Sample records for mammary cancer progression

  1. Folic Acid Supplementation Promotes Mammary Tumor Progression in a Rat Model

    PubMed Central

    Deghan Manshadi, Shaidah; Ishiguro, Lisa; Sohn, Kyoung-Jin; Medline, Alan; Renlund, Richard; Croxford, Ruth; Kim, Young-In

    2014-01-01

    Folic acid supplementation may prevent the development of cancer in normal tissues but may promote the progression of established (pre)neoplastic lesions. However, whether or not folic acid supplementation can promote the progression of established (pre)neoplastic mammary lesions is unknown. This is a critically important issue because breast cancer patients and survivors in North America are likely exposed to high levels of folic acid owing to folic acid fortification and widespread supplemental use after cancer diagnosis. We investigated whether folic acid supplementation can promote the progression of established mammary tumors. Female Sprague-Dawley rats were placed on a control diet and mammary tumors were initiated with 7,12-dimethylbenza[a]anthracene at puberty. When the sentinel tumor reached a predefined size, rats were randomized to receive a diet containing the control, 2.5x, 4x, or 5x supplemental levels of folic acid for up to 12 weeks. The sentinel mammary tumor growth was monitored weekly. At necropsy, the sentinel and all other mammary tumors were analyzed histologically. The effect of folic acid supplementation on the expression of proteins involved in proliferation, apoptosis, and mammary tumorigenesis was determined in representative sentinel adenocarcinomas. Although no clear dose-response relationship was observed, folic acid supplementation significantly promoted the progression of the sentinel mammary tumors and was associated with significantly higher sentinel mammary tumor weight and volume compared with the control diet. Furthermore, folic acid supplementation was associated with significantly higher weight and volume of all mammary tumors. The most significant and consistent mammary tumor-promoting effect was observed with the 2.5x supplemental level of folic acid. Folic acid supplementation was also associated with an increased expression of BAX, PARP, and HER2. Our data suggest that folic acid supplementation may promote the progression

  2. Bisected, complex N-glycans and galectins in mouse mammary tumor progression and human breast cancer

    PubMed Central

    Miwa, Hazuki E; Koba, Wade R; Fine, Eugene J; Giricz, Orsi; Kenny, Paraic A; Stanley, Pamela

    2013-01-01

    Bisected, complex N-glycans on glycoproteins are generated by the glycosyltransferase MGAT3 and cause reduced cell surface binding of galectins. Previously, we showed that MGAT3 reduces growth factor signaling and retards mammary tumor progression driven by the Polyoma middle T antigen (PyMT) expressed in mammary epithelium under the mouse mammary tumor virus (MMTV) promoter. However, the penetrance of the tumor phenotype became variable in mixed FVB/N and C57BL/6 female mice and we therefore investigated a congenic C57BL/6 Mgat3−/−/MMTV-PyMT model. In the absence of MGAT3, C57BL/6 Mgat3−/−/MMTV-PyMT females exhibited accelerated tumor appearance and increased tumor burden, glucose uptake in tumors and lung metastasis. Nevertheless, activation of extracellular signal-regulated kinase (ERK)1/2 or protein kinase B (AKT) was reduced in ∼20-week C57BL/6 MMTV-PyMT tumors lacking MGAT3. Activation of focal adhesion kinase (FAK), protein tyrosine kinase Src, and p38 mitogen-activated protein kinase were similar to that of controls. All the eight mouse galectin genes were expressed in mammary tumors and tumor epithelial cells (TECs), but galectin-2 and -12 were not detected by western analysis in tumors, and galectin-7 was not detected in 60% of the TEC lines. From microarray data reported for human breast cancers, at least 10 galectin and 7 N-glycan N-acetylglucosaminyl (GlcNAc)-transferase (MGAT) genes are expressed in tumor tissue, and expression often varies significantly between different breast cancer subtypes. Thus, in summary, while MGAT3 and bisected complex N-glycans retard mouse mammary tumor progression, genetic background may modify this effect; identification of key galectins that promote mammary tumor progression in mice is not straightforward because all the eight galectin genes are expressed; and high levels of MGAT3, galectin-4, -8, -10, -13 and -14 transcripts correlate with better relapse-free survival in human breast cancer. PMID:24037315

  3. IMPACT OF OBESITY ON DEVELOPMENT AND PROGRESSION OF MAMMARY TUMORS IN PRECLINICAL MODELS OF BREAST CANCER

    PubMed Central

    Cleary, Margot P.

    2013-01-01

    Overweight and/or obesity are known risk factors for postmenopausal breast cancer. More recently increased body weight has also been associated with poor prognosis for both pre- and postmenopausal breast cancer. This relationship has primarily been identified through epidemiological studies. Additional information from in vitro studies has also been produced in attempts to delineate mechanisms of action for the association of obesity and body weight and breast cancer. This approach has identified potential growth factors such as insulin, leptin, estrogen and IGF-I which are reported to be modulated by body weight changes. However, in vitro studies are limited in scope and frequently use non-physiological concentrations of growth factors, while long follow-up is needed for human studies. Preclinical animal models provide an intermediary approach to investigate the impact of body weight and potential growth factors on mammary/breast tumor development and progression. Here results of a number of studies addressing this issue are presented. In the majority of the studies either genetically-obese or diet-induced obese rodent models have been used to investigate spontaneous, transgenic and carcinogen-induced mammary tumor development. To study tumor progression the major focus has been allograft studies in mice with either genetic or dietary-induced obesity. In general, obesity has been demonstrated to shorten mammary tumor latency and to impact tumor pathology. However, in rodents with defects in leptin and other growth factors the impact of obesity is not as straightforward. Future studies using more physiologically relevant obesity models and clearly distinguishing diet composition from body weight effects will be important in continuing to understand the factors associated with body weight’s impact on the mammary/breast cancer development and progression. PMID:24122258

  4. Mena deficiency delays tumor progression and decreases metastasis in polyoma middle-T transgenic mouse mammary tumors.

    PubMed

    Roussos, Evanthia T; Wang, Yarong; Wyckoff, Jeffrey B; Sellers, Rani S; Wang, Weigang; Li, Jiufeng; Pollard, Jeffrey W; Gertler, Frank B; Condeelis, John S

    2010-01-01

    The actin binding protein Mammalian enabled (Mena), has been implicated in the metastatic progression of solid tumors in humans. Mena expression level in primary tumors is correlated with metastasis in breast, cervical, colorectal and pancreatic cancers. Cells expressing high Mena levels are part of the tumor microenvironment for metastasis (TMEM), an anatomical structure that is predictive for risk of breast cancer metastasis. Previously we have shown that forced expression of Mena adenocarcinoma cells enhances invasion and metastasis in xenograft mice. Whether Mena is required for tumor progression is still unknown. Here we report the effects of Mena deficiency on tumor progression, metastasis and on normal mammary gland development. To investigate the role of Mena in tumor progression and metastasis, Mena deficient mice were intercrossed with mice carrying a transgene expressing the polyoma middle T oncoprotein, driven by the mouse mammary tumor virus. The progeny were investigated for the effects of Mena deficiency on tumor progression via staging of primary mammary tumors and by evaluation of morbidity. Stages of metastatic progression were investigated using an in vivo invasion assay, intravital multiphoton microscopy, circulating tumor cell burden, and lung metastases. Mammary gland development was studied in whole mount mammary glands of wild type and Mena deficient mice. Mena deficiency decreased morbidity and metastatic dissemination. Loss of Mena increased mammary tumor latency but had no affect on mammary tumor burden or histologic progression to carcinoma. Elimination of Mena also significantly decreased epidermal growth factor (EGF) induced in vivo invasion, in vivo motility, intravasation and metastasis. Non-tumor bearing mice deficient for Mena also showed defects in mammary gland terminal end bud formation and branching. Deficiency of Mena decreases metastasis by slowing tumor progression and reducing tumor cell invasion and intravasation. Mena

  5. Enhanced mammary progesterone receptor-A isoform activity in the promotion of mammary tumor progression by dietary soy in rats

    USDA-ARS?s Scientific Manuscript database

    Dietary contribution to breast cancer risk, recurrence, and progression remains incompletely understood. Increased consumption of soy and soy isoflavones is associated with reduced mammary cancer susceptibility in women and in rodent models of carcinogenesis. In rats treated with N-Methyl-N-Nitrosou...

  6. Mammary Adipose Tissue-derived Lysophospholipids Promote Estrogen Receptor-negative Mammary Epithelial Cell Proliferation

    PubMed Central

    Volden, Paul A.; Skor, Maxwell N.; Johnson, Marianna B.; Singh, Puneet; Patel, Feenalie N.; McClintock, Martha K.; Brady, Matthew J.; Conzen, Suzanne D.

    2016-01-01

    Lysophosphatidic acid (LPA), acting in an autocrine or paracrine fashion through G protein-coupled receptors, has been implicated in many physiological and pathological processes including cancer. LPA is converted to lysophosphatidylcholine (LPC) by the secreted phospholipase, autotaxin (ATX). Although various cell types can produce ATX, adipocyte-derived ATX is believed to be the major source of circulating ATX and also to be the major regulator of plasma LPA. In addition to ATX, adipocytes secrete numerous other factors (adipokines); although several adipokines have been implicated in breast cancer biology, the contribution of mammary adipose tissue-derived LPC/ATX/LPA (LPA-axis) signaling to breast cancer is poorly understood. Using mammary fat-conditioned medium, we investigated the contribution of LPA signaling to mammary epithelial cancer cell biology and identified LPA signaling as a significant contributor to the oncogenic effects of the mammary adipose tissue secretome. To interrogate the role of mammary fat in the LPA-axis during breast cancer progression, we exposed mammary adipose tissue to secreted factors from estrogen receptor-negative mammary epithelial cell lines and monitored changes in the mammary fat pad LPA-axis. Our data indicate that bidirectional interactions between mammary cancer cells and mammary adipocytes alter the local LPA-axis and increase ATX expression in the mammary fat pad during breast cancer progression. Thus, the LPC/ATX/LPA axis may be a useful target for prevention in patients at risk of ER-negative breast cancer. PMID:26862086

  7. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model.

    PubMed

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui

    2015-02-01

    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.

  8. Physiologically activated mammary fibroblasts promote postpartum mammary cancer

    PubMed Central

    Guo, Qiuchen; Burchard, Julja; Spellman, Paul

    2017-01-01

    Women diagnosed with breast cancer within 5 years of childbirth have poorer prognosis than nulliparous or pregnant women. Weaning-induced breast involution is implicated, as the collagen-rich, immunosuppressive microenvironment of the involuting mammary gland is tumor promotional in mice. To investigate the role of mammary fibroblasts, isolated mammary PDGFRα+ cells from nulliparous and postweaning mice were assessed for activation phenotype and protumorigenic function. Fibroblast activation during involution was evident by increased expression of fibrillar collagens, lysyl oxidase, Tgfb1, and Cxcl12 genes. The ability of mammary tumors to grow in an isogenic, orthotopic transplant model was increased when tumor cells were coinjected with involution-derived compared with nulliparous-derived mammary fibroblasts. Mammary tumors in the involution-fibroblast group had increased Ly6C+ monocytes at the tumor border, and decreased CD8+ T cell infiltration and tumor cell death. Ibuprofen treatment suppressed involution-fibroblast activation and tumor promotional capacity, concurrent with decreases in tumor Ly6C+ monocytes, and increases in intratumoral CD8+ T cell infiltration, granzyme levels, and tumor cell death. In total, our data identify a COX/prostaglandin E2 (PGE2)–dependent activated mammary fibroblast within the involuting mammary gland that displays protumorigenic, immunosuppressive activity, identifying fibroblasts as potential targets for the prevention and treatment of postpartum breast cancer. PMID:28352652

  9. Microenvironmental Regulation of Mammary Carcinogenesis

    DTIC Science & Technology

    2008-06-01

    cells. These models share many of the hallmarks of multistage human breast cancer development including histological disease progression and immune cell... developed by Muller and colleagues20, represents a reasonable recapitulation of late-stage human breast cancer as determined by histological progression ...Annual Progress Report d. Develop a profile of proteolytic activities in normal and neoplastic mammary tissues from mouse models of mammary

  10. Basic fibroblast growth factor in an animal model of spontaneous mammary tumor progression.

    PubMed

    Kao, Steven; Mo, Jeffrey; Baird, Andrew; Eliceiri, Brian P

    2012-06-01

    Although basic fibroblast growth factor (FGF2) was the first pro-angiogenic molecule discovered, it has numerous activities on the growth and differentiation of non-vascular cell types. FGF2 is both stimulatory and inhibitory, depending on the cell type evaluated, the experimental design used and the context in which it is tested. Here, we investigated the effects of manipulating endogenous FGF2 on the development of mammary cancer to determine whether its endogenous contribution in vivo is pro- or anti-tumorigenic. Specifically, we examined the effects of FGF2 gene dosing in a cross between a spontaneous breast tumor model (PyVT+ mice) and FGF2-/- (FGF KO) mice. Using these mice, the onset and progression of mammary tumors was determined. As predicted, female FGF2 WT mice developed mammary tumors starting around 60 days after birth and by 80 days, 100% of FGF2 WT female mice had mammary tumors. In contrast, 80% of FGF2 KO female mice had no palpable tumors until nearly three weeks later (85 days) at times when 100% of the WT cohort was tumor positive. All FGF KO mice were tumor-bearing by 115 days. When we compared the onset of mammary tumor development and the tumor progression curves between FGF het and FGF KO mice, we observed a difference, which suggested a gene dosing effect. Analysis of the tumors demonstrated that there were significant differences in tumor size depending on FGF2 status. The delay in tumor onset supports a functional role for FGF2 in mammary tumor progression, but argues against an essential role for FGF2 in overall mammary tumor progression.

  11. Mammary Stem Cells and Breast Cancer Stem Cells: Molecular Connections and Clinical Implications.

    PubMed

    Celià-Terrassa, Toni

    2018-05-04

    Cancer arises from subpopulations of transformed cells with high tumor initiation and repopulation ability, known as cancer stem cells (CSCs), which share many similarities with their normal counterparts. In the mammary gland, several studies have shown common molecular regulators between adult mammary stem cells (MaSCs) and breast cancer stem cells (bCSCs). Cell plasticity and self-renewal are essential abilities for MaSCs to maintain tissue homeostasis and regenerate the gland after pregnancy. Intriguingly, these properties are similarly executed in breast cancer stem cells to drive tumor initiation, tumor heterogeneity and recurrence after chemotherapy. In addition, both stem cell phenotypes are strongly influenced by external signals from the microenvironment, immune cells and supportive specific niches. This review focuses on the intrinsic and extrinsic connections of MaSC and bCSCs with clinical implications for breast cancer progression and their possible therapeutic applications.

  12. Interstitial Fluid Sphingosine-1-Phosphate in Murine Mammary Gland and Cancer and Human Breast Tissue and Cancer Determined by Novel Methods.

    PubMed

    Nagahashi, Masayuki; Yamada, Akimitsu; Miyazaki, Hiroshi; Allegood, Jeremy C; Tsuchida, Junko; Aoyagi, Tomoyoshi; Huang, Wei-Ching; Terracina, Krista P; Adams, Barbara J; Rashid, Omar M; Milstien, Sheldon; Wakai, Toshifumi; Spiegel, Sarah; Takabe, Kazuaki

    2016-06-01

    The tumor microenvironment is a determining factor for cancer biology and progression. Sphingosine-1-phosphate (S1P), produced by sphingosine kinases (SphKs), is a bioactive lipid mediator that regulates processes important for cancer progression. Despite its critical roles, the levels of S1P in interstitial fluid (IF), an important component of the tumor microenvironment, have never previously been measured due to a lack of efficient methods for collecting and quantifying IF. The purpose of this study is to clarify the levels of S1P in the IF from murine mammary glands and its tumors utilizing our novel methods. We developed an improved centrifugation method to collect IF. Sphingolipids in IF, blood, and tissue samples were measured by mass spectrometry. In mice with a deletion of SphK1, but not SphK2, levels of S1P in IF from the mammary glands were greatly attenuated. Levels of S1P in IF from mammary tumors were reduced when tumor growth was suppressed by oral administration of FTY720/fingolimod. Importantly, sphingosine, dihydro-sphingosine, and S1P levels, but not dihydro-S1P, were significantly higher in human breast tumor tissue IF than in the normal breast tissue IF. To our knowledge, this is the first reported S1P IF measurement in murine normal mammary glands and mammary tumors, as well as in human patients with breast cancer. S1P tumor IF measurement illuminates new aspects of the role of S1P in the tumor microenvironment.

  13. Genistein-mediated inhibition of mammary stromal adipocyte differentiation limits expansion of mammary stem/progenitor cells by paracrine signaling

    USDA-ARS?s Scientific Manuscript database

    Mammary adiposity may contribute to breast cancer development and progression by releasing cytokines and other inflammatory mediators that promote mammary epithelial proliferation. We evaluated the effects of soy isoflavone genistein (GEN) on the adipogenic differentiation of a SV40-immortalized mou...

  14. Regulation of exosome release from mammary epithelial and breast cancer cells - a new regulatory pathway.

    PubMed

    Riches, Andrew; Campbell, Elaine; Borger, Eva; Powis, Simon

    2014-03-01

    Exosomes are small 50-100nm sized extracellular vesicles released from normal and tumour cells and are a source of a new intercellular communication pathway. Tumour exosomes promote tumour growth and progression. What regulates the release and homoeostatic levels of exosomes, in cancer, in body fluids remains undefined. We utilised a human mammary epithelial cell line (HMEC B42) and a breast cancer cell line derived from it (B42 clone 16) to investigate exosome production and regulation. Exosome numbers were quantified using a Nanosight LM10 and measured in culture supernatants in the absence and presence of exosomes in the medium. Concentrated suspensions of exosomes from the normal mammary epithelial cells, the breast cancer cells and bladder cancer cells were used. The interaction of exosomes with tumour cells was also investigated using fluorescently labelled exosomes. Exosome release from normal human mammary epithelial cells and breast cancer cells is regulated by the presence of exosomes, derived from their own cells, in the extracellular environment of the cells. Exosomes from normal mammary epithelial cells also inhibit exosome secretion by breast cancer cells, which occurs in a tissue specific manner. Labelled exosomes from mammary epithelial cells are internalised into the tumour cells implicating a dynamic equilibrium and suggesting a mechanism for feedback control. These data suggest a previously unknown novel feedback regulatory mechanism for controlling exosome release, which may highlight a new therapeutic approach to controlling the deleterious effects of tumour exosomes. This regulatory mechanism is likely to be generic to other tumours. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Growth Hormone and Insulin-Like Growth Factor-I in the Transition from Normal Mammary Development to Preneoplastic Mammary Lesions

    PubMed Central

    Kleinberg, David L.; Wood, Teresa L.; Furth, Priscilla A.; Lee, Adrian V.

    2009-01-01

    Adult female mammary development starts at puberty and is controlled by tightly regulated cross-talk between a group of hormones and growth factors. Although estrogen is the initial driving force and is joined by luteal phase progesterone, both of these hormones require GH-induced IGF-I in the mammary gland in order to act. The same group of hormones, when experimentally perturbed, can lead to development of hyperplastic lesions and increase the chances, or be precursors, of mammary carcinoma. For example, systemic administration of GH or IGF-I causes mammary hyperplasia, and overproduction of IGF-I in transgenic animals can cause the development of usual or atypical hyperplasias and sometimes carcinoma. Although studies have clearly demonstrated the transforming potential of both GH and IGF-I receptor in cell culture and in animals, debate remains as to whether their main role is actually instructive or permissive in progression to cancer in vivo. Genetic imprinting has been shown to occur in precursor lesions as early as atypical hyperplasia in women. Thus, the concept of progression from normal development to cancer through precursor lesions sensitive to hormones and growth factors discussed above is gaining support in humans as well as in animal models. Indeed, elevation of estrogen receptor, GH, IGF-I, and IGF-I receptor during progression suggests a role for these pathways in this process. New agents targeting the GH/IGF-I axis may provide a novel means to block formation and progression of precursor lesions to overt carcinoma. A novel somatostatin analog has recently been shown to prevent mammary development in rats via targeted IGF-I action inhibition at the mammary gland. Similarly, pegvisomant, a GH antagonist, and other IGF-I antagonists such as IGF binding proteins 1 and 5 also block mammary gland development. It is, therefore, possible that inhibition of IGF-I action, or perhaps GH, in the mammary gland may eventually play a role in breast cancer

  16. Tracing anti-cancer and cancer-promoting actions of all-trans retinoic acid in breast cancer to a RARα epigenetic mechanism of mammary epithelial cell fate.

    PubMed

    Rossetti, Stefano; Ren, MingQiang; Visconti, Nicolo; Corlazzoli, Francesca; Gagliostro, Vincenzo; Somenzi, Giulia; Yao, Jin; Sun, Yijun; Sacchi, Nicoletta

    2016-12-27

    A hallmark of cancer cells is the ability to evade the growth inhibitory/pro-apoptotic action of physiological all-trans retinoic acid (RA) signal, the bioactive derivative of Vitamin A. However, as we and others reported, RA can also promote cancer cell growth and invasion. Here we show that anticancer and cancer-promoting RA actions in breast cancer have roots in a mechanism of mammary epithelial cell morphogenesis that involves both transcriptional (epigenetic) and non-transcriptional RARα (RARA) functions. We found that the mammary epithelial cell-context specific degree of functionality of the RARA transcriptional (epigenetic) component of this mechanism, by tuning the effects of the non-transcriptional RARA component, determines different cell fate decisions during mammary morphogenesis. Indeed, factors that hamper the RARA epigenetic function make physiological RA drive aberrant morphogenesis via non-transcriptional RARA, thus leading to cell transformation. Remarkably, also the cell context-specific degree of functionality of the RARA epigenetic component retained by breast cancer cells is critical to determine cell fate decisions in response to physiological as well as supraphysiological RA variation. Overall this study supports the proof of principle that the epigenetic functional plasticity of the mammary epithelial cell RARA mechanism, which is essential for normal morphogenetic processes, is necessary to deter breast cancer onset/progression consequent to the insidious action of physiological RA.

  17. Mammary Cancer and Activation of Transposable Elements

    DTIC Science & Technology

    2015-03-01

    EGFP). No other cell type in the mammary fat pad was observed to express EGFP. Wholemount and FACS analyses of mammary fat pads after involution from...were sacrificed for PI-MEC isolation in groups of up to 4 control or cancer-prone uniparous or triparous females. Both 4 th mammary fat pads were...to unknown reason (n=46), and smaller numbers of animals with various conditions (malocclusion, head tilt , dystocia, respiratory complaints, identity

  18. Disturbance of Mammary UDP-Glucuronosyltransferase Represses Estrogen Metabolism and Exacerbates Experimental Breast Cancer.

    PubMed

    Zhou, Xueyan; Zheng, Ziqiang; Xu, Chang; Wang, Juan; Min, Mengjun; Zhao, Yun; Wang, Xi; Gong, Yinhan; Yin, Jiale; Guo, Meng; Guo, Dong; Zheng, Junnian; Zhang, Bei; Yin, Xiaoxing

    2017-08-01

    The progression of breast cancer is closely related to the levels of estrogens within the body. UDP-glucuronosyltransferase (UGT) is an important class of phase II metabolizing enzymes, playing a pivotal role in detoxifying steroid hormone. In the present study, we aim at uncovering the potential dysregulation pattern of UGT and its role in estrogen metabolism and in the pathogenesis of breast cancer. Female Sprague-Dawley rats were treated with 100 mg/kg dimethylbenz(a)anthracene (DMBA) to induce breast cancer. Our results showed that the expression and activity of UGT in mammary tissues were downregulated significantly in DMBA rats. Consistent with this, levels of estradiol, 4-hydroxylated estradiol, and 2-hydroxylated estradiol were increased in both mammary tissues and serum, supporting a notable accumulation of toxic estrogen species in the target tissue of breast cancer. In addition, we also observed the decreased cell migration, cell proliferation, and DNA damage in UGT-transfected MCF-7 cells, suggesting a protective role of UGT against estrogen-induced mammary carcinogenesis. Taken together, these results indicated that accumulation of estrogens induced by UGT deficiency is a critical factor to induce the development of breast cancer. UGT contributes to estrogen elimination, and its glucuronidation capacity influences the estrogen signaling pathway and the pathogenesis of breast cancer. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Beneficial bacteria stimulate host immune cells to counteract dietary and genetic predisposition to mammary cancer in mice.

    PubMed

    Lakritz, Jessica R; Poutahidis, Theofilos; Levkovich, Tatiana; Varian, Bernard J; Ibrahim, Yassin M; Chatzigiagkos, Antonis; Mirabal, Sheyla; Alm, Eric J; Erdman, Susan E

    2014-08-01

    Recent studies suggest health benefits including protection from cancer after eating fermented foods such as probiotic yogurt, though the mechanisms are not well understood. Here we tested mechanistic hypotheses using two different animal models: the first model studied development of mammary cancer when eating a Westernized diet, and the second studied animals with a genetic predilection to breast cancer. For the first model, outbred Swiss mice were fed a Westernized chow putting them at increased risk for development of mammary tumors. In this Westernized diet model, mammary carcinogenesis was inhibited by routine exposure to Lactobacillus reuteri ATCC-PTA-6475 in drinking water. The second model was FVB strain erbB2 (HER2) mutant mice, genetically susceptible to mammary tumors mimicking breast cancers in humans, being fed a regular (non-Westernized) chow diet. We found that oral supplement with these purified lactic acid bacteria alone was sufficient to inhibit features of mammary neoplasia in both models. The protective mechanism was determined to be microbially-triggered CD4+CD25+ lymphocytes. When isolated and transplanted into other subjects, these L. reuteri-stimulated lymphocytes were sufficient to convey transplantable anti-cancer protection in the cell recipient animals. These data demonstrate that host immune responses to environmental microbes significantly impact and inhibit cancer progression in distal tissues such as mammary glands, even in genetically susceptible mice. This leads us to conclude that consuming fermentative microbes such as L. reuteri may offer a tractable public health approach to help counteract the accumulated dietary and genetic carcinogenic events integral in the Westernized diet and lifestyle. © 2013 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.

  20. The contribution of growth hormone to mammary neoplasia

    PubMed Central

    Perry, Jo K; Mohankumar, Kumarasamypet M; Emerald, B Starling; Mertani, Hichem C; Lobie, Peter E

    2008-01-01

    While the effects of growth hormone (GH) on longitudinal growth are well established, the observation that GH contributes to neoplastic progression is more recent. Accumulating literature implicates GH-mediated signal transduction in the development and progression of a wide range malignancies including breast cancer. Recently autocrine human GH been demonstrated to be an orthotopically expressed oncogene for the human mammary gland. This review will highlight recent evidence linking GH and mammary carcinoma and discuss GH-antagonism as a potential therapeutic approach for treatment of breast cancer. PMID:18253708

  1. Embryonic mammary signature subsets are activated in Brca1-/- and basal-like breast cancers

    PubMed Central

    2013-01-01

    Introduction Cancer is often suggested to result from development gone awry. Links between normal embryonic development and cancer biology have been postulated, but no defined genetic basis has been established. We recently published the first transcriptomic analysis of embryonic mammary cell populations. Embryonic mammary epithelial cells are an immature progenitor cell population, lacking differentiation markers, which is reflected in their very distinct genetic profiles when compared with those of their postnatal descendents. Methods We defined an embryonic mammary epithelial signature that incorporates the most highly expressed genes from embryonic mammary epithelium when compared with the postnatal mammary epithelial cells. We looked for activation of the embryonic mammary epithelial signature in mouse mammary tumors that formed in mice in which Brca1 had been conditionally deleted from the mammary epithelium and in human breast cancers to determine whether any genetic links exist between embryonic mammary cells and breast cancers. Results Small subsets of the embryonic mammary epithelial signature were consistently activated in mouse Brca1-/- tumors and human basal-like breast cancers, which encoded predominantly transcriptional regulators, cell-cycle, and actin cytoskeleton components. Other embryonic gene subsets were found activated in non-basal-like tumor subtypes and repressed in basal-like tumors, including regulators of neuronal differentiation, transcription, and cell biosynthesis. Several embryonic genes showed significant upregulation in estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and/or grade 3 breast cancers. Among them, the transcription factor, SOX11, a progenitor cell and lineage regulator of nonmammary cell types, is found highly expressed in some Brca1-/- mammary tumors. By using RNA interference to silence SOX11 expression in breast cancer cells, we found evidence that SOX11 regulates breast cancer cell

  2. Mouse mammary tumour virus (MMTV) and human breast cancer with neuroendocrine differentiation.

    PubMed

    Js, Lawson; Cc, Ngan; Wk, Glenn; Dd, Tran

    2017-01-01

    Mouse mammary tumour viruses (MMTVs) may have a role in a subset of human breast cancers. MMTV positive human breast cancers have similar histological characteristics to neuroendocrine breast cancers and to MMTV positive mouse mammary tumours. The purpose of this study was to investigate the expression of neuroendocrine biomarkers - synaptophysin and chromogranin, to determine if these histological characteristics and biomarker expression were due to the influences of MMTV. Immunohistochemistry analyses to identify synaptophysin and chromogranin were conducted on a series of human breast cancers in which (i) MMTV had been previously identified and had similar histological characteristics to MMTV positive mouse mammary tumours and (ii) MMTV positive mouse mammary tumours. The expression of synaptophysin and chromogranin in MMTV positive mouse mammary tumors were all positive (7 of 7 specimens - 100% positive). The expression of synaptophysin and chromogranin in MMTV positive human breast cancers was much less prevalent (3 of 22 - 14%). There was no expression of synaptophysin and chromogranin in the normal breast tissue control specimens. It is not possible to draw any firm conclusions from these observations. However, despite the small numbers of MMTV positive mouse mammary tumours in this study, the universal expression in these specimens of synaptophysin and chromogranin proteins is striking. This pattern of synaptophysin and chromogranin expression is very different from their expression in MMTV positive human breast cancers. The reason for these differences is not known. The high prevalence of positive expression of synaptophysin and chromogranin in MMTV positive mouse mammary tumours and low expression of synaptophysin and chromogranin in MMTV positive human breast cancers indicates that MMTV is not usually associated with neuroendocrine human breast cancers.

  3. The mammary cellular hierarchy and breast cancer.

    PubMed

    Oakes, Samantha R; Gallego-Ortega, David; Ormandy, Christopher J

    2014-11-01

    Advances in the study of hematopoietic cell maturation have paved the way to a deeper understanding the stem and progenitor cellular hierarchy in the mammary gland. The mammary epithelium, unlike the hematopoietic cellular hierarchy, sits in a complex niche where communication between epithelial cells and signals from the systemic hormonal milieu, as well as from extra-cellular matrix, influence cell fate decisions and contribute to tissue homeostasis. We review the discovery, definition and regulation of the mammary cellular hierarchy and we describe the development of the concepts that have guided our investigations. We outline recent advances in in vivo lineage tracing that is now challenging many of our assumptions regarding the behavior of mammary stem cells, and we show how understanding these cellular lineages has altered our view of breast cancer.

  4. VHL deletion impairs mammary alveologenesis but is not sufficient for mammary tumorigenesis.

    PubMed

    Seagroves, Tiffany N; Peacock, Danielle L; Liao, Debbie; Schwab, Luciana P; Krueger, Robin; Handorf, Charles R; Haase, Volker H; Johnson, Randall S

    2010-05-01

    Overexpression of hypoxia inducible factor-1 (HIF-1)alpha, which is common in most solid tumors, correlates with poor prognosis and high metastatic risk in breast cancer patients. Because HIF-1alpha protein stability is tightly controlled by the tumor suppressor von Hippel-Lindau (VHL), deletion of VHL results in constitutive HIF-1alpha expression. To determine whether VHL plays a role in normal mammary gland development, and if HIF-1alpha overexpression is sufficient to initiate breast cancer, Vhl was conditionally deleted in the mammary epithelium using the Cre/loxP system. During first pregnancy, loss of Vhl resulted in decreased mammary epithelial cell proliferation and impaired alveolar differentiation; despite these phenotypes, lactation was sufficient to support pup growth. In contrast, in multiparous dams, Vhl(-/-) mammary glands exhibited a progressive loss of alveolar epithelium, culminating in lactation failure. Deletion of Vhl in the epithelium also impacted the mammary stroma, as there was increased microvessel density accompanied by hemorrhage and increased immune cell infiltration. However, deletion of Vhl was not sufficient to induce mammary tumorigenesis in dams bred continuously for up to 24 months of age. Moreover, co-deletion of Hif1a could not rescue the Vhl(-/-)-dependent phenotype as dams were unable to successfully lactate during the first lactation. These results suggest that additional VHL-regulated genes besides HIF1A function to maintain the proliferative and regenerative potential of the breast epithelium.

  5. Gestational high-fat diet and bisphenol A exposure heightens mammary cancer risk

    PubMed Central

    Leung, Yuet-Kin; Govindarajah, Vinothini; Cheong, Ana; Veevers, Jennifer; Song, Dan; Gear, Robin; Zhu, Xuegong; Ying, Jun; Kendler, Ady; Medvedovic, Mario; Belcher, Scott

    2017-01-01

    In utero exposure to bisphenol A (BPA) increases mammary cancer susceptibility in offspring. High-fat diet is widely believed to be a risk factor of breast cancer. The objective of this study was to determine whether maternal exposure to BPA in addition to high-butterfat (HBF) intake during pregnancy further influences carcinogen-induced mammary cancer risk in offspring, and its dose–response curve. In this study, we found that gestational HBF intake in addition to a low-dose BPA (25 µg/kg BW/day) exposure increased mammary tumor incidence in a 50-day-of-age chemical carcinogen administration model and altered mammary gland morphology in offspring in a non-monotonic manner, while shortening tumor-free survival time compared with the HBF-alone group. In utero HBF and BPA exposure elicited differential effects at the gene level in PND21 mammary glands through DNA methylation, compared with HBF intake in the absence of BPA. Top HBF + BPA-dysregulated genes (ALDH1B1, ASTL, CA7, CPLX4, KCNV2, MAGEE2 and TUBA3E) are associated with poor overall survival in The Cancer Genomic Atlas (TCGA) human breast cancer cohort (n = 1082). Furthermore, the prognostic power of the identified genes was further enhanced in the survival analysis of Caucasian patients with estrogen receptor-positive tumors. In conclusion, concurrent HBF dietary and a low-dose BPA exposure during pregnancy increases mammary tumor incidence in offspring, accompanied by alterations in mammary gland development and gene expression, and possibly through epigenetic reprogramming. PMID:28487351

  6. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis

    PubMed Central

    Pathania, Rajneesh; Ramachandran, Sabarish; Elangovan, Selvakumar; Padia, Ravi; Yang, Pengyi; Cinghu, Senthilkumar; Veeranan-Karmegam, Rajalakshmi; Arjunan, Pachiappan; Gnana-Prakasam, Jaya P.; Fulzele, Sadanand; Pei, Lirong; Chang, Chang-Sheng; Choi, Hyeon; Shi, Huidong; Manicassamy, Santhakumar; Prasad, Puttur D.; Sharma, Suash; Ganapathy, Vadivel; Jothi, Raja; Thangaraju, Muthusamy

    2015-01-01

    Mammary stem/progenitor cells (MaSCs) maintain self-renewal of the mammary epithelium during puberty and pregnancy. DNA methylation provides a potential epigenetic mechanism for maintaining cellular memory during self-renewal. Although DNA methyltransferases (DNMTs) are dispensable for embryonic stem cell maintenance, their role in maintaining MaSCs and cancer stem cells (CSCs) in constantly replenishing mammary epithelium is unclear. Here we show that DNMT1 is indispensable for MaSC maintenance. Furthermore, we find that DNMT1 expression is elevated in mammary tumors, and mammary gland-specific DNMT1 deletion protects mice from mammary tumorigenesis by limiting the CSC pool. Through genome-scale methylation studies, we identify ISL1 as a direct DNMT1 target, hypermethylated and downregulated in mammary tumors and CSCs. DNMT inhibition or ISL1 expression in breast cancer cells limits CSC population. Altogether, our studies uncover an essential role for DNMT1 in MaSC and CSC maintenance and identify DNMT1-ISL1 axis as a potential therapeutic target for breast cancer treatment. PMID:25908435

  7. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis.

    PubMed

    Pathania, Rajneesh; Ramachandran, Sabarish; Elangovan, Selvakumar; Padia, Ravi; Yang, Pengyi; Cinghu, Senthilkumar; Veeranan-Karmegam, Rajalakshmi; Arjunan, Pachiappan; Gnana-Prakasam, Jaya P; Sadanand, Fulzele; Pei, Lirong; Chang, Chang-Sheng; Choi, Jeong-Hyeon; Shi, Huidong; Manicassamy, Santhakumar; Prasad, Puttur D; Sharma, Suash; Ganapathy, Vadivel; Jothi, Raja; Thangaraju, Muthusamy

    2015-04-24

    Mammary stem/progenitor cells (MaSCs) maintain self-renewal of the mammary epithelium during puberty and pregnancy. DNA methylation provides a potential epigenetic mechanism for maintaining cellular memory during self-renewal. Although DNA methyltransferases (DNMTs) are dispensable for embryonic stem cell maintenance, their role in maintaining MaSCs and cancer stem cells (CSCs) in constantly replenishing mammary epithelium is unclear. Here we show that DNMT1 is indispensable for MaSC maintenance. Furthermore, we find that DNMT1 expression is elevated in mammary tumours, and mammary gland-specific DNMT1 deletion protects mice from mammary tumorigenesis by limiting the CSC pool. Through genome-scale methylation studies, we identify ISL1 as a direct DNMT1 target, hypermethylated and downregulated in mammary tumours and CSCs. DNMT inhibition or ISL1 expression in breast cancer cells limits CSC population. Altogether, our studies uncover an essential role for DNMT1 in MaSC and CSC maintenance and identify DNMT1-ISL1 axis as a potential therapeutic target for breast cancer treatment.

  8. Mammary stem cells: angels or demons in mammary gland?

    PubMed

    Chen, Xueman; Liu, Qiang; Song, Erwei

    2017-01-01

    A highly dynamic development process exits within the epithelia of mammary gland, featuring morphogenetic variation during puberty, pregnancy, lactation, and regression. The identification of mammary stem cells (MaSCs) via lineage-tracing studies has substantiated a hierarchical organization of the mammary epithelia. A single MaSC is capable of reconstituting the entirely functional mammary gland upon orthotopic transplantation. Although different mammary cell subpopulations can be candidate cells-of-origin for distinct breast tumor subtypes, it still lacks experimental proofs whether MaSCs, the most primitive cells, are the 'seeds' of malignant transformation during most, if not all, tumorigenesis in the breast. Here, we review current knowledge of mammary epithelial hierarchy, highlighting the roles of mammary stem/progenitor cells and breast cancer stem cells (BCSCs) along with their key molecular regulators in organ development and cancer evolution. Clarifying these issues will pave the way for developing novel interventions toward stem/progenitor cells in either prevention or treatment of breast cancer (BrCa).

  9. Mammary stem cells: angels or demons in mammary gland?

    PubMed Central

    Chen, Xueman; Liu, Qiang; Song, Erwei

    2017-01-01

    A highly dynamic development process exits within the epithelia of mammary gland, featuring morphogenetic variation during puberty, pregnancy, lactation, and regression. The identification of mammary stem cells (MaSCs) via lineage-tracing studies has substantiated a hierarchical organization of the mammary epithelia. A single MaSC is capable of reconstituting the entirely functional mammary gland upon orthotopic transplantation. Although different mammary cell subpopulations can be candidate cells-of-origin for distinct breast tumor subtypes, it still lacks experimental proofs whether MaSCs, the most primitive cells, are the ‘seeds’ of malignant transformation during most, if not all, tumorigenesis in the breast. Here, we review current knowledge of mammary epithelial hierarchy, highlighting the roles of mammary stem/progenitor cells and breast cancer stem cells (BCSCs) along with their key molecular regulators in organ development and cancer evolution. Clarifying these issues will pave the way for developing novel interventions toward stem/progenitor cells in either prevention or treatment of breast cancer (BrCa). PMID:29263909

  10. Genistein and resveratrol: mammary cancer chemoprevention and mechanisms of action in the rat.

    PubMed

    Whitsett, Timothy G; Lamartiniere, Coral A

    2006-12-01

    The environment, including diet, plays a critical role in a woman's subsequent risk of breast cancer. Two dietary polyphenols that have received attention from the health and research communities for their ability to protect against breast cancer are: genistein, a component of soy; and resveratrol, a phytoalexin found in red grapes and red wine. We and others have shown that both genistein and resveratrol can protect against mammary cancer in rodents. The timing of exposure to genistein appears critical for its mammary protective effects. It has been reported that genistein early in life causes enhanced mammary gland differentiation, alterations in cell proliferation and apoptosis, and upregulation of tumor-suppressor genes. With resveratrol in the diet, changes in cell proliferation and apoptosis in terminal ductal structures of the mammary gland might help to explain its protective effects. We conclude that genistein and resveratrol can protect against breast cancer by regulating important mammary growth and differentiation pathways.

  11. Proliferation of human mammary cancer cells exposed to 27-hydroxycholesterol

    PubMed Central

    CRUZ, PAMELA; TORRES, CRISTIAN; RAMÍREZ, MARÍA EUGENIA; EPUÑÁN, MARÍA JOSÉ; VALLADARES, LUIS EMILIO; SIERRALTA, WALTER DANIEL

    2010-01-01

    The aim of the present study was to identify the possible mechanisms by which certain estradiol receptor (ER)-positive mammary tumor cells remain resistant to treatment with anti-estrogens or inhibitors of local estradiol (E2) production. To this end, we compared the proliferative effects on mammary cancer cells of the novel selective ER modulator 27-hydroxycholesterol (27OHC) to those of E2, and evaluated their inhibition by ICI 182,780 (ICI). Analysis of the effects on the cell cycle of 27OHC and E2 in the absence or presence of ICI was conducted. In ER-positive mammary tumor cells, we detected the blocking of 27OHC proliferation-stimulatory activity by simvastatin, as well as the inhibition of E2-stimulated proliferation by an α-fetoprotein-derived cyclic nonapeptide. The effects reported herein may be extrapolated to infiltrating mammary cancer, where the activity of local macrophages may stimulate tumor growth. We suggest that increased breast cancer growth in obese patients may be related to increased 27OHC circulatory levels. PMID:22993572

  12. Proliferation of human mammary cancer cells exposed to 27-hydroxycholesterol.

    PubMed

    Cruz, Pamela; Torres, Cristian; Ramírez, María Eugenia; Epuñán, María José; Valladares, Luis Emilio; Sierralta, Walter Daniel

    2010-05-01

    The aim of the present study was to identify the possible mechanisms by which certain estradiol receptor (ER)-positive mammary tumor cells remain resistant to treatment with anti-estrogens or inhibitors of local estradiol (E(2)) production. To this end, we compared the proliferative effects on mammary cancer cells of the novel selective ER modulator 27-hydroxycholesterol (27OHC) to those of E(2), and evaluated their inhibition by ICI 182,780 (ICI). Analysis of the effects on the cell cycle of 27OHC and E(2) in the absence or presence of ICI was conducted. In ER-positive mammary tumor cells, we detected the blocking of 27OHC proliferation-stimulatory activity by simvastatin, as well as the inhibition of E(2)-stimulated proliferation by an α-fetoprotein-derived cyclic nonapeptide. The effects reported herein may be extrapolated to infiltrating mammary cancer, where the activity of local macrophages may stimulate tumor growth. We suggest that increased breast cancer growth in obese patients may be related to increased 27OHC circulatory levels.

  13. Discovery of Novel Mammary Developmental and Cancer Genes Using ENU Mutagenesis

    DTIC Science & Technology

    2002-10-01

    death rates we need new therapeutic targets, currently a major challenge facing cancer researchers This requires an understanding of the undiscovered pathways that operate to drive breast cancer cell proliferation, cell survival and cell differentiation, pathways which are also likely to operate during normal mammary development, and which go awry in cancer The discovery of signalling pathways operative in breast cancer has utilised examination of mammary gland development following systemic endocrine ablation or viral insertion, positional cloning in affected families and

  14. Inflammatory peroxidases promote breast cancer progression in mice via regulation of the tumour microenvironment.

    PubMed

    Panagopoulos, Vasilios; Leach, Damien A; Zinonos, Irene; Ponomarev, Vladimir; Licari, Giovanni; Liapis, Vasilios; Ingman, Wendy V; Anderson, Peter; DeNichilo, Mark O; Evdokiou, Andreas

    2017-04-01

    Myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are heme-containing enzymes, well known for their antimicrobial activity, are released in high quantities by infiltrating immune cells in breast cancer. However, the functional importance of their presence within the tumour microenvironment is unclear. We have recently described a new role for peroxidases as key regulators of fibroblast and endothelial cell functionality. In the present study, we investigate for the first time, the ability of peroxidases to promote breast cancer development and progression. Using the 4T1 syngeneic murine orthotopic breast cancer model, we examined whether increased levels of peroxidases in developing mammary tumours influences primary tumour growth and metastasis. We showed that MPO and EPO stimulation increased mammary tumour growth and enhanced lung metastases, effects that were associated with reduced tumour necrosis, increased collagen deposition and neo-vascularisation within the primary tumour. In vitro, peroxidase treatment, robustly stimulated human mammary fibroblast migration and collagen type I and type VI secretion. Mechanistically, peroxidases induced the transcription of pro-tumorigenic and metastatic MMP1, MMP3 and COX-2 genes. Taken together, these findings identify peroxidases as key contributors to cancer progression by augmenting pro-tumorigenic collagen production and angiogenesis. Importantly, this identifies inflammatory peroxidases as therapeutic targets in breast cancer therapy.

  15. Human Breast Cancer Cells Are Redirected to Mammary Epithelial Cells upon Interaction with the Regenerating Mammary Gland Microenvironment In-Vivo

    PubMed Central

    Bussard, Karen M.; Smith, Gilbert H.

    2012-01-01

    Breast cancer is the second leading cause of cancer deaths in the United States. At present, the etiology of breast cancer is unknown; however the possibility of a distinct cell of origin, i.e. a cancer stem cell, is a heavily investigated area of research. Influencing signals from the tissue niche are known to affect stem cells. Literature has shown that cancer cells lose their tumorigenic potential and display ‘normal’ behavior when placed into ‘normal’ ontogenic environments. Therefore, it may be the case that the tissue microenvironment is able to generate signals to redirect cancer cell fate. Previously, we showed that pluripotent human embryonal carcinoma cells could be redirected by the regenerating mammary gland microenvironment to contribute epithelial progeny for ‘normal’ gland development in-vivo. Here, we show that that human metastatic, non-metastatic, and metastasis-suppressed breast cancer cells proliferate and contribute to normal mammary gland development in-vivo without tumor formation. Immunochemistry for human-specific mitochondria, keratin 8 and 14, as well as human-specific milk proteins (alpha-lactalbumin, impregnated transplant hosts) confirmed the presence of human cell progeny. Features consistent with normal mammary gland development as seen in intact hosts (duct, lumen formation, development of secretory acini) were recapitulated in both primary and secondary outgrowths from chimeric implants. These results suggest the dominance of the tissue microenvironment over cancer cell fate. This work demonstrates that cultured human breast cancer cells (metastatic and non-metastatic) respond developmentally to signals generated by the mouse mammary gland microenvironment during gland regeneration in-vivo. PMID:23155468

  16. Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles

    PubMed Central

    2010-01-01

    Background Similar to human breast cancer mammary tumors of the female dog are commonly associated with a fatal outcome due to the development of distant metastases. However, the molecular defects leading to metastasis are largely unknown and the value of canine mammary carcinoma as a model for human breast cancer is unclear. In this study, we analyzed the gene expression signatures associated with mammary tumor metastasis and asked for parallels with the human equivalent. Methods Messenger RNA expression profiles of twenty-seven lymph node metastasis positive or negative canine mammary carcinomas were established by microarray analysis. Differentially expressed genes were functionally characterized and associated with molecular pathways. The findings were also correlated with published data on human breast cancer. Results Metastatic canine mammary carcinomas had 1,011 significantly differentially expressed genes when compared to non-metastatic carcinomas. Metastatic carcinomas had a significant up-regulation of genes associated with cell cycle regulation, matrix modulation, protein folding and proteasomal degradation whereas cell differentiation genes, growth factor pathway genes and regulators of actin organization were significantly down-regulated. Interestingly, 265 of the 1,011 differentially expressed canine genes are also related to human breast cancer and, vice versa, parts of a human prognostic gene signature were identified in the expression profiles of the metastatic canine tumors. Conclusions Metastatic canine mammary carcinomas can be discriminated from non-metastatic carcinomas by their gene expression profiles. More than one third of the differentially expressed genes are also described of relevance for human breast cancer. Many of the differentially expressed genes are linked to functions and pathways which appear to be relevant for the induction and maintenance of metastatic progression and may represent new therapeutic targets. Furthermore, dogs

  17. Metabolic Alterations in Mammary Cancer Prevention by Withaferin A in a Clinically Relevant Mouse Model

    PubMed Central

    2013-01-01

    Background Efficacy of withaferin A (WA), an Ayurvedic medicine constituent, for prevention of mammary cancer and its associated mechanisms were investigated using mouse mammary tumor virus–neu (MMTV-neu) transgenic model. Methods Incidence and burden of mammary cancer and pulmonary metastasis were scored in female MMTV-neu mice after 28 weeks of intraperitoneal administration with 100 µg WA (three times/week) (n = 32) or vehicle (n = 29). Mechanisms underlying mammary cancer prevention by WA were investigated by determination of tumor cell proliferation, apoptosis, metabolomics, and proteomics using plasma and/or tumor tissues. Spectrophotometric assays were performed to determine activities of complex III and complex IV. All statistical tests were two-sided. Results WA administration resulted in a statistically significant decrease in macroscopic mammary tumor size, microscopic mammary tumor area, and the incidence of pulmonary metastasis. For example, the mean area of invasive cancer was lower by 95.14% in the WA treatment group compared with the control group (mean = 3.10 vs 63.77mm2, respectively; difference = –60.67mm2; 95% confidence interval = –122.50 to 1.13mm2; P = .0536). Mammary cancer prevention by WA treatment was associated with increased apoptosis, inhibition of complex III activity, and reduced levels of glycolysis intermediates. Proteomics confirmed downregulation of many glycolysis-related proteins in the tumor of WA-treated mice compared with control, including M2-type pyruvate kinase, phospho glycerate kinase, and fructose-bisphosphate aldolase A isoform 2. Conclusions This study reveals suppression of glycolysis in WA-mediated mammary cancer prevention in a clinically relevant mouse model. PMID:23821767

  18. Microcalcifications in breast cancer: novel insights into the molecular mechanism and functional consequence of mammary mineralisation

    PubMed Central

    Cox, R F; Hernandez-Santana, A; Ramdass, S; McMahon, G; Harmey, J H; Morgan, M P

    2012-01-01

    Background: Mammographic microcalcifications represent one of the most reliable features of nonpalpable breast cancer yet remain largely unexplored and poorly understood. Methods: We report a novel model to investigate the in vitro mineralisation potential of a panel of mammary cell lines. Primary mammary tumours were produced by implanting tumourigenic cells into the mammary fat pads of female BALB/c mice. Results: Hydroxyapatite (HA) was deposited only by the tumourigenic cell lines, indicating mineralisation potential may be associated with cell phenotype in this in vitro model. We propose a mechanism for mammary mineralisation, which suggests that the balance between enhancers and inhibitors of physiological mineralisation are disrupted. Inhibition of alkaline phosphatase and phosphate transport prevented mineralisation, demonstrating that mineralisation is an active cell-mediated process. Hydroxyapatite was found to enhance in vitro tumour cell migration, while calcium oxalate had no effect, highlighting potential consequences of calcium deposition. In addition, HA was also deposited in primary mammary tumours produced by implanting the tumourigenic cells into the mammary fat pads of female BALB/c mice. Conclusion: This work indicates that formation of mammary HA is a cell-specific regulated process, which creates an osteomimetic niche potentially enhancing breast tumour progression. Our findings point to the cells mineralisation potential and the microenvironment regulating it, as a significant feature of breast tumour development. PMID:22233923

  19. The Mammary Stem Cell Hierarchy: A Looking Glass into Heterogeneous Breast Cancer Landscapes

    PubMed Central

    Sreekumar, Amulya; Roarty, Kevin; Rosen, Jeffrey M.

    2015-01-01

    The mammary gland is a dynamic organ that undergoes extensive morphogenesis during the different stages of embryonic development, puberty, estrus, pregnancy, lactation and involution. Systemic and local cues underlie this constant tissue remodeling and act by eliciting an intricate pattern of responses in the mammary epithelial and stromal cells. Decades of studies utilizing methods such as transplantation and lineage tracing have identified a complex hierarchy of mammary stem cells, progenitors and differentiated epithelial cells that fuel mammary epithelial development. Importantly, these studies have extended our understanding of the molecular crosstalk between cell types, and signaling pathways maintaining normal homeostasis that often are deregulated during tumorigenesis. While several questions remain, this research has many implications for breast cancer. Fundamental among these are the identification of the cells of origin for the multiple subtypes of breast cancer and the understanding of tumor heterogeneity. A deeper understanding of these critical questions will unveil novel breast cancer drug targets and treatment paradigms. In this review, we provide a current overview of normal mammary development and tumorigenesis from a stem cell perspective. PMID:26206777

  20. The angiotensin receptor blocker, Losartan, inhibits mammary tumor development and progression to invasive carcinoma

    PubMed Central

    Coulson, Rhiannon; Liew, Seng H.; Connelly, Angela A.; Yee, Nicholas S.; Deb, Siddhartha; Kumar, Beena; Vargas, Ana C.; O’Toole, Sandra A.; Parslow, Adam C.; Poh, Ashleigh; Putoczki, Tracy; Morrow, Riley J.; Alorro, Mariah; Lazarus, Kyren A.; Yeap, Evie F.W.; Walton, Kelly L.; Harrison, Craig A.; Hannan, Natalie J.; George, Amee J.; Clyne, Colin D.; Ernst, Matthias; Allen, Andrew M.; Chand, Ashwini L.

    2017-01-01

    Drugs that target the Renin-Angiotensin System (RAS) have recently come into focus for their potential utility as cancer treatments. The use of Angiotensin Receptor Blockers (ARBs) and Angiotensin-Converting Enzyme (ACE) Inhibitors (ACEIs) to manage hypertension in cancer patients is correlated with improved survival outcomes for renal, prostate, breast and small cell lung cancer. Previous studies demonstrate that the Angiotensin Receptor Type I (AT1R) is linked to breast cancer pathogenesis, with unbiased analysis of gene-expression studies identifying significant up-regulation of AGTR1, the gene encoding AT1R in ER+ve/HER2−ve tumors correlating with poor prognosis. However, there is no evidence, so far, of the functional contribution of AT1R to breast tumorigenesis. We explored the potential therapeutic benefit of ARB in a carcinogen-induced mouse model of breast cancer and clarified the mechanisms associated with its success. Mammary tumors were induced with 7,12-dimethylbenz[α]antracene (DMBA) and medroxyprogesterone acetate (MPA) in female wild type mice and the effects of the ARB, Losartan treatment assessed in a preventative setting (n = 15 per group). Tumor histopathology was characterised by immunohistochemistry, real-time qPCR to detect gene expression signatures, and tumor cytokine levels measured with quantitative bioplex assays. AT1R was detected with radiolabelled ligand binding assays in fresh frozen tumor samples. We showed that therapeutic inhibition of AT1R, with Losartan, resulted in a significant reduction in tumor burden; and no mammary tumor incidence in 20% of animals. We observed a significant reduction in tumor progression from DCIS to invasive cancer with Losartan treatment. This was associated with reduced tumor cell proliferation and a significant reduction in IL-6, pSTAT3 and TNFα levels. Analysis of tumor immune cell infiltrates, however, demonstrated no significant differences in the recruitment of lymphocytes or tumour

  1. Repression of mammary adipogenesis by genistein limits mammosphere formation of human MCF-7 cells

    USDA-ARS?s Scientific Manuscript database

    Mammary adipose tissue may contribute to breast cancer development and progression by altering neighboring epithelial cell behavior and phenotype through paracrine signaling. Dietary exposure to soy foods is associated with lower mammary tumor risk and reduced body weight and adiposity in humans and...

  2. MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer.

    PubMed

    Theodorou, Vassiliki; Kimm, Melanie A; Boer, Mandy; Wessels, Lodewyk; Theelen, Wendy; Jonkers, Jos; Hilkens, John

    2007-06-01

    We performed a high-throughput retroviral insertional mutagenesis screen in mouse mammary tumor virus (MMTV)-induced mammary tumors and identified 33 common insertion sites, of which 17 genes were previously not known to be associated with mammary cancer and 13 had not previously been linked to cancer in general. Although members of the Wnt and fibroblast growth factors (Fgf) families were frequently tagged, our exhaustive screening for MMTV insertion sites uncovered a new repertoire of candidate breast cancer oncogenes. We validated one of these genes, Rspo3, as an oncogene by overexpression in a p53-deficient mammary epithelial cell line. The human orthologs of the candidate oncogenes were frequently deregulated in human breast cancers and associated with several tumor parameters. Computational analysis of all MMTV-tagged genes uncovered specific gene families not previously associated with cancer and showed a significant overrepresentation of protein domains and signaling pathways mainly associated with development and growth factor signaling. Comparison of all tagged genes in MMTV and Moloney murine leukemia virus-induced malignancies showed that both viruses target mostly different genes that act predominantly in distinct pathways.

  3. Haemostatic alterations in a group of canine cancer patients are associated with cancer type and disease progression

    PubMed Central

    2012-01-01

    Background Haemostatic alterations are commonly detected in human and canine cancer patients. Previous studies have described haemostatic dysfunction in canine patients with haemangiosarcomas and carcinomas, and haemostasis has been assessed in dogs with various malignant and benign neoplasias. Few studies have addressed the effect of cancer type and progression of disease on the presence of haemostatic alterations in canine patients. The objective of the present study was to evaluate haemostatic variables of coagulation and fibrinolysis in a group of canine cancer patients, and to compare haemostatic changes to the cancer type and progression of disease. Methods The study population consisted of 71 dogs with malignant neoplasia presented to the University Hospital for Companion Animals, Faculty of Life Sciences, University of Copenhagen, Denmark. The study was designed as a prospective observational study evaluating the haemostatic function in canine cancer patients stratified according to type of cancer disease and disease progression. The coagulation response was evaluated by thromboelastrography (TEG), platelet count, activated partial thromboplastin time (aPTT), prothombin time (PT), fibrinogen and antithrombin (AT); and fibrinolysis by d-dimer and plasminogen. Results Hypercoagulability was the most common haemostatic dysfunction found. Non mammary carcinomas had increased clot strength (TEG G), aPTT and fibrinogen compared to the other groups. When stratifying the patients according to disease progression dogs with distant metastatic disease exhibited significantly increased fibrinogen, and d-dimer compared to dogs with local invasive and local non-invasive cancers. Conclusion Hypercoagulability was confirmed as the most common haemostatic abnormality in canine cancer patients and haemostatic dysfunction in canine cancer patients was found related to the cancer type and progression of disease. Increase in TEG G, aPTT and fibrinogen were observed in non-mammary

  4. Roles of Breast Cancer Susceptibility Genes BRCA’s in Mammary Epithelial Cell Differentiation

    DTIC Science & Technology

    2006-03-01

    1-0322 TITLE: Roles of Breast Cancer Susceptibility Genes BRCA’s in Mammary Epithelial Cell Differentiation PRINCIPAL...Summary 3. DATES COVERED (From - To) 1 MAR 2005 - 28 FEB 2006 4. TITLE AND SUBTITLE Roles of Breast Cancer Susceptibility Genes BRCA’s in Mammary...reverse the phenotype of differentiation-defective breast cancer cells bearing reduced BRCA1 functions. This result implies BRCA1 is involved in

  5. Dietary compound isoliquiritigenin prevents mammary carcinogenesis by inhibiting breast cancer stem cells through WIF1 demethylation.

    PubMed

    Wang, Neng; Wang, Zhiyu; Wang, Yu; Xie, Xiaoming; Shen, Jiangang; Peng, Cheng; You, Jieshu; Peng, Fu; Tang, Hailin; Guan, Xinyuan; Chen, Jianping

    2015-01-01

    Breast cancer stem cells (CSCs) are considered as the root of mammary tumorigenesis. Previous studies have demonstrated that ISL efficiently limited the activities of breast CSCs. However, the cancer prevention activities of ISL and its precise molecular mechanisms remain largely unknown. Here, we report a novel function of ISL as a natural demethylation agent targeting WIF1 to prevent breast cancer. ISL administration suppressed in vivo breast cancer initiation and progression, accompanied by reduced CSC-like populations. A global gene expression profile assay further identified WIF1 as the main response gene of ISL treatment, accompanied by the simultaneous downregulation of β-catenin signaling and G0/G1 phase arrest in breast CSCs. In addition, WIF1 inhibition significantly relieved the CSC-limiting effects of ISL and methylation analysis further revealed that ISL enhanced WIF1 gene expression via promoting the demethylation of its promoter, which was closely correlated with the inhibition of DNMT1 methyltransferase. Molecular docking analysis finally revealed that ISL could stably dock into the catalytic domain of DNMT1. Taken together, our findings not only provide preclinical evidence to demonstrate the use of ISL as a dietary supplement to inhibit mammary carcinogenesis but also shed novel light on WIF1 as an epigenetic target for breast cancer prevention.

  6. Bisphenol A Increases Mammary Cancer Risk in Two Distinct Mouse Models of Breast Cancer1

    PubMed Central

    Weber Lozada, Kristen; Keri, Ruth A.

    2011-01-01

    Bisphenol A (BPA) is an industrial plasticizer that leaches from food containers during normal usage, leading to human exposure. Early and chronic exposure to endocrine-disrupting environmental contaminants such as BPA elevates the potential for long-term health consequences. We examined the impact of BPA exposure on fetal programming of mammary tumor susceptibility as well as its growth promoting effects on transformed breast cancer cells in vivo. Fetal mice were exposed to 0, 25, or 250 μg/kg BPA by oral gavage of pregnant dams. Offspring were subsequently treated with the known mammary carcinogen, 7,12-dimethylbenz[a]anthracene (DMBA). While no significant differences in postnatal mammary development were observed, both low- and high-dose BPA cohorts had a statistically significant increase in susceptibility to DMBA-induced tumors compared to vehicle-treated controls. To determine if BPA also promotes established tumor growth, MCF-7 human breast cancer cells were subcutaneously injected into flanks of ovariectomized NCR nu/nu female mice treated with BPA, 17beta-estradiol, or placebo alone or combined with tamoxifen. Both estradiol- and BPA-treated cohorts formed tumors by 7 wk post-transplantation, while no tumors were detected in the placebo cohort. Tamoxifen reversed the effects of estradiol and BPA. We conclude that BPA may increase mammary tumorigenesis through at least two mechanisms: molecular alteration of fetal glands without associated morphological changes and direct promotion of estrogen-dependent tumor cell growth. Both results indicate that exposure to BPA during various biological states increases the risk of developing mammary cancer in mice. PMID:21636739

  7. Role of Rac1/WAVE2 Signaling in Mediating the Inhibitory Effects of γ-Tocotrienol on Mammary Cancer Cell Migration and Invasion.

    PubMed

    Algayadh, Ibrahim Gayadh; Dronamraju, Venkateshwararao; Sylvester, Paul William

    2016-01-01

    The majority of breast cancer deaths result from the progression of this disease to a metastatic phenotype. Rac1 and Cdc42 are Rho family members that together with their downstream effectors, Wiskott-Aldrich Syndrome protein-family verprolin-homologous protein 2 (WAVE2) and Arp2/3, play an important role in cytoskeletal reorganization and the formation of membrane protrusions that promote cancer cell migration and invasion. γ-Tocotrienol, is a natural isoform within the vitamin E family of compounds that inhibits breast cancer cell growth and progression by suppressing various signaling pathways involved in mitogenic signaling and metastatic progression. Studies were conducted to examine the effects of γ-tocotrienol on Rac1/WAVE2 signaling dependent migration and invasion in highly metastatic mouse +SA and human MDA-MB-231 mammary cancer cells. Exposure to γ-tocotrienol resulted in a dose-responsive decrease in Rac1/WAVE2 signaling as characterized by a suppression in the levels of Rac1/Cdc42, phospho-Rac1/Cdc42, WAVE2, Arp2, and Arp3 expression. Additional studies also demonstrated that similar treatment with γ-tocotrienol resulted in a significant reduction in tumor cell migration and invasion. Taken together, these findings indicate that γ-tocotrienol treatment effectively inhibits Rac1/WAVE2 signaling and reduces metastatic phenotypic expression in mammary cancer cells, suggesting that γ-tocotrienol may provide some benefit as a novel therapeutic approach in the treatment of metastatic breast cancer.

  8. Inhibition of Breast Cancer Progression by Blocking Heterocellular Contact Between Epithelial Cells and Fibroblasts

    DTIC Science & Technology

    2013-04-01

    by employing a microfluidic -based compartmentalized 3D co-culture platform enabling both contact-free and contact-associated co-cultures. 15...SUBJECT TERMS Heterocellular contact between cancer cells and stromal fibroblasts, Microfluidics , 3D 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...and human mammary fibroblasts (HMFs) in breast cancer progression by employing a microfluidic - based compartmentalized 3D co-culture platform

  9. MicroRNAs in the development and neoplasia of the mammary gland.

    PubMed

    Jena, Manoj Kumar

    2017-01-01

    Study on the role of microRNAs (miRs) as regulators of gene expression through posttranscriptional gene silencing is currently gaining much interest,due to their wide involvement in different physiological processes. Understanding mammary gland development, lactation, and neoplasia in relation to miRs is essential. miR expression profiling of the mammary gland from different species in various developmental stages shows their role as critical regulators of development. miRs such as miR-126, miR-150, and miR-145 have been shown to be involved in lipid metabolism during lactation. In addition, lactogenic hormones influence miR expression as evidenced by overexpression of miR-148a in cow mammary epithelial cells, leading to enhanced lactation. Similarly, the miR-29 family modulates lactation-related gene expression by regulating DNA methylation of their promoters. Besides their role in development, lactation and involution, miRs are responsible for breast cancer development. Perturbed estrogen (E2) signaling is one of the major causes of breast cancer. Increased E2 levels cause altered expression of ERα, and ERα-miR cross-talk promotes tumour progression. miRs, such as miR-206, miR-34a, miR-17-5p, and miR-125 a/b are found to be tumour suppressors; whereas miR-21, miR-10B, and miR-155 are oncogenes. Oncogenic miRs like miR-21, miR-221, and miR-210 are overexpressed in triple negative breast cancer cases which can be diagnostic biomarker for this subtype of cancer.  This review focuses on the recent findings concerning the role of miRs in developmental stages of the mammary gland (mainly lactation and involution stages) and their involvement in breast cancer progression. Further studies in this area will help us to understand the molecular details of mammary gland biology, as well as miRs that could be therapeutic targets of breast cancer.

  10. Maternal dioxin exposure combined with a diet high in fat increases mammary cancer incidence in mice.

    PubMed

    La Merrill, Michele; Harper, Rachel; Birnbaum, Linda S; Cardiff, Robert D; Threadgill, David W

    2010-05-01

    RESULTS from previous studies have suggested that breast cancer risk correlates with total lifetime exposure to estrogens and that early-life 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure or diets high in fat can also increase cancer risk. Because both TCDD and diet affect the estrogen pathway, we examined how TCDD and a high-fat diet (HFD) interact to alter breast cancer susceptibility. We exposed pregnant female FVB/NJ mice (12.5 days postcoitus) to 1 microg/kg TCDD or vehicle; at parturition, the dams were randomly assigned to a low-fat diet (LFD) or a high-fat diet (HFD). Female offspring were maintained on the same diets after weaning and were exposed to 7,12-dimethylbenz[a]anthracene on postnatal days (PNDs) 35, 49, and 63 to initiate mammary tumors. A second cohort of females was treated identically until PND35 or PND49, when mammary gland morphology was examined, or PND50, when mammary gland mRNA was analyzed. We found that maternal TCDD exposure doubled mammary tumor incidence only in mice fed the HFD. Among HFD-fed mice, maternal TCDD exposure caused rapid mammary development with increased Cyp1b1 (cytochrome P450 1B1) expression and decreased Comt (catechol-O-methyltransferase) expression in mammary tissue. Maternal TCDD exposure also increased mammary tumor Cyp1b1 expression. Our data suggest that the HFD increases sensitivity to maternal TCDD exposure, resulting in increased breast cancer incidence, by changing metabolism capability. These results provide a mechanism to explain epidemiological data linking early-life TCDD exposure and diets high in fat to increased risk for breast cancer in humans.

  11. Obesity-Associated Alterations in Inflammation, Epigenetics, and Mammary Tumor Growth Persist in Formerly Obese Mice.

    PubMed

    Rossi, Emily L; de Angel, Rebecca E; Bowers, Laura W; Khatib, Subreen A; Smith, Laura A; Van Buren, Eric; Bhardwaj, Priya; Giri, Dilip; Estecio, Marcos R; Troester, Melissa A; Hair, Brionna Y; Kirk, Erin L; Gong, Ting; Shen, Jianjun; Dannenberg, Andrew J; Hursting, Stephen D

    2016-05-01

    Using a murine model of basal-like breast cancer, we tested the hypothesis that chronic obesity, an established breast cancer risk and progression factor in women, induces mammary gland epigenetic reprogramming and increases mammary tumor growth. Moreover, we assessed whether the obesity-induced epigenetic and protumor effects are reversed by weight normalization. Ovariectomized female C57BL/6 mice were fed a control diet or diet-induced obesity (DIO) regimen for 17 weeks, resulting in a normal weight or obese phenotype, respectively. Mice on the DIO regimen were then randomized to continue the DIO diet or were switched to the control diet, resulting in formerly obese (FOb) mice with weights comparable with control mice. At week 24, all mice were orthotopically injected with MMTV-Wnt-1 mouse mammary tumor cells. Mean tumor volume, serum IL6 levels, expression of proinflammatory genes in the mammary fat pad, and mammary DNA methylation profiles were similar in DIO and FOb mice and higher than in controls. Many of the genes found to have obesity-associated hypermethylation in mice were also found to be hypermethylated in the normal breast tissue of obese versus nonobese human subjects, and nearly all of these concordant genes remained hypermethylated after significant weight loss in the FOb mice. Our findings suggest that weight normalization may not be sufficient to reverse the effects of chronic obesity on epigenetic reprogramming and inflammatory signals in the microenvironment that are associated with breast cancer progression. Cancer Prev Res; 9(5); 339-48. ©2016 AACR. ©2016 American Association for Cancer Research.

  12. Lipidomic approach to identify patterns in phospholipid profiles and define class differences in mammary epithelial and breast cancer cells.

    PubMed

    Dória, M Luísa; Cotrim, Zita; Macedo, Bárbara; Simões, Cláudia; Domingues, Pedro; Helguero, Luisa; Domingues, M Rosário

    2012-06-01

    Breast cancer is the leading cause of cancer-related deaths in women. Altered cellular functions of cancer cells lead to uncontrolled cellular growth and morphological changes. Cellular biomembranes are intimately involved in the regulation of cell signaling; however, they remain largely understudied. Phospholipids (PLs) are the main constituents of biological membranes and play important functional, structural and metabolic roles. The aim of this study was to establish if patterns in the PL profiles of mammary epithelial cells and breast cancer cells differ in relation to degree of differentiation and metastatic potential. For this purpose, PLs were analyzed using a lipidomic approach. In brief, PLs were extracted using Bligh and Dyer method, followed by a separation of PL classes by thin layer chromatography, and subsequent analysis by mass spectrometry (MS). Differences and similarities were found in the relative levels of PL content between mammary epithelial and breast cancer cells and between breast cancer cells with different levels of aggressiveness. When compared to the total PL content, phosphatidylcholine levels were reduced and lysophosphatydilcholines increased in the more aggressive cancer cells; while phosphatidylserine levels remained unchanged. MS analysis showed alterations in the classes of phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, and phosphatidylinositides. In particular, the phosphatidylinositides, which are signaling molecules that affect proliferation, survival, and migration, showed dramatic alterations in their profile, where an increase of phosphatdylinositides saturated fatty acids chains and a decrease in C20 fatty acids in cancer cells compared with mammary epithelial cells was observed. At present, information about PL changes in cancer progression is lacking. Therefore, these data will be useful as a starting point to define possible PLs with prospective as biomarkers and disclose metabolic pathways with potential

  13. The effect of neighboring cells on the stiffness of cancerous and non-cancerous human mammary epithelial cells

    NASA Astrophysics Data System (ADS)

    Guo, Xinyi; Bonin, Keith; Scarpinato, Karin; Guthold, Martin

    2014-10-01

    Using an Atomic Force Microscope (AFM) with a 5.3 μm diameter spherical probe, we determined mechanical properties of individual human mammary epithelial cells. The cells were derived from a pair of cell lines that mimic cell progression through four phases of neoplastic transformation: normal (non-transformed), immortal, tumorigenic, and metastatic. Measurements on cells in all four phases were taken over both the cytoplasmic and nuclear regions. Moreover, the measurements were made for cells in different microenvironments as related to cell-cell contacts: isolated cells; cells residing on the periphery of a contiguous cell monolayer; and cells on the inside of a contiguous cell monolayer. By fitting the AFM force versus indentation curves to a Hertz model, we determined the pseudo-elastic Young’s modulus, E. Combining all data for the cellular subregions (over nucleus and cytoplasm) and the different cell microenvironments, we obtained stiffness values for normal, immortal, tumorigenic, and metastatic cells of 870 Pa, 870 Pa, 490 Pa, and 580 Pa, respectively. That is, cells become softer as they advance to the tumorigenic phase and then stiffen somewhat in the final step to metastatic cells. We also found a distinct contrast in the influence of a cell’s microenvironment on cell stiffness. Normal mammary epithelial cells inside a monolayer are stiffer than peripheral cells, which are stiffer than isolated cells. However, the microenvironment had a slight, opposite effect on tumorigenic and little effect on immortal and metastatic cell stiffness. Thus, the stiffness of cancer cells is less sensitive to the microenvironment than normal cells. Our results show that the mechanical properties of a cell can depend on cancer progression and microenvironment (cell-cell interactions).

