Science.gov

Sample records for mammography image quality

  1. Quality Imaging — Comparison of CR Mammography with Screen-Film Mammography

    NASA Astrophysics Data System (ADS)

    Gaona, E.; Azorín Nieto, J.; Irán Díaz Góngora, J. A.; Arreola, M.; Casian Castellanos, G.; Perdigón Castañeda, G. M.; Franco Enríquez, J. G.

    2006-09-01

    The aim of this work is a quality imaging comparison of CR mammography images printed to film by a laser printer with screen-film mammography. A Giotto and Elscintec dedicated mammography units with fully automatic exposure and a nominal large focal spot size of 0.3 mm were used for the image acquisition of phantoms in screen-film mammography. Four CR mammography units from two different manufacturers and three dedicated x-ray mammography units with fully automatic exposure and a nominal large focal spot size of 0.3 mm were used for the image acquisition of phantoms in CR mammography. The tests quality image included an assessment of system resolution, scoring phantom images, Artifacts, mean optical density and density difference (contrast). In this study, screen-film mammography with a quality control program offers a significantly greater level of quality image relative to CR mammography images printed on film.

  2. Physical measures of image quality in mammography

    NASA Astrophysics Data System (ADS)

    Chakraborty, Dev P.

    1996-04-01

    A recently introduced method for quantitative analysis of images of the American College of Radiology (ACR) mammography accreditation phantom has been extended to include signal- to-noise-ratio (SNR) measurements, and has been applied to survey the image quality of 54 mammography machines from 17 hospitals. Participants sent us phantom images to be evaluated for each mammography machine at their hospital. Each phantom was loaned to us for obtaining images of the wax insert plate on a reference machine at our institution. The images were digitized and analyzed to yield indices that quantified the image quality of the machines precisely. We have developed methods for normalizing for the variation of the individual speck sizes between different ACR phantoms, for the variation of the speck sizes within a microcalcification group, and for variations in overall speeds of the mammography systems. In terms of the microcalcification SNR, the variability of the x-ray machines was 40.5% when no allowance was made for phantom or mAs variations. This dropped to 17.1% when phantom variability was accounted for, and to 12.7% when mAs variability was also allowed for. Our work shows the feasibility of practical, low-cost, objective and accurate evaluations, as a useful adjunct to the present ACR method.

  3. Optimization of Image Quality and Dose in Digital Mammography.

    PubMed

    Fausto, Agnes M F; Lopes, M C; de Sousa, M C; Furquim, Tânia A C; Mol, Anderson W; Velasco, Fermin G

    2017-04-01

    Nowadays, the optimization in digital mammography is one of the most important challenges in diagnostic radiology. The new digital technology has introduced additional elements to be considered in this scenario. A major goal of mammography is related to the detection of structures on the order of micrometers (μm) and the need to distinguish the different types of tissues, with very close density values. The diagnosis in mammography faces the difficulty that the breast tissues and pathological findings have very close linear attenuation coefficients within the energy range used in mammography. The aim of this study was to develop a methodology for optimizing exposure parameters of digital mammography based on a new Figure of Merit: FOM ≡ (IQFinv)(2)/AGD, considering the image quality and dose. The study was conducted using the digital mammography Senographe DS/GE, and CDMAM and TORMAM phantoms. The characterization of clinical practice, carried out in the mammography system under study, was performed considering different breast thicknesses, the technical parameters of exposure, and processing options of images used by the equipment's automatic exposure system. The results showed a difference between the values of the optimized parameters and those ones chosen by the automatic system of the mammography unit, specifically for small breast. The optimized exposure parameters showed better results than those obtained by the automatic system of the mammography, for the image quality parameters and its impact on detection of breast structures when analyzed by radiologists.

  4. Reproducibility of Mammography Units, Film Processing and Quality Imaging

    NASA Astrophysics Data System (ADS)

    Gaona, Enrique

    2003-09-01

    The purpose of this study was to carry out an exploratory survey of the problems of quality control in mammography and processors units as a diagnosis of the current situation of mammography facilities. Measurements of reproducibility, optical density, optical difference and gamma index are included. Breast cancer is the most frequently diagnosed cancer and is the second leading cause of cancer death among women in the Mexican Republic. Mammography is a radiographic examination specially designed for detecting breast pathology. We found that the problems of reproducibility of AEC are smaller than the problems of processors units because almost all processors fall outside of the acceptable variation limits and they can affect the mammography quality image and the dose to breast. Only four mammography units agree with the minimum score established by ACR and FDA for the phantom image.

