimmune arthritis, and both CD161+ and CD161− Treg from the inflamed site were suppressive in vitro. CD161+ T cells from the site of autoimmune arthritis showed a diminished gut-homing phenotype and blunted response to RA suggesting prior imprinting by RA in the gut or at peripheral sites rather than during synovial inflammation. TCRβ repertoires of CD161+ and CD161− Tconv and Treg from blood showed limited overlap whereas there was clear overlap between CD161+ and CD161− Tconv, and CD161+ and CD161− Treg from the inflamed site suggesting that the inflamed environment may alter CD161 levels, potentially contributing to disease pathogenesis. PMID:28321213

  9. Immune Repertoire Diversity Correlated with Mortality in Avian Influenza A (H7N9) Virus Infected Patients

    PubMed Central

    Hou, Dongni; Ying, Tianlei; Wang, Lili; Chen, Cuicui; Lu, Shuihua; Wang, Qin; Seeley, Eric; Xu, Jianqing; Xi, Xiuhong; Li, Tao; Liu, Jie; Tang, Xinjun; Zhang, Zhiyong; Zhou, Jian; Bai, Chunxue; Wang, Chunlin; Byrne-Steele, Miranda; Qu, Jieming; Han, Jian; Song, Yuanlin

    2016-01-01

    Specific changes in immune repertoires at genetic level responding to the lethal H7N9 virus are still poorly understood. We performed deep sequencing on the T and B cells from patients recently infected with H7N9 to explore the correlation between clinical outcomes and immune repertoire alterations. T and B cell repertoires display highly dynamic yet distinct clonotype alterations. During infection, T cell beta chain repertoire continues to contract while the diversity of immunoglobulin heavy chain repertoire recovers. Patient recovery is correlated to the diversity of T cell and B cell repertoires in different ways – higher B cell diversity and lower T cell diversity are found in survivors. The sequences clonally related to known antibodies with binding affinity to H7 hemagglutinin could be identified from survivors. These findings suggest that utilizing deep sequencing may improve prognostication during influenza infection and could help in development of antibody discovery methodologies for the treatment of virus infection. PMID:27669665

  10. Temporal stability and change in the social call repertoire of migrating humpback whales.

    PubMed

    Rekdahl, Melinda L; Dunlop, Rebecca A; Noad, Michael J; Goldizen, Anne W

    2013-03-01

    Quantifying the stability of a species vocal repertoire is fundamental for further investigations into repertoire function and geographic variation. Changes to the repertoire of sounds used in the song displays of male humpback whales have been well studied. In contrast, little is known about the stability of this species' non-song vocal calls. The stability of the social call repertoire of east Australian humpback whales was investigated from 1997, 2003-2004, and 2008. Out of 46 qualitatively defined call types, 19 were classified as "song-unit calls" that tended to change with the song, and 15 were "inconsistent" and only found in one or two years. Twelve call types were "stable" and present in all years and were commonly produced (64.2% of calls). Stable calls tended to vary in some of the measured call parameters but there was no clear trend between years. This result could indicate that minor changes to calls are not permanent, but reflect individual differences in call production or the graded nature of calls within different social environments. This research has clearly identified stable calls in the call repertoire of humpback whales and while their function is not well understood, their stability suggests an important role in social interactions.

  11. Distinct mechanisms define murine B cell lineage immunoglobulin heavy chain (IgH) repertoires.

    PubMed

    Yang, Yang; Wang, Chunlin; Yang, Qunying; Kantor, Aaron B; Chu, Hiutung; Ghosn, Eliver Eb; Qin, Guang; Mazmanian, Sarkis K; Han, Jian; Herzenberg, Leonore A

    2015-09-30

    Processes that define immunoglobulin repertoires are commonly presumed to be the same for all murine B cells. However, studies here that couple high-dimensional FACS sorting with large-scale quantitative IgH deep-sequencing demonstrate that B-1a IgH repertoire differs dramatically from the follicular and marginal zone B cells repertoires and is defined by distinct mechanisms. We track B-1a cells from their early appearance in neonatal spleen to their long-term residence in adult peritoneum and spleen. We show that de novo B-1a IgH rearrangement mainly occurs during the first few weeks of life, after which their repertoire continues to evolve profoundly, including convergent selection of certain V(D)J rearrangements encoding specific CDR3 peptides in all adults and progressive introduction of hypermutation and class-switching as animals age. This V(D)J selection and AID-mediated diversification operate comparably in germ-free and conventional mice, indicating these unique B-1a repertoire-defining mechanisms are driven by antigens that are not derived from microbiota.