  14. Neem leaf extract inhibits mammary carcinogenesis by altering cell proliferation, apoptosis, and angiogenesis

    PubMed Central

    Arumugam, Arunkumar; Agullo, Pamela; Boopalan, Thiyagarajan; Nandy, Sushmita; Lopez, Rebecca; Gutierrez, Christina; Narayan, Mahesh; Rajkumar, Lakshmanaswamy

    2014-01-01

    Plant-based medicines are useful in the treatment of cancer. Many breast cancer patients use complementary and alternative medicine in parallel with conventional treatments. Neem is historically well known in Asia and Africa as a versatile medicinal plant with a wide spectrum of biological activities. The experiments reported herein determined whether the administration of an ethanolic fraction of Neem leaf (EFNL) inhibits progression of chemical carcinogen-induced mammary tumorigenesis in rat models. Seven-week-old female Sprague Dawley rats were given a single intraperitoneal injection of N-methyl-N-nitrosourea (MNU). Upon the appearance of palpable mammary tumors, the rats were divided into vehicle-treated control groups and EFNL-treated groups. Treatment with EFNL inhibited MNU-induced mammary tumor progression. EFNL treatment was also highly effective in reducing mammary tumor burden and in suppressing mammary tumor progression even after the cessation of treatment. Further, we found that EFNL treatment effectively upregulated proapoptotic genes and proteins such as p53, B cell lymphoma-2 protein (Bcl-2)-associated X protein (Bax), Bcl-2-associated death promoter protein (Bad) caspases, phosphatase and tensin homolog gene (PTEN), and c-Jun N-terminal kinase (JNK). In contrast, EFNL treatment caused downregulation of anti-apoptotic (Bcl-2), angiogenic proteins (angiopoietin and vascular endothelial growth factor A [VEGF-A]), cell cycle regulatory proteins (cyclin D1, cyclin-dependent kinase 2 [Cdk2], and Cdk4), and pro-survival signals such as NFκB, mitogen-activated protein kinase 1 (MAPK1). The data obtained in this study demonstrate that EFNL exert a potent anticancer effect against mammary tumorigenesis by altering key signaling pathways. PMID:24146019

  15. Social isolation induces autophagy in the mouse mammary gland: link to increased mammary cancer risk

    PubMed Central

    Sumis, Allison; Cook, Katherine L; Andrade, Fabia O; Hu, Rong; Kidney, Emma; Zhang, Xiyuan; Kim, Dominic; Carney, Elissa; Nguyen, Nguyen; Yu, Wei; Bouker, Kerrie B; Cruz, Idalia; Clarke, Robert; Hilakivi-Clarke, Leena

    2018-01-01

    Social isolation is a strong predictor of early all-cause mortality and consistently increases breast cancer risk in both women and animal models. Because social isolation increases body weight, we compared its effects to those caused by a consumption of obesity-inducing diet (OID) in C57BL/6 mice. Social isolation and OID impaired insulin and glucose sensitivity. In socially isolated, OID-fed mice (I-OID), insulin resistance was linked to reduced Pparg expression and increased neuropeptide Y levels, but in group-housed OID fed mice (G-OID), it was linked to increased leptin and reduced adiponectin levels, indicating that the pathways leading to insulin resistance are different. Carcinogen-induced mammary tumorigenesis was significantly higher in I-OID mice than in the other groups, but cancer risk was also increased in socially isolated, control diet-fed mice (I-C) and G-OID mice compared with that in controls. Unfolded protein response (UPR) signaling (GRP78; IRE1) was upregulated in the mammary glands of OID-fed mice, but not in control diet-fed, socially isolated I-C mice. In contrast, expression of BECLIN1, ATG7 and LC3II were increased, and p62 was downregulated by social isolation, indicating increased autophagy. In the mammary glands of socially isolated mice, but not in G-OID mice, mRNA expressions of p53 and the p53-regulated autophagy inducer Dram1 were upregulated, and nuclear p53 staining was strong. Our findings further indicated that autophagy and tumorigenesis were not increased in Atg7+/− mice kept in social isolation and fed OID. Thus, social isolation may increase breast cancer risk by inducing autophagy, independent of changes in body weight. PMID:27550962

  16. Social isolation induces autophagy in the mouse mammary gland: link to increased mammary cancer risk.

    PubMed

    Sumis, Allison; Cook, Katherine L; Andrade, Fabia O; Hu, Rong; Kidney, Emma; Zhang, Xiyuan; Kim, Dominic; Carney, Elissa; Nguyen, Nguyen; Yu, Wei; Bouker, Kerrie B; Cruz, Idalia; Clarke, Robert; Hilakivi-Clarke, Leena

    2016-10-01

    Social isolation is a strong predictor of early all-cause mortality and consistently increases breast cancer risk in both women and animal models. Because social isolation increases body weight, we compared its effects to those caused by a consumption of obesity-inducing diet (OID) in C57BL/6 mice. Social isolation and OID impaired insulin and glucose sensitivity. In socially isolated, OID-fed mice (I-OID), insulin resistance was linked to reduced Pparg expression and increased neuropeptide Y levels, but in group-housed OID fed mice (G-OID), it was linked to increased leptin and reduced adiponectin levels, indicating that the pathways leading to insulin resistance are different. Carcinogen-induced mammary tumorigenesis was significantly higher in I-OID mice than in the other groups, but cancer risk was also increased in socially isolated, control diet-fed mice (I-C) and G-OID mice compared with that in controls. Unfolded protein response (UPR) signaling (GRP78; IRE1) was upregulated in the mammary glands of OID-fed mice, but not in control diet-fed, socially isolated I-C mice. In contrast, expression of BECLIN1, ATG7 and LC3II were increased, and p62 was downregulated by social isolation, indicating increased autophagy. In the mammary glands of socially isolated mice, but not in G-OID mice, mRNA expressions of p53 and the p53-regulated autophagy inducer Dram1 were upregulated, and nuclear p53 staining was strong. Our findings further indicated that autophagy and tumorigenesis were not increased in Atg7(+/-) mice kept in social isolation and fed OID. Thus, social isolation may increase breast cancer risk by inducing autophagy, independent of changes in body weight. © 2016 Society for Endocrinology.

  17. Effects of flaxseed lignan secoisolariciresinol diglucoside on preneoplastic biomarkers of cancer progression in a model of simultaneous breast and ovarian cancer development

    PubMed Central

    Delman, Devora M.; Fabian, Carol J.; Kimler, Bruce F.; Yeh, Henry; Petroff, Brian K.

    2016-01-01

    Breast cancer prevention efforts are focused increasingly on potentially beneficial dietary modifications due to their ease of implementation and wide acceptance. Secoisolariciresinol diglucoside (SDG) is a lignan found in high concentration in flaxseed that may have selective estrogen receptor modulator (SERM)-like effects resulting in antiestrogenic activity in a high estrogen environment. In parallel with a human phase II prevention trial, female ACI rats (n=8–10/group) received 0, 10 or 100 ppm SDG in the feed. The 100 ppm SDG treatment produced similar blood lignan levels as those observed in our human pilot study. Mammary and ovarian cancer progression were induced using local ovarian DMBA treatment and subcutaneous sustained release 17β-estradiol administered starting at 7 weeks of age. Mammary gland and ovarian tissues were collected at 3 months after initiation of treatment and examined for changes in epithelial cell proliferation (Ki-67, cell counts), histopathology and dysplasia scores as well as expression of selected genes involved in proliferation, estrogen signaling and cell adhesion. Treatment with SDG normalized several biomarkers in mammary gland tissue (dysplasia, cell number, and expression of several genes) that had been altered by carcinogen. There is no indication that SDG promotes pre-neoplastic progression in the ovarian epithelium. PMID:26010915

  18. Mammary Gland Involution Provides a Unique Model to Study the TGF-β Cancer Paradox

    PubMed Central

    Guo, Qiuchen; Betts, Courtney; Pennock, Nathan; Mitchell, Elizabeth; Schedin, Pepper

    2017-01-01

    Transforming Growth Factor-β (TGF-β) signaling in cancer has been termed the “TGF-β paradox”, acting as both a tumor suppresser and promoter. The complexity of TGF-β signaling within the tumor is context dependent, and greatly impacted by cellular crosstalk between TGF-β responsive cells in the microenvironment including adjacent epithelial, endothelial, mesenchymal, and hematopoietic cells. Here we utilize normal, weaning-induced mammary gland involution as a tissue microenvironment model to study the complexity of TGF-β function. This article reviews facets of mammary gland involution that are TGF-β regulated, namely mammary epithelial cell death, immune activation, and extracellular matrix remodeling. We outline how distinct cellular responses and crosstalk between cell types during physiologically normal mammary gland involution contribute to simultaneous tumor suppressive and promotional microenvironments. We also highlight alternatives to direct TGF-β blocking anti-cancer therapies with an emphasis on eliciting concerted microenvironmental-mediated tumor suppression. PMID:28098775

  19. Luminal Progenitors Restrict Their Lineage Potential during Mammary Gland Development

    PubMed Central

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-01-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes. PMID:25688859

  20. Luminal progenitors restrict their lineage potential during mammary gland development.

    PubMed

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-02-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes.

  1. Fluorodeoxyglucose--positive internal mammary lymph node in breast cancer patients with silicone implants: is it always metastatic cancer?

    PubMed

    Soudack, Michalle; Yelin, Alon; Simansky, David; Ben-Nun, Alon

    2013-07-01

    Patients with breast cancer following mastectomy and silicone implant reconstruction may have enlarged internal mammary lymph nodes with pathological uptake on positron emission tomography with (18)F-fluorodeoxyglucose. This lymphadenopathy is usually considered as metastatic in nature, but has also been reported to be related to other conditions, including silicon migration. The purpose of this study was to determine the rate of metastatic disease in this unique group of patients. A retrospective comparative study of 12 female patients with breast cancer with silicone implants referred for biopsy due to isolated internal mammary lymph node fluorodeoxyglucose uptake on positron emission tomography. Five patients (41.6%) had histological findings related to silicone (n = 4) or non-specific inflammation (n = 1). The remaining 7 (58.3%) had histological evidence of cancer recurrence. There was no significant difference in the fluorodeoxyglucose-standardized uptake value between the two groups. Fluorodeoxyglucose-positive mammary lymph nodes in patients with breast cancer following silicone implant reconstruction may be due to metastatic deposits, non-specific inflammation or silicone migration. Clinical and imaging characteristics are insufficient in differentiating between these conditions. Biopsy is recommended prior to initiation of further treatment.

  2. Increased levels of interleukins 8 and 10 as findings of canine inflammatory mammary cancer.

    PubMed

    de Andrés, Paloma Jimena; Illera, Juan Carlos; Cáceres, Sara; Díez, Lucía; Pérez-Alenza, Maria Dolores; Peña, Laura

    2013-04-15

    Inflammatory mammary cancer (IMC) is a distinct form of mammary cancer that affects dogs and women [in humans, IMC is known as inflammatory breast cancer (IBC)], and is characterized by a sudden onset and an aggressive clinical course. Spontaneous canine IMC shares epidemiologic, histopathological and clinical characteristics with the disease in humans and has been proposed as the best spontaneous animal model for studying IBC, although several aspects remain unstudied. Interleukins (ILs) play an important role in cancer as potential modulators of angiogenesis, leukocyte infiltration and tumor growth. The aims of the present study were to assess serum and tumor levels of several ILs (IL-1α, IL-1β, IL-6, IL-8 and IL-10) by enzyme-immunoassay in dogs bearing benign and malignant mammary tumors, including dogs with IMC, for a better understanding of this disease. Forty-eight dogs were prospectively included. Animals consisted of 7 healthy Beagles used as donors for normal mammary glands (NMG) and serum controls (SCs), 10 dogs with hyperplasias and benign mammary tumors (HBMT), 24 with non-inflammatory malignant mammary tumors (non-IMC MMT) and 7 dogs with clinical and pathological IMC. IL-8 (serum) and IL-10 (serum and tissue homogenate) levels were higher in the dogs with IMC compared with the non-IMC MMT group. ILs were increased with tumor malignancy as follows: in tumor homogenates IL-6 levels were higher in malignant tumors (IMC and non-IMC MMT) versus HBMT and versus NMG and tumor IL-8 was increased in malignant tumors versus NMG; in serum, IL-1α and IL-8 levels were higher in the malignant groups respect to HBMT and SCs; interestingly, IL-10 was elevated only in the serum of IMC animals. To the best of our knowledge, this is the first report that analyzes ILs in IMC and IL-10 in canine mammary tumors. Our results indicate a role for IL-6, IL-8 and IL-10 in canine mammary malignancy and specific differences in ILs content in IMC versus non-IMC MMT that could

  3. Biological and genetic properties of the p53 null preneoplastic mammary epithelium

    NASA Technical Reports Server (NTRS)

    Medina, Daniel; Kittrell, Frances S.; Shepard, Anne; Stephens, L. Clifton; Jiang, Cheng; Lu, Junxuan; Allred, D. Craig; McCarthy, Maureen; Ullrich, Robert L.

    2002-01-01

    The absence of the tumor suppressor gene p53 confers an increased tumorigenic risk for mammary epithelial cells. In this report, we describe the biological and genetic properties of the p53 null preneoplastic mouse mammary epithelium in a p53 wild-type environment. Mammary epithelium from p53 null mice was transplanted serially into the cleared mammary fat pads of p53 wild-type BALB/c female to develop stable outgrowth lines. The outgrowth lines were transplanted for 10 generations. The outgrowths were ductal in morphology and progressed through ductal hyperplasia and ductal carcinoma in situ before invasive cancer. The preneoplastic outgrowth lines were immortal and exhibited activated telomerase activity. They are estrogen and progesterone receptor-positive, and aneuploid, and had various levels of tumorigenic potential. The biological and genetic properties of these lines are distinct from those found in most hyperplastic alveolar outgrowth lines, the form of mammary preneoplasia occurring in most traditional models of murine mammary tumorigenesis. These results indicate that the preneoplastic cell populations found in this genetically engineered model are similar in biological properties to a subset of precurser lesions found in human breast cancer and provide a unique model to identify secondary events critical for tumorigenicity and invasiveness.

  4. Mouse Mammary Tumor Virus c-rel Transgenic Mice Develop Mammary Tumors

    PubMed Central

    Romieu-Mourez, Raphaëlle; Kim, Dong W.; Min Shin, Sang; Demicco, Elizabeth G.; Landesman-Bollag, Esther; Seldin, David C.; Cardiff, Robert D.; Sonenshein, Gail E.

    2003-01-01

    Amplification, overexpression, or rearrangement of the c-rel gene, encoding the c-Rel NF-κB subunit, has been reported in solid and hematopoietic malignancies. For example, many primary human breast cancer tissue samples express high levels of nuclear c-Rel. While the Rev-T oncogene v-rel causes tumors in birds, the ability of c-Rel to transform in vivo has not been demonstrated. To directly test the role of c-Rel in breast tumorigenesis, mice were generated in which overexpression of mouse c-rel cDNA was driven by the hormone-responsive mouse mammary tumor virus long terminal repeat (MMTV-LTR) promoter, and four founder lines identified. In the first cycle of pregnancy, the expression of transgenic c-rel mRNA was observed, and levels of c-Rel protein were increased in the mammary gland. Importantly, 31.6% of mice developed one or more mammary tumors at an average age of 19.9 months. Mammary tumors were of diverse histology and expressed increased levels of nuclear NF-κB. Analysis of the composition of NF-κB complexes in the tumors revealed aberrant nuclear expression of multiple subunits, including c-Rel, p50, p52, RelA, RelB, and the Bcl-3 protein, as observed previously in human primary breast cancers. Expression of the cancer-related NF-κB target genes cyclin D1, c-myc, and bcl-xl was significantly increased in grossly normal transgenic mammary glands starting the first cycle of pregnancy and increased further in mammary carcinomas compared to mammary glands from wild-type mice or virgin transgenic mice. In transient transfection analysis in untransformed breast epithelial cells, c-Rel-p52 or -p50 heterodimers either potently or modestly induced cyclin D1 promoter activity, respectively. Lastly, stable overexpression of c-Rel resulted in increased cyclin D1 and NF-κB p52 and p50 subunit protein levels. These results indicate for the first time that dysregulated expression of c-Rel, as observed in breast cancers, is capable of contributing to mammary

  5. Canine mammary cancer cells direct macrophages toward an intermediate activation state between M1/M2.

    PubMed

    Beirão, Breno C B; Raposo, Teresa; Pang, Lisa Y; Argyle, David J

    2015-07-15

    Canine mammary carcinoma is the most common cancer in female dogs and is often fatal due to the development of distance metastasis. The microenvironment of a tumour often contains abundant infiltrates of macrophages called tumour-associated macrophages (TAMs). TAMs express an activated phenotype, termed M2, which sustains proliferation of cancer cells, and has been correlated with poor clinical outcomes in human cancer patients. Cancer cells themselves have been implicated in stimulating the conversion of macrophages to a TAM with an M2 phenotype. This process has yet to be fully elucidated. Here we investigate the interplay between cancer cells and macrophages in the context of canine mammary carcinoma. We show that cancer cells inhibit lipopolysaccharide (LPS)-induced macrophage activation. Further, we show that macrophage associated proteins, colony-stimulating factor (CSF)-1 and C-C motif ligand (CCL)-2, stimulate macrophages and are responsible for the effects of cancer cells on macrophages. We suggest the existence of a feedback loop between macrophages and cancer cells; while cancer cells influence the phenotype of the TAMs through CSF-1 and CCL2, the macrophages induce canine mammary cancer cells to upregulate their own expression of the receptors for CSF-1 and CCL2 and increase the cancer cellular metabolic activity. However, these cytokines in isolation induce a phenotypic state in macrophages that is between M1 and M2 phenotypes. Overall, our results demonstrate the extent to which canine mammary carcinoma cells influence the macrophage phenotype and the relevance of a feedback loop between these cells, involving CSF-1 and CCL2 as important mediators.

  6. JS-K, a nitric oxide-releasing prodrug, induces breast cancer cell death while sparing normal mammary epithelial cells.

    PubMed

    McMurtry, Vanity; Saavedra, Joseph E; Nieves-Alicea, René; Simeone, Ann-Marie; Keefer, Larry K; Tari, Ana M

    2011-04-01

    Targeted therapy with reduced side effects is a major goal in cancer research. We investigated the effects of JS-K, a nitric oxide (NO) prodrug designed to release high levels of NO when suitably activated, on human breast cancer cell lines, on non-transformed human MCF-10A mammary cells, and on normal human mammary epithelial cells (HMECs). Cell viability assay, flow cytometry, electron microscopy, and Western blot analysis were used to study the effects of JS-K on breast cancer and on mammary epithelial cells. After a 3-day incubation, the IC50s of JS-K against the breast cancer cells ranged from 0.8 to 3 µM. However, JS-K decreased the viability of the MCF-10A cells by only 20% at 10-µM concentration, and HMECs were unaffected by 10 µM JS-K. Flow cytometry indicated that JS-K increased the percentages of breast cancer cells under-going apoptosis. Interestingly, flow cytometry indicated that JS-K increased acidic vesicle organelle formation in breast cancer cells, suggesting that JS-K induced autophagy in breast cancer cells. Electron microscopy confirmed that JS-K-treated breast cancer cells underwent autophagic cell death. Western blot analysis showed that JS-K induced the expression of microtubule light chain 3-II, another autophagy marker, in breast cancer cells. However, JS-K did not induce apoptosis or autophagy in normal human mammary epithelial cells. These data indicate that JS-K selectively induces programmed cell death in breast cancer cells while sparing normal mammary epithelial cells under the same conditions. The selective anti-tumor activity of JS-K warrants its further investigation in breast tumors.

  7. Primary Cilia in Breast Cancer Progression

    DTIC Science & Technology

    2010-06-01

    differential distribution of acetylated and detyrosinated alpha-tubulin in the microtubular cytoskeleton and primary cilia of hyaline cartilage ...disrupted. Nevertheless, minimal disruption to normal mammary development was observed. Studies to determine the role of PC in tumor progression are...the role of PC in normal mammary development or tumor formation. The purpose of this synergistic study was to begin to address the role of this

  8. Evaluation of blood T-lymphocyte subpopulations involved in host cellular immunity in dogs with mammary cancer.

    PubMed

    Karayannopoulou, Maria; Anagnostou, Tilemachos; Margariti, Apostolia; Kostakis, Charalampos; Kritsepi-Konstantinou, Maria; Psalla, Dimitra; Savvas, Ioannis

    2017-04-01

    Cancer-bearing patients are often immunosuppressed. In dogs with mammary or other cancers, various alterations in blood cell populations involved in host cellular immunity have been reported; among these cell populations some T-lymphocyte subsets play an important role against cancer. The purpose of the present study was to investigate any alterations in circulating T-lymphocyte subpopulations involved in cellular immunity in bitches with mammary cancer, in comparison to age-matched healthy intact bitches. Twenty eight dogs with mammary cancer and 14 control dogs were included in this study. Twelve out of the 28 bitches had mammary cancer of clinical stage II and 16/28 of stage III. Histological examination revealed that 23/28 animals had carcinomas, 3/28 sarcomas and 2/28 carcinosarcomas. White blood cell, neutrophil and lymphocyte absolute numbers were measured by complete blood count. Furthermore, blood T-lymphocyte population (CD3 + ) and the subpopulations CD4 + , CD8 + and CD5 low+ were assessed by flow cytometry. White blood cell and neutrophil but not lymphocyte absolute numbers were higher (P=0.003 and P=0.001, respectively) in cancer patients than controls. Flow cytometric analysis revealed that the relative percentage of T-lymphocytes (CD3 + ) and of CD4 + , CD8 + subpopulations was lower (the CD4 + /CD8 + ratio was higher), whereas the percentage of CD5 low+ T-cells was higher, in dogs with cancer compared to controls; however, a statistically significant difference was found only in the case of CD8 + T-cells (P=0.014), whereas in the case of the CD4 + /CD8 + ratio the difference almost reached statistical significance (P=0.059). Based on these findings, it can be suggested that, although the absolute number of blood lymphocytes is unchanged, the relative percentages of T-lymphocyte subpopulations involved in host cell-mediated immunity are altered, but only cytotoxic CD8 + T-cells are significantly suppressed, in dogs with mammary cancer of clinical

  9. CDKL2 promotes epithelial-mesenchymal transition and breast cancer progression

    PubMed Central

    Li, Linna; Liu, Chunping; Amato, Robert J.; Chang, Jeffrey T.; Du, Guangwei; Li, Wenliang

    2014-01-01

    The epithelial–mesenchymal transition (EMT) confers mesenchymal properties on epithelial cells and has been closely associated with the acquisition of aggressive traits by epithelial cancer cells. To identify novel regulators of EMT, we carried out cDNA screens that covered 500 human kinases. Subsequent characterization of candidate kinases led us to uncover cyclin-dependent kinase-like 2 (CDKL2) as a novel potent promoter for EMT and breast cancer progression. CDKL2-expressing human mammary gland epithelial cells displayed enhanced mesenchymal traits and stem cell-like phenotypes, which was acquired through activating a ZEB1/E-cadherin/β-catenin positive feedback loop and regulating CD44 mRNA alternative splicing to promote conversion of CD24high cells to CD44high cells. Furthermore, CDKL2 enhanced primary tumor formation and metastasis in a breast cancer xenograft model. Notably, CDKL2 is expressed significantly higher in mesenchymal human breast cancer cell lines than in epithelial lines, and its over-expression/amplification in human breast cancers is associated with shorter disease-free survival. Taken together, our study uncovered a major role for CDKL2 in promoting EMT and breast cancer progression. PMID:25333262

  10. Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene.

    PubMed Central

    Maroulakou, I G; Anver, M; Garrett, L; Green, J E

    1994-01-01

    A transgenic mouse model for prostate and mammary cancer has been developed in mice containing a recombinant gene expressing the simian virus 40 early-region transforming sequences under the regulatory control of the rat prostatic steroid binding protein [C3(1)] gene. Male transgenic mice develop prostatic hyperplasia in early life that progresses to adenoma or adenocarcinoma in most animals surviving to longer than 7 months of age. Prostate cancer metastases to lung have been observed. Female animals from the same founder lines generally develop mammary hyperplasia by 3 months of age with subsequent development of mammary adenocarcinoma by 6 months of age in 100% of the animals. The development of tumors correlates with the expression of the transgene as determined by Northern blot and immunohistochemical analyses. The results of these experiments demonstrate that the C3(1) regulatory region used in these experiments is useful for targeting expression to the prostate and mammary gland. To our knowledge, this experimental system is the first reported transgenic mouse model for prostate cancer. These transgenic animals offer the opportunity to study hormone response elements in vivo and the multistage progression from normal tissue to carcinoma in the prostate and mammary glands. Images PMID:7972041

  11. Tracking the mammary architectural features and detecting breast cancer with magnetic resonance diffusion tensor imaging.

    PubMed

    Nissan, Noam; Furman-Haran, Edna; Feinberg-Shapiro, Myra; Grobgeld, Dov; Eyal, Erez; Zehavi, Tania; Degani, Hadassa

    2014-12-15

    Breast cancer is the most common cause of cancer among women worldwide. Early detection of breast cancer has a critical role in improving the quality of life and survival of breast cancer patients. In this paper a new approach for the detection of breast cancer is described, based on tracking the mammary architectural elements using diffusion tensor imaging (DTI). The paper focuses on the scanning protocols and image processing algorithms and software that were designed to fit the diffusion properties of the mammary fibroglandular tissue and its changes during malignant transformation. The final output yields pixel by pixel vector maps that track the architecture of the entire mammary ductal glandular trees and parametric maps of the diffusion tensor coefficients and anisotropy indices. The efficiency of the method to detect breast cancer was tested by scanning women volunteers including 68 patients with breast cancer confirmed by histopathology findings. Regions with cancer cells exhibited a marked reduction in the diffusion coefficients and in the maximal anisotropy index as compared to the normal breast tissue, providing an intrinsic contrast for delineating the boundaries of malignant growth. Overall, the sensitivity of the DTI parameters to detect breast cancer was found to be high, particularly in dense breasts, and comparable to the current standard breast MRI method that requires injection of a contrast agent. Thus, this method offers a completely non-invasive, safe and sensitive tool for breast cancer detection.

  12. Establishment of primary mixed cell cultures from spontaneous canine mammary tumors: Characterization of classic and new cancer-associated molecules

    PubMed Central

    Gentile, Luciana B.; Nagamine, Marcia K.; Biondi, Luiz R.; Sanches, Daniel S.; Toyota, Fábio; Giovani, Tatiane M.; de Jesus, Isis P.; da Fonseca, Ivone I. M.; Queiroz-Hazarbassanov, Nicolle; Diaz, Bruno L.; Salles Gomes, Cristina de O. Massoco

    2017-01-01

    There are many factors which make canine cancer like cancer in humans. The occurrence of spontaneous mammary tumors in pet dogs, tumor genetics, molecular targets and exposure to the same environmental risk factors are among these factors. Therefore, the study of canine cancer can provide useful information to the oncology field. This study aimed to establish and characterize a panel of primary mixed cell cultures obtained from spontaneous canine mammary tumors. Eight established cell cultures obtained from one normal mammary gland, one complex adenoma, one mixed adenoma, two complex carcinomas and two mixed carcinomas were analyzed. The gene expression levels of classic molecular cancer players such as fibroblast growth factor receptor (FGFR) 2, breast cancer (BRCA) 1, BRCA2 and estrogen receptor (ESR) 1 were evaluated. For the first time, three orphan nuclear receptors, estrogen-related receptors (ERRs) α, β and γ were studied in canine mammary cancer. The highest expression level of ERRα was observed in complex carcinoma-derived cell culture, while the highest levels of ERRβ and γ were observed in cells derived from a mixed carcinoma. Meanwhile, complex carcinomas presented the highest levels of expression of ESR1, BRCA1 and FGFR2 among all samples. BRCA2 was found exclusively in complex adenoma. The transcription factor GATA3 had its highest levels in mixed carcinoma samples and its lowest levels in complex adenoma. Proliferation assays were also performed to evaluate the mixed cell cultures response to ER ligands, genistein and DES, both in normoxia and hypoxic conditions. Our results demonstrate that morphological and functional studies of primary mixed cell cultures derived from spontaneous canine mammary tumors are possible and provide valuable tool for the study of various stages of mammary cancer development. PMID:28945747

  13. A cyclized peptide derived from alpha fetoprotein inhibits the proliferation of ER-positive canine mammary cancer cells.

    PubMed

    Torres, Cristian Gabriel; Pino, Ana María; Sierralta, Walter Daniel

    2009-06-01

    The effects of estradiol (E2) and of an AFP-derived cyclized peptide (cP) on the proliferation of primary cultures of cancer cells isolated from spontaneous canine mammary tumors were studied. The cellular response to E2 and cP was related to the expression of estradiol receptor (isoforms alpha and beta). In ER-positive cells, 2 nM estradiol increased cell proliferation and the phosphorylation of ERK1/2; 2 microg/ml cP inhibited all these effects. Estradiol also increased HER2 immunoreactivity in ER-positive cells, an effect that was reverted to its basal values by cP. Estradiol stimulated in these cells the release of MMP2 and MMP9 and the shedding of HB-EGF, effects that the cP did not affect. ER-negative cells were refractory to estradiol or cP. All canine mammary tumor cells in culture responded to treatments analogously to human mammary cancer cells. Our results support the proposal of cP as a new, potentially effective therapeutic agent for the management of mammary cancer.

  14. Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition

    PubMed Central

    McCoy, Erica L.; Iwanaga, Ritsuko; Jedlicka, Paul; Abbey, Nee-Shamo; Chodosh, Lewis A.; Heichman, Karen A.; Welm, Alana L.; Ford, Heide L.

    2009-01-01

    Six1 is a developmentally regulated homeoprotein with limited expression in most normal adult tissues and frequent misexpression in a variety of malignancies. Here we demonstrate, using a bitransgenic mouse model, that misexpression of human Six1 in adult mouse mammary gland epithelium induces tumors of multiple histological subtypes in a dose-dependent manner. The neoplastic lesions induced by Six1 had an in situ origin, showed diverse differentiation, and exhibited progression to aggressive malignant neoplasms, as is often observed in human carcinoma of the breast. Strikingly, the vast majority of Six1-induced tumors underwent an epithelial-mesenchymal transition (EMT) and expressed multiple targets of activated Wnt signaling, including cyclin D1. Interestingly, Six1 and cyclin D1 coexpression was found to frequently occur in human breast cancers and was strongly predictive of poor prognosis. We further show that Six1 promoted a stem/progenitor cell phenotype in the mouse mammary gland and in Six1-driven mammary tumors. Our data thus provide genetic evidence for a potent oncogenic role for Six1 in mammary epithelial neoplasia, including promotion of EMT and stem cell–like features. PMID:19726883

  15. MRI ductography of contrast agent distribution and leakage in normal mouse mammary ducts and ducts with in situ cancer.

    PubMed

    Markiewicz, Erica; Fan, Xiaobing; Mustafi, Devkumar; Zamora, Marta; Conzen, Suzanne D; Karczmar, Gregory S

    2017-07-01

    High resolution 3D MRI was used to study contrast agent distribution and leakage in normal mouse mammary glands and glands containing in situ cancer after intra-ductal injection. Five female FVB/N mice (~19weeks old) with no detectable mammary cancer and eight C3(1) SV40 Tag virgin female mice (~15weeks old) with extensive in situ cancer were studied. A 34G, 45° tip Hamilton needle with a 25μL Hamilton syringe was inserted into the tip of the nipple and approximately 15μL of a Gadodiamide was injected slowly over 1min into the nipple and throughout the duct on one side of the inguinal gland. Following injection, the mouse was placed in a 9.4T MRI scanner, and a series of high resolution 3D T1-weighted images was acquired with a temporal resolution of 9.1min to follow contrast agent leakage from the ducts. The first image was acquired at about 12min after injection. Ductal enhancement regions detected in images acquired between 12 and 21min after contrast agent injection was five times smaller in SV40 mouse mammary ducts (p<0.001) than in non-cancerous FVB/N mouse mammary ducts, perhaps due to rapid washout of contrast agent from the SV40 ducts. The contrast agent washout rate measured between 12min and 90min after injection was ~20% faster (p<0.004) in SV40 mammary ducts than in FVB/N mammary ducts. These results may be due to higher permeability of the SV40 ducts, likely due to the presence of in situ cancers. Therefore, increased permeability of ducts may indicate early stage breast cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A functional in vivo screen for regulators of tumor progression identifies HOXB2 as a regulator of tumor growth in breast cancer

    PubMed Central

    Boimel, Pamela J.; Cruz, Cristian; Segall, Jeffrey E.

    2011-01-01

    Microarray profiling in breast cancer patients have identified genes correlated with prognosis whose functions are unknown. The purpose of this study was to develop an in vivo assay for functionally screening regulators of tumor progression using a mouse model. Transductant shRNA cell lines were made in the MDA-MB-231 breast cancer line. A pooled population of 25 transductants was injected into the mammary fat pads and tail veins of mice to evaluate tumor growth, and experimental metastasis. The proportions of transductants were evaluated in the tumor and metastases using barcodes specific to each shRNA transductant. We characterized the homeobox 2 transcription factor as a negative regulator, decreasing tumor growth in MDA-MB-231, T47D, and MTLn3 mammary adenocarcinoma cell lines. Homeobox genes have been correlated with cancer patient prognosis and tumorigenesis. Here we use a novel in vivo shRNA screen to identify a new role for a homeobox gene in human mammary adenocarcinoma. PMID:21672623

  17. Stromal matrix metalloproteinase-11 is involved in the mammary gland postnatal development.

    PubMed

    Tan, J; Buache, E; Alpy, F; Daguenet, E; Tomasetto, C-L; Ren, G-S; Rio, M-C

    2014-07-31

    MMP-11 is a bad prognosis paracrine factor in invasive breast cancers. However, its mammary physiological function remains largely unknown. In the present study we have investigated MMP-11 function during postnatal mammary gland development and function using MMP-11-deficient (MMP-11-/-) mice. Histological and immunohistochemical analyses as well as whole-mount mammary gland staining show alteration of the mammary gland in the absence of MMP-11, where ductal tree, alveolar structures and milk production are reduced. Moreover, a series of transplantation experiments allowed us to demonstrate that MMP-11 exerts an essential local paracrine function that favors mammary gland branching and epithelial cell outgrowth and invasion through adjacent connective tissues. Indeed, MMP-11-/- cleared fat pads are not permissive for wild-type epithelium development, whereas MMP-11-/- epithelium transplants grow normally when implanted in wild-type cleared fat pads. In addition, using primary mammary epithelial organoids, we show in vitro that this MMP-11 pro-branching effect is not direct, suggesting that MMP-11 acts via production/release of stroma-associated soluble factor(s). Finally, the lack of MMP-11 leads to decreased periductal collagen content, suggesting that MMP-11 has a role in collagen homeostasis. Thus, local stromal MMP-11 might also regulate mammary epithelial cell behavior mechanically by promoting extracellular matrix stiffness. Collectively, the present data indicate that MMP-11 is a paracrine factor involved during postnatal mammary gland morphogenesis, and support the concept that the stroma strongly impact epithelial cell behavior. Interestingly, stromal MMP-11 has previously been reported to favor malignant epithelial cell survival and promote cancer aggressiveness. Thus, MMP-11 has a paracrine function during mammary gland development that might be harnessed to promote tumor progression, exposing a new link between development and malignancy.

  18. Metallothionein expression in canine and feline mammary and melanotic tumours.

    PubMed

    Dincer, Z; Jasani, B; Haywood, S; Mullins, J E; Fuentealba, I C

    2001-01-01

    Moderate to strong immunohistochemical metallothionein (MT) positivity (MT expression) is associated with a poor prognosis in some human tumours. The aim of this study was to determine MT expression in mammary tumours and cutaneous melanomas in dogs and cats. Canine (67) and feline (47) mammary tumours, and cutaneous melanomas (canine 40, feline 26) were immunolabelled with MT monoclonal antibody E9. The overall incidence of MT expression of these tumours was similar to that observed in various human neoplasms. However, a striking interspecies difference was detected. In dogs, MT expression occurred in 100% of benign and 57% of malignant mammary tumours. In cats, however, 30% of malignant mammary tumours expressed MT but benign mammary tumours and cases of fibroadenomatous hyperplasia did not. Moderate to strong MT immunoreactivity was detected in 30% of benign and 25% of malignant cutaneous melanomas in dogs, and in 6% of malignant melanomas in cats. The findings in feline mammary tumours resembled findings reported in human breast cancer, but the cause of tumour-associated MT expression is unknown. Studies are in progress to determine whether the MT state (apo [metal-free] or holo [metal-bound]) accounts for the paradoxical association of MT expression with individual types of tumours and the animal species in which they arise. Copyright Harcourt Publishers Ltd.

  19. A moderate elevation of circulating levels of IGF-I does not alter ErbB2 induced mammary tumorigenesis

    PubMed Central

    2011-01-01

    Background Epidemiological evidence suggests that moderately elevated levels of circulating insulin-like growth factor-I (IGF-I) are associated with increased risk of breast cancer in women. How circulating IGF-I may promote breast cancer incidence is unknown, however, increased IGF-I signaling is linked to trastuzumab resistance in ErbB2 positive breast cancer. Few models have directly examined the effect of moderately high levels of circulating IGF-I on breast cancer initiation and progression. The purpose of this study was to assess the ability of circulating IGF-I to independently initiate mammary tumorigenesis and/or accelerate the progression of ErbB2 mediated mammary tumor growth. Methods We crossed heterozygous TTR-IGF-I mice with heterozygous MMTV-ErbB2 mice to generate 4 different genotypes: TTR-IGF-I/MMTV-ErbB2 (bigenic), TTR-IGF-I only, MMTV-ErbB2 only, and wild type (wt). Virgin females were palpated twice a week and harvested when tumors reached 1000 mm3. For study of normal development, blood and tissue were harvested at 4, 6 and 9 weeks of age in TTR-IGF-I and wt mice. Results TTR-IGF-I and TTR-IGF-I/ErbB2 bigenic mice showed a moderate 35% increase in circulating total IGF-I compared to ErbB2 and wt control mice. Elevation of circulating IGF-I had no effect upon pubertal mammary gland development. The transgenic increase in IGF-I alone wasn't sufficient to initiate mammary tumorigenesis. Elevated circulating IGF-I had no effect upon ErbB2-induced mammary tumorigenesis or metastasis, with median time to tumor formation being 30 wks and 33 wks in TTR-IGF-I/ErbB2 bigenic and ErbB2 mice respectively (p = 0.65). Levels of IGF-I in lysates from ErbB2/TTR-IGF-I tumors compared to ErbB2 was elevated in a similar manner to the circulating IGF-I, however, there was no effect on the rate of tumor growth (p = 0.23). There were no morphological differences in tumor type (solid adenocarcinomas) between bigenic and ErbB2 mammary glands. Conclusion Using the first

  20. Modeling mechanical interactions between cancerous mammary acini

    NASA Astrophysics Data System (ADS)

    Wang, Jeffrey; Liphardt, Jan; Rycroft, Chris

    2015-03-01

    The rules and mechanical forces governing cell motility and interactions with the extracellular matrix of a tissue are often critical for understanding the mechanisms by which breast cancer is able to spread through the breast tissue and eventually metastasize. Ex vivo experimentation has demonstrated the the formation of long collagen fibers through collagen gels between the cancerous mammary acini responsible for milk production, providing a fiber scaffolding along which cancer cells can disorganize. We present a minimal mechanical model that serves as a potential explanation for the formation of these collagen fibers and the resultant motion. Our working hypothesis is that cancerous cells induce this fiber formation by pulling on the gel and taking advantage of the specific mechanical properties of collagen. To model this system, we employ a new Eulerian, fixed grid simulation method to model the collagen as a nonlinear viscoelastic material subject to various forces coupled with a multi-agent model to describe individual cancer cells. We find that these phenomena can be explained two simple ideas: cells pull collagen radially inwards and move towards the tension gradient of the collagen gel, while being exposed to standard adhesive and collision forces.

  1. Histopathological and in vivo evidence of regucalcin as a protective molecule in mammary gland carcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marques, Ricardo; Vaz, Cátia V.; Maia, Cláudio J.

    Regucalcin (RGN) is a calcium-binding protein, which has been shown to be underexpressed in cancer cases. This study aimed to determine the association of RGN expression with clinicopathological parameters of human breast cancer. In addition, the role of RGN in malignancy of mammary gland using transgenic rats overexpressing the protein (Tg-RGN) was investigated. Wild-type (Wt) and Tg-RGN rats were treated with 7,12-dimethylbenz[α]anthracene (DMBA). Carcinogen-induced tumors were histologically classified and the Ki67 proliferation index was estimated. Immunohistochemistry analysis showed that RGN immunoreactivity was negatively correlated with the histological grade of breast infiltrating ductal carcinoma suggesting that progression of breast cancer ismore » associated with loss of RGN. Tg-RGN rats displayed lower incidence of carcinogen-induced mammary gland tumors, as well as lower incidence of invasive forms. Moreover, higher proliferation was observed in non-invasive tumors of Wt animals comparatively with Tg-RGN. Overexpression of RGN was associated with diminished expression of cell-cycle inhibitors and increased expression of apoptosis inducers. Augmented activity of apoptosis effector caspase-3 was found in the mammary gland of Tg-RGN. RGN overexpression protected from carcinogen-induced mammary gland tumor development and was linked with reduced proliferation and increased apoptosis. These findings indicated the protective role of RGN in the carcinogenesis of mammary gland. - Highlights: • RGN immunoreactivity was negatively correlated with breast cancer differentiation. • Transgenic overexpression of RGN diminished incidence of carcinogen-induced tumors. • Transgenic overexpression of RGN restricted proliferation and fostered apoptosis. • RGN has a protective role in the carcinogenesis of mammary gland.« less

  2. Hormonally up-regulated neu-associated kinase: A novel target for breast cancer progression.

    PubMed

    Zambrano, Joelle N; Neely, Benjamin A; Yeh, Elizabeth S

    2017-05-01

    Hormonally up-regulated neu-associated Kinase (Hunk) is a protein kinase that was originally identified in the murine mammary gland and has been shown to be highly expressed in Human Epidermal Growth Factor Receptor 2 positive (HER2 + /ErbB2 + ) breast cancer cell lines as well as MMTV-neu derived mammary tumor cell lines. However, the physiological role of Hunk has been largely elusive since its identification. Though Hunk is predicted to be a Serine/Threonine (Ser/Thr) protein kinase with homology to the SNF1/AMPK family of protein kinases, there are no known Hunk substrates that have been identified to date. Recent work demonstrates a role for Hunk in HER2 + /ErbB2 + breast cancer progression, including drug resistance to HER2/ErbB2 inhibitors, with Hunk potentially acting downstream of HER2/ErbB2 and the PI3K/Akt pathway. These studies have collectively shown that Hunk plays a vital role in promoting mammary tumorigenesis, as Hunk knockdown via shRNA in xenograft tumor models or crossing MMTV-neu or Pten-deficient genetically engineered mouse models into a Hunk knockout (Hunk-/-) background impairs mammary tumor growth in vivo. Because the majority of HER2 + /ErbB2 + breast cancer patients acquire drug resistance to HER2/ErbB2 inhibitors, the characterization of novel drug targets like Hunk that have the potential to simultaneously suppress tumorigenesis and potentially enhance efficacy of current therapeutics is an important facet of drug development. Therefore, work aimed at uncovering specific regulatory functions for Hunk that could contribute to this protein kinase's role in both tumorigenesis and drug resistance will be informative. This review focuses on what is currently known about this under-studied protein kinase, and how targeting Hunk may prove to be a potential therapeutic target for the treatment of breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Stromal and Epithelial Caveolin-1 Both Confer a Protective Effect Against Mammary Hyperplasia and Tumorigenesis

    PubMed Central

    Williams, Terence M.; Sotgia, Federica; Lee, Hyangkyu; Hassan, Ghada; Di Vizio, Dolores; Bonuccelli, Gloria; Capozza, Franco; Mercier, Isabelle; Rui, Hallgeir; Pestell, Richard G.; Lisanti, Michael P.

    2006-01-01

    Here, we investigate the role of caveolin-1 (Cav-1) in breast cancer onset and progression, with a focus on epithelial-stromal interactions, ie, the tumor microenvironment. Cav-1 is highly expressed in adipocytes and is abundant in mammary fat pads (stroma), but it remains unknown whether loss of Cav-1 within mammary stromal cells affects the differentiated state of mammary epithelia via paracrine signaling. To address this issue, we characterized the development of the mammary ductal system in Cav-1−/− mice and performed a series of mammary transplant studies, using both wild-type and Cav-1−/− mammary fat pads. Cav-1−/− mammary epithelia were hyperproliferative in vivo, with dramatic increases in terminal end bud area and mammary ductal thickness as well as increases in bromodeoxyuridine incorporation, extracellular signal-regulated kinase-1/2 hyperactivation, and up-regulation of STAT5a and cyclin D1. Consistent with these findings, loss of Cav-1 dramatically exacerbated mammary lobulo-alveolar hyperplasia in cyclin D1 Tg mice, whereas overexpression of Cav-1 caused reversion of this phenotype. Most importantly, Cav-1−/− mammary stromal cells (fat pads) promoted the growth of both normal mammary ductal epithelia and mammary tumor cells. Thus, Cav-1 expression in both epithelial and stromal cells provides a protective effect against mammary hyperplasia as well as mammary tumorigenesis. PMID:17071600

  4. Sequence Variants and Haplotype Analysis of Cat ERBB2 Gene: A Survey on Spontaneous Cat Mammary Neoplastic and Non-Neoplastic Lesions

    PubMed Central

    Santos, Sara; Bastos, Estela; Baptista, Cláudia S.; Sá, Daniela; Caloustian, Christophe; Guedes-Pinto, Henrique; Gärtner, Fátima; Gut, Ivo G.; Chaves, Raquel

    2012-01-01

    The human ERBB2 proto-oncogene is widely considered a key gene involved in human breast cancer onset and progression. Among spontaneous tumors, mammary tumors are the most frequent cause of cancer death in cats and second most frequent in humans. In fact, naturally occurring tumors in domestic animals, more particularly cat mammary tumors, have been proposed as a good model for human breast cancer, but critical genetic and molecular information is still scarce. The aims of this study include the analysis of the cat ERBB2 gene partial sequences (between exon 17 and 20) in order to characterize a normal and a mammary lesion heterogeneous populations. Cat genomic DNA was extracted from normal frozen samples (n = 16) and from frozen and formalin-fixed paraffin-embedded mammary lesion samples (n = 41). We amplified and sequenced two cat ERBB2 DNA fragments comprising exons 17 to 20. It was possible to identify five sequence variants and six haplotypes in the total population. Two sequence variants and two haplotypes show to be specific for cat mammary tumor samples. Bioinformatics analysis predicts that four of the sequence variants can produce alternative transcripts or activate cryptic splicing sites. Also, a possible association was identified between clinicopathological traits and the variant haplotypes. As far as we know, this is the first attempt to examine ERBB2 genetic variations in cat mammary genome and its possible association with the onset and progression of cat mammary tumors. The demonstration of a possible association between primary tumor size (one of the two most important prognostic factors) and the number of masses with the cat ERBB2 variant haplotypes reveal the importance of the analysis of this gene in veterinary medicine. PMID:22489125

  5. A functional in vivo screen for regulators of tumor progression identifies HOXB2 as a regulator of tumor growth in breast cancer.

    PubMed

    Boimel, Pamela J; Cruz, Cristian; Segall, Jeffrey E

    2011-09-01

    Microarray profiling in breast cancer patients has identified genes correlated with prognosis whose functions are unknown. The purpose of this study was to develop an in vivo assay for functionally screening regulators of tumor progression using a mouse model. Transductant shRNA cell lines were made in the MDA-MB-231 breast cancer line. A pooled population of 25 transductants was injected into the mammary fat pads and tail veins of mice to evaluate tumor growth, and experimental metastasis. The proportions of transductants were evaluated in the tumor and metastases using barcodes specific to each shRNA transductant. We characterized the homeobox 2 transcription factor as a negative regulator, decreasing tumor growth in MDA-MB-231, T47D, and MTLn3 mammary adenocarcinoma cell lines. Homeobox genes have been correlated with cancer patient prognosis and tumorigenesis. Here we use a novel in vivo shRNA screen to identify a new role for a homeobox gene in human mammary adenocarcinoma. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Amplification of tumor inducing putative cancer stem cells (CSCs) by vitamin A/retinol from mammary tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Rohit B.; Wang, Qingde; Khillan, Jaspal S., E-mail: khillan@pitt.edu

    Highlights: •Vitamin A supports self renewal of putative CSCs from mammary tumors. •These cells exhibit impaired retinol metabolism into retinoic acid. •CSCs from mammary tumors differentiate into mammary specific cell lineages. •The cells express mammary stem cell specific CD29 and CD49f markers. •Putative CSCs form highly metastatic tumors in NOD SCID mouse. -- Abstract: Solid tumors contain a rare population of cancer stem cells (CSCs) that are responsible for relapse and metastasis. The existence of CSC however, remains highly controversial issue. Here we present the evidence for putative CSCs from mammary tumors amplified by vitamin A/retinol signaling. The cells exhibitmore » mammary stem cell specific CD29{sup hi}/CD49f{sup hi}/CD24{sup hi} markers, resistance to radiation and chemo therapeutic agents and form highly metastatic tumors in NOD/SCID mice. The cells exhibit indefinite self renewal as cell lines. Furthermore, the cells exhibit impaired retinol metabolism and do not express enzymes that metabolize retinol into retinoic acid. Vitamin A/retinol also amplified putative CSCs from breast cancer cell lines that form highly aggressive tumors in NOD SCID mice. The studies suggest that high purity putative CSCs can be isolated from solid tumors to establish patient specific cell lines for personalized therapeutics for pre-clinical translational applications. Characterization of CSCs will allow understanding of basic cellular and molecular pathways that are deregulated, mechanisms of tumor metastasis and evasion of therapies that has direct clinical relevance.« less

  7. Anticancer Potential of Nutraceutical Formulations in MNU-induced Mammary Cancer in Sprague Dawley Rats.

    PubMed

    Pitchaiah, Gummalla; Akula, Annapurna; Chandi, Vishala

    2017-01-01

    Nutraceuticals help in combating some of the major health problems of the century including cancer, and 'nutraceutical formulations' have led to the new era of medicine and health. To develop different nutraceutical formulations and to assess the anticancer potential of nutraceutical formulations in N-methyl-N-nitrosourea (MNU)-induced mammary cancer in Sprague Dawley rats. Different nutraceutical formulations were prepared using fine powders of amla, apple, garlic, onion, papaya, turmeric, and wheat grass with and without cow urine distillate. Total phenolic content, acute oral toxicity, and microbial load of nutraceutical formulations were assessed. The anticancer potential of nutraceutical formulations was evaluated against MNU-induced mammary cancer in female Sprague Dawley rats. Improvement in total phenolic content was significant ( P < 0.001) after self-fortification process. Toxicity studies showed that the nutraceutical formulations were safe to use in animals. Microbial load was within the limits. Significant longer tumor-free days ( P < 0.01), lower tumor incidence ( P < 0.01), lower tumor multiplicity ( P < 0.05) and tumor burden ( P < 0.01) were observed for nutraceutical formulation-treated groups. Combination of whole food-based nutraceuticals acted synergistically in the prevention of mammary cancer. Further, the process of fortification is novel and enhanced the anticancer potential of nutraceutical formulations. Nutraceuticals help in combating some of the major health problems of the century including cancer, and 'nutraceutical formulations' have led to the new era of medicine and health. In this study, different nutraceutical formulations using fine powders of amla, apple, garlic, onion, papaya, turmeric, and wheat grass with and without cow urine distillate. Total phenolic content, acute oral toxicity, and microbial load of nutraceutical formulations were assessed. The anticancer potential of nutraceutical formulations was evaluated against MNU

  8. Extracellular matrix components in breast cancer progression and metastasis.

    PubMed

    Oskarsson, Thordur

    2013-08-01

    The extracellular matrix (ECM) is composed of highly variable and dynamic components that regulate cell behavior. The protein composition and physical properties of the ECM govern cell fate through biochemical and biomechanical mechanisms. This requires a carefully orchestrated and thorough regulation considering that a disturbed ECM can have serious consequences and lead to pathological conditions like cancer. In breast cancer, many ECM proteins are significantly deregulated and specific matrix components promote tumor progression and metastatic spread. Intriguingly, several ECM proteins that are associated with breast cancer development, overlap substantially with a group of ECM proteins induced during the state of tissue remodeling such as mammary gland involution. Fibrillar collagens, fibronectin, hyaluronan and matricellular proteins are matrix components that are common to both involution and cancer. Moreover, some of these proteins have in recent years been identified as important constituents of metastatic niches in breast cancer. In addition, specific ECM molecules, their receptors or enzymatic modifiers are significantly involved in resistance to therapeutic intervention. Further analysis of these ECM proteins and the downstream ECM mediated signaling pathways may provide a range of possibilities to identify druggable targets against advanced breast cancer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Does Skeletal Muscle Mass Influence Breast Cancer? Evaluating Mammary Tumorigenesis and Progression in Genetically Hyper-Muscular Mice

    DTIC Science & Technology

    2007-07-01

    preserve muscle in the end-stages of cancer, cancer cachexia . Up to 25% of breast cancer deaths may be attributed to muscle wasting from the complex... cachexia . 15. SUBJECT TERMS Breast cancer, skeletal muscle, myostatin, MPA, DMBA, Activin receptor, cachexia . 16. SECURITY CLASSIFICATION OF: 17...progress, we turned to another question relating skeletal muscle and cancer—pathological muscle wasting in cancer cachexia . (6) (7) (8) Cancer cachexia

  10. Secreted CLIC3 drives cancer progression through its glutathione-dependent oxidoreductase activity

    PubMed Central

    Hernandez-Fernaud, Juan R.; Ruengeler, Elena; Casazza, Andrea; Neilson, Lisa J.; Pulleine, Ellie; Santi, Alice; Ismail, Shehab; Lilla, Sergio; Dhayade, Sandeep; MacPherson, Iain R.; McNeish, Iain; Ennis, Darren; Ali, Hala; Kugeratski, Fernanda G.; Al Khamici, Heba; van den Biggelaar, Maartje; van den Berghe, Peter V.E.; Cloix, Catherine; McDonald, Laura; Millan, David; Hoyle, Aoisha; Kuchnio, Anna; Carmeliet, Peter; Valenzuela, Stella M.; Blyth, Karen; Yin, Huabing; Mazzone, Massimiliano; Norman, Jim C.; Zanivan, Sara

    2017-01-01

    The secretome of cancer and stromal cells generates a microenvironment that contributes to tumour cell invasion and angiogenesis. Here we compare the secretome of human mammary normal and cancer-associated fibroblasts (CAFs). We discover that the chloride intracellular channel protein 3 (CLIC3) is an abundant component of the CAF secretome. Secreted CLIC3 promotes invasive behaviour of endothelial cells to drive angiogenesis and increases invasiveness of cancer cells both in vivo and in 3D cell culture models, and this requires active transglutaminase-2 (TGM2). CLIC3 acts as a glutathione-dependent oxidoreductase that reduces TGM2 and regulates TGM2 binding to its cofactors. Finally, CLIC3 is also secreted by cancer cells, is abundant in the stromal and tumour compartments of aggressive ovarian cancers and its levels correlate with poor clinical outcome. This work reveals a previously undescribed invasive mechanism whereby the secretion of a glutathione-dependent oxidoreductase drives angiogenesis and cancer progression by promoting TGM2-dependent invasion. PMID:28198360

  11. MicroRNA-200, associated with metastatic breast cancer, promotes traits of mammary luminal progenitor cells.

    PubMed

    Sánchez-Cid, Lourdes; Pons, Mònica; Lozano, Juan José; Rubio, Nuria; Guerra-Rebollo, Marta; Soriano, Aroa; Paris-Coderch, Laia; Segura, Miquel F; Fueyo, Raquel; Arguimbau, Judit; Zodda, Erika; Bermudo, Raquel; Alonso, Immaculada; Caparrós, Xavier; Cascante, Marta; Rafii, Arash; Kang, Yibin; Martínez-Balbás, Marian; Weiss, Stephen J; Blanco, Jerónimo; Muñoz, Montserrat; Fernández, Pedro L; Thomson, Timothy M

    2017-10-13

    MicroRNAs are critical regulators of gene networks in normal and abnormal biological processes. Focusing on invasive ductal breast cancer (IDC), we have found dysregulated expression in tumor samples of several microRNAs, including the miR-200 family, along progression from primary tumors to distant metastases, further reflected in higher blood levels of miR-200b and miR-7 in IDC patients with regional or distant metastases relative to patients with primary node-negative tumors. Forced expression of miR-200s in MCF10CA1h mammary cells induced an enhanced epithelial program, aldehyde dehydrogenase (ALDH) activity, mammosphere growth and ability to form branched tubuloalveolar structures while promoting orthotopic tumor growth and lung colonization in vivo . MiR-200s also induced the constitutive activation of the PI3K-Akt signaling through downregulation of PTEN, and the enhanced mammosphere growth and ALDH activity induced in MCF10CA1h cells by miR-200s required the activation of this signaling pathway. Interestingly, the morphology of tumors formed in vivo by cells expressing miR-200s was reminiscent of metaplastic breast cancer (MBC). Indeed, the epithelial components of MBC samples expressed significantly higher levels of miR-200s than their mesenchymal components and displayed a marker profile compatible with luminal progenitor cells. We propose that microRNAs of the miR-200 family promote traits of highly proliferative breast luminal progenitor cells, thereby exacerbating the growth and metastatic properties of transformed mammary epithelial cells.

  12. Antiproliferative Effects of Oxytocin and Desmopressin on Canine Mammary Cancer Cells

    PubMed Central

    Benavente, Micaela Andrea; Bianchi, Carolina Paula; Imperiale, Fernanda; Aba, Marcelo Alfredo

    2016-01-01

    Neoplasms of the mammary gland represent the most frequent tumor type in the female dog, and according to the histologic criteria, approximately 50% of them are malignant. In the most aggressive cases of mammary cancer, surgery is not enough to warrant a favorable outcome, and adjuvant therapies are needed to improve the patient’s overall survival. The aim of the present study was to evaluate the effects of two peptides on proliferation of a canine mammary cancer cell line derived from a simple carcinoma. The cell line CMT-U27 was grown in 96-well plates, at two cell densities (4 × 103 and 8 × 103 cells/well). Cultures were treated with oxytocin (OT) or desmopressin at five concentrations (10, 50, 100, 500, and 1000 nM). After 72 h of incubation, cell proliferation was determined by the MTT assay. Results showed that with 4 × 103 cells/well, OT at 50, 500, and 1000 nM was growth inhibitory for the cells, being statistically significant at 1000 nM. On the contrary, no antiproliferative effect was observed with 10 or 100 nM. At 8 × 103 cells/well, OT showed a significant antiproliferative effect only with the highest concentration (1000 nM). Desmopressin at 4 × 103 cells/well decreased cell viability at concentrations of 50, 100, 500, and 1000 nM (statistically significant with the highest concentration), while no effect was observed with 10 nM. With 8 × 103 cells/well, this peptide reduced cell growth at 100, 500, and 1000 nM. In conclusion, we suggest that these peptides may be potential and promising compounds for the treatment of dogs with simple carcinomas of the mammary gland. In vivo studies are required to confirm this hypothesis. PMID:28083539

  13. Antiproliferative Effects of Oxytocin and Desmopressin on Canine Mammary Cancer Cells.

    PubMed

    Benavente, Micaela Andrea; Bianchi, Carolina Paula; Imperiale, Fernanda; Aba, Marcelo Alfredo

    2016-01-01

    Neoplasms of the mammary gland represent the most frequent tumor type in the female dog, and according to the histologic criteria, approximately 50% of them are malignant. In the most aggressive cases of mammary cancer, surgery is not enough to warrant a favorable outcome, and adjuvant therapies are needed to improve the patient's overall survival. The aim of the present study was to evaluate the effects of two peptides on proliferation of a canine mammary cancer cell line derived from a simple carcinoma. The cell line CMT-U27 was grown in 96-well plates, at two cell densities (4 × 10 3 and 8 × 10 3 cells/well). Cultures were treated with oxytocin (OT) or desmopressin at five concentrations (10, 50, 100, 500, and 1000 nM). After 72 h of incubation, cell proliferation was determined by the MTT assay. Results showed that with 4 × 10 3 cells/well, OT at 50, 500, and 1000 nM was growth inhibitory for the cells, being statistically significant at 1000 nM. On the contrary, no antiproliferative effect was observed with 10 or 100 nM. At 8 × 10 3 cells/well, OT showed a significant antiproliferative effect only with the highest concentration (1000 nM). Desmopressin at 4 × 10 3 cells/well decreased cell viability at concentrations of 50, 100, 500, and 1000 nM (statistically significant with the highest concentration), while no effect was observed with 10 nM. With 8 × 10 3 cells/well, this peptide reduced cell growth at 100, 500, and 1000 nM. In conclusion, we suggest that these peptides may be potential and promising compounds for the treatment of dogs with simple carcinomas of the mammary gland. In vivo studies are required to confirm this hypothesis.

  14. Mammary Stem Cells: Premise, Properties, and Perspectives.

    PubMed

    Lloyd-Lewis, Bethan; Harris, Olivia B; Watson, Christine J; Davis, Felicity M

    2017-08-01

    Adult mammary stem cells (MaSCs) drive postnatal organogenesis and remodeling in the mammary gland, and their longevity and potential have important implications for breast cancer. However, despite intense investigation the identity, location, and differentiation potential of MaSCs remain subject to deliberation. The application of genetic lineage-tracing models, combined with quantitative 3D imaging and biophysical methods, has provided new insights into the mammary epithelial hierarchy that challenge classical definitions of MaSC potency and behaviors. We review here recent advances - discussing fundamental unresolved properties of MaSC potency, dynamics, and plasticity - and point to evolving technologies that promise to shed new light on this intractable debate. Elucidation of the physiological mammary differentiation hierarchy is paramount to understanding the complex heterogeneous breast cancer landscape. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Influence of tangeretin on tamoxifen's therapeutic benefit in mammary cancer.

    PubMed

    Bracke, M E; Depypere, H T; Boterberg, T; Van Marck, V L; Vennekens, K M; Vanluchene, E; Nuytinck, M; Serreyn, R; Mareel, M M

    1999-02-17

    Tamoxifen and the citrus flavonoid tangeretin exhibit similar inhibitory effects on the growth and invasive properties of human mammary cancer cells in vitro; furthermore, the two agents have displayed additive effects in vitro. In this study, we examined whether tangeretin would enhance tamoxifen's therapeutic benefit in vivo. Female nude mice (n = 80) were inoculated subcutaneously with human MCF-7/6 mammary adenocarcinoma cells. Groups of 20 mice were treated orally by adding the following substances to their drinking water: tamoxifen (3 x 10(-5) M), tangeretin (1 x 10(-4) M), tamoxifen plus tangeretin (3 x 10(-5) M plus 1 x 10(-4) M), or solvent. Oral treatment of mice with tamoxifen resulted in a statistically significant inhibition of tumor growth compared with solvent treatment (two-sided P = .001). Treatment with tangeretin did not inhibit tumor growth, and addition of this compound to drinking water with tamoxifen completely neutralized tamoxifen's inhibitory effect. The median survival time of tumor-bearing mice treated with tamoxifen plus tangeretin was reduced in comparison with that of mice treated with tamoxifen alone (14 versus 56 weeks; two-sided P = .002). Tangeretin (1 x 10(-6) M or higher) inhibited the cytolytic effect of murine natural killer cells on MCF-7/6 cells in vitro, which may explain why tamoxifen-induced inhibition of tumor growth in mice is abolished when tangeretin is present in drinking water. We describe an in vivo model to study potential interference of dietary compounds, such as flavonoids, with tamoxifen, which could lead to reduced efficacy of adjuvant therapy. In our study, the tumor growth-inhibiting effect of oral tamoxifen was reversed upon addition of tangeretin to the diet. Our data argue against excessive consumption of tangeretin-added products and supplements by patients with mammary cancer during tamoxifen treatment.

  16. Short-term exposure to pregnancy levels of estrogen prevents mammary carcinogenesis

    PubMed Central

    Rajkumar, Lakshmanaswamy; Guzman, Raphael C.; Yang, Jason; Thordarson, Gudmundur; Talamantes, Frank; Nandi, Satyabrata

    2001-01-01

    It is well established that pregnancy early in life reduces the risk of breast cancer in women and that this effect is universal. This phenomenon of parity protection against mammary cancer is also observed in rodents. Earlier studies have demonstrated that short-term administration of estradiol (E) in combination with progesterone mimics the protective effect of parity in rats. In this study, the lowest effective E dosage for preventing mammary cancer was determined. Rats were injected with N-methyl-N-nitrosourea at 7 weeks of age; 2 weeks later, the rats were subjected to sustained treatment with 20 μg, 100 μg, 200 μg, or 30 mg of E in silastic capsules for 3 weeks. Treatments with 100 μg, 200 μg, and 30 mg of E resulted in serum levels of E equivalent to those of pregnancy and were highly effective in preventing mammary cancer. E treatment (20 μg) did not result in pregnancy levels of E and was not effective in reducing the mammary cancer incidence. In another set of experiments, we determined the effect of different durations of E with or without progesterone treatments on mammary carcinogenesis. These experiments indicate that a period as short as one-third the period of gestation is sufficient to induce protection against mammary carcinogenesis. The pioneering aspect of our study in contrast to long-term estrogen exposure, which is thought to increase the risk of breast cancer, is that short-term sustained treatments with pregnancy levels of E can induce protection against frank mammary cancer. PMID:11573010

  17. Obesity, expression of adipocytokines, and macrophage infiltration in canine mammary tumors.

    PubMed

    Lim, H Y; Im, K S; Kim, N H; Kim, H W; Shin, J I; Sur, J H

    2015-03-01

    Obesity influences the development, progression and prognosis of human breast cancer and canine mammary cancer (MC) but the precise underlying mechanism is not well-documented in the fields of either human or veterinary oncology. In the present study, the expression of major adipocytokines, including leptin, adiponectin, and leptin receptor (ObR) in benign (n = 28) and malignant (n = 70) canine mammary tumors was investigated by immunohistochemistry and on the basis of the subject's body condition score (BCS). To evaluate the relationship between obesity and chronic inflammation of the mammary gland, macrophages infiltrating within and around tumoral areas were counted. The mean age of MC development was lower in overweight or obese dogs (9.0 ± 1.8 years) than in lean dogs or optimal bodyweight (10.2 ± 2.9 years), and the evidence of lymphatic invasion of carcinoma cells was found more frequently in overweight or obese group than in lean or optimal groups. Decreased adiponectin expression and increased macrophage numbers in overweight or obese subjects were significantly correlated with factors related to a poor prognosis, such as high histological grade and lymphatic invasion. Leptin expression was correlated with progesterone receptor status, and ObR expression was correlated with estrogen receptor status of MCs, regardless of BCS. Macrophage infiltration within and around the tumor may play an important role in tumor progression and metastasis in obese female dogs and may represent a prognostic factor for canine MCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. CSF-1R as an inhibitor of apoptosis and promoter of proliferation, migration and invasion of canine mammary cancer cells

    PubMed Central

    2013-01-01

    Background Tumor-associated macrophages (TAMs) have high impact on the cancer development because they can facilitate matrix invasion, angiogenesis, and tumor cell motility. It gives cancer cells the capacity to invade normal tissues and metastasize. The signaling of colony-stimulating factor-1 receptor (CSF-1R) which is an important regulator of proliferation and differentiation of monocytes and macrophages regulates most of the tissue macrophages. However, CSF-1R is expressed also in breast epithelial tissue during some physiological stages i.g.: pregnancy and lactation. Its expression has been also detected in various cancers. Our previous study has showed the expression of CSF-1R in all examined canine mammary tumors. Moreover, it strongly correlated with grade of malignancy and ability to metastasis. This study was therefore designed to characterize the role of CSF-1R in canine mammary cancer cells proliferation, apoptosis, migration, and invasion. As far as we know, the study presented hereby is a pioneering experiment in this field of veterinary medicine. Results We showed that csf-1r silencing significantly increased apoptosis (Annexin V test), decreased proliferation (measured as Ki67 expression) and decreased migration (“wound healing” assay) of canine mammary cancer cells. Treatment of these cells with CSF-1 caused opposite effect. Moreover, csf-1r knock-down changed growth characteristics of highly invasive cell lines on Matrigel matrix, and significantly decreased the ability of these cells to invade matrix. CSF-1 treatment increased invasion of cancer cells. Conclusion The evidence of the expression and functional role of the CSF-1R in canine mammary cancer cells indicate that CSF-1R targeting may be a good therapeutic approach. PMID:23561040

  19. Development of a Novel Therapeutic Paradigm Utilizing a Mammary Gland-Targeted, Bin-1 Knockout Mouse Model

    DTIC Science & Technology

    2007-03-01

    Cell. Biol. 23, 4295 (Jun, 2003). Bin1 Ablation in Mammary Gland Delays Tissue Remodeling and Drives Cancer Progression Mee Young Chang, 1...Basu A, et al. Bin1 functionally interacts with Myc in cells and inhibits cell proliferation by multiple mechanisms. Oncogene 1999;18:3564–73. 5. Pineda

  20. Diagnostic PET Imaging of Mammary Microcalcifications Using 64Cu-DOTA-Alendronate in a Rat Model of Breast Cancer

    PubMed Central

    Ahrens, Bradley J.; Li, Lin; Ciminera, Alexandra K.; Chea, Junie; Poku, Erasmus; Bading, James R.; Weist, Michael R.; Miller, Marcia M.; Colcher, David M.

    2017-01-01

    The development of improved breast cancer screening methods is hindered by a lack of cancer-specific imaging agents and effective small-animal models to test them. The purpose of this study was to evaluate 64Cu-DOTA-alendronate as a mammary microcalcification-targeting PET imaging agent, using an ideal rat model. Our long-term goal is to develop 64Cu-DOTA-alendronate for the detection and noninvasive differentiation of malignant versus benign breast tumors with PET. Methods: DOTA-alendronate was synthesized, radiolabeled with 64Cu, and administered to normal or tumor-bearing aged, female, retired breeder Sprague–Dawley rats for PET imaging. Mammary tissues were subsequently labeled and imaged with light, confocal, and electron microscopy to verify microcalcification targeting specificity of DOTA-alendronate and elucidate the histologic and ultrastructural characteristics of the microcalcifications in different mammary tumor types. Tumor uptake, biodistribution, and dosimetry studies were performed to evaluate the efficacy and safety of 64Cu-DOTA-alendronate. Results: 64Cu-DOTA-alendronate was radiolabeled with a 98% yield. PET imaging using aged, female, retired breeder rats showed specific binding of 64Cu-DOTA-alendronate in mammary glands and mammary tumors. The highest uptake of 64Cu-DOTA-alendronate was in malignant tumors and the lowest uptake in benign tumors and normal mammary tissue. Confocal analysis with carboxyfluorescein-alendronate confirmed the microcalcification binding specificity of alendronate derivatives. Biodistribution studies revealed tissue alendronate concentrations peaking within the first hour, then decreasing over the next 48 h. Our dosimetric analysis demonstrated a 64Cu effective dose within the acceptable range for clinical PET imaging agents and the potential for translation into human patients. Conclusion: 64Cu-DOTA-alendronate is a promising PET imaging agent for the sensitive and specific detection of mammary tumors as well as

  1. Does Skeletal Muscle Mass Influence Breast Cancer? Evaluating Mammary Tumorigenesis and Progression Genetically Hyper-Muscular Mice

    DTIC Science & Technology

    2006-07-01

    the skeletal muscle-specific muscle growth inhibitor myostatin and mice expressing a dominant negative form of the myostatin receptor, Activin...and rates of breast cancer initiation and progression. 15. SUBJECT TERMS Breast cancer, skeletal muscle, myostatin , MPA, DMBA, Activin receptor 16...including interleukins, Insulin-like Growth Factor (IGF) isoforms, IGF-binding proteins and myostatin . To determine the effect of skeletal muscle mass

  2. Scribble Modulates the MAPK/Fra1 Pathway to Disrupt Luminal and Ductal Integrity and Suppress Tumour Formation in the Mammary Gland

    PubMed Central

    Godde, Nathan J.; Sheridan, Julie M.; Smith, Lorey K.; Pearson, Helen B.; Britt, Kara L.; Galea, Ryan C.; Yates, Laura L.; Visvader, Jane E.; Humbert, Patrick O.