  5. Clinical study in phase- contrast mammography: image-quality analysis.

    PubMed

    Longo, Renata; Tonutti, Maura; Rigon, Luigi; Arfelli, Fulvia; Dreossi, Diego; Quai, Elisa; Zanconati, Fabrizio; Castelli, Edoardo; Tromba, Giuliana; Cova, Maria A

    2014-03-06

    The first clinical study of phase-contrast mammography (PCM) with synchrotron radiation was carried out at the Synchrotron Radiation for Medical Physics beamline of the Elettra synchrotron radiation facility in Trieste (Italy) in 2006-2009. The study involved 71 patients with unresolved breast abnormalities after conventional digital mammography and ultrasonography exams carried out at the Radiology Department of Trieste University Hospital. These cases were referred for mammography at the synchrotron radiation facility, with images acquired using a propagation-based phase-contrast imaging technique. To investigate the contribution of phase-contrast effects to the image quality, two experienced radiologists specialized in mammography assessed the visibility of breast abnormalities and of breast glandular structures. The images acquired at the hospital and at the synchrotron radiation facility were compared and graded according to a relative seven-grade visual scoring system. The statistical analysis highlighted that PCM with synchrotron radiation depicts normal structures and abnormal findings with higher image quality with respect to conventional digital mammography.

  6. The influence of software filtering in digital mammography image quality

    NASA Astrophysics Data System (ADS)

    Michail, C.; Spyropoulou, V.; Kalyvas, N.; Valais, I.; Dimitropoulos, N.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.

    2009-05-01

    Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.

  7. LATIN AMERICAN IMAGE QUALITY SURVEY IN DIGITAL MAMMOGRAPHY STUDIES.

    PubMed

    Mora, Patricia; Khoury, Helen; Bitelli, Regina; Quintero, Ana Rosa; Garay, Fernando; Aguilar, Juan García; Gamarra, Mirtha; Ubeda, Carlos

    2016-03-23

    Under International Atomic Energy Agency regional programmeTSA3 Radiological Protection of Patients in Medical Exposures, Latin American countries evaluated the image quality and glandular doses for digital mammography equipment with the purpose of seeing the performance and compliance with international recommendations. Totally, 24 institutions participated from Brazil, Chile, Costa Rica, El Salvador, Mexico, Paraguay and Venezuela. Signal difference noise ratio results showed for CR poor compliance with tolerances; better results were obtained for full-field digital mammography equipment. Mean glandular dose results showed that the majority of units have values below the acceptable dose levels. This joint Latin American project identified common problems: difficulty in working with digital images and lack of specific training by medical physicists from the region. Image quality is a main issue not being satisfied in accordance with international recommendations; optimisation processes in which the doses are increased should be very carefully done in order to improve early detection of any cancer signs.

  8. Exploratory survey of image quality on CR digital mammography imaging systems in Mexico.

    PubMed

    Gaona, E; Rivera, T; Arreola, M; Franco, J; Molina, N; Alvarez, B; Azorín, C G; Casian, G

    2014-01-01

    The purpose of this study was to assess the current status of image quality and dose in computed radiographic digital mammography (CRDM) systems. Studies included CRDM systems of various models and manufacturers which dose and image quality comparisons were performed. Due to the recent rise in the use of digital radiographic systems in Mexico, CRDM systems are rapidly replacing conventional film-screen systems without any regard to quality control or image quality standards. Study was conducted in 65 mammography facilities which use CRDM systems in the Mexico City and surrounding States. The systems were tested as used clinically. This means that the dose and beam qualities were selected using the automatic beam selection and photo-timed features. All systems surveyed generate laser film hardcopies for the radiologist to read on a scope or mammographic high luminance light box. It was found that 51 of CRDM systems presented a variety of image artefacts and non-uniformities arising from inadequate acquisition and processing, as well as from the laser printer itself. Undisciplined alteration of image processing settings by the technologist was found to be a serious prevalent problem in 42 facilities. Only four of them showed an image QC program which is periodically monitored by a medical physicist. The Average Glandular Dose (AGD) in the surveyed systems was estimated to have a mean value of 2.4 mGy. To improve image quality in mammography and make more efficient screening mammographic in early detection of breast cancer is required new legislation.