  12. Resetting the T Cell Repertoire in Prostate Cancer Bearing Host

    DTIC Science & Technology

    2009-03-01

    mice that were treated with soluble LT beta receptor Ig fusion protein will be examined vigorously as described above. (Month 1-36). (Finished). This...for 3 h. The supernatants were then used as a source of chemotactins for CD4 thymocytes, seeded in transwells, and incubated for 2 h. The...derived from recipient BM pro- genitors that had seeded the thymic grafts. Thymocyte populations were analyzed by flow cytometry. The number of CD45.1OTII

  13. DNA methylation on N6-adenine in mammalian embryonic stem cells

    PubMed Central

    Wu, Tao P.; Wang, Tao; Seetin, Matthew G.; Lai, Yongquan; Zhu, Shijia; Lin, Kaixuan; Liu, Yifei; Byrum, Stephanie D.; Mackintosh, Samuel G.; Zhong, Mei; Tackett, Alan; Wang, Guilin; Hon, Lawrence S.; Fang, Gang; Swenberg, James A.; Xiao, Andrew Z.

    2016-01-01

    It has been widely accepted that 5-methylcytosine is the only form of DNA methylation in mammalian genomes. Here we identify N6-methyladenine as another form of DNA modification in mouse embryonic stem cells. Alkbh1 encodes a demethylase for N6-methyladenine. An increase of N6-methyladenine levels in Alkbh1-deficient cells leads to transcriptional silencing. N6-methyladenine deposition is inversely correlated with the evolutionary age of LINE-1 transposons; its deposition is strongly enriched at young (<1.5 million years old) but not old (>6 million years old) L1 elements. The deposition of N6-methyladenine correlates with epigenetic silencing of such LINE-1 transposons, together with their neighbouring enhancers and genes, thereby resisting the gene activation signals during embryonic stem cell differentiation. As young full-length LINE-1 transposons are strongly enriched on the X chromosome, genes located on the X chromosome are also silenced. Thus, N6-methyladenine developed a new role in epigenetic silencing in mammalian evolution distinct from its role in gene activation in other organisms. Our results demonstrate that N6-methyladenine constitutes a crucial component of the epigenetic regulation repertoire in mammalian genomes. PMID:27027282

  14. DNA Subtraction of In Vivo Selected Phage Repertoires for Efficient Peptide Pathology Biomarker Identification in Neuroinflammation Multiple Sclerosis Model

    PubMed Central

    Vargas-Sanchez, Karina; Vekris, Antonios; Petry, Klaus G.

    2016-01-01

    To streamline in vivo biomarker discovery, we developed a suppression subtractive DNA hybridization technique adapted for phage-displayed combinatorial libraries of 12 amino acid peptides (PhiSSH). Physical DNA subtraction is performed in a one-tube-all-reactions format by sequential addition of reagents, producing the enrichment of specific clones of one repertoire. High-complexity phage repertoires produced by in vivo selections in the multiple sclerosis rat model (experimental autoimmune encephalomyelitis, EAE) and matched healthy control rats were used to evaluate the technique. The healthy repertoire served as a physical DNA subtractor from the EAE repertoire to produce the subtraction repertoire. Full next-generation sequencing (NGS) of the three repertoires was performed to evaluate the efficiency of the subtraction technique. More than 96% of the clones common to the EAE and healthy repertoires were absent from the subtraction repertoire, increasing the probability of randomly selecting various specific peptides for EAE pathology to about 70%. Histopathology experiments were performed to confirm the quality of the subtraction repertoire clones, producing distinct labeling of the blood–brain barrier (BBB) affected by inflammation among healthy nervous tissue or the preferential binding to IL1-challenged vs. resting human BBB model. Combining PhiSSH with NGS will be useful for controlled in vivo screening of small peptide combinatorial libraries to discover biomarkers of specific molecular alterations interspersed within healthy tissues. PMID:26917946