    2014-01-01

    Polarity coordinates cell movement, differentiation, proliferation and apoptosis to build and maintain complex epithelial tissues such as the mammary gland. Loss of polarity and the deregulation of these processes are critical events in malignant progression but precisely how and at which stage polarity loss impacts on mammary development and tumourigenesis is unclear. Scrib is a core polarity regulator and tumour suppressor gene however to date our understanding of Scrib function in the mammary gland has been limited to cell culture and transplantation studies of cell lines. Utilizing a conditional mouse model of Scrib loss we report for the first time that Scrib is essential for mammary duct morphogenesis, mammary progenitor cell fate and maintenance, and we demonstrate a critical and specific role for Scribble in the control of the early steps of breast cancer progression. In particular, Scrib-deficiency significantly induced Fra1 expression and basal progenitor clonogenicity, which resulted in fully penetrant ductal hyperplasia characterized by high cell turnover, MAPK hyperactivity, frank polarity loss with mixing of apical and basolateral membrane constituents and expansion of atypical luminal cells. We also show for the first time a role for Scribble in mammalian spindle orientation with the onset of mammary hyperplasia being associated with aberrant luminal cell spindle orientation and a failure to apoptose during the final stage of duct tubulogenesis. Restoring MAPK/Fra1 to baseline levels prevented Scrib-hyperplasia, whereas persistent Scrib deficiency induced alveolar hyperplasia and increased the incidence, onset and grade of mammary tumours. These findings, based on a definitive genetic mouse model provide fundamental insights into mammary duct maturation and homeostasis and reveal that Scrib loss activates a MAPK/Fra1 pathway that alters mammary progenitor activity to drive premalignancy and accelerate tumour progression. PMID:24852022

  3. The two faces of Janus kinases and their respective STATs in mammary gland development and cancer.

    PubMed

    Wagner, Kay-Uwe; Schmidt, Jeffrey W

    2011-01-01

    Since its discovery as "just another kinase" more than twenty years ago, the family of JAK tyrosine kinases and their respective Signal Transducers and Activators of Transcription (STATs) has been a center of attention in the areas of signal transduction, development, and cancer. The subsequent designation of JAKs as Janus kinases after the mythical two-faced Roman God of the doorways accurately portrays the analogous and sometimes contrasting molecular and biological characteristics of these tyrosine kinases. The two "faces" of JAKs are their structurally similar kinase and pseudo-kinase domains. As essential parts of various transmembrane receptor complexes, these tyrosine kinases function at cellular gateways and relay signals from growth factors to their respective intracellular targets. The multifaceted nature of JAKs becomes evident from their ability to activate specific STATs during distinct phases of normal mammary gland development. Studies in breast cancer cells and genetically engineered mouse models also show that JAK/STAT signaling possesses a "two-faced" role during breast cancer initiation and progression. This review will highlight recent findings about important biological functions of JAKs and STATs during normal mammogenesis, with particular emphasis on the Jak2/Stat5 pathway as well as Jak1/2/Stat3 signaling complexes. In addition, we will discuss how the importance of these signaling networks changes during carcinogenesis. With JAK inhibitors currently under development to treat myeloproliferative disorders, determining the essential functions of JAKs at particular stages of disease initiation and progression is of critical importance to predict the efficacy of these agents for targeted therapies against breast cancer.

  4. The two faces of Janus kinases and their respective STATs in mammary gland development and cancer

    PubMed Central

    Wagner, Kay-Uwe; Schmidt, Jeffrey W.

    2011-01-01

    Since its discovery as “just another kinase” more than twenty years ago, the family of JAK tyrosine kinases and their respective Signal Transducers and Activators of Transcription (STATs) has been a center of attention in the areas of signal transduction, development, and cancer. The subsequent designation of JAKs as Janus kinases after the mythical two-faced Roman God of the doorways accurately portrays the analogous and sometimes contrasting molecular and biological characteristics of these tyrosine kinases. The two “faces” of JAKs are their structurally similar kinase and pseudo-kinase domains. As essential parts of various transmembrane receptor complexes, these tyrosine kinases function at cellular gateways and relay signals from growth factors to their respective intracellular targets. The multifaceted nature of JAKs becomes evident from their ability to activate specific STATs during distinct phases of normal mammary gland development. Studies in breast cancer cells and genetically engineered mouse models also show that JAK/STAT signaling possesses a "two-faced" role during breast cancer initiation and progression. This review will highlight recent findings about important biological functions of JAKs and STATs during normal mammogenesis, with particular emphasis on the Jak2/Stat5 pathway as well as Jak1/2/Stat3 signaling complexes. In addition, we will discuss how the importance of these signaling networks changes during carcinogenesis. With JAK inhibitors currently under development to treat myeloproliferative disorders, determining the essential functions of JAKs at particular stages of disease initiation and progression is of critical importance to predict the efficacy of these agents for targeted therapies against breast cancer. PMID:22279417

  5. Mammary Gland Development

    PubMed Central

    Macias, Hector

    2012-01-01

    The mammary gland develops through several distinct stages. The first transpires in the embryo as the ectoderm forms a mammary line that resolves into placodes. Regulated by epithelial/mesenchymal interactions, the placodes descend into the underlying mesenchyme and produce the rudimentary ductal structure of the gland present at birth. Subsequent stages of development – pubertal growth, pregnancy, lactation and involution – occur postnatally under the regulation of hormones. Puberty initiates branching morphogenesis, which requires growth hormone and estrogen, as well as IGF1, to create a ductal tree that fills the fat pad. Upon pregnancy the combined actions of progesterone and prolactin generate alveoli, which secrete milk during lactation. Lack of demand for milk at weaning initiates the process of involution whereby the gland is remodeled back to its pre-pregnancy state. These processes require numerous signaling pathways that have distinct regulatory functions at different stages of gland development. Signaling pathways also regulate a specialized subpopulation of mammary stem cells that fuel the dramatic changes in the gland occurring with each pregnancy. Our knowledge of mammary gland development and mammary stem cell biology has significantly contributed to our understanding of breast cancer and has advanced the discovery of therapies to treat this disease. PMID:22844349

  6. OVOL2 antagonizes TGF-β signaling to regulate epithelial to mesenchymal transition during mammary tumor metastasis

    PubMed Central

    Wu, Di; Liu, Na; Liu, Qing-Feng; Wu, Qiu-Wan; Xie, Yuan-Yuan; Liu, Yun-Jia; Zheng, Zhong-Zheng; Chan, Err-Cheng; Zhang, Zhi-Ming; Li, Bo-An

    2017-01-01

    Great progress has been achieved in the study of the role of TGF-β signaling in triggering epithelial-mesenchymal transition (EMT) in a variety of cancers; however, the regulation of TGF-β signaling during EMT in mammary tumor metastasis has not been completely defined. In the present study, we demonstrated that OVOL2, a zinc finger transcription factor, inhibits TGF-β signaling-induced EMT in mouse and human mammary tumor cells, as well as in mouse tumor models. Data from the Oncomine databases indicated a strong negative relationship between OVOL2 expression and breast cancer progression. Moreover, our experiments revealed that OVOL2 inhibits TGF-β signaling at multiple levels, including inhibiting Smad4 mRNA expression and inducing Smad7 mRNA expression, blocking the binding between Smad4 and target DNA, and interfering with complex formation between Smad4 and Smad2/3. These findings reveal a novel mechanism that controls the TGF-β signaling output level in vitro and in vivo. The modulation of these molecular processes may represent a strategy for inhibiting breast cancer invasion by restoring OVOL2 expression. PMID:28455959

  7. Synthetic α-mangostin dilaurate strongly suppresses wide-spectrum organ metastasis in a mouse model of mammary cancer.

    PubMed

    Shibata, Masa-Aki; Hamaoka, Hitomi; Morimoto, Junji; Kanayama, Tadashi; Maemura, Kentaro; Ito, Yuko; Iinuma, Munekazu; Kondo, Yoichi

    2018-03-30

    We previously reported that, in a mouse model of mammary cancer, α-mangostin alone exhibits anti-metastatic properties. To enhance this anti-metastatic effect, we examined the efficacy of synthetic α-mangostin dilaurate (MGD), prepared by adding lauric acid to α-mangostin, in the same experimental system wherein mice bearing mammary tumors are exposed to dietary MGD at 0, 2000 and 4000 ppm. Lauric acid has a high propensity for lymphatic absorption, which is the most common pathway of initial dissemination of many solid malignancies. Both mammary tumor volumes and wide-spectrum organ metastasis were markedly reduced at 2000 and 4000 ppm: furthermore, survival in the 4000-ppm group was significantly greater than in control mice. Apoptosis in mammary carcinomas was also significantly increased in the 4000-ppm group, whereas blood microvessel density and lymphatic vessel invasion were markedly reduced. In real-time PCR analyses of tumor samples, increased p21 and decreased Pcna expression were observed with 4000 ppm but values were not statistically significant when compared to expression in control tumors. However, exposure to 4000 ppm significantly decreased expression of phospho-Akt (Ser473/Thr308) as compared to the control, indicating a role in the anti-tumorigenic effects of MGD. These findings suggest that MGD may be useful for adjuvant therapy and chemoprevention and that conjugated medium-chain fatty acids may enhance the efficacy of certain chemotherapeutic agents. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  8. Second-harmonic generation and fluorescence lifetime imaging microscopy through a rodent mammary imaging window

    NASA Astrophysics Data System (ADS)

    Young, Pamela A.; Nazir, Muhammad; Szulczewski, Michael J.; Keely, Patricia J.; Eliceiri, Kevin W.

    2012-03-01

    Tumor-Associated Collagen Signatures (TACS) have been identified that manifest in specific ways during breast tumor progression and that correspond to patient outcome. There are also compelling metabolic changes associated with carcinoma invasion and progression. We have characterized the difference in the autofluorescent properties of metabolic co-factors, NADH and FAD, between normal and carcinoma breast cell lines. Also, we have shown in vitro that increased collagen density alters metabolic genes which are associated with glycolysis and leads to a more invasive phenotype. Establishing the relationship between collagen density, cellular metabolism, and metastasis in physiologically relevant cancer models is crucial for developing cancer therapies. To study cellular metabolism with respect to collagen density in vivo, we use multiphoton fluorescence excitation microscopy (MPM) in conjunction with a rodent mammary imaging window implanted in defined mouse cancer models. These models are ideal for the study of collagen changes in vivo, allowing determination of corresponding metabolic changes in breast cancer invasion and progression. To measure cellular metabolism, we collect fluorescence lifetime (FLIM) signatures of NADH and FAD, which are known to change based on the microenvironment of the cells. Additionally, MPM systems are capable of collecting second harmonic generation (SHG) signals which are a nonlinear optical property of collagen. Therefore, MPM, SHG, and FLIM are powerful tools with great potential for characterizing key features of breast carcinoma in vivo. Below we present the current efforts of our collaborative group to develop intravital approaches based on these imaging techniques to look at defined mouse mammary models.

  9. A trisubstituted pyrazole derivative reduces DMBA-induced mammary tumor growth in rats by inhibiting estrogen receptor-α expression.

    PubMed

    Ananda, Hanumappa; Sharath Kumar, Kothanahally S; Sudhanva, Muddenahalli S; Rangappa, Shobith; Rangappa, Kanchugarakoppal S

    2018-05-18

    Aberrant expression of estrogen receptor alpha (ER-α) is observed in many pathological complications like breast cancer, endometrial cancer, and in osteoporosis. ER-α plays a vital role in the initiation and progression of breast cancer and confers chemo and radioresistance to the cancer cells by upregulating expression of anti-apoptotic proteins. The synthetic pyrazole derivative 3-(1-(4-bromophenyl)-5-phenyl-1H-pyrazol-3-yl)pyridine (compound 5d) displays significant cytotoxicity against mammary carcinoma cells. Molecular docking studies revealed that compound 5d binds to ligand binding domain of (ER-α). In vivo studies were carried out to investigate ER-α expression by immunohistochemistry and quantitative RT-PCR, which revealed reduction of ER-α in tumor cells upon treatment with compound 5d indicating its ER-α antagonistic effect. Our study ascertains compound 5d as a potent inhibitor of mammary carcinoma cells.

  10. Insulin-like growth factor (IGF)-I obliterates the pregnancy-associated protection against mammary carcinogenesis in rats: evidence that IGF-I enhances cancer progression through estrogen receptor-α activation via the mitogen-activated protein kinase pathway

    PubMed Central

    Thordarson, Gudmundur; Slusher, Nicole; Leong, Harriet; Ochoa, Dafne; Rajkumar, Lakshmanaswamy; Guzman, Raphael; Nandi, Satyabrata; Talamantes, Frank

    2004-01-01

    Introduction Pregnancy protects against breast cancer development in humans and rats. Parous rats have persistently reduced circulating levels of growth hormone, which may affect the activity of the growth hormone/insulin-like growth factor (IGF)-I axis. We investigated the effects of IGF-I on parity-associated protection against mammary cancer. Methods Three groups of rats were evaluated in the present study: IGF-I-treated parous rats; parous rats that did not receive IGF-I treatment; and age-matched virgin animals, which also did not receive IGF-I treatment. Approximately 60 days after N-methyl-N-nitrosourea injection, IGF-I treatment was discontinued and all of the animal groups were implanted with a silastic capsule containing 17β-estradiol and progesterone. The 17β-estradiol plus progesterone treatment continued for 135 days, after which the animals were killed. Results IGF-I treatment of parous rats increased mammary tumor incidence to 83%, as compared with 16% in parous rats treated with 17β-estradiol plus progesterone only. Tumor incidence and average number of tumors per animal did not differ between IGF-I-treated parous rats and age-matched virgin rats. At the time of N-methyl-N-nitrosourea exposure, DNA content was lowest but the α-lactalbumin concentration highest in the mammary glands of untreated parous rats in comparison with age-matched virgin and IGF-I-treated parous rats. The protein levels of estrogen receptor-α in the mammary gland was significantly higher in the age-matched virgin animals than in untreated parous and IGF-I-treated parous rats. Phosphorylation (activation) of the extracellular signal-regulated kinase-1/2 (ERK1/2) and expression of the progesterone receptor were both increased in IGF-I-treated parous rats, as compared with those in untreated parous and age-matched virgin rats. Expressions of cyclin D1 and transforming growth factor-β3 in the mammary gland were lower in the age-matched virgin rats than in the untreated

  11. A monograph proposing the use of canine mammary tumours as a model for the study of hereditary breast cancer susceptibility genes in humans.

    PubMed

    Goebel, Katie; Merner, Nancy D

    2017-05-01

    Canines are excellent models for cancer studies due to their similar physiology and genomic sequence to humans, companion status and limited intra-breed heterogeneity. Due to their affliction to mammary cancers, canines can serve as powerful genetic models of hereditary breast cancers. Variants within known human breast cancer susceptibility genes only explain a fraction of familial cases. Thus, further discovery is necessary but such efforts have been thwarted by genetic heterogeneity. Reducing heterogeneity is key, and studying isolated human populations have helped in the endeavour. An alternative is to study dog pedigrees, since artificial selection has resulted in extreme homogeneity. Identifying the genetic predisposition to canine mammary tumours can translate to human discoveries - a strategy currently underutilized. To explore this potential, we reviewed published canine mammary tumour genetic studies and proposed benefits of next generation sequencing canine cohorts to facilitate moving beyond incremental advances.

  12. Chemopreventive efficacy of anethole trithione, N-acetyl-L-cysteine, miconazole and phenethylisothiocyanate in the DMBA-induced rat mammary cancer model.

    PubMed

    Lubet, R A; Steele, V E; Eto, I; Juliana, M M; Kelloff, G J; Grubbs, C J

    1997-07-03

    The chemopreventive efficacy of N-acetyl-L-cysteine (NAC), anethole trithione, miconazole and phenethylisothiocyanate (PEITC), each of which would be expected to alter carcinogen metabolism, was examined in the dimethylbenzanthracene (DMBA) mammary carcinogenesis model. In this protocol, animals were exposed to non-toxic doses of the chemopreventives in the diet beginning 7 days prior to DMBA administration and then continuously throughout the duration of the assay (100 days post carcinogen). Miconazole, an antifungal agent with relatively broad inhibitory activity toward a variety of cytochromes P450, increased mammary tumor latency, decreased tumor incidence at the highest dose and decreased tumor multiplicity up to 60%. Anethole trithione, a substituted dithiolthione and an analog of the relatively broad-spectrum chemopreventive oltipraz, was administered in the diet and significantly inhibited mammary cancer multiplicity but not cancer incidence. NAC, an antimucolytic agent, failed to inhibit DMBA-induced mammary tumorigenesis. Surprisingly, treatment with DMBA plus PEITC, a potent inhibitor of cytochrome P450 2E1, actually increased the multiplicity of tumors relative to that observed with DMBA alone.

  13. Runx2 contributes to the regenerative potential of the mammary epithelium.

    PubMed

    Ferrari, Nicola; Riggio, Alessandra I; Mason, Susan; McDonald, Laura; King, Ayala; Higgins, Theresa; Rosewell, Ian; Neil, James C; Smalley, Matthew J; Sansom, Owen J; Morris, Joanna; Cameron, Ewan R; Blyth, Karen

    2015-10-22

    Although best known for its role in bone development and associated structures the transcription factor RUNX2 is expressed in a wide range of lineages, including those of the mammary gland. Previous studies have indicated that Runx2 can regulate aspects of mammary cell function and influence the properties of cancer cells. In this study we investigate the role of Runx2 in the mammary stem/progenitor population and its relationship with WNT signalling. Results show that RUNX2 protein is differentially expressed throughout embryonic and adult development of the murine mammary gland with high levels of expression in mammary stem-cell enriched cultures. Importantly, functional analysis reveals a role for Runx2 in mammary stem/progenitor cell function in in vitro and in vivo regenerative assays. Furthermore, RUNX2 appears to be associated with WNT signalling in the mammary epithelium and is specifically upregulated in mouse models of WNT-driven breast cancer. Overall our studies reveal a novel function for Runx2 in regulating mammary epithelial cell regenerative potential, possibly acting as a downstream target of WNT signalling.

  14. Runx2 contributes to the regenerative potential of the mammary epithelium

    PubMed Central

    Ferrari, Nicola; Riggio, Alessandra I.; Mason, Susan; McDonald, Laura; King, Ayala; Higgins, Theresa; Rosewell, Ian; Neil, James C.; Smalley, Matthew J.; Sansom, Owen J.; Morris, Joanna; Cameron, Ewan R.; Blyth, Karen

    2015-01-01

    Although best known for its role in bone development and associated structures the transcription factor RUNX2 is expressed in a wide range of lineages, including those of the mammary gland. Previous studies have indicated that Runx2 can regulate aspects of mammary cell function and influence the properties of cancer cells. In this study we investigate the role of Runx2 in the mammary stem/progenitor population and its relationship with WNT signalling. Results show that RUNX2 protein is differentially expressed throughout embryonic and adult development of the murine mammary gland with high levels of expression in mammary stem-cell enriched cultures. Importantly, functional analysis reveals a role for Runx2 in mammary stem/progenitor cell function in in vitro and in vivo regenerative assays. Furthermore, RUNX2 appears to be associated with WNT signalling in the mammary epithelium and is specifically upregulated in mouse models of WNT-driven breast cancer. Overall our studies reveal a novel function for Runx2 in regulating mammary epithelial cell regenerative potential, possibly acting as a downstream target of WNT signalling. PMID:26489514

  15. Prevention of mammary carcinogenesis by short-term estrogen and progestin treatments

    PubMed Central

    Rajkumar, Lakshmanaswamy; Guzman, Raphael C; Yang, Jason; Thordarson, Gudmundur; Talamantes, Frank; Nandi, Satyabrata

    2004-01-01

    Introduction Women who have undergone a full-term pregnancy before the age of 20 have one-half the risk of developing breast cancer compared with women who have never gone through a full-term pregnancy. This protective effect is observed universally among women of all ethnic groups. Parity in rats and mice also protects them against chemically induced mammary carcinogenesis. Methods Seven-week-old virgin Lewis rats were given N-methyl-N-nitrosourea. Two weeks later the rats were treated with natural or synthetic estrogens and progestins for 7–21 days by subcutaneous implantation of silastic capsules. Results In our current experiment, we demonstrate that short-term sustained exposure to natural or synthetic estrogens along with progestins is effective in preventing mammary carcinogenesis in rats. Treatment with 30 mg estriol plus 30 mg progesterone for 3 weeks significantly reduced the incidence of mammary cancer. Short-term exposure to ethynyl estradiol plus megesterol acetate or norethindrone was effective in decreasing the incidence of mammary cancers. Tamoxifen plus progesterone treatment for 3 weeks was able to confer only a transient protection from mammary carcinogenesis, while 2-methoxy estradiol plus progesterone was effective in conferring protection against mammary cancers. Conclusions The data obtained in the present study demonstrate that, in nulliparous rats, long-term protection against mammary carcinogenesis can be achieved by short-term treatments with natural or synthetic estrogen and progesterone combinations. PMID:14680498

  16. Ethanol potentiates the genotoxicity of the food-derived mammary carcinogen PhIP in human estrogen receptor-positive mammary cells: mechanistic support for lifestyle factors (cooked red meat and ethanol) associated with mammary cancer.

    PubMed

    Malik, Durr-E-Shahwar; David, Rhiannon M; Gooderham, Nigel J

    2018-04-01

    Consumption of cooked/processed meat and ethanol are lifestyle risk factors in the aetiology of breast cancer. Cooking meat generates heterocyclic amines such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Epidemiology, mechanistic and animal studies indicate that PhIP is a mammary carcinogen that could be causally linked to breast cancer incidence; PhIP is DNA damaging, mutagenic and oestrogenic. PhIP toxicity involves cytochrome P450 (CYP1 family)-mediated metabolic activation to DNA-damaging species, and transcriptional responses through Aryl hydrocarbon receptor (AhR) and estrogen-receptor-α (ER-α). Ethanol consumption is a modifiable lifestyle factor strongly associated with breast cancer risk. Ethanol toxicity involves alcohol dehydrogenase metabolism to reactive acetaldehyde, and is also a substrate for CYP2E1, which when uncoupled generates reactive oxygen species (ROS) and DNA damage. Here, using human mammary cells that differ in estrogen-receptor status, we explore genotoxicity of PhIP and ethanol and mechanisms behind this toxicity. Treatment with PhIP (10 -7 -10 -4 M) significantly induced genotoxicity (micronuclei formation) preferentially in ER-α positive human mammary cell lines (MCF-7, ER-α+) compared to MDA-MB-231 (ER-α-) cells. PhIP-induced CYP1A2 in both cell lines but CYP1B1 was selectively induced in ER-α(+) cells. ER-α inhibition in MCF-7 cells attenuated PhIP-mediated micronuclei formation and CYP1B1 induction. PhIP-induced CYP2E1 and ROS via ER-α-STAT-3 pathway, but only in ER-α (+) MCF-7 cells. Importantly, simultaneous treatments of physiological concentrations ethanol (10 -3 -10 -1 M) with PhIP (10 -7 -10 -4 M) increased oxidative stress and genotoxicity in MCF-7 cells, compared to the individual chemicals. Collectively, these data offer a mechanistic basis for the increased risk of breast cancer associated with dietary cooked meat and ethanol lifestyle choices.

  17. Short interspersed CAN SINE elements as prognostic markers in canine mammary neoplasia.

    PubMed

    Gelaleti, Gabriela B; Granzotto, Adriana; Leonel, Camila; Jardim, Bruna V; Moschetta, Marina G; Carareto, Claudia M A; Zuccari, Debora Ap P C

    2014-01-01

    The genome of mammals is characterized by a large number of non-LTR retrotransposons, and among them, the CAN SINEs are characteristics of the canine species. Small amounts of DNA freely circulate in normal blood serum and high amounts are found in human patients with cancer, characterizing it as a candidate tumor-biomarker. The aim of this study was to estimate, through its absolute expression, the number of copies of CAN SINE sequences present in free circulating DNA of female dogs with mammary cancer, in order to correlate with the clinical and pathological characteristics and the follow-up period. The copy number of CAN SINE sequences was estimated by qPCR in 28 female dogs with mammary neoplasia. The univariate analysis showed an increased number of copies in female dogs with mammary tumor in female dogs >10 years old (p=0.02) and tumor time >18 months (p<0.05). The Kaplan-Meier test demonstrated a negative correlation between an increased number of copies and survival time (p=0.03). High amounts of CAN SINE fragments can be good markers for the detection of tumor DNA in blood and may characterize it as a marker of poor prognosis, being related to female dogs with shorter survival times. This estimate can be used as a prognostic marker in non-invasive breast cancer research and is useful in predicting tumor progression and patient monitoring.

  18. 5-Fluorouracil may enrich cancer stem cells in canine mammary tumor cells in vitro.

    PubMed

    Zhou, Bin; Jin, Yipeng; Zhang, Di; Lin, Degui

    2018-05-01

    Mammary gland carcinomas are the most common neoplasms in women and unsterilized female dogs. Owing to the existence of cancer stem cells (CSCs), chemotherapy is not able to cure these types of diseases completely. A number of studies have demonstrated that CSCs are resistant to chemotherapeutic drugs, but whether canine mammary tumor cells that have acquired resistance to 5-fluorouracil (5-FU) exhibited properties of CSCs remains unknown. The aim of the present study was to investigate whether 5-fluorouracil-resistant canine mammary tumor cells exhibited properties of CSCs. CSCs were analyzed using western blot assays, ultra-low attachment sphere cultures, flow cytometry and migration (wound healing and Transwell) assays. The results indicated that, compared with parental cells, proteins associated with the Wnt/β-catenin signaling pathway and aldehyde dehydrogenase 1 were overexpressed, the number and size of spheres in the 5-FU-resistant cells were increased, the ratio of CD44 + /CD24 -/low cells was increased and the migratory ability was improved in vitro compared with the 5-FU-susceptible cells. In conclusion, stimulation with chemotherapeutic drugs including 5-FU is a good method for increasing the proportion of canine mammary tumor stem cells in vitro , which may provide further understanding of chemotherapeutic methods and CSCs.

  19. The Origin and Significance of Mammary Intraductal Foam Cells

    DTIC Science & Technology

    2005-09-01

    hematopoeitic origin developed in mammary tissue with both benign and malignant differentiation, depending on environmental cues. Progression of the cells...contribution of hematopoeitic precursors to the heterogeneity of cell types in benign and malignant mammary tissue.

  20. Anticancer and Cancer Prevention Effects of Piperine-Free Piper nigrum Extract on N-nitrosomethylurea-Induced Mammary Tumorigenesis in Rats.

    PubMed

    Sriwiriyajan, Somchai; Tedasen, Aman; Lailerd, Narissara; Boonyaphiphat, Pleumjit; Nitiruangjarat, Anupong; Deng, Yan; Graidist, Potchanapond

    2016-01-01

    Piper nigrum (P. nigrum) is commonly used in traditional medicine. This current study aimed to investigate the anticancer and cancer preventive activity of a piperine-free P. nigrum extract (PFPE) against breast cancer cells and N-nitrosomethylurea (NMU)-induced mammary tumorigenesis in rats. The cytotoxic effects and the mechanism of action were investigated in breast cancer cells using the MTT assay and Western blot analysis, respectively. An acute toxicity study was conducted according to the Organization for Economic Co-operation and Development guideline. Female Sprague-Dawley rats with NMU-induced mammary tumors were used in preventive and anticancer studies. The results showed that PFPE inhibited the growth of luminal-like breast cancer cells more so than the basal-like ones by induction of apoptosis. In addition, PFPE exhibited greater selectivity against breast cancer cells than colorectal cancer, lung cancer, and neuroblastoma cells. In an acute toxicity study, a single oral administration of PFPE at a dose of 5,000 mg/kg body weight resulted in no mortality and morbidity during a 14-day observation period. For the cancer preventive study, the incidence of tumor-bearing rats was 10% to 20% in rats treated with PFPE. For the anticancer activity study, the growth rate of tumors in the presence of PFPE-treated groups was much slower when compared with the control and vehicle groups. The extract itself caused no changes to the biochemical and hematologic parameters when compared with the control and vehicle groups. In conclusion, PFPE had a low toxicity and a potent antitumor effect on mammary tumorigenesis in rats. ©2015 American Association for Cancer Research.

  1. Canonical Wnt Signaling as a Specific Marker of Normal and Tumorigenic Mammary Stem Cells

    DTIC Science & Technology

    2010-02-01

    for mammary stem cells and be a target for transformation that results in the formation of aggressive mammary tumors. Breast cancer stem cells, Wnt...tumorigenesis, and human breast cancer. In addition, increasing evidence suggests that tumors arise from either normal stem or progenitor cells...population of mammary tumor cells that are CD24+/CD49++. Since Wnt pathway activation occurs in human breast cancer and is required for

  2. Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer.

    PubMed Central

    Siegel, P M; Ryan, E D; Cardiff, R D; Muller, W J

    1999-01-01

    To assess the importance of Neu activation during mammary tumorigenesis, altered receptors harboring in-frame deletions within the extracellular domain were expressed in transgenic mice. Females from several independent lines develop multiple mammary tumors that frequently metastasize to the lung. Tumor progression in these strains was associated with elevated levels of tyrosine-phosphorylated Neu and ErbB-3. Consistent with these observations, a survey of primary human breast tumors revealed frequent co-expression of both erbB-2 and erbB-3 transcripts. The ability of altered Neu receptors to induce mammary tumorigenesis in transgenic mice prompted us to examine whether similar mutations occurred in ErbB-2 during human breast cancer progression. Interestingly, an alternatively spliced form of erbB-2, closely resembling spontaneous activated forms of neu, was detected in human breast tumors. The ErbB-2 receptor encoded by this novel transcript harbors an in-frame deletion of 16 amino acids in the extracellular domain and can transform Rat-1 fibroblasts. Together, these observations argue that co-expression of ErbB-2 and ErbB-3 may play a critical role in the induction of human breast tumors, and raise the possibility that activating mutations in the ErbB-2 receptor may also contribute to this process. PMID:10205169

  3. Diagnostic PET Imaging of Mammary Microcalcifications Using 64Cu-DOTA-Alendronate in a Rat Model of Breast Cancer.

    PubMed

    Ahrens, Bradley J; Li, Lin; Ciminera, Alexandra K; Chea, Junie; Poku, Erasmus; Bading, James R; Weist, Michael R; Miller, Marcia M; Colcher, David M; Shively, John E

    2017-09-01

    The development of improved breast cancer screening methods is hindered by a lack of cancer-specific imaging agents and effective small-animal models to test them. The purpose of this study was to evaluate 64 Cu-DOTA-alendronate as a mammary microcalcification-targeting PET imaging agent, using an ideal rat model. Our long-term goal is to develop 64 Cu-DOTA-alendronate for the detection and noninvasive differentiation of malignant versus benign breast tumors with PET. Methods: DOTA-alendronate was synthesized, radiolabeled with 64 Cu, and administered to normal or tumor-bearing aged, female, retired breeder Sprague-Dawley rats for PET imaging. Mammary tissues were subsequently labeled and imaged with light, confocal, and electron microscopy to verify microcalcification targeting specificity of DOTA-alendronate and elucidate the histologic and ultrastructural characteristics of the microcalcifications in different mammary tumor types. Tumor uptake, biodistribution, and dosimetry studies were performed to evaluate the efficacy and safety of 64 Cu-DOTA-alendronate. Results: 64 Cu-DOTA-alendronate was radiolabeled with a 98% yield. PET imaging using aged, female, retired breeder rats showed specific binding of 64 Cu-DOTA-alendronate in mammary glands and mammary tumors. The highest uptake of 64 Cu-DOTA-alendronate was in malignant tumors and the lowest uptake in benign tumors and normal mammary tissue. Confocal analysis with carboxyfluorescein-alendronate confirmed the microcalcification binding specificity of alendronate derivatives. Biodistribution studies revealed tissue alendronate concentrations peaking within the first hour, then decreasing over the next 48 h. Our dosimetric analysis demonstrated a 64 Cu effective dose within the acceptable range for clinical PET imaging agents and the potential for translation into human patients. Conclusion: 64 Cu-DOTA-alendronate is a promising PET imaging agent for the sensitive and specific detection of mammary tumors as

  4. Selection of early-occurring mutations dictates hormone-independent progression in mouse mammary tumor lines.

    PubMed

    Gattelli, Albana; Zimberlin, María N; Meiss, Roberto P; Castilla, Lucio H; Kordon, Edith C

    2006-11-01

    Mice harboring three mouse mammary tumor virus (MMTV) variants develop pregnancy-dependent (PD) tumors that progress to pregnancy-independent (PI) behavior through successive passages. Herein, we identified 10 predominant insertions in PI transplants from 8 independent tumor lines. These mutations were also detected in small cell populations in the early PD passages. In addition, we identified a new viral insertion upstream of the gene Rspo3, which is overexpressed in three of the eight independent tumor lines and codes for a protein very similar to the recently described protein encoded by Int7. This study suggests that during progression towards hormone independence, clonal expansion of cells with specific mutations might be more relevant than the occurrence of new MMTV insertions.

  5. Selection of Early-Occurring Mutations Dictates Hormone-Independent Progression in Mouse Mammary Tumor Lines▿

    PubMed Central

    Gattelli, Albana; Zimberlin, María N.; Meiss, Roberto P.; Castilla, Lucio H.; Kordon, Edith C.

    2006-01-01

    Mice harboring three mouse mammary tumor virus (MMTV) variants develop pregnancy-dependent (PD) tumors that progress to pregnancy-independent (PI) behavior through successive passages. Herein, we identified 10 predominant insertions in PI transplants from 8 independent tumor lines. These mutations were also detected in small cell populations in the early PD passages. In addition, we identified a new viral insertion upstream of the gene Rspo3, which is overexpressed in three of the eight independent tumor lines and codes for a protein very similar to the recently described protein encoded by Int7. This study suggests that during progression towards hormone independence, clonal expansion of cells with specific mutations might be more relevant than the occurrence of new MMTV insertions. PMID:16971449

  6. Derailed Estrogen Signaling and Breast Cancer: An Authentic Couple

    PubMed Central

    Dey, Oindrilla; Gajulapalli, Vijay Narsihma Reddy; Bhatia, Raghavendra Singh; Bugide, Suresh; Kumar, Rakesh

    2013-01-01

    Estrogen or 17β-estradiol, a steroid hormone, plays a critical role in the development of mammary gland via acting through specific receptors. In particular, estrogen receptor-α (ERα) acts as a transcription factor and/or a signal transducer while participating in the development of mammary gland and breast cancer. Accumulating evidence suggests that the transcriptional activity of ERα is altered by the action of nuclear receptor coregulators and might be responsible, at least in part, for the development of breast cancer. In addition, this process is driven by various posttranslational modifications of ERα, implicating active participation of the upstream receptor modifying enzymes in breast cancer progression. Emerging studies suggest that the biological outcome of breast cancer cells is also influenced by the cross talk between microRNA and ERα signaling, as well as by breast cancer stem cells. Thus, multiple regulatory controls of ERα render mammary epithelium at risk for transformation upon deregulation of normal homeostasis. Given the importance that ERα signaling has in breast cancer development, here we will highlight how the activity of ERα is controlled by various regulators in a spatial and temporal manner, impacting the progression of the disease. We will also discuss the possible therapeutic value of ERα modulators as alternative drug targets to retard the progression of breast cancer. PMID:22947396

  7. Parity-induced decrease in systemic growth hormone alters mammary gland signaling: A potential role in pregnancy protection from breast cancer

    PubMed Central

    Dearth, Robert K.; Delgado, David A.; Hiney, Jill K; Pathiraja, Thushangi; Oesterreich, Steffi; Medina, Dan; Dees, W. Les; Lee, Adrian V.

    2009-01-01

    Early full-term pregnancy is an effective natural protection against breast cancer in both humans and experimental rodents. The protective effect of an early pregnancy is in part linked to changes in circulating hormones that are involved in both normal breast development and breast cancer. For example, a reduction in circulating growth hormone (GH) has been shown to protect rats from carcinogen-induced mammary tumors. We examined the ability of a full-term pregnancy to alter the endocrine GH/IGF-I axis and how this change affected normal mammary gland function in two commonly used rat models (Sprague-Dawley and Wistar-Furth). Circulating GH and IGF-I were measured in blood drawn every 30 minutes from parous and aged-matched virgin (AMV) female rats. Mean serum GH levels were significantly decreased (p<0.01) in parous compared to AMV in both rat strains. Changes in GH levels were independent of estrous cycle, indicated by a significant (p<0.05) reduction in circulating levels of GH during estrus and diestrus in both parous strains. Despite the decrease in circulating GH, pituitary GH mRNA levels were unaltered in parous rats. Circulating IGF-I and hepatic IGF-I mRNA were also unaltered by parity in either rat strain. Immunoblot analysis of mammary glands showed decreases in phosphorylation of Stat5A and Jak2, suggesting reduced action of GH in the mammary gland. Therefore, while the parity reduction in circulating GH doesn’t impact upon circulating IGF-I levels, it is possible that reduced GH action directly at the mammary gland and may play a role in pregnancy protection from breast cancer. PMID:20145191

  8. Physical Confirmation and Comparative Genomics of the Rat Mammary carcinoma susceptibility 3 Quantitative Trait Locus.

    PubMed

    Le, Saasha; Martin, Zachary C; Samuelson, David J

    2017-06-07

    Human breast and rat mammary cancer susceptibility are complex phenotypes where complete sets of risk associated loci remain to be identified for both species. We tested multiple congenic rat strains to physically confirm and positionally map rat Mammary carcinoma susceptibility 3 ( Mcs3 )-a mammary cancer resistance allele previously predicted at Rattus norvegicus chromosome 1 ( RNO1 ). The mammary cancer susceptible Wistar Furth (WF) strain was the recipient, and the mammary cancer resistant Copenhagen (Cop) strain was the RNO1 -segment donor for congenics. Inbred WF females averaged 6.3 carcinogen-induced mammary carcinomas per rat. Two WF.Cop congenic strains averaged 2.8 and 3.4 mammary carcinomas per rat, which confirmed Mcs3 as an independently acting allele. Two other WF.Cop congenic strains averaged 6.6 and 8.1 mammary carcinomas per rat, and, thus, did not contain Mcs3 Rat Mcs3 was delimited to 27.8 Mb of RNO1 from rs8149408 to rs105131702 ( RNO1 :143700228-171517317 of RGSC 6.0/rn6). Human genetic variants with p values for association to breast cancer risk below 10 -7 had not been reported for Mcs3 orthologous loci; however, human variants located in Mcs3 -orthologous regions with potential association to risk (10 -7  <  p  < 10 -3 ) were listed in some population-based studies. Further, rat Mcs3 contains sequence orthologous to human 11q13/14 -a region frequently amplified in female breast cancer. We conclude that Mcs3 is an independently acting mammary carcinoma resistance allele. Human population-based, genome-targeted association studies interrogating Mcs3 orthologous loci may yield novel breast cancer risk associated variants and genes. Copyright © 2017 Le et al.

  9. Association of surgical approach with complication rate, progression-free survival time, and disease-specific survival time in cats with mammary adenocarcinoma: 107 cases (1991-2014).

    PubMed

    Gemignani, Francesco; Mayhew, Philipp D; Giuffrida, Michelle A; Palaigos, Jason; Runge, Jeffrey J; Holt, David E; Robertson, Nicholas A; Seguin, Bernard; Walker, Meaghan; Singh, Ameet; Liptak, Julius M; Romanelli, Giorgio; Martano, Marina; Boston, Sarah E; Lux, Cassie; Busetto, Roberto; Culp, William T N; Skorupski, Katherine A; Burton, Jenna H

    2018-06-01

    OBJECTIVE To evaluate potential associations between surgical approach and complication rate, progression-free survival time, and disease-specific survival time in cats with mammary adenocarcinoma. DESIGN Retrospective case series. ANIMALS 107 client-owned cats. PROCEDURES Medical records of cats that underwent surgical excision of mammary adenocarcinoma by means of a unilateral or bilateral (staged or single-session) mastectomy at 9 hospitals between 1991 and 2014 were reviewed. Relevant clinicopathologic data and details of surgical and adjuvant treatments were recorded. Outcome data were obtained, including postoperative complications, progression-free survival time, and disease-specific survival time. RESULTS Complications occurred in 12 of 61 (19.7%) cats treated with unilateral mastectomy, 5 of 14 (35.7%) cats treated with staged bilateral mastectomy, and 13 of 32 (40.6%) cats treated with single-session bilateral mastectomy. Complications were significantly more likely to occur in cats undergoing bilateral versus unilateral mastectomy. Median progression-free survival time was longer for cats treated with bilateral mastectomy (542 days) than for cats treated with unilateral mastectomy (289 days). Significant risk factors for disease progression included unilateral mastectomy, tumor ulceration, lymph node metastasis, and tumors arising in the fourth mammary gland. Significant risk factors for disease-specific death included lymph node metastasis and development of regional or distant metastasis. Among cats that did not develop metastasis, unilateral mastectomy was a significant risk factor for disease-specific death. Treatment with chemotherapy was associated with a significantly decreased risk of disease-specific death. CONCLUSIONS AND CLINICAL RELEVANCE Results supported bilateral mastectomy for the treatment of mammary adenocarcinoma in cats to improve progression-free and disease-specific survival time. Performing bilateral mastectomy in a staged fashion

  10. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montesano, Roberto; Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hithertomore » unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.« less

  11. A Genetic Interaction Screen for Breast Cancer Progression Driver Genes

    DTIC Science & Technology

    2013-06-01

    analysis of genetic alterations in human breast cancers has revealed that individual tumors accumulate mutations in approximately ninety different genes ...cancer. We performed a screen to test the roles of seventy breast cancer mutated genes in mouse mammary tumorigenesis using the MMTV-PyVT mouse breast...cancer model and piggyBac insertional mutation strains. We found that insertional mutations in 23 genes altered the onset of tumor formation and four

  12. Apples prevent mammary tumors in rats.

    PubMed

    Liu, Rui Hai; Liu, Jiaren; Chen, Bingqing

    2005-03-23

    Regular consumption of fruits and vegetables has been consistently shown to be associated with reduced risk of developing chronic diseases such as cancer and cardiovascular disease. Apples are commonly consumed and are the major contributors of phytochemicals in human diets. It was previously reported that apple extracts exhibit strong antioxidant and antiproliferative activities and that the major part of total antioxidant activity is from the combination of phytochemicals. Phytochemicals, including phenolics and flavonoids, are suggested to be the bioactive compounds contributing to the health benefits of apples. Here it is shown that whole apple extracts prevent mammary cancer in a rat model in a dose-dependent manner at doses comparable to human consumption of one, three, and six apples a day. This study demonstrated that whole apple extracts effectively inhibited mammary cancer growth in the rat model; thus, consumption of apples may be an effective strategy for cancer protection.

  13. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis.

    PubMed

    Haricharan, S; Li, Y

    2014-01-25

    The mammary gland is a unique organ that undergoes extensive and profound changes during puberty, menstruation, pregnancy, lactation and involution. The changes that take place during puberty involve large-scale proliferation and invasion of the fat-pad. During pregnancy and lactation, the mammary cells are exposed to signaling pathways that inhibit apoptosis, induce proliferation and invoke terminal differentiation. Finally, during involution the mammary gland is exposed to milk stasis, programmed cell death and stromal reorganization to clear the differentiated milk-producing cells. Not surprisingly, the signaling pathways responsible for bringing about these changes in breast cells are often subverted during the process of tumorigenesis. The STAT family of proteins is involved in every stage of mammary gland development, and is also frequently implicated in breast tumorigenesis. While the roles of STAT3 and STAT5 during mammary gland development and tumorigenesis are well studied, others members, e.g. STAT1 and STAT6, have only recently been observed to play a role in mammary gland biology. Continued investigation into the STAT protein network in the mammary gland will likely yield new biomarkers and risk factors for breast cancer, and may also lead to novel prophylactic or therapeutic strategies against breast cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis

    PubMed Central

    Haricharan, S; Li, Y

    2013-01-01

    The mammary gland is a unique organ that undergoes extensive and profound changes during puberty, menstruation, pregnancy, lactation and involution. The changes that take place during puberty involve large-scale proliferation and invasion of the fat-pad. During pregnancy and lactation, the mammary cells are exposed to signaling pathways that inhibit apoptosis, induce proliferation and invoke terminal differentiation. Finally, during involution the mammary gland is exposed to milk stasis, programed cell death and stromal reorganization to clear the differentiated milk-producing cells. Not surprisingly, the signaling pathways responsible for bringing about these changes in breast cells are often subverted during the process of tumorigenesis. The STAT family of proteins is involved in every stage of mammary gland development, and is also frequently implicated in breast tumorigenesis. While the roles of STAT3 and STAT5 during mammary gland development and tumorigenesis are well studied, others members, e.g. STAT1 and STAT6, have only recently been observed to play a role in mammary gland biology. Continued investigation into the STAT protein network in the mammary gland will likely yield new biomarkers and risk factors for breast cancer, and may also lead to novel prophylactic or therapeutic strategies against breast cancer. PMID:23541951

  15. Rrp1b, a New Candidate Susceptibility Gene for Breast Cancer Progression and Metastasis

    PubMed Central

    Crawford, Nigel P. S; Qian, Xiaolan; Ziogas, Argyrios; Papageorge, Alex G; Boersma, Brenda J; Walker, Renard C; Lukes, Luanne; Rowe, William L; Zhang, Jinghui; Ambs, Stefan; Lowy, Douglas R; Anton-Culver, Hoda; Hunter, Kent W

    2007-01-01

    A novel candidate metastasis modifier, ribosomal RNA processing 1 homolog B (Rrp1b), was identified through two independent approaches. First, yeast two-hybrid, immunoprecipitation, and functional assays demonstrated a physical and functional interaction between Rrp1b and the previous identified metastasis modifier Sipa1. In parallel, using mouse and human metastasis gene expression data it was observed that extracellular matrix (ECM) genes are common components of metastasis predictive signatures, suggesting that ECM genes are either important markers or causal factors in metastasis. To investigate the relationship between ECM genes and poor prognosis in breast cancer, expression quantitative trait locus analysis of polyoma middle-T transgene-induced mammary tumor was performed. ECM gene expression was found to be consistently associated with Rrp1b expression. In vitro expression of Rrp1b significantly altered ECM gene expression, tumor growth, and dissemination in metastasis assays. Furthermore, a gene signature induced by ectopic expression of Rrp1b in tumor cells predicted survival in a human breast cancer gene expression dataset. Finally, constitutional polymorphism within RRP1B was found to be significantly associated with tumor progression in two independent breast cancer cohorts. These data suggest that RRP1B may be a novel susceptibility gene for breast cancer progression and metastasis. PMID:18081427

  16. Isoform-specific function of calpains in cell adhesion disruption: studies in postlactational mammary gland and breast cancer.

    PubMed

    Rodríguez-Fernández, Lucía; Ferrer-Vicens, Iván; García, Concha; Oltra, Sara S; Zaragozá, Rosa; Viña, Juan R; García-Trevijano, Elena R

    2016-09-15

    Cleavage of adhesion proteins is the first step for physiological clearance of undesired cells during postlactational regression of the mammary gland, but also for cell migration in pathological states such as breast cancer. The intracellular Ca(2+)-dependent proteases, calpains (CAPNs), are known to cleave adhesion proteins. The isoform-specific function of CAPN1 and CAPN2 was explored and compared in two models of cell adhesion disruption: mice mammary gland during weaning-induced involution and breast cancer cell lines according to tumor subtype classification. In both models, E-cadherin, β-catenin, p-120, and talin-1 were cleaved as assessed by western blot analysis. Both CAPNs were able to cleave adhesion proteins from lactating mammary gland in vitro Nevertheless, CAPN2 was the only isoform found to co-localize with E-cadherin in cell junctions at the peak of lactation. CAPN2/E-cadherin in vivo interaction, analyzed by proximity ligation assay, was dramatically increased during involution. Calpain inhibitor administration prevented the cytosolic accumulation of truncated E-cadherin cleaved by CAPN2. Conversely, in breast cancer cells, CAPN2 was restricted to the nuclear compartment. The isoform-specific expression of CAPNs and CAPN activity was dependent on the breast cancer subtype. However, CAPN1 and CAPN2 knockdown cells showed that cleavage of adhesion proteins and cell migration was mediated by CAPN1, independently of the breast cancer cell line used. Data presented here suggest that the subcellular distribution of CAPN1 and CAPN2 is a major issue in target-substrate recognition; therefore, it determines the isoform-specific role of CAPNs during disruption of cell adhesion in either a physiological or a pathological context. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  17. In utero exposure of rats to high-fat diets perturbs gene-expression profiles and cancer susceptibility of prepubertal mammary glands

    PubMed Central

    Ying, Jun; Gear, Robin; Bornschein, Robert L; Medvedovic, Mario; Ho, Shuk-Mei

    2015-01-01

    Human studies suggest that high-fat diets (HFD) increase the risk of breast cancer. The 7,12 dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis rat model is commonly used to evaluate the effects of lifestyle factors such as HFD on mammary-tumor risk. Past studies focused primarily on the effects of continuous maternal exposure on the risk of offspring at the end of puberty (PND50). We assessed the effects of prenatal HFD exposure on cancer susceptibility in prepubertal mammary glands and identified key gene networks associated with such disruption. During pregnancy, dams were fed AIN93G-based diets with isocaloric high olive oil, butterfat, or safflower oil. The control group received AIN-93G. Female offspring were treated with DMBA on PND21. However, a significant increase in tumor volume and a trend of shortened tumor latency were observed in rats with HFD exposure against the controls (p=0.048 and p=0.067 respectively). Large-volume tumors harbored carcinoma in situ. Transcriptome profiling identified 43 differentially expressed genes in the mammary glands of the HFBUTTER group as compared with control. Rapid hormone signaling was the most dysregulated pathway. The diet also induced aberrant expression of Dnmt3a, Mbd1, and Mbd3, consistent with potential epigenetic disruption. Collectively, these findings provide the first evidence supporting susceptibility of prepubertal mammary glands to DMBA-induced tumorigenesis that can be modulated by dietary fat that involves aberrant gene expression and likely epigenetic dysregulation. PMID:26895667

  18. Characterization of immortalized human mammary epithelial cell line HMEC 2.6.

    PubMed

    Joshi, Pooja S; Modur, Vishnu; Cheng, JiMing; Robinson, Kathy; Rao, Krishna

    2017-10-01

    Primary human mammary epithelial cells have a limited life span which makes it difficult to study them in vitro for most purposes. To overcome this problem, we have developed a cell line that was immortalized using defined genetic elements, and we have characterized this immortalized non-tumorigenic human mammary epithelial cell line to establish it as a potential model system. human mammary epithelial cells were obtained from a healthy individual undergoing reduction mammoplasty at SIU School of Medicine. The cells were transduced with CDK4R24C followed by transduction with human telomerase reverse transcriptase. Post all manipulation, the cells displayed a normal cell cycle phase distribution and were near diploid in nature, which was confirmed by flow cytometry and karyotyping. In vitro studies showed that the cells were anchorage dependent and were non-invasive in nature. The cell line expressed basal epithelial markers such as cytokeratin 7, CD10, and p63 and was negative for the expression of estrogen receptor and progesterone receptor. Upon G-band karyotyping, the cell line displayed the presence of a few cytogenic abnormalities, including trisomy 20 and trisomy 7, which are also commonly present in other immortalized mammary cell lines. Furthermore, the benign nature of these cells was confirmed by multiple in vitro and in vivo experiments. Therefore, we think that this cell line could serve as a good model to understand the molecular mechanisms involved in the development and progression of breast cancer and to also assess the effect of novel therapeutics on human mammary epithelial cells.

  19. Humanization of the mouse mammary gland by replacement of the luminal layer with genetically engineered preneoplastic human cells.

    PubMed

    Verbeke, Stephanie; Richard, Elodie; Monceau, Elodie; Schmidt, Xenia; Rousseau, Benoit; Velasco, Valerie; Bernard, David; Bonnefoi, Herve; MacGrogan, Gaetan; Iggo, Richard D

    2014-12-20

    The cell of origin for estrogen receptor α-positive (ERα+) breast cancer is probably a luminal stem cell in the terminal duct lobular units. To model these cells, we have used the murine myoepithelial layer in the mouse mammary ducts as a scaffold upon which to build a human luminal layer. To prevent squamous metaplasia, a common artifact in genetically-engineered breast cancer models, we sought to limit activation of the epidermal growth factor receptor (EGFR) during in vitro cell culture before grafting the cells. Human reduction mammoplasty cells were grown in vitro in WIT medium. Epidermal growth factor in the medium was replaced with amphiregulin and neuregulin to decrease activation of EGFR and increase activation of EGFR homologs 3 and 4 (ERBB3 and ERBB4). Lentiviral vectors were used to express oncogenic transgenes and fluorescent proteins. Human mammary epithelial cells were mixed with irradiated mouse fibroblasts and Matrigel, then injected through the nipple into the mammary ducts of immunodeficient mice. Engrafted cells were visualized by stereomicroscopy for fluorescent proteins and characterized by histology and immunohistochemistry. Growth of normal mammary epithelial cells in conditions favoring ERBB3/4 signaling prevented squamous metaplasia in vitro. Normal human cells were quickly lost after intraductal injection, but cells infected with lentiviruses expressing CCND1, MYC, TERT, BMI1 and a short-hairpin RNA targeting TP53 were able to engraft and progressively replace the luminal layer in the mouse mammary ducts, resulting in the formation of an extensive network of humanized ducts. Despite expressing multiple oncogenes, the human cells formed a morphologically normal luminal layer. Expression of a single additional oncogene, PIK3CA-H1047R, converted the cells into invasive cancer cells. The resulting tumors were ERα+, Ki67+ luminal B adenocarcinomas that were resistant to treatment with fulvestrant. Injection of preneoplastic human mammary

  20. Targeting of CD151 in Breast Cancer and in Breast Cancer Stem Cells

    DTIC Science & Technology

    2007-04-01

    motility in several cancer types (e.g.16). Removal of CD151, either by antisense, siRNA-knockdown or knockout, may affect PI3K, Akt , and Rac1...hemidesmosome intermediate filaments) promotes mammary tumor cell motility and invasion by activating the phosphoinositide 3-kinase (PI3K)/ AKT pathway or...mammary tumor progression31 (Fig. 4B, lower panels). Rac and Akt signaling pathways exert major influence on cell morphology, motility, and

  1. Targeted overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis and causes epithelial hyperplasia.

    PubMed

    Li, Xin; Gonzalez, Maria E; Toy, Katherine; Filzen, Tracey; Merajver, Sofia D; Kleer, Celina G

    2009-09-01

    The Polycomb group protein enhancer of zeste homolog 2 (EZH2), which has roles during development of numerous tissues, is a critical regulator of cell type identity. Overexpression of EZH2 has been detected in invasive breast carcinoma tissue samples and is observed in human breast tissue samples of morphologically normal lobules up to 12 years before the development of breast cancer. The function of EZH2 during preneoplastic progression in the mammary gland is unknown. To investigate the role of EZH2 in the mammary gland, we targeted the expression of EZH2 to mammary epithelial cells using the mouse mammary tumor virus long terminal repeat. EZH2 overexpression resulted in aberrant terminal end bud architecture. By the age of 4 months, 100% of female mouse mammary tumor virus-EZH2 virgin mice developed intraductal epithelial hyperplasia resembling the human counterpart accompanied by premature differentiation of ductal epithelial cells and up-regulation of the luminal marker GATA-3. In addition, remodeling of the mammary gland after parturition was impaired and EZH2 overexpression caused delayed involution. Mechanistically, we found that EZH2 physically interacts with beta-catenin, inducing beta-catenin nuclear accumulation in mammary epithelial cells and activating Wnt/beta-catenin signaling. The biological significance of these data to human hyperplasias is demonstrated by EZH2 up-regulation and colocalization with beta-catenin in human intraductal epithelial hyperplasia, the earliest histologically identifiable precursor of breast carcinoma.

  2. Targeted Overexpression of EZH2 in the Mammary Gland Disrupts Ductal Morphogenesis and Causes Epithelial Hyperplasia

    PubMed Central

    Li, Xin; Gonzalez, Maria E.; Toy, Katherine; Filzen, Tracey; Merajver, Sofia D.; Kleer, Celina G.

    2009-01-01

    The Polycomb group protein enhancer of zeste homolog 2 (EZH2), which has roles during development of numerous tissues, is a critical regulator of cell type identity. Overexpression of EZH2 has been detected in invasive breast carcinoma tissue samples and is observed in human breast tissue samples of morphologically normal lobules up to 12 years before the development of breast cancer. The function of EZH2 during preneoplastic progression in the mammary gland is unknown. To investigate the role of EZH2 in the mammary gland, we targeted the expression of EZH2 to mammary epithelial cells using the mouse mammary tumor virus long terminal repeat. EZH2 overexpression resulted in aberrant terminal end bud architecture. By the age of 4 months, 100% of female mouse mammary tumor virus-EZH2 virgin mice developed intraductal epithelial hyperplasia resembling the human counterpart accompanied by premature differentiation of ductal epithelial cells and up-regulation of the luminal marker GATA-3. In addition, remodeling of the mammary gland after parturition was impaired and EZH2 overexpression caused delayed involution. Mechanistically, we found that EZH2 physically interacts with β-catenin, inducing β-catenin nuclear accumulation in mammary epithelial cells and activating Wnt/β-catenin signaling. The biological significance of these data to human hyperplasias is demonstrated by EZH2 up-regulation and colocalization with β-catenin in human intraductal epithelial hyperplasia, the earliest histologically identifiable precursor of breast carcinoma. PMID:19661437

  3. Estrogen receptor alpha deletion enhances the metastatic phenotype of Ron overexpressing mammary tumors in mice

    PubMed Central

    2012-01-01

    Background The receptor tyrosine kinase family includes many transmembrane proteins with diverse physiological and pathophysiological functions. The involvement of tyrosine kinase signaling in promoting a more aggressive tumor phenotype within the context of chemotherapeutic evasion is gaining recognition. The Ron receptor is a tyrosine kinase receptor that has been implicated in the progression of breast cancer and evasion of tamoxifen therapy. Results Here, we report that Ron expression is correlated with in situ, estrogen receptor alpha (ERα)-positive tumors, and is higher in breast tumors following neoadjuvant tamoxifen therapy. We also demonstrate that the majority of mammary tumors isolated from transgenic mice with mammary specific-Ron overexpression (MMTV-Ron mice), exhibit appreciable ER expression. Moreover, genetic-ablation of ERα, in the context of Ron overexpression, leads to delayed mammary tumor initiation and growth, but also results in an increased metastasis. Conclusions Ron receptor overexpression is associated with ERα-positive human and murine breast tumors. In addition, loss of ERα on a Ron overexpressing background in mice leads to the development of breast tumors which grow slower but which exhibit more metastasis and suggests that targeting of ERα, as in the case of tamoxifen therapy, may reduce the growth of Ron overexpressing breast cancers but may cause these tumors to be more metastatic. PMID:22226043

  4. Collagen induced arthritis increases secondary metastasis in MMTV-PyV MT mouse model of mammary cancer.

    PubMed

    Roy, Lopamudra Das; Ghosh, Sriparna; Pathangey, Latha B; Tinder, Teresa L; Gruber, Helen E; Mukherjee, Pinku

    2011-08-22

    Several studies have demonstrated that sites of chronic inflammation are often associated with the establishment and growth of various malignancies. A common inflammatory condition in humans is autoimmune arthritis (AA). Although AA and cancer are different diseases, many of the underlying processes that contribute to the disorders of the joints and connective tissue that characterize AA also affect cancer progression and metastasis. Systemically, AA can lead to cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge being available, there has been minimal research linking breast cancer, arthritis, and metastasis associated with breast cancer. Notably both diseases are extremely prevalent in older post-menopausal women. To establish the novel link between arthritis induced inflammation and secondary metastasis associated with breast cancer, PyV MT mice that spontaneously develop mammary gland carcinoma were injected with Type II collagen (CII) to induce arthritis at 9 and 18 weeks of age for pre-metastatic and metastatic condition. The sites of secondary metastasis and the associated inflammatory microenvironment were evaluated. A significant increase in breast cancer-associated secondary metastasis to the lungs and bones was observed in the arthritic versus the non-arthritic PyV MT mice along with an increase in primary tumor burden. We report significant increases in the levels of interstitial cellular infiltrates and pro-inflammatory cytokines such as interleukin-17 (IL-17), interleukin-6 (IL-6), Pro- Matrix metallopeptidase 9 (Pro-MMP9), insulin like growth factor-II (GF-II) and macrophage colony stimulating factor (M-CSF) in the arthritic lung and bone milieu as well as in the circulation. These pro-inflammatory cytokines along with the inflammatory microenvironment may be the underlying factors facilitating tumor progression and metastasis in

  5. Radiation induces genomic instability and mammary ductal dysplasia in Atm heterozygous mice

    NASA Technical Reports Server (NTRS)

    Weil, M. M.; Kittrell, F. S.; Yu, Y.; McCarthy, M.; Zabriskie, R. C.; Ullrich, R. L.

    2001-01-01

    Ataxia-telangiectasia (AT) is a genetic syndrome resulting from the inheritance of two defective copies of the ATM gene that includes among its stigmata radiosensitivity and cancer susceptibility. Epidemiological studies have demonstrated that although women with a single defective copy of ATM (AT heterozygotes) appear clinically normal, they may never the less have an increased relative risk of developing breast cancer. Whether they are at increased risk for radiation-induced breast cancer from medical exposures to ionizing radiation is unknown. We have used a murine model of AT to investigate the effect of a single defective Atm allele, the murine homologue of ATM, on the susceptibility of mammary epithelial cells to radiation-induced transformation. Here we report that mammary epithelial cells from irradiated mice with one copy of Atm truncated in the PI-3 kinase domain were susceptible to radiation-induced genomic instability and generated a 10% incidence of dysplastic mammary ducts when transplanted into syngenic recipients, whereas cells from Atm(+/+) mice were stable and formed only normal ducts. Since radiation-induced ductal dysplasia is a precursor to mammary cancer, the results indicate that AT heterozygosity increases susceptibility to radiogenic breast cancer in this murine model system.

  6. Lgr6 labels a rare population of mammary gland progenitor cells that are able to originate luminal mammary tumours

    PubMed Central

    Messal, Hendrik A.; Andersson, Agneta B.; Ruiz, E. Josue; Gerling, Marco; Douagi, Iyadh; Spencer-Dene, Bradley; Musch, Alexandra; Mitter, Richard; Bhaw, Leena; Stone, Richard; Bornhorst, Dorothee; Sesay, Abdul K.; Jonkers, Jos; Stamp, Gordon; Malanchi, Ilaria; Toftgård, Rune; Behrens, Axel

    2018-01-01

    The mammary gland is composed of a complex cellular hierarchy with unusual postnatal plasticity. The identities of stem/progenitor cell populations, as well as tumour-initiating cells that give rise to breast cancer, are incompletely understood. Here we show that Lgr6 marks rare populations of cells in both basal and luminal mammary gland compartments in mice. Lineage tracing analysis showed that Lgr6+ cells are unipotent progenitors, which expand clonally during puberty but diminish in adulthood. In pregnancy or upon stimulation with ovarian hormones, adult Lgr6+ cells regained proliferative potency and their progeny formed alveoli over repeated pregnancies. Oncogenic mutations in Lgr6+ cells resulted in expansion of luminal cells, culminating in mammary gland tumours. Conversely, depletion of Lgr6+ cells in the MMTV-PyMT model of mammary tumourigenesis significantly impaired tumour growth. Thus, Lgr6 marks mammary gland progenitor cells that can initiate tumours, and cells of luminal breast tumours required for efficient tumour maintenance. PMID:27798604

  7. Fingerprinting Breast Cancer vs. Normal Mammary Cells by Mass Spectrometric Analysis of Volatiles

    NASA Astrophysics Data System (ADS)

    He, Jingjing; Sinues, Pablo Martinez-Lozano; Hollmén, Maija; Li, Xue; Detmar, Michael; Zenobi, Renato

    2014-06-01

    There is increasing interest in the development of noninvasive diagnostic methods for early cancer detection, to improve the survival rate and quality of life of cancer patients. Identification of volatile metabolic compounds may provide an approach for noninvasive early diagnosis of malignant diseases. Here we analyzed the volatile metabolic signature of human breast cancer cell lines versus normal human mammary cells. Volatile compounds in the headspace of conditioned culture medium were directly fingerprinted by secondary electrospray ionization-mass spectrometry. The mass spectra were subsequently treated statistically to identify discriminating features between normal vs. cancerous cell types. We were able to classify different samples by using feature selection followed by principal component analysis (PCA). Additionally, high-resolution mass spectrometry allowed us to propose their chemical structures for some of the most discriminating molecules. We conclude that cancerous cells can release a characteristic odor whose constituents may be used as disease markers.

  8. Mammary gland neoplasia in long-term rodent studies.

    PubMed Central

    Russo, I H; Russo, J

    1996-01-01

    Breast cancer, the most frequent spontaneous malignancy diagnosed in women in the western world, is continuously increasing in incidence in industrialized nations. Although breast cancer develops in women as the result of a combination of external and endogenous factors such as exposure to ionizing radiation, diet, socioeconomic status, and endocrinologic, familial, or genetic factors, no specific etiologic agent(s) or the mechanisms responsible of the disease has been identified as yet. Thus, experimental models that exhibit the same complex interactions are needed for testing various mechanisms and for assessing the carcinogenic potential of given chemicals. Rodent mammary carcinomas represent such a model to a great extent because, in these species, mammary cancer is a multistep complex process that can be induced by either chemicals, radiation, viruses, or genetic factors. Long-term studies in rodent models have been particularly useful for dissecting the initiation, promotion, and progression steps of carcinogenesis. The susceptibility of the rodent mammary gland to develop neoplasms has made this organ a unique target for testing the carcinogenic potential of specific genotoxic chemicals and environmental agents. Mammary tumors induced by indirect- or direct-acting carcinogens such as 7, 12-dimethlbenz(a)anthracene or N-methyl-N-nitrosourea are, in general, hormone dependent adenocarcinomas whose incidence, number of tumors per animal, tumor latency, and tumor type are influenced by the age, reproductive history, and endocarinologic milieu of the host at the time of carcinogen exposure. Rodent models are informative in the absence of human data. They have provided valuable information on the dose and route of administration to be used and optimal host conditions for eliciting maximal tumorigenic response. Studies of the influence of normal gland development on the pathogenesis of chemically induced mammary carcinomas have clarified the role of differentiation

  9. Pax-5 is a potent regulator of E-cadherin and breast cancer malignant processes

    PubMed Central

    Benzina, Sami; Beauregard, Annie-Pier; Guerrette, Roxann; Jean, Stéphanie; Faye, Mame Daro; Laflamme, Mark; Maïcas, Emmanuel; Crapoulet, Nicolas; Ouellette, Rodney J.; Robichaud, Gilles A.

    2017-01-01

    Pax-5, an essential transcription factor for B lymphocyte development, has been linked with the development and progression of lymphoid cancers and carcinoma. In contrast to B-cell cancer lesions, the specific expression signatures and roles of Pax-5 in breast cancer progression are relatively unknown. In the present study, we set out to profile Pax-5 expression in mammary tissues and elucidate the cellular and molecular roles of Pax-5 in breast cancer processes. Using immunohistology on mammary tissue arrays, Pax-5 was detected in a total of 298/306 (97.6%) samples tested. Interestingly, our studies reveal that Pax-5 inhibits aggressive features and confers anti-proliferative effects in breast carcinoma cells in contrast to its oncogenic properties in B cell cancers. More precisely, Pax-5 suppressed breast cancer cell migration, invasion and tumor spheroid formation while concomitantly promoting cell adhesion properties. We also observed that Pax-5 inhibited and reversed breast cancer epithelial to mesenchymal phenotypic transitioning. Mechanistically, we found that the Pax-5 transcription factor binds and induces gene expression of E-cadherin, a pivotal regulator of epithelialisation. Globally, we demonstrate that Pax-5 is predominant expressed factor in mammary epithelial cells. We also present an important role for Pax-5 in the phenotypic transitioning processes and aggressive features associated with breast cancer malignancy and disease progression. PMID:28076843

  10. Maternal intake of high n-6 polyunsaturated fatty acid diet during pregnancy causes transgenerational increase in mammary cancer risk in mice.

    PubMed

    Nguyen, Nguyen M; de Oliveira Andrade, Fabia; Jin, Lu; Zhang, Xiyuan; Macon, Madisa; Cruz, M Idalia; Benitez, Carlos; Wehrenberg, Bryan; Yin, Chao; Wang, Xiao; Xuan, Jianhua; de Assis, Sonia; Hilakivi-Clarke, Leena

    2017-07-03

    Maternal and paternal high-fat (HF) diet intake before and/or during pregnancy increases mammary cancer risk in several preclinical models. We studied if maternal consumption of a HF diet that began at a time when the fetal primordial germ cells travel to the genital ridge and start differentiating into germ cells would result in a transgenerational inheritance of increased mammary cancer risk. Pregnant C57BL/6NTac mouse dams were fed either a control AIN93G or isocaloric HF diet composed of corn oil high in n-6 polyunsaturated fatty acids between gestational days 10 and 20. Offspring in subsequent F1-F3 generations were fed only the control diet. Mammary tumor incidence induced by 7,12-dimethylbenz[a]anthracene was significantly higher in F1 (p < 0.016) and F3 generation offspring of HF diet-fed dams (p < 0.040) than in the control offspring. Further, tumor latency was significantly shorter (p < 0.028) and burden higher (p < 0.027) in F1 generation HF offspring, and similar trends were seen in F3 generation HF offspring. RNA sequencing was done on normal mammary glands to identify signaling differences that may predispose to increased breast cancer risk by maternal HF intake. Analysis revealed 1587 and 4423 differentially expressed genes between HF and control offspring in F1 and F3 generations, respectively, of which 48 genes were similarly altered in both generations. Quantitative real-time polymerase chain reaction analysis validated 13 chosen up- and downregulated genes in F3 HF offspring, but only downregulated genes in F1 HF offspring. Ingenuity Pathway Analysis identified upregulation of Notch signaling as a key alteration in HF offspring. Further, knowledge-fused differential dependency network analysis identified ten node genes that in the HF offspring were uniquely connected to genes linked to increased cancer risk (ANKEF1, IGFBP6, SEMA5B), increased resistance to cancer treatments (SLC26A3), poor prognosis (ID4, JAM3, TBX2), and impaired

  11. Morinda citrifolia (Noni) Juice Augments Mammary Gland Differentiation and Reduces Mammary Tumor Growth in Mice Expressing the Unactivated c-erbB2 Transgene.

    PubMed

    Clafshenkel, William P; King, Tracy L; Kotlarczyk, Mary P; Cline, J Mark; Foster, Warren G; Davis, Vicki L; Witt-Enderby, Paula A

    2012-01-01

    Morinda citrifolia (noni) is reported to have many beneficial properties, including on immune, inflammatory, quality of life, and cancer endpoints, but little is known about its ability to prevent or treat breast cancer. To test its anticancer potential, the effects of Tahitian Noni Juice (TNJ) on mammary carcinogenesis were examined in MMTV-neu transgenic mice. Mammary tumor latency, incidence, multiplicity, and metastatic incidence were unaffected by TNJ treatment, which suggests that it would not increase or decrease breast cancer risk in women taking TNJ for its other benefits. However, noni may be useful to enhance treatment responses in women with existing HER2/neu breast cancer since TNJ resulted in significant reductions in tumor weight and volume and in longer tumor doubling times in mice. Remarkably, its ability to inhibit the growth of this aggressive form of cancer occurred with the mouse equivalent of a recommended dose for humans (<3 oz/day). A 30-day treatment with TNJ also induced significant changes in mammary secondary ductule branching and lobuloalveolar development, serum progesterone levels, and estrous cycling. Additional studies investigating TNJ-induced tumor growth suppression and modified reproductive responses are needed to characterize its potential as a CAM therapy for women with and without HER2(+) breast cancer.

  12. Morinda citrifolia (Noni) Juice Augments Mammary Gland Differentiation and Reduces Mammary Tumor Growth in Mice Expressing the Unactivated c-erbB2 Transgene

    PubMed Central

    Clafshenkel, William P.; King, Tracy L.; Kotlarczyk, Mary P.; Cline, J. Mark; Foster, Warren G.; Davis, Vicki L.; Witt-Enderby, Paula A.

    2012-01-01

    Morinda citrifolia (noni) is reported to have many beneficial properties, including on immune, inflammatory, quality of life, and cancer endpoints, but little is known about its ability to prevent or treat breast cancer. To test its anticancer potential, the effects of Tahitian Noni Juice (TNJ) on mammary carcinogenesis were examined in MMTV-neu transgenic mice. Mammary tumor latency, incidence, multiplicity, and metastatic incidence were unaffected by TNJ treatment, which suggests that it would not increase or decrease breast cancer risk in women taking TNJ for its other benefits. However, noni may be useful to enhance treatment responses in women with existing HER2/neu breast cancer since TNJ resulted in significant reductions in tumor weight and volume and in longer tumor doubling times in mice. Remarkably, its ability to inhibit the growth of this aggressive form of cancer occurred with the mouse equivalent of a recommended dose for humans (<3 oz/day). A 30-day treatment with TNJ also induced significant changes in mammary secondary ductule branching and lobuloalveolar development, serum progesterone levels, and estrous cycling. Additional studies investigating TNJ-induced tumor growth suppression and modified reproductive responses are needed to characterize its potential as a CAM therapy for women with and without HER2+ breast cancer. PMID:22619689

  13. [Pathomorphosis of the mammary gland tissue during radical interventions using high-frequency electrosurgical welding].

    PubMed

    Bondar', G V; Sedakov, I E; Kobets, R A

    2011-04-01

    High-frequency electric welding of a live soft tissues (HFEW LST) is applied widely in all surgical specialties. Its application in surgery of mammary gland cancer constitutes a perspective trend. The impact of HFEW LST and monopolar electrocoagulation on tissues while performing radical operations in patients-women for mammary gland cancer was studied up. Basing on analysis of pathomorphological investigations data, the possibility and perspective of the welding technologies application, while performing radical operations on mammary glands, were established.

  14. Alcohol consumption promotes mammary tumor growth and insulin sensitivity

    PubMed Central

    Hong, Jina; Holcomb, Valerie B.; Tekle, Samrawit A.; Fan, Betty; Núñez, Nomelí P.

    2010-01-01

    Epidemiological data show that in women, alcohol has a beneficial effect by increasing insulin sensitivity but also a deleterious effect by increasing breast cancer risk. These effects have not been shown concurrently in an animal model of breast cancer. Our objective is to identify a mouse model of breast cancer whereby alcohol increases insulin sensitivity and promotes mammary tumorigenesis. Our results from the glucose tolerance test and the homeostasis model assessment show that alcohol consumption improved insulin sensitivity. However, alcohol-consuming mice developed larger mammary tumors and developed them earlier than water-consuming mice. In vitro results showed that alcohol exposure increased the invasiveness of breast cancer cells in a dose-dependent manner. Thus, this animal model, an in vitro model of breast cancer, may be used to elucidate the mechanism(s) by which alcohol affects breast cancer. PMID:20202743

  15. Effect of Withania somnifera Root Extract on Spontaneous Estrogen Receptor-Negative Mammary Cancer in MMTV/Neu Mice

    PubMed Central

    KHAZAL, KAMEL F.; HILL, DONALD L.; GRUBBS, CLINTON J.

    2015-01-01

    The cancer-preventive activity of an extract of Withania somnifera (WS) roots was examined in female transgenic (MMTV/Neu) mice that received a diet containing the extract (750 mg/kg of diet) for 10 months. Mice in the treated group (N=35) had an average of 1.66 mammary carcinomas, and mice in the control group (N=33) had 2.48, a reduction of 33%. The average weights of the carcinomas were 2.36 g for mice in the treated group and 2.63 g for the controls, a difference of 10%. Labeling indices for Ki67 and proliferating cell nuclear antigen marker in mammary carcinomas of the treated group were 35% and 30% lower, respectively, than those of the corresponding control group. Expression of the chemokine was reduced by 50%. These results indicate that the root extract reduced the number of mammary carcinomas that developed and reduced the rate of cell division in the carcinomas. PMID:25368231

  16. FOXA1 is an essential determinant of ERα expression and mammary ductal morphogenesis

    PubMed Central

    Bernardo, Gina M.; Lozada, Kristen L.; Miedler, John D.; Harburg, Gwyndolen; Hewitt, Sylvia C.; Mosley, Jonathan D.; Godwin, Andrew K.; Korach, Kenneth S.; Visvader, Jane E.; Kaestner, Klaus H.; Abdul-Karim, Fadi W.; Montano, Monica M.; Keri, Ruth A.

    2010-01-01

    FOXA1, estrogen receptor α (ERα) and GATA3 independently predict favorable outcome in breast cancer patients, and their expression correlates with a differentiated, luminal tumor subtype. As transcription factors, each functions in the morphogenesis of various organs, with ERα and GATA3 being established regulators of mammary gland development. Interdependency between these three factors in breast cancer and normal mammary development has been suggested, but the specific role for FOXA1 is not known. Herein, we report that Foxa1 deficiency causes a defect in hormone-induced mammary ductal invasion associated with a loss of terminal end bud formation and ERα expression. By contrast, Foxa1 null glands maintain GATA3 expression. Unlike ERα and GATA3 deficiency, Foxa1 null glands form milk-producing alveoli, indicating that the defect is restricted to expansion of the ductal epithelium, further emphasizing the novel role for FOXA1 in mammary morphogenesis. Using breast cancer cell lines, we also demonstrate that FOXA1 regulates ERα expression, but not GATA3. These data reveal that FOXA1 is necessary for hormonal responsiveness in the developing mammary gland and ERα-positive breast cancers, at least in part, through its control of ERα expression. PMID:20501593

  17. Canonical Wnt Signaling as a Specific Mark of Normal and Tumorigenic Mammary Stem Cells

    DTIC Science & Technology

    2011-02-01

    aggressive mammary tumors. 15. SUBJECT TERMS Breast cancer stem cells, Wnt signaling, canonical Wnt signaling, B-catenin, normal stem cells, adult stem...Wnt pathway is associated with abnormal mouse mammary development, tumorigenesis, and human breast cancer. In addition, increasing evidence suggests...activation occurs in human breast cancer and is required for proliferation of various other stem cell compartments, addressing how Wnt signaling promotes

  18. Relationship between histology, development and tumorigenesis of mammary gland in female rat

    PubMed Central

    LÍŠKA, Ján; BRTKO, Július; DUBOVICKÝ, Michal; MACEJOVÁ, Dana; KISSOVÁ, Viktória; POLÁK, Štefan; UJHÁZY, Eduard

    2015-01-01

    The mammary gland is a dynamic organ that undergoes structural and functional changes associated with growth, reproduction, and post-menopausal regression. The postnatal transformations of the epithelium and stromal cells of the mammary gland may contribute to its susceptibility to carcinogenesis. The increased cancer incidence in mammary glands of humans and similarly of rodents in association with their development is believed to be partly explained by proliferative activity together with lesser degree of differentiation, but it is not completely understood how the virgin gland retains its higher susceptibility to carcinogenesis. During its developmental cycle, the mammary gland displays many of the properties associated with breast cancer. An early first full-term pregnancy may have a protective effect. Rodent models are useful for investigating potential breast carcinogens. The purpose of this review is to help recognizing histological appearance of the epithelium and the stroma of the normal mammary gland in rats, and throughout its development in relation to tumorigenic potential. PMID:26424555

  19. Synergistic effect of sequential administration of mitoguazone (MGBG) and gemcitabine in treating tissue cultured human breast cancer cells and mammary rat tumors.

    PubMed

    Ishmael, D Richard; Chen, Wei R; Nordquist, John A; Liu, Hong; Nordquist, Robert E

    2003-04-01

    Modulation of cancer chemotherapeutic drugs has been attempted to increase efficacy and overcome resistance to the chemotherapeutic agent. Studies have shown schedule-dependent interactions in combined use of chemotherapeutic drugs. Mitoguazone (MGBG), an old drug with possible modulating activity, was used in combination with gemcitabine, a relatively new cancer drug, in treating tissue cultured human breast cancer cells and mammary rat tumors. Tissue cultured BOT-2 cancer cells were first treated with varying concentrations of gemcitabine and MGBG, independently. Combinations of the two drugs were then used with different scheduled administrations. Marked synergistic activity was found between gemcitabine and MGBG when the MGBG was given first, followed by gemcitabine 24 hours later. A non-toxic dose of MGBG enhanced the toxicity of gemcitabine by eight orders of magnitude using MTT assays in the tissue cultured human breast cancer cell study. The sequential administration of MGBG and gemcitabine also increased the survival rate of rats bearing mammary tumors in our pilot animal study.

  20. Low-Dose Alkylphenol Exposure Promotes Mammary Epithelium Alterations and Transgenerational Developmental Defects, But Does Not Enhance Tumorigenic Behavior of Breast Cancer Cells

    PubMed Central

    Chamard-Jovenin, Clémence; Thiebaut, Charlène; Chesnel, Amand; Bresso, Emmanuel; Morel, Chloé; Smail-Tabbone, Malika; Devignes, Marie-Dominique; Boukhobza, Taha; Dumond, Hélène

    2017-01-01

    Fetal and neonatal exposure to long-chain alkylphenols has been suspected to promote breast developmental disorders and consequently to increase breast cancer risk. However, disease predisposition from developmental exposures remains unclear. In this work, human MCF-10A mammary epithelial cells were exposed in vitro to a low dose of a realistic (4-nonylphenol + 4-tert-octylphenol) mixture. Transcriptome and cell-phenotype analyses combined to functional and signaling network modeling indicated that long-chain alkylphenols triggered enhanced proliferation, migration ability, and apoptosis resistance and shed light on the underlying molecular mechanisms which involved the human estrogen receptor alpha 36 (ERα36) variant. A male mouse-inherited transgenerational model of exposure to three environmentally relevant doses of the alkylphenol mix was set up in order to determine whether and how it would impact on mammary gland architecture. Mammary glands from F3 progeny obtained after intrabuccal chronic exposure of C57BL/6J P0 pregnant mice followed by F1–F3 male inheritance displayed an altered histology which correlated with the phenotypes observed in vitro in human mammary epithelial cells. Since cellular phenotypes are similar in vivo and in vitro and involve the unique ERα36 human variant, such consequences of alkylphenol exposure could be extrapolated from mouse model to human. However, transient alkylphenol treatments combined to ERα36 overexpression in mammary epithelial cells were not sufficient to trigger tumorigenesis in xenografted Nude mice. Therefore, it remains to be determined if low-dose alkylphenol transgenerational exposure and subsequent abnormal mammary gland development could account for an increased breast cancer susceptibility. PMID:29109696

  1. Development of novel murine mammary imaging windows to examine wound healing effects on leukocyte trafficking in mammary tumors with intravital imaging

    PubMed Central

    Sobolik, Tammy; Su, Ying-Jun; Ashby, Will; Schaffer, David K.; Wells, Sam; Wikswo, John P.; Zijlstra, Andries; Richmond, Ann

    2016-01-01

    ABSTRACT We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment. PMID:28243517

  2. Development of novel murine mammary imaging windows to examine wound healing effects on leukocyte trafficking in mammary tumors with intravital imaging.

    PubMed

    Sobolik, Tammy; Su, Ying-Jun; Ashby, Will; Schaffer, David K; Wells, Sam; Wikswo, John P; Zijlstra, Andries; Richmond, Ann

    2016-01-01

    We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment.

  3. Chemoprevention of Breast Cancer by Transdermal Delivery of α-Santalol through Breast Skin and Mammary Papilla (Nipple).

    PubMed

    Dave, Kaushalkumar; Alsharif, Fahd M; Islam, Saiful; Dwivedi, Chandradhar; Perumal, Omathanu

    2017-09-01

    Almost all breast cancers originate from epithelial cells lining the milk ducts in the breast. To this end, the study investigated the feasibility of localized transdermal delivery of α-santalol, a natural chemopreventive agent to the breast. Different α-santalol formulations (cream, solution and microemulsion) were developed and the in vitro permeability was studied using excised animal (porcine and rat) and human breast skin/mammary papilla (nipple). The in vivo biodistribution and efficacy studies were conducted in female rats. A chemical carcinogenesis model of breast cancer was used for the efficacy studies. Phospholipid based α-santalol microemulsion showed the highest penetration through the nipple and breast skin. Delivery of α-santalol through the entire breast (breast skin and nipple) in vivo in rats resulted in significantly higher concentration in the mammary gland compared to transdermal delivery through the breast skin or nipple. There was no measurable α-santalol concentration in the blood. Transdermal delivery of α-santalol reduced the tumor incidence and tumor multiplicity. Furthermore, the tumor size was significantly reduced with α-santalol treatment. The findings from this study demonstrate the feasibility of localized transdermal delivery of α-santalol for chemoprevention of breast cancer.

  4. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis.

    PubMed

    Visvader, Jane E

    2009-11-15

    The epithelium of the mammary gland exists in a highly dynamic state, undergoing dramatic morphogenetic changes during puberty, pregnancy, lactation, and regression. The recent identification of stem and progenitor populations in mouse and human mammary tissue has provided evidence that the mammary epithelium is organized in a hierarchical manner. Characterization of these normal epithelial subtypes is an important step toward understanding which cells are predisposed to oncogenesis. This review summarizes progress in the field toward defining constituent cells and key molecular regulators of the mammary epithelial hierarchy. Potential relationships between normal epithelial populations and breast tumor subtypes are discussed, with implications for understanding the cellular etiology underpinning breast tumor heterogeneity.

  5. Withania somnifera Root Extract Inhibits Mammary Cancer Metastasis and Epithelial to Mesenchymal Transition

    PubMed Central

    Yang, Zhen; Garcia, Anapatricia; Xu, Songli; Powell, Doris R.; Vertino, Paula M.; Singh, Shivendra; Marcus, Adam I.

    2013-01-01

    Though clinicians can predict which patients are at risk for developing metastases, traditional therapies often prove ineffective and metastatic disease is the primary cause of cancer patient death; therefore, there is a need to develop anti-metastatic therapies that can be administered over long durations to specifically inhibit the motility of cancer cells. Withania somnifera root extracts (WRE) have anti-proliferative activity and the active component, Withaferin A, inhibits the pro-metastatic protein, vimentin. Vimentin is an intermediate filament protein and is part of the epithelial to mesenchymal transition (EMT) program to promote metastasis. Here, we determined whether WRE standardized to Withaferin A (sWRE) possesses anti-metastatic activity and whether it inhibits cancer motility via inhibition of vimentin and the EMT program. Several formulations of sWRE were created to enrich for Withaferin A and a stock solution of sWRE in EtOH could recover over 90% of the Withaferin A found in the original extract powder. This sWRE formulation inhibited breast cancer cell motility and invasion at concentrations less than 1µM while having negligible cytotoxicity at this dose. sWRE treatment disrupted vimentin morphology in cell lines, confirming its vimentin inhibitory activity. To determine if sWRE inhibited EMT, TGF-β was used to induce EMT in MCF10A human mammary epithelial cells. In this case, sWRE prevented EMT induction and inhibited 3-D spheroid invasion. These studies were taken into a human xenograft and mouse mammary carcinoma model. In both models, sWRE and Withaferin A showed dose-dependent inhibition of tumor growth and metastatic lung nodule formation with minimal systemic toxicity. Taken together, these data support the hypothesis that low concentrations of sWRE inhibit cancer metastasis potentially through EMT inhibition. Moreover, these doses of sWRE have nearly no toxicity in normal mouse organs, suggesting the potential for clinical use of orally

  6. Identification of genetic loci that control mammary tumor susceptibility through the host microenvironment

    DOE PAGES

    Zhang, Pengju; Lo, Alvin; Huang, Yurong; ...

    2015-03-09

    The interplay between host genetics, tumor microenvironment and environmental exposure in cancer susceptibility remains poorly understood. Here we assessed the genetic control of stromal mediation of mammary tumor susceptibility to low dose ionizing radiation (LDIR) using backcrossed F1 into BALB/c (F1Bx) between cancer susceptible (BALB/c) and resistant (SPRET/EiJ) mouse strains. Tumor formation was evaluated after transplantation of non-irradiated Trp53-/- BALB/c mammary gland fragments into cleared fat pads of F1Bx hosts. Genome-wide linkage analysis revealed 2 genetic loci that constitute the baseline susceptibility via host microenvironment. However, once challenged with LDIR, we discovered 13 additional loci that were enriched for genesmore » involved in cytokines, including TGFβ1 signaling. Surprisingly, LDIR-treated F1Bx cohort significantly reduced incidence of mammary tumors from Trp53-/- fragments as well as prolonged tumor latency, compared to sham-treated controls. We demonstrated further that plasma levels of specific cytokines were significantly correlated with tumor latency. Using an ex vivo 3-D assay, we confirmed TGFβ1 as a strong candidate for reduced mammary invasion in SPRET/EiJ, which could explain resistance of this strain to mammary cancer risk following LDIR. Our results open possible new avenues to understand mechanisms of genes operating via the stroma that affect cancer risk from external environmental exposures.« less

  7. Identification of genetic loci that control mammary tumor susceptibility through the host microenvironment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengju; Lo, Alvin; Huang, Yurong

    The interplay between host genetics, tumor microenvironment and environmental exposure in cancer susceptibility remains poorly understood. Here we assessed the genetic control of stromal mediation of mammary tumor susceptibility to low dose ionizing radiation (LDIR) using backcrossed F1 into BALB/c (F1Bx) between cancer susceptible (BALB/c) and resistant (SPRET/EiJ) mouse strains. Tumor formation was evaluated after transplantation of non-irradiated Trp53-/- BALB/c mammary gland fragments into cleared fat pads of F1Bx hosts. Genome-wide linkage analysis revealed 2 genetic loci that constitute the baseline susceptibility via host microenvironment. However, once challenged with LDIR, we discovered 13 additional loci that were enriched for genesmore » involved in cytokines, including TGFβ1 signaling. Surprisingly, LDIR-treated F1Bx cohort significantly reduced incidence of mammary tumors from Trp53-/- fragments as well as prolonged tumor latency, compared to sham-treated controls. We demonstrated further that plasma levels of specific cytokines were significantly correlated with tumor latency. Using an ex vivo 3-D assay, we confirmed TGFβ1 as a strong candidate for reduced mammary invasion in SPRET/EiJ, which could explain resistance of this strain to mammary cancer risk following LDIR. Our results open possible new avenues to understand mechanisms of genes operating via the stroma that affect cancer risk from external environmental exposures.« less

  8. Bisphenol A (BPA) Exposure In Utero Leads to Immunoregulatory Cytokine Dysregulation in the Mouse Mammary Gland: A Potential Mechanism Programming Breast Cancer Risk.

    PubMed

    Fischer, Catha; Mamillapalli, Ramanaiah; Goetz, Laura G; Jorgenson, Elisa; Ilagan, Ysabel; Taylor, Hugh S

    2016-08-01

    Bisphenol-A (BPA) is a ubiquitous estrogen-like endocrine disrupting compound (EDC). BPA exposure in utero has been linked to breast cancer and abnormal mammary gland development in mice. The recent rise in incidence of human breast cancer and decreased age of first detection suggests a possible environmental etiology. We hypothesized that developmental programming of carcinogenesis may involve an aberrant immune response. Both innate and adaptive immunity play a role in tumor suppression through cytolytic CD8, NK, and Th1 T-cells. We hypothesized that BPA exposure in utero would lead to dysregulation of both innate and adaptive immunity in the mammary gland. CD1 mice were exposed to BPA in utero during gestation (days 9-21) via osmotic minipump. At 6 weeks, the female offspring were ovariectomized and estradiol was given at 8 weeks. RNA and protein were extracted from the posterior mammary glands, and the mRNA and protein levels were measured by PCR array, qRT-PCR, and western blot. In mouse mammary tissue, BPA exposure in utero significantly decreased the expression of members of the chemokine CXC family (Cxcl2, Cxcl4, Cxcl14, and Ccl20), interleukin 1 (Il1) gene family (Il1β and Il1rn), interleukin 2 gene family (Il7 receptor), and interferon gene family (interferon regulatory factor 9 (Irf9), as well as immune response gene 1 (Irg1). Additionally, BPA exposure in utero decreased Esr1 receptor gene expression and increased Esr2 receptor gene expression. In utero exposure of BPA resulted in significant changes to inflammatory modulators within mammary tissue. We suggest that dysregulation of inflammatory cytokines, both pro-inflammatory and anti-inflammatory, leads to a microenvironment that may promote disordered cell growth through inhibition of the immune response that targets cancer cells.

  9. Collagen induced arthritis increases secondary metastasis in MMTV-PyV MT mouse model of mammary cancer

    PubMed Central

    2011-01-01

    Background Several studies have demonstrated that sites of chronic inflammation are often associated with the establishment and growth of various malignancies. A common inflammatory condition in humans is autoimmune arthritis (AA). Although AA and cancer are different diseases, many of the underlying processes that contribute to the disorders of the joints and connective tissue that characterize AA also affect cancer progression and metastasis. Systemically, AA can lead to cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge being available, there has been minimal research linking breast cancer, arthritis, and metastasis associated with breast cancer. Notably both diseases are extremely prevalent in older post-menopausal women. Methods To establish the novel link between arthritis induced inflammation and secondary metastasis associated with breast cancer, PyV MT mice that spontaneously develop mammary gland carcinoma were injected with Type II collagen (CII) to induce arthritis at 9 and 18 weeks of age for pre-metastatic and metastatic condition. The sites of secondary metastasis and the associated inflammatory microenvironment were evaluated. Results A significant increase in breast cancer-associated secondary metastasis to the lungs and bones was observed in the arthritic versus the non-arthritic PyV MT mice along with an increase in primary tumor burden. We report significant increases in the levels of interstitial cellular infiltrates and pro-inflammatory cytokines such as interleukin-17 (IL-17), interleukin-6 (IL-6), Pro- Matrix metallopeptidase 9 (Pro-MMP9), insulin like growth factor-II (GF-II) and macrophage colony stimulating factor (M-CSF) in the arthritic lung and bone milieu as well as in the circulation. These pro-inflammatory cytokines along with the inflammatory microenvironment may be the underlying factors facilitating tumor

  10. The RhoGEF Net1 Is Required for Normal Mammary Gland Development

    PubMed Central

    Zuo, Yan; Berdeaux, Rebecca

    2014-01-01

    Neuroepithelial transforming gene 1 (Net1) is a RhoA subfamily-specific guanine nucleotide exchange factor that is overexpressed in human breast cancer and is required for breast cancer cell migration and invasion. However, the role of Net1 in normal mammary gland development or function has never been assessed. To understand the role of Net1 in the mammary gland, we have created a conditional Net1 knockout mouse model. Whole-body deletion of Net1 results in delayed mammary gland development during puberty characterized by slowed of ductal extension and reduced ductal branching. Epithelial cells within the developing ducts show reduced proliferation that is accompanied by diminished estrogen receptor-α expression and activity. Net1-deficient mammary glands also exhibit reduced phosphorylation of regulatory subunits of myosin light chain and myosin light-chain phosphatase, indicating that RhoA-dependent actomyosin contraction is compromised. Net1 deficiency also leads to disorganization of myoepithelial and ductal epithelial cells and increased periductal collagen deposition. Mammary epithelial cell transplantation experiments indicate that reduced ductal branching and disorganization are cell autonomous. These data identify for the first time a role for NET1 in vivo and indicate that NET1 expression is essential for the proliferation and differentiation of mammary epithelial cells in the developing mammary gland. PMID:25321414

  11. Distinct Luminal-Type Mammary Carcinomas Arise from Orthotopic Trp53-Null Mammary Transplantation of Juvenile versus Adult Mice

    DOE PAGES

    Nguyen, David H.; Ouyang, Haoxu; Mao, Jian-Hua; ...

    2014-12-01

    Age and physiologic status, such as menopause, are risk factors for breast cancer. Less clear is what factors influence the diversity of breast cancer. In this study, we investigated the effect of host age on the distribution of tumor subtypes in mouse mammary chimera consisting of wild-type hosts and Trp53 nullizygous epithelium, which undergoes a high rate of neoplastic transformation. Wild-type mammary glands cleared of endogenous epithelium at 3 weeks of age were subsequently transplanted during puberty (5 weeks) or at maturation (10 weeks) with syngeneic Trp53-null mammary tissue fragments and monitored for one year. Tumors arose sooner from adultmore » hosts (AH) compared with juvenile hosts (JH). However, compared with AH tumors, JH tumors grew several times faster, were more perfused, exhibited a two-fold higher mitotic index, and were more highly positive for insulin-like growth factor receptor phosphorylation. Most tumors in each setting were estrogen receptor (ER)-positive (80% JH vs. 70% AH), but JH tumors were significantly more ER-immunoreactive (P = 0.0001) than AH tumors. A differential expression signature (JvA) of juvenile versus adult tumors revealed a luminal transcriptional program. Centroids of the human homologs of JvA genes showed that JH tumors were more like luminal A tumors and AH tumors were more like luminal B tumors. Hierarchical clustering with the JvA human ortholog gene list segregated luminal A and luminal B breast cancers across datasets. Lastly, these data support the notion that age-associated host physiology greatly influences the intrinsic subtype of breast cancer.« less

  12. Distinct Luminal-Type Mammary Carcinomas Arise from Orthotopic Trp53-Null Mammary Transplantation of Juvenile versus Adult Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, David H.; Ouyang, Haoxu; Mao, Jian-Hua

    Age and physiologic status, such as menopause, are risk factors for breast cancer. Less clear is what factors influence the diversity of breast cancer. In this study, we investigated the effect of host age on the distribution of tumor subtypes in mouse mammary chimera consisting of wild-type hosts and Trp53 nullizygous epithelium, which undergoes a high rate of neoplastic transformation. Wild-type mammary glands cleared of endogenous epithelium at 3 weeks of age were subsequently transplanted during puberty (5 weeks) or at maturation (10 weeks) with syngeneic Trp53-null mammary tissue fragments and monitored for one year. Tumors arose sooner from adultmore » hosts (AH) compared with juvenile hosts (JH). However, compared with AH tumors, JH tumors grew several times faster, were more perfused, exhibited a two-fold higher mitotic index, and were more highly positive for insulin-like growth factor receptor phosphorylation. Most tumors in each setting were estrogen receptor (ER)-positive (80% JH vs. 70% AH), but JH tumors were significantly more ER-immunoreactive (P = 0.0001) than AH tumors. A differential expression signature (JvA) of juvenile versus adult tumors revealed a luminal transcriptional program. Centroids of the human homologs of JvA genes showed that JH tumors were more like luminal A tumors and AH tumors were more like luminal B tumors. Hierarchical clustering with the JvA human ortholog gene list segregated luminal A and luminal B breast cancers across datasets. Lastly, these data support the notion that age-associated host physiology greatly influences the intrinsic subtype of breast cancer.« less

  13. Survival time of dogs with inflammatory mammary cancer treated with palliative therapy alone or palliative therapy plus chemotherapy.

    PubMed

    Clemente, M; De Andrés, P J; Peña, L; Pérez-Alenza, M D

    2009-07-18

    Seven of 30 female dogs diagnosed with inflammatory mammary cancer were given chemotherapy and palliative treatment, and the other 23 received only palliative treatment. The median survival time of the seven dogs given chemotherapy was 57 days, compared with 35 days for the 23 given only palliative treatment.

  14. Effects of Stinging Nettle (Urtica Dioica L.,) on Antioxidant Enzyme Activities in Rat Model of Mammary Gland Cancer

    PubMed Central

    Telo, Selda; Halifeoglu, Ihsan; Ozercan, Ibrahim Hanifi

    2017-01-01

    Stinging nettle (Urtica dioica L.,) is a medicinal herb commonly used by humans. The role of reactive oxygen metabolites on cancer etiology is known. There are some studies about the antioxidant effects of Urtica Dioica (UD) on therapy of some cancer types. This study aimed to investigate the effects of UD on antioxidant enzyme activities and mammary gland cancer induced by in rats-N-methyl-N-nitrosourea (NMU) carcinogenesis. Rats were divided into four groups: a untreated group (Group 1), a NMU group (Group 2) given 50 mg/kg NMU by intraperitoneal (i.p.) injection, a NMU group (Group 3) treated with UD, a control group (Group 4) fed with 50g/kg UD. After 5.5 months, rats were decapitated, and mammary tissue and blood samples were obtained. There was a significant (p<0.05, p<0.01, respectively) increase in plasma malondialdehyde (MDA) levels of group 2 compared with group 1 and 4. The superoxide dismutase (SOD) activity of the erythrocytes was decreased in group 3 than the other groups (p<0.0001). The erythrocyte catalase (CAT) activity was significantly increased in group 4 compared with group 2 and 3 (p<0.05, p<0.01, respectively). The number of animals with palpable tumors was 6 (46.15%) in group 2, and 2 (13.3%) in group 3 at the end of the 22nd week. Although group 3 had lower palpable tumor number than group 2, the difference was not statistically significant (p=0.096). The results showed that UD constituents may have effects on lipid peroxidation and some antioxidant enzyme activities, and may slow the formation of mammary tumor. PMID:29844787

  15. Mechano-Signal Transduction in Mesenchymal Stem Cells Induces Prosaposin Secretion to Drive the Proliferation of Breast Cancer Cells.

    PubMed

    Ishihara, Seiichiro; Inman, David R; Li, Wan-Ju; Ponik, Suzanne M; Keely, Patricia J

    2017-11-15

    In response to chemical stimuli from cancer cells, mesenchymal stem cells (MSC) can differentiate into cancer-associated fibroblasts (CAF) and promote tumor progression. How mechanical stimuli such as stiffness of the extracellular matrix (ECM) contribute to MSC phenotype in cancer remains poorly understood. Here, we show that ECM stiffness leads to mechano-signal transduction in MSC, which promotes mammary tumor growth in part through secretion of the signaling protein prosaposin. On a stiff matrix, MSC cultured with conditioned media from mammary cancer cells expressed increased levels of α-smooth muscle actin, a marker of CAF, compared with MSC cultured on a soft matrix. By contrast, MSC cultured on a stiff matrix secreted prosaposin that promoted proliferation and survival of mammary carcinoma cells but inhibited metastasis. Our findings suggest that in addition to chemical stimuli, increased stiffness of the ECM in the tumor microenvironment induces differentiation of MSC to CAF, triggering enhanced proliferation and survival of mammary cancer cells. Cancer Res; 77(22); 6179-89. ©2017 AACR . ©2017 American Association for Cancer Research.

  16. In-silico QTL mapping of postpubertal mammary ductal development in the mouse uncovers potential human breast cancer risk loci

    USDA-ARS?s Scientific Manuscript database

    Genetic background plays a dominant role in mammary gland development and breast cancer (BrCa). Despite this, the role of genetics is only partially understood. This study used strain-dependent variation in an inbred mouse mapping panel, to identify quantitative trait loci (QTL) underlying structura...

  17. Over-expression of mammaglobin-B in canine mammary tumors.

    PubMed

    Pandey, Mamta; Sunil Kumar, B V; Gupta, Kuldip; Sethi, Ram Saran; Kumar, Ashwani; Verma, Ramneek

    2018-06-15

    Mammaglobin, a member of secretoglobin family has been recognized as a breast cancer associated protein. Though the exact function of the protein is not fully known, its expression has been reported to be upregulated in human breast cancer.We focused on studying the expression of mammaglobin-B gene and protein in canine mammary tumor (CMT) tissue. Expression of mammaglobin-B mRNA and protein were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC), respectively. High levels of mammaglobin-B mRNA expression (6.663 ± 0.841times) was observed in CMT as compared to age and breed matched healthy controls. Further, expression of mammaglobin-B protein was detected in paraffin-embedded mammary tumor tissues from the same subjects by IHC. Mammaglobin-B protein was overexpressed only in 6.67% of healthy mammary glands while, a high level of its expression was scored in 76.7% of the CMT subjects. Moreover, no significant differences in terms of IHC score and qRT-PCR score with respect to CMT histotypes or tumor grades were observed, indicating that mammaglobin-B over-expression occurred irrespective of CMT types or grades. Overall, significantly increased expression of mammaglobin-B protein was found in CMTs with respect to healthy mammary glands, which positively correlates to its transcript. These findings suggest that overexpression of mammaglobin-B is associated with tumors of canine mammary glands.

  18. Downregulation of ATM Gene and Protein Expression in Canine Mammary Tumors.

    PubMed

    Raposo-Ferreira, T M M; Bueno, R C; Terra, E M; Avante, M L; Tinucci-Costa, M; Carvalho, M; Cassali, G D; Linde, S D; Rogatto, S R; Laufer-Amorim, R

    2016-11-01

    The ataxia telangiectasia mutated (ATM) gene encodes a protein associated with DNA damage repair and maintenance of genomic integrity. In women, ATM transcript and protein downregulation have been reported in sporadic breast carcinomas, and the absence of ATM protein expression has been associated with poor prognosis. The aim of this study was to evaluate ATM gene and protein expression in canine mammary tumors and their association with clinical outcome. ATM gene and protein expression was evaluated by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, respectively, in normal mammary gland samples (n = 10), benign mammary tumors (n = 11), nonmetastatic mammary carcinomas (n = 19), and metastatic mammary carcinomas (n = 11). Lower ATM transcript levels were detected in benign mammary tumors and carcinomas compared with normal mammary glands (P = .011). Similarly, lower ATM protein expression was observed in benign tumors (P = .0003), nonmetastatic mammary carcinomas (P < .0001), and the primary sites of metastatic carcinomas (P < .0001) compared with normal mammary glands. No significant differences in ATM gene or protein levels were detected among benign tumors and nonmetastatic and metastatic mammary carcinomas (P > .05). The levels of ATM gene or protein expression were not significantly associated with clinical and pathological features or with survival. Similar to human breast cancer, the data in this study suggest that ATM gene and protein downregulation is involved in canine mammary gland tumorigenesis. © The Author(s) 2016.

  19. TFAP2C governs the luminal epithelial phenotype in mammary development and carcinogenesis.

    PubMed

    Cyr, A R; Kulak, M V; Park, J M; Bogachek, M V; Spanheimer, P M; Woodfield, G W; White-Baer, L S; O'Malley, Y Q; Sugg, S L; Olivier, A K; Zhang, W; Domann, F E; Weigel, R J

    2015-01-22

    Molecular subtypes of breast cancer are characterized by distinct patterns of gene expression that are predictive of outcome and response to therapy. The luminal breast cancer subtypes are defined by the expression of estrogen receptor-alpha (ERα)-associated genes, many of which are directly responsive to the transcription factor activator protein 2C (TFAP2C). TFAP2C participates in a gene regulatory network controlling cell growth and differentiation during ectodermal development and regulating ESR1/ERα and other luminal cell-associated genes in breast cancer. TFAP2C has been established as a prognostic factor in human breast cancer, however, its role in the establishment and maintenance of the luminal cell phenotype during carcinogenesis and mammary gland development have remained elusive. Herein, we demonstrate a critical role for TFAP2C in maintaining the luminal phenotype in human breast cancer and in influencing the luminal cell phenotype during normal mammary development. Knockdown of TFAP2C in luminal breast carcinoma cells induced epithelial-mesenchymal transition with morphological and phenotypic changes characterized by a loss of luminal-associated gene expression and a concomitant gain of basal-associated gene expression. Conditional knockout of the mouse homolog of TFAP2C, Tcfap2c, in mouse mammary epithelium driven by MMTV-Cre promoted aberrant growth of the mammary tree leading to a reduction in the CD24(hi)/CD49f(mid) luminal cell population and concomitant gain of the CD24(mid)/CD49f(hi) basal cell population at maturity. Our results establish TFAP2C as a key transcriptional regulator for maintaining the luminal phenotype in human breast carcinoma. Furthermore, Tcfap2c influences development of the luminal cell type during mammary development. The data suggest that TFAP2C has an important role in regulated luminal-specific genes and may be a viable therapeutic target in breast cancer.

  20. A first immunohistochemistry study of transketolase and transketolase-like 1 expression in canine hyperplastic and neoplastic mammary lesions.

    PubMed

    Burrai, Giovanni Pietro; Tanca, Alessandro; Cubeddu, Tiziana; Abbondio, Marcello; Polinas, Marta; Addis, Maria Filippa; Antuofermo, Elisabetta

    2017-01-31

    Canine mammary tumors represent the most common neoplasm in female dogs, and the discovery of cancer biomarkers and their translation to clinical relevant assays is a key requirement in the war on cancer. Since the description of the 'Warburg effect', the reprogramming of metabolic pathways is considered a hallmark of pathological changes in cancer cells. In this study, we investigate the expression of two cancer-related metabolic enzymes, transketolase (TKT) and transketolase-like 1 (TKTL1), involved in the pentose phosphate pathway (PPP), an alternative metabolic pathway for glucose breakdown that could promote cancer by providing the precursors and energy required for rapidly growing cells. TKT and TKTL1 protein expression was investigated by immunohistochemistry in canine normal (N = 6) and hyperplastic glands (N = 3), as well as in benign (N = 11) and malignant mammary tumors (N = 17). TKT expression was higher in hyperplastic lesions and in both benign and malignant tumors compared to the normal mammary gland, while TKTL1 levels were remarkably higher in hyperplastic lesions, simple adenomas and simple carcinomas than in the normal mammary glands (P < 0.05). This study reveals that the expression of a key PPP enzyme varies along the evolution of canine mammary neoplastic lesions, and supports a role of metabolic changes in the development of canine mammary tumors.

  1. Mammary epithelial-specific disruption of focal adhesion kinase retards tumor formation and metastasis in a transgenic mouse model of human breast cancer.

    PubMed

    Provenzano, Paolo P; Inman, David R; Eliceiri, Kevin W; Beggs, Hilary E; Keely, Patricia J

    2008-11-01

    Focal adhesion kinase (FAK) is a central regulator of the focal adhesion, influencing cell proliferation, survival, and migration. Despite evidence demonstrating FAK overexpression in human cancer, its role in tumor initiation and progression is not well understood. Using Cre/LoxP technology to specifically knockout FAK in the mammary epithelium, we showed that FAK is not required for tumor initiation but is required for tumor progression. The mechanistic underpinnings of these results suggested that FAK regulates clinically relevant gene signatures and multiple signaling complexes associated with tumor progression and metastasis, such as Src, ERK, and p130Cas. Furthermore, a systems-level analysis identified FAK as a major regulator of the tumor transcriptome, influencing genes associated with adhesion and growth factor signaling pathways, and their cross talk. Additionally, FAK was shown to down-regulate the expression of clinically relevant proliferation- and metastasis-associated gene signatures, as well as an enriched group of genes associated with the G(2) and G(2)/M phases of the cell cycle. Computational analysis of transcription factor-binding sites within ontology-enriched or clustered gene sets suggested that the differentially expressed proliferation- and metastasis-associated genes in FAK-null cells were regulated through a common set of transcription factors, including p53. Therefore, FAK acts as a primary node in the activated signaling network in transformed motile cells and is a prime candidate for novel therapeutic interventions to treat aggressive human breast cancers.

  2. Physiological Levels of Pik3ca H1047R Mutation in the Mouse Mammary Gland Results in Ductal Hyperplasia and Formation of ERα-Positive Tumors

    PubMed Central

    Tikoo, Anjali; Roh, Vincent; Montgomery, Karen G.; Ivetac, Ivan; Waring, Paul; Pelzer, Rebecca; Hare, Lauren; Shackleton, Mark; Humbert, Patrick; Phillips, Wayne A.

    2012-01-01

    PIK3CA, the gene coding for the p110α subunit of phosphoinositide 3-kinase, is frequently mutated in a variety of human tumors including breast cancers. To better understand the role of mutant PIK3CA in the initiation and/or progression of breast cancer, we have generated mice with a conditional knock-in of the common activating mutation, Pik3caH1047R, into one allele of the endogenous gene in the mammary gland. These mice developed a ductal anaplasia and hyperplasia by 6 weeks of age characterized by multi-layering of the epithelial lining of the mammary ducts and expansion of the luminal progenitor (Lin−; CD29lo; CD24+; CD61+) cell population. The Pik3caH1047R expressing mice eventually develop mammary tumors with 100% penetrance but with a long latency (>12 months). This is significantly longer than has been reported for transgenic models where expression of the mutant Pik3ca is driven by an exogenous promoter. Histological analysis of the tumors formed revealed predominantly ERα-positive fibroadenomas, carcinosarcomas and sarcomas. In vitro induction of Pik3caH1047R in immortalized mammary epithelial cells also resulted in tumor formation when injected into the mammary fat pad of immunodeficient recipient mice. This novel model, which reproduces the scenario of a heterozygous somatic mutation occurring in the endogenous PIK3CA gene, will thus be a valuable tool for investigating the role of Pik3caH1047R mutation in mammary tumorigenesis both in vivo and in vitro. PMID:22666336

  3. R-spondin3 is associated with basal-progenitor behavior in normal and tumor mammary cells.

    PubMed

    Tocci, Johanna Melisa; Felcher, Carla María; García Solá, Martín E; Goddio, María Victoria; Zimberlin, María Noel; Rubinstein, Natalia; Srebrow, Anabella; Coso, Omar Adrián; Abba, Martín C; Meiss, Roberto P; Kordon, Edith C

    2018-05-10

    R-spondin3 (RSPO3) is a member of a family of secreted proteins that enhance Wnt signaling pathways in diverse processes including cancer. However, the role of RSPO3 in mammary gland and breast cancer development remains unclear. In this study, we show that RSPO3 is expressed in the basal stem cell-enriched compartment of normal mouse mammary glands but is absent from committed mature luminal cells in which exogenous RSPO3 impairs lactogenic differentiation. RSPO3 knockdown in basal-like mouse mammary tumor cells reduced canonical Wnt signaling, epithelial-to-mesenchymal transition-like features, migration capacity, and tumor formation in vivo. Conversely, RSPO3 overexpression, which was associated with some LGR and RUNX factors, highly correlated with the basal-like subtype among breast cancer patients. Thus we identified RSPO3 as a novel key modulator of breast cancer development and a potential target for treatment of basal-like breast cancers. Copyright ©2018, American Association for Cancer Research.

  4. p190-B, A Novel RhoGAP, In Mammary Gland Development and Breast Cancer Progression

    DTIC Science & Technology

    2006-09-01

    examine this pos- sibility, immunohistochemical staining for the macro- phage and eosinophil marker F4/80 was performed. In contrast to the control TEBs...mammary gland development requires macro- phages and eosinophils. Development 127:2269–2282 18. Song E, Ouyang N, Horbelt M, Antus B, Wang M, Exton MS...6"# ;: L%H)OPO:022 !?I8@ S/7V;,08 850<78 3/,1 ,0/ 2"-,/ř,/# >"V7 /7V7ൣ< 5>ř L%H)OP L2"#8 ": 7887:5;Ŗ /,27 ;: 1൓"/# T2":< 1,/L>, T7 :78;8@ D

  5. Defining the ATM-mediated barrier to tumorigenesis in somatic mammary cells following ErbB2 activation.

    PubMed

    Reddy, Jay P; Peddibhotla, Sirisha; Bu, Wen; Zhao, Jing; Haricharan, Svasti; Du, Yi-Chieh Nancy; Podsypanina, Katrina; Rosen, Jeffrey M; Donehower, Larry A; Li, Yi

    2010-02-23

    p53, apoptosis, and senescence are frequently activated in preneoplastic lesions and are barriers to progression to malignancy. These barriers have been suggested to result from an ATM-mediated DNA damage response (DDR), which may follow oncogene-induced hyperproliferation and ensuing DNA replication stress. To elucidate the currently untested role of DDR in breast cancer initiation, we examined the effect of oncogene expression in several murine models of breast cancer. We did not observe a detectable DDR in early hyperplastic lesions arising in transgenic mice expressing several different oncogenes. However, DDR signaling was strongly induced in preneoplastic lesions arising from individual mammary cells transduced in vivo by retroviruses expressing either PyMT or ErbB2. Thus, activation of an oncogene after normal tissue development causes a DDR. Furthermore, in this somatic ErbB2 tumor model, ATM, and thus DDR, is required for p53 stabilization, apoptosis, and senescence. In palpable tumors in this model, p53 stabilization and apoptosis are lost, but unexpectedly senescence remains in many tumor cells. Thus, this murine model fully recapitulates early DDR signaling; the eventual suppression of its endpoints in tumorigenesis provides compelling evidence that ErbB2-induced aberrant mammary cell proliferation leads to an ATM-mediated DDR that activates apoptosis and senescence, and at least the former must be overcome to progress to malignancy. This in vivo study also uncovers an unexpected effect of ErbB2 activation previously known for its prosurvival roles, and suggests that protection of the ATM-mediated DDR-p53 signaling pathway may be important in breast cancer prevention.

  6. MAMMARY GLAND ADENOCARCINOMA IN A MALE BORNEAN ORANGUTAN (PONGO PYGMAEUS).

    PubMed

    Carpenter, Nancy A; Crook, Erika K

    2017-03-01

    An adult male Bornean orangutan ( Pongo pygmaeus ) was diagnosed with invasive, poorly differentiated grade 9/9 mammary gland adenocarcinoma from a subcutaneous mass that was surgically removed during a routine preventative health examination. The tumor was tested for estrogen and progesterone receptors, human epidermal growth factor receptor 2 (HER2), and HER2 fluorescence in situ hybridization (HER2 FISH). Whole blood was tested for breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) genes. The orangutan was treated orally with two common human breast cancer drugs; tamoxifen and anastrozole. The orangutan lived for 4.5 yr postdetection, dying from an unrelated cause. This is the first reported case of mammary gland adenocarcinoma in a male great ape.

  7. Normal and cancer mammary stem cells evade interferon-induced constraint through the miR-199a-LCOR Axis

    PubMed Central

    Celià-Terrassa, Toni; Liu, Daniel; Choudhury, Abrar; Hang, Xiang; Wei, Yong; Zamalloa, Jose; Alfaro-Aco, Raymundo; Chakrabarti, Rumela; Jiang, Yi-Zhou; Koh, Bong Ihn; Smith, Heath; DeCoste, Christina; Li, Jun-Jing; Shao, Zhi-Ming; Kang, Yibin

    2017-01-01

    Tumor-initiating cells (TICs), or cancer stem cells (CSC), possess stem cell-like properties observed in normal adult tissue stem cells. Normal and cancerous stem cells may therefore share regulatory mechanisms for maintaining self-renewing capacity and resisting differentiation elicited by cell-intrinsic or microenvironmental cues. Here, we show that miR-199a promotes stem cell properties in mammary stem cells (MaSCs) and breast CSCs by directly repressing nuclear receptor corepressor LCOR, which primes interferon (IFN) responses. Elevated miR-199a expression in stem cell-enriched populations protects normal and malignant stem-like cells from differentiation and senescence induced by IFNs that are produced by epithelial and immune cells in the mammary gland. Importantly, the miR-199a-LCOR-IFN axis is activated in poorly differentiated ER− breast tumors, functionally promotes tumor initiation and metastasis, and is associated with poor clinical outcome. Our study therefore reveals a common mechanism shared by normal and malignant stem cells to protect them from suppressive immune cytokine signaling. PMID:28530657

  8. Lattice-based model of ductal carcinoma in situ suggests rules for breast cancer progression to an invasive state.

    PubMed

    Boghaert, Eline; Radisky, Derek C; Nelson, Celeste M

    2014-12-01

    Ductal carcinoma in situ (DCIS) is a heterogeneous group of non-invasive lesions of the breast that result from abnormal proliferation of mammary epithelial cells. Pathologists characterize DCIS by four tissue morphologies (micropapillary, cribriform, solid, and comedo), but the underlying mechanisms that distinguish the development and progression of these morphologies are not well understood. Here we explored the conditions leading to the emergence of the different morphologies of DCIS using a two-dimensional multi-cell lattice-based model that incorporates cell proliferation, apoptosis, necrosis, adhesion, and contractility. We found that the relative rates of cell proliferation and apoptosis governed which of the four morphologies emerged. High proliferation and low apoptosis favored the emergence of solid and comedo morphologies. In contrast, low proliferation and high apoptosis led to the micropapillary morphology, whereas high proliferation and high apoptosis led to the cribriform morphology. The natural progression between morphologies cannot be investigated in vivo since lesions are usually surgically removed upon detection; however, our model suggests probable transitions between these morphologies during breast cancer progression. Importantly, cribriform and comedo appear to be the ultimate morphologies of DCIS. Motivated by previous experimental studies demonstrating that tumor cells behave differently depending on where they are located within the mammary duct in vivo or in engineered tissues, we examined the effects of tissue geometry on the progression of DCIS. In agreement with our previous experimental work, we found that cells are more likely to invade from the end of ducts and that this preferential invasion is regulated by cell adhesion and contractility. This model provides additional insight into tumor cell behavior and allows the exploration of phenotypic transitions not easily monitored in vivo.

  9. Apomab, a fully human agonistic antibody to DR5, exhibits potent antitumor activity against primary and metastatic breast cancer

    PubMed Central

    Zinonos, Irene; Labrinidis, Agatha; Lee, Michelle; Liapis, Vasilios; Hay, Shelley; Ponomarev, Vladimir; Diamond, Peter; Zannettino, Andrew C.W.; Findlay, David M.; Evdokiou, Andreas

    2017-01-01

    Apomab, a fully human agonistic DR5 monoclonal antibody, triggers apoptosis through activation of the extrinsic apoptotic signaling pathway. In this study, we assessed the cytotoxic effect of Apomab in vitro and evaluated its antitumor activity in murine models of breast cancer development and progression. MDA-MB-231-TXSA breast cancer cells were transplanted into the mammary fat pad or directly into the tibial marrow cavity of nude mice. Apomab was administered early, postcancer cell transplantation, or after tumors progressed to an advanced stage. Tumor burden was monitored progressively using bioluminescence imaging, and the development of breast cancer–induced osteolysis was measured using micro-computed tomography. In vitro, Apomab treatment induced apoptosis in a panel of breast cancer cell lines but was without effect on normal human primary osteoblasts, fibroblasts, or mammary epithelial cells. In vivo, Apomab exerted remarkable tumor suppressive activity leading to complete regression of well-advanced mammary tumors. All animals transplanted with breast cancer cells directly into their tibiae developed large osteolytic lesions that eroded the cortical bone. In contrast, treatment with Apomab following an early treatment protocol inhibited both intraosseous and extraosseous tumor growth and prevented breast cancer–induced osteolysis. In the delayed treatment protocol, Apomab treatment resulted in the complete regression of advanced tibial tumors with progressive restoration of both trabecular and cortical bone leading to full resolution of osteolytic lesions. Apomab represents a potent immunotherapeutic agent with strong activity against the development and progression of breast cancer and should be evaluated in patients with primary and metastatic disease. PMID:19808976

  10. Canine mammary tumors as a model for human disease.

    PubMed

    Abdelmegeed, Somaia M; Mohammed, Sulma

    2018-06-01

    Animal models for examining human breast cancer (HBC) carcinogenesis have been extensively studied and proposed. With the recent advent of immunotherapy, significant attention has been focused on the dog as a model for human cancer. Dogs develop mammary tumors and other cancer types spontaneously with an intact immune system, which exhibit a number of clinical and molecular similarities to HBC. In addition to the spontaneous tumor presentation, the clinical similarities between human and canine mammary tumors (CMT) include the age at onset, hormonal etiology and course of the diseases. Furthermore, factors that affect the disease outcome, including tumor size, stage and lymph node invasion, are similar in HBC and CMT. Similarly, the molecular characteristics of steroid receptor, epidermal growth factor, proliferation marker, metalloproteinase and cyclooxygenase expression, and the mutation of the p53 tumor suppressor gene in CMT, mimic HBC. Furthermore, ductal carcinomas in situ in human and canine mammary glands are particularly similar in their pathological, molecular and visual characteristics. These CMT characteristics and their similarities to HBC indicate that the dog could be an excellent model for the study of human disease. These similarities are discussed in detail in the present review, and are compared with the in vitro and other in vivo animal models available.

  11. A new role of the Rac-GAP β2-chimaerin in cell adhesion reveals opposite functions in breast cancer initiation and tumor progression

    PubMed Central

    Casado-Medrano, Victoria; Barrio-Real, Laura; García-Rostán, Ginesa; Baumann, Matti; Rocks, Oliver; Caloca, María J.

    2016-01-01

    β2-chimaerin is a Rac1-specific negative regulator and a candidate tumor suppressor in breast cancer but its precise function in mammary tumorigenesis in vivo is unknown. Here, we study for the first time the role of β2-chimaerin in breast cancer using a mouse model and describe an unforeseen role for this protein in epithelial cell-cell adhesion. We demonstrate that expression of β2-chimaerin in breast cancer epithelial cells reduces E-cadherin protein levels, thus loosening cell-cell contacts. In vivo, genetic ablation of β2-chimaerin in the MMTV-Neu/ErbB2 mice accelerates tumor onset, but delays tumor progression. Finally, analysis of clinical databases revealed an inverse correlation between β2-chimaerin and E-cadherin gene expressions in Her2+ breast tumors. Furthermore, breast cancer patients with low β2-chimaerin expression have reduced relapse free survival but develop metastasis at similar times. Overall, our data redefine the role of β2-chimaerin as tumor suppressor and provide the first in vivo evidence of a dual function in breast cancer, suppressing tumor initiation but favoring tumor progression. PMID:27058424

  12. Zinc finger proteins in cancer progression.

    PubMed

    Jen, Jayu; Wang, Yi-Ching

    2016-07-13

    Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer types and even in the same cancer type under different types of stress. Here, we discuss general mechanisms of zinc finger proteins in transcription regulation and summarize recent studies on zinc finger proteins in cancer progression. In this review, we also emphasize the importance of further investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression.

  13. Mammary Tumorigenesis and Metastasis Caused by Overexpression of Insulin Receptor Substrate 1 (IRS-1) or IRS-2▿

    PubMed Central

    Dearth, Robert K.; Cui, Xiaojiang; Kim, Hyun-Jung; Kuiatse, Isere; Lawrence, Nicole A.; Zhang, Xiaomei; Divisova, Jana; Britton, Ora L.; Mohsin, Syed; Allred, D. Craig; Hadsell, Darryl L.; Lee, Adrian V.

    2006-01-01

    Insulin receptor substrates (IRSs) are signaling adaptors that play a major role in the metabolic and mitogenic actions of insulin and insulin-like growth factors. Reports have recently noted increased levels, or activity, of IRSs in many human cancers, and some have linked this to poor patient prognosis. We found that overexpressed IRS-1 was constitutively phosphorylated in vitro and in vivo and that transgenic mice overexpressing IRS-1 or IRS-2 in the mammary gland showed progressive mammary hyperplasia, tumorigenesis, and metastasis. Tumors showed extensive squamous differentiation, a phenotype commonly seen with activation of the canonical β-catenin signaling pathway. Consistent with this, IRSs were found to bind β-catenin in vitro and in vivo. IRS-induced tumorigenesis is unique, given that the IRSs are signaling adaptors with no intrinsic kinase activity, and this supports a growing literature indicating a role for IRSs in cancer. This study defines IRSs as oncogene proteins in vivo and provides new models to develop inhibitors against IRSs for anticancer therapy. PMID:17030631

  14. Genetic polymorphisms and protein expression of P53 and BRCA1 in preneoplastic and neoplastic rat mammary glands.

    PubMed

    Al-Dhaheri, Wafa; Hassouna, Imam; Karam, Sherif M

    2018-05-01

    Breast cancer is the most common type of cancer and the leading cause of cancer-related deaths among women in the United Arab Emirates and worldwide. Although many factors contribute to the high incidence of breast cancer, a considerable number of cases are related to environmental factors. In the present study, breast cancer was induced in female rats using a single dose, 80 mg/kg body wt, of the environmental carcinogen 7,12-dimethylbenz[a]anthracene (DMBA). The aim of the present study, was to characterize some of the molecular changes that occur during breast cancer development in the DMBA-treated rat model. Mammary gland tissues of control and DMBA-treated rats were processed for: i) immunohistochemical probing using anti-BRCA1 antibody to characterize and correlate the localization of this cell cycle protein during progression to cancer, ii) western blotting to analyze the alteration of p53 protein expression in preneoplastic and neoplastic lesions of the mammary glands, and iii) polymerase chain reactions using primers specific for BRCA1 and P53 genes followed by single stranded conformational polymorphism (SSCP) or restriction fragment length polymorphism (RFLP) assays to detect possible mutations in these genes during development of breast cancer. Microscopic examination revealed a wide range of preneoplastic and neoplastic lesions providing a sequence representing the multistep process of breast cancer formation in DMBA-treated rats. Probing for BRCA1 protein revealed a gradual defect in its translocation from the cytoplasm to the nucleus during breast cancer progression. In control rats, BRCA1 was present in the nuclei of terminal duct epithelial cells. However, in the preneoplastic lesions, BRCA1 was localized in both the cytoplasm and nuclei of the epithelial duct cells. In all malignant lesions, BRCA1 was mostly found in the cytoplasm. Western blotting revealed initial downregulation in the expression of p53 protein during breast cancer

  15. RUNX2 correlates with subtype-specific breast cancer in a human tissue microarray, and ectopic expression of Runx2 perturbs differentiation in the mouse mammary gland

    PubMed Central

    McDonald, Laura; Ferrari, Nicola; Terry, Anne; Bell, Margaret; Mohammed, Zahra M.; Orange, Clare; Jenkins, Alma; Muller, William J.; Gusterson, Barry A.; Neil, James C.; Edwards, Joanne; Morris, Joanna S.; Cameron, Ewan R.; Blyth, Karen

    2014-01-01

    RUNX2, a master regulator of osteogenesis, is oncogenic in the lymphoid lineage; however, little is known about its role in epithelial cancers. Upregulation of RUNX2 in cell lines correlates with increased invasiveness and the capacity to form osteolytic disease in models of breast and prostate cancer. However, most studies have analysed the effects of this gene in a limited number of cell lines and its role in primary breast cancer has not been resolved. Using a human tumour tissue microarray, we show that high RUNX2 expression is significantly associated with oestrogen receptor (ER)/progesterone receptor (PR)/HER2-negative breast cancers and that patients with high RUNX2 expression have a poorer survival rate than those with negative or low expression. We confirm RUNX2 as a gene that has a potentially important functional role in triple-negative breast cancer. To investigate the role of this gene in breast cancer, we made a transgenic model in which Runx2 is specifically expressed in murine mammary epithelium under the control of the mouse mammary tumour virus (MMTV) promoter. We show that ectopic Runx2 perturbs normal development in pubertal and lactating animals, delaying ductal elongation and inhibiting lobular alveolar differentiation. We also show that the Runx2 transgene elicits age-related, pre-neoplastic changes in the mammary epithelium of older transgenic animals, suggesting that elevated RUNX2 expression renders such tissue more susceptible to oncogenic changes and providing further evidence that this gene might have an important, context-dependent role in breast cancer. PMID:24626992

  16. Expression of the glutamine metabolism-related proteins glutaminase 1 and glutamate dehydrogenase in canine mammary tumours.

    PubMed

    Ryu, J-E; Park, H-K; Choi, H-J; Lee, H-B; Lee, H-J; Lee, H; Yu, E-S; Son, W-C

    2018-06-01

    Glutamine metabolism is an important metabolic pathway for cancer cell survival, and there is a critical connection between tumour growth and glutamine metabolism. Because of their similarities, canine mammary carcinomas are useful for studying human breast cancer. Accordingly, we investigated the correlations between the expression of glutamine metabolism-related proteins and the pathological features of canine mammary tumours. We performed immunohistochemical and western blot analysis of 39 mammary tumour tissues. In immunohistochemical analysis, the expression of glutaminase 1 (GLS1) in the epithelial region increased according to the histological grade (P < .005). In the stromal region, complex-type tumours displayed significantly higher GLS1 intensity than simple-type tumours. However, glutamate dehydrogenase expression did not show the same tendencies as GLS1. The western blot results were consistent with the immunohistochemical findings. These results suggest that the expression of GLS1 is correlates with clinicopathological factors in canine mammary tumours and shows a similar pattern to human breast cancer. © 2017 John Wiley & Sons Ltd.

  17. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival

    PubMed Central

    2009-01-01

    Introduction The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Methods Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. Results In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Conclusions Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation

  18. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival.

    PubMed

    Pai, Vaibhav P; Marshall, Aaron M; Hernandez, Laura L; Buckley, Arthur R; Horseman, Nelson D

    2009-01-01

    The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs

  19. Downregulation of GLUT4 contributes to effective intervention of estrogen receptor-negative/HER2-overexpressing early stage breast disease progression by lapatinib

    PubMed Central

    Acharya, Sunil; Xu, Jia; Wang, Xiao; Jain, Shalini; Wang, Hai; Zhang, Qingling; Chang, Chia-Chi; Bower, Joseph; Arun, Banu; Seewaldt, Victoria; Yu, Dihua

    2016-01-01

    Tamoxifen and aromatase inhibitors (AIs) have shown efficacy in prevention of estrogen receptor-positive (ER+) breast cancer; however, there exists no proven prevention strategy for estrogen receptor-negative (ER-) breast cancer. Up to 40% of ER- breast cancers have human epidermal growth factor receptor 2 overexpression (HER2+), suggesting HER2 signaling might be a good target for chemoprevention for certain ER- breast cancers. Here, we tested the feasibility of the HER2-targeting agent lapatinib in prevention and/or early intervention of an ER-/HER2+ early-stage breast disease model. We found that lapatinib treatment forestalled the progression of atypical ductal hyperplasia (ADH)-like acini to ductal carcinoma in situ (DCIS)-like acini in ER-/HER2+ human mammary epithelial cells (HMECs) in 3D culture. Mechanistically, we found that inhibition of HER2/Akt signaling by lapatinib led to downregulation of GLUT4 and a reduced glucose uptake in HER2-overexpressing cells, resulting in decreased proliferation and increased apoptosis of these cells in 3D culture. Additionally, our data suggest that HER2-driven glycolytic metabolic dysregulation in ER-/HER2+ HMECs might promote early-stage breast disease progression, which can be reversed by lapatinib treatment. Furthermore, low-dose lapatinib treatment, starting at the early stages of mammary grand transformation in the MMTV-neu* mouse model, significantly delayed mammary tumor initiation and progression, extended tumor-free survival, which corresponded to effective inhibition of HER2/Akt signaling and downregulation of GLUT4 in vivo. Taken together, our results indicate that lapatinib, through its inhibition of key signaling pathways and tumor-promoting metabolic events, is a promising agent for the prevention/early intervention of ER-/HER2+ breast cancer progression. PMID:27293993

  20. An "elite hacker": breast tumors exploit the normal microenvironment program to instruct their progression and biological diversity.

    PubMed

    Boudreau, Aaron; van't Veer, Laura J; Bissell, Mina J

    2012-01-01

    The year 2011 marked the 40 year anniversary of Richard Nixon signing the National Cancer Act, thus declaring the beginning of the "War on Cancer" in the United States. Whereas we have made tremendous progress toward understanding the genetics of tumors in the past four decades, and in developing enabling technology to dissect the molecular underpinnings of cancer at unprecedented resolution, it is only recently that the important role of the stromal microenvironment has been studied in detail. Cancer is a tissue-specific disease, and it is becoming clear that much of what we know about breast cancer progression parallels the biology of the normal breast differentiation, of which there is still much to learn. In particular, the normal breast and breast tumors share molecular, cellular, systemic and microenvironmental influences necessary for their progression. It is therefore enticing to consider a tumor to be a "rogue hacker"--one who exploits the weaknesses of a normal program for personal benefit. Understanding normal mammary gland biology and its "security vulnerabilities" may thus leave us better equipped to target breast cancer. In this review, we will provide a brief overview of the heterotypic cellular and molecular interactions within the microenvironment of the developing mammary gland that are necessary for functional differentiation, provide evidence suggesting that similar biology--albeit imbalanced and exaggerated--is observed in breast cancer progression particularly during the transition from carcinoma in situ to invasive disease. Lastly we will present evidence suggesting that the multigene signatures currently used to model cancer heterogeneity and clinical outcome largely reflect signaling from a heterogeneous microenvironment-a recurring theme that could potentially be exploited therapeutically.

  1. Culture models of human mammary epithelial cell transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcomemore » stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.« less

  2. Mixed tocopherols prevent mammary tumorigenesis by inhibiting estrogen action and activating PPAR-γ

    PubMed Central

    Lee, Hong Jin; Ju, Jihyeung; Paul, Shiby; So, Jae-Young; DeCastro, Andrew; Smolarek, Amanda; Lee, Mao-Jung; Yang, Chung S.; Newmark, Harold L.; Suh, Nanjoo

    2009-01-01

    Purpose Tocopherols are lipophilic antioxidants present in vegetable oils. Although the antioxidant and anticancer activities of α-tocopherol (vitamin E) have been studied for decades, recent intervention studies with α-tocopherol have been negative for protection from cancer in humans. The tocopherols consist of 4 isoforms, α, β, γ, and δ variants, and recent attention is being made to other isoforms. In the present study, we investigated the inhibitory effect of a tocopherol mixture rich in γ- and δ-tocopherols against mammary tumorigenesis. Experimental Design Female Sprague Dawley rats were treated with N-methyl-N-nitrosourea (NMU), and then fed diets containing 0.1%, 0.3%, or 0.5% mixed tocopherols rich in γ- and δ-tocopherols for 9 weeks. Tumor burden and multiplicity were determined, and the levels of markers of inflammation, proliferation and apoptosis were evaluated in the serum and in mammary tumors. The regulation of nuclear receptor signaling by tocopherols was studied in mammary tumors and in breast cancer cells. Results Dietary administration of 0.1%, 0.3%, or 0.5% mixed tocopherols suppressed mammary tumor growth by 38%, 50%, or 80%, respectively. Tumor multiplicity was also significantly reduced in all three mixed tocopherol groups. Mixed tocopherols increased the expression of p21, p27, caspase-3 and peroxisome proliferator activated receptor-γ (PPAR-γ), and inhibited AKT and estrogen signaling in mammary tumors. Our mechanistic study found that γ- and δ-tocopherols, but not α-tocopherol, activated PPAR-γ and antagonized estrogen action in breast cancer. Conclusion The results suggest that γ- and δ-tocopherols may be effective agents for the prevention of breast cancer. PMID:19509159

  3. Epigenetic Regulation in Prostate Cancer Progression.

    PubMed

    Ruggero, Katia; Farran-Matas, Sonia; Martinez-Tebar, Adrian; Aytes, Alvaro

    2018-01-01

    An important number of newly identified molecular alterations in prostate cancer affect gene encoding master regulators of chromatin biology epigenetic regulation. This review will provide an updated view of the key epigenetic mechanisms underlying prostate cancer progression, therapy resistance, and potential actionable mechanisms and biomarkers. Key players in chromatin biology and epigenetic master regulators has been recently described to be crucially altered in metastatic CRPC and tumors that progress to AR independency. As such, epigenetic dysregulation represents a driving mechanism in the reprograming of prostate cancer cells as they lose AR-imposed identity. Chromatin integrity and accessibility for transcriptional regulation are key features altered in cancer progression, and particularly relevant in nuclear hormone receptor-driven tumors like prostate cancer. Understanding how chromatin remodeling dictates prostate development and how its deregulation contributes to prostate cancer onset and progression may improve risk stratification and treatment selection for prostate cancer patients.

  4. ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signaling

    PubMed Central

    Chakrabarti, Rumela; Wei, Yong; Hwang, Julie; Hang, Xiang; Blanco, Mario Andres; Choudhury, Abrar; Tiede, Benjamin; Romano, Rose-Anne; DeCoste, Christina; Mercatali, Laura; Ibrahim, Toni; Amadori, Dino; Kannan, Nagarajan; Eaves, Connie J; Sinha, Satrajit; Kang, Yibin

    2014-01-01

    Emerging evidence suggests that cancer is populated and maintained by tumor initiating cells (TICs) with stem-like properties similar to that of adult tissue stem cells. Despite recent advances, the molecular regulatory mechanisms that may be shared between normal and malignant stem cells remain poorly understood. Here we show that the ΔNp63 isoform of the Trp63 transcription factor promotes normal mammary stem cell (MaSC) activity by increasing the expression of the Wnt receptor Fzd7, thereby enhancing Wnt signaling. Importantly, Fzd7-dependent enhancement of Wnt signaling by ΔNp63 also governs tumor initiating activity of the basal subtype of breast cancer. These findings establish ΔNp63 as a key regulator of stem cells in both normal and malignant mammary tissues and provide direct evidence that breast cancer TICs and normal MaSCs share common regulatory mechanisms. PMID:25241036

  5. Quantification of mammary organoid toxicant response and mammary tissue motility using OCT fluctuation spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yu, Xiao; Blackmon, Richard L.; Carabas-Hernendez, Patricia; Fuller, Ashley; Troester, Melissa A.; Oldenburg, Amy L.

    2016-03-01

    Mammary epithelial cell (MEC) organoids in 3D culture recapitulate features of breast ducts in vivo. OCT has the ability to monitor the evolution of MEC organoids non-invasively and longitudinally. The anti-cancer drug Doxorubicin (Dox) is able to inhibit proliferation of cancer cells and has been widely used for chemotherapy of breast cancers; while environmental toxins implicated in breast cancer such as estrogen regulates mammary tumor growth and stimulates the proliferation and metastatic potential of breast cancers. Here we propose a quantitative method for measuring motility of breast cells in 3D cultures based upon OCT speckle fluctuation spectroscopy. The metrics of the inverse power-law exponent (α) and fractional modulation amplitude (M) were extracted from speckle fluctuation spectra. These were used to quantify the responses of MEC organoids to Dox, and estrogen. We investigated MEC organoids comprised of two different MEC lines: MCF10DCIS.com exposed to Dox, and MCF7 exposed to estrogen. We found an increase (p<0.001) in α of MEC along time (t=0, 1 hour, 24 hours, 48 hours and 6 days) at each dose of Dox (0, 1 μM and 10 μM), indicating lower fluctuation intensity at higher frequencies. We also observed a decrease (p<0.001) in M for increasing time. However, both α and M of MCF7 treated with estrogen (0, 1 nM and 10 nM) exhibited the opposite trend along time. This novel technology provides rapid and non-invasive measurements of the effects of toxicants on MEC motility for understanding breast cancer development and assessing anti-cancer drugs.

  6. Defining the ATM-mediated barrier to tumorigenesis in somatic mammary cells following ErbB2 activation

    PubMed Central

    Reddy, Jay P.; Peddibhotla, Sirisha; Bu, Wen; Zhao, Jing; Haricharan, Svasti; Du, Yi-Chieh Nancy; Podsypanina, Katrina; Rosen, Jeffrey M.; Donehower, Larry A.; Li, Yi

    2010-01-01

    p53, apoptosis, and senescence are frequently activated in preneoplastic lesions and are barriers to progression to malignancy. These barriers have been suggested to result from an ATM-mediated DNA damage response (DDR), which may follow oncogene-induced hyperproliferation and ensuing DNA replication stress. To elucidate the currently untested role of DDR in breast cancer initiation, we examined the effect of oncogene expression in several murine models of breast cancer. We did not observe a detectable DDR in early hyperplastic lesions arising in transgenic mice expressing several different oncogenes. However, DDR signaling was strongly induced in preneoplastic lesions arising from individual mammary cells transduced in vivo by retroviruses expressing either PyMT or ErbB2. Thus, activation of an oncogene after normal tissue development causes a DDR. Furthermore, in this somatic ErbB2 tumor model, ATM, and thus DDR, is required for p53 stabilization, apoptosis, and senescence. In palpable tumors in this model, p53 stabilization and apoptosis are lost, but unexpectedly senescence remains in many tumor cells. Thus, this murine model fully recapitulates early DDR signaling; the eventual suppression of its endpoints in tumorigenesis provides compelling evidence that ErbB2-induced aberrant mammary cell proliferation leads to an ATM-mediated DDR that activates apoptosis and senescence, and at least the former must be overcome to progress to malignancy. This in vivo study also uncovers an unexpected effect of ErbB2 activation previously known for its prosurvival roles, and suggests that protection of the ATM-mediated DDR-p53 signaling pathway may be important in breast cancer prevention. PMID:20133707

  7. The Type 7 Serotonin Receptor, 5-HT7, Is Essential in the Mammary Gland for Regulation of Mammary Epithelial Structure and Function

    PubMed Central

    Pai, Vaibhav P.; Hernandez, Laura L.; Stull, Malinda A.; Horseman, Nelson D.

    2015-01-01

    Autocrine-paracrine activity of serotonin (5-hydroxytryptamine, 5-HT) is a crucial homeostatic parameter in mammary gland development during lactation and involution. Published studies suggested that the 5-HT7 receptor type was important for mediating several effects of 5-HT in the mammary epithelium. Here, using 5-HT7 receptor-null (HT7KO) mice we attempt to understand the role of this receptor in mediating 5-HT actions within the mammary gland. We demonstrate for the first time that HT7KO dams are inefficient at sustaining their pups. Histologically, the HT7KO mammary epithelium shows a significant deviation from the normal secretory epithelium in morphological architecture, reduced secretory vesicles, and numerous multinucleated epithelial cells with atypically displaced nuclei, during lactation. Mammary epithelial cells in HT7KO dams also display an inability to transition from lactation to involution as normally seen by transition from a columnar to a squamous cell configuration, along with alveolar cell apoptosis and cell shedding. Our results show that 5-HT7 is required for multiple actions of 5-HT in the mammary glands including core functions that contribute to changes in cell shape and cell turnover, as well as specialized secretory functions. Understanding these actions may provide new interventions to improve lactation performance and treat diseases such as mastitis and breast cancer. PMID:25664318

  8. RUNX1 and RUNX3 protect against YAP-mediated EMT, stem-ness and shorter survival outcomes in breast cancer

    PubMed Central

    Kulkarni, Madhura; Tan, Tuan Zea; Syed Sulaiman, Nurfarhanah Bte; Lamar, John M.; Bansal, Prashali; Cui, Jianzhou; Qiao, Yiting; Ito, Yoshiaki

    2018-01-01

    Hippo pathway target, YAP has emerged as an important player in solid tumor progression. Here, we identify RUNX1 and RUNX3 as novel negative regulators of oncogenic function of YAP in the context of breast cancer. RUNX proteins are one of the first transcription factors identified to interact with YAP. RUNX1 or RUNX3 expression abrogates YAP-mediated pro-tumorigenic properties of mammary epithelial cell lines in an interaction dependent manner. RUNX1 and RUNX3 inhibit YAP-mediated migration and stem-ness properties of mammary epithelial cell lines by co-regulating YAP-mediated gene expression. Analysis of whole genome expression profiles of breast cancer samples revealed significant co-relation between YAP–RUNX1/RUNX3 expression levels and survival outcomes of breast cancer patients. High RUNX1/RUNX3 expression proved protective towards YAP-dependent patient survival outcomes. High YAP in breast cancer patients’ expression profiles co-related with EMT and stem-ness gene signature enrichment. High RUNX1/RUNX3 expression along with high YAP reflected lower enrichment of EMT and stem-ness signatures. This antagonistic activity of RUNX1 and RUNX3 towards oncogenic function of YAP identified in mammary epithelial cells as well as in breast cancer expression profiles gives a novel mechanistic insight into oncogene–tumor suppressor interplay in the context of breast cancer progression. The novel interplay between YAP, RUNX1 and RUNX3 and its significance in breast cancer progression can serve as a prognostic tool to predict cancer recurrence. PMID:29581836

  9. DNA Methylation Status of the Estrogen Receptor α Gene in Canine Mammary Tumors.

    PubMed

    Brandão, Yara de Oliveira; Toledo, Mariana Busato; Chequin, Andressa; Cristo, Thierry Grima; Sousa, Renato Silva; Ramos, Edneia Amancio Souza; Klassen, Giseli

    2018-01-01

    Estrogen receptor α (ERα) has an important role in mammary carcinogenesis, prognosis, and treatment. In human and canine mammary cancer, the most aggressive tumors show loss of ERα expression, which in human breast cancer has been attributed to methylation of the cytosine followed by guanine (CpG) island within the estrogen receptor α gene ( ESR1) promoter. This study aimed to investigate the role of ESR1 CpG island (CGI) methylation in ERα expression in canine mammary tumors. Twenty-one canine mammary samples were sorted into three groups: malignant tumor (n = 9), benign tumor (n = 8), and normal gland (n = 4). Immunohistochemical analysis and reverse-transcription quantitative real-time PCR were performed to assess ERα expression and ESR1 mRNA levels. The methylation status was determined using sodium-bisulfite-treated DNA sequencing. All normal mammary glands and benign tumors showed high ERα expression (score range, 5-8). Six of the nine malignant tumors did not show ERα expression (score 0), two had score 2, and one had score 4. Lower ERα ( P < .005) and ESR1 mRNA levels ( P < .005) were found in malignant mammary tumors than in the other two groups. Canine ESR1 has an intragenic and non-promoter-associated CGI, different from humans. No significant variation in methylation percentage was observed among the groups, suggesting that ESR1 is not regulated by DNA methylation, unlike that in humans. This difference should be considered in further research using ERα as a biomarker for mammary tumors in canine studies on ERα-targeting therapy.