  15. From Immunity and Vaccines to Mammalian Regeneration

    PubMed Central

    Heber-Katz, Ellen

    2015-01-01

    Our current understanding of major histocompatibility complex (MHC)-mediated antigen presentation in self and nonself immune recognition was derived from immunological studies of autoimmunity and virus-host interactions, respectively. The trimolecular complex of the MHC molecule, antigen, and T-cell receptor accounts for the phenomena of immunodominance and MHC degeneracy in both types of responses and constrains vaccine development. Out of such considerations, we developed a simple peptide vaccine construct that obviates immunodominance, resulting in a broadly protective T-cell response in the absence of antibody. In the course of autoimmunity studies, we identified the MRL mouse strain as a mammalian model of amphibian-like regeneration. A significant level of DNA damage in the cells from this mouse pointed to the role of the cell cycle checkpoint gene CDKN1a, or p21cip1/waf1. The MRL mouse has highly reduced levels of this molecule, and a genetic knockout of this single gene in otherwise nonregenerating strains led to an MRL-type regenerative response, indicating that the ability to regenerate has not been lost during evolution. PMID:26116734

  16. Apoptosis in mammalian oocytes: a review.

    PubMed

    Tiwari, Meenakshi; Prasad, Shilpa; Tripathi, Anima; Pandey, Ashutosh N; Ali, Irfan; Singh, Arvind K; Shrivastav, Tulsidas G; Chaube, Shail K

    2015-08-01

    Apoptosis causes elimination of more than 99% of germ cells from cohort of ovary through follicular atresia. Less than 1% of germ cells, which are culminated in oocytes further undergo apoptosis during last phases of oogenesis and depletes ovarian reserve in most of the mammalian species including human. There are several players that induce apoptosis directly or indirectly in oocytes at various stages of meiotic cell cycle. Premature removal of encircling granulosa cells from immature oocytes, reduced levels of adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, increased levels of calcium (Ca(2+)) and oxidants, sustained reduced level of maturation promoting factor, depletion of survival factors, nutrients and cell cycle proteins, reduced meiotic competency, increased levels of proapoptotic as well as apoptotic factors lead to oocyte apoptosis. The BH3-only proteins also act as key regulators of apoptosis in oocyte within the ovary. Both intrinsic (mitochondria-mediated) as well as extrinsic (cell surface death receptor-mediated) pathways are involved in oocyte apoptosis. BID, a BH3-only protein act as a bridge between both apoptotic pathways and its cleavage activates cell death machinery of both the pathways inside the follicular microenvironment. Oocyte apoptosis leads to the depletion of ovarian reserve that directly affects reproductive outcome of various mammals including human. In this review article, we highlight some of the important players and describe the pathways involved during oocyte apoptosis in mammals.

  17. Cholesterol, the central lipid of mammalian cells

    PubMed Central

    Maxfield, Frederick R.; van Meer, Gerrit

    2010-01-01

    Summary of recent advances Despite its importance for mammalian cell biology and human health, there are many basic aspects of cholesterol homeostasis that are not well understood. Even for the well-characterized delivery of cholesterol to cells via lipoproteins, a novel regulatory mechanism has been discovered recently, involving a serum protein called PCSK9, which profoundly affects lipoproteins and their receptors. Cells can export cholesterol by processes that require the activity of ABC transporters, but the molecular mechanisms for cholesterol transport remain unclear. Cholesterol levels in different organelles vary by 5–10 fold, and the mechanisms for maintaining these differences are now partially understood. Several proteins have been proposed to play a role in the inter-organelle movement of cholesterol, but many aspects of the mechanisms for regulating intracellular transport and distribution of cholesterol remain to be worked out. The endoplasmic reticulum is the main organelle responsible for regulation of cholesterol synthesis, and careful measurements have shown that the proteins responsible for sterol sensing respond over a very narrow range of cholesterol concentrations to provide very precise, switch-like control over cholesterol synthesis. PMID:20627678