  10. Brca1 regulates in vitro differentiation of mammary epithelial cells.

    PubMed

    Kubista, Marion; Rosner, Margit; Kubista, Ernst; Bernaschek, Gerhard; Hengstschläger, Markus

    2002-07-18

    Murine Brca1 is widely expressed during development in different tissues. Why alterations of BRCA1 lead specifically to breast and ovarian cancer is currently not clarified. Here we show that Brca1 protein expression is upregulated during mammary epithelial differentiation of HC11 cells, during differentiation of C2C12 myoblasts into myotubes and during neuronal differentiation of N1E-115 cells. Ectopic overexpression of BRCA1 and downregulation of endogenous Brca1 expression specifically affect the regulation of mammary epithelial cell differentiation. Accelerated mammary epithelial cell differentiation upon high ectopic BRCA1 expression is not a consequence of the anti-proliferative capacity of this tumor suppressor and independent of functional p53. Overexpression of the BRCA1 variant lacking the large central exon 11 has no effects on mammary epithelial cell differentiation. These data provide new insights into the cellular role of Brca1.

  11. Epigenetic dysregulation of key developmental genes in radiation-induced rat mammary carcinomas.

    PubMed

    Daino, Kazuhiro; Nishimura, Mayumi; Imaoka, Tatsuhiko; Takabatake, Masaru; Morioka, Takamitsu; Nishimura, Yukiko; Shimada, Yoshiya; Kakinuma, Shizuko

    2018-02-13

    With the increase in the number of long-term cancer survivors worldwide, there is a growing concern about the risk of secondary cancers induced by radiotherapy. Epigenetic modifications of genes associated with carcinogenesis are attractive targets for the prevention of cancer owing to their reversible nature. To identify genes with possible changes in functionally relevant DNA methylation patterns in mammary carcinomas induced by radiation exposure, we performed microarray-based global DNA methylation and expression profiling in γ-ray-induced rat mammary carcinomas and normal mammary glands. The gene expression profiling identified dysregulation of developmentally related genes, including the downstream targets of polycomb repressive complex 2 (PRC2) and overexpression of enhancer of zeste homolog 2, a component of PRC2, in the carcinomas. By integrating expression and DNA methylation profiles, we identified ten hypermethylated and three hypomethylated genes that possibly act as tumor-suppressor genes and oncogenes dysregulated by aberrant DNA methylation; half of these genes encode developmental transcription factors. Bisulfite sequencing and quantitative PCR confirmed the dysregulation of the polycomb-regulated developmentally related transcription-factor genes Dmrt2, Hoxa7, Foxb1, Sox17, Lhx8, Gata3 and Runx1. Silencing of Hoxa7 was further verified by immunohistochemistry. These results suggest that, in radiation-induced mammary gland carcinomas, PRC2-mediated aberrant DNA methylation leads to dysregulation of developmentally related transcription-factor genes. Our findings provide clues to molecular mechanisms linking epigenetic regulation and radiation-induced breast carcinogenesis and underscore the potential of such epigenetic mechanisms as targets for cancer prevention. © 2018 UICC.

  12. Single-cell RNA-Seq reveals cell heterogeneity and hierarchy within mouse mammary epithelia.

    PubMed

    Sun, Heng; Miao, Zhengqiang; Zhang, Xin; Chan, Un In; Su, Sek Man; Guo, Sen; Wong, Chris Koon Ho; Xu, Xiaoling; Deng, Chu-Xia

    2018-06-01

    The mammary gland is very intricately and well organized into distinct tissues, including epithelia, endothelia, adipocytes, and stromal and immune cells. Many mammary gland diseases, such as breast cancer, arise from abnormalities in the mammary epithelium, which is mainly composed of two distinct lineages, the basal and luminal cells. Because of the limitation of traditional transcriptome analysis of bulk mammary cells, the hierarchy and heterogeneity of mammary cells within these two lineages remain unclear. To this end, using single-cell RNA-Seq coupled with FACS analysis and principal component analysis, we determined gene expression profiles of mammary epithelial cells of virgin and pregnant mice. These analyses revealed a much higher heterogeneity among the mammary cells than has been previously reported and enabled cell classification into distinct subgroups according to signature gene markers present in each group. We also identified and verified a rare CDH5 + cell subpopulation within a basal cell lineage as quiescent mammary stem cells (MaSCs). Moreover, using pseudo-temporal analysis, we reconstructed the developmental trajectory of mammary epithelia and uncovered distinct changes in gene expression and in biological functions of mammary cells along the developmental process. In conclusion, our work greatly refines the resolution of the cellular hierarchy in developing mammary tissues. The discovery of CDH5 + cells as MaSCs in these tissues may have implications for our understanding of the initiation, development, and pathogenesis of mammary tumors. © 2018 Sun et al.

  13. Prevalence of the Prefoldin Subunit 5 Gene Deletion in Canine Mammary Tumors

    PubMed Central

    Bornemann-Kolatzki, Kirsten; Neumann, Stephan; Escobar, Hugo Murua; Nolte, Ingo; Hammer, Susanne Conradine; Hewicker-Trautwein, Marion; Junginger, Johannes; Kaup, Franz-Josef; Brenig, Bertram; Schütz, Ekkehard

    2015-01-01

    Background A somatic deletion at the proximal end of canine chromosome 27 (CFA27) was recently reported in 50% of malignant mammary tumors. This region harbours the tumor suppressor gene prefoldin subunit 5 (PFDN5) and the deletion correlated with a higher Ki-67 score. PFDN5 has been described to repress c-MYC and is, therefore, a candidate tumor-suppressor and cancer-driver gene in canine mammary cancer. Aim of this study was to confirm the recurrent deletion in a larger number of tumors. Methods Droplet digital PCR for PFDN5 was performed in DNA from 102 malignant, 40 benign mammary tumors/dysplasias, 11 non-neoplastic mammary tissues and each corresponding genomic DNA from leukocytes. The copy number of PFDN5 was normalized to a reference amplicon on canine chromosome 32 (CFA32). Z-scores were calculated, based on Gaussian distributed normalized PFDN5 copy numbers of the leukocyte DNA. Z-scores ≤ -3.0 in tissue were considered as being indicative of the PFDN5 deletion and called as such. The Ki-67 proliferation index was assessed in a subset of 79 tissue samples by immunohistochemistry. Results The deletion was confirmed in 24% of all malignant tumors, detected in only 7.5% of the benign tumors and was not present in any normal mammary tissue sample. The subgroup of solid carcinomas (n = 9) showed the highest frequency of the deletion (67%) and those malignomas without microscopical high fraction of benign tissue (n = 71) had a 32% frequency (p<0.01 vs. benign samples). The Ki-67 score was found to be significantly higher (p<0.05) in the PFDN5-deleted group compared to malignant tumors without the deletion. Conclusions A somatic deletion of the PFDN5 gene is recurrently present in canine mammary cancer, supporting a potential role in carcinogenesis. The association of this deletion with higher Ki-67 indicates an increased proliferation rate and thus a link to tumor aggressiveness can be hypothesized. The confirmation of earlier results warrants further studies

  14. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells.

    PubMed

    Bele, Aditya; Mirza, Sameer; Zhang, Ying; Ahmad Mir, Riyaz; Lin, Simon; Kim, Jun Hyun; Gurumurthy, Channabasavaiah Basavaraju; West, William; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-01-01

    The mammalian ortholog of Drosophila ecdysoneless (Ecd) gene product regulates Rb-E2F interaction and is required for cell cycle progression. Ecd is overexpressed in breast cancer and its overexpression predicts shorter survival in patients with ErbB2-positive tumors. Here, we demonstrate Ecd knock down (KD) in human mammary epithelial cells (hMECs) induces growth arrest, similar to the impact of Ecd Knock out (KO) in mouse embryonic fibroblasts. Furthermore, whole-genome mRNA expression analysis of control vs. Ecd KD in hMECs demonstrated that several of the top 40 genes that were down-regulated were E2F target genes. To address the role of Ecd in mammary oncogenesis, we overexpressed Ecd and/or mutant H-Ras in hTERT-immortalized hMECs. Cell cycle analyses revealed hMECs overexpressing Ecd+Ras showed incomplete arrest in G1 phase upon growth factor deprivation, and more rapid cell cycle progression in growth factor-containing medium. Analyses of cell migration, invasion, acinar structures in 3-D Matrigel and anchorage-independent growth demonstrated that Ecd+Ras-overexpressing cells exhibit substantially more dramatic transformed phenotype as compared to cells expressing vector, Ras or Ecd. Under conditions of nutrient deprivation, Ecd+Ras-overexpressing hMECs exhibited better survival, with substantial upregulation of the autophagy marker LC3 both at the mRNA and protein levels. Significantly, while hMECs expressing Ecd or mutant Ras alone did not form tumors in NOD/SCID mice, Ecd+Ras-overexpressing hMECs formed tumors, clearly demonstrating oncogenic cooperation between Ecd and mutant Ras. Collectively, we demonstrate an important co-oncogenic role of Ecd in the progression of mammary oncogenesis through promoting cell survival.

  15. Obesity and perinatal TCDD exposure increases mammary tumors in FVB mice

    EPA Science Inventory

    Risk of breast cancer has been consistently shown to correlate to total lifetime exposure to estrogens. Because both TCDD exposure and the state of obesity interact with the estrogen pathway, we wanted to investigate how TCDD and obesity interact with mammary cancer susceptibili...

  16. Paracrine-acting adiponectin promotes mammary epithelial differentiation and synergizes with genistein to enhance transcriptional response to estrogen receptor beta signaling

    USDA-ARS?s Scientific Manuscript database

    Mammary stromal adipocytes constitute an active site for the synthesis of the adipokine adiponectin (APN) that may influence the mammary epithelial microenvironment. The relationship between 'local', mammary tissue-derived APN and breast cancer risk is poorly understood. Herein, we identify a novel ...

  17. Mammary lymphoscintigraphy with various radiopharmaceuticals in breast cancer.

    PubMed

    Imoto, S; Murakami, K; Ikeda, H; Fukukita, H; Moriyama, N

    1999-10-01

    Sentinel node biopsy (SNB) in breast cancer is a promising surgical technique that avoids unnecessary axillary lymph node dissection. To optimize lymphatic mapping with radiopharmaceuticals, mammary lymphoscintigraphy with 30-50 MBq of technetium-99m-diethylenetriamine pentaacetic acid human serum albumin (99mTc-HSAD), technetium-99m-human serum albumin (99mTc-HSA), or technetium-99m-tin colloid (99mTc-TC) were investigated in 69 cases of primary breast cancer. Dynamic early images were obtained during the first 30 or 40 minutes, and static delayed images were obtained 6 hours after tracer injection. Hot spots as sentinel lymph nodes (SLNs) appeared in 51 of 69 cases (74%): in early images in 27 cases and in delayed images in 24 cases. SLNs were visualized more frequently in 23 of the 26 cases (88%) treated with 99mTc-HSAD and in 21 of the 24 cases (88%) treated with 99mTc-HSA than in only 7 of the 19 cases (37%) treated with 99mTc-TC. In 26 of the 51 cases, SLNs were identified as faint spots in delayed images. There was a significant difference in the first appearance of SLNs on the lymphoscintiscan between 43 cases of dense breast parenchyma and 26 cases of fatty breast parenchyma. These results suggest that 99mTc-HSAD or 99mTc-HSA is acceptable for lymphatic mapping, but in cases which have faint spots in delayed images or fatty breast parenchyma, gamma probe-guided SNB may result in failure or misleading false-negative SLNs.

  18. Ghrelin and cancer progression.

    PubMed

    Lin, Tsung-Chieh; Hsiao, Michael

    2017-08-01

    Ghrelin is a small peptide with 28 amino acids, and has been characterized as the ligand of the growth hormone secretagogue receptor (GHSR). In addition to its original function in stimulating pituitary growth hormone release, ghrelin is multifunctional and plays a role in the regulation of energy balance, gastric acid release, appetite, insulin secretion, gastric motility and the turnover of gastric and intestinal mucosa. The discovery of ghrelin and GHSR expression beyond normal tissues suggests its role other than physiological function. Emerging evidences have revealed ghrelin's function in regulating several processes related to cancer progression, especially in metastasis and proliferation. We further show the relative GHRL and GHSR expression in pan-cancers from The Cancer Genome Atlas (TCGA), suggesting the potential pathological role of the axis in cancers. This review focuses on ghrelin's biological function in cancer progression, and reveals its clinical significance especially the impact on cancer patient outcome. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. The Ron Receptor Tyrosine Kinase Negatively Regulates Mammary Gland Branching Morphogenesis

    PubMed Central

    Meyer, Sara E.; Zinser, Glendon M.; Stuart, William D.; Pathrose, Peterson; Waltz, Susan E.

    2009-01-01

    The Ron receptor tyrosine kinase is expressed in normal breast tissue and is overexpressed in approximately 50% of human breast cancers. Despite the recent studies on Ron in breast cancer, nothing is known about the importance of this protein during breast development. To investigate the functional significance of Ron in the normal mammary gland, we compared mammary gland development in wild-type mice to mice containing a targeted ablation of the tyrosine kinase (TK) signaling domain of Ron (TK−/−). Mammary glands from RonTK−/− mice exhibited accelerated pubertal development including significantly increased ductal extension and branching morphogenesis. While circulating levels of estrogen, progesterone, and overall rates of epithelial cell turnover were unchanged, significant increases in phosphorylated MAPK, which predominantly localized to the epithelium, were associated with increased branching morphogenesis. Additionally, purified RonTK−/− epithelial cells cultured ex vivo exhibited enhanced branching morphogenesis, which was reduced upon MAPK inhibition. Microarray analysis of pubertal RonTK−/− glands revealed 393 genes temporally impacted by Ron expression with significant changes observed in signaling networks regulating development, morphogenesis, differentiation, cell motility, and adhesion. In total, these studies represent the first evidence of a role for the Ron receptor tyrosine kinase as a critical negative regulator of mammary development. PMID:19576199

  20. Mammary-specific inactivation of E-cadherin and p53 impairs functional gland development and leads to pleomorphic invasive lobular carcinoma in mice.

    PubMed

    Derksen, Patrick W B; Braumuller, Tanya M; van der Burg, Eline; Hornsveld, Marten; Mesman, Elly; Wesseling, Jelle; Krimpenfort, Paul; Jonkers, Jos

    2011-05-01

    Breast cancer is the most common malignancy in women of the Western world. Even though a large percentage of breast cancer patients show pathological complete remission after standard treatment regimes, approximately 30-40% are non-responsive and ultimately develop metastatic disease. To generate a good preclinical model of invasive breast cancer, we have taken a tissue-specific approach to somatically inactivate p53 and E-cadherin, the cardinal cell-cell adhesion receptor that is strongly associated with tumor invasiveness. In breast cancer, E-cadherin is found mutated or otherwise functionally silenced in invasive lobular carcinoma (ILC), which accounts for 10-15% of all breast cancers. We show that mammary-specific stochastic inactivation of conditional E-cadherin and p53 results in impaired mammary gland function during pregnancy through the induction of anoikis resistance of mammary epithelium, resulting in loss of epithelial organization and a dysfunctional mammary gland. Moreover, combined inactivation of E-cadherin and p53 induced lactation-independent development of invasive and metastatic mammary carcinomas, which showed strong resemblance to human pleomorphic ILC. Dissemination patterns of mouse ILC mimic the human malignancy, showing metastasis to the gastrointestinal tract, peritoneum, lung, lymph nodes and bone. Our results confirm that loss of E-cadherin contributes to both mammary tumor initiation and metastasis, and establish a preclinical mouse model of human ILC that can be used for the development of novel intervention strategies to treat invasive breast cancer.

  1. Expansion of stem cells counteracts age-related mammary regression in compound Timp1/Timp3 null mice.

    PubMed

    Jackson, Hartland W; Waterhouse, Paul; Sinha, Ankit; Kislinger, Thomas; Berman, Hal K; Khokha, Rama

    2015-03-01

    Age is the primary risk factor for breast cancer in women. Bipotent basal stem cells actively maintain the adult mammary ductal tree, but with age tissues atrophy. We show that cell-extrinsic factors maintain the adult stem cell pool during ageing and dictate tissue stoichiometry. Mammary stem cells spontaneously expand more than 11-fold in virgin adult female mice lacking specific genes for TIMPs, the natural metalloproteinase inhibitors. Compound Timp1/Timp3 null glands exhibit Notch activation and accelerated gestational differentiation. Proteomics of mutant basal cells uncover altered cytoskeletal and extracellular protein repertoires, and we identify aberrant mitotic spindle orientation in these glands, a process that instructs asymmetric cell division and fate. We find that progenitor activity normally declines with age, but enriched stem/progenitor pools prevent tissue regression in Timp mutant mammary glands without affecting carcinogen-induced cancer susceptibility. Thus, improved stem cell content can extend mouse mammary tissue lifespan without altering cancer risk in this mouse model.

  2. Ovarian Cancer Treatment | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  3. Life After Cancer | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  4. Kidney Cancer Treatment | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  5. Lung Cancer Treatment | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  6. Colorectal Cancer Treatment | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  7. Cervical Cancer Screening | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  8. Prostate Cancer Treatment | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  9. Bladder Cancer Treatment | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  10. Lung Cancer Screening | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  11. Breast Cancer Treatment | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  12. Prostate Cancer Screening | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  13. Colorectal Cancer Screening | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  14. Breast Cancer Screening | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  15. Notch3 marks clonogenic mammary luminal progenitor cells in vivo.

    PubMed

    Lafkas, Daniel; Rodilla, Veronica; Huyghe, Mathilde; Mourao, Larissa; Kiaris, Hippokratis; Fre, Silvia

    2013-10-14

    The identity of mammary stem and progenitor cells remains poorly understood, mainly as a result of the lack of robust markers. The Notch signaling pathway has been implicated in mammary gland development as well as in tumorigenesis in this tissue. Elevated expression of the Notch3 receptor has been correlated to the highly aggressive "triple negative" human breast cancer. However, the specific cells expressing this Notch paralogue in the mammary gland remain unknown. Using a conditionally inducible Notch3-CreERT2(SAT) transgenic mouse, we genetically marked Notch3-expressing cells throughout mammary gland development and followed their lineage in vivo. We demonstrate that Notch3 is expressed in a highly clonogenic and transiently quiescent luminal progenitor population that gives rise to a ductal lineage. These cells are capable of surviving multiple successive pregnancies, suggesting a capacity to self-renew. Our results also uncover a role for the Notch3 receptor in restricting the proliferation and consequent clonal expansion of these cells.

  16. Notch3 marks clonogenic mammary luminal progenitor cells in vivo

    PubMed Central

    Lafkas, Daniel; Rodilla, Veronica; Huyghe, Mathilde; Mourao, Larissa; Kiaris, Hippokratis

    2013-01-01

    The identity of mammary stem and progenitor cells remains poorly understood, mainly as a result of the lack of robust markers. The Notch signaling pathway has been implicated in mammary gland development as well as in tumorigenesis in this tissue. Elevated expression of the Notch3 receptor has been correlated to the highly aggressive “triple negative” human breast cancer. However, the specific cells expressing this Notch paralogue in the mammary gland remain unknown. Using a conditionally inducible Notch3-CreERT2SAT transgenic mouse, we genetically marked Notch3-expressing cells throughout mammary gland development and followed their lineage in vivo. We demonstrate that Notch3 is expressed in a highly clonogenic and transiently quiescent luminal progenitor population that gives rise to a ductal lineage. These cells are capable of surviving multiple successive pregnancies, suggesting a capacity to self-renew. Our results also uncover a role for the Notch3 receptor in restricting the proliferation and consequent clonal expansion of these cells. PMID:24100291

  17. A microengineered pathophysiological model of early-stage breast cancer.

    PubMed

    Choi, Yoonseok; Hyun, Eunjeh; Seo, Jeongyun; Blundell, Cassidy; Kim, Hee Chan; Lee, Eunhee; Lee, Su Hyun; Moon, Aree; Moon, Woo Kyung; Huh, Dongeun

    2015-08-21

    A mounting body of evidence in cancer research suggests that the local microenvironment of tumor cells has a profound influence on cancer progression and metastasis. In vitro studies on the tumor microenvironment and its pharmacological modulation, however, are often hampered by the technical challenges associated with creating physiological cell culture environments that integrate cancer cells with the key components of their native niche such as neighboring cells and extracellular matrix (ECM) to mimic complex microarchitecture of cancerous tissue. Using early-stage breast cancer as a model disease, here we describe a biomimetic microengineering strategy to reconstitute three-dimensional (3D) structural organization and microenvironment of breast tumors in human cell-based in vitro models. Specifically, we developed a microsystem that enabled co-culture of breast tumor spheroids with human mammary ductal epithelial cells and mammary fibroblasts in a compartmentalized 3D microfluidic device to replicate microarchitecture of breast ductal carcinoma in situ (DCIS). We also explored the potential of this breast cancer-on-a-chip system as a drug screening platform by evaluating the efficacy and toxicity of an anticancer drug (paclitaxel). Our microengineered disease model represents the first critical step towards recapitulating pathophysiological complexity of breast cancer, and may serve as an enabling tool to systematically examine the contribution of the breast cancer microenvironment to the progression of DCIS to an invasive form of the disease.

  18. Isolation of stem-like cells from spontaneous feline mammary carcinomas: phenotypic characterization and tumorigenic potential.

    PubMed

    Barbieri, Federica; Wurth, Roberto; Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina; Thellung, Stefano; Daga, Antonio; Cilli, Michele; Ferrari, Angelo; Florio, Tullio

    2012-04-15

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-α and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Circadian disruption-induced microRNAome deregulation in rat mammary gland tissues.

    PubMed

    Kochan, David Z; Ilnytskyy, Yaroslav; Golubov, Andrey; Deibel, Scott H; McDonald, Robert J; Kovalchuk, Olga

    2015-01-01

    Breast cancer is the most common malignancy affecting women worldwide, and evidence is mounting that circadian-disruption-induced breast cancer is a warranted concern. Although studies on the role of epigenetics have provided valuable insights, and although epigenetics has been increasingly recognized in the etiology of breast cancer, relatively few studies have investigated the epigenetic link between circadian disruption (CD) and breast cancer. Using a proven photoperiod-shifting paradigm, differing degrees of CD, various tissue-extraction time points, and Illumina sequencing, we investigated the effect of CD on miRNA expression in the mammary tissues of a rodent model system. To our knowledge, our results are the first to illustrate CD-induced changes in miRNA expressions in mammary tissues. Furthermore, it is likely that these miRNA expression changes exhibit varying time frames of plasticity linked to both the degree of CD and length of reentrainment, and that the expression changes are influenced by the light and dark phases of the 24-hour circadian cycle. Of the differentially expressed miRNAs identified in the present study, all but one have been linked to breast cancer, and many have predicted circadian-relevant targets that play a role in breast cancer development. Based on the analysis of protein levels in the same tissues, we also propose that the initiation and development of CD-induced breast cancer may be linked to an interconnected web of increased NF-κB activity and increased levels of Tudor-SN, STAT3, and BCL6, with aberrant CD-induced downregulation of miR-127 and miR-146b potentially contributing to this dynamic. This study provides direct evidence that CD induces changes in miRNA levels in mammary tissues with potentially malignant consequences, thus indicating that the role of miRNAs in CD-induced breast cancer should not be dismissed.

  20. PKCθ promotes c-Rel–driven mammary tumorigenesis in mice and humans by repressing estrogen receptor α synthesis

    PubMed Central

    Belguise, Karine; Sonenshein, Gail E.

    2007-01-01

    The vast majority of primary human breast cancer tissues display aberrant nuclear NF-κB c-Rel expression. A causal role for c-Rel in mammary tumorigenesis has been demonstrated using a c-Rel transgenic mouse model; however, tumors developed with a long latency, suggesting a second event is needed to trigger tumorigenesis. Here we show that c-Rel activity in the mammary gland is repressed by estrogen receptor α (ERα) signaling, and we identify an epigenetic mechanism in breast cancer mediated by activation of what we believe is a novel PKCθ-Akt pathway that leads to downregulation of ERα synthesis and derepression of c-Rel. ERα levels were lower in c-Rel–induced mammary tumors compared with normal mammary gland tissue. PKCθ induced c-Rel activity and target gene expression and promoted growth of c-Rel- and c-RelxCK2α–driven mouse mammary tumor–derived cell lines. RNA expression levels of PKCθ and c-Rel target genes were inversely correlated with ERα levels in human breast cancer specimens. PKCθ activated Akt, thereby inactivating forkhead box O protein 3a (FOXO3a) and leading to decreased synthesis of its target genes, ERα and p27Kip1. Thus we have shown that activation of PKCθ inhibits the FOXO3a/ERα/p27Kip1 axis that normally maintains an epithelial cell phenotype and induces c-Rel target genes, thereby promoting proliferation, survival, and more invasive breast cancer. PMID:18037997

  1. Lesion complexity drives age related cancer susceptibility in human mammary epithelial cells

    DOE PAGES

    Sridharan, Deepa M.; Enerio, Shiena; Stampfer, Martha M.; ...

    2017-02-28

    Exposures to various DNA damaging agents can deregulate a wide array of critical mechanisms that maintain genome integrity. It is unclear how these processes are impacted by one's age at the time of exposure and the complexity of the DNA lesion. To clarify this, we employed radiation as a tool to generate simple and complex lesions in normal primary human mammary epithelial cells derived from women of various ages. We hypothesized that genomic instability in the progeny of older cells exposed to complex damages will be exacerbated by age-associated deterioration in function and accentuate age-related cancer predisposition. Centrosome aberrations andmore » changes in stem cell numbers were examined to assess cancer susceptibility. Our data show that the frequency of centrosome aberrations proportionately increases with age following complex damage causing exposures. However, a dose-dependent increase in stem cell numbers was independent of both age and the nature of the insult. Phospho-protein signatures provide mechanistic clues to signaling networks implicated in these effects. Together these studies suggest that complex damage can threaten the genome stability of the stem cell population in older people. Propagation of this instability is subject to influence by the microenvironment and will ultimately define cancer risk in the older population.« less

  2. Lesion complexity drives age related cancer susceptibility in human mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Deepa M.; Enerio, Shiena; Stampfer, Martha M.

    Exposures to various DNA damaging agents can deregulate a wide array of critical mechanisms that maintain genome integrity. It is unclear how these processes are impacted by one's age at the time of exposure and the complexity of the DNA lesion. To clarify this, we employed radiation as a tool to generate simple and complex lesions in normal primary human mammary epithelial cells derived from women of various ages. We hypothesized that genomic instability in the progeny of older cells exposed to complex damages will be exacerbated by age-associated deterioration in function and accentuate age-related cancer predisposition. Centrosome aberrations andmore » changes in stem cell numbers were examined to assess cancer susceptibility. Our data show that the frequency of centrosome aberrations proportionately increases with age following complex damage causing exposures. However, a dose-dependent increase in stem cell numbers was independent of both age and the nature of the insult. Phospho-protein signatures provide mechanistic clues to signaling networks implicated in these effects. Together these studies suggest that complex damage can threaten the genome stability of the stem cell population in older people. Propagation of this instability is subject to influence by the microenvironment and will ultimately define cancer risk in the older population.« less

  3. Mammary and extramammary Paget's disease*

    PubMed Central

    Lopes, Lauro Lourival; Lopes, Ione Maria Ribeiro Soares; Lopes, Lauro Rodolpho Soares; Enokihara, Milvia M. S. S.; Michalany, Alexandre Osores; Matsunaga, Nobuo

    2015-01-01

    Paget's disease, described by Sir James Paget in 1874, is classified as mammary and extramammary. The mammary type is rare and often associated with intraductal cancer (93-100% of cases). It is more prevalent in postmenopausal women and it appears as an eczematoid, erythematous, moist or crusted lesion, with or without fine scaling, infiltration and inversion of the nipple. It must be distinguished from erosive adenomatosis of the nipple, cutaneous extension of breast carcinoma, psoriasis, atopic dermatitis, contact dermatitis, chronic eczema, lactiferous ducts ectasia, Bowen's disease, basal cell carcinoma, melanoma and intraductal papilloma. Diagnosis is histological and prognosis and treatment depend on the type of underlying breast cancer. Extramammary Paget's disease is considered an adenocarcinoma originating from the skin or skin appendages in areas with apocrine glands. The primary location is the vulvar area, followed by the perianal region, scrotum, penis and axillae. It starts as an erythematous plaque of indolent growth, with well-defined edges, fine scaling, excoriations, exulcerations and lichenification. In most cases it is not associated with cancer, although there are publications linking it to tumors of the vulva, vagina, cervix and corpus uteri, bladder, ovary, gallbladder, liver, breast, colon and rectum. Differential diagnoses are candidiasis, psoriasis and chronic lichen simplex. Histopathology confirms the diagnosis. Before treatment begins, associated malignancies should be investigated. Surgical excision and micrographic surgery are the best treatment options, although recurrences are frequent. PMID:25830993

  4. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Plasticity of mammary development in the prepubertal bovine mammary gland.

    PubMed

    Akers, R M

    2017-12-01

    Although peripubertal mammary development represents only a small fraction of the total mass of mammary parenchyma present in the udder at the end of gestation and into lactation, there is increasing evidence that the tissue foundations created in early life can affect future mammary development and function. Studies on expression of estrogen and progesterone receptors seem to confirm the relevance of these steroids in prepubertal mammary development, but connections with other growth factors, hormones, and local tissue factors remain elusive. Enhanced preweaning feeding in the bovine appears to enhance the capacity of mammary tissue to response to mammogenic stimulation. This suggests the possibility that improved early nutrition might allow for creation of stem or progenitor cell populations to better support the massive ductal growth and lobulo-alveolar development during gestation. Increasing evidence that immune cells are involved in mammary development suggests there are unexpected and poorly understood connections between the immune system and mammary development. This is nearly unexplored in ruminants. Development of new tools to identify, isolate, and characterize cell populations within the developing bovine mammary gland offer the possibility of identifying and perhaps altering populations of mammary stem cells or selected progenitor cells to modulate mammary development and, possibly, mammary function.

  5. No association between Epstein-Barr Virus and Mouse Mammary Tumor Virus with Breast Cancer in Mexican Women

    NASA Astrophysics Data System (ADS)

    Morales-Sánchez, Abigail; Molina-Muñoz, Tzindilú; Martínez-López, Juan L. E.; Hernández-Sancén, Paulina; Mantilla, Alejandra; Leal, Yelda A.; Torres, Javier; Fuentes-Pananá, Ezequiel M.

    2013-10-01

    Breast cancer is the most frequent malignancy affecting women worldwide. It has been suggested that infection by Epstein Barr Virus (EBV), Mouse Mammary Tumor Virus or a similar virus, MMTV-like virus (MMTV-LV), play a role in the etiology of the disease. However, studies looking at the presence of these viruses in breast cancer have produced conflicting results, and this possible association remains controversial. Here, we used polymerase chain reaction assay to screen specific sequences of EBV and MMTV-LV in 86 tumor and 65 adjacent tissues from Mexican women with breast cancer. Neither tumor samples nor adjacent tissue were positive for either virus in a first round PCR and only 4 tumor samples were EBV positive by a more sensitive nested PCR. Considering the study's statistical power, these results do not support the involvement of EBV and MMTV-LV in the etiology of breast cancer.

  6. Reprogramming of human cancer cells to pluripotency for models of cancer progression

    PubMed Central

    Kim, Jungsun; Zaret, Kenneth S

    2015-01-01

    The ability to study live cells as they progress through the stages of cancer provides the opportunity to discover dynamic networks underlying pathology, markers of early stages, and ways to assess therapeutics. Genetically engineered animal models of cancer, where it is possible to study the consequences of temporal-specific induction of oncogenes or deletion of tumor suppressors, have yielded major insights into cancer progression. Yet differences exist between animal and human cancers, such as in markers of progression and response to therapeutics. Thus, there is a need for human cell models of cancer progression. Most human cell models of cancer are based on tumor cell lines and xenografts of primary tumor cells that resemble the advanced tumor state, from which the cells were derived, and thus do not recapitulate disease progression. Yet a subset of cancer types have been reprogrammed to pluripotency or near-pluripotency by blastocyst injection, by somatic cell nuclear transfer and by induced pluripotent stem cell (iPS) technology. The reprogrammed cancer cells show that pluripotency can transiently dominate over the cancer phenotype. Diverse studies show that reprogrammed cancer cells can, in some cases, exhibit early-stage phenotypes reflective of only partial expression of the cancer genome. In one case, reprogrammed human pancreatic cancer cells have been shown to recapitulate stages of cancer progression, from early to late stages, thus providing a model for studying pancreatic cancer development in human cells where previously such could only be discerned from mouse models. We discuss these findings, the challenges in developing such models and their current limitations, and ways that iPS reprogramming may be enhanced to develop human cell models of cancer progression. PMID:25712212

  7. Mammary stem cells and the differentiation hierarchy: current status and perspectives

    PubMed Central

    Visvader, Jane E.; Stingl, John

    2014-01-01

    The mammary epithelium is highly responsive to local and systemic signals, which orchestrate morphogenesis of the ductal tree during puberty and pregnancy. Based on transplantation and lineage tracing studies, a hierarchy of stem and progenitor cells has been shown to exist among the mammary epithelium. Lineage tracing has highlighted the existence of bipotent mammary stem cells (MaSCs) in situ as well as long-lived unipotent cells that drive morphogenesis and homeostasis of the ductal tree. Moreover, there is accumulating evidence for a heterogeneous MaSC compartment comprising fetal MaSCs, slow-cycling cells, and both long-term and short-term repopulating cells. In parallel, diverse luminal progenitor subtypes have been identified in mouse and human mammary tissue. Elucidation of the normal cellular hierarchy is an important step toward understanding the “cells of origin” and molecular perturbations that drive breast cancer. PMID:24888586

  8. Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy.

    PubMed

    Blakely, Collin M; Stoddard, Alexander J; Belka, George K; Dugan, Katherine D; Notarfrancesco, Kathleen L; Moody, Susan E; D'Cruz, Celina M; Chodosh, Lewis A

    2006-06-15

    Women who have their first child early in life have a substantially lower lifetime risk of breast cancer. The mechanism for this is unknown. Similar to humans, rats exhibit parity-induced protection against mammary tumorigenesis. To explore the basis for this phenomenon, we identified persistent pregnancy-induced changes in mammary gene expression that are tightly associated with protection against tumorigenesis in multiple inbred rat strains. Four inbred rat strains that exhibit marked differences in their intrinsic susceptibilities to carcinogen-induced mammary tumorigenesis were each shown to display significant protection against methylnitrosourea-induced mammary tumorigenesis following treatment with pregnancy levels of estradiol and progesterone. Microarray expression profiling of parous and nulliparous mammary tissue from these four strains yielded a common 70-gene signature. Examination of the genes constituting this signature implicated alterations in transforming growth factor-beta signaling, the extracellular matrix, amphiregulin expression, and the growth hormone/insulin-like growth factor I axis in pregnancy-induced alterations in breast cancer risk. Notably, related molecular changes have been associated with decreased mammographic density, which itself is strongly associated with decreased breast cancer risk. Our findings show that hormone-induced protection against mammary tumorigenesis is widely conserved among divergent rat strains and define a gene expression signature that is tightly correlated with reduced mammary tumor susceptibility as a consequence of a normal developmental event. Given the conservation of this signature, these pathways may contribute to pregnancy-induced protection against breast cancer.

  9. Obesity and perinatal TCDD exposure increases mammary tumor incidence in FVB mice

    EPA Science Inventory

    Breast cancer risk consistently correlates with total lifetime exposure to estrogens. Because both TCDD and adipocytes impact the estrogen pathway, we examined how TCDD and obesity interact to alter mammary cancer susceptibility. At 12.5 days post conception, we exposed FVB fema...

  10. Delineation of Internal Mammary Nodal Target Volumes in Breast Cancer Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jethwa, Krishan R.; Kahila, Mohamed M.; Hunt, Katie N.

    Purpose: The optimal clinical target volume for internal mammary (IM) node irradiation is uncertain in an era of increasingly conformal volume-based treatment planning for breast cancer. We mapped the location of gross internal mammary lymph node (IMN) metastases to identify areas at highest risk of harboring occult disease. Methods and Materials: Patients with axial imaging of IMN disease were identified from a breast cancer registry. The IMN location was transferred onto the corresponding anatomic position on representative axial computed tomography images of a patient in the treatment position and compared with consensus group guidelines of IMN target delineation. Results: Themore » IMN location in 67 patients with 130 IMN metastases was mapped. The location was in the first 3 intercostal spaces in 102 of 130 nodal metastases (78%), whereas 18 of 130 IMNs (14%) were located caudal to the third intercostal space and 10 of 130 IMNs (8%) were located cranial to the first intercostal space. Of the 102 nodal metastases within the first 3 intercostal spaces, 54 (53%) were located within the Radiation Therapy Oncology Group consensus volume. Relative to the IM vessels, 19 nodal metastases (19%) were located medially with a mean distance of 2.2 mm (SD, 2.9 mm) whereas 29 (28%) were located laterally with a mean distance of 3.6 mm (SD, 2.5 mm). Ninety percent of lymph nodes within the first 3 intercostal spaces would have been encompassed within a 4-mm medial and lateral expansion on the IM vessels. Conclusions: In women with indications for elective IMN irradiation, a 4-mm medial and lateral expansion on the IM vessels may be appropriate. In women with known IMN involvement, cranial extension to the confluence of the IM vein with the brachiocephalic vein with or without caudal extension to the fourth or fifth interspace may be considered provided that normal tissue constraints are met.« less

  11. Feline mammary carcinoma stem cells are tumorigenic, radioresistant, chemoresistant and defective in activation of the ATM/p53 DNA damage pathway

    PubMed Central

    Pang, L.Y.; Blacking, T.M.; Else, R.W.; Sherman, A.; Sang, H.M.; Whitelaw, B.A.; Hupp, T.R.; Argyle, D.J.

    2013-01-01

    Cancer stem cells were identified in a feline mammary carcinoma cell line by demonstrating expression of CD133 and utilising the tumour sphere assay. A population of cells was identified that had an invasive, mesenchymal phenotype, expressed markers of pluripotency and enhanced tumour formation in the NOD-SCID mouse and chick embryo models. This population of feline mammary carcinoma stem cells was resistant to chemotherapy and radiation, possibly due to aberrant activation of the ATM/p53 DNA damage pathway. Epithelial–mesenchymal transition was a feature of the invasive phenotype. These data demonstrate that cancer stem cells are a feature of mammary cancer in cats. PMID:23219486

  12. Silencing of Kv4.1 potassium channels inhibits cell proliferation of tumorigenic human mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Soo Hwa; Choi, Changsun; Hong, Seong-Geun

    2009-06-26

    Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a rolemore » in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation.« less

  13. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells

    PubMed Central

    Bele, Aditya; Mirza, Sameer; Zhang, Ying; Ahmad Mir, Riyaz; Lin, Simon; Kim, Jun Hyun; Gurumurthy, Channabasavaiah Basavaraju; West, William; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-01-01

    The mammalian ortholog of Drosophila ecdysoneless (Ecd) gene product regulates Rb-E2F interaction and is required for cell cycle progression. Ecd is overexpressed in breast cancer and its overexpression predicts shorter survival in patients with ErbB2-positive tumors. Here, we demonstrate Ecd knock down (KD) in human mammary epithelial cells (hMECs) induces growth arrest, similar to the impact of Ecd Knock out (KO) in mouse embryonic fibroblasts. Furthermore, whole-genome mRNA expression analysis of control vs. Ecd KD in hMECs demonstrated that several of the top 40 genes that were down-regulated were E2F target genes. To address the role of Ecd in mammary oncogenesis, we overexpressed Ecd and/or mutant H-Ras in hTERT-immortalized hMECs. Cell cycle analyses revealed hMECs overexpressing Ecd+Ras showed incomplete arrest in G1 phase upon growth factor deprivation, and more rapid cell cycle progression in growth factor-containing medium. Analyses of cell migration, invasion, acinar structures in 3-D Matrigel and anchorage-independent growth demonstrated that Ecd+Ras-overexpressing cells exhibit substantially more dramatic transformed phenotype as compared to cells expressing vector, Ras or Ecd. Under conditions of nutrient deprivation, Ecd+Ras-overexpressing hMECs exhibited better survival, with substantial upregulation of the autophagy marker LC3 both at the mRNA and protein levels. Significantly, while hMECs expressing Ecd or mutant Ras alone did not form tumors in NOD/SCID mice, Ecd+Ras-overexpressing hMECs formed tumors, clearly demonstrating oncogenic cooperation between Ecd and mutant Ras. Collectively, we demonstrate an important co-oncogenic role of Ecd in the progression of mammary oncogenesis through promoting cell survival. PMID:25616580

  14. An autologous dendritic cell canine mammary tumor hybrid-cell fusion vaccine.

    PubMed

    Bird, R Curtis; Deinnocentes, Patricia; Church Bird, Allison E; van Ginkel, Frederik W; Lindquist, Joni; Smith, Bruce F

    2011-01-01

    Mammary cancer is among the most prevalent canine tumors and frequently resulting in death due to metastatic disease that is highly homologous to human breast cancer. Most canine tumors fail to raise effective immune reactions yet, some spontaneous remissions do occur. Hybrid canine dendritic cell-tumor cell fusion vaccines were designed to enhance antigen presentation and tumor immune recognition. Peripheral blood-derived autologous dendritic cell enriched populations were isolated from dogs based on CD11c(+) expression and fused with canine mammary tumor (CMT) cells for vaccination of laboratory Beagles. These hybrid cells were injected into popliteal lymph nodes of normal dogs, guided by ultrasound, and included CpG-oligonucleotide adjuvants. Three rounds of vaccination were delivered. Significant IgG responses were observed in all vaccinated dogs compared to vehicle-injected controls. Canine IgG antibodies recognized shared CMT antigens as was demonstrated by IgG-recognition of three unrelated/independently derived CMT cell lines, and recognition of freshly isolated, unrelated, primary biopsy-derived CMT cells. A bias toward an IgG2 isotype response was observed after two vaccinations in most dogs. Neither significant cytotoxic T cell responses were detected, nor adverse or side-effects due to vaccination or due to the induced immune responses noted. These data provide proof-of-principle for this cancer vaccine strategy and demonstrate the presence of shared CMT antigens that promote immune recognition of mammary cancer.

  15. Synergistic effects of androgen and estrogen on the mouse uterus and mammary gland.

    PubMed

    Zhang, Jian; Sun, Yibin; Liu, Yunhai; Sun, Yi; Liao, Dezhong Joshua

    2004-10-01

    Many studies have suggested that elevated estrogens and androgens may be etiologically related to the development of breast cancer, endometrial cancer and uterine leiomyomas. We and other investigators have previously shown that estrogen and androgen are synergistic in the induction of mammary carcinogenesis in the Noble rat. However, the mechanisms behind the synergy is unknown, and it is unclear whether such synergy is unique for the Noble rat and for the mammary gland. In this study we treated female FVB mice with 17beta-estradiol (E2) and 5alpha-dihydrotestosterone-bezonate (DHT-B), alone and in combination, using silastic tubing for 2-7 months. The results showed that DHT-B alone induced proliferation of uterine endometrial epithelium and myometrial smooth muscle cells, whereas E2 alone induced much more pronounced growth of endometrial epithelium without affecting smooth muscle cells. Combined treatment with E2+DHT-B caused an even more severe hyperplasia of endometrial epithelium and myometrial muscle cells, compared with the treatment with each hormone alone. Uterine leiomyomas were observed in 2 of 6 mice at 7 months of combined treatment but not in any of 6 or 7 mice receiving each single hormone. DHT-B alone induced growth and secretion of mammary ductal cells, as well as growth of mammary stroma. E2 alone stimulated much more pronounced growth of both ductal cells and alveolar cells and secretion of alveolar cells, but had no effect on mammary stroma. Treatment with both E2 and DHT-B caused more severe hyperplasia of mammary ducts and alveoli, compared to the treatment with each hormone alone. Intraductal hyperplasia occurred early and frequently in the E2+DHT-B- treated mice, but no mammary tumors were observed. These results suggest that E2 and DHT-B have synergistic effects on the growth of uterine endometrial epithelium and myometrial muscle cells, as well as mammary epithelial ducts and alveoli.

  16. Ligand activation of peroxisome proliferator-activated receptor-β/δ (PPAR β/δ) inhibits cell growth in a mouse mammary gland cancer cell line

    PubMed Central

    Foreman, Jennifer E.; Sharma, Arun K.; Amin, Shantu; Gonzalez, Frank J.; Peters, Jeffrey M.

    2009-01-01

    The effects of ligand activation of PPARβ/δ were examined in the mouse mammary tumor cell line (C20). Expression of PPARβ/δ was markedly lower in C20 cells as compared to the human non-tumorigenic mammary gland derived cell line (MCF10A) and mouse keratinocytes. Ligand activation of PPARβ/δ in C20 cells caused upregulation of the PPARβ/δ target gene angiopoietin-like 4 (Angptl4). Inhibition of C20 cell proliferation and clonogenicity was observed following treatment with GW0742 or GW501516, two highly specific PPARβ/δ ligands. In addition, an increase in apoptosis was observed in C20 cells cultured with 10 µM GW501516 that preceded the observed inhibition of cell proliferation. Results from this study show that proliferation of the C20 mouse mammary gland cancer cell line is inhibited by ligand activation of PPARβ/δ due in part to increased apoptosis. PMID:19660859

  17. Phospholipid makeup of the breast adipose tissue is impacted by obesity and mammary cancer in the mouse: results of a pilot study

    PubMed Central

    Margolis, Michael; Perez, Osvaldo; Martinez, Mitchel; Santander, Ana M.; Mendez, Armando J.; Nadji, Mehrdad; Nayer, Ali; Bhattacharya, Sanjoy; Torroella-Kouri, Marta

    2014-01-01

    Obesity, an established risk factor for breast cancer (BC), is associated with systemic inflammation. The breast contains adipose tissue (bAT), yet whether it plays a role in BC progression in obese females is being intensively studied. There is scarce knowledge on the lipid composition of bAT in health and disease. The purpose of this pilot study was: 1) to determine whether obesity and BC are associated with inflammatory changes in bAT 2) to analyze for the first time the lipid profile of bAT in obese and lean mammary tumor-bearing and normal mice. Syngeneic E0771 mammary tumor cells were implanted into the mammary fat pad of lean and diet-induced obese C57BL/6 mice. BATs were analyzed four weeks after tumor cell inoculation by immunohistochemistry and mass spectrometry. Phospholipids were identified and subjected to ratiometric quantification using a TSQ Quantum Access Max triple quadrupole mass spectrometer utilizing precursor ion scan or neutral ion loss scan employing appropriate class specific lipid standards in a two step quantification process. Four main classes of phospholipids were analyzed: phosphatidylcholines phosphatidylserines, phosphatidylethanolamines and phosphatidylinositols. Our results showed that bAT in obese (normal and tumor-bearing) mice contained hypertrophic adipocytes compared with their corresponding samples in lean mice; higher numbers of macrophages and crown-like structures were observed in obese tumor bearers compared to obese normal mice. BAT from normal obese mice revealed higher concentrations of phosphatidylethanolamines. Furthermore, bAT from tumor-bearing mice expressed higher phosphatidylcholines than that from non-tumor bearing mice, suggesting the presence of the tumor is associated with phosphatidylcholines. Conversion of phosphatidylethanolamines to phosphatidylcholines will be investigated in E0771 cells. Additional studies are projected to investigate macrophage activation by these specific classes of phospholipids

  18. Breast cancer pulmonary metastasis is increased in mice undertaking spontaneous physical training in the running wheel; a call for revising beneficial effects of exercise on cancer progression.

    PubMed

    Smeda, Marta; Przyborowski, Kamil; Proniewski, Bartosz; Zakrzewska, Agnieszka; Kaczor, Dawid; Stojak, Marta; Buczek, Elzbieta; Nieckarz, Zenon; Zoladz, Jerzy A; Wietrzyk, Joanna; Chlopicki, Stefan

    2017-01-01

    It has been repeatedly shown that regular aerobic exercise exerts beneficial effects on incidence and progression of cancer. However, the data regarding effects of exercise on metastatic dissemination remain conflicting. Therefore, in the present study the possible preventive effects of voluntary wheel running on primary tumor growth and metastases formation in the model of spontaneous pulmonary metastasis were analyzed after orthotopic injection of 4T1 breast cancer cells into mammary fat pads of female Balb/C mice. This study identified that in the mice injected with 4T1 breast cancer cells and running on the wheels (4T1 ex) the volume and size of the primary tumor were not affected, but the number of secondary nodules formed in the lungs was significantly increased compared to their sedentary counterparts (4T1 sed). This effect was associated with decreased NO production in the isolated aorta of exercising mice (4T1 ex), suggesting deterioration of endothelial function that was associated with lower platelet count without their overactivation. This was evidenced by comparable selectin P, active GPIIb/IIIa expression, fibrinogen and vWF binding on the platelet surface. In conclusion, voluntary wheel running appeared to impair, rather than improve endothelial function, and to promote, but not decrease metastasis in the murine orthotopic model of metastatic breast cancer. These results call for revising the notion of the persistent beneficial effects of voluntary exercise on breast cancer progression, though further studies are needed to elucidate mechanisms involved in pro-metastatic effects of voluntary exercise.

  19. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis.

    PubMed

    Bishayee, Anupam; Mandal, Animesh; Bhattacharyya, Piyali; Bhatia, Deepak

    2016-01-01

    Breast cancer is the second leading cause of cancer-related death in women in the United States and discovery and development of safe chemopreventive drugs is urgently needed. The fruit pomegranate (Punica granatum) is gaining importance because of its various health benefits. This study was initiated to investigate chemopreventive potential of a pomegranate emulsion (PE) against 7,12-dimethylbenz(a)anthracene (DMBA) rat mammary carcinogenesis. The animals were orally administered with PE (0.2-5.0 g/kg), starting 2 wk before and 16 wk following DMBA treatment. PE exhibited a striking reduction of DMBA-induced mammary tumor incidence, total tumor burden, and reversed histopathological changes. PE dose-dependently suppressed cell proliferation and induced apoptosis in mammary tumors. Immunohistochemical studies showed that PE increased intratumor Bax, decreased Bcl2 and manifested a proapoptotic shift in Bax/Bcl2 ratio. In addition, our gene expression study showed PE-mediated upregulation of Bad, caspase-3, caspase-7, caspase-9, poly (ADP ribose) polymerase and cytochrome c in mammary tumors. Thus, PE exerts chemoprevention of mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis mediated through upregulation of Bax and downregulation of Bcl2 in concert with caspase cascades. Pomegranate bioactive phytoconstituents could be developed as a chemopreventive drug to reduce the risk of breast cancer.

  20. Multidisciplinary Biomarkers of Early Mammary Carcinogenesis

    DTIC Science & Technology

    2009-04-01

    ABSTRACT The purpose of the proposed research is to develop novel optical technologies to identify high-risk premalignant changes in the breast ...Our proposed research will first test specific optical parameters in breast cancer cell lines and models of early mammary carcinogenesis, and then...develop methods to test the optical parameters in random periareolar fine needle aspirate (RPFNA) samples from women at high-risk for developing breast

  1. The Immunoexpression of Glucocorticoid Receptors in Breast Carcinomas, Lactational Change, and Normal Breast Epithelium and Its Possible Role in Mammary Carcinogenesis

    PubMed Central

    Wazir, Javed Fayyaz; Brahmi, Urmil Prabha; Fakhro, Abdul Rahman

    2017-01-01

    The role of estrogen and progesterone receptors in breast cancer biology is well established. In contrast, other steroid hormones are less well studied. Glucocorticoids (GCs) are known to play a role in mammary development and differentiation; thus, it is of interest to attempt to delineate their immunoexpression across a spectrum of mammary epithelia. Aim. To delineate the distribution pattern of glucocorticoid receptors (GRs) in malignant versus nonmalignant epithelium with particular emphasis on lactational epithelium. Materials and Methods. Immunohistochemistry (IHC) for GRs was performed on archival formalin-fixed paraffin-embedded tissue blocks of 96 cases comprising 52 invasive carcinomas, 21 cases with lactational change, and 23 cases showing normal mammary tissue histology. Results. Results reveal an overexpression of GRs in mammary malignant epithelium as compared to both normal and lactational groups individually and combined. GR overexpression is significantly more pronounced in HER-2-negative cancers. Discussion. This is the first study to compare GR expression in human lactating epithelium versus malignant and normal epithelium. The article discusses the literature related to the pathobiology of GCs in the breast with special emphasis on breast cancer. Conclusion. The lactational epithelium did not show overexpression of GR, while GR was overexpressed in mammary NST (ductal) carcinoma, particularly HER-2-negative cancers. PMID:29348941

  2. CHEMOPREVENTIVE EFFICACY OF NAPROXEN AND NO-NAPROXEN IN RODENT MODELS OF COLON, URINARY BLADDER, AND MAMMARY CANCERS

    PubMed Central

    Steele, Vernon E.; Rao, Chinthalapally V.; Zhang, Yuting; Patlolla, Jagan; Boring, Daniel; Kopelovich, Levy; Juliana, M. Margaret; Grubbs, Clinton J.; Lubet, Ronald A.

    2009-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have been highly effective in preventing colon, urinary bladder, and skin cancer preclinically; and also in clinical trials of colon adenoma formation. However, certain NSAIDs cause gastrointestinal (GI) ulceration and may increase cardiovascular (CV) events. Naproxen appears to cause the lowest CV events of the common NSAIDs other than aspirin. NO-naproxen was tested based on the finding that adding a nitric oxide (NO) group to NSAIDs may help alleviate GI toxicity. In the azoxymethane (AOM)-induced rat colon aberrant crypt foci (ACF) model, naproxen administered at 200 and 400 ppm in the diet reduced mean ACFs in the colon by about 45–60%, respectively. NO-naproxen was likewise administered in the diet at roughly equimolar doses (300 and 600 ppm), and reduced total ACF by 20–40%, respectively. In the hydroxybutyl (butyl) nitrosamine (OH-BBN) rat urinary bladder cancer model, NO-naproxen was given at 183 ppm or 550 ppm in the diet, and naproxen at 128 ppm. The NO-naproxen groups had 77% and 73% decreases, respectively, in the development of large urinary bladder tumors, while the 128 ppm naproxen group also showed a strong decrease (69%). If treatments were started three months after OH-BBN, NO-naproxen (550 ppm) and naproxen (400 ppm) were also highly effective (86–94% decreases). In the methylnitrosourea (MNU)-induced mammary cancer model in rats, NO-naproxen and naproxen showed non-significant inhibitions (12 and 24%) at 550 and 400 ppm, respectively. These data show that both naproxen and NO-naproxen are effective agents against urinary bladder and colon, but not mammary, carcinogenesis. PMID:19892664

  3. Connected Health and Progress against Cancer

    Cancer.gov

    An NCI Cancer Currents blog post about a new report from President’s Cancer Panel outlining how connective technologies can promote cancer prevention, enhance patients’ treatment experience, and accelerate progress in cancer research.

  4. Left-right analysis of mammary gland development in retinoid X receptor-α+/- mice.

    PubMed

    Robichaux, Jacqulyne P; Fuseler, John W; Patel, Shrusti S; Kubalak, Steven W; Hartstone-Rose, Adam; Ramsdell, Ann F

    2016-12-19

    Left-right (L-R) differences in mammographic parenchymal patterns are an early predictor of breast cancer risk; however, the basis for this asymmetry is unknown. Here, we use retinoid X receptor alpha heterozygous null (RXRα +/- ) mice to propose a developmental origin: perturbation of coordinated anterior-posterior (A-P) and L-R axial body patterning. We hypothesized that by analogy to somitogenesis-in which retinoic acid (RA) attenuation causes anterior somite pairs to develop L-R asynchronously-that RA pathway perturbation would likewise result in asymmetric mammary development. To test this, mammary glands of RXRα +/- mice were quantitatively assessed to compare left- versus right-side ductal epithelial networks. Unlike wild-type controls, half of the RXRα +/- thoracic mammary gland (TMG) pairs exhibited significant L-R asymmetry, with left-side reduction in network size. In RXRα +/- TMGs in which symmetry was maintained, networks had bilaterally increased size, with left networks showing greater variability in area and pattern. Reminiscent of posterior somites, whose bilateral symmetry is refractory to RA attenuation, inguinal mammary glands (IMGs) also had bilaterally increased network size, but no loss of symmetry. Together, these results demonstrate that mammary glands exhibit differential A-P sensitivity to RXRα heterozygosity, with ductal network symmetry markedly compromised in anterior but not posterior glands. As TMGs more closely model human breast development than IMGs, these findings raise the possibility that for some women, breast cancer risk may initiate with subtle axial patterning defects that result in L-R asymmetric growth and pattern of the mammary ductal epithelium.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).

  5. Inhibition of the mammary carcinoma angiogenic switch in C3(1)/SV40 transgenic mice by a mutated form of human endostatin.

    PubMed

    Calvo, Alfonso; Yokoyama, Yumi; Smith, Lois E; Ali, Iqbal; Shih, Shu-Ching; Feldman, Andrew L; Libutti, Steven K; Sundaram, Ramakrishnan; Green, Jeffrey E

    2002-09-20

    Cancer therapies based on the inhibition of angiogenesis by endostatin have recently been developed. We demonstrate that a mutated form of human endostatin (P125A) can inhibit the angiogenic switch in the C3(1)/Tag mammary cancer model. P125A has a stronger growth-inhibitory effect on endothelial cell proliferation than wild-type endostatin. We characterize the angiogenic switch, which occurs during the transition from preinvasive lesions to invasive carcinoma in this model, and which is accompanied by a significant increase in total protein levels of vascular endothelial growth factor (VEGF) and an invasion of blood vessels. Expression of the VEGF(188) mRNA isoform, however, is suppressed in invasive carcinomas. The VEGF receptors fetal liver kinase-1 (Flk-1) and Fms-like tyrosine kinase-1 (Flt-1) become highly expressed in epithelial tumor and endothelial cells in the mammary carcinomas, suggesting a potential autocrine effect for VEGF on tumor cell growth. Angiopoietin-2 mRNA levels are also increased during tumor progression. CD-31 (platelet-endothelial cell adhesion molecule [PECAM]) staining revealed that blood vessels developed in tumors larger than 1 mm The administration of P125A human endostatin in C3(1)/Tag females resulted in a significant delay in tumor onset, decreased tumor multiplicity and tumor burden and prolonged survival of the animals. Endostatin treatment did not reduce the number of preinvasive lesions, proliferation rates or apoptotic index, compared with controls. However, mRNA levels of a variety of proangiogenic factors (VEGF, VEGF receptors Flk-1 and Flt-1, angiopoietin-2, Tie-1, cadherin-5 and PECAM) were significantly decreased in the endostatin-treated group compared with controls. These results demonstrate that P125A endostatin inhibits the angiogenic switch during mammary gland adenocarcinoma tumor progression in the C3(1)/Tag transgenic model. Copyright 2002 Wiley-Liss, Inc.

  6. A new role of SNAI2 in postlactational involution of the mammary gland links it to luminal breast cancer development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo-Lluva, Sonia; Hontecillas-Prieto, Lourdes; Blanco-Gómez, Adrian

    Breast cancer is a major cause of mortality in women. The transcription factor SNAI2 has been implicated in the pathogenesis of several types of cancer, including breast cancer of basal origin. Here we show that SNAI2 is also important in the development of breast cancer of luminal origin in MMTV-ErbB2 mice. SNAI2 deficiency leads to longer latency and fewer luminal tumors, both of these being characteristics of pretumoral origin. These effects were associated with reduced proliferation and a decreased ability to generate mammospheres in normal mammary glands. However, the capacity to metastasize was not modified. Under conditions of increased ERBB2more » oncogenic activity after pregnancy plus SNAI2 deficiency, both pretumoral defects-latency and tumor load-were compensated. However, the incidence of lung metastases was dramatically reduced. Furthermore, SNAI2 was required for proper postlactational involution of the breast. At 3 days post lactational involution, the mammary glands of Snai2-deficient mice exhibited lower levels of pSTAT3 and higher levels of pAKT1, resulting in decreased apoptosis. Abundant noninvoluted ducts were still present at 30 days post lactation, with a greater number of residual ERBB2+ cells. These results suggest that this defect in involution leads to an increase in the number of susceptible target cells for transformation, to the recovery of the capacity to generate mammospheres and to an increase in the number of tumors. In conclusion, our work demonstrates the participation of SNAI2 in the pathogenesis of luminal breast cancer, and reveals an unexpected connection between the processes of postlactational involution and breast tumorigenesis in Snai2-null mutant mice.« less

  7. A new role of SNAI2 in postlactational involution of the mammary gland links it to luminal breast cancer development

    DOE PAGES

    Castillo-Lluva, Sonia; Hontecillas-Prieto, Lourdes; Blanco-Gómez, Adrian; ...

    2015-06-22

    Breast cancer is a major cause of mortality in women. The transcription factor SNAI2 has been implicated in the pathogenesis of several types of cancer, including breast cancer of basal origin. Here we show that SNAI2 is also important in the development of breast cancer of luminal origin in MMTV-ErbB2 mice. SNAI2 deficiency leads to longer latency and fewer luminal tumors, both of these being characteristics of pretumoral origin. These effects were associated with reduced proliferation and a decreased ability to generate mammospheres in normal mammary glands. However, the capacity to metastasize was not modified. Under conditions of increased ERBB2more » oncogenic activity after pregnancy plus SNAI2 deficiency, both pretumoral defects-latency and tumor load-were compensated. However, the incidence of lung metastases was dramatically reduced. Furthermore, SNAI2 was required for proper postlactational involution of the breast. At 3 days post lactational involution, the mammary glands of Snai2-deficient mice exhibited lower levels of pSTAT3 and higher levels of pAKT1, resulting in decreased apoptosis. Abundant noninvoluted ducts were still present at 30 days post lactation, with a greater number of residual ERBB2+ cells. These results suggest that this defect in involution leads to an increase in the number of susceptible target cells for transformation, to the recovery of the capacity to generate mammospheres and to an increase in the number of tumors. In conclusion, our work demonstrates the participation of SNAI2 in the pathogenesis of luminal breast cancer, and reveals an unexpected connection between the processes of postlactational involution and breast tumorigenesis in Snai2-null mutant mice.« less

  8. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells.

    PubMed

    Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B

    2013-09-05

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen's organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann-Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against breast

  9. Cancer Survivors and Smoking | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  10. Cancer Survivors and Obesity | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  11. Spontaneous feline mammary intraepithelial lesions as a model for human estrogen receptor- and progesterone receptor-negative breast lesions

    PubMed Central

    2010-01-01

    Background Breast cancer is the most frequently diagnosed cancer in women. Intraepithelial lesions (IELs), such as usual ductal hyperplasia (UH), atypical ductal hyperplasia (ADH), and ductal carcinoma in situ (DCIS) are risk factors that predict a woman's chance of developing invasive breast cancer. Therefore, a comparative study that establishes an animal model of pre-invasive lesions is needed for the development of preventative measures and effective treatment for both mammary IELs and tumors. The purpose of this study was to characterize the histologic and molecular features of feline mammary IELs and compare them with those in women. Methods Formalin-fixed, paraffin-embedded specimens (n = 205) from 203 female cats with clinical mammary disease were retrieved from the archives of the Purdue University Animal Disease Diagnostic Laboratory and Veterinary Teaching Hospital (West Lafayette, IN), and the Department of Pathology and Veterinary Clinic, School of Veterinary Medicine (Sassari, Italy). Histologic sections, stained with hematoxylin and eosin (HE), were evaluated for the presence of IELs in tissue adjacent to excised mammary tumors. Lesions were compared to those of humans. Immunohistochemistry for estrogen receptor (ER-alpha), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2/neu) and Ki-67 was performed in IELs and adjacent tumor tissues. Results Intraepithelial lesions were found in 57 of 203 (28%) feline mammary specimens and were categorized as UH (27%), ADH (29%), and DCIS (44%). Most IELs with atypia (ADH and DCIS) were associated with mammary cancer (91%), whereas UH was associated with benign lesions in 53% of cases. Feline IELs were remarkably similar to human IELs. No ER or PR immunoreactivity was detected in intermediate-grade or high-grade DCIS or their associated malignant tumors. HER-2 protein overexpression was found in 27% of IELs. Conclusion The remarkable similarity of feline mammary IELs to those of humans

  12. Benzene | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  13. Nitrate | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  14. Radon | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  15. Prevention | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  16. Arsenic | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  17. Cadmium | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  18. Sunburn | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  19. Highlights | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  20. Diagnosis | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  1. Acknowledgments | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  2. Introduction | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  3. Mortality | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  4. Survival | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  5. Incidence | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  6. Treatment | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  7. Home | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  8. Weight | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  9. CD24 cell surface expression in Mvt1 mammary cancer cells serves as a biomarker for sensitivity to anti-IGF1R therapy.

    PubMed

    Rostoker, Ran; Ben-Shmuel, Sarit; Rashed, Rola; Shen Orr, Zila; LeRoith, Derek

    2016-05-14

    The pro-tumorigenic effects of the insulin-like growth factor receptor (IGF1R) are well described. IGF1R promotes cancer cell survival and proliferation and prevents apoptosis, and, additionally it was shown that IGF1R levels are significantly elevated in most common human malignancies including breast cancer. However, results from phase 3 clinical trials in unselected patients demonstrated lack of efficacy for anti-IGF1R therapy. These findings suggest that predictive biomarkers are greatly warranted in order to identify patients that will benefit from anti-IGF1R therapeutic strategies. Using the delivery of shRNA vectors into the Mvt1 cell line, we tested the role of the IGF1R in the development of mammary tumors. Based on CD24 cell surface expression, control and IGF1R-knockdown (IGF1R-KD) cells were FACS sorted into CD24(-) and CD24(+) subsets and further characterized in vitro. The tumorigenic capacity of each was determined following orthotopic inoculation into the mammary fat pad of female mice. Tumor cells were FACS characterized upon sacrifice to determine IGF1R effect on the plasticity of this cell's phenotype. Metastatic capacity of the cells was assessed using the tail vein assay. In this study we demonstrate that downregulation of the IGF1R specifically in cancer cells expressing CD24 on the cell surface membrane affect both their morphology (from mesenchymal-like into epithelial-like morphology) and phenotype in vitro. Moreover, we demonstrate that IGF1R-KD abolished both CD24(+) cells capacity to form mammary tumors and lung metastatic lesions. We found in both cells and tumors a marked upregulation in CTFG and a significant reduction of SLP1 expression in the CD24(+)/IGF1R-KD; tumor-suppressor and tumor-promoting genes respectively. Moreover, we demonstrate here that the IGF1R is essential for the maintenance of stem/progenitor-like cancer cells and we further demonstrate that IGF1R-KD induces in vivo differentiation of the CD24(+) cells toward the

  10. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers.

    PubMed

    Cleary, Allison S; Leonard, Travis L; Gestl, Shelley A; Gunther, Edward J

    2014-04-03

    Cancer genome sequencing studies indicate that a single breast cancer typically harbours multiple genetically distinct subclones. As carcinogenesis involves a breakdown in the cell-cell cooperation that normally maintains epithelial tissue architecture, individual subclones within a malignant microenvironment are commonly depicted as self-interested competitors. Alternatively, breast cancer subclones might interact cooperatively to gain a selective growth advantage in some cases. Although interclonal cooperation has been shown to drive tumorigenesis in fruitfly models, definitive evidence for functional cooperation between epithelial tumour cell subclones in mammals is lacking. Here we use mouse models of breast cancer to show that interclonal cooperation can be essential for tumour maintenance. Aberrant expression of the secreted signalling molecule Wnt1 generates mixed-lineage mammary tumours composed of basal and luminal tumour cell subtypes, which purportedly derive from a bipotent malignant progenitor cell residing atop a tumour cell hierarchy. Using somatic Hras mutations as clonal markers, we show that some Wnt tumours indeed conform to a hierarchical configuration, but that others unexpectedly harbour genetically distinct basal Hras mutant and luminal Hras wild-type subclones. Both subclones are required for efficient tumour propagation, which strictly depends on luminally produced Wnt1. When biclonal tumours were challenged with Wnt withdrawal to simulate targeted therapy, analysis of tumour regression and relapse revealed that basal subclones recruit heterologous Wnt-producing cells to restore tumour growth. Alternatively, in the absence of a substitute Wnt source, the original subclones often evolve to rescue Wnt pathway activation and drive relapse, either by restoring cooperation or by switching to a defector strategy. Uncovering similar modes of interclonal cooperation in human cancers may inform efforts aimed at eradicating tumour cell communities.

  11. Field defects in progression to gastrointestinal tract cancers

    PubMed Central

    Bernstein, Carol; Bernstein, Harris; Payne, Claire M.; Dvorak, Katerina; Garewal, Harinder

    2009-01-01

    A field of defective tissue may represent a pre-malignant stage in progression to many cancers. However, field defects are often overlooked in studies of cancer progression through assuming tissue at some distance from the cancer is normal. We indicate, however, the generality of field defects in gastrointestinal cancers, including cancers of the oropharynx, esophagus, stomach, bile duct, pancreas, small intestine and colon/rectum. Common features of these field defects are reduced apoptosis competence, aberrant proliferation and genomic instability. These features are often associated with high bile acid exposure and may explain the association of dietary-related factors with cancer progression. PMID:18164807

  12. Expression of autophagy-related protein beclin-1 in malignant canine mammary tumors

    PubMed Central

    2013-01-01

    Background Autophagy is a self-catabolic mechanism that degrades unnecessary cellular components through lysosomal enzymes. Beclin-1, an autophagy-related protein, establishes the first connection between autophagy and tumorigenesis. The purpose of this study is to assess the Beclin-1 expression pattern and to determine its prognostic significance in patients with malignant canine mammary tumor (CMT). Results We examined Beclin-1 expression in 70 cases of malignant CMTs by immunohistochemistry. Cytoplasmic Beclin-1 expression was significantly weaker in cancer cells than in nearby normal mammary glands (p < 0.001). Low cytoplasmic expression (57.14%) was associated with older age, lower degree of tubular formation, increased mitotic activity, higher histologic grade, and extensive necrosis. Low nuclear expression (40%) was connected with older age, lower degree of tubular formation, extensive necrosis, and negative for Her2/neu overexpression. Univariate survival analysis showed that Beclin-1 cytoplasmic expression was a poor prognostic factor for overall survival rate (p < 0.001). Multivariate survival analysis demonstrated that Beclin-1 cytoplasmic expression is an independent prognostic factor (p = 0.016). Conclusions Loss of Beclin-1 is associated with aggressive clinicopathologic features and poor overall survival. The results suggest that Beclin-1 plays an important role in tumor progression of malignant CMTs. PMID:23578251

  13. Catalog of genetic progression of human cancers: breast cancer.

    PubMed

    Desmedt, Christine; Yates, Lucy; Kulka, Janina

    2016-03-01

    With the rapid development of next-generation sequencing, deeper insights are being gained into the molecular evolution that underlies the development and clinical progression of breast cancer. It is apparent that during evolution, breast cancers acquire thousands of mutations including single base pair substitutions, insertions, deletions, copy number aberrations, and structural rearrangements. As a consequence, at the whole genome level, no two cancers are identical and few cancers even share the same complement of "driver" mutations. Indeed, two samples from the same cancer may also exhibit extensive differences due to constant remodeling of the genome over time. In this review, we summarize recent studies that extend our understanding of the genomic basis of cancer progression. Key biological insights include the following: subclonal diversification begins early in cancer evolution, being detectable even in in situ lesions; geographical stratification of subclonal structure is frequent in primary tumors and can include therapeutically targetable alterations; multiple distant metastases typically arise from a common metastatic ancestor following a "metastatic cascade" model; systemic therapy can unmask preexisting resistant subclones or influence further treatment sensitivity and disease progression. We conclude the review by describing novel approaches such as the analysis of circulating DNA and patient-derived xenografts that promise to further our understanding of the genomic changes occurring during cancer evolution and guide treatment decision making.

  14. Deletion of IL-33R attenuates VEGF expression and enhances necrosis in mammary carcinoma

    PubMed Central

    Pejnovic, Nada N.; Mitrovic, Slobodanka L. J.; Arsenijevic, Nebojsa N.; Simovic Markovic, Bojana J.; Lukic, Miodrag L.

    2016-01-01

    Interleukin-33 (IL-33)/IL-33 receptor (IL-33R, ST2) signaling pathway promotes mammary cancer growth and metastasis by inhibiting anti-tumor immunity. However, the role of IL-33/IL-33R axis in neoangiogenesis and tumor necrosis is not elucidated. Therefore, the aim of this study was to investigate the role of IL-33/IL-33R axis in mammary tumor necrosis. Deletion of IL-33R (ST2) gene in BALB/c mice enhanced tumor necrosis and attenuated tumor growth in 4T1 breast cancer model, which was associated with markedly decreased expression of vascular endothelial growth factor (VEGF) and IL-33 in mammary tumor cells. We next analyzed IL-33, IL-33R and VEGF expression and microvascular density (MVD) in breast tumors from 40 female patients with absent or present tumor necrosis. We found significantly higher expression of IL-33, IL-33R and VEGF in breast cancer tissues with absent tumor necrosis. Both, IL-33 and IL-33R expression correlated with VEGF expression in tumor cells. Further, VEGF expression positively correlated with MVD in perinecrotic zone. Taking together, our data indicate that IL-33/IL-33R pathway is critically involved in mammary tumor growth by facilitating expression of pro-angiogenic VEGF in tumor cells and attenuating tumor necrosis. These data add an unidentified mechanism by which IL-33/IL-33R axis facilitates tumor growth. PMID:26919112

  15. Deletion of IL-33R attenuates VEGF expression and enhances necrosis in mammary carcinoma.

    PubMed

    Milosavljevic, Milos Z; Jovanovic, Ivan P; Pejnovic, Nada N; Mitrovic, Slobodanka L J; Arsenijevic, Nebojsa N; Simovic Markovic, Bojana J; Lukic, Miodrag L

    2016-04-05

    Interleukin-33 (IL-33)/IL-33 receptor (IL-33R, ST2) signaling pathway promotes mammary cancer growth and metastasis by inhibiting anti-tumor immunity. However, the role of IL-33/IL-33R axis in neoangiogenesis and tumor necrosis is not elucidated. Therefore, the aim of this study was to investigate the role of IL-33/IL-33R axis in mammary tumor necrosis. Deletion of IL-33R (ST2) gene in BALB/c mice enhanced tumor necrosis and attenuated tumor growth in 4T1 breast cancer model, which was associated with markedly decreased expression of vascular endothelial growth factor (VEGF) and IL-33 in mammary tumor cells. We next analyzed IL-33, IL-33R and VEGF expression and microvascular density (MVD) in breast tumors from 40 female patients with absent or present tumor necrosis. We found significantly higher expression of IL-33, IL-33R and VEGF in breast cancer tissues with absent tumor necrosis. Both, IL-33 and IL-33R expression correlated with VEGF expression in tumor cells. Further, VEGF expression positively correlated with MVD in perinecrotic zone. Taking together, our data indicate that IL-33/IL-33R pathway is critically involved in mammary tumor growth by facilitating expression of pro-angiogenic VEGF in tumor cells and attenuating tumor necrosis. These data add an unidentified mechanism by which IL-33/IL-33R axis facilitates tumor growth.

  16. Telomerase activation by c-Myc in human mammary epithelial cells requires additional genomic changes.

    PubMed

    Bazarov, Alexey V; Hines, William C; Mukhopadhyay, Rituparna; Beliveau, Alain; Melodyev, Sonya; Zaslavsky, Yuri; Yaswen, Paul

    2009-10-15

    A central question in breast cancer biology is how cancer cells acquire telomerase activity required for unlimited proliferation. According to one model, proliferation of telomerase(-) pre-malignant cells leads to telomere dysfunction and increased genomic instability. Such instability leads in rare cases to reactivation of telomerase and immortalization. The mechanism of telomerase reactivation remains unknown. We have studied immortalization of cultured human mammary epithelial cells by c-Myc, a positive transcriptional regulator of the hTERT gene encoding the catalytic subunit of telomerase. Retrovirally introduced c-Myc cDNA resulted in immortalization of human mammary epithelial cells in which the cyclin dependent kinase inhibitor, p16(INK4A), was inactivated by an shRNA-encoding retrovirus. However, while c-Myc introduction immediately resulted in increased activity of transiently transfected hTERT promoter reporter constructs, endogenous hTERT mRNA levels did not change until about 60 population doublings after c-Myc introduction. Increased endogenous hTERT transcripts and stabilization of telomeric DNA in cells expressing exogenous c-Myc coincided with telomere dysfunction-associated senescence in control cultures. Genome copy number analyses of immortalized cells indicated amplifications of some or all of chromosome 5, where hTERT genes are located. hTERT gene copy number, however, was not increased in one case. The results are consistent with the hypothesis that changes in chromosome 5, while not necessarily increasing hTERT gene copy number, resulted in removal of repressive chromatin structures around hTERT loci, allowing induction of hTERT transcription. These in vitro results model one possible sequence of events leading to immortalization of breast epithelial cells during cancer progression.

  17. Sasa health exerts a protective effect on Her2/NeuN mammary tumorigenesis.

    PubMed

    Ren, Mingqiang; Reilly, R Todd; Sacchi, Nicoletta

    2004-01-01

    Bamboo grass leaves of different Sasa species have been widely used in food and medicine in Eastern Asia for hundreds of years. Of special interest are Kumazasa (Sasa senanensis rehder) leaves used to prepare an alkaline extract known as Sasa Health. This extract was reported to inhibit both the development and growth of mammary tumors in a mammary tumor strain of virgin SHN mice (1). We found that Sasa Health exerts a significant protective effect on spontaneous mammary tumorigenesis in another mouse model of human breast cancer, the transgenic FVB-Her2/NeuN mouse model. Two cohorts of Her2/NeuN female mice of different age (eleven-week-old and twenty-four-week-old) chronically treated with Sasa Health in drinking water showed both a delay in the development of tumors and reduced tumor multiplicity. Sasa Health also induced inhibition of mammary duct branching and side bud development in association with reduced angiogenesis. Altogether these findings indicate that Sasa Health contains phytochemicals that can effectively retard spontaneous mammary tumorigenesis.

  18. Insulin receptor substrate-2 regulates aerobic glycolysis in mouse mammary tumor cells via glucose transporter 1.

    PubMed

    Pankratz, Shannon L; Tan, Ernest Y; Fine, Yumiko; Mercurio, Arthur M; Shaw, Leslie M

    2009-01-23

    The insulin receptor substrate (IRS) proteins are cytoplasmic adaptor molecules that function as signaling intermediates downstream of activated cell surface receptors. Based on data implicating IRS-2 but not IRS-1 in breast cancer invasion, survival, and metastasis, we assessed the contribution of IRS-1 and IRS-2 to aerobic glycolysis, which is known to impact tumor growth and progression. For this purpose, we used tumor cell lines derived from transgenic mice that express the polyoma virus middle T antigen (PyV-MT) in the mammary gland and that are wild-type (WT) or null for either Irs-1 (Irs-1-/-) or Irs-2 (Irs-2-/-). Aerobic glycolysis, as assessed by the rate of lactic acid production and glucose consumption, was diminished significantly in Irs-2-/- cells when compared with WT and Irs-1-/- cells. Expression of exogenous Irs-2 in Irs-2-/- cells restored the rate of glycolysis to that observed in WT cells. The transcription factor FoxO1 does not appear to be involved in Irs-2-mediated glycolysis. However, Irs-2 does regulate the surface expression of glucose transporter 1 (Glut1) as assessed by flow cytometry using a Glut1-specific ligand. Suppression of Glut1 expression inhibits Irs-2-dependent invasion, which links glycolysis to mammary tumor progression. Irs-2 was shown to be important for mammalian target of rapamycin (mTor) activation, and Irs-2-dependent regulation of Glut1 surface expression is rapamycin-sensitive. Collectively, our data indicate that Irs-2, but not Irs-1, promotes invasion by sustaining the aerobic glycolysis of mouse mammary tumor cells and that it does so by regulating the mTor-dependent surface expression of Glut1.

  19. Investigation of Three Approaches to Address Fear of Recurrence Among Breast Cancer Survivors

    ClinicalTrials.gov

    2017-08-16

    Breast Neoplasms; Breast Cancer; Breast Carcinoma; Malignant Neoplasm of Breast; Cancer of Breast; Mammary Neoplasm, Human; Human Mammary Carcinoma; Malignant Tumor of Breast; Mammary Cancer; Mammary Carcinoma; Anxiety; Fear; Neoplasm Remission, Spontaneous; Spontaneous Neoplasm Regression; Regression, Spontaneous Neoplasm; Remission, Spontaneous Neoplasm; Spontaneous Neoplasm Remission

  20. Preventing Breast Cancer: Making Progress

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues Preventing Breast Cancer: Making Progress Past Issues / Fall 2006 Table of ... 000 women will have been diagnosed with invasive breast cancer, and nearly 41,000 women will die from ...

  1. Low levels of Stat5a protein in breast cancer are associated with tumor progression and unfavorable clinical outcomes

    PubMed Central

    2012-01-01

    Introduction Signal transducer and activator of transcripton-5a (Stat5a) and its close homologue, Stat5b, mediate key physiological effects of prolactin and growth hormone in mammary glands. In breast cancer, loss of nuclear localized and tyrosine phosphorylated Stat5a/b is associated with poor prognosis and increased risk of antiestrogen therapy failure. Here we quantify for the first time levels of Stat5a and Stat5b over breast cancer progression, and explore their potential association with clinical outcome. Methods Stat5a and Stat5b protein levels were quantified in situ in breast-cancer progression material. Stat5a and Stat5b transcript levels in breast cancer were correlated with clinical outcome in 936 patients. Stat5a protein was further quantified in four archival cohorts totaling 686 patients with clinical outcome data by using multivariate models. Results Protein levels of Stat5a but not Stat5b were reduced in primary breast cancer and lymph node metastases compared with normal epithelia. Low tumor levels of Stat5a but not Stat5b mRNA were associated with poor prognosis. Experimentally, only limited overlap between Stat5a- and Stat5b-modulated genes was found. In two cohorts of therapy-naïve, node-negative breast cancer patients, low nuclear Stat5a protein levels were an independent marker of poor prognosis. Multivariate analysis of two cohorts treated with antiestrogen monotherapy revealed that low nuclear Stat5a levels were associated with a more than fourfold risk of unfavorable outcome. Conclusions Loss of Stat5a represents a new independent marker of poor prognosis in node-negative breast cancer and may be a predictor of response to antiestrogen therapy if validated in randomized clinical trials. PMID:23036105

  2. Diagnostic evaluations of ultrasound and magnetic resonance imaging in mammary duct ectasia and breast cancer

    PubMed Central

    Song, Lei; Li, Liang; Liu, Bin; Yu, Dexin; Sun, Fengguo; Guo, Mingming; Ruan, Zhengmin; Zhang, Feixue

    2018-01-01

    The objective of the present study was to evaluate the diagnostic efficiency of ultrasound (US) and magnetic resonance imaging (MRI) in the diagnosis and differential diagnosis of mammary duct ectasia (MDE) and breast cancer. This retrospective study was performed on 35 patients with MDE and 105 patients with breast cancer using US and MRI. Imaging features, semi-quantitative and quantitative parameters were analyzed to determine their diagnostic value for MDE and breast cancer. The average age of patients with breast cancer was increased compared with that of patients with MDE. There were no significant differences in local packages with or without tenderness ratio (P=0.259) and grade of color Doppler flow imaging (P=0.273) between the two groups. However, the morphological changes were significantly increased in breast cancer compared with MDE. In addition, there were significant diagnostic differences in US and MRI between breast cancer and MDE, including resistance index, US elastography, time-signal intensity curve, apparent diffusion coefficient, early-stage enhancement ratio, peak-of-enhancement ratio and Tpeak (P<0.05). However, there were no observable significant diagnostic differences between US, MRI and US with MRI for MDE and breast cancer (P=0.103, P=0.263 and P=0.403 respectively). Diagnosis of MDE and breast cancer requires full evaluation of multiple parameters and morphological changes of US and MRI to increase the diagnostic efficiency. US, MRI and US with MRI were all of diagnostic value for MDE and breast cancer, while US with MRI had the highest efficacy. PMID:29434865

  3. Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities.

    PubMed

    Casey, Alison E; Sinha, Ankit; Singhania, Rajat; Livingstone, Julie; Waterhouse, Paul; Tharmapalan, Pirashaanthy; Cruickshank, Jennifer; Shehata, Mona; Drysdale, Erik; Fang, Hui; Kim, Hyeyeon; Isserlin, Ruth; Bailey, Swneke; Medina, Tiago; Deblois, Genevieve; Shiah, Yu-Jia; Barsyte-Lovejoy, Dalia; Hofer, Stefan; Bader, Gary; Lupien, Mathieu; Arrowsmith, Cheryl; Knapp, Stefan; De Carvalho, Daniel; Berman, Hal; Boutros, Paul C; Kislinger, Thomas; Khokha, Rama

    2018-06-19

    The mammary epithelium depends on specific lineages and their stem and progenitor function to accommodate hormone-triggered physiological demands in the adult female. Perturbations of these lineages underpin breast cancer risk, yet our understanding of normal mammary cell composition is incomplete. Here, we build a multimodal resource for the adult gland through comprehensive profiling of primary cell epigenomes, transcriptomes, and proteomes. We define systems-level relationships between chromatin-DNA-RNA-protein states, identify lineage-specific DNA methylation of transcription factor binding sites, and pinpoint proteins underlying progesterone responsiveness. Comparative proteomics of estrogen and progesterone receptor-positive and -negative cell populations, extensive target validation, and drug testing lead to discovery of stem and progenitor cell vulnerabilities. Top epigenetic drugs exert cytostatic effects; prevent adult mammary cell expansion, clonogenicity, and mammopoiesis; and deplete stem cell frequency. Select drugs also abrogate human breast progenitor cell activity in normal and high-risk patient samples. This integrative computational and functional study provides fundamental insight into mammary lineage and stem cell biology. © 2018 Casey et al.

  4. A new role of SNAI2 in post-lactational involution of the mammary gland links it to luminal breast cancer development

    PubMed Central

    Castillo-Lluva, Sonia; Hontecillas-Prieto, Lourdes; Blanco-Gómez, Adrián; Sáez-Freire, María del Mar; García-Cenador, Begoña; García-Criado, Javier; Pérez-Andrés, Martín; de Matos, Alberto Orfao; Cañamero, Marta; Mao, Jian-Hua; Gridley, Thomas; Castellanos-Martín, Andrés; Pérez-Losada, Jesús

    2015-01-01

    Breast cancer is a major cause of mortality in women. The transcription factor SNAI2 has been implicated in the pathogenesis of several types of cancer, including breast cancer of basal origin. Here we show that SNAI2 is also important in the development of breast cancer of luminal origin in MMTV-ErbB2 mice. SNAI2 deficiency leads to longer latency and fewer luminal tumors, both of these being characteristics of pre-tumoral origin. These effects were associated with reduced proliferation and a decreased ability to generate mammospheres in normal mammary glands. However, the capacity to metastasize was not modified. Under conditions of increased ERBB2 oncogenic activity after pregnancy plus SNAI2 deficiency, both pretumoral defects-latency and tumor load- were compensated. However, the incidence of lung metastases was dramatically reduced. Furthermore, SNAI2 was required for proper post-lactational involution of the breast. At three days post-lactational involution, the mammary glands of Snai2-deficient mice exhibited lower levels of pSTAT3 and higher levels pAKT1, resulting in decreased apoptosis. The presence of abundant non-involuted ducts was still present at 30 days post-lactation, with a greater number of residual ERBB2+ cells. These results suggest that this defect in involution leads to an increase in the number of susceptible target cells for transformation, to the recovery of the capacity to generate mammospheres, and to an increase in the number of tumors. Our work demonstrates the participation of SNAI2 in the pathogenesis of luminal breast cancer, and reveals an unexpected connection between the processes of post-lactational involution and breast tumorigenesis in Snai2-null mutant mice. PMID:26096931

  5. Development of mammary hyperplasia, dysplasia, and invasive ductal carcinoma in transgenic mice expressing the 8p11 amplicon oncogene NSD3

    PubMed Central

    Turner-Ivey, Brittany; Smith, Ericka L.; Rutkovsky, Alex C.; Spruill, Laura S.; Mills, Jamie N.

    2018-01-01

    Purpose NSD3 has been implicated as a candidate driver oncogene from the 8p11-p12 locus, and we have previously published evidence for its amplification and overexpression in human breast cancer. This aim of this study was to further characterize the transforming function of NSD3 in vivo. Methods We generated a transgenic mouse model in which NSD3 gene expression was driven by the MMTV promoter and expressed in mammary epithelium of FVB mice. Mammary glands were fixed and whole mounts were stained with carmine to visualize gland structure. Mammary tumors were formalin-fixed, and paraffin embedded (FFPE) tumors were stained with hematoxylin and eosin. Results Pups born to transgenic females were significantly underdeveloped compared to pups born to WT females due to a lactation defect in transgenic female mice. Whole mount analysis of the mammary glands of transgenic female mice revealed a profound defect in functional differentiation of mammary gland alveoli that resulted in the lactation defect. We followed parous and virgin NSD3 transgenic and control mice to 50 weeks of age and observed that several NSD3 parous females developed mammary tumors. Whole mount analysis of the mammary glands of tumor-bearing mice revealed numerous areas of mammary hyperplasia and ductal dysplasia. Histological analysis showed that mammary tumors were high-grade ductal carcinomas, and lesions present in other mammary glands exhibited features of alveolar hyperplasia, ductal dysplasia, and carcinoma in situ. Conclusions Our results are consistent with our previous studies and demonstrate that NSD3 is a transforming breast cancer oncogene. PMID:28484924

  6. Pleiotrophin (PTN) Expression and Function and in the Mouse Mammary Gland and Mammary Epithelial Cells

    PubMed Central

    Rosenfield, Sonia M.; Bowden, Emma T.; Cohen-Missner, Shani; Gibby, Krissa A.; Ory, Virginie; Henke, Ralf T.; Riegel, Anna T.; Wellstein, Anton

    2012-01-01

    Expression of the heparin-binding growth factor, pleiotrophin (PTN) in the mammary gland has been reported but its function during mammary gland development is not known. We examined the expression of PTN and its receptor ALK (Anaplastic Lymphoma Kinase) at various stages of mouse mammary gland development and found that their expression in epithelial cells is regulated in parallel during pregnancy. A 30-fold downregulation of PTN mRNA expression was observed during mid-pregnancy when the mammary gland undergoes lobular-alveolar differentiation. After weaning of pups, PTN expression was restored although baseline expression of PTN was reduced significantly in mammary glands of mice that had undergone multiple pregnancies. We found PTN expressed in epithelial cells of the mammary gland and thus used a monoclonal anti-PTN blocking antibody to elucidate its function in cultured mammary epithelial cells (MECs) as well as during gland development. Real-time impedance monitoring of MECs growth, migration and invasion during anti-PTN blocking antibody treatment showed that MECs motility and invasion but not proliferation depend on the activity of endogenous PTN. Increased number of mammospheres with laminin deposition after anti-PTN blocking antibody treatment of MECs in 3D culture and expression of progenitor markers suggest that the endogenously expressed PTN inhibits the expansion and differentiation of epithelial progenitor cells by disrupting cell-matrix adhesion. In vivo, PTN activity was found to inhibit ductal outgrowth and branching via the inhibition of phospho ERK1/2 signaling in the mammary epithelial cells. We conclude that PTN delays the maturation of the mammary gland by maintaining mammary epithelial cells in a progenitor phenotype and by inhibiting their differentiation during mammary gland development. PMID:23077670

  7. Diets high in corn oil or extra-virgin olive oil differentially modify the gene expression profile of the mammary gland and influence experimental breast cancer susceptibility.

    PubMed

    Moral, Raquel; Escrich, Raquel; Solanas, Montserrat; Vela, Elena; Ruiz de Villa, M Carme; Escrich, Eduard

    2016-06-01

    Nutritional factors, especially dietary lipids, may have a role in the etiology of breast cancer. We aimed to analyze the effects of high-fat diets on the susceptibility of the mammary gland to experimental malignant transformation. Female Sprague-Dawley rats were fed a low-fat, high-corn-oil, or high-extra-virgin olive oil (EVOO) diet from weaning or from induction. Animals were induced with 7,12-dimethylbenz[a]anthracene at 53 days and euthanized at 36, 51, 100 and 246 days. Gene expression profiles of mammary glands were determined by microarrays. Further molecular analyses were performed by real-time PCR, TUNEL and immunohistochemistry. Carcinogenesis parameters were determined at 105 and 246 days. High-corn-oil diet increased body weight and mass when administered from weaning. The EVOO diet did not modify these parameters and increased the hepatic expression of UCP2, suggesting a decrease in intake/expenditure balance. Both diets differentially modified the gene expression profile of the mammary gland, especially after short dietary intervention. Corn oil down-regulated the expression of genes related to immune system and apoptosis, whereas EVOO modified the expression of metabolism genes. Further analysis suggested an increase in proliferation and lower apoptosis in the mammary glands by effect of the high-corn-oil diet, which may be one of the mechanisms of its clear stimulating effect on carcinogenesis. The high-corn-oil diet strongly stimulates mammary tumorigenesis in association with modifications in the expression profile and an increased proliferation/apoptosis balance of the mammary gland.

  8. Keeping abreast with long non-coding RNAs in mammary gland development and breast cancer

    PubMed Central

    Hansji, Herah; Leung, Euphemia Y.; Baguley, Bruce C.; Finlay, Graeme J.; Askarian-Amiri, Marjan E.

    2014-01-01

    The majority of the human genome is transcribed, even though only 2% of transcripts encode proteins. Non-coding transcripts were originally dismissed as evolutionary junk or transcriptional noise, but with the development of whole genome technologies, these non-coding RNAs (ncRNAs) are emerging as molecules with vital roles in regulating gene expression. While shorter ncRNAs have been extensively studied, the functional roles of long ncRNAs (lncRNAs) are still being elucidated. Studies over the last decade show that lncRNAs are emerging as new players in a number of diseases including cancer. Potential roles in both oncogenic and tumor suppressive pathways in cancer have been elucidated, but the biological functions of the majority of lncRNAs remain to be identified. Accumulated data are identifying the molecular mechanisms by which lncRNA mediates both structural and functional roles. LncRNA can regulate gene expression at both transcriptional and post-transcriptional levels, including splicing and regulating mRNA processing, transport, and translation. Much current research is aimed at elucidating the function of lncRNAs in breast cancer and mammary gland development, and at identifying the cellular processes influenced by lncRNAs. In this paper we review current knowledge of lncRNAs contributing to these processes and present lncRNA as a new paradigm in breast cancer development. PMID:25400658

  9. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  10. Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors.

    PubMed

    Monsky, Wayne L; Mouta Carreira, Carla; Tsuzuki, Yoshikazu; Gohongi, Takeshi; Fukumura, Dai; Jain, Rakesh K

    2002-04-01

    The host microenvironment differs between primary and metastatic sites, affecting gene expression and various physiological functions. Here we show the differences in the physiological parameters between orthotopic primary and metastatic breast tumor xenografts using intravital microscopy and reveal the relationship between angiogenic gene expression and microvascular functions in vivo. ZR75-1, a human estrogen-dependent mammary carcinoma, was implanted into the mammary fat pad (primary site) of ovariectomized SCID female mice carrying estrogen pellets. The same tumor line was also grown in the cranial window (metastasis site). When tumors reached the diameter of 2.5 mm, angiogenesis, hemodynamics, and vascular permeability were measured by intravital microscopy, and expression of angiogenic growth factors was determined by quantitative reverse transcription-PCR. ZR75-1 tumors grown in the mammary fat pad had higher microvascular permeability but lower vascular density than the same tumors grown in the cranial window (2.5- and 0.7-fold, respectively). There was no significant difference in RBC velocity, vessel diameter, blood flow rate, and shear rate between two sites. The levels of vascular endothelial growth factor (VEGF), its receptors VEGFR1 and VEGFR2, and angiopoietin-1 mRNA tended to be higher in the mammary fat pad tumors than in the cranial tumors (1.5-, 1.5-, 3-, and 2-fold, respectively). The primary breast cancer exhibited higher vascular permeability, but the cranial tumor showed more angiogenesis, suggesting that the cranial environment is leakage resistant but proangiogenic. Collectively, host microenvironment is an important determinant of tumor gene expression and microvascular functions, and, thus, orthotopic breast tumor models should be useful for obtaining clinically relevant information.

  11. Financial Burden of Cancer Care | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  12. Life After Cancer Summary Tables | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  13. Cancer Survivors and Physical Activity | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  14. Research progress on bladder cancer molecular genetics.

    PubMed

    Kang, Zhengjun; Li, Yuhui; Yu, Yang; Guo, Zhan

    2014-11-01

    Bladder cancer is a common malignant urinary tumor with a high rate of recurrence and quick progression, which threats human health. With the research on bladder cancer molecular genetics, the knowledge of gene modification and the development of molecular detection methods, more tumor markers have been discovered, which may have potential for early diagnosis, clinical examination and prognosis. This article reviews the research progress on bladder cancer molecular genetics.

  15. Breed- and age-related differences in canine mammary tumors

    PubMed Central

    Kim, Hyun-Woo; Lim, Ha-Young; Shin, Jong-Il; Seung, Byung-Joon; Ju, Jung-Hyung; Sur, Jung-Hyang

    2016-01-01

    Triple-negative breast cancer is a type of breast cancer that does not express the genes for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2). It is an important and clinically relevant condition as it has a poor prognosis and is difficult to treat. Basal-like triple-negative cancer is highly prevalent in both African-Americans and adolescents. We therefore examined whether such a cancer likewise occurs in specific breeds and age groups in dogs, focusing on basal-like triple-negative cancer in particular. In this study, 181 samples from dogs with malignant mammary carcinoma from the 5 most common breeds and 2 age groups in Korea were analyzed. Histological classification and molecular subtyping, including assessment of immunohistochemical findings, were carried out. Twenty-five of 28 (89.3%) triple-negative carcinomas were identified as basal-like triple-negative carcinomas. Analysis of associations of classified factors revealed that the shih tzu breed (9/25, 36.0%) and advanced-age (19/25, 76.0%) groups were characterized by higher prevalence of basal-like triple-negative tumors with diverse histological types and of a higher grade. These results suggest that breed- and age-related differences can be identified in canine mammary carcinoma and, notably, in the shih tzu breed and at older ages. Further investigation of these distinguishing characteristics of the shih tzu breed is warranted. PMID:27127342

  16. Autocrine-paracrine regulation of the mammary gland.

    PubMed

    Weaver, S R; Hernandez, L L

    2016-01-01

    autocrine-paracrine regulation of the mammary gland, with an examination of both foundational work and the progress made within the last 10 to 20 yr of research. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Role of Mammary Prolactin in Carcinogenesis

    DTIC Science & Technology

    1998-10-01

    severity jectives were to 1) demonstrate local expression of both of breast cancer, and treatments that suppress pituitary PRL PRL and PRL receptor, and 2...factors in the haemopoietic system. Immunol Today 14: mammary tumors and effect of antiestrogen treatment on the de- 212-214 velopment and growth of...PRL is stimulated by interleukin-2 (IL-2), is quence analysis of decidual PRL cDNA (103) has established maximal within 6 h of treatment , and is

  18. Flor-Essence? Herbal Tonic Promotes Mammary Tumor Development in Sprague Dawley Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, L; Montgomery, J; Steinberg, S

    Background: Women who are diagnosed with breast cancer often self-administer complementary and alternative medicines to augment their conventional treatments, improve health, or prevent recurrence. Flor-Essence{reg_sign} Tonic is a complex mixture of herbal extracts used by cancer patients because of anecdotal evidence that it can treat or prevent disease. Methods: Female Sprague Dawley rats were given water or exposed to 3% or 6% Flor-Essence{reg_sign} beginning at one day of age. Mammary tumors were induced with a single oral 40 mg/kg/bw dose of dimethylbenz(a)anthracene at 50 days of age and sacrificed at 23 weeks. Rats were maintained on AIN-76A diet. Results: Controlmore » rats had palpable mammary tumor incidence of 51.0% at 19 weeks of age compared to 65.0% and 59.4% for the 3% and 6% Flor-Essence{reg_sign} groups respectively. Overall, no significant difference in time until first palpable tumor was detected among any of the groups. At necropsy, mammary tumor incidence was 82.5% for controls compared to 90.0% and 97.3% for rats consuming 3% and 6% Flor-Essence{reg_sign}, respectively. Mean mammary tumor multiplicity ({+-}SES) for the controls was 2.8 ({+-} 0.5) and statistically different from the 3% or 6% Flor- Essence{reg_sign} groups with 5.2 ({+-} 0.7), and 4.8 ({+-} 0.6), respectively (p{<=}0.01). As expected, the majority of isolated tumors were diagnosed as adenocarcinomas. Conclusions: Flor-Essence{reg_sign} can promote mammary tumor development in the Sprague Dawley rat model. This observation is contrary to widely available anecdotal evidence as well as the desire of the consumer that this commercially available herbal tonic will suppress and/or inhibit tumor growth.« less

  19. Expression of estrogen receptors in non-malignant mammary tissue modifies the association between insulin-like growth factor 1 and breast cancer risk.

    PubMed

    Samoli, E; Lagiou, A; Zourna, P; Barbouni, A; Georgila, C; Tsikkinis, A; Vassilarou, D; Minaki, P; Sfikas, C; Spanos, E; Trichopoulos, D; Lagiou, P

    2015-04-01

    Several studies have reported that the insulin-like growth factor 1 (IGF-1) is positively associated with estrogen receptor-positive [ER(+)] breast cancer risk, whereas there is little or no association with respect to ER(-) breast cancer. All comparisons of ER(+) breast cancer cases, however, have been made versus healthy controls, for whom there is no information about the ER expression in their mammary gland. In the context of a case-control investigation conducted in Athens, Greece, we studied 102 women with incident ERα(+) breast cancer and compared their IGF-1 blood levels with those of 178 ERα(+) and 83 ERα(-) women with benign breast disease (BBD) who underwent biopsies in the context of their standard medical care. Data were analysed using multiple logistic regression and controlling for potential confounding variables. ERα(+) breast cancer patients had higher IGF-1 levels compared with women with BBD [odds ratio (OR) 1.36, 95% confidence interval (CI): 0.95-1.94, per 1 standard deviation (SD) increase in IGF-1 levels]. When ERα status of women with BBD was taken into account, the difference in IGF-1 levels between ERα(+) breast cancer patients and women with BBD was clearly driven by the comparison with BBD women who were ERα(+) (OR = 1.95, 95% CI: 1.31-2.89 per 1 SD increase in IGF-1 levels), whereas there was essentially no association with IGF-1 levels when ERα(+) breast cancer patients were compared with ERα(-) BBD women. These contrasts were particularly evident among post/peri-menopausal women. We found evidence in support of an interaction of IGF-1 with the expression of ERα in the non-malignant mammary tissue in the context of breast cancer pathogenesis. This is in line with previous evidence suggesting that IGF-1 increases the risk of ER(+) breast cancer. Published by Oxford University Press on behalf of the European Society for Medical Oncology 2014.

  20. Phospholipid makeup of the breast adipose tissue is impacted by obesity and mammary cancer in the mouse: Results of a pilot study.

    PubMed

    Margolis, Michael; Perez, Osvaldo; Martinez, Mitchell; Santander, Ana M; Mendez, Armando J; Nadji, Mehrdad; Nayer, Ali; Bhattacharya, Sanjoy; Torroella-Kouri, Marta

    2015-01-01

    Obesity, an established risk factor for breast cancer (BC), is associated with systemic inflammation. The breast contains adipose tissue (bAT), yet whether it plays a role in BC progression in obese females is being intensively studied. There is scarce knowledge on the lipid composition of bAT in health and disease. The purpose of this pilot study was: 1) to determine whether obesity and BC are associated with inflammatory changes in bAT 2) to analyze for the first time the lipid profile of bAT in obese and lean mammary tumor-bearing and normal mice. Syngeneic E0771 mammary tumor cells were implanted into the mammary fat pad of lean and diet-induced obese C57BL/6 mice. BATs were analyzed four weeks after tumor cell inoculation by immunohistochemistry and mass spectrometry. Phospholipids were identified and subjected to ratiometric quantification using a TSQ Quantum Access Max triple quadrupole mass spectrometer utilizing precursor ion scan or neutral ion loss scan employing appropriate class specific lipid standards in a two step quantification process. Four main classes of phospholipids were analyzed: phosphatidylcholines phosphatidylserines, phosphatidylethanolamines and phosphatidylinositols. Our results showed that bAT in obese (normal and tumor-bearing) mice contained hypertrophic adipocytes compared with their corresponding samples in lean mice; higher numbers of macrophages and crown-like structures were observed in obese tumor bearers compared to obese normal mice. BAT from normal obese mice revealed higher concentrations of phosphatidylethanolamines. Furthermore, bAT from tumor-bearing mice expressed higher phosphatidylcholines than that from non-tumor bearing mice, suggesting the presence of the tumor is associated with phosphatidylcholines. Conversion of phosphatidylethanolamines to phosphatidylcholines will be investigated in E0771 cells. Additional studies are projected to investigate macrophage activation by these specific classes of phospholipids

  1. ATM is required for SOD2 expression and homeostasis within the mammary gland.

    PubMed

    Dyer, Lisa M; Kepple, Jessica D; Ai, Lingbao; Kim, Wan-Ju; Stanton, Virginia L; Reinhard, Mary K; Backman, Lindsey R F; Streitfeld, W Scott; Babu, Nivetha Ramesh; Treiber, Nicolai; Scharffetter-Kochanek, Karin; McKinnon, Peter J; Brown, Kevin D

    2017-12-01

    ATM activates the NF-κB transcriptional complex in response to genotoxic and oxidative stress. The purpose of this study was to examine if the NF-κB target gene and critical antioxidant SOD2 (MnSOD) in cultured mammary epithelium is also ATM-dependent, and what phenotypes arise from deletion of ATM and SOD2 within the mammary gland. SOD2 expression was studied in human mammary epithelial cells and MCF10A using RNAi to knockdown ATM or the NF-κB subunit RelA. To study ATM and SOD2 function in mammary glands, mouse lines containing Atm or Sod2 genes containing LoxP sites were mated with mice harboring Cre recombinase under the control of the whey acidic protein promoter. Quantitative PCR was used to measure gene expression, and mammary gland structure was studied using histology. SOD2 expression is ATM- and RelA-dependent, ATM knockdown renders cells sensitive to pro-oxidant exposure, and SOD mimetics partially rescue this sensitivity. Mice with germline deletion of Atm fail to develop mature mammary glands, but using a conditional knockout approach, we determined that Atm deletion significantly diminished the expression of Sod2. We also observed that these mice (termed Atm Δ/Δ ) displayed a progressive lactation defect as judged by reduced pup growth rate, aberrant lobulo-alveolar structure, diminished milk protein gene expression, and increased apoptosis within lactating glands. This phenotype appears to be linked to dysregulated Sod2 expression as mammary gland-specific deletion of Sod2 phenocopies defects observed in Atm Δ/Δ dams. We conclude that ATM is required to promote expression of SOD2 within the mammary epithelium, and that both ATM and SOD2 play a crucial role in mammary gland homeostasis.

  2. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twite, Nicolas; Andrei, Graciela; Kummert, Caroline

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMVmore » by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.« less

  3. Inducible transgenics. New lessons on events governing the induction and commitment in mammary tumorigenesis.

    PubMed

    Hulit, J; Di Vizio, D; Pestell, R G

    2001-01-01

    Breast cancer arises from multiple genetic events that together contribute to the established, irreversible malignant phenotype. The development of inducible tissue-specific transgenics has allowed a careful dissection of the events required for induction and subsequent maintenance of tumorigenesis. Mammary gland targeted expression of oncogenic Ras or c-Myc is sufficient for the induction of mammary gland tumorigenesis in the rodent, and when overexpressed together the rate of tumor onset is substantially enhanced. In an exciting recent finding, D'Cruz et al discovered tetracycline-regulated c-Myc overexpression in the mammary gland induced invasive mammary tumors that regressed upon withdrawal of c-Myc expression. Almost one-half of the c-Myc-induced tumors harbored K-ras or N-ras gene point mutations, correlating with tumor persistence on withdrawal of c-Myc transgene expression. These findings suggest maintenance of tumorigenesis may involve a second mutation within the Ras pathway.

  4. An unusual case of mammary gland-like carcinoma of vulva: case report and review of literature.

    PubMed

    Baykal, C; Dünder, I; Turkmen, I C; Ozyar, E

    2015-01-01

    Accessory breast tissue is a very rare finding in the general population with an incidence of one to two percent. An even rarer occurrence is accessory mammary-like tissue which developed breast carcinoma. The authors present a case of aggressive and metastatic carcinoma of vulvar originating from mammary-like tissue. A 73-year-old Caucasian female presented with a lesion in her left vulva. The lesion was ulcerated and fragile. A dermatologist had evaluated the lesion and took a punch biopsy. Result was vulvar carcinoma. She was admitted to the gynecologic oncology clinic then after and was operated. After a radical vulvectomy and bilateral inguinal lymphadenectomy she received adjuvant radiotherapy because of lymph node metastasis. One year after the finish of radiotherapy patient was found to have lung and femur metastasis. She began to receive systemic chemotherapy for metastasis. Primary mammary-like adenocarcinoma of the vulva is exceedingly rare. There is no consensus about the diagnosis, treatment, and follow up of these patients in literature. However, given that histological data confirms these cancers are behaving like breast cancers instead of known patterns of vulva cancer, the best treatment practices for breast cancer may be applied to treat these vulvar carcinoma patients.

  5. Met synergizes with p53 loss to induce mammary tumors that possess features of claudin-low breast cancer

    PubMed Central

    Knight, Jennifer F.; Lesurf, Robert; Zhao, Hong; Pinnaduwage, Dushanthi; Davis, Ryan R.; Saleh, Sadiq M. I.; Zuo, Dongmei; Naujokas, Monica A.; Chughtai, Naila; Herschkowitz, Jason I.; Prat, Aleix; Mulligan, Anna Marie; Muller, William J.; Cardiff, Robert D.; Gregg, Jeff P.; Andrulis, Irene L.; Hallett, Michael T.; Park, Morag

    2013-01-01

    Triple-negative breast cancer (TNBC) accounts for ∼20% of cases and contributes to basal and claudin-low molecular subclasses of the disease. TNBCs have poor prognosis, display frequent mutations in tumor suppressor gene p53 (TP53), and lack targeted therapies. The MET receptor tyrosine kinase is elevated in TNBC and transgenic Met models (Metmt) develop basal-like tumors. To investigate collaborating events in the genesis of TNBC, we generated Metmt mice with conditional loss of murine p53 (Trp53) in mammary epithelia. Somatic Trp53 loss, in combination with Metmt, significantly increased tumor penetrance over Metmt or Trp53 loss alone. Unlike Metmt tumors, which are histologically diverse and enriched in a basal-like molecular signature, the majority of Metmt tumors with Trp53 loss displayed a spindloid pathology with a distinct molecular signature that resembles the human claudin-low subtype of TNBC, including diminished claudins, an epithelial-to-mesenchymal transition signature, and decreased expression of the microRNA-200 family. Moreover, although mammary specific loss of Trp53 promotes tumors with diverse pathologies, those with spindloid pathology and claudin-low signature display genomic Met amplification. In both models, MET activity is required for maintenance of the claudin-low morphological phenotype, in which MET inhibitors restore cell-cell junctions, rescue claudin 1 expression, and abrogate growth and dissemination of cells in vivo. Among human breast cancers, elevated levels of MET and stabilized TP53, indicative of mutation, correlate with highly proliferative TNBCs of poor outcome. This work shows synergy between MET and TP53 loss for claudin-low breast cancer, identifies a restricted claudin-low gene signature, and provides a rationale for anti-MET therapies in TNBC. PMID:23509284

  6. Impact of pathologic diagnosis of internal mammary lymph node metastasis in clinical N2b and N3b breast cancer patients.

    PubMed

    Joo, Ji Hyeon; Kim, Su Ssan; Ahn, Seung-Do; Choi, Eun Kyung; Jung, Jin Hong; Jeong, Yuri; Ahn, Sei Hyun; Son, Byung Ho; Lee, Jong Won; Kim, Hee Jung; Go, Beom Seok; Kim, Hak Hee; Cha, Joo Hee; Shin, Hee Jung; Chae, Eun Young

    2017-11-01

    To analyze the prognostic role of pathologic confirmation of internal mammary lymph nodes (IMNs) for breast cancer patients who received neoadjuvant chemotherapy. Of the patients who were treated with neoadjuvant chemotherapy, surgery, and radiation therapy between 2009 and 2013, 114 women had suspicious IMNs and FNAB was attempted. Clinical IMN metastasis was diagnosed by 18F-FDG PET/CT positivity or pathologic confirmation (N = 70). Patients were divided into the FNAB(+) or FNAB(-) IMN group. The pathologic confirmation rate was 57% (40 of 70 patients). Rates were 74% in US-positive, 70% in MRI-positive, and 55% in PET-positive patients. Nodal stage was cN2b (6%) or cN3b (94%). Five-year progression-free survival (PFS) was significantly worse in patients with FNAB(+) IMN metastasis than FNAB(-) IMN metastasis (61% vs. 87%, P = 0.03). FNAB(+) IMN patients showed worse distant metastasis and regional recurrence-free survival without statistical significance (69% vs. 86%, P = 0.06, and 81% vs. 96%, P = 0.06). With median follow-up of 50.5 months (13.0-97.0 months), overall survival at 5 years was 77%, and PFS was 72%. Patients with FNAB-proven IMN metastasis had worse treatment outcomes compared to patients with clinically diagnosed IMN metastasis in cN2b/N3b breast cancer.

  7. Director's Message | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  8. Contact Us | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  9. Summary Tables | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  10. Indoor Tanning | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  11. Early Detection | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  12. Data Sources | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  13. Fat Consumption | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  14. Secondhand Smoke | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  15. HPV Immunization | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  16. Smoking Cessation | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  17. Tobacco Use | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  18. Data Resources | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  19. Alcohol Consumption | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  20. Custom Report | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  1. Physical Activity | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  2. Quitting Smoking | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  3. NCI Dictionary | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  4. Strain Differences in Dimethylbenz[a]anthracene-Induced Mammary Tumor Incidence in Long Evans and Sprague Dawley Rat Offspring Following Prenatal Atrazine Exposure

    EPA Science Inventory

    It has been shown that prenatal exposure to the chlorotriazine herbicide atrazine (ATR) during mammary bud outgrowth (late gestation) delays postnatal mammary epithelial progression in Long Evans (LE) rats. Our laboratory has recently found that prenatal exposure to ATR also effe...

  5. HZE Radiation Non-Targeted Effects on the Microenvironment That Mediate Mammary Carcinogenesis.

    PubMed

    Barcellos-Hoff, Mary Helen; Mao, Jian-Hua

    2016-01-01

    Clear mechanistic understanding of the biological processes elicited by radiation that increase cancer risk can be used to inform prediction of health consequences of medical uses, such as radiotherapy, or occupational exposures, such as those of astronauts during deep space travel. Here, we review the current concepts of carcinogenesis as a multicellular process during which transformed cells escape normal tissue controls, including the immune system, and establish a tumor microenvironment. We discuss the contribution of two broad classes of radiation effects that may increase cancer: radiation targeted effects that occur as a result of direct energy deposition, e.g., DNA damage, and non-targeted effects (NTE) that result from changes in cell signaling, e.g., genomic instability. It is unknown whether the potentially greater carcinogenic effect of high Z and energy (HZE) particle radiation is a function of the relative contribution or extent of NTE or due to unique NTE. We addressed this problem using a radiation/genetic mammary chimera mouse model of breast cancer. Our experiments suggest that NTE promote more aggressive cancers, as evidenced by increased growth rate, transcriptomic signatures, and metastasis, and that HZE particle NTE are more effective than reference γ-radiation. Emerging evidence suggest that HZE irradiation dampens antitumor immunity. These studies raise concern that HZE radiation exposure not only increases the likelihood of developing cancer but also could promote progression to more aggressive cancer with a greater risk of mortality.

  6. Gastric cancer-derived MSC-secreted PDGF-DD promotes gastric cancer progression.

    PubMed

    Huang, Feng; Wang, Mei; Yang, Tingting; Cai, Jie; Zhang, Qiang; Sun, Zixuan; Wu, Xiaodan; Zhang, Xu; Zhu, Wei; Qian, Hui; Xu, Wenrong

    2014-11-01

    This study was designed to investigate the role of PDGF-DD secreted by gastric cancer-derived mesenchymal stem cells (GC-MSCs) in human gastric cancer progression. Gastric cancer cells were indirectly co-cultured with GC-MSCs in a transwell system. The growth and migration of gastric cancer cells were evaluated by cell colony formation assay and transwell migration assay, respectively. The production of PDGF-DD in GC-MSCs was determined by using Luminex and ELISA. Neutralization of PDGFR-β by su16f and siRNA interference of PDGF-DD in GC-MSCs was used to demonstrate the role of PDGF-DD produced by GC-MSCs in gastric cancer progression. GC-MSC conditioned medium promoted gastric cancer cell proliferation and migration in vitro and in vivo. Co-culture with GC-MSCs increased the phosphorylation of PDGFR-β in SGC-7901 cells. Neutralization of PDGFR-β by su16f blocked the promoting role of GC-MSC conditioned medium in gastric cancer cell proliferation and migration. Recombinant PDGF-DD duplicated the effects of GC-MSC conditioned medium on gastric cancer cells. Knockdown of PDGF-DD in GC-MSCs abolished its effects on gastric cancer cells in vitro and in vivo. PDGF-DD secreted by GC-MSCs is capable of promoting gastric cancer cell progression in vitro and in vivo. Targeting the PDGF-DD/PDGFR-β interaction between MSCs and gastric cancer cells may represent a novel strategy for gastric cancer therapy.

  7. Fetal alcohol exposure and mammary tumorigenesis in offspring: role of the estrogen and insulin-like growth factor systems.

    PubMed

    Cohick, Wendie S; Crismale-Gann, Catina; Stires, Hillary; Katz, Tiffany A

    2015-01-01

    Fetal alcohol spectrum disorders affect a significant number of live births each year, indicating that alcohol consumption during pregnancy is an important public health issue. Environmental exposures and lifestyle choices during pregnancy may affect the offspring's risk of disease in adulthood, leading to the idea that a woman's risk of breast cancer may be pre-programmed prior to birth. Exposure of pregnant rats to alcohol increases tumorigenesis in the adult offspring in response to mammary carcinogens. The estrogen and insulin-like growth factor (IGF-I) axes occupy central roles in normal mammary gland development and breast cancer. 17-β estradiol (E2) and IGF-I synergize to regulate formation of terminal end buds and ductal elongation during pubertal development. The intracellular signaling pathways mediated by the estrogen and IGF-I receptors cross-talk at multiple levels through both genomic and non-genomic mechanisms. Several components of the E2 and IGF-I systems are altered in early development in rat offspring exposed to alcohol in utero, therefore, these changes may play a role in the enhanced susceptibility to mammary carcinogens observed in adulthood. Alcohol exposure in utero induces a number of epigenetic alterations in non-mammary tissues in the offspring and other adverse in utero exposures induce epigenetic modifications in the mammary gland. Future studies will determine if fetal alcohol exposure can induce epigenetic modifications in genes that regulate E2/IGF action at key phases of mammary development, ultimately leading to changes in susceptibility to carcinogens.

  8. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Isolation of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Isolate of long-term growth human mammary epithelial cells (HMEC) from outgrowth of duct element; cells shown soon after isolation and early in culture in a dish. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Robert Tichmond, NASA/Marshall Space Flight Center (MSFC).

  9. BRCA1-deficient mammary tumor cells are dependent on EZH2 expression and sensitive to Polycomb Repressive Complex 2-inhibitor 3-deazaneplanocin A.

    PubMed

    Puppe, Julian; Drost, Rinske; Liu, Xiaoling; Joosse, Simon A; Evers, Bastiaan; Cornelissen-Steijger, Paulien; Nederlof, Petra; Yu, Qiang; Jonkers, Jos; van Lohuizen, Maarten; Pietersen, Alexandra M

    2009-01-01

    Treatment of breast cancer is becoming more individualized with the recognition of tumor subgroups that respond differently to available therapies. Breast cancer 1 gene (BRCA1)-deficient tumors are usually of the basal subtype and associated with poor survival rates, highlighting the need for more effective therapy. We investigated a mouse model that closely mimics breast cancer arising in BRCA1-mutation carriers to better understand the molecular mechanism of tumor progression and tested whether targeting of the Polycomb-group protein EZH2 would be a putative therapy for BRCA1-deficient tumors. Gene expression analysis demonstrated that EZH2 is overexpressed in BRCA1-deficient mouse mammary tumors. By immunohistochemistry we show that an increase in EZH2 protein levels is also evident in tumors from BRCA1-mutation carriers. EZH2 is responsible for repression of genes driving differentiation and could thus be involved in the undifferentiated phenotype of these tumors. Importantly, we show that BRCA1-deficient cancer cells are selectively dependent on their elevated EZH2 levels. In addition, a chemical inhibitor of EZH2, 3-deazaneplanocin A (DZNep), is about 20-fold more effective in killing BRCA1-deficient cells compared to BRCA1-proficient mammary tumor cells. We demonstrate by specific knock-down experiments that EZH2 overexpression is functionally relevant in BRCA1-deficient breast cancer cells. The effectiveness of a small molecule inhibitor indicates that EZH2 is a druggable target. The overexpression of EZH2 in all basal-like breast cancers warrants further investigation of the potential for targeting the genetic make-up of this particular breast cancer type.

  10. Declining death rates reflect progress against cancer.

    PubMed

    Jemal, Ahmedin; Ward, Elizabeth; Thun, Michael

    2010-03-09

    The success of the "war on cancer" initiated in 1971 continues to be debated, with trends in cancer mortality variably presented as evidence of progress or failure. We examined temporal trends in death rates from all-cancer and the 19 most common cancers in the United States from 1970-2006. We analyzed trends in age-standardized death rates (per 100,000) for all cancers combined, the four most common cancers, and 15 other sites from 1970-2006 in the United States using joinpoint regression model. The age-standardized death rate for all-cancers combined in men increased from 249.3 in 1970 to 279.8 in 1990, and then decreased to 221.1 in 2006, yielding a net decline of 21% and 11% from the 1990 and 1970 rates, respectively. Similarly, the all-cancer death rate in women increased from 163.0 in 1970 to 175.3 in 1991 and then decreased to 153.7 in 2006, a net decline of 12% and 6% from the 1991 and 1970 rates, respectively. These decreases since 1990/91 translate to preventing of 561,400 cancer deaths in men and 205,700 deaths in women. The decrease in death rates from all-cancers involved all ages and racial/ethnic groups. Death rates decreased for 15 of the 19 cancer sites, including the four major cancers, with lung, colorectum and prostate cancers in men and breast and colorectum cancers in women. Progress in reducing cancer death rates is evident whether measured against baseline rates in 1970 or in 1990. The downturn in cancer death rates since 1990 result mostly from reductions in tobacco use, increased screening allowing early detection of several cancers, and modest to large improvements in treatment for specific cancers. Continued and increased investment in cancer prevention and control, access to high quality health care, and research could accelerate this progress.

  11. Intraductal administration of a polymeric nanoparticle formulation of curcumin (NanoCurc) significantly attenuates incidence of mammary tumors in a rodent chemical carcinogenesis model: Implications for breast cancer chemoprevention in at-risk populations

    PubMed Central

    Chun, Yong Soon; Maitra, Anirban; Sukumar, Saraswati

    2012-01-01

    Multiple lines of evidence support a role for curcumin in cancer chemoprevention. Nonetheless, despite its reported efficacy and safety profile, clinical translation of curcumin has been hampered by low oral bioavailability, requiring infeasible ‘mega’ doses for achieving detectable tissue levels. We have engineered a polymeric nanoparticle encapsulated formulation of curcumin (NanoCurc) to harness its full therapeutic potential. In the current study, we assessed the chemoprevention efficacy of NanoCurc administered via direct intraductal (i.duc) injection in a chemical carcinogen-induced rodent mammary cancer model. Specifically, Sprague–Dawley rats exposed to systemic N-methyl-N-nitrosourea were randomized to receive either oral free curcumin at a previously reported ‘mega’ dose (200mg/kg) or by direct i.duc injection of free curcumin or NanoCurc, respectively, each delivering 168 µg equivalent of curcumin per rodent teat (a ~20-fold lower dose per animal compared to oral administration). All three chemoprevention modalities resulted in significantly lower mammary tumor incidence compared with control rats; however, there was no significant difference in cancer incidence between the oral dosing and either i.duc arms. On the other hand, mean tumor size, was significantly smaller in the i.duc NanoCurc cohort compared with i.duc free curcumin (P < 0.0001), suggesting the possibility of better resectability for ‘breakthrough’ cancers. Reduction in cancer incidence was associated with significant decrease in nuclear factor -κB activation in the NanoCurc treated mammary epithelium explants, compared to either control or oral curcumin-administered rats. Our studies confirm the potential for i.duc NanoCurc as an alternative to the oral route for breast cancer chemoprevention in high-risk cohorts. PMID:22831956

  12. CXCR4 expression in feline mammary carcinoma cells: evidence of a proliferative role for the SDF-1/CXCR4 axis.

    PubMed

    Ferrari, Angelo; Petterino, Claudio; Ratto, Alessandra; Campanella, Chiara; Wurth, Roberto; Thellung, Stefano; Vito, Guendalina; Barbieri, Federica; Florio, Tullio

    2012-03-14

    Mammary tumours frequently develop in female domestic cats being highly malignant in a large percentage of cases. Chemokines regulate many physiological and pathological processes including organogenesis, chemotaxis of inflammatory cells, as well as tumour progression and metastasization. In particular, the chemokine/receptor pair SDF-1/CXCR4 has been involved in the regulation of metastatic potential of neoplastic cells, including breast cancer. The aim of this study was the immunohistochemical defininition of the expression profile of CXCR4 in primary and metastatic feline mammary carcinomas and the evaluation of the role of SDF-1 in feline mammary tumour cell proliferation. A total of 45 mammary surgical samples, including 33 primary tumours (31 carcinomas and 2 adenomas), 6 metastases, and 4 normal mammary tissues were anlyzed. Tumor samples were collected from a total number of 26 animals, as in some cases concurrent occurrence of neoplasm in more than one mammary gland was observed. Tissues were processed for standard histological examination, and all lesions were classified according to the World Health Organization criteria. CXCR4 expression in neoplastic cells was evaluated by immunohistochemistry. The level of CXCR4 immunoreactivity was semi-quantitatively estimated as CXCR4 score evaluating both the number of positive cells and the intensity of staining. Six primary, fibroblast-free primary cultures were obtained from fresh feline mammary carcinomas and characterized by immunofluorescence for CXCR4 and malignant mammary cell marker expression. SDF-1-dependent in vitro proliferative effects were also assayed. CXCR4 expression was observed in 29 out of 31 malignant tissues with a higher CXCR4 score observed in 4 out of 6 metastatic lesions than in the respective primary tumours. In 2 benign lesions analyzed, only the single basaloid adenoma showed a mild positive immunostaining against CXCR4. Normal tissue did not show CXCR4 immunoreactivity. CXCR4 score

  13. TP53 supports basal-like differentiation of mammary epithelial cells by preventing translocation of deltaNp63 into nucleoli

    NASA Astrophysics Data System (ADS)

    Munne, Pauliina M.; Gu, Yuexi; Tumiati, Manuela; Gao, Ping; Koopal, Sonja; Uusivirta, Sanna; Sawicki, Janet; Wei, Gong-Hong; Kuznetsov, Sergey G.

    2014-04-01

    Multiple observations suggest a cell type-specific role for TP53 in mammary epithelia. We developed an in vitro assay, in which primary mouse mammary epithelial cells (mMECs) progressed from lumenal to basal-like phenotypes based on expression of Krt18 or ΔNp63, respectively. Such transition was markedly delayed in Trp53-/- mMECs suggesting that Trp53 is required for specification of the basal, but not lumenal cells. Evidence from human basal-like cell lines suggests that TP53 may support the activity of ΔNp63 by preventing its translocation from nucleoplasm into nucleoli. In human lumenal cells, activation of TP53 by inhibiting MDM2 or BRCA1 restored the nucleoplasmic expression of ΔNp63. Trp53-/- mMECs eventually lost epithelial features resulting in upregulation of MDM2 and translocation of ΔNp63 into nucleoli. We propose that TP63 may contribute to TP53-mediated oncogenic transformation of epithelial cells and shed light on tissue- and cell type-specific biases observed for TP53-related cancers.

  14. TP53 supports basal-like differentiation of mammary epithelial cells by preventing translocation of deltaNp63 into nucleoli

    PubMed Central

    Munne, Pauliina M.; Gu, Yuexi; Tumiati, Manuela; Gao, Ping; Koopal, Sonja; Uusivirta, Sanna; Sawicki, Janet; Wei, Gong-Hong; Kuznetsov, Sergey G.

    2014-01-01

    Multiple observations suggest a cell type-specific role for TP53 in mammary epithelia. We developed an in vitro assay, in which primary mouse mammary epithelial cells (mMECs) progressed from lumenal to basal-like phenotypes based on expression of Krt18 or ΔNp63, respectively. Such transition was markedly delayed in Trp53−/− mMECs suggesting that Trp53 is required for specification of the basal, but not lumenal cells. Evidence from human basal-like cell lines suggests that TP53 may support the activity of ΔNp63 by preventing its translocation from nucleoplasm into nucleoli. In human lumenal cells, activation of TP53 by inhibiting MDM2 or BRCA1 restored the nucleoplasmic expression of ΔNp63. Trp53−/− mMECs eventually lost epithelial features resulting in upregulation of MDM2 and translocation of ΔNp63 into nucleoli. We propose that TP63 may contribute to TP53-mediated oncogenic transformation of epithelial cells and shed light on tissue- and cell type-specific biases observed for TP53-related cancers. PMID:24722541

  15. TP53 supports basal-like differentiation of mammary epithelial cells by preventing translocation of deltaNp63 into nucleoli.

    PubMed

    Munne, Pauliina M; Gu, Yuexi; Tumiati, Manuela; Gao, Ping; Koopal, Sonja; Uusivirta, Sanna; Sawicki, Janet; Wei, Gong-Hong; Kuznetsov, Sergey G

    2014-04-11

    Multiple observations suggest a cell type-specific role for TP53 in mammary epithelia. We developed an in vitro assay, in which primary mouse mammary epithelial cells (mMECs) progressed from lumenal to basal-like phenotypes based on expression of Krt18 or ΔNp63, respectively. Such transition was markedly delayed in Trp53(-/-) mMECs suggesting that Trp53 is required for specification of the basal, but not lumenal cells. Evidence from human basal-like cell lines suggests that TP53 may support the activity of ΔNp63 by preventing its translocation from nucleoplasm into nucleoli. In human lumenal cells, activation of TP53 by inhibiting MDM2 or BRCA1 restored the nucleoplasmic expression of ΔNp63. Trp53(-/-) mMECs eventually lost epithelial features resulting in upregulation of MDM2 and translocation of ΔNp63 into nucleoli. We propose that TP63 may contribute to TP53-mediated oncogenic transformation of epithelial cells and shed light on tissue- and cell type-specific biases observed for TP53-related cancers.

  16. Prolactin Alters the Mammary Epithelial Hierarchy, Increasing Progenitors and Facilitating Ovarian Steroid Action.

    PubMed

    O'Leary, Kathleen A; Shea, Michael P; Salituro, Stephanie; Blohm, Courtney E; Schuler, Linda A

    2017-10-10

    Hormones drive mammary development and function and play critical roles in breast cancer. Epidemiologic studies link prolactin (PRL) to increased risk for aggressive cancers that express estrogen receptor α (ERα). However, in contrast to ovarian steroids, PRL actions on the mammary gland outside of pregnancy are poorly understood. We employed the transgenic NRL-PRL model to examine the effects of PRL alone and with defined estrogen/progesterone exposure on stem/progenitor activity and regulatory networks that drive epithelial differentiation. PRL increased progenitors and modulated transcriptional programs, even without ovarian steroids, and with steroids further raised stem cell activity associated with elevated canonical Wnt signaling. However, despite facilitating some steroid actions, PRL opposed steroid-driven luminal maturation and increased CD61 + luminal cells. Our findings demonstrate that PRL can powerfully influence the epithelial hierarchy alone and temper the actions of ovarian steroids, which may underlie its role in the development of breast cancer. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium

    PubMed Central

    Ewald, Andrew J.; Huebner, Robert J.; Palsdottir, Hildur; Lee, Jessie K.; Perez, Melissa J.; Jorgens, Danielle M.; Tauscher, Andrew N.; Cheung, Kevin J.; Werb, Zena; Auer, Manfred

    2012-01-01

    Normal mammary morphogenesis involves transitions between simple and multilayered epithelial organizations. We used electron microscopy and molecular markers to determine whether intercellular junctions and apico-basal polarity were maintained in the multilayered epithelium. We found that multilayered elongating ducts had polarized apical and basal tissue surfaces both in three-dimensional culture and in vivo. However, individual cells were only polarized on surfaces in contact with the lumen or extracellular matrix. The basolateral marker scribble and the apical marker atypical protein kinase C zeta localized to all interior cell membranes, whereas PAR3 displayed a cytoplasmic localization, suggesting that the apico-basal polarity was incomplete. Despite membrane localization of E-cadherin and β-catenin, we did not observe a defined zonula adherens connecting interior cells. Instead, interior cells were connected through desmosomes and exhibited complex interdigitating membrane protrusions. Single-cell labeling revealed that individual cells were both protrusive and migratory within the epithelial multilayer. Inhibition of Rho kinase (ROCK) further reduced intercellular adhesion on apical and lateral surfaces but did not disrupt basal tissue organization. Following morphogenesis, segregated membrane domains were re-established and junctional complexes re-formed. We observed similar epithelial organization during mammary morphogenesis in organotypic culture and in vivo. We conclude that mammary epithelial morphogenesis involves a reversible, spatially limited, reduction in polarity and intercellular junctions and active individualistic cell migration. Our data suggest that reductions in polarity and adhesion during breast cancer progression might reflect partial recapitulation of a normal developmental program. PMID:22344263

  18. Comparative Roles of Overexpressed and Mutated H- and K-ras in Mammary Carcinogenesis.

    DTIC Science & Technology

    1996-08-01

    transgene of these tumors. 14. SUBJECT TERMS 15. NUMBER OF PAGES Breast Cancer , mammary carcinogenesis, oncogenes, ras genes, 44 replication defective...27 Appendix 5 29 Appendix 6 31 Appendix 7 33 Appendix 8 35 Appendix 9 37 Appendix 10 39 Introduction Breast cancer development involves multiple poorly...understood steps (25). Currently, several genes that may participate in breast cancer development are under investigation. The ras family of genes

  19. Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia

    NASA Technical Reports Server (NTRS)

    Holst, Charles R.; Nuovo, Gerard J.; Esteller, Manel; Chew, Karen; Baylin, Stephen B.; Herman, James G.; Tlsty, Thea D.

    2003-01-01

    Cultures of human mammary epithelial cells (HMECs) contain a subpopulation of variant cells with the capacity to propagate beyond an in vitro proliferation barrier. These variant HMECs, which contain hypermethylated and silenced p16(INK4a) (p16) promoters, eventually accumulate multiple chromosomal changes, many of which are similar to those detected in premalignant and malignant lesions of breast cancer. To determine the origin of these variant HMECs in culture, we used Luria-Delbruck fluctuation analysis and found that variant HMECs exist within the population before the proliferation barrier, thereby raising the possibility that variant HMECs exist in vivo before cultivation. To test this hypothesis, we examined mammary tissue from normal women for evidence of p16 promoter hypermethylation. Here we show that epithelial cells with methylation of p16 promoter sequences occur in focal patches of histologically normal mammary tissue of a substantial fraction of healthy, cancer-free women.

  20. Pregnancy postponement and childlessness leads to chronic hypervascularity of the breasts and cancer risk

    PubMed Central

    Simpson, H W; McArdle, C S; George, W D; Griffiths, K; Turkes, A; Pauson, A W

    2002-01-01

    Epidemiologists have established that women with small families, and particularly nulliparae, are prone to develop breast cancer later in life. We report that physiological mammary hypervascularity may be an intermediate reason against the background that breast-core vascularity is normal in pregnancy but pathological in the vascularisation of cancer. We examined breast ‘core’ vascularity in nulliparae during their potential reproductive life and in parous women after their last birth but before their menopause. Fifty clinically normal pre-menopausal non-pregnant women (100 breasts) were studied daily for one ‘luteal positive’ menstrual cycle. Their parity history varied from zero to five babies. Under controlled domestic conditions each wore a special electronic thermometric bra to automatically record breast ‘core’ temperature changes as a measure of mammary tissue blood flow. In the nulliparae there was a rise of breast vascularity throughout reproductive life. In the parous women, a year or so after each birth, breast vascularity was reset at a lower level than before the pregnancy; thereafter, as in nulliparae, there was progressive increase in mammary vascularity until the menopause. British Journal of Cancer (2002) 87, 1246–1252. doi:10.1038/sj.bjc.6600600 www.bjcancer.com © 2002 Cancer Research UK PMID:12439713

  1. Epstein-Barr virus, human papillomavirus and mouse mammary tumour virus as multiple viruses in breast cancer.

    PubMed

    Glenn, Wendy K; Heng, Benjamin; Delprado, Warick; Iacopetta, Barry; Whitaker, Noel J; Lawson, James S

    2012-01-01

    The purpose of this investigation is to determine if Epstein Barr virus (EBV), high risk human papillomavirus (HPV), and mouse mammary tumour viruses (MMTV) co-exist in some breast cancers. All the specimens were from women residing in Australia. For investigations based on standard PCR, we used fresh frozen DNA extracts from 50 unselected invasive breast cancers. For normal breast specimens, we used DNA extracts from epithelial cells from milk donated by 40 lactating women. For investigations based on in situ PCR we used 27 unselected archival formalin fixed breast cancer specimens and 18 unselected archival formalin fixed normal breast specimens from women who had breast reduction surgery. Thirteen of these fixed breast cancer specimens were ductal carcinoma in situ (dcis) and 14 were predominantly invasive ductal carcinomas (idc). EBV sequences were identified in 68%, high risk HPV sequences in 50%, and MMTV sequences in 78% of DNA extracted from 50 invasive breast cancer specimens. These same viruses were identified in selected normal and breast cancer specimens by in situ PCR. Sequences from more than one viral type were identified in 72% of the same breast cancer specimens. Normal controls showed these viruses were also present in epithelial cells in human milk - EBV (35%), HPV, 20%) and MMTV (32%) of 40 milk samples from normal lactating women, with multiple viruses being identified in 13% of the same milk samples. We conclude that (i) EBV, HPV and MMTV gene sequences are present and co-exist in many human breast cancers, (ii) the presence of these viruses in breast cancer is associated with young age of diagnosis and possibly an increased grade of breast cancer.

  2. Silencing vimentin expression decreases pulmonary metastases in a pre-diabetic mouse model of mammary tumor progression.

    PubMed

    Zelenko, Z; Gallagher, E J; Tobin-Hess, A; Belardi, V; Rostoker, R; Blank, J; Dina, Y; LeRoith, D

    2017-03-01

    Increased breast cancer risk and mortality has been associated with obesity and type 2 diabetes (T2D). Hyperinsulinemia, a key factor in obesity, pre-diabetes and T2D, has been associated with decreased breast cancer survival. In this study, a mouse model of pre-diabetes (MKR mouse) was used to investigate the mechanisms through which endogenous hyperinsulinemia promotes mammary tumor metastases. The MKR mice developed larger primary tumors and greater number of pulmonary metastases compared with wild-type (WT) mice after injection with c-Myc/Vegf overexpressing MVT-1 cells. Analysis of the primary tumors showed significant increase in vimentin protein expression in the MKR mice compared with WT. We hypothesized that vimentin was an important mediator in the effect of hyperinsulinemia on breast cancer metastasis. Lentiviral short hairpin RNA knockdown of vimentin led to a significant decrease in invasion of the MVT-1 cells and abrogated the increase in cell invasion in response to insulin. In the pre-diabetic MKR mouse, vimentin knockdown led to a decrease in pulmonary metastases. In vitro, we found that insulin increased pAKT, prevented caspase 3 activation, and increased vimentin. Inhibiting the phosphatidylinositol 3 kinase/AKT pathway, using NVP-BKM120, increased active caspase 3 and decreased vimentin levels. This study is the first to show that vimentin has an important role in tumor metastasis in vivo in the setting of pre-diabetes and endogenous hyperinsulinemia. Vimentin targeting may be an important therapeutic strategy to reduce metastases in patients with obesity, pre-diabetes or T2D.

  3. Characterization of protein marker expression, tumorigenicity, and doxorubicin chemoresistance in two new canine mammary tumor cell lines.

    PubMed

    Hsiao, Yen-Ling; Hsieh, Tai-Zu; Liou, Chian-Jiun; Cheng, Yeong-Hsiang; Lin, Chung-Tien; Chang, Chi-Yao; Lai, Yu-Shen

    2014-09-30

    Canine mammary tumors (CMTs) are the most common type of cancer found in female dogs. Establishment and evaluation of tumor cell lines can facilitate investigations of the biological mechanisms of cancer. Different cell models are used to investigate genetic, epigenetic, and cellular pathways, cancer progression, and cancer therapeutics. Establishment of new cell models will greatly facilitate research in this field. In the present study, we established and characterized two new CMT cell lines derived from a single CMT. We established two cell lines from a single malignant CMT specimen: DTK-E and DTK-SME. Morphologically, the DTK-E cells were large, flat, and epithelial-like, whereas DTK-SME cells were round and epithelial-like. Doubling times were 24 h for DTK-E and 18 h for DTK-SME. On western blots, both cell lines expressed cytokeratin AE1, vimentin, cytokeratin 7 (CK7), and heat shock protein 27 (HSP27). Moreover, investigation of chemoresistance revealed that DTK-SME was more resistant to doxorubicin-induced apoptosis than DTK-E was. After xenotransplantation, both DTK-E and DTK-SME tumors appeared within 14 days, but the average size of DTK-SME tumors was greater than that of DTK-E tumors after 56 days. We established two new cell lines from a single CMT, which exhibit significant diversity in cell morphology, protein marker expression, tumorigenicity, and chemoresistance. The results of this study revealed that the DTK-SME cell line was more resistant to doxorubicin-induced apoptosis and exhibited higher tumorigenicity in vivo than the DTK-E cell line. We anticipate that the two novel CMT cell lines established in this study will be useful for investigating the tumorigenesis of mammary carcinomas and for screening anticancer drugs.

  4. Enhanced degradation of p53 protein in HPV-6 and BPV-1 E6-immortalized human mammary epithelial cells.

    PubMed Central

    Band, V; Dalal, S; Delmolino, L; Androphy, E J

    1993-01-01

    Normal mammary epithelial cells are efficiently immortalized by the E6 gene of human papillomavirus (HPV)-16, a virus commonly associated with cervical cancers. Surprisingly, introduction of the E6 gene from HPV-6, which is rarely found in cervical cancer, or bovine papillomavirus (BPV)-1, into normal mammary cells resulted in the generation of immortal cell lines. The establishment of HPV-6 and BPV-1 E6-immortalized cells was less efficient and required a longer period in comparison to HPV-16 E6. These HPV-6- and BPV-1 E6-immortalized cells demonstrated dramatically reduced levels of p53 protein by immunoprecipitation. While the half-life of p53 protein in normal mammary epithelial cells was approximately 3 h, it was reduced to approximately 15 min in all the E6-immortalized cells. These results demonstrate that the E6 genes of both high-risk and low-risk papilloma viruses immortalize human mammary epithelial cells and induce a marked degradation of p53 protein in vivo. Images PMID:8387914

  5. Role of peptidylarginine deiminase 2 (PAD2) in mammary carcinoma cell migration.

    PubMed

    Horibata, Sachi; Rogers, Katherine E; Sadegh, David; Anguish, Lynne J; McElwee, John L; Shah, Pragya; Thompson, Paul R; Coonrod, Scott A

    2017-05-26

    Penetration of the mammary gland basement membrane by cancer cells is a crucial first step in tumor invasion. Using a mouse model of ductal carcinoma in situ, we previously found that inhibition of peptidylarginine deiminase 2 (PAD2, aka PADI2) activity appears to maintain basement membrane integrity in xenograft tumors. The goal of this investigation was to gain insight into the mechanisms by which PAD2 mediates this process. For our study, we modulated PAD2 activity in mammary ductal carcinoma cells by lentiviral shRNA-mediated depletion, lentiviral-mediated PAD2 overexpression, or PAD inhibition and explored the effects of these treatments on changes in cell migration and cell morphology. We also used these PAD2-modulated cells to test whether PAD2 may be required for EGF-induced cell migration. To determine how PAD2 might promote tumor cell migration in vivo, we tested the effects of PAD2 inhibition on the expression of several cell migration mediators in MCF10DCIS.com xenograft tumors. In addition, we tested the effect of PAD2 inhibition on EGF-induced ductal invasion and elongation in primary mouse mammary organoids. Lastly, using a transgenic mouse model, we investigated the effects of PAD2 overexpression on mammary gland development. Our results indicate that PAD2 depletion or inhibition suppresses cell migration and alters the morphology of MCF10DCIS.com cells. In addition, we found that PAD2 depletion suppresses the expression of the cytoskeletal regulatory proteins RhoA, Rac1, and Cdc42 and also promotes a mesenchymal to epithelial-like transition in tumor cells with an associated increase in the cell adhesion marker, E-cadherin. Our mammary gland organoid study found that inhibition of PAD2 activity suppresses EGF-induced ductal invasion. In vivo, we found that PAD2 overexpression causes hyperbranching in the developing mammary gland. Together, these results suggest that PAD2 plays a critical role in breast cancer cell migration. Our findings that EGF

  6. Basic Research and Progress against Cancer

    Cancer.gov

    An infographic about the importance of basic research for making progress against cancer. The graphic shows the research milestones that led to the development and approval of crizotinib (Xalkori®) to treat certain non-small cell lung cancers.