  18. Functional characterization of mammalian Wntless homolog in mammalian system.

    PubMed

    Wang, Li-Ting; Wang, Shih-Jong; Hsu, Shih-Hsien

    2012-07-01

    Wntless (GPR177) protein is a newly identified regulator of Wnt signals in Drosophila, but its cellular function in mammals is still unclear. In this study, we explored the expression pattern and potential cellular function of Wntless in mammalian cells. Wntless mRNA was expressed in many mouse tissues, including the spleen, lung, kidney, thymus, and stomach, and lower levels of expression were detected in the mouse brain and testis. Expression of Wntless protein analyzed by Western blot and immunohistochemical staining was only detected in the submucosa, muscle, ganglia, and nerve cells of murine large intestines. Both immunofluorescence staining and subcellular fraction extraction analysis revealed that endogenous Wntless protein was expressed predominantly in the cytoplasmic organelles with a morphologically dot-shaped distribution. Furthermore, overexpression of Wntless could be corrected by and may activate the nuclear factor-κB (NF-κB) signaling pathway in cancer (HeLa) cells. These results suggest that Wntless plays a role in signaling regulation during the formation of cancer in addition to its role as a retromer protein in mammalian systems.

  19. Enhancer repertoires are reshaped independently of early priming and heterochromatin dynamics during B cell differentiation

    PubMed Central

    Choukrallah, Mohamed-Amin; Song, Shuang; Rolink, Antonius G.; Burger, Lukas; Matthias, Patrick

    2015-01-01

    A widely accepted model posits that activation of enhancers during differentiation goes through a priming step prior to lineage commitment. To investigate the chronology of enhancer repertoire establishment during hematopoiesis, we monitored epigenome dynamics during three developmental stages representing hematopoietic stem cells, B-cell progenitors and mature B-cells. We find that only a minority of enhancers primed in stem cells or progenitors become active at later stages. Furthermore, most enhancers active in differentiated cells were not primed in earlier stages. Thus, the enhancer repertoire is reshaped dynamically during B-cell differentiation and enhancer priming in early stages does not appear to be an obligate step for enhancer activation. Furthermore, our data reveal that heterochromatin and Polycomb-mediated silencing have only a minor contribution in shaping enhancer repertoires during cell differentiation. Together, our data revisit the prevalent model about epigenetic reprogramming during hematopoiesis and give insights into the formation of gene regulatory networks. PMID:26477271

  20. Resolve, revise, and relax: The 3 Rs of B cell repertoire adjustment

    PubMed Central

    Scholz, Jean L.

    2013-01-01

    Competition for limited, cell extrinsic survival factors is a general feature of peripheral selection checkpoints involved in B lymphocyte maturation and activation. Perhaps the best-characterized example involves BLyS (B lymphocyte stimulator), which modulates the size and composition of mature naïve B cell pools, but evidence for analogous competitive checkpoints is emerging for both germinal center B cells and plasma cells. Here we discuss how deliberate alteration of BLyS levels might be used to manipulate B cell repertoire selection in order to restore self-tolerance in autoimmunity, remodel the repertoire to accommodate neo-self antigens introduced through transplantation and gene therapy, or expand repertoire diversity to reveal novel, therapeutically useful specificities. PMID:22330846