  7. Myeloid Cell COX-2 deletion reduces mammary tumor growth through enhanced cytotoxic T-lymphocyte function

    PubMed Central

    Chen, Edward P.; Markosyan, Nune; Connolly, Emma; Lawson, John A.; Li, Xuanwen; Grant, Gregory R.; Grosser, Tilo; FitzGerald, Garret A.; Smyth, Emer M.

    2014-01-01

    Cyclooxygenase-2 (COX-2) expression is associated with poor prognosis across a range of human cancers, including breast cancer. The contribution of tumor cell-derived COX-2 to tumorigenesis has been examined in numerous studies; however, the role of stromal-derived COX-2 is ill-defined. Here, we examined how COX-2 in myeloid cells, an immune cell subset that includes macrophages, influences mammary tumor progression. In mice engineered to selectively lack myeloid cell COX-2 [myeloid-COX-2 knockout (KO) mice], spontaneous neu oncogene-induced tumor onset was delayed, tumor burden reduced, and tumor growth slowed compared with wild-type (WT). Similarly, growth of neu-transformed mammary tumor cells as orthotopic tumors in immune competent syngeneic myeloid-COX-2 KO host mice was reduced compared with WT. By flow cytometric analysis, orthotopic myeloid-COX-2 KO tumors had lower tumor-associated macrophage (TAM) infiltration consistent with impaired colony stimulating factor-1-dependent chemotaxis by COX-2 deficient macrophages in vitro. Further, in both spontaneous and orthotopic tumors, COX-2-deficient TAM displayed lower immunosuppressive M2 markers and this was coincident with less suppression of CD8+ cytotoxic T lymphocytes (CTLs) in myeloid-COX-2 KO tumors. These studies suggest that reduced tumor growth in myeloid-COX-2 KO mice resulted from disruption of M2-like TAM function, thereby enhancing T-cell survival and immune surveillance. Antibody-mediated depletion of CD8+, but not CD4+ cells, restored tumor growth in myeloid-COX-2 KO to WT levels, indicating that CD8+ CTLs are dominant antitumor effectors in myeloid-COX-2 KO mice. Our studies suggest that inhibition of myeloid cell COX-2 can potentiate CTL-mediated tumor cytotoxicity and may provide a novel therapeutic approach in breast cancer therapy. PMID:24590894

  8. Molecular events involved in the increased expression of matrix metalloproteinase-9 by T lymphocytes of mammary tumor-bearing mice.

    PubMed

    Owen, Jennifer L; Torroella-Kouri, Marta; Iragavarapu-Charyulu, Vijaya

    2008-01-01

    Matrix metalloproteinases (MMPs) are a family of extracellular proteinases whose contributions to cancer progression have been studied because of their matrix-degrading abilities and elevated expression in advanced stage tumors. Recent findings suggest a role for MMPs during the multiple stages of tumor progression including establishment and growth, migration, invasion, metastasis, and angiogenesis. MMP-9 regulation at the molecular level can be studied by measuring the effect(s) of a variety of physiological and pharmacological agents on cells. Multiple signaling molecules such as protein kinase C, pertussis toxin-sensitive guanine nucleotide-binding protein G, and protein tyrosine kinases are known to mediate the secretion of MMPs in cell lines. We previously reported an upregulation of MMP-9 in T cells of mammary tumor-bearing mice. In this study, pharmacologic inhibitors were used to dissect the signaling pathways involved in the upregulation of MMP-9 in the splenic T cells of normal and mammary tumor-bearing mice. Staurosporine, a protein kinase inhibitor, stimulated MMP-9 secretion by normal T lymphocytes, while the constitutively high levels of MMP-9 produced by tumor bearers' T cells were decreased by Genistein, a specific tyrosine kinase inhibitor, and Rottlerin, a PKC inhibitor. Using a NF-kappaB specific probe to the murine MMP-9 promoter, electromobility shift assays of nuclear proteins from normal and tumor bearers' splenic T cells revealed a pattern of higher intensity bands from the tumor bearers' nuclear extracts, indicating a greater amount of these transcription factors bound to the recognition motif. When mammary tumor bearers' T cells were cultured with the NF-kappaB inhibitors, N-p-Tosyl-L-lysine chloromethyl ketone hydrochloride and Bay 11-7082, there was a subsequent decreased production of MMP-9. These results suggest that the tumor burden may be activating various signaling pathways within splenic T lymphocytes to upregulate MMP-9

  9. Mammary Tumors Initiated by Constitutive Cdk2 Activation Contain an Invasive Basal-like Component1

    PubMed Central

    Corsino, Patrick E; Davis, Bradley J; Nörgaard, Peter H; Teoh Parker, Nicole N; Law, Mary; Dunn, William; Law, Brian K

    2008-01-01

    The basal-like subtype of breast cancer is associated with invasiveness, high rates of postsurgical recurrence, and poor prognosis. Aside from inactivation of the BRCA1 tumor-suppressor gene, little is known concerning the mechanisms that cause basal breast cancer or the mechanisms responsible for its invasiveness. Here, we show that the heterogeneous mouse mammary tumor virus-cyclin D1-Cdk2 (MMTV-D1K2) transgenic mouse mammary tumors contain regions of spindle-shaped cells expressing both luminal and myoepithelial markers. Cell lines cultured from these tumors exhibit the same luminal/myoepithelial mixed-lineage phenotype that is associated with human basal-like breast cancer and express a number of myoepithelial markers including cytokeratin 14, P-cadherin, α smooth muscle actin, and nestin. The MMTV-D1K2 tumor-derived cell lines form highly invasive tumors when injected into mouse mammary glands. Invasion is associated with E-cadherin localization to the cytoplasm or loss of E-cadherin expression. Cytoplasmic E-cadherin correlates with lack of colony formation in vitro and β-catenin and p120ctn localization to the cytoplasm. The data suggest that the invasiveness of these cell lines results from a combination of factors including mislocalization of E-cadherin, β-catenin, and p120ctn to the cytoplasm. Nestin expression and E-cadherin mislocalization were also observed in human basal-like breast cancer cell lines, suggesting that these results are relevant to human tumors. Together, these results suggest that abnormal Cdk2 activation may contribute to the formation of basal-like breast cancers. PMID:18953433

  10. Molecular Action of a Potential Tumor Suppression in Mammary Carcinogenesis

    DTIC Science & Technology

    2006-05-01

    translocation in MDA-MB231 cells, as shown in Fig. 5D , indicating that Tid1 inhibits FVII -induced IL-8 production and cell migration by blocking NF-nB...tissue factor - FVIIa pathway modulates the migratory potential of cancer cells through IL-8 production (7). As Tid1 blocks the IL-8 production of...Introduction: ErbB family of growth factor receptors (ErbB1-4) are critically involved in the derivation of certain mammary cancers [1-3]. Among them

  11. Progress Toward Cancer Data Ecosystems.

    PubMed

    Grossman, Robert L

    One of the recommendations of the Cancer Moonshot Blue Ribbon Panel report from 2016 was the creation of a national cancer data ecosystem. We review some of the approaches for building cancer data ecosystems and some of the progress that has been made. A data commons is the colocation of data with cloud computing infrastructure and commonly used software services, tools, and applications for managing, integrating, analyzing, and sharing data to create an interoperable resource for the research community. We discuss data commons and their potential role in cancer data ecosystems and, in particular, how multiple data commons can interoperate to form part of the foundation for a cancer data ecosystem.

  12. Effects of the conjugated equine estrogen/bazedoxifene tissue-selective estrogen complex (TSEC) on mammary gland and breast cancer in mice.

    PubMed

    Song, Yan; Santen, Richard J; Wang, Ji-ping; Yue, Wei

    2012-12-01

    A tissue-selective estrogen complex (TSEC), combining a selective estrogen receptor modulator, bazedoxifene (BZA), with conjugated equine estrogen (CEE), represents a novel strategy of menopausal hormone therapy without involving a progestin. We hypothesized that the antiestrogenic properties of BZA can also block the estrogenic effects of CEE on breast tissue and thereby prevent breast cancer in women. To test our hypothesis, the effects of estradiol (E(2)), CEE, and BZA on mammary gland and breast cancer xenografts were assessed in mouse models. In immature castrate mice, BZA completely blocked CEE- or E(2)-stimulated ductal and terminal end bud growth of mammary gland as well as estrogen-responsive gene expression. As a positive control, E(2) stimulated tumor growth in nude mice bearing MCF-7 xenografts. This effect was completely blocked by BZA as were E(2)-stimulated expression of PR, pS2 (trefoil factor 1), cMyc, and AREG; the enhancement of Ki67 and proliferating cell nuclear antigen (PCNA); and the antiapoptotic effect. CEE was much less potent than E(2) in stimulating Ki67, reducing apoptosis, and stimulating gene expression, but all effects were blocked by BZA. Unexpectedly, CEE alone, even at high doses, did not stimulate tumor growth. As confirmation of its absorption and deconjugation, CEE caused a 6-fold increase in uterine weight and stimulation of gene expression. These data support our hypothesis that the net effect of the CEE/BZA TSEC is to block estrogen action in benign and malignant breast tissue. These findings provide a rationale for a clinical study to determine whether this TSEC prevents breast cancer in women.

  13. Megalin-Mediated Endocytosis of Vitamin D Binding Protein Correlates with 25-Hydroxycholecalciferol Actions in Human Mammary Cells1

    PubMed Central

    Rowling, Matthew J.; Kemmis, Carly M.; Taffany, David A.; Welsh, JoEllen

    2007-01-01

    The major circulating form of vitamin D is 25-hydroxycholecalciferol [25(OH)D3], which is delivered to target tissues in complex with the serum vitamin D binding protein (DBP). We recently observed that mammary cells can metabolize 25(OH)D3 to 1,25-dihydroxycholecalciferol [1,25(OH)2D3], the vitamin D receptor (VDR) ligand, and the objective of our study was to elucidate the mechanisms by which the 25(OH)D3-DBP complex is internalized by mammary cells prior to metabolism. Using fluorescent microscopy and temperature-shift techniques, we found that T-47D breast cancer cells rapidly internalize DBP via endocytosis, which is blunted by receptor-associated protein, a specific inhibitor of megalin-mediated endocytosis. Endocytosis of DBP was associated with activation of VDR by 25(OH)D3 but not 1,25(OH)2D3 (as measured by induction of the VDR target gene, CYP24). We also found that megalin and its endocytic partner, cubilin, are coexpressed in normal murine mammary tissue, in nontransformed human mammary epithelial cell lines, and in some established human breast cancer cell lines. To our knowledge, our studies are the first to demonstrate that mammary-derived cells express megalin and cubilin, which contribute to the endocytic uptake of 25(OH)D3-DBP and activation of the VDR pathway. PMID:17056796

  14. GPRC6A regulates prostate cancer progression

    PubMed Central

    Pi, Min; Quarles, L. Darryl

    2011-01-01

    BACKGROUND GPRC6A is a nutrient sensing GPCR that is activated in vitro by a variety of ligands, including amino acids, calcium, zinc, osteocalcin (OC) and testosterone. The association between nutritional factors and risk of prostate cancer, the finding of increased expression of OC in prostate cancer cells and the association between GPRC6A and risk of prostate cancer in Japanese men implicates a role of GPRC6A in prostate cancer. METHODS We examined if GPRC6A is expressed in human prostate cancer cell lines and used siRNA-mediated knockdown GPRC6A expression in prostate cancer cells to explore the function of GPRC6A in vitro. To assess the role GPRC6A in prostate cancer progression in vivo we intercrossed Gprc6a−/− mice onto the TRAMP mouse prostate cancer model. RESULTS GPRC6A transcripts were markedly increased in prostate cancer cell lines 22Rv1, PC-3 and LNCaP, compared to the normal prostate RWPE-1 cell line. In addition, a panel of GPRC6A ligands, including calcium, OC, and arginine, exhibited in prostate cancer cell lines a dose-dependent stimulation of ERK activity, cell proliferation, chemotaxis, and prostate specific antigen and Runx 2 gene expression. These responses were inhibited by siRNA-mediated knockdown of GPRC6A. Finally, transfer of Gprc6a deficiency onto a TRAMP mouse model of prostate cancer significantly retarded prostate cancer progression and improved survival of compound Gprc6a−/−/TRAMP mice. CONCLUSIONS GPRC6A is a novel molecular target for regulating prostate growth and cancer progression. Increments in GPRC6A may augment the ability of prostate cancer cells to proliferate in response to dietary and bone derived ligands. PMID:21681779

  15. Dynamic monitoring of GPER-mediated estrogenic effects in breast cancer associated fibroblasts: An alternative role of estrogen in mammary carcinoma development.

    PubMed

    Luo, Haojun; Liu, Manran; Luo, Shujuan; Yu, Tenghua; Wu, Chengyi; Yang, Guanglun; Tu, Gang

    2016-08-01

    Cancer associated fibroblasts (CAFs) are crucial contributors to breast cancer development. Estrogen affects mammary stroma in both physiological and pathophysiological conditions. We show here that estrogen (G-protein coupled) receptor (GPER) could be detected by immunohistochemistry in stromal fibroblasts of primary breast cancers. The presence of GPER expression was further confirmed by immunofluorescence and quantitative PCR in CAFs isolated from primary breast cancers. Based on dynamic monitoring by real time cell analyzer (RTCA) system, 17-β-estradiol (E2) as well as GPER specific agonist G1 were observed to trigger transient cell index increasing within an hour in a dosage-dependent manner in breast CAFs. In addition, E2 and G1 stimulated intracellular calcium modulation and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 within seconds and minutes in CAFs, respectively. Moreover, E2 and G1 promoted cell proliferation of breast CAFs measured by RTCA monitoring, cell viability assay and cell cycle analysis, and this promotion could be blocked by a GPER-selective antagonist G15. Interestingly, dynamic RTCA monitoring indicated that E2 increased adhesion of resuspended cells, and microscopy confirmed that E2 stimulated cell spreading. Both the adhesion and spreading were proposed to be mediated by GPER, since G1 also stimulated these effects similar to E2, and G15 reduced them. Moreover, GPER was found to mediate migration that was increased by E2 and G1 but reduced by G15 in RTCA cell migration assay and transwell assay. Accordingly, GPER mediates not only rapid actions but also slow effects including adhesion/spreading, proliferation and migration in breast CAFs. Estrogen is likely to affect tumor associated stroma and contributes to mammary carcinoma development through CAFs. Copyright © 2016. Published by Elsevier Inc.

  16. EMMPRIN (basigin/CD147) expression is not correlated with MMP activity during adult mouse mammary gland development.

    PubMed

    Szymanowska, Malgorzata; Hendry, Kay A K; Robinson, Claire; Kolb, Andreas F

    2009-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN/basigin/CD147) is a cell surface protein, which has been associated with the induction of matrix metalloproteinase (MMP) genes during cancer metastasis. EMMPRIN plays a role in a variety of physiological processes as is evident by the diverse deficiencies detectable in EMMPRIN knockout mice. We have analysed the role of EMMPRIN in the induction of MMP genes during mammary gland differentiation and involution. Co-transfection studies showed that EMMPRIN has diverse effects on MMP promoter activity in different mammary and non-mammary cell lines. Expression of EMMPRIN mRNA is enhanced markedly by insulin in a mammary gland cell line but appears to have no direct effect on MMP gene expression in these cells. Microarray analysis and quantitative PCR show that EMMPRIN is expressed throughout mammary gland differentiation in the mouse. Its expression decreases during early pregnancy and briefly after induction of mammary gland involution by litter removal. Immunohistochemical analysis shows that EMMPRIN expression is limited to the stromal compartment during pregnancy, whereas it is strongly expressed in the epithelium during lactation. In summary the data argue against a causal role for EMMPRIN for the induction of MMP gene expression during adult mammary gland development. These data therefore support a physiological role for EMMPRIN other than MMP induction in mammary gland biology. 2008 Wiley-Liss, Inc.

  17. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2010-10-01

    This term reflects the method used to detect murine mammary stem cells which is based on their individual ability to regenerate an entire mammary tree......mammary stem cells. We now describe a method for detecting an analogous subpopulation in normal human mammary tissue. Dissociated cells are suspended

  18. Epigenetic reprogramming governs EcSOD expression during human mammary epithelial cell differentiation, tumorigenesis and metastasis

    PubMed Central

    Teoh-Fitzgerald, ML; Fitzgerald, MP; Zhong, W; Askeland, RW; Domann, FE

    2013-01-01

    Expression of the antioxidant enzyme EcSOD in normal human mammary epithelial cells was not recognized until recently. Although expression of EcSOD was not detectable in non-malignant human mammary epithelial cells (HMEC) cultured in conventional two-dimensional (2D) culture conditions, EcSOD protein expression was observed in normal human breast tissues, suggesting that the 2D-cultured condition induces a repressive status of EcSOD gene expression in HMEC. With the use of laminin-enriched extracellular matrix (lrECM), we were able to detect expression of EcSOD when HMEC formed polarized acinar structures in a 3D-culture condition. Repression of the EcSOD-gene expression was again seen when the HMEC acini were sub-cultured as a monolayer, implying that lrECM-induced acinar morphogenesis is essential in EcSOD-gene activation. We have further shown the involvement of DNA methylation in regulating EcSOD expression in HMEC under these cell culture conditions. EcSOD mRNA expression was strongly induced in the 2D-cultured HMEC after treatment with a DNA methyltransferase inhibitor. In addition, epigenetic analyses showed a decrease in the degree of CpG methylation in the EcSOD promoter in the 3D versus 2D-cultured HMEC. More importantly, >80% of clinical mammary adenocarcinoma samples showed significantly decreased EcSOD mRNA and protein expression levels compared with normal mammary tissues and there is an inverse correlation between the expression levels of EcSOD and the clinical stages of breast cancer. Combined bisulfite restriction analysis analysis of some of the tumors also revealed an association of DNA methylation with the loss of EcSOD expression in vivo. Furthermore, overexpression of EcSOD inhibited breast cancer metastasis in both the experimental lung metastasis model and the syngeneic mouse model. This study suggests that epigenetic silencing of EcSOD may contribute to mammary tumorigenesis and that restoring the extracellular superoxide scavenging

  19. Declining Death Rates Reflect Progress against Cancer

    PubMed Central

    Jemal, Ahmedin; Ward, Elizabeth; Thun, Michael

    2010-01-01

    Background The success of the “war on cancer” initiated in 1971 continues to be debated, with trends in cancer mortality variably presented as evidence of progress or failure. We examined temporal trends in death rates from all-cancer and the 19 most common cancers in the United States from 1970–2006. Methodology/Principal Findings We analyzed trends in age-standardized death rates (per 100,000) for all cancers combined, the four most common cancers, and 15 other sites from 1970–2006 in the United States using joinpoint regression model. The age-standardized death rate for all-cancers combined in men increased from 249.3 in 1970 to 279.8 in 1990, and then decreased to 221.1 in 2006, yielding a net decline of 21% and 11% from the 1990 and 1970 rates, respectively. Similarly, the all-cancer death rate in women increased from 163.0 in 1970 to 175.3 in 1991 and then decreased to 153.7 in 2006, a net decline of 12% and 6% from the 1991 and 1970 rates, respectively. These decreases since 1990/91 translate to preventing of 561,400 cancer deaths in men and 205,700 deaths in women. The decrease in death rates from all-cancers involved all ages and racial/ethnic groups. Death rates decreased for 15 of the 19 cancer sites, including the four major cancers, with lung, colorectum and prostate cancers in men and breast and colorectum cancers in women. Conclusions/Significance Progress in reducing cancer death rates is evident whether measured against baseline rates in 1970 or in 1990. The downturn in cancer death rates since 1990 result mostly from reductions in tobacco use, increased screening allowing early detection of several cancers, and modest to large improvements in treatment for specific cancers. Continued and increased investment in cancer prevention and control, access to high quality health care, and research could accelerate this progress. PMID:20231893

  20. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.

    2005-03-03

    Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha}more » co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.« less

  1. Evaluation of serum haptoglobin and C-reactive protein in dogs with mammary tumors.

    PubMed

    Planellas, Marta; Bassols, Anna; Siracusa, Carlo; Saco, Yolanda; Giménez, Mercè; Pato, Raquel; Pastor, Josep

    2009-09-01

    In veterinary medicine, there is increasing interest in measuring acute phase proteins as a tool in the diagnosis and monitoring of neoplastic diseases. Although mammary neoplasms are the most common type of cancer in dogs, acute phase proteins have not been extensively evaluated in dogs with mammary tumors. The aim of this study was to evaluate serum haptoglobin (Hp) and C-reactive protein (CRP) concentrations in the dogs with mammary tumors and assess their potential association with malignancy. A retrospective study of dogs with mammary tumors was performed. Serum concentrations of CRP and Hp were determined in healthy control dogs (n=20) and dogs with mammary tumors before surgery (n=41). Mammary tumors were grouped as carcinomas (n=24), fibrosarcoma (n=1), malignant mixed tumors (n=7), benign mixed tumors (n=6), and adenomas (n=3). CRP and Hp concentrations were compared in dogs with different tumor types and were also compared based on tumor size, lymph node infiltration, skin ulceration, fixation to underlying tissue, and time between tumor identification and removal. Hp concentration was significantly (P<.043) higher in dogs with mammary tumors (median 2.03 g/L, range 0.09-2.94 g/L) compared with controls (1.38 g/L, range 0.08-3.00 g/L), but the range of values overlapped considerably. CRP concentration was higher in dogs with carcinomas (4.70 mg/L, range 0.63-128.96 mg/L) vs controls (2.11 mg/L, range 0.25-6.57 mg/L) (P=.0008) and in dogs with ulcerated skin (14.8 mg/L, range 5.7-128.9 mg/L, n=3) compared with those without ulceration (2.4 mg/L, range 0.11-30.3 mg/L, n=38) (P=.048). Serum Hp and CRP do not appear to have value in diagnosing or predicting malignancy of mammary tumors in dogs. Higher CRP concentrations in dogs with mammary carcinoma suggest a role for inflammation in this tumor type.

  2. Biobehavioral Influences on Cancer Progression

    PubMed Central

    Costanzo, Erin S.; Sood, Anil K.; Lutgendorf, Susan K.

    2010-01-01

    Synopsis This review focuses on the contributions of stress-related behavioral factors to cancer growth and metastasis and the biobehavioral mechanisms underlying these relationships. We describe behavioral factors that are important in modulation of the stress response and the pivotal role of neuroendocrine regulation in the downstream alteration of physiological pathways relevant to cancer control, including the cellular immune response, inflammation, and tumor angiogenesis, invasion, and cell-signaling pathways. Consequences for cancer progression and metastasis, as well as quality of life, are delineated. Finally, behavioral and pharmacological interventions for cancer patients with the potential to alter these biobehavioral pathways are discussed. PMID:21094927

  3. Effects of metformin, buformin, and phenformin on the post-initiation stage of chemically induced mammary carcinogenesis in the rat.

    PubMed

    Zhu, Zongjian; Jiang, Weiqin; Thompson, Matthew D; Echeverria, Dimas; McGinley, John N; Thompson, Henry J

    2015-06-01

    Metformin is a widely prescribed drug for the treatment of type II diabetes. Although epidemiologic data have provided a strong rationale for investigating the potential of this biguanide for use in cancer prevention and control, uncertainty exists whether metformin should be expected to have an impact in nondiabetic patients. Furthermore, little attention has been given to the possibility that other biguanides may have anticancer activity. In this study, the effects of clinically relevant doses of metformin (9.3 mmol/kg diet), buformin (7.6 mmol/kg diet), and phenformin (5.0 mmol/kg diet) were compared with rats fed control diet (AIN93-G) during the post-initiation stage of 1-methyl-1-nitrosourea-induced (50 mg/kg body weight) mammary carcinogenesis (n = 30/group). Plasma, liver, skeletal muscle, visceral fat, mammary gland, and mammary carcinoma concentrations of the biguanides were determined. In comparison with the control group, buformin decreased cancer incidence, multiplicity, and burden, whereas metformin and phenformin had no statistically significant effect on the carcinogenic process relative to the control group. Buformin did not alter fasting plasma glucose or insulin. Within mammary carcinomas, evidence was obtained that buformin treatment perturbed signaling pathways related to energy sensing. However, further investigation is needed to determine the relative contributions of host systemic and cell autonomous mechanisms to the anticancer activity of biguanides such as buformin. ©2015 American Association for Cancer Research.

  4. Epstein-Barr Virus, Human Papillomavirus and Mouse Mammary Tumour Virus as Multiple Viruses in Breast Cancer

    PubMed Central

    Glenn, Wendy K.; Heng, Benjamin; Delprado, Warick; Iacopetta, Barry; Whitaker, Noel J.; Lawson, James S.

    2012-01-01

    Background The purpose of this investigation is to determine if Epstein Barr virus (EBV), high risk human papillomavirus (HPV), and mouse mammary tumour viruses (MMTV) co-exist in some breast cancers. Materials and Methods All the specimens were from women residing in Australia. For investigations based on standard PCR, we used fresh frozen DNA extracts from 50 unselected invasive breast cancers. For normal breast specimens, we used DNA extracts from epithelial cells from milk donated by 40 lactating women. For investigations based on in situ PCR we used 27 unselected archival formalin fixed breast cancer specimens and 18 unselected archival formalin fixed normal breast specimens from women who had breast reduction surgery. Thirteen of these fixed breast cancer specimens were ductal carcinoma in situ (dcis) and 14 were predominantly invasive ductal carcinomas (idc). Results EBV sequences were identified in 68%, high risk HPV sequences in 50%, and MMTV sequences in 78% of DNA extracted from 50 invasive breast cancer specimens. These same viruses were identified in selected normal and breast cancer specimens by in situ PCR. Sequences from more than one viral type were identified in 72% of the same breast cancer specimens. Normal controls showed these viruses were also present in epithelial cells in human milk – EBV (35%), HPV, 20%) and MMTV (32%) of 40 milk samples from normal lactating women, with multiple viruses being identified in 13% of the same milk samples. Conclusions We conclude that (i) EBV, HPV and MMTV gene sequences are present and co-exist in many human breast cancers, (ii) the presence of these viruses in breast cancer is associated with young age of diagnosis and possibly an increased grade of breast cancer. PMID:23183846

  5. Functional imaging of the angiogenic switch in a transgenic mouse model of human breast cancer by dynamic contrast enhanced magnetic resonance imaging.

    PubMed

    Consolino, Lorena; Longo, Dario Livio; Dastrù, Walter; Cutrin, Juan Carlos; Dettori, Daniela; Lanzardo, Stefania; Oliviero, Salvatore; Cavallo, Federica; Aime, Silvio

    2016-07-15

    Tumour progression depends on several sequential events that include the microenvironment remodelling processes and the switch to the angiogenic phenotype, leading to new blood vessels recruitment. Non-invasive imaging techniques allow the monitoring of functional alterations in tumour vascularity and cellularity. The aim of this work was to detect functional changes in vascularisation and cellularity through Dynamic Contrast Enhanced (DCE) and Diffusion Weighted (DW) Magnetic Resonance Imaging (MRI) modalities during breast cancer initiation and progression of a transgenic mouse model (BALB-neuT mice). Histological examination showed that BALB-neuT mammary glands undergo a slow neoplastic progression from simple hyperplasia to invasive carcinoma, still preserving normal parts of mammary glands. DCE-MRI results highlighted marked functional changes in terms of vessel permeability (K(trans) , volume transfer constant) and vascularisation (vp , vascular volume fraction) in BALB-neuT hyperplastic mammary glands if compared to BALB/c ones. When breast tissue progressed from simple to atypical hyperplasia, a strong increase in DCE-MRI biomarkers was observed in BALB-neuT in comparison to BALB/c mice (K(trans)  = 5.3 ± 0.7E-4 and 3.1 ± 0.5E-4; vp  = 7.4 ± 0.8E-2 and 4.7 ± 0.6E-2 for BALB-neuT and BALB/c, respectively) that remained constant during the successive steps of the neoplastic transformation. Consistent with DCE-MRI observations, microvessel counting revealed a significant increase in tumour vessels. Our study showed that DCE-MRI estimates can accurately detect the angiogenic switch at early step of breast cancer carcinogenesis. These results support the view that this imaging approach is an excellent tool to characterize microvasculature changes, despite only small portions of the mammary glands developed neoplastic lesions in a transgenic mouse model. © 2016 UICC.

  6. CXCR4 expression in feline mammary carcinoma cells: evidence of a proliferative role for the SDF-1/CXCR4 axis

    PubMed Central

    2012-01-01

    Background Mammary tumours frequently develop in female domestic cats being highly malignant in a large percentage of cases. Chemokines regulate many physiological and pathological processes including organogenesis, chemotaxis of inflammatory cells, as well as tumour progression and metastasization. In particular, the chemokine/receptor pair SDF-1/CXCR4 has been involved in the regulation of metastatic potential of neoplastic cells, including breast cancer. The aim of this study was the immunohistochemical defininition of the expression profile of CXCR4 in primary and metastatic feline mammary carcinomas and the evaluation of the role of SDF-1 in feline mammary tumour cell proliferation. Results A total of 45 mammary surgical samples, including 33 primary tumours (31 carcinomas and 2 adenomas), 6 metastases, and 4 normal mammary tissues were anlyzed. Tumor samples were collected from a total number of 26 animals, as in some cases concurrent occurrence of neoplasm in more than one mammary gland was observed. Tissues were processed for standard histological examination, and all lesions were classified according to the World Health Organization criteria. CXCR4 expression in neoplastic cells was evaluated by immunohistochemistry. The level of CXCR4 immunoreactivity was semi-quantitatively estimated as CXCR4 score evaluating both the number of positive cells and the intensity of staining. Six primary, fibroblast-free primary cultures were obtained from fresh feline mammary carcinomas and characterized by immunofluorescence for CXCR4 and malignant mammary cell marker expression. SDF-1-dependent in vitro proliferative effects were also assayed. CXCR4 expression was observed in 29 out of 31 malignant tissues with a higher CXCR4 score observed in 4 out of 6 metastatic lesions than in the respective primary tumours. In 2 benign lesions analyzed, only the single basaloid adenoma showed a mild positive immunostaining against CXCR4. Normal tissue did not show CXCR4

  7. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Isolation of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Same long-term growth human mammary epithelial cells (HMEC), but after 3 weeks in concinuous culture. Note attempts to reform duct elements, but this time in two dimensions in a dish rather that in three demensions in tissue. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Robert Tichmond, NASA/Marshall Space Flight Center (MSFC).

  8. A 3D Fibroblast-Epithelium Co-culture Model for Understanding Microenvironmental Role in Branching Morphogenesis of the Mammary Gland.

    PubMed

    Koledova, Zuzana; Lu, Pengfei

    2017-01-01

    The mammary gland consists of numerous tissue compartments, including mammary epithelium, an array of stromal cells, and the extracellular matrix (ECM). Bidirectional interactions between the epithelium and its surrounding stroma are essential for proper mammary gland development and homeostasis, whereas their deregulation leads to developmental abnormalities and cancer. To study the relationships between the epithelium and the stroma, development of models that could recapitulate essential aspects of these interacting systems in vitro has become necessary. Here we describe a three-dimensional (3D) co-culture assay and show that the addition of fibroblasts to mammary organoid cultures promotes the epithelium to undergo branching morphogenesis, thus allowing the role of the stromal microenvironment to be examined in this essential developmental process.

  9. Lactation stage-dependent expression of transporters in rat whole mammary gland and primary mammary epithelial organoids.

    PubMed

    Gilchrist, Samuel E; Alcorn, Jane

    2010-04-01

    Since solute carrier (SLC) and ATP-binding cassette (ABC) transporters play pivotal roles in the transport of both nutrients and drugs into breast milk, drug-nutrient transport interactions at the lactating mammary gland are possible. Our purpose was to characterize lactation stage-dependent changes in transporter expression in rat mammary gland and isolated mammary epithelial organoids (MEO) to provide additional insight for the safe use of maternal medications during breastfeeding. We used quantitative reverse transcription-polymerase chain reaction to assess the temporal expression patterns of SLC and ABC transporters in rat mammary gland and isolated MEO at different stages of lactation. In whole mammary gland five distinct patterns of expression emerged relative to late gestation: (i) decreasing throughout lactation (Mdr1a, Mdr1b, Mrp1, Octn2, Ent2, Ent3, Ncbt2, Mtx1); (ii) prominent increase in early lactation, which may remain elevated or decline with advancing lactation (Octn1, Cnt2, Cnt3, Ent1, Pept1, Pept2); (iii) constant but decreasing later in lactation (Octn3, Dmt1); (iv) increasing until mid-to-late lactation (Oct1, Cnt1); and (v) prominent increase late in lactation (Ncbt1). In isolated MEO (an enriched source of mammary epithelial cells) major differences in expression patterns were noted for Octn3, Ncbt1, and Mtx1, but otherwise were reasonably similar with the whole mammary gland. In conclusion our study augments existing data on transporter expression in the lactating mammary gland. These data should facilitate investigations into lactation-stage dependent changes in drug or nutrient milk-to-serum concentration ratios, the potential for drug- or disease-transporter interactions, and mechanistic studies of transporter function in the lactating mammary gland.

  10. Flor-Essence® herbal tonic does not inhibit estrogen receptor negative mammary tumor development in a transgenic mouse model

    PubMed Central

    Bennett, L. Michelle; Montgomery, Jennifer L.; Collins, N. Keith; Steinberg, Seth M.; Kulp, Kristen S.

    2012-01-01

    Women who are diagnosed with breast cancer often self-administer complementary and alternative medicines to augment their conventional treatments, improve health, or prevent recurrence. Flor-Essence® herbal tonic is a complex mixture of eight herbal extracts used by cancer patients because of anecdotal evidence that it can treat or prevent disease. In this study four experimental groups of female MMTV-Neu mice were left untreated or treated with 3% Flor-Essence® in utero, from birth until 5 weeks of age, or throughout their lifetime. Palpable mammary tumor incidence and body weight was determined weekly for each group. The mice were sacrificed at 28 weeks of age and mammary tumors were enumerated to determine average tumor incidence and multiplicity for each group. Female mice exposed to Flor-Essence® herbal tonic in utero weighed significantly more than the control group (p < 0.001). The average tumor incidence and tumor multiplicity in the experimental mice treated with Flor-Essence® herbal tonic did not differ from the control animals. Flor-Essence® does not inhibit mammary tumor incidence or mammary tumor multiplicity in MMTV-Neu transgenic mice. Flor-Essence® exposure in utero causes increased body weight in experimental animals. This conclusion challenges widely available anecdotal information as well as the hopes of the consumer that this product will inhibit or suppress tumor development. Lay Abstract Flor-Essence® herbal tonic is a complex mixture of eight herbal extracts often used by women with breast cancer in hopes that it will help cure disease or prevent recurrence. There is currently very little scientific data to support or refute its self-administration. We tested whether Flor-Essence® would influence tumor development in the mammary glands of a mouse model of Her2/neu breast cancer. The tonic was given at different life stages to determine if timing of the exposure influenced the response to treatment. This report shows that Flor

  11. End of Life | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  12. Stage at Diagnosis | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  13. Tobacco Use Initiation | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  14. Youth Tobacco Use | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  15. Secondhand Smoke Exposure | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  16. Frequently Asked Questions | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  17. Prevention Summary Tables | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  18. Treatment Summary Tables | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  19. Red Meat Consumption | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  20. About the Report | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  1. Adult Tobacco Use | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  2. Sun-Protective Behavior | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  3. Gossypol inhibition of mitosis, cyclin D1 and Rb protein in human mammary cancer cells and cyclin-D1 transfected human fibrosarcoma cells.

    PubMed Central

    Ligueros, M.; Jeoung, D.; Tang, B.; Hochhauser, D.; Reidenberg, M. M.; Sonenberg, M.

    1997-01-01

    The antiproliferative effects of gossypol on human MCF-7 mammary cancer cells and cyclin D1-transfected HT-1060 human fibrosarcoma cells were investigated by cell cycle analysis and effects on the cell cycle regulatory proteins Rb and cyclin D1. Flow cytometry of MCF-7 cells at 24 h indicated that 10 microM gossypol inhibited DNA synthesis by producing a G1/S block. Western blot analysis using anti-human Rb antibodies and anti-human cyclin D1 antibodies in MCF-7 cells and high- and low-expression cyclin D1-transfected fibrosarcoma cells indicated that, after 6 h exposure, gossypol decreased the expression levels of these proteins in a dose-dependent manner. Gossypol also decreased the ratio of phosphorylated to unphosphorylated Rb protein in human mammary cancer and fibrosarcoma cell lines. Gossypol (10 microM) treated also decreased cyclin D1-associated kinase activity on histone H1 used as a substrate in MCF-7 cells. These results suggest that gossypol might suppress growth by modulating the expression of cell cycle regulatory proteins Rb and cyclin D1 and the phosphorylation of Rb protein. Images Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:9218727

  4. Management of mastitis and abscessation of mammary glands secondary to fibroadenomatous hyperplasia in a primiparturient cat.

    PubMed

    Burstyn, Uri

    2010-02-01

    A 1-year-old sexually intact female domestic shorthair cat was evaluated because of an 8-week history of pronounced mammary gland hyperplasia that had progressed to mastitis and abscessation of the mammary glands since parturition 7 days earlier. The cat was anorectic, was febrile, and had signs of discomfort. Its kittens were weak and appeared to have difficulty nursing. Physical examination revealed pyrexia, mastitis with abscessation in the 6 caudal mammary glands, skin ulceration over the nipples, and areas of skin necrosis over the abscessed mammary glands. A CBC revealed nonregenerative anemia and leukocytosis with a left shift (2.160 x 10(9) band cells/L) and toxic changes. Mastitis and incipient septicemia were considered the most likely causes. The history of mammary gland hyperplasia since the second week of pregnancy suggested a diagnosis of fibroadenomatous hyperplasia that predisposed the cat to subsequent mastitis. Surgical drainage of the abscessed mammary glands, debridement of necrotic skin, and placement of a Penrose drain resulted in rapid improvement in clinical status. Broad-spectrum antimicrobial treatment (amoxicillin-clavulanic acid) was prescribed, and the cat was discharged from the hospital. Mastitis and fibroadenomatous mammary gland hyperplasia resolved rapidly afterward. Management of abscessed mammary glands through surgical drainage and drain placement is an option for treatment of cats with complications of fibroadenomatous hyperplasia. In the cat of this report, the treatment approach resulted in rapid resolution of mastitis, was less invasive than mastectomy, and avoided the potential complications of treatment with a progesterone-receptor antagonist.

  5. Establishment of mammary gland model in vitro: culture and evaluation of a yak mammary epithelial cell line.

    PubMed

    Fu, Mei; Chen, Yabing; Xiong, Xianrong; Lan, Daoliang; Li, Jian

    2014-01-01

    This study aimed to establish yak mammary epithelial cells (YMECs) for an in vitro model of yak mammary gland biology. The primary culture of YMECs was obtained from mammary gland tissues of lactating yak and then characterized using immunocytochemistry, RT-PCR, and western blot analysis. Whether foreign genes could be transfected into the YMECs were examined by transfecting the EGFP gene into the cells. Finally, the effect of Staphylococcus aureus infection on YMECs was determined. The established YMECs retained the mammary epithelial cell characteristics. A spontaneously immortalized yak mammary epithelial cell line was established and could be continuously subcultured for more than 60 passages without senescence. The EGFP gene was successfully transferred into the YMECs, and the transfected cells could be maintained for a long duration in the culture by continuous subculturing. The cells expressed more antimicrobial peptides upon S.aureus invasion. Therefore, the established cell line could be considered a model system to understand yak mammary gland biology.

  6. Mouse mammary tumor virus-like RNA transcripts and DNA are found in affected cells of human breast cancer.

    PubMed

    Ford, Caroline E; Faedo, Margaret; Rawlinson, William D

    2004-11-01

    Identifiable risk factors for the development of breast cancer include age, diet, family history, and lifetime estrogen exposure. An infectious agent (mouse mammary tumor virus; MMTV) is known to cause murine breast tumors and may be involved in the pathogenesis of human disease. Multiple studies have detected MMTV-like sequences in 30 to 60% of breast cancer samples and up to 1.8% of samples from normal breast. Using in situ PCR of MMTV-like sequences of formalin-fixed, paraffin-embedded breast tissue, viral sequences have been located in cancerous epithelial cells in breast acini of male and female breast tumors, but not in adjacent nonmalignant cells. MMTV-like sequences were also located in the epithelial cells of male gynecomastia samples. Using reverse transcriptase in situ PCR, RNA transcripts from the env gene were also detected within cancerous epithelial cells of 78% of DNA-positive tumors, 80% of gynecomastia samples, and 0% of normal tissues screened. This suggests the virus may be replicating in these cells. The epidemiologic and histopathological data are consistent with the association of an MMTV-like virus with breast cancers in men and women. The association with gynecomastia, a benign, possibly premalignant condition suggests hormonal influences, rather than cancer per se, may be the dominant factor in determining viral presence and replication.

  7. Dietary supplementation with methylseleninic acid inhibits mammary tumorigenesis and metastasis in male MMTV-PyMT mice

    USDA-ARS?s Scientific Manuscript database

    Male breast cancer, which makes up approximately 1% of all breast cancer, is an aggressive disease with poor prognosis. We investigated the effects of dietary supplementation with selenium in the form of methylseleninic acid (MSeA, 4.0 mg MSeA/kg) on mammary tumorigenesis in male MMTV-PyMT mice. ...

  8. The effect of dietary zinc - and polyphenols intake on DMBA-induced mammary tumorigenesis in rats

    PubMed Central

    2012-01-01

    Background The aim of the study was to investigate the effect of dietary supplementation with zinc and polyphenol compounds, i.e. resveratrol and genistein, on the effectiveness of chemically induced mammary cancer and the changes in the content of selected elements (Zn, Cu, Mg, Fe, Ca) in tumors as compared with normal tissue of the mammary gland. Methods Female Sprague-Dawley rats were divided into study groups which, apart from the standard diet and DMBA (7,12-dimethyl-1,2- benz[a]anthracene), were treated with zinc ions (Zn) or zinc ions + resveratrol (Zn + resveratrol) or zinc ions + genistein (Zn + genistein) via gavage for a period from 40 days until 20 weeks of age. The ICP-OES (inductively coupled plasma optical emission spectrometry) technique was used to analyze the following elements: magnesium, iron, zinc and calcium. Copper content in samples was estimated in an atomic absorption spectrophotometer. Results Regardless of the diet (standard; Zn; Zn + resveratrol; Zn + genistein), DMBA-induced breast carcinogenesis was not inhibited. On the contrary, in the Zn + resveratrol supplemented group, tumorigenesis developed at a considerably faster rate. On the basis of quantitative analysis of selected elements we found - irrespectively of the diet applied - great accumulation of copper and iron, which are strongly prooxidative, with a simultaneous considerable decrease of the magnesium content in DMBA-induced mammary tumors. The combination of zinc supplementation with resveratrol resulted in particularly large differences in the amount of the investigated elements in tumors as compared with their content in normal tissue. Conclusions Diet supplementation with zinc and polyphenol compounds, i.e. resveratrol and genistein had no effect on the decreased copper level in tumor tissue and inhibited mammary carcinogenesis in the rat. Irrespectively of the applied diet, the development of the neoplastic process in rats resulted in changes of the iron and magnesium

  9. Complex mammary carcinoma with metastases to lymph nodes, subcutaneous tissue, and multiple joints in a dog.

    PubMed

    McCourt, Maggie R; Dieterly, Alexandra M; Mackey, Paige E; Lyon, Shane D; Rizzi, Theresa E; Ritchey, Jerry W

    2018-05-07

    An 8-year-old, intact female, mixed-breed dog presented to the Oklahoma State University Boren Veterinary Medical Teaching Hospital for evaluation of progressive lameness and joint effusion of multiple joints. Physical examination revealed joint effusion of the elbow, hock, and stifle joints bilaterally, enlarged left axillary and right popliteal lymph nodes, a subcutaneous mass over the left elbow, and a subcutaneous mass involving the left second and third mammary glands. Cytologic examination of the mammary mass, enlarged lymph nodes, and joint fluid from most affected joints revealed a monomorphic population of loosely cohesive neoplastic epithelial cells. The patient was humanely euthanized, and subsequent necropsy with histopathologic examination revealed a complex mammary carcinoma with metastases to enlarged lymph nodes, subcutaneous tissue over the left elbow, and the synovium of multiple joints. Immunohistochemical stains were performed and showed diffusely positive pan cytokeratin, CK8/18, and CK19 staining in the neoplastic luminal epithelial cells of the mammary carcinoma, synovium, and lymph nodes, and showed diffusely positive vimentin staining of the myoepithelial cells. Myoepithelial calponin positivity was diffuse in the mammary mass and lymph nodes but minimal in the synovium. Only the mammary mass showed p63 positivity. Metastatic mammary neoplasia is relatively common in dogs; however, metastasis to the synovium has only been reported once previously in the literature. This is the first case utilizing immunohistochemistry for confirmation and characterization of metastases. © 2018 American Society for Veterinary Clinical Pathology.

  10. Investigating the Role of Cooperative Interactions Between the Neu Protooncogene and the Other erbB Family Members in Rat Mammary Carcinogenesis

    DTIC Science & Technology

    1999-07-01

    antiestrogen tamoxifen or the monoterpene perillyl alcohol can prevent the formation of neu associated mammary cancers in this transgenic model. II...general breast cancer prevention agents; the monoterpenes (perillyl alcohol) and determine if the number of preneoplastic lesions and cancers

  11. APC/β-catenin-rich complexes at membrane protrusions regulate mammary tumor cell migration and mesenchymal morphology

    PubMed Central

    2013-01-01

    Background The APC tumor suppressor is mutated or downregulated in many tumor types, and is prominently localized to punctate clusters at protrusion tips in migratory cells, such as in astrocytes where it has been implicated in directed cell motility. Although APC loss is considered an initiating event in colorectal cancer, for example, it is less clear what role APC plays in tumor cell motility and whether loss of APC might be an important promoter of tumor progression in addition to initiation. Methods The localization of APC and β-catenin was analyzed in multiple cell lines, including non-transformed epithelial lines treated with a proteasome inhibitor or TGFβ to induce an epithelial-to-mesenchymal transition (EMT), as well as several breast cancer lines, by immunofluorescence. APC expression was knocked down in 4T07 mammary tumor cells using lentiviral-mediated delivery of APC-specific short-hairpin (sh) RNAs, and assessed using quantitative (q) reverse-transcriptase (RT)-PCR and western blotting. Tumor cell motility was analyzed by performing wound-filling assays, and morphology via immunofluorescence (IF) and phase-contrast microscopy. Additionally, proliferation was measured using BrdU incorporation, and TCF reporter assays were performed to determine β-catenin/TCF-mediated transcriptional activity. Results APC/β-catenin-rich complexes were observed at protrusion ends of migratory epithelial cells treated with a proteasome inhibitor or when EMT has been induced and in tumor cells with a mesenchymal, spindle-like morphology. 4T07 tumor cells with reduced APC levels were significantly less motile and had a more rounded morphology; yet, they did not differ significantly in proliferation or β-catenin/TCF transcriptional activity. Furthermore, we found that APC/β-catenin-rich complexes at protrusion ends were dependent upon an intact microtubule cytoskeleton. Conclusions These findings indicate that membrane protrusions with APC/β-catenin-containing puncta

  12. Lipidomic fatty acid profile and global gene expression pattern in mammary gland of rats that were exposed to lard-based high fat diet during fetal and lactation periods associated to breast cancer risk in adulthood.

    PubMed

    Andrade, Fábia de Oliveira; de Assis, Sonia; Jin, Lu; Fontelles, Camile Castilho; Barbisan, Luís Fernando; Purgatto, Eduardo; Hilakivi-Clarke, Leena; Ong, Thomas Prates

    2015-09-05

    The persistent effects of animal fat consumption during pregnancy and nursing on the programming of breast cancer risk among female offspring were studied here. We have previously found that female offspring of rat dams that consumed a lard-based high-fat (HF) diet (60% fat-derived energy) during pregnancy, or during pregnancy and lactation, were at a reduced risk of developing mammary cancer. To better understand the unexpected protective effects of early life lard exposure, we have applied lipidomics and nutrigenomics approaches to investigate the fatty acid profile and global gene expression patterns in the mammary tissue of the female offspring. Consumption of this HF diet during gestation had few effects on the mammary tissue fatty acids profile of young adult offspring, while exposure from gestation throughout nursing promoted significant alterations in the fatty acids profile. Major differences were related to decreases in saturated fatty acids (SFA) and increases in omega-6 polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs) and conjugated linolenic acid (CLA) concentrations. In addition several differences in gene expression patterns by microarray analysis between the control and in utero or in utero and during lactation HF exposed offspring were identified. Differential dependency network (DDN) analysis indicated that many of the genes exhibited unique connections to other genes only in the HF offspring. These unique connections included Hrh1-Ythdf1 and Repin1-Elavl2 in the in utero HF offspring, and Rnf213-Htr3b and Klf5-Chrna4 in the in utero and lactation HF offspring, compared with the control offspring. We conclude that an exposure to a lard-based HF diet during early life changes the fatty acid profile and transcriptional network in mammary gland in young adult rats, and these changes appear to be consistent with reduced mammary cancer risk observed in our previous study. Copyright © 2015 Elsevier Ireland Ltd. All rights

  13. Financial Burden of Cancer Care - Life After Cancer Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  14. Seaweed prevents breast cancer?

    PubMed

    Funahashi, H; Imai, T; Mase, T; Sekiya, M; Yokoi, K; Hayashi, H; Shibata, A; Hayashi, T; Nishikawa, M; Suda, N; Hibi, Y; Mizuno, Y; Tsukamura, K; Hayakawa, A; Tanuma, S

    2001-05-01

    To investigate the chemopreventive effects of seaweed on breast cancer, we have been studying the relationship between iodine and breast cancer. We found earlier that the seaweed, wakame, showed a suppressive effect on the proliferation of DMBA (dimethylbenz(a)anthracene)-induced rat mammary tumors, possibly via apoptosis induction. In the present study, powdered mekabu was placed in distilled water, and left to stand for 24 h at 4 degrees C. The filtered supernatant was used as mekabu solution. It showed an extremely strong suppressive effect on rat mammary carcinogenesis when used in daily drinking water, without toxicity. In vitro, mekabu solution strongly induced apoptosis in 3 kinds of human breast cancer cells. These effects were stronger than those of a chemotherapeutic agent widely used to treat human breast cancer. Furthermore, no apoptosis induction was observed in normal human mammary cells. In Japan, mekabu is widely consumed as a safe, inexpensive food. Our results suggest that mekabu has potential for chemoprevention of human breast cancer.

  15. MicroRNA in Development and in the Progression of Cancer | Center for Cancer Research

    Cancer.gov

    MicroRNA in Development and in the Progression of Cancer is divided into three parts. It provides a more complete understanding of miRNA function, summarizes the recent progress, and provides insights by which miRNAs regulate normal development and diseases (including cancers) and the fate of stem cells. It also presents the prospect of the great potential of miRNAs in cancer

  16. Modeling invasive breast cancer: growth factors propel progression of HER2-positive premalignant lesions

    PubMed Central

    Pradeep, C-R; Zeisel, A; Köstler, WJ; Lauriola, M; Jacob-Hirsch, J; Haibe-Kains, B; Amariglio, N; Ben-Chetrit, N; Emde, A; Solomonov, I; Neufeld, G; Piccart, M; Sagi, I; Sotiriou, C; Rechavi, G; Domany, E; Desmedt, C; Yarden, Y

    2013-01-01

    The HER2/neu oncogene encodes a receptor-like tyrosine kinase whose overexpression in breast cancer predicts poor prognosis and resistance to conventional therapies. However, the mechanisms underlying aggressiveness of HER2 (human epidermal growth factor receptor 2)-overexpressing tumors remain incompletely understood. Because it assists epidermal growth factor (EGF) and neuregulin receptors, we overexpressed HER2 in MCF10A mammary cells and applied growth factors. HER2-overexpressing cells grown in extracellular matrix formed filled spheroids, which protruded outgrowths upon growth factor stimulation. Our transcriptome analyses imply a two-hit model for invasive growth: HER2-induced proliferation and evasion from anoikis generate filled structures, which are morphologically and transcriptionally analogous to preinvasive patients’ lesions. In the second hit, EGF escalates signaling and transcriptional responses leading to invasive growth. Consistent with clinical relevance, a gene expression signature based on the HER2/EGF-activated transcriptional program can predict poorer prognosis of a subgroup of HER2-overexpressing patients. In conclusion, the integration of a three-dimensional cellular model and clinical data attributes progression of HER2-overexpressing lesions to EGF-like growth factors acting in the context of the tumor's microenvironment. PMID:22139081

  17. Basic Research and Progress against Pediatric Cancer

    Cancer.gov

    An infographic about the importance of basic research for making progress against childhood cancers. Shows the milestones that led to development and approval of dinutuximab (Unituxin®) to treat neuroblastoma, a cancer seen mainly in children.

  18. Differential gene expression pattern in human mammary epithelial cells induced by realistic organochlorine mixtures described in healthy women and in women diagnosed with breast cancer.

    PubMed

    Rivero, Javier; Henríquez-Hernández, Luis Alberto; Luzardo, Octavio P; Pestano, José; Zumbado, Manuel; Boada, Luis D; Valerón, Pilar F

    2016-03-30

    Organochlorine pesticides (OCs) have been associated with breast cancer development and progression, but the mechanisms underlying this phenomenon are not well known. In this work, we evaluated the effects exerted on normal human mammary epithelial cells (HMEC) by the OC mixtures most frequently detected in healthy women (H-mixture) and in women diagnosed with breast cancer (BC-mixture), as identified in a previous case-control study developed in Spain. Cytotoxicity and gene expression profile of human kinases (n=68) and non-kinases (n=26) were tested at concentrations similar to those described in the serum of those cases and controls. Although both mixtures caused a down-regulation of genes involved in the ATP binding process, our results clearly indicate that both mixtures may exert a very different effect on the gene expression profile of HMEC. Thus, while BC-mixture up-regulated the expression of oncogenes associated to breast cancer (GFRA1 and BHLHB8), the H-mixture down-regulated the expression of tumor suppressor genes (EPHA4 and EPHB2). Our results indicate that the composition of the OC mixture could play a role in the initiation processes of breast cancer. In addition, the present results suggest that subtle changes in the composition and levels of pollutants involved in environmentally relevant mixtures might induce very different biological effects, which explain, at least partially, why some mixtures seem to be more carcinogenic than others. Nonetheless, our findings confirm that environmentally relevant pollutants may modulate the expression of genes closely related to carcinogenic processes in the breast, reinforcing the role exerted by environment in the regulation of genes involved in breast carcinogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novak, Petr; Jensen, Taylor J.; Garbe, James C.

    The timing and progression of DNA methylation changes during carcinogenesis are not completely understood. To develop a timeline of aberrant DNA methylation events during malignant transformation, we analyzed genome-wide DNA methylation patterns in an isogenic human mammary epithelial cell (HMEC) culture model of transformation. To acquire immortality and malignancy, the cultured finite lifespan HMEC must overcome two distinct proliferation barriers. The first barrier, stasis, is mediated by the retinoblastoma protein and can be overcome by loss of p16(INK4A) expression. HMEC that escape stasis and continue to proliferate become genomically unstable before encountering a second more stringent proliferation barrier, telomere dysfunctionmore » due to telomere attrition. Rare cells that acquire telomerase expression may escape this barrier, become immortal, and develop further malignant properties. Our analysis of HMEC transitioning from finite lifespan to malignantly transformed showed that aberrant DNA methylation changes occur in a stepwise fashion early in the transformation process. The first aberrant DNA methylation step coincides with overcoming stasis, and results in few to hundreds of changes, depending on how stasis was overcome. A second step coincides with immortalization and results in hundreds of additional DNA methylation changes regardless of the immortalization pathway. A majority of these DNA methylation changes are also found in malignant breast cancer cells. These results show that large-scale epigenetic remodeling occurs in the earliest steps of mammary carcinogenesis, temporally links DNA methylation changes and overcoming cellular proliferation barriers, and provides a bank of potential epigenetic biomarkers that mayprove useful in breast cancer risk assessment.« less

  20. Apigenin prevents development of medroxyprogesterone acetate-accelerated 7,12-dimethylbenz(a)anthracene-induced mammary tumors in Sprague-Dawley rats

    PubMed Central

    Mafuvadze, Benford; Benakanakere, Indira; Lopez, Franklin; Besch-Williford, Cynthia; Ellersieck, Mark R.; Hyder, Salman M.

    2011-01-01

    The use of progestins as a component of hormone replacement therapy has been linked to an increase in breast cancer risk in postmenopausal women. We have previously shown that medroxyprogesterone acetate (MPA), a commonly administered synthetic progestin, increases production of the potent angiogenic factor vascular endothelial growth factor (VEGF) by tumor cells, leading to the development of new blood vessels and tumor growth. We sought to identify nontoxic chemicals that would inhibit progestin-induced tumorigenesis. We used a recently developed progestin-dependent mammary cancer model in which tumors are induced in Sprague-Dawley rats by 7,12-dimethylbenz(a)anthracene (DMBA) treatment. The flavonoid apigenin, which we previously found to inhibit progestin-dependent VEGF synthesis in human breast cancer cells in vitro, significantly delayed the development of, and decreased the incidence and multiplicity of, MPA-accelerated DMBA-induced mammary tumors in this animal model. Whereas apigenin decreased the occurrence of such tumors, it did not block MPA-induced intraductal and lobular epithelial cell hyperplasia in the mammary tissue. Apigenin blocked MPA-dependent increases in VEGF, and suppressed VEGF receptor-2 (VEGFR-2) but not VEGFR-1 in regions of hyperplasia. No differences were observed in estrogen or progesterone receptor levels, or the number of estrogen receptor-positive cells, within the mammary gland of MPA-treated animals administered apigenin, MPA-treated animals, and placebo treated animals. However, the number of progesterone receptor-positive cells was reduced in animals treated with MPA or MPA and apigenin compared with those treated with placebo. These findings suggest that apigenin has important chemopreventive properties for those breast cancers that develop in response to progestins. PMID:21505181

  1. SYMPATHETIC INNERVATION, NOREPINEPHRINE CONTENT, AND NOREPINEPHRINE TURNOVER IN ORTHOTOPIC AND SPONTANEOUS MODELS OF BREAST CANCER

    PubMed Central

    Dawes, Ryan P.; Madden, Kelley S.

    2016-01-01

    Activation of the sympathetic nervous system (SNS) drives breast cancer progression in preclinical breast cancer models, but it has yet to be established if neoplastic and stromal cells residing in the tumor are directly targeted by locally released norepinephrine (NE). In murine orthotopic and spontaneous mammary tumors, tyrosine hydroxylase (TH)+ sympathetic nerves were limited to the periphery of the tumor. No TH+ staining was detected deeper within these tumors, even in regions with a high density of blood vessels. NE concentration was much lower in tumors compared to the more densely innervated spleen, reflecting the relative paucity of tumor TH+ innervation. Tumor and spleen NE concentration decreased with increased tissue mass. In mice treated with the neurotoxin 6-hydroxydopamine (6-OHDA) to selectively destroy sympathetic nerves, tumor NE concentration was reduced approximately 50%, suggesting that the majority of tumor NE is derived from local sympathetic nerves. To evaluate NE utilization, NE turnover in orthotopic 4T1 mammary tumors was compared to spleen under baseline and stress conditions. In non-stressed mice, NE turnover was equivalent between tumor and spleen. In mice exposed to a stressor, tumor NE turnover was increased compared to spleen NE turnover, and compared to non-stressed tumor NE turnover. Together, these results demonstrate that NE in mammary tumors is derived from local sympathetic nerves that synthesize and metabolize NE. However, differences between spleen and tumor NE turnover with stressor exposure suggest that sympathetic NE release is regulated differently within the tumor microenvironment compared to the spleen. Local mammary tumor sympathetic innervation, despite its limited distribution, is responsive to stressor exposure and therefore can contribute to stress-induced tumor progression. PMID:26718447

  2. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland.

    PubMed

    Johnson, Michael D; Kenney, Nicholas; Stoica, Adriana; Hilakivi-Clarke, Leena; Singh, Baljit; Chepko, Gloria; Clarke, Robert; Sholler, Peter F; Lirio, Apolonio A; Foss, Colby; Reiter, Ronald; Trock, Bruce; Paik, Soonmyoung; Martin, Mary Beth

    2003-08-01

    It has been suggested that environmental contaminants that mimic the effects of estrogen contribute to disruption of the reproductive systems of animals in the wild, and to the high incidence of hormone-related cancers and diseases in Western populations. Previous studies have shown that functionally, cadmium acts like steroidal estrogens in breast cancer cells as a result of its ability to form a high-affinity complex with the hormone binding domain of the estrogen receptor. The results of the present study show that cadmium also has potent estrogen-like activity in vivo. Exposure to cadmium increased uterine wet weight, promoted growth and development of the mammary glands and induced hormone-regulated genes in ovariectomized animals. In the uterus, the increase in wet weight was accompanied by proliferation of the endometrium and induction of progesterone receptor (PgR) and complement component C3. In the mammary gland, cadmium promoted an increase in the formation of side branches and alveolar buds and the induction of casein, whey acidic protein, PgR and C3. In utero exposure to the metal also mimicked the effects of estrogens. Female offspring experienced an earlier onset of puberty and an increase in the epithelial area and the number of terminal end buds in the mammary gland.

  3. Prostate cancer progression and mortality: a review of diet and lifestyle factors.

    PubMed

    Peisch, Sam F; Van Blarigan, Erin L; Chan, June M; Stampfer, Meir J; Kenfield, Stacey A

    2017-06-01

    To review and summarize evidence on the role of diet and lifestyle factors and prostate cancer progression, with a specific focus on habits after diagnosis and the risk of subsequent disease recurrence, progression, or death. Given the well-documented heterogeneity of prostate cancer and the long survivorship of the majority of diagnoses, our goal was to summarize and describe modifiable risk factors for clinically relevant prostate cancer. We focused where possible on epidemiologic studies of post-diagnostic habits and prostate cancer progression, defined as recurrence (e.g., PSA risk, secondary treatment), metastasis, or death. Where data were limited, we also describe evidence on risk factors and indicators of prostate cancer aggressiveness at diagnosis. A variety of dietary and lifestyle factors appear to affect prostate cancer progression. Several generally widely recommended lifestyle factors such as not smoking, maintaining a healthy body weight, and regular vigorous physical exercise also appear to affect prostate cancer progression. Several dietary factors, such as tomato sauce/lycopene, cruciferous vegetables, healthy sources of vegetable fats, and coffee, may also have a role in reducing risk of prostate cancer progression. Diet and lifestyle factors, in particular exercise and smoking cessation, may reduce the risk of prostate cancer progression and death. These promising findings warrant further investigation, as their overall impact might be large.

  4. Analysis of genes involved in the PI3K/Akt pathway in radiation- and MNU-induced rat mammary carcinomas.

    PubMed

    Showler, Kaye; Nishimura, Mayumi; Daino, Kazuhiro; Imaoka, Tatsuhiko; Nishimura, Yukiko; Morioka, Takamitsu; Blyth, Benjamin J; Kokubo, Toshiaki; Takabatake, Masaru; Fukuda, Maki; Moriyama, Hitomi; Kakinuma, Shizuko; Fukushi, Masahiro; Shimada, Yoshiya

    2017-03-01

    The PI3K/AKT pathway is one of the most important signaling networks in human breast cancer, and since it was potentially implicated in our preliminary investigations of radiation-induced rat mammary carcinomas, our aim here was to verify its role. We included mammary carcinomas induced by the chemical carcinogen 1-methyl-1-nitrosourea to determine whether any changes were radiation-specific. Most carcinomas from both groups showed activation of the PI3K/AKT pathway, but phosphorylation of AKT1 was often heterogeneous and only present in a minority of carcinoma cells. The negative pathway regulator Inpp4b was significantly downregulated in both groups, compared with in normal mammary tissue, and radiation-induced carcinomas also showed a significant decrease in Pten expression, while the chemically induced carcinomas showed a decrease in Pik3r1 and Pdk1. Significant upregulation of the positive regulators Erbb2 and Pik3ca was observed only in chemically induced carcinomas. However, no genes showed clear correlations with AKT phosphorylation levels, except in individual carcinomas. Only rare carcinomas showed mutations in PI3K/AKT pathway genes, yet these carcinomas did not exhibit stronger AKT phosphorylation. Thus, while AKT phosphorylation is a common feature of rat mammary carcinomas induced by radiation or a canonical chemical carcinogen, the mutation of key genes in the pathways or permanent changes to gene expression of particular signaling proteins do not explain the pathway activation in the advanced cancers. Although AKT signaling likely facilitates cancer development and growth in rat mammary carcinomas, it is unlikely that permanent disruption of the PI3K/AKT pathway genes is a major causal event in radiation carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  5. Analysis of genes involved in the PI3K/Akt pathway in radiation- and MNU-induced rat mammary carcinomas

    PubMed Central

    Showler, Kaye; Nishimura, Mayumi; Imaoka, Tatsuhiko; Nishimura, Yukiko; Morioka, Takamitsu; Blyth, Benjamin J.; Kokubo, Toshiaki; Takabatake, Masaru; Fukuda, Maki; Moriyama, Hitomi; Kakinuma, Shizuko; Fukushi, Masahiro

    2017-01-01

    Abstract The PI3K/AKT pathway is one of the most important signaling networks in human breast cancer, and since it was potentially implicated in our preliminary investigations of radiation-induced rat mammary carcinomas, our aim here was to verify its role. We included mammary carcinomas induced by the chemical carcinogen 1-methyl-1-nitrosourea to determine whether any changes were radiation-specific. Most carcinomas from both groups showed activation of the PI3K/AKT pathway, but phosphorylation of AKT1 was often heterogeneous and only present in a minority of carcinoma cells. The negative pathway regulator Inpp4b was significantly downregulated in both groups, compared with in normal mammary tissue, and radiation-induced carcinomas also showed a significant decrease in Pten expression, while the chemically induced carcinomas showed a decrease in Pik3r1 and Pdk1. Significant upregulation of the positive regulators Erbb2 and Pik3ca was observed only in chemically induced carcinomas. However, no genes showed clear correlations with AKT phosphorylation levels, except in individual carcinomas. Only rare carcinomas showed mutations in PI3K/AKT pathway genes, yet these carcinomas did not exhibit stronger AKT phosphorylation. Thus, while AKT phosphorylation is a common feature of rat mammary carcinomas induced by radiation or a canonical chemical carcinogen, the mutation of key genes in the pathways or permanent changes to gene expression of particular signaling proteins do not explain the pathway activation in the advanced cancers. Although AKT signaling likely facilitates cancer development and growth in rat mammary carcinomas, it is unlikely that permanent disruption of the PI3K/AKT pathway genes is a major causal event in radiation carcinogenesis. PMID:27738081

  6. Hormonal prevention of breast cancer: Mimicking the protective effect of pregnancy

    PubMed Central

    Guzman, Raphael C.; Yang, Jason; Rajkumar, Lakshmanaswamy; Thordarson, Gudmundur; Chen, Xiaoyan; Nandi, Satyabrata

    1999-01-01

    Full term pregnancy early in life is the most effective natural protection against breast cancer in women. Rats treated with chemical carcinogen are similarly protected by a previous pregnancy from mammary carcinogenesis. Proliferation and differentiation of the mammary gland does not explain this phenomenon, as shown by the relative ineffectiveness of perphenazine, a potent mitogenic and differentiating agent. Here, we show that short term treatment of nulliparous rats with pregnancy levels of estradiol 17β and progesterone has high efficacy in protecting them from chemical carcinogen induced mammary cancers. Because the mammary gland is exposed to the highest physiological concentrations of estradiol and progesterone during full term pregnancy, it is these elevated levels of hormones that likely induce protection from mammary cancer. Thus, it appears possible to mimic the protective effects of pregnancy against breast cancer in nulliparous rats by short term specific hormonal intervention. PMID:10051675

  7. Modeling and analysis of transport in the mammary glands

    NASA Astrophysics Data System (ADS)

    Quezada, Ana; Vafai, Kambiz

    2014-08-01

    The transport of three toxins moving from the blood stream into the ducts of the mammary glands is analyzed in this work. The model predictions are compared with experimental data from the literature. The utility of the model lies in its potential to improve our understanding of toxin transport as a pre-disposing factor to breast cancer. This work is based on a multi-layer transport model to analyze the toxins present in the breast milk. The breast milk in comparison with other sampling strategies allows us to understand the mass transport of toxins once inside the bloodstream of breastfeeding women. The multi-layer model presented describes the transport of caffeine, DDT and cimetidine. The analysis performed takes into account the unique transport mechanisms for each of the toxins. Our model predicts the movement of toxins and/or drugs within the mammary glands as well as their bioaccumulation in the tissues.

  8. Making progress: the role of cancer councils in Australia in indigenous cancer control

    PubMed Central

    2014-01-01

    Background Indigenous Australians have poorer outcomes from cancer for a variety of reasons including poorer participation in screening programs, later diagnosis, higher rates of cancer with poor prognosis and poorer uptake and completion of treatment. Cancer prevention and support for people with cancer is part of the core business of the State and Territory Cancer Councils. To support sharing of lessons learned, this paper reports an environmental scan undertaken in 2010 in cancer councils (CCs) nationwide that aimed to support Indigenous cancer control. Methods The methods replicated the approach used in a 2006 environmental scan of Indigenous related activity in CCs. The Chief Executive Officer of each CC nominated individuals for interview. Interviews explored staffing, projects, programs and activities to progress cancer control issues for Indigenous Australians, through phone or face-to-face interviews. Reported initiatives were tabulated using predetermined categories of activity and summaries were returned to interviewees, the Aboriginal and Torres Strait Islander Subcommittee and Chief Executive Officers for verification. Results All CCs participated and modest increases in activity had occurred in most states since 2006 through different means. Indigenous staff numbers were low and no Indigenous person had yet been employed in smaller CCs; no CC had an Indigenous Board member and efforts at capacity building were often directed outside of the organisation. Developing partnerships with Indigenous organisations were ongoing. Acknowledgement and specific mention of Indigenous people in policy was increasing. Momentum increased following the establishment of a national subcommittee which increased the profile of Indigenous issues and provided collegial and practical support for those committed to reducing Indigenous cancer disparities. Government funding of “Closing the Gap” and research in the larger CCs have been other avenues for increasing knowledge

  9. Making progress: the role of cancer councils in Australia in indigenous cancer control.

    PubMed

    Thompson, Sandra C; Shahid, Shaouli; DiGiacomo, Michelle; Pilkington, Leanne; Davidson, Patricia M

    2014-04-11

    Indigenous Australians have poorer outcomes from cancer for a variety of reasons including poorer participation in screening programs, later diagnosis, higher rates of cancer with poor prognosis and poorer uptake and completion of treatment. Cancer prevention and support for people with cancer is part of the core business of the State and Territory Cancer Councils. To support sharing of lessons learned, this paper reports an environmental scan undertaken in 2010 in cancer councils (CCs) nationwide that aimed to support Indigenous cancer control. The methods replicated the approach used in a 2006 environmental scan of Indigenous related activity in CCs. The Chief Executive Officer of each CC nominated individuals for interview. Interviews explored staffing, projects, programs and activities to progress cancer control issues for Indigenous Australians, through phone or face-to-face interviews. Reported initiatives were tabulated using predetermined categories of activity and summaries were returned to interviewees, the Aboriginal and Torres Strait Islander Subcommittee and Chief Executive Officers for verification. All CCs participated and modest increases in activity had occurred in most states since 2006 through different means. Indigenous staff numbers were low and no Indigenous person had yet been employed in smaller CCs; no CC had an Indigenous Board member and efforts at capacity building were often directed outside of the organisation. Developing partnerships with Indigenous organisations were ongoing. Acknowledgement and specific mention of Indigenous people in policy was increasing. Momentum increased following the establishment of a national subcommittee which increased the profile of Indigenous issues and provided collegial and practical support for those committed to reducing Indigenous cancer disparities. Government funding of "Closing the Gap" and research in the larger CCs have been other avenues for increasing knowledge and activity in Indigenous

  10. Interleukin-30: A novel microenvironmental hallmark of prostate cancer progression.

    PubMed

    Di Carlo, Emma

    2014-01-01

    Metastatic prostate cancer is a leading cause of cancer-related death in men worldwide. We have recently discovered that IL-30 shapes the microenvironment of prostate cancer and tumor-draining lymph nodes to favor tumor progression. IL-30 supports tumor growth in vitro, and IL-30 expression in prostate cancer patients is associated with high tumor grade and metastatic stage of disease. Thus, IL-30 may constitute a valuable target for modern therapeutic approaches to hamper prostate cancer progression.