  1. Evolutionary paths to mammalian cochleae.

    PubMed

    Manley, Geoffrey A

    2012-12-01

    Evolution of the cochlea and high-frequency hearing (>20 kHz; ultrasonic to humans) in mammals has been a subject of research for many years. Recent advances in paleontological techniques, especially the use of micro-CT scans, now provide important new insights that are here reviewed. True mammals arose more than 200 million years (Ma) ago. Of these, three lineages survived into recent geological times. These animals uniquely developed three middle ear ossicles, but these ossicles were not initially freely suspended as in modern mammals. The earliest mammalian cochleae were only about 2 mm long and contained a lagena macula. In the multituberculate and monotreme mammalian lineages, the cochlea remained relatively short and did not coil, even in modern representatives. In the lineage leading to modern therians (placental and marsupial mammals), cochlear coiling did develop, but only after a period of at least 60 Ma. Even Late Jurassic mammals show only a 270 ° cochlear coil and a cochlear canal length of merely 3 mm. Comparisons of modern organisms, mammalian ancestors, and the state of the middle ear strongly suggest that high-frequency hearing (>20 kHz) was not realized until the early Cretaceous (~125 Ma). At that time, therian mammals arose and possessed a fully coiled cochlea. The evolution of modern features of the middle ear and cochlea in the many later lineages of therians was, however, a mosaic and different features arose at different times. In parallel with cochlear structural evolution, prestins in therian mammals evolved into effective components of a new motor system. Ultrasonic hearing developed quite late-the earliest bat cochleae (~60 Ma) did not show features characteristic of those of modern bats that are sensitive to high ultrasonic frequencies.

  2. Macrophage pattern recognition receptors in immunity, homeostasis and self tolerance.

    PubMed

    Mukhopadhyay, Subhankar; Plüddemann, Annette; Gordon, Siamon

    2009-01-01

    Macrophages, a major component of innate immune defence, express a large repertoire of different classes of pattern recognition receptors and other surface antigens which determine the immunologic and homeostatic potential of these versatile cells. In the light of present knowledge ofmacrophage surface antigens, we discuss self versus nonself recognition, microbicidal effector functions and self tolerance in the innate immune system.

  3. An ethogram of the common marmoset (Calithrix jacchus jacchus): general behavioural repertoire.

    PubMed

    Stevenson, M F; Poole, T B

    1976-05-01

    The behavioural repertoire of four captive breeding pairs of Callithrix jacchus jacchus is described. Social communication took the form of postures, facial expressions, vocalizations and piloerection displays. Detailed analyses were made of piloerection displays, adult play, copulatory, aggressive, and prey-catching behaviour. Aggressive behaviour was uncommon in adult mated pairs. Play between adults showed a degree of temporal of temporal organization. Vocalizations were the main methods of intragroup communication whilst piloerection displays were directed towards members of other groups and also to unfamiliar objects. The behavioural repertoire of C. jacchus jacchus is compared with that of other Primates.

  4. Analysis of a complete homeobox gene repertoire: Implications for the evolution of diversity

    PubMed Central

    Kappen, Claudia

    2000-01-01

    The completion of sequencing projects for various organisms has already advanced our insight into the evolution of entire genomes and the role of gene duplications. One multigene family that has served as a paradigm for the study of gene duplications and molecular evolution is the family of homeodomain-encoding genes. I present here an analysis of the homeodomain repertoire of an entire genome, that of the nematode Caenorhabditis elegans, in relation to our current knowledge of these genes in plants, arthropods, and mammals. A methodological framework is developed that proposes approaches for the analysis of homeodomain repertoires and multigene families in general. PMID:10781048

  5. A Conserved DNA Repeat Promotes Selection of a Diverse Repertoire of Trypanosoma brucei Surface Antigens from the Genomic Archive.

    PubMed

    Hovel-Miner, Galadriel; Mugnier, Monica R; Goldwater, Benjamin; Cross, George A M; Papavasiliou, F Nina

    2016-05-01

    African trypanosomes are mammalian pathogens that must regularly change their protein coat to survive in the host bloodstream. Chronic trypanosome infections are potentiated by their ability to access a deep genomic repertoire of Variant Surface Glycoprotein (VSG) genes and switch from the expression of one VSG to another. Switching VSG expression is largely based in DNA recombination events that result in chromosome translocations between an acceptor site, which houses the actively transcribed VSG, and a donor gene, drawn from an archive of more than 2,000 silent VSGs. One element implicated in these duplicative gene conversion events is a DNA repeat of approximately 70 bp that is found in long regions within each BES and short iterations proximal to VSGs within the silent archive. Early observations showing that 70-bp repeats can be recombination boundaries during VSG switching led to the prediction that VSG-proximal 70-bp repeats provide recombinatorial homology. Yet, this long held assumption had not been tested and no specific function for the conserved 70-bp repeats had been demonstrated. In the present study, the 70-bp repeats were genetically manipulated under conditions that induce gene conversion. In this manner, we demonstrated that 70-bp repeats promote access to archival VSGs. Synthetic repeat DNA sequences were then employed to identify the length, sequence, and directionality of repeat regions required for this activity. In addition, manipulation of the 70-bp repeats allowed us to observe a link between VSG switching and the cell cycle that had not been appreciated. Together these data provide definitive support for the long-standing hypothesis that 70-bp repeats provide recombinatorial homology during switching. Yet, the fact that silent archival VSGs are selected under these conditions suggests the 70-bp repeats also direct DNA pairing and recombination machinery away from the closest homologs (silent BESs) and toward the rest of the archive.

  6. Ceramide signaling in mammalian epidermis.

    PubMed

    Uchida, Yoshikazu

    2014-03-01

    Ceramide, the backbone structure of all sphingolipids, as well as a minor component of cellular membranes, has a unique role in the skin, by forming the epidermal permeability barrier at the extracellular domains of the outermost layer of the skin, the stratum corneum, which is required for terrestrial mammalian survival. In contrast to the role of ceramide in forming the permeability barrier, the signaling roles of ceramide and its metabolites have not yet been recognized. Ceramide and/or its metabolites regulate proliferation, differentiation, and apoptosis in epidermal keratinocytes. Recent studies have further demonstrated that a ceramide metabolite, sphingosine-1-phosphate, modulates innate immune function. Ceramide has already been applied to therapeutic approaches for treatment of eczema associated with attenuated epidermal permeability barrier function. Pharmacological modulation of ceramide and its metabolites' signaling can also be applied to cutaneous disease prevention and therapy. The author here describes the signaling roles of ceramide and its metabolites in mammalian cells and tissues, including the epidermis. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.

  7. Extensive T-Cell Epitope Repertoire Sharing among Human Proteome, Gastrointestinal Microbiome, and Pathogenic Bacteria: Implications for the Definition of Self.

    PubMed

    Bremel, Robert D; Homan, E Jane

    2015-01-01

    T-cell receptor binding to MHC-bound peptides plays a key role in discrimination between self and non-self. Only a subset, typically a pentamer, of amino acids in a MHC-bound peptide form the motif exposed to the T-cell receptor. We categorize and compare the T-cell exposed amino acid motif repertoire of the total proteomes of two groups of bacteria, comprising pathogens and gastrointestinal microbiome organisms, with the human proteome and immunoglobulins. Given the maximum 20(5), or 3.2 million of such motifs that bind T-cell receptors, there is considerable overlap in motif usage. We show that the human proteome, exclusive of immunoglobulins, only comprises three quarters of the possible motifs, of which 65.3% are also present in both composite bacterial proteomes. Very few motifs are unique to the human proteome. Immunoglobulin variable regions carry a broad diversity of T-cell exposed motifs (TCEMs) that provides a stratified random sample of the motifs found in pathogens, microbiome, and the human proteome. Individual bacterial genera and species vary in the content of immunoglobulin and human proteome matched motifs that they carry. Mycobacteria and Burkholderia spp carry a particularly high content of such matched motifs. Some bacteria retain a unique motif signature and motif sharing pattern with the human proteome. The implication is that distinguishing self from non-self does not depend on individual TCEMs, but on a complex and dynamic overlay of signals wherein the same TCEM may play different roles in different organisms, and the frequency with which a particular TCEM appears influences its effect. The patterns observed provide clues to bacterial immune evasion and to strategies for intervention, including vaccine design. The breadth and distinct frequency patterns of the immunoglobulin-derived peptides suggest a role of immunoglobulins in maintaining a broadly responsive T-cell repertoire.

  8. Interpretive Repertoires as Mirrors on Society and as Tools for Action: Reflections on Zeyer and Roth's "A Mirror of Society"

    ERIC Educational Resources Information Center

    Milne, Catherine

    2009-01-01

    I respond to Zeyer and Roth's ("Cultural Studies of Science Education," 2009) paper on their use of interpretive repertoire analysis to explicate Swiss middle school students' dialogic responses to environmental issues. I focus on the strategy of interpretive repertoire analysis, making sense of the stance Zeyer and Roth take with this analysis by…

  9. High-throughput sequencing of TCR repertoires in multiple sclerosis reveals intrathecal enrichment of EBV-reactive CD8+ T cells.