  11. Maximizing the Prospects for Progress Against Cancer

    Cancer.gov

    The 2018 American Society of Clinical Oncology annual meeting featured numerous, potentially practice changing research findings, according to NCI Director Dr. Norman Sharpless. In this Cancer Currents post, Dr. Sharpless discusses the rapid pace of progress in cancer research.

  12. Anti‑cancer effects of fisetin on mammary carcinoma cells via regulation of the PI3K/Akt/mTOR pathway: In vitro and in vivo studies.

    PubMed

    Sun, Xu; Ma, Xueman; Li, Qiwei; Yang, Yong; Xu, Xiaolong; Sun, Jiaqi; Yu, Mingwei; Cao, Kexin; Yang, Lin; Yang, Guowang; Zhang, Ganlin; Wang, Xiaomin

    2018-08-01

    Fisetin, a natural flavonoid found in a variety of edible and medical plants, has been suggested to inhibit the proliferation of various tumor cells and to induce apoptosis. However, the effects of fisetin on breast cancer have rarely been reported and the underlying mechanism is still undefined. The present study explored the anti‑cancer effects of fisetin on mammary carcinoma cells and the underlying mechanisms. Following treatment with fisetin, viability of 4T1, MCF‑7 and MDA‑MB‑231 cells were measured by MTT assay. The inhibitory effects of fisetin on proliferation, migration and invasion were evaluated in 4T1 cells using proliferation array, wound‑healing assay, and HUV‑EC‑C‑cell barrier based on electrical cell‑substrate impedance sensing platform. Cell apoptosis was analyzed by flow cytometry, and western blotting analysis was performed to identify target molecules. A 4T1 orthotopic mammary tumor model was used to assess the fisetin‑inhibition on tumor growth in vivo. Test kits were used to examine the liver and kidney function of tumor‑bearing mice. The results suggest that fisetin suppressed the proliferation of breast cancer cells, suppressed the metastasis and invasiveness of 4T1 cells, and induced the apoptosis of 4T1 cells in vitro. The potent anti‑cancer effect of fisetin was associated with the regulation of the phosphatidylinositol‑3‑kinase/protein kinase B/mammalian target of rapamycin pathway. In vivo experiments demonstrated that fisetin suppressed the growth of 4T1 cell‑derived orthotopic breast tumors and enhanced tumor cell apoptosis, and the evaluated alanine amino transferase and aspartate amino transferase levels in serum of tumor‑bearing mice suggested that fisetin may lead to side effects on liver biochemical function. The present study confirms that fisetin exerted an anti‑mammary carcinoma effect. However, in vivo experiments also revealed that fisetin had low solubility and low bioavailability

  13. The effect of zinc and phytoestrogen supplementation on the changes in mineral content of the femur of rats with chemically induced mammary carcinogenesis.

    PubMed

    Skrajnowska, Dorota; Korczak, Barbara Bobrowska-; Tokarz, Andrzej; Kazimierczuk, Agata; Klepacz, Marta; Makowska, Justyna; Gadzinski, Blazej

    2015-10-01

    The aim of this study was to assess skeletal effects of zinc or zinc with phytoestrogen (resveratrol or genistein) supplementation in an animal model of rats with DMBA-induced mammary carcinogenesis. The changes in bone parameters such as the length and mass were examined, as well as the changes in concentrations of selected minerals: calcium, magnesium, zinc, iron and phosphorus. Moreover, the investigations focused on finding the differences between the levels of iron and zinc in other tissues: the liver, spleen and serum of the examined rats. Fifty-six female Sprague-Dawley rats, 40 days old, were divided into four groups, regardless of the diets: standard (77mg Zn kg/food), zinc (4.6mg/mL via gavage), zinc (4.6mg/mL) plus resveratrol (0.2mg/kgbw), and zinc (4.6mg/mL) plus genistein (0.2mg/kgbw) for a period from 40 days until 20 weeks of age. The study rats were also treated with 7,12-dimethyl-1,2-benz[a]anthracene (DMBA) to induce mammary carcinogenesis. The applied diet and the advanced mammary cancer did not affect macrometric parameters of the rats' bones, but they strongly affected their mineral content. It was found that mammary cancer, irrespectively of the applied diet, significantly modified the iron level in the femur, liver, spleen and serum of the examined rats. In addition, zinc supplementation significantly lowered the levels of calcium, magnesium and phosphorus in the femur of rats with mammary cancer as compared with respective levels in the control group. So, it was found that additional supplementation with zinc, which is generally considered to be an antioxidant, with the co-existing mammary carcinoma, increased the unfavorable changes as concerns the stability of bone tissue. The appropriate combination of zinc and phytoestrogens (resveratrol or genistein) could help prevent or slow bone loss associated with a range of skeletal disorders in breast cancer. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Effect pf Estrogen on Progression of Human Proliferation Breast Cancer Disease in a Xenograft Model

    DTIC Science & Technology

    1999-08-01

    DMBA)-induced rat mammary tumor. Virchows Arch. Pathol. Anal., 418: 111-117,1991. 61. Fukeda, M ., Maekawa, J., Hosokawa, Y., Urata , Y., Sugihara, H...s) adhered to policies of applicable Federal Law 45 CFR 46. ^y m conducting research utilizing recombinant DNA. technology, the investigator(s...receptor (ER) gene in MCFlOAneoT cells, a potential factor in neoplastic progression of MCFlOAneoT xenografts. P. V.M. Shekhar, M .- L. Chen, J. Werdell

  15. Estrogenic activity of tamoxifen on normal mammary parenchyma in the luteal phase of the menstrual cycle.

    PubMed

    Facina, G; de Lima, G R; Simões, M J; Novo, N F; Gebrim, L H

    1997-01-01

    Tamoxifen, an anti-estrogenic drug used in the adjuvant treatment of breast cancer, deserves more investigation for the determination of its efficacy as a prophylactic agent against breast cancer in high risk women. Thus, the action of tamoxifen on the human mammary gland was studied by measuring the number of lysosomes in normal mammary epithelium during the administration of tamoxifen. Tamoxifen was administered only during the luteal phase of the menstrual cycle to avoid interference with corpus luteum formation. A fragment of breast tissue adjacent to a fibroadenoma was obtained during surgery from 35 premenopausal women aged 15 to 37 years who had been eumenorrheic for at least 6 months; 18 of these patients were treated with tamoxifen and 17 were used as controls. Lysosome counts were performed under the light microscope on slides submitted to the acid phosphatase cytochemical technique and the data were analyzed statistically by the Mann-Whitney test. The fragments from the group treated with tamoxifen showed a significant decrease in lysosome numbers. Tamoxifen administered after ovulation significantly decreases the number of lysosomes in the cells of normal mammary epithelium, demonstrating the antiestrogenic effect of the drug on this target tissue.

  16. Pim-1 kinase expression during murine mammary development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gapter, Leslie A.; School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234; Magnuson, Nancy S.

    2006-07-07

    Pim-1 kinase phosphorylates substrates whose activities are linked to proliferation, survival, differentiation, and apoptosis. Although pim-1 is induced by hormones and cytokines, the hormonal control and contribution of Pim-1 to mammary gland development have not been evaluated. We examined Pim-1 expression in mammary cell lines, investigated whether Pim-1 levels could be altered in breast epithelia by mammogenic hormones, and evaluated Pim-1 expression during mammary development. We found that Pim-1 was elevated in most mammary carcinoma cell lines and progesterone increased Pim-1 protein to some extent in non-tumorigenic mammary epithelia. Pim-1 expression in situ was consistent with the documented profile ofmore » progesterone activity in mouse mammary glands. Pim-1 nuclear localization correlated with cytoplasmic distribution for its substrate, p21{sup CIP/Waf1}, and we found that Pim-1 and p21 associate in vitro. Our results suggest that Pim-1 expression may be regulated by progesterone during mammary development and Pim-1 associates with p21 in mammary epithelial cells.« less

  17. Fear of cancer progression and cancer-related intrusive cognitions in breast cancer survivors.

    PubMed

    Mehnert, Anja; Berg, Petra; Henrich, Gerhard; Herschbach, Peter

    2009-12-01

    To assess the character and frequency of fear of progression (FoP) and to clarify its relationship with cancer-related intrusive cognitions in breast cancer survivors. A sample of 1083 patients was recruited in this cross-sectional study through a population-based Cancer Registry an average of 47 month following diagnosis (66% response rate). Participants completed self-report measures assessing fear of cancer progression (FoP-Q-SF), posttraumatic stress-disorder symptoms (PCL-C), coping strategies (DWI) and quality of life (QoL) (SF-8). In total, 23.6% of women were classified as having moderate to high FoP. Being nervous prior to doctors' appointments or examinations and being afraid of relying on strangers for activities of daily living were the most frequent fears. FoP was significantly associated with younger age, having children, disease progress, chemotherapy, perceived amount of impairments, physical and mental QoL, but not with time since initial diagnosis. Intrusive cognitions were screened in 37% of the sample. We found significant correlations between FoP and intrusive thoughts (r=0.63), avoidance (r=0.57), hyperarousal (r=0.54) and posttraumatic stress disorder diagnosis (r=0.42). Factors significantly associated with moderate and high FoP included a depressive coping style as well as an active problem-oriented coping style, intrusion, avoidance and hyperarousal symptoms (Nagelkerke's R(2)=0.44). Findings of this study give information regarding the frequency and the character of anxiety in breast cancer survivors and underline the relation of FoP to the reality of living with breast cancer. Results suggest that intrusive cognitions as well as avoidance and hyperarousal symptoms seem to be closely related to future-oriented fears of cancer recurrence.

  18. The cooked meat-derived mammary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine promotes invasive behaviour of breast cancer cells.

    PubMed

    Lauber, Sandra N; Gooderham, Nigel J

    2011-01-11

    The cooked meat derived genotoxic carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induces cancer of the colon, prostate and mammary gland when fed to rats. Epidemiology studies link these tumours to a Western diet and exposure to heterocyclic amines such as PhIP. We have shown that PhIP is also potently estrogenic and have proposed that this hormonal activity contributes to its target site carcinogenicity. We now postulate that the estrogenic properties of PhIP influence metastatic potential. We have used an in vitro assay for cell invasion based upon digestion and migration through a reconstituted basement membrane model. Zymography and immunoblotting were used to confirm PhIP-mediated changes associated with induction of the invasive phenotype. Treatment of the mammary cancer cell lines MCF-7 and T47D with PhIP induces cells to digest and migrate through a reconstituted basement membrane. The response was dose dependent, observed at sub-nanomolar concentrations of PhIP and was inhibited by the antiestrogen ICI 182,780. The PhIP-induced invasive phenotype was associated with expression of cathepsin D, cyclooxygenase-2 and matrix metalloproteinase activity. These findings emphasise the range and potency of the biological activities associated with this cooked meat product and mechanistically support the tissue-specific carcinogenicity of the chemical. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Chemoprevention of Radiation Induced Rat Mammary Neoplasms

    NASA Technical Reports Server (NTRS)

    Huso, David L.

    1999-01-01

    Radiations encountered in space include protons and heavy ions such as iron as well as their secondaries. The relative biological effect (RBE) of these ions is not known, particularly at the doses and dose-rates expected for planetary missions. Neutrons, are not particularly relevant to space travel, but have been found experimentally to have an increase in their RBE with decreasing dose. If a similar trend of increasing RBE with decreasing dose is present for heavy ions and protons during irradiation in space, the small doses received during space travel could potentially have substantial carcinogenic risk. Clearly more investigation of the effects of heavy ions and protons is needed before accurate risk assessment for prolonged travel in space can be done. One means to mitigate the increased risk of cancer due to radiation exposure in space is by developing effective countermeasures that can reduce the incidence of tumor development. Tamoxifen has recently been shown to be an effective chemopreventive agent in both animal models and humans for the prevention of mammary tumors. Tamoxifen is a unique drug, with a highly specific mechanism of action affecting a specific radiation-sensitive population of epithelial cells in the mammary gland. In human studies, the annual incidence of a primary tumor in the contralateral breast of women with previous breast cancer is about 8 per 1000, making them an exceedingly high-risk group for the development of breast cancer. In this high risk group, treated with tamoxifen, daily, for 2 years, the incidence of a new primary tumor in the contralateral breast was approximately one third of that noted in the non-tamoxifen treatment group. Tamoxifen antagonizes the action of estrogen by competing for the nuclear receptor complex thereby altering the association of the receptor complex and nuclear binding sites. Its effects in reducing the development of breast cancer could be accomplished by controlling clinically undetectable

  20. Bladder, Breast, and Colorectal Cancer- Treatment Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  1. Age Modifies the Effect of 2-MeV Fast Neutrons on Rat Mammary Carcinogenesis.

    PubMed

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Daino, Kazuhiro; Hosoki, Ayaka; Takabatake, Masaru; Kokubo, Toshiaki; Doi, Kazutaka; Showler, Kaye; Nishimura, Yukiko; Moriyama, Hitomi; Morioka, Takamitsu; Shimada, Yoshiya; Kakinuma, Shizuko

    2017-10-01

    The relative biological effectiveness (RBE) of neutrons depends on their physical nature (e.g., energy) and the biological context (e.g., end points, materials). From the perspective of radiological protection, age is an important biological context that influences radiation-related cancer risk, but very few studies have addressed its potential impact on neutron effects. We therefore investigated the influence of age on the effect of accelerator-generated fast neutrons (mean energy, ∼2 MeV) in an animal model of breast carcinogenesis. Female Sprague-Dawley rats at 1, 3 and 7 weeks of age were irradiated with fast neutrons at absorbed doses of 0.0485-0.97 Gy. All animals were kept under specific pathogen-free conditions and screened weekly for mammary tumors by palpation until they were 90 weeks old. Tumors were diagnosed based on histology. Mathematical modeling was used to analyze mammary cancer incidence, collectively using data from this study and a previously reported experiment on 137 Cs gamma rays. The results indicate that neutron irradiation elevated the risk of palpable mammary carcinoma with a linear dose response, the slope of which depended on age at time of irradiation. The RBE of neutron radiation was 7.5 ± 3.4, 9.3 ± 3.5 and 26.1 ± 8.9 (mean ± SE) for animals exposed at 1, 3 and 7 weeks of age, respectively. Our results indicate that age of the animal is an important factor influencing the effect of fast neutrons on breast cancer risk.

  2. Breast Cancer Training Program

    DTIC Science & Technology

    2005-08-01

    trainee support in year 05 Dr. Matulka studies the biology and stem cell features of parity- induced mammary epithelial cells (PI- MECs). In particular...cancer- from discovery to application February 10, 2005 Dr. James Trosko Michigan State University Role of Human Adult Stem Cells and Cell - Cell ...cancer epidemiology September 6, 2001 Dr. Gilbert Smith NCI Mammary stem cells May 24, 2001 Dr. V. Craig Jordan Northwestern University School Henry

  3. Noninvasive Optical Tracking of Red Fluorescent Protein-Expressing Cancer Cells in a Model of Metastatic Breast Cancer 1*

    PubMed Central

    Winnard, Paul T; Kluth, Jessica B; Raman, Venu

    2006-01-01

    Abstract We have evaluated the use of the Xenogen IVIS 200 imaging system for real-time fluorescence protein-based optical imaging of metastatic progression in live animals. We found that green fluorescent protein-expressing cells (100 x 106) were not detectable in a mouse cadaver phantom experiment. However, a 10-fold lower number of tdTomato-expressing cells were easily detected. Mammary fat pad xenografts of stable MDA-MB-231-tdTomato cells were generated for the imaging of metastatic progression. At 2 weeks postinjection, barely palpable tumor burdens were easily detected at the sites of injection. At 8 weeks, a small contralateral mammary fat pad metastasis was imaged and, by 13 weeks, metastases to lymph nodes were detectable. Metastases with nodular composition were detectable within the rib cage region at 15 weeks. 3-D image reconstructions indicated that the detection of fluorescence extended to approximately 1 cm below the surface. A combination of intense tdTomato fluorescence, imaging at ≥ 620 nm (where autofluorescence is minimized), and the sensitivity of the Xenogen imager made this possible. This study demonstrates the utility of the noninvasive optical tracking of cancer cells during metastatic progression with endogenously expressed fluorescence protein reporters using detection wavelengths of ≥ 620 nm. PMID:17032496

  4. Mammary stem cell and macrophage markers are enriched in normal tissue adjacent to inflammatory breast cancer.

    PubMed

    Reddy, Jay P; Atkinson, Rachel L; Larson, Richard; Burks, Jared K; Smith, Daniel; Debeb, Bisrat G; Ruffell, Brian; Creighton, Chad J; Bambhroliya, Arvind; Reuben, James M; Van Laere, Steven J; Krishnamurthy, Savitri; Symmans, William F; Brewster, Abenaa M; Woodward, Wendy A

    2018-06-01

    We hypothesized that breast tissue not involved by tumor in inflammatory breast cancer (IBC) patients contains intrinsic differences, including increased mammary stem cells and macrophage infiltration, which may promote the IBC phenotype. Normal breast parenchyma ≥ 5 cm away from primary tumors was obtained from mastectomy specimens. This included an initial cohort of 8 IBC patients and 60 non-IBC patients followed by a validation cohort of 19 IBC patients and 25 non-IBC patients. Samples were immunostained for either CD44 + CD49f + CD133/2 + mammary stem cell markers or the CD68 macrophage marker and correlated with IBC status. Quantitation of positive cells was determined using inForm software from PerkinElmer. We also examined the association between IBC status and previously published tumorigenic stem cell and IBC tumor signatures in the validation cohort samples. 8 of 8 IBC samples expressed isolated CD44 + CD49f + CD133/2 + stem cell marked cells in the initial cohort as opposed to 0/60 non-IBC samples (p = 0.001). Similarly, the median number of CD44 + CD49f + CD133/2 + cells was significantly higher in the IBC validation cohort as opposed to the non-IBC validation cohort (25.7 vs. 14.2, p = 0.007). 7 of 8 IBC samples expressed CD68 + histologically confirmed macrophages in initial cohort as opposed to 12/48 non-IBC samples (p = 0.001). In the validation cohort, the median number of CD68 + cells in IBC was 3.7 versus 1.0 in the non-IBC cohort (p = 0.06). IBC normal tissue was positively associated with a tumorigenic stem cell signature (p = 0.02) and with a 79-gene IBC signature (p < 0.001). Normal tissue from IBC patients is enriched for both mammary stem cells and macrophages and has higher association with both a tumorigenic stem cell signature and IBC-specific tumor signature. Collectively, these data suggest that IBC normal tissue differs from non-IBC tissue. Whether these changes occur before the tumor develops or

  5. CDB-4124, a progesterone receptor modulator, inhibits mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis.

    PubMed

    Wiehle, Ronald; Lantvit, Daniel; Yamada, Tohru; Christov, Konstantin

    2011-03-01

    CDB-4124 (Proellex or telapristone acetate) is a modulator of progesterone receptor (PR) signaling, which is currently employed in preclinical studies for prevention and treatment of breast cancer and has been used in clinical studies for treatment of uterine fibroids and endometriosis. Here we provide evidence for its action on steroid hormone-signaling, cell cycle-regulated genes and in vivo on mammary carcinogenesis. When CDB-4124 is given to rats at 200 mg/kg for 24 months, it prevents the development of spontaneous mammary hyperplastic and premalignant lesions. Also, CDB-4124 given as subcutaneous pellets at two different doses suppressed, dose dependently, N-methyl-N-nitrosourea (MNU)-induced mammary carcinogenesis. The high dose (30 mg, over 84 days) increased tumor latency from 66 ± 24 days to 87 ± 20 days (P < 0.02), decreased incidence from 85% to 35% (P < 0.001), and reduced multiplicity from 3.0 to 1.1 tumors/animal (P < 0.001). Tumor burden decreased from 2.6 g/animal to 0.26 g/animal (P < 0.01). CDB-4124 inhibited cell proliferation and induced apoptosis in MNU-induced mammary tumors, which correlated with a decreased proportion of PR(+) tumor cells and with decreased serum progesterone. CDB-4124 did not affect serum estradiol. In a mechanistic study employing T47D cells we found that CDB-4124 suppressed G(1)/G(0)-S transition by inhibiting CDK2 and CDK4 expressions, which correlated with inhibition of estrogen receptor (ER) expression. Taken together, these data indicate that CDB-4124 can suppress the development of precancerous lesions and carcinogen-induced ER(+) mammary tumors in rats, and may have implications for prevention and treatment of human breast cancer.

  6. Mammary and extramammary Paget's disease

    PubMed Central

    Lloyd, J; Flanagan, A

    2000-01-01

    Mammary and extramammary Paget's disease are uncommon intraepithelial adenocarcinomas. Both conditions have similar clinical features, which mimic inflammatory and infective diseases. Histological diagnostic confusion can arise between Paget's disease and other neoplastic conditions affecting the skin, with the most common differential diagnoses being malignant melanoma and atypical squamous disease. The glandular differentiation of both mammary Paget's disease and extramammary Paget's disease is indicated by morphological appearances, the presence of intracellular mucin in many cases, and positive immunohistochemical staining for glandular cytokeratins, epithelial membrane antigen, and carcinoembryonic antigen. This article provides an overview of mammary and extramammary Paget's disease and discusses recent evidence regarding the cell of origin. The concepts of primary and secondary Paget's disease are presented and the differential diagnosis is discussed with reference to immunohistochemical markers that might be of diagnostic value. Key Words: mammary Paget's disease • extramammary Paget's disease PMID:11064666

  7. Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcaraz, Jordi; Xu, Ren; Mori, Hidetoshi

    2008-10-20

    In the mammary gland, epithelial cells are embedded in a 'soft' environment and become functionally differentiated in culture when exposed to a laminin-rich extracellular matrix gel. Here, we define the processes by which mammary epithelial cells integrate biochemical and mechanical extracellular cues to maintain their differentiated phenotype. We used single cells cultured on top of gels in conditions permissive for {beta}-casein expression using atomic force microscopy to measure the elasticity of the cells and their underlying substrata. We found that maintenance of {beta}-casein expression required both laminin signalling and a 'soft' extracellular matrix, as is the case in normal tissuesmore » in vivo, and biomimetic intracellular elasticity, as is the case in primary mammary epithelial organoids. Conversely, two hallmarks of breast cancer development, stiffening of the extracellular matrix and loss of laminin signalling, led to the loss of {beta}-casein expression and non-biomimetic intracellular elasticity. Our data indicate that tissue-specific gene expression is controlled by both the tissues unique biochemical milieu and mechanical properties, processes involved in maintenance of tissue integrity and protection against tumorigenesis.« less

  8. Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression

    DTIC Science & Technology

    2017-07-01

    AWARD NUMBER: W81XWH-15-1-0095 TITLE: Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1...cells and in transformed ovarian cells affected by obesity that lead to ovarian cancer initiation and progression. 15. SUBJECT TERMS Obesity , Ovarian

  9. Genes involved in immortalization of human mammary cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stampfer, Martha R.; Yaswen, Paul

    2001-09-27

    Breast cancer progression is characterized by inappropriate cell growth. Normal cells cease growth after a limited number of cell divisions--a process called cellular senescence-while tumor cells may acquire the ability to proliferate indefinitely (immortality). Inappropriate expression of specific oncogenes in a key cellular signaling pathway (Ras, Raf) can promote tumorigenicity in immortal cells, while causing finite lifespan cells to undergo a rapid senescence-like arrest. We have studied when in the course of transformation of cultured human mammary epithelial cells (HMEC), the response to overexpressed oncogenic Raf changes from being tumor-suppressive to tumor enhancing, and what are the molecular underpinnings ofmore » this response. Our data indicate: (1) HMEC acquire the ability to maintain growth in the presence of oncogenic Raf not simply as a consequence of overcoming senescence, but as a result of a newly discovered step in the process of immortal transformation uncovered by our lab, termed conversion. Immortal cells that have not undergone conversion (e.g., cells immortalized by exogenous introduction of the immortalizing enzyme, telomerase) remain growth inhibited. (2) Finite lifespan HMEC growth arrest in response to oncogenic Raf using mediators of growth inhibition that are very different from those used in response to oncogenic Raf by rodent cells and certain other human cell types, including the connective tissue cells from the same breast tissue. While many diverse cell types appear to have in common a tumor-suppressive response to this oncogenic signal, they also have developed multiple mechanisms to elicit this response. Understanding how cancer cells acquire the crucial capacity to be immortal and to abrogate normal tumor-suppressive mechanisms may serve both to increase our understanding of breast cancer progression, and to provide new targets for therapeutic intervention. Our results indicate that normal HMEC have novel means of

  10. A Tale of Two Signals: AR and WNT in Development and Tumorigenesis of Prostate and Mammary Gland

    PubMed Central

    Pakula, Hubert; Xiang, Dongxi; Li, Zhe

    2017-01-01

    Prostate cancer (PCa) is one of the most common cancers and among the leading causes of cancer deaths for men in industrialized countries. It has long been recognized that the prostate is an androgen-dependent organ and PCa is an androgen-dependent disease. Androgen action is mediated by the androgen receptor (AR). Androgen deprivation therapy (ADT) is the standard treatment for metastatic PCa. However, almost all advanced PCa cases progress to castration-resistant prostate cancer (CRPC) after a period of ADT. A variety of mechanisms of progression from androgen-dependent PCa to CRPC under ADT have been postulated, but it remains largely unclear as to when and how castration resistance arises within prostate tumors. In addition, AR signaling may be modulated by extracellular factors among which are the cysteine-rich glycoproteins WNTs. The WNTs are capable of signaling through several pathways, the best-characterized being the canonical WNT/β-catenin/TCF-mediated canonical pathway. Recent studies from sequencing PCa genomes revealed that CRPC cells frequently harbor mutations in major components of the WNT/β-catenin pathway. Moreover, the finding of an interaction between β-catenin and AR suggests a possible mechanism of cross talk between WNT and androgen/AR signaling pathways. In this review, we discuss the current knowledge of both AR and WNT pathways in prostate development and tumorigenesis, and their interaction during development of CRPC. We also review the possible therapeutic application of drugs that target both AR and WNT/β-catenin pathways. Finally, we extend our review of AR and WNT signaling to the mammary gland system and breast cancer. We highlight that the role of AR signaling and its interaction with WNT signaling in these two hormone-related cancer types are highly context-dependent. PMID:28134791

  11. A Tale of Two Signals: AR and WNT in Development and Tumorigenesis of Prostate and Mammary Gland.

    PubMed

    Pakula, Hubert; Xiang, Dongxi; Li, Zhe

    2017-01-27

    Prostate cancer (PCa) is one of the most common cancers and among the leading causes of cancer deaths for men in industrialized countries. It has long been recognized that the prostate is an androgen-dependent organ and PCa is an androgen-dependent disease. Androgen action is mediated by the androgen receptor (AR). Androgen deprivation therapy (ADT) is the standard treatment for metastatic PCa. However, almost all advanced PCa cases progress to castration-resistant prostate cancer (CRPC) after a period of ADT. A variety of mechanisms of progression from androgen-dependent PCa to CRPC under ADT have been postulated, but it remains largely unclear as to when and how castration resistance arises within prostate tumors. In addition, AR signaling may be modulated by extracellular factors among which are the cysteine-rich glycoproteins WNTs. The WNTs are capable of signaling through several pathways, the best-characterized being the canonical WNT/β-catenin/TCF-mediated canonical pathway. Recent studies from sequencing PCa genomes revealed that CRPC cells frequently harbor mutations in major components of the WNT/β-catenin pathway. Moreover, the finding of an interaction between β-catenin and AR suggests a possible mechanism of cross talk between WNT and androgen/AR signaling pathways. In this review, we discuss the current knowledge of both AR and WNT pathways in prostate development and tumorigenesis, and their interaction during development of CRPC. We also review the possible therapeutic application of drugs that target both AR and WNT/β-catenin pathways. Finally, we extend our review of AR and WNT signaling to the mammary gland system and breast cancer. We highlight that the role of AR signaling and its interaction with WNT signaling in these two hormone-related cancer types are highly context-dependent.

  12. Chemical and Environmental Exposures | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  13. Methodology for Characterizing Trends | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  14. Smoke-free Home Rules | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  15. Tobacco Company Marketing Expenditures | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  16. Recent Updates and Archive | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  17. Trends at a Glance | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  18. Diet - Prevention Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  19. Tobacco Policy/Regulatory Factors | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  20. Fruit and Vegetable Consumption | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  1. Luminal epithelial cells within the mammary gland can produce basal cells upon oncogenic stress.

    PubMed

    Hein, S M; Haricharan, S; Johnston, A N; Toneff, M J; Reddy, J P; Dong, J; Bu, W; Li, Y

    2016-03-17

    In the normal mammary gland, the basal epithelium is known to be bipotent and can generate either basal or luminal cells, whereas the luminal epithelium has not been demonstrated to contribute to the basal compartment in an intact and normally developed mammary gland. It is not clear whether cellular heterogeneity within a breast tumor results from transformation of bipotent basal cells or from transformation and subsequent basal conversion of the more differentiated luminal cells. Here we used a retroviral vector to express an oncogene specifically in a small number of the mammary luminal epithelial cells and tested their potential to produce basal cells during tumorigenesis. This in-vivo lineage-tracing work demonstrates that luminal cells are capable of producing basal cells on activation of either polyoma middle T antigen or ErbB2 signaling. These findings reveal the plasticity of the luminal compartment during tumorigenesis and provide an explanation for cellular heterogeneity within a cancer.

  2. Luminal Epithelial Cells within the Mammary Gland Can Produce Basal Cells upon Oncogenic Stress

    PubMed Central

    Hein, Sarah M.; Haricharan, Svasti; Johnston, Alyssa N.; Toneff, Michael J.; Reddy, Jay P.; Dong, Jie; Bu, Wen; Li, Yi

    2015-01-01

    In the normal mammary gland, the basal epithelium is known to be bi-potent and can generate either basal or luminal cells, whereas the luminal epithelium has not been demonstrated to contribute to the basal compartment in an intact and normally developed mammary gland. It is not clear whether cellular heterogeneity within a breast tumor results from transformation of bi-potent basal cells or from transformation and subsequent basal conversion of the more differentiated luminal cells. Here, we used a retroviral vector to express an oncogene specifically in a small number of the mammary luminal epithelial cells and tested their potential to produce basal cells during tumorigenesis. This in vivo lineage tracing work demonstrates that luminal cells are capable of producing basal cells upon activation of either Polyoma Middle T antigen (PyMT) or ErbB2 signaling. These findings reveal the plasticity of the luminal compartment during tumorigenesis and provide an explanation for cellular heterogeneity within a cancer. PMID:26096929

  3. Algorithmic methods to infer the evolutionary trajectories in cancer progression

    PubMed Central

    Graudenzi, Alex; Ramazzotti, Daniele; Sanz-Pamplona, Rebeca; De Sano, Luca; Mauri, Giancarlo; Moreno, Victor; Antoniotti, Marco; Mishra, Bud

    2016-01-01

    The genomic evolution inherent to cancer relates directly to a renewed focus on the voluminous next-generation sequencing data and machine learning for the inference of explanatory models of how the (epi)genomic events are choreographed in cancer initiation and development. However, despite the increasing availability of multiple additional -omics data, this quest has been frustrated by various theoretical and technical hurdles, mostly stemming from the dramatic heterogeneity of the disease. In this paper, we build on our recent work on the “selective advantage” relation among driver mutations in cancer progression and investigate its applicability to the modeling problem at the population level. Here, we introduce PiCnIc (Pipeline for Cancer Inference), a versatile, modular, and customizable pipeline to extract ensemble-level progression models from cross-sectional sequenced cancer genomes. The pipeline has many translational implications because it combines state-of-the-art techniques for sample stratification, driver selection, identification of fitness-equivalent exclusive alterations, and progression model inference. We demonstrate PiCnIc’s ability to reproduce much of the current knowledge on colorectal cancer progression as well as to suggest novel experimentally verifiable hypotheses. PMID:27357673

  4. Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression

    DTIC Science & Technology

    2016-05-01

    AWARD NUMBER: W81XWH-15-1-0095 TITLE: Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1...pathways in ovarian stem cells and in transformed ovarian cells affected by obesity that lead to ovarian cancer initiation and progression. 15. SUBJECT

  5. A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NFI and a novel transcription factor, mammary cell-activating factor.

    PubMed Central

    Mink, S; Härtig, E; Jennewein, P; Doppler, W; Cato, A C

    1992-01-01

    Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus involved in the neoplastic transformation of mouse mammary gland cells. The expression of this virus is regulated by mammary cell type-specific factors, steroid hormones, and polypeptide growth factors. Sequences for mammary cell-specific expression are located in an enhancer element in the extreme 5' end of the long terminal repeat region of this virus. This enhancer, when cloned in front of the herpes simplex thymidine kinase promoter, endows the promoter with mammary cell-specific response. Using functional and DNA-protein-binding studies with constructs mutated in the MMTV long terminal repeat enhancer, we have identified two main regulatory elements necessary for the mammary cell-specific response. These elements consist of binding sites for a transcription factor in the family of CTF/NFI proteins and the transcription factor mammary cell-activating factor (MAF) that recognizes the sequence G Pu Pu G C/G A A G G/T. Combinations of CTF/NFI- and MAF-binding sites or multiple copies of either one of these binding sites but not solitary binding sites mediate mammary cell-specific expression. The functional activities of these two regulatory elements are enhanced by another factor that binds to the core sequence ACAAAG. Interdigitated binding sites for CTF/NFI, MAF, and/or the ACAAAG factor are also found in the 5' upstream regions of genes encoding whey milk proteins from different species. These findings suggest that mammary cell-specific regulation is achieved by a concerted action of factors binding to multiple regulatory sites. Images PMID:1328867

  6. PRRX2 as a novel TGF-β-induced factor enhances invasion and migration in mammary epithelial cell and correlates with poor prognosis in breast cancer.

    PubMed

    Juang, Yu-Lin; Jeng, Yung-Ming; Chen, Chi-Long; Lien, Huang-Chun

    2016-12-01

    TGF-β and cancer progression share a multifaceted relationship. Despite the knowledge of TGF-β biology in the development of cancer, several factors that mediate the cancer-promoting role of TGF-β continue to be identified. This study aimed to identify and characterise novel factors potentially related to TGF-β-mediated tumour aggression in breast cells. We treated the human mammary epithelial cell line MCF10A with TGF-β and identified TGF-β-dependent upregulation of PRRX2, the gene encoding paired-related homeobox 2 transcription factor. Overexpression of PRRX2 enhanced migration, invasion and anchorage-independent growth of MCF10A cells and induced partial epithelial mesenchymal transition (EMT), as determined by partial fibroblastoid morphology of cells, upregulation of EMT markers and partially disrupted acinar structure in a three-dimensional culture. We further identified PLAT, the gene encoding tissue-type plasminogen activator (tPA), as the highest differentially expressed gene in PRRX2-overexpressing MCF10A cells, and demonstrated direct binding and transactivation of the PLAT promoter by PRRX2. Furthermore, PLAT knockdown inhibited PRRX2-mediated enhanced migration and invasion, suggesting that tPA may mediate PRRX2-induced migration and invasion. Finally, the significant correlation of PRRX2 expression with poor survival in 118 primary breast tumour samples (P = 0.027) and the increased PRRX2 expression in metaplastic breast carcinoma samples, which is pathogenetically related to EMT, validated the biological importance of PRRX2-enhanced migration and invasion and PRRX2-induced EMT. Thus, our data suggest that upregulation of PRRX2 may be a mechanism contributing to TGF-β-induced invasion and EMT in breast cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. t10,c12-Conjugated linoleic acid stimulates mammary tumor progression in Her2/ErbB2 mice through activation of both proliferative and survival pathways

    PubMed Central

    Meng, Xiaojing; Shoemaker, Suzanne F.; McGee, Sibel O.; Ip, Margot M.

    2008-01-01

    The t10,c12 isomer of conjugated linoleic acid (CLA) inhibits rat mammary carcinogenesis, metastasis from a transplantable mouse mammary tumor and angiogenesis; however, it stimulates mammary tumorigenesis in transgenic mice overexpressing ErbB2 in the mammary epithelium (ErbB2 transgenic mice). In the current study, we report that a 4-week supplementation of the diet with 0.5% trans-10, cis-12 conjugated linoleic acid (t10,c12-CLA) stimulated the growth of established ErbB2-overexpressing mammary tumors by 30% and increased the number of new tumors from 11% to 82%. Additionally, when t10,c12-CLA supplementation of ErbB2 transgenic mice was initiated at 21 weeks of age, a time just prior to tumor appearance, overall survival was decreased from 46.4 weeks in the control to 39.0 weeks in the CLA group, and survival after detection of a palpable tumor from 7.5 to 4.6 weeks. Short-term supplementation from 10 to 14 weeks or 21 to 25 weeks of age temporarily accelerated tumor development, but over the long term, there was no significant effect on mammary tumorigenesis. Long term as well as a short 4-week supplementation increased mammary epithelial hyperplasia and lobular development, and altered the mammary stroma; this was reversible in mice returned to the control diet. t10,c12-CLA altered proliferation and apoptosis of the mammary epithelium, although this differed depending on the length of administration and/or the age of the mice. The increased tumor development with t10,c12-CLA was associated with increased phosphorylation of the IGF-I/insulin receptor, as well as increased signaling through the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase and phosphatidylinositol 3-kinase/Akt pathways; however, neither phospho-ErbB2 nor ErbB2 was altered. PMID:18339686

  8. Estrogen receptor positivity in mammary tumors of Wnt-1 transgenic mice is influenced by collaborating oncogenic mutations.

    PubMed

    Zhang, Xiaomei; Podsypanina, Katrina; Huang, Shixia; Mohsin, Syed K; Chamness, Gary C; Hatsell, Sarah; Cowin, Pam; Schiff, Rachel; Li, Yi

    2005-06-16

    The majority (75%) of human breast cancers express estrogen receptor (ER). Although ER-positive tumors usually respond to antiestrogen therapies, 30% of them do not. It is not known what controls the ER status of breast cancers or their responsiveness to antihormone interventions. In this report, we document that transgenic (TG) expression of Wnt-1 in mice induces ER-positive tumors. Loss of Pten or gain of Ras mutations during the evolution of tumors in Wnt-1 TG mice has no effect on the expression of ER, but overexpression of Neu or loss of p53 leads to ER-negative tumors. Thus, our results provide compelling evidence that expression of ER in breast cancer may be influenced by specific genetic changes that promote cancer progression. These findings constitute a first step to explore the molecular mechanisms leading to ER-positive or ER-negative mammary tumors. In addition, we find that ER-positive tumors arising in Wnt-1 TG mice are refractory to both ovariectomy and the ER antagonist tamoxifen, but lose ER expression with tamoxifen, suggesting that antiestrogen selects for ER-negative tumor cells and that the ER-positive cell fraction is dispensable for growth of these tumors. This is a first report of a mouse model of antiestrogen-resistant ER-positive breast cancers, and could provide a powerful tool to study the molecular mechanisms that control antiestrogen resistance.

  9. Vegetable and fruit intake after diagnosis and risk of prostate cancer progression.

    PubMed

    Richman, Erin L; Carroll, Peter R; Chan, June M

    2012-07-01

    Cruciferous vegetables, tomato sauce and legumes have been associated with reduced risk of incident advanced prostate cancer. In vitro and animal studies suggest these foods may inhibit progression of prostate cancer, but there are limited data in men. Therefore, we prospectively examined whether intake of total vegetables, and specifically cruciferous vegetables, tomato sauce and legumes, after diagnosis reduce risk of prostate cancer progression among 1,560 men diagnosed with non-metastatic prostate cancer and participating in the Cancer of the Prostate Strategic Urologic Research Endeavor, a United States prostate cancer registry. As a secondary analysis, we also examined other vegetable subgroups, total fruit and subgroups of fruits. The participants were diagnosed primarily at community-based clinics and followed from 2004 to 2009. We assessed vegetable and fruit intake via a semi-quantitative food frequency questionnaire, and ascertained prostate cancer outcomes via urologist report and medical records. We observed 134 events of progression (53 biochemical recurrences, 71 secondary treatments likely due to recurrence, 6 bone metastases and 4 prostate cancer deaths) during 3,171 person-years. Men in the fourth quartile of post-diagnostic cruciferous vegetable intake had a statistically significant 59% decreased risk of prostate cancer progression compared to men in the lowest quartile (hazard ratio (HR): 0.41; 95% confidence interval (CI): 0.22, 0.76; p-trend: 0.003). No other vegetable or fruit group was statistically significantly associated with risk of prostate cancer progression. In conclusion, cruciferous vegetable intake after diagnosis may reduce risk of prostate cancer progression. Copyright © 2011 UICC.

  10. Inhibition of peripubertal sheep mammary gland development by cysteamine through reducing progesterone and growth factor production.

    PubMed

    Zhao, Yong; Feng, Yanni; Zhang, Hongfu; Kou, Xin; Li, Lan; Liu, Xinqi; Zhang, Pengfei; Cui, Liantao; Chu, Meiqiang; Shen, Wei; Min, Lingjiang

    2017-02-01

    Cysteamine has been used for treating cystinosis for many years, and furthermore it has also been used as a therapeutic agent for different diseases including Huntington's disease, Parkinson's disease (PD), nonalcoholic fatty liver disease, malaria, cancer, and others. Although cysteamine has many potential applications, its use may also be problematic. The effects of low doses of cysteamine on the reproductive system, especially the mammary glands are currently unknown. In the current investigation, low dose (10 mg/kg BW/day) of cysteamine did not affect sheep body weight gain or organ index of the liver, spleen, or heart; it did, however, increase the levels of blood lymphocytes, monocytes, and platelets. Most interestingly, it inhibited mammary gland development after 2 or 5 months of treatment by reducing the organ index and the number of mammary gland ducts. Plasma growth hormone and estradiol remained unchanged; however, plasma progesterone levels and the protein level of HSD3β1 in sheep ovaries were decreased by cysteamine. In addition to steroid hormones, growth factors produced in the mammary glands also play crucial roles in mammary gland development. Results showed that protein levels of HGF, GHR, and IGF1R were decreased after 5 months of cysteamine treatment. These findings together suggest that progesterone and local growth factors in mammary glands might be involved in cysteamine initiated inhibition of pubertal ovine mammary gland development. Furthermore, it may lead to a reduction in fertility. Therefore, cysteamine should be used with great caution until its actions have been further investigated and its limitations overcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Blockade of Fas Signaling in Breast Cancer Cells Suppresses Tumor Growth and Metastasis via Disruption of Fas Signaling-initiated Cancer-related Inflammation*

    PubMed Central

    Liu, Qiuyan; Tan, Qinchun; Zheng, Yuanyuan; Chen, Kun; Qian, Cheng; Li, Nan; Wang, Qingqing; Cao, Xuetao

    2014-01-01

    Mechanisms for cancer-related inflammation remain to be fully elucidated. Non-apoptotic functions of Fas signaling have been proposed to play an important role in promoting tumor progression. It has yet to be determined if targeting Fas signaling can control tumor progression through suppression of cancer-related inflammation. In the current study we found that breast cancer cells with constitutive Fas expression were resistant to apoptosis induction by agonistic anti-Fas antibody (Jo2) ligation or Fas ligand cross-linking. Higher expression of Fas in human breast cancer tissue has been significantly correlated with poorer prognosis in breast cancer patients. To determine whether blockade of Fas signaling in breast cancer could suppress tumor progression, we prepared an orthotopic xenograft mouse model with mammary cancer cells 4T1 and found that blockade of Fas signaling in 4T1 cancer cells markedly reduced tumor growth, inhibited tumor metastasis in vivo, and prolonged survival of tumor-bearing mice. Mechanistically, blockade of Fas signaling in cancer cells significantly decreased systemic or local recruitment of myeloid derived suppressor cells (MDSCs) in vivo. Furthermore, blockade of Fas signaling markedly reduced IL-6, prostaglandin E2 production from breast cancer cells by impairing p-p38, and activity of the NFκB pathway. In addition, administration of a COX-2 inhibitor and anti-IL-6 antibody significantly reduced MDSC accumulation in vivo. Therefore, blockade of Fas signaling can suppress breast cancer progression by inhibiting proinflammatory cytokine production and MDSC accumulation, indicating that Fas signaling-initiated cancer-related inflammation in breast cancer cells may be a potential target for treatment of breast cancer. PMID:24627480

  12. The extracellular matrix: A dynamic niche in cancer progression

    PubMed Central

    Lu, Pengfei; Weaver, Valerie M.

    2012-01-01

    The local microenvironment, or niche, of a cancer cell plays important roles in cancer development. A major component of the niche is the extracellular matrix (ECM), a complex network of macromolecules with distinctive physical, biochemical, and biomechanical properties. Although tightly controlled during embryonic development and organ homeostasis, the ECM is commonly deregulated and becomes disorganized in diseases such as cancer. Abnormal ECM affects cancer progression by directly promoting cellular transformation and metastasis. Importantly, however, ECM anomalies also deregulate behavior of stromal cells, facilitate tumor-associated angiogenesis and inflammation, and thus lead to generation of a tumorigenic microenvironment. Understanding how ECM composition and topography are maintained and how their deregulation influences cancer progression may help develop new therapeutic interventions by targeting the tumor niche. PMID:22351925

  13. Curcumin inhibits cancer progression through regulating expression of microRNAs.

    PubMed

    Zhou, Siying; Zhang, Sijie; Shen, Hongyu; Chen, Wei; Xu, Hanzi; Chen, Xiu; Sun, Dawei; Zhong, Shanliang; Zhao, Jianhua; Tang, Jinhai

    2017-02-01

    Curcumin, a major yellow pigment and spice in turmeric and curry, is a powerful anti-cancer agent. The anti-tumor activities of curcumin include inhibition of tumor proliferation, angiogenesis, invasion and metastasis, induction of tumor apoptosis, increase of chemotherapy sensitivity, and regulation of cell cycle and cancer stem cell, indicating that curcumin maybe a strong therapeutic potential through modulating various cancer progression. It has been reported that microRNAs as small noncoding RNA molecules are related to cancer progression, which can be regulated by curcumin. Dysregulated microRNAs play vital roles in tumor biology via regulating expressions of target genes and then influencing multiple cancer-related signaling pathways. In this review, we focused on the inhibition effect of curcumin on various cancer progression by regulating expression of multiple microRNAs. Curcumin-induced dysregulation of microRNAs may activate or inactivate a set of signaling pathways, such as Akt, Bcl-2, PTEN, p53, Notch, and Erbb signaling pathways. A better understanding of the relation between curcumin and microRNAs may provide a potential therapeutic target for various cancers.

  14. GAS6 is an estrogen-inducible gene in mammary epithelial cells

    PubMed Central

    Mo, Rigen; Zhu, Yiwei Tony; Zhang, Zhongyi; Rao, Sambasiva M.; Zhu, Yi-Jun

    2007-01-01

    To identify estrogen responsive genes in mammary glands, microarray assays were performed. Twenty genes were found to be up-regulated while 16 genes were repressed in the 9h estrogen treated glands. The induction of GAS6, one of the genes up-regulated by estrogen, was confirmed by RNase protection assay. Furthermore, GAS6 was also demonstrated to be induced by estrogen in ER positive breast cancer cells. Analysis of GAS6 promoter revealed that GAS6 promoter was regulated by estrogen. An estrogen response element (ERE) was identified in the GAS6 promoter. Electrophoretic mobility shift assay revealed that ERα interacted with the ERE in the GAS6 promoter. Chromatin immunoprecipitation demonstrated that ERα was recruited to the GAS6 promoter upon estrogen stimulation. These results suggested that GAS6 is an estrogen target gene in mammary epithelial cells. PMID:17174935

  15. Effects of Metformin, Buformin, and Phenformin on the Post Initiation Stage of Chemically-Induced Mammary Carcinogenesis in the Rat

    PubMed Central

    Zhu, Zongjian; Jiang, Weiqin; Thompson, Matthew D.; Echeverria, Dimas; McGinley, John N.; Thompson, Henry J.

    2015-01-01

    Metformin is a widely prescribed drug for the treatment of type-2 diabetes. Although epidemiological data have provided a strong rationale for investigating the potential of this biguanide for use in cancer prevention and control, uncertainty exists whether metformin should be expected to have an impact in non-diabetic patients. Furthermore, little attention has been given to the possibility that other biguanides may have anticancer activity. In this study, the effects of clinically relevant doses of metformin (9.3mmol/kg diet), buformin (7.6 mmol/kg diet), and phenformin (5.0 mmol/kg diet) were compared to rats fed control diet (AIN93-G) during the post initiation stage of 1-methyl-1-nitrosourea-induced (50 mg/kg body weight) mammary carcinogenesis (n = 30/group). Plasma, liver, skeletal muscle, visceral fat, mammary gland, and mammary carcinoma concentrations of the biguanides were determined. In comparison to the control group, buformin decreased cancer incidence, multiplicity, and burden; whereas, metformin and phenformin had no statistically significant effect on the carcinogenic process relative to the control group. Buformin did not alter fasting plasma glucose or insulin. Within mammary carcinomas, evidence was obtained that buformin treatment perturbed signaling pathways related to energy sensing. However, further investigation is needed to determine the relative contributions of host systemic and cell autonomous mechanisms to the anticancer activity of biguanides such as buformin. PMID:25804611

  16. In-Silico Genomic Approaches To Understanding Lactation, Mammary Development, And Breast Cancer

    USDA-ARS?s Scientific Manuscript database

    Lactation-related traits are influenced by genetics. From a quantitative standpoint, these traits have been well studied in dairy species, but there has also been work on the genetics of lactation in humans and mice. In addition, there is evidence to support the notion that other mammary gland trait...

  17. Breast, Cervical, and Colorectal Cancers - Early Detection Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  18. Kidney, Lung, Ovarian, and Prostate Cancer - Treatment Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  19. The physics of cancer: The role of epigenetics and chromosome conformation in cancer progression

    NASA Astrophysics Data System (ADS)

    Naimark, Oleg B.; Nikitiuk, Aleksandr S.; Baudement, Marie-Odile; Forné, Thierry; Lesne, Annick

    2016-08-01

    Cancer progression is generally described in terms of accumulated genetic alterations and ensuing changes in cell properties. However, intermediary modifications are involved in the establishment of cancer cell phenotypes, at different levels of nuclear organization: DNA damages and their structural consequences, epigenetic modifications and their impact on chromatin architecture, changes in chromosome 3D organization. We review some of these alterations with a focus on their physical aspects. The challenge is to understand the multiscale interplay between generic physical mechanisms and specific biological factors in cancer cells. We argue that such an interdisciplinary perspective offers a novel viewpoint on cancer progression, early diagnosis and possibly therapeutic targets.

  20. Malignant neoplasm in the axilla of a male: suspected primary carcinoma of an accessory mammary gland.

    PubMed

    Takeyama, Hiroshi; Takahashi, Hiroyuki; Tabei, Isao; Fukuchi, Osamu; Nogi, Hiroko; Kinoshita, Satoki; Uchida, Ken; Morikawa, Toshiaki

    2010-04-01

    A 58-year-old Japanese male patient visited our hospital for evaluation of an elastic hard mass, measuring 80 x 50 mm, in the right axillary area. Incisional biopsy for suspected malignancy was performed, and histopathologic examination by hematoxylin-eosin (H&E) staining yielded a diagnosis of poorly differentiated adenocarcinoma metastatic from an unknown primary. As the tumor was immunohistochemically positive for both ER and PgR, metastatic breast cancer was strongly suspected. Ultrasonography, CT, and MRI revealed no evidence of tumors in the bilateral mammary glands. Detailed examination of the head and neck region, lung, and upper and lower gastrointestinal tract also revealed no evidence of a primary tumor. After chemotherapy, the patient underwent tumor resection with axillary lymph node dissection. On the basis of the histological features of H&E-stained specimens and immunohistochemistry of the resected tumor, this case was diagnosed as breast cancer of unknown origin in a male. The tumor could have been an axillary lymph node metastasis from an occult breast carcinoma, or primary cancer arising in an accessory mammary gland.

  1. Inhibition of benzo(a)pyrene-induced mammary carcinogenesis by retinyl acetate. [Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, D.L.; Burns, F.J.; Albert, R.E.

    1981-03-01

    The administration of a 250-ppM retinyl acetate dietary supplement for various periods relative to intragastric administration of 50 mg benzo(a)pyrene (BP) significantly inhibited the induction of mammary cancers in virgin female inbred LEW/Mai rats. With day of BP administration taken as time 0, groups receiving the retinoid from weeks -2 to +1, +1 to +90, +20 to +90, and -2 to +90 showed a significant reduction in tumor response as compared to controls. The inhibition of carcinogenesis achieved by a +1 to +20 administration schedule was temporary. A 2-week exposure to supplemental retinyl acetate significantly reduced the mammary gland parenchymalmore » cell labeling index in ductal, alveolar, and terminal end bud structures. Beginning the retinyl acetate supplement 1 week after the administration of BP significantly reduced the number of terminal ductal hyperplasias. The inhibition of carcinogenesis achieved by a short period of retinyl acetate administration before and during the period of carcinogen availability as well as the inhibition achieved by long-term postcarcinogen retinoid exposure may involve an antiproliferative effect on the rat mammary gland.« less

  2. Mammary gland involution is associated with rapid down regulation of major mammary Ca**2+-ATPases

    USDA-ARS?s Scientific Manuscript database

    Sixty percent of calcium in milk is transported across the mammary cells apical membrane by the plasma membrane Ca**2+-ATPase 2 (PMCA2). The effect of abrupt cessation of milk production on the Ca**2+-ATPases and mammary calcium transport is unknown. We found that 24 hours after stopping milk prod...

  3. [Lobular breast cancer in males].

    PubMed

    Akimov, O V

    1992-01-01

    Mammary carcinoma occurs in males about 100 times more seldom than in females. 1/30 of all mammary carcinoma in males is lobular cancer. One such observation of lobular carcinoma in a male of 58 developing against the background of fibroadenomatosis is described.

  4. Computational approach for deriving cancer progression roadmaps from static sample data

    PubMed Central

    Yao, Jin; Yang, Le; Chen, Runpu; Nowak, Norma J.

    2017-01-01

    Abstract As with any biological process, cancer development is inherently dynamic. While major efforts continue to catalog the genomic events associated with human cancer, it remains difficult to interpret and extrapolate the accumulating data to provide insights into the dynamic aspects of the disease. Here, we present a computational strategy that enables the construction of a cancer progression model using static tumor sample data. The developed approach overcame many technical limitations of existing methods. Application of the approach to breast cancer data revealed a linear, branching model with two distinct trajectories for malignant progression. The validity of the constructed model was demonstrated in 27 independent breast cancer data sets, and through visualization of the data in the context of disease progression we were able to identify a number of potentially key molecular events in the advance of breast cancer to malignancy. PMID:28108658

  5. Effects of Dietary Xanthophylls, Canthaxanthin and Astaxanthin on N-Methyl-N-nitrosourea-induced Rat Mammary Carcinogenesis.

    PubMed

    Yuri, Takashi; Yoshizawa, Katsuhiko; Emoto, Yuko; Kinoshita, Yuichi; Yuki, Michiko; Tsubura, Airo

    Natural xanthophylls, canthaxanthin and astaxanthin are known to exhibit anticancer activity. However, the dietary effects of canthaxanthin and astaxanthin on N-methyl-N-nitrosourea (MNU)-induced mammary cancer remain controversial, and their mechanisms of action have not been clearly identified. Three-week-old female Sprague-Dawley rats were fed a xanthophyll-free (basal diet) diet or experimental diets containing canthaxanthin or astaxanthin (0.04% and 0.4%) for 5 weeks (until 8 weeks of age), after which all rats were provided the basal diet (n=15 each). Rats were administered MNU at 6 weeks of age, and the incidence of mammary tumors at 20 weeks of age was compared. The expression of adiponectin in mammary adipose tissues taken at 7 weeks of age was also compared. Compared to the basal diet group, the 0.4% (but not the 0.04%) astaxanthin diet significantly reduced the incidence of palpable mammary carcinoma (92% vs. 42%; p<0.05), while the low and high canthaxanthin diets produced no significant inhibition. Adiponectin immunoblotting showed significantly higher expression in the 0.4% astaxanthin diet group, while the other groups were similar to the basal diet group. High concentrations of astaxanthin suppress MNU-induced mammary carcinoma. Changes in adiponectin may be involved in the mechanism of action. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. The soybean peptide lunasin promotes apoptosis of mammary epithelial cells via induction of tumor suppressor PTEN: similarities and distinct actions from soy isoflavone genistein

    USDA-ARS?s Scientific Manuscript database

    Breast cancer is the leading cause of cancer deaths in women. Diet and lifestyle are major contributing factors to increased breast cancer risk. While mechanisms underlying dietary protection of mammary tumor formation are increasingly elucidated, there remains a dearth of knowledge on the nature an...

  7. Characterization of mammary epithelial stem/progenitor cells and their changes with aging in common marmosets.

    PubMed

    Wu, Anqi; Dong, Qiaoxiang; Gao, Hui; Shi, Yuanshuo; Chen, Yuanhong; Zhang, Fuchuang; Bandyopadhyay, Abhik; Wang, Danhan; Gorena, Karla M; Huang, Changjiang; Tardif, Suzette; Nathanielsz, Peter W; Sun, Lu-Zhe

    2016-08-25

    Age is the number one risk factor for breast cancer, yet the underlying mechanisms are unexplored. Age-associated mammary stem cell (MaSC) dysfunction is thought to play an important role in breast cancer carcinogenesis. Non-human primates with their close phylogenetic relationship to humans provide a powerful model system to study the effects of aging on human MaSC. In particular, the common marmoset monkey (Callithrix jacchus) with a relatively short life span is an ideal model for aging research. In the present study, we characterized for the first time the mammary epithelial stem/progenitor cells in the common marmoset. The MaSC-enriched cells formed four major types of morphologically distinct colonies when cultured on plates pre-seeded with irradiated NIH3T3 fibroblasts, and were also capable of forming mammospheres in suspension culture and subsequent formation of 3D organoids in Matrigel culture. Most importantly, these 3D organoids were found to contain stem/progenitor cells that can undergo self-renewal and multi-lineage differentiation both in vitro and in vivo. We also observed a significant decrease of luminal-restricted progenitors with age. Our findings demonstrate that common marmoset mammary stem/progenitor cells can be isolated and quantified with established in vitro and in vivo assays used for mouse and human studies.

  8. Reprogramming cancer cells: overview & current progress.

    PubMed

    Lim, Kian Lam; Teoh, Hoon Koon; Choong, Pei Feng; Teh, Hui Xin; Cheong, Soon Keng; Kamarul, Tunku

    2016-07-01

    Cancer is a disease with genetic and epigenetic origins, and the possible effects of reprogramming cancer cells using the defined sets of transcription factors remain largely uninvestigated. In the handful of publications available so far, findings have shown that reprogramming cancer cells changed the characteristics of the cells to differ from the parental cancer cells. These findings indicated the possibility of utilizing reprogramming technology to create a disease model in the laboratory to be used in studying the molecular pathogenesis or for drug screening of a particular cancer model. Despite numerous methods employed in generating induced pluripotent stem cells (iPSCs) from cancer cells only a few studies have successfully reprogrammed malignant human cells. In this review we will provide an overview on i) methods to reprogram cancer cells, ii) characterization of the reprogrammed cancer cells, and iii) the differential effects of reprogramming on malignancy, epigenetics and response of the cancer cells to chemotherapeutic agents. Continued technical progress in cancer cell reprogramming technology will be instrumental for more refined in vitro disease models and ultimately for the development of directed and personalized therapy for cancer patients in the future.

  9. Number and location of mouse mammary tumor virus proviral DNA in mouse DNA of normal tissue and of mammary tumors.

    PubMed Central

    Groner, B; Hynes, N E

    1980-01-01

    The Southern DNA filter transfer technique was used to characterize the genomic location of the mouse mammary tumor proviral DNA in different inbred strains of mice. Two of the strains (C3H and CBA) arose from a cross of a Bagg albino (BALB/c) mouse and a DBA mouse. The mouse mammary tumor virus-containing restriction enzyme DNA fragments of these strains had similar patterns, suggesting that the proviruses of these mice are in similar genomic locations. Conversely, the pattern arising from the DNA of the GR mouse, a strain genetically unrelated to the others, appeared different, suggesting that its mouse mammary tumor proviruses are located in different genomic sites. The structure of another gene, that coding for beta-globin, was also compared. The mice strains which we studied can be categorized into two classes, expressing either one or two beta-globin proteins. The macroenvironment of the beta-globin gene appeared similar among the mice strains belonging to one genetic class. Female mice of the C3H strain exogenously transmit mouse mammary tumor virus via the milk, and their offspring have a high incidence of mammary tumor occurrence. DNA isolated from individual mammary tumors taken from C3H mice or from BALB/c mice foster nursed on C3H mothers was analyzed by the DNA filter transfer technique. Additional mouse mammary tumor virus-containing fragments were found in the DNA isolated from each mammary tumor. These proviral sequences were integrated into different genomic sites in each tumor. Images PMID:6245257

  10. Transforming growth factor-β signaling: emerging stem cell target in metastatic breast cancer?

    PubMed Central

    Tan, Antoinette R.; Alexe, Gabriela; Reiss, Michael

    2009-01-01

    In most human breast cancers, lowering of TGFβ receptor- or Smad gene expression combined with increased levels of TGFβs in the tumor microenvironment is sufficient to abrogate TGFβs tumor suppressive effects and to induce a mesenchymal, motile and invasive phenotype. In genetic mouse models, TGFβ signaling suppresses de novo mammary cancer formation but promotes metastasis of tumors that have broken through TGFβ tumor suppression. In mouse models of “triple-negative” or basal-like breast cancer, treatment with TGFβ neutralizing anti-bodies or receptor kinase inhibitors strongly inhibits development of lung- and bone metastases. These TGFβ antagonists do not significantly affect tumor cell proliferation or apoptosis. Rather, they de-repress anti-tumor immunity, inhibit angiogenesis and reverse the mesenchymal, motile, invasive phenotype characteristic of basal-like and HER2-positive breast cancer cells. Patterns of TGFβ target genes upregulation in human breast cancers suggest that TGFβ may drive tumor progression in estrogen-independent cancer, while it mediates a suppressive host cell response in estrogen-dependent luminal cancers. In addition, TGFβ appears to play a key role in maintaining the mammary epithelial (cancer) stem cell pool, in part by inducing a mesenchymal phenotype, while differentiated, estrogen receptor-positive, luminal cells are unresponsive to TGFβ because the TGFBR2 receptor gene is transcriptionally silent. These same cells respond to estrogen by downregulating TGFβ, while antiestrogens act by upregulating TGFβ. This model predicts that inhibiting TGFβ signaling should drive the differentiation of mammary stem cells into ductal cells. Consequently, TGFβ antagonists may convert basal-like or HER2-positive cancers to a more epithelioid, non-proliferating (and, perhaps, non-metastatic) phenotype. Conversely, these agents might antagonize the therapeutic effects of anti-estrogens in estrogen-dependent luminal cancers. These

  11. Chemoprevention and therapy of mouse mammary carcinomas with doxorubicin encapsulated in sterically stabilized liposomes.

    PubMed

    Vaage, J; Donovan, D; Loftus, T; Abra, R; Working, P; Huang, A

    1994-05-01

    The objective of this study was to determine the ability of doxorubicin, encapsulated in sterically stabilized liposomes (Doxil [Liposome Technology, Inc., Menlo Park, CA]), to inhibit the spontaneous development of mammary carcinomas in mice. Monthly prophylactic intravenous injections of 6 mg/kg doses of Doxil were started when retired breeding C3H/He mice were 26 weeks old. Mice that developed a mammary carcinoma were then given weekly intravenous injections of 6 mg/kg doses to determine whether the tumors were susceptible or resistant to Doxil therapy. The monthly injections reduced the incidence of first mammary carcinomas in up to 88-week-old retired breeding C3H/He mice from 65 of 66 (98%) in untreated mice to 22 of 47 (47%) in treated mice. The first 15 mice that developed a mammary tumor while on the prophylactic protocol were then placed on a weekly therapeutic protocol. The therapeutic use of Doxil cured 3 of 15 mice and inhibited the growth of 12 tumors. Drug resistance as a result of treatments was not observed. The mean survival of tumor-bearing mice was extended from 24 days in untreated mice to 87 days in treated mice. Toxic side effects were limited to transient weight loss during the weekly Doxil treatments and to epidermal necrosis and dermal fibrosis due to drug extravasation at the sites of intravenous injections. The authors concluded that doxorubicin in sterically stabilized liposomes deserves to be explored further in comparative studies with free doxorubicin for the prophylaxis and therapy of mammary cancer.

  12. Reproductive experience alters prolactin receptor expression in mammary and hepatic tissues in female rats.

    PubMed

    Bridges, Robert S; Scanlan, Victoria F; Lee, Jong-O; Byrnes, Elizabeth M

    2011-08-01

    Recent studies have reported that reproductive experience in female rats alters prolactin (PRL) receptor gene expression in the brain as well as neural sensitivity to PRL. Given PRL's actions in nonneural tissues, that is, mammary tissue and liver, it was asked whether reproductive experience may also alter prolactin receptor (Prlr) gene expression in these tissues. Groups of age-matched female rats were generated with varying reproductive histories. Separate groups of primiparous (first lactation) and multiparous (second lactation) had mammary tissue and liver samples collected on Day 3 or 10 of lactation. A fifth group raised one litter to weaning and then resumed estrous cyclicity. This group and a final group of age-matched, virgin controls were killed on diestrus. Tissue was processed by quantitative PCR for expression rates of the long and short forms of Prlr mRNA as well as casein beta mRNA (mammary tissue only). Western blots were performed to quantify receptor protein content. Multiple lactations as well as lactation itself resulted in alterations in Prlr expression. Prlr gene expression in mammary tissue was increased in primiparous mothers compared with that in multiparous dams, whereas in the liver, Prlr expression was reduced during an initial lactation. In contrast, PRLR protein levels declined during lactation in mammary, but not hepatic, tissues. Overall, the results demonstrate that the prolactin receptor system is altered in nonneural tissues as a result of the female's reproductive history. The findings are discussed in the context of milk and bile production and PRL's possible role in breast cancer.

  13. The physics of cancer: The role of epigenetics and chromosome conformation in cancer progression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naimark, Oleg B.; Nikitiuk, Aleksandr S.; Baudement, Marie-Odile

    Cancer progression is generally described in terms of accumulated genetic alterations and ensuing changes in cell properties. However, intermediary modifications are involved in the establishment of cancer cell phenotypes, at different levels of nuclear organization: DNA damages and their structural consequences, epigenetic modifications and their impact on chromatin architecture, changes in chromosome 3D organization. We review some of these alterations with a focus on their physical aspects. The challenge is to understand the multiscale interplay between generic physical mechanisms and specific biological factors in cancer cells. We argue that such an interdisciplinary perspective offers a novel viewpoint on cancer progression,more » early diagnosis and possibly therapeutic targets.« less

  14. Modeling the dynamics of chromosomal alteration progression in cervical cancer: A computational model

    PubMed Central

    2017-01-01

    Computational modeling has been applied to simulate the heterogeneity of cancer behavior. The development of Cervical Cancer (CC) is a process in which the cell acquires dynamic behavior from non-deleterious and deleterious mutations, exhibiting chromosomal alterations as a manifestation of this dynamic. To further determine the progression of chromosomal alterations in precursor lesions and CC, we introduce a computational model to study the dynamics of deleterious and non-deleterious mutations as an outcome of tumor progression. The analysis of chromosomal alterations mediated by our model reveals that multiple deleterious mutations are more frequent in precursor lesions than in CC. Cells with lethal deleterious mutations would be eliminated, which would mitigate cancer progression; on the other hand, cells with non-deleterious mutations would become dominant, which could predispose them to cancer progression. The study of somatic alterations through computer simulations of cancer progression provides a feasible pathway for insights into the transformation of cell mechanisms in humans. During cancer progression, tumors may acquire new phenotype traits, such as the ability to invade and metastasize or to become clinically important when they develop drug resistance. Non-deleterious chromosomal alterations contribute to this progression. PMID:28723940

  15. Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment.

    PubMed

    Bierie, Brian; Stover, Daniel G; Abel, Ty W; Chytil, Anna; Gorska, Agnieszka E; Aakre, Mary; Forrester, Elizabeth; Yang, Li; Wagner, Kay-Uwe; Moses, Harold L

    2008-03-15

    Transforming growth factor (TGF)-beta signaling has been associated with early tumor suppression and late tumor progression; however, many of the mechanisms that mediate these processes are not known. Using Cre/LoxP technology, with the whey acidic protein promoter driving transgenic expression of Cre recombinase (WAP-Cre), we have now ablated the type II TGF-beta receptor (T beta RII) expression specifically within mouse mammary alveolar progenitors. Transgenic expression of the polyoma virus middle T antigen, under control of the mouse mammary tumor virus enhancer/promoter, was used to produce mammary tumors in the absence or presence of Cre (T beta RII((fl/fl);PY) and T beta RII((fl/fl);PY;WC), respectively). The loss of TGF-beta signaling significantly decreased tumor latency and increased the rate of pulmonary metastasis. The loss of TGF-beta signaling was significantly correlated with increased tumor size and enhanced carcinoma cell survival. In addition, we observed significant differences in stromal fibrovascular abundance and composition accompanied by increased recruitment of F4/80(+) cell populations in T beta RII((fl/fl);PY;WC) mice when compared with T beta RII((fl/fl);PY) controls. The recruitment of F4/80(+) cells correlated with increased expression of known inflammatory genes including Cxcl1, Cxcl5, and Ptgs2 (cyclooxygenase-2). Notably, we also identified an enriched K5(+) dNp63(+) cell population in primary T beta RII((fl/fl);PY;WC) tumors and corresponding pulmonary metastases, suggesting that loss of TGF-beta signaling in this subset of carcinoma cells can contribute to metastasis. Together, our current results indicate that loss of TGF-beta signaling in mammary alveolar progenitors may affect tumor initiation, progression, and metastasis through regulation of both intrinsic cell signaling and adjacent stromal-epithelial interactions in vivo.

  16. Obesity decreases serum selenium levels in DMBA-induced mammary tumor using Obese Zucker Rat Model

    USDA-ARS?s Scientific Manuscript database

    Recently, we reported that obese Zucker rats had increased susceptibility to DMBA-induced mammary tumors compared to lean Zucker rats. Several studies suggest that lower serum selenium may play an important role in increasing the risk of several types of cancers (e.g, colon, breast and prostate canc...

  17. An interferon signature identified by RNA-sequencing of mammary tissues varies across the estrous cycle and is predictive of metastasis-free survival

    DOE PAGES

    Snijders, Antoine M.; Langley, Sasha; Mao, Jian-Hua; ...

    2014-06-30

    The concept that a breast cancer patient's menstrual stage at the time of tumor surgery influences risk of metastases remains controversial. The scarcity of comprehensive molecular studies of menstrual stage-dependent fluctuations in the breast provides little insight. To gain a deeper understanding of the biological changes in mammary tissue and blood during the menstrual cycle and to determine the influence of environmental exposures, such as low-dose ionizing radiation (LDIR), we used the mouse to characterize estrous-cycle variations in mammary gene transcripts by RNA-sequencing, peripheral white blood cell (WBC) counts and plasma cytokine levels. We identified an estrous-variable and hormone-dependent genemore » cluster enriched for Type-1 interferon genes. Cox regression identified a 117-gene signature of interferon-associated genes, which correlated with lower frequencies of metastasis in breast cancer patients. LDIR (10cGy) exposure had no detectable effect on mammary transcripts. However, peripheral WBC counts varied across the estrous cycle and LDIR exposure reduced lymphocyte counts and cytokine levels in tumor-susceptible mice. Our finding of variations in mammary Type-1 interferon and immune functions across the estrous cycle provides a mechanism by which timing of breast tumor surgery during the menstrual cycle may have clinical relevance to a patient's risk for distant metastases.« less

  18. An interferon signature identified by RNA-sequencing of mammary tissues varies across the estrous cycle and is predictive of metastasis-free survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snijders, Antoine M.; Langley, Sasha; Mao, Jian-Hua

    The concept that a breast cancer patient's menstrual stage at the time of tumor surgery influences risk of metastases remains controversial. The scarcity of comprehensive molecular studies of menstrual stage-dependent fluctuations in the breast provides little insight. To gain a deeper understanding of the biological changes in mammary tissue and blood during the menstrual cycle and to determine the influence of environmental exposures, such as low-dose ionizing radiation (LDIR), we used the mouse to characterize estrous-cycle variations in mammary gene transcripts by RNA-sequencing, peripheral white blood cell (WBC) counts and plasma cytokine levels. We identified an estrous-variable and hormone-dependent genemore » cluster enriched for Type-1 interferon genes. Cox regression identified a 117-gene signature of interferon-associated genes, which correlated with lower frequencies of metastasis in breast cancer patients. LDIR (10cGy) exposure had no detectable effect on mammary transcripts. However, peripheral WBC counts varied across the estrous cycle and LDIR exposure reduced lymphocyte counts and cytokine levels in tumor-susceptible mice. Our finding of variations in mammary Type-1 interferon and immune functions across the estrous cycle provides a mechanism by which timing of breast tumor surgery during the menstrual cycle may have clinical relevance to a patient's risk for distant metastases.« less

  19. Tobacco Use - Prevention Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  20. Chemical Exposures - Prevention Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.