    PubMed

    Lossius, Andreas; Johansen, Jorunn N; Vartdal, Frode; Robins, Harlan; Jūratė Šaltytė, Benth; Holmøy, Trygve; Olweus, Johanna

    2014-11-01

    Epstein-Barr virus (EBV) has long been suggested as a pathogen in multiple sclerosis (MS). Here, we used high-throughput sequencing to determine the diversity, compartmentalization, persistence, and EBV-reactivity of the T-cell receptor (TCR) repertoires in MS. TCR-β genes were sequenced in paired samples of cerebrospinal fluid (CSF) and blood from patients with MS and controls with other inflammatory neurological diseases. The TCR repertoires were highly diverse in both compartments and patient groups. Expanded T-cell clones, represented by TCR-β sequences >0.1%, were of different identity in CSF and blood of MS patients, and persisted for more than a year. Reference TCR-β libraries generated from peripheral blood T cells reactive against autologous EBV-transformed B cells were highly enriched for public EBV-specific sequences and were used to quantify EBV-reactive TCR-β sequences in CSF. TCR-β sequences of EBV-reactive CD8+ T cells, including several public EBV-specific sequences, were intrathecally enriched in MS patients only, whereas those of EBV-reactive CD4+ T cells were also enriched in CSF of controls. These data provide evidence for a clonally diverse, yet compartmentalized and persistent, intrathecal T-cell response in MS. The presented strategy links TCR sequence to intrathecal T-cell specificity, demonstrating enrichment of EBV-reactive CD8+ T cells in MS.

  10. Both the nature of KIR3DL1 alleles and the KIR3DL1/S1 allele combination affect the KIR3DL1 NK-cell repertoire in the French population.

    PubMed

    Gagne, Katia; Willem, Catherine; Legrand, Nolwenn; Djaoud, Zakia; David, Gaëlle; Rettman, Pauline; Bressollette-Bodin, Céline; Senitzer, David; Esbelin, Julie; Cesbron-Gautier, Anne; Schneider, Thierry; Retière, Christelle

    2013-04-01

    NK-cell functions are regulated by many activating and inhibitory receptors including KIR3DL1. Extensive allelic polymorphism and variability in expression can directly alter NK-cell phenotype and functions. Here we investigated the KIR3DL1(+) NK-cell repertoire, taking into account the allelic KIR3DL1/S1 polymorphism, KIR3DL1 phenotype, and function. All 109 studied individuals possessed at least one KIR3DL1 allele, with weak KIR3DL1*054, or null alleles being frequently present. In KIR3DL1(high/null) individuals, we observed a bimodal distribution of KIR3DL1(+) NK cells identified by a different KIR3DL1 expression level and cell frequency regardless of a similar amount of both KIR3DL1 transcripts, HLA background, or KIR2D expression. However, this bimodal distribution can be explained by a functional selection following a hierarchy of KIR3DL1 receptors. The higher expression of KIR3DL1 observed on cord blood NK cells suggests the expression of the functional KIR3DL1*004 receptors. Thus, the low amplification of KIR3DL1(high) , KIR3DL1*004 NK-cell subsets during development may be due to extensive signaling via these two receptors. Albeit in a nonexclusive manner, individual immunological experience may contribute to shaping the KIR3DL1 NK-cell repertoire. Together, this study provides new insight into the mechanisms regulating the KIR3DL1 NK-cell repertoire.

  11. Code-Mixing, Style Repertoire, and Language Variation: English in Hindi Poetic Creativity.

    ERIC Educational Resources Information Center

    Kachru, Yamuna

    1989-01-01

    Discusses the style repertoire in the context of Hindi literature, the functions of code mixing varieties in Hindi literary works, and the implications for sociolinguistics of such investigations from linguistic and stylistic perspectives. Hindi poetry from the last three decades is examined to determine the effects of language mixing involving…

  12. Repertoires, Characters and Scenes: Sociolinguistic Difference in Turkish-German Comedy

    ERIC Educational Resources Information Center

    Androutsopoulos, Jannis

    2012-01-01

    This paper examines representations of sociolinguistic difference in a German "ethnic comedy" as a means to contribute to a framework for the sociolinguistic study of film. Three levels of analysis of sociolinguistic difference in film are distinguished: repertoire analysis reconstructs the entirety of codes used in a film and their…

  13. The Preparation of a Piano Repertoire According to Elliot's Musical Knowledge Model: Three Case Studies

    ERIC Educational Resources Information Center

    Teixeira dos Santos, Regina Antunes; Hentschke, Liane

    2010-01-01

    In academic education, undergraduate students develop musical knowledge through the preparation of a repertoire within the western classical music tradition during a certain period of formal music practice. During the practice, the student makes choices and deals with personal strategies that assume forms of thinking and, therefore, differentiated…

  14. Manipulation of the Glycan-Specific Natural Antibody Repertoire for Immunotherapy

    PubMed Central

    New, J. Stewart; King, R. Glenn; Kearney, John F.

    2015-01-01

    Summary Natural immunoglobulin derived from innate-like B lymphocytes plays important roles in the suppression of inflammatory responses and represents a promising therapeutic target in a growing number of allergic and autoimmune diseases. These antibodies are commonly autoreactive and incorporate evolutionarily conserved specificities, including certain glycan-specific antibodies. Despite this conservation, exposure to bacterial polysaccharides during innate-like B lymphocyte development, through either natural exposure or immunization, induces significant changes in clonal representation within the glycan-reactive B cell pool. Glycan-reactive natural antibodies have been reported to play protective and pathogenic roles in autoimmune and inflammatory diseases. An understanding of the composition and functions of a healthy glycan-reactive natural antibody repertoire is therefore paramount. A more thorough understanding of natural antibody repertoire development holds promise for the design of both biological diagnostics and therapies. In this article we review the development and functions of natural antibodies and examine three glycan specificities, represented in the innate-like B cell pool, to illustrate the complex roles environmental antigens play in natural antibody repertoire development. We also discuss the implications of increased clonal plasticity of the innate-like B cell repertoire during neonatal and perinatal periods, and the prospect of targeting B cell development with interventional therapies and correct defects in this important arm of the adaptive immune system. PMID:26864103

  15. Expressed var gene repertoire and variant surface antigen diversity in a shrinking Plasmodium falciparum population.

    PubMed

    Carlos, Bianca C; Fotoran, Wesley L; Menezes, Maria J; Cabral, Fernanda J; Bastos, Marcele F; Costa, Fabio T M; Sousa-Neto, Jayme A; Ribolla, Paulo E M; Wunderlich, Gerhard; Ferreira, Marcelo U

    2016-11-01

    The var gene-encoded erythrocyte membrane protein-1 of Plasmodium falciparum (PfEMP-1) is the main variant surface antigen (VSA) expressed on infected erythrocytes. The rate at which antibody responses to VSA expressed by circulating parasites are acquired depends on the size of the local VSA repertoire and the frequency of exposure to new VSA. Because parasites from areas with declining malaria endemicity, such as the Amazon, typically express a restricted PfEMP-1 repertoire, we hypothesized that Amazonians would rapidly acquire antibodies to most locally circulating VSA. Consistent with our expectations, the analysis of 5878 sequence tags expressed by 10 local P. falciparum samples revealed little PfEMP-1 DBL1α domain diversity. Among the most commonly expressed DBL1α types, 45% were shared by two or more independent parasite lines. Nevertheless, Amazonians displayed major gaps in their repertoire of anti-VSA antibodies, although the breadth of anti-VSA antibody responses correlated positively with their cumulative exposure to malaria. We found little antibody cross-reactivity even when testing VSA from related parasites expressing the same dominant DBL1α types. We conclude that variant-specific immunity to P. falciparum VSAs develops slowly despite the relatively restricted PfEMP-1 repertoire found in low-endemicity settings.

  16. The vocal repertoire in a solitary foraging carnivore, Cynictis penicillata, may reflect facultative sociality.

    PubMed

    Le Roux, Aliza; Cherry, Michael I; Manser, Ma