  9. Investigation of diagnostic and image quality attributes: comparison of screen-film to CR mammography

    NASA Astrophysics Data System (ADS)

    Fletcher-Heath, Lynn; Richards, Anne; Ryan-Kron, Susan

    2006-03-01

    Digital mammography is advancing into an arena where analog has long been the gold standard. Direct digital systems may not be the favored solution for a particular site while computed radiography (CR) mammography, remains unproven worldwide. This pilot study responds to the growing desire to acquire and display digital mammographic images by exploring the acceptability of CR mammography. Images representing a range of breast tissue types were collected from 49 subjects (17 screening; 32 diagnostic) at four clinical sites. Comparison views were collected on the same breast, under the same compression, using automatic exposure control on state-of-the-art film systems followed by CR. CR images were processed and printed to a mammography printer for hard copy feature comparison. Each image pair in the study was evaluated according to 13 image quality attributes covering noise, contrast, sharpness, and image quality in the overall captured images as well as in each of several particular breast regions (periphery and skin-line, parenchyma and fatty tissue). A rating scale from 1 to 5 was used (strong preference for film=1, strong preference for CR=5). Twelve experienced mammographers at four clinical sites scored a subset of the 49 cases for a total of 64 image pair readings. There were 64 ratings for each of 13 image quality attributes for all cases and, an additional series of scores (four or five attribute ratings) for each abnormality in the category of mass, architectural distortion and microcalcification, for a total of 1069 scores. Based on the pilot study results, it was suggested that CR was equivalent or preferred to conventional screen-film for overall image quality (38% scored 3; 46% scored >3), image contrast (27% scored 3; 59% scored >3) and sharpness (28% scored 3; 50% scored >3). No preference was found when assessing noise. This pilot study also suggested that diagnostic quality was maintained in assessing abnormalities for attributes necessary to

  10. Effect of image quality on calcification detection in digital mammography

    PubMed Central

    Warren, Lucy M.; Mackenzie, Alistair; Cooke, Julie; Given-Wilson, Rosalind M.; Wallis, Matthew G.; Chakraborty, Dev P.; Dance, David R.; Bosmans, Hilde; Young, Kenneth C.

    2012-01-01

    Purpose: This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. Methods: One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into half of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. Results: There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC

  11. Effect of image quality on calcification detection in digital mammography

    SciTech Connect

    Warren, Lucy M.; Mackenzie, Alistair; Cooke, Julie; Given-Wilson, Rosalind M.; Wallis, Matthew G.; Chakraborty, Dev P.; Dance, David R.; Bosmans, Hilde; Young, Kenneth C.

    2012-06-15

    Purpose: This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. Methods: One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into half of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. Results: There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC

  12. SU-E-I-04: A Mammography Phantom to Measure Mean Glandular Dose and Image Quality

    SciTech Connect

    Lopez-Pineda, E; Ruiz-Trejo, C; E, Brandan M

    2014-06-01

    Purpose: To evaluate mean glandular dose (MGD) and image quality in a selection of mammography systems using a novel phantom based on thermoluminescent dosemeters and the ACR wax insert. Methods: The phantom consists of two acrylic, 19 cm diameter, 4.5 cm thick, semicircular modules, used in sequence. The image quality module contains the ACR insert and is used to obtain a quality control image under automatic exposure conditions. The dosimetric module carries 15 TLD-100 chips, some under Al foils, to determine air kerma and half-value-layer. TL readings take place at our laboratory under controlled conditions. Calibration was performed using an ionization chamber and a Senographe 2000D unit for a variety of beam qualities, from 24 to 40 kV, Mo and Rh anodes and filters. Phantom MGD values agree, on the average, within 3% with ionization chamber data, and their precision is better than 10% (k=1). Results: MGD and image quality have been evaluated in a selection of mammography units currently used in Mexican health services. The sample includes analogic (screen/film), flexible digital (CR), and full-field digital image receptors. The highest MDG are associated to the CR technology. The most common image quality failure is due to artifacts (dust, intensifying screen scratches, and processor marks for film/screen, laser reader defects for CR). Conclusion: The developed phantom permits the MGD measurement without the need of a calibrated ionization chamber at the mammography site and can be used by a technician without the presence of a medical physicist. The results indicate the urgent need to establish quality control programs for mammography.

  13. Dosimetry and image quality in digital mammography facilities in the State of Minas Gerais, Brazil

    NASA Astrophysics Data System (ADS)

    da Silva, Sabrina Donato; Joana, Geórgia Santos; Oliveira, Bruno Beraldo; de Oliveira, Marcio Alves; Leyton, Fernando; Nogueira, Maria do Socorro

    2015-11-01

    According to the National Register of Health Care Facilities (CNES), there are approximately 477 mammography systems operating in the state of Minas Gerais, Brazil, of which an estimated 200 are digital apparatus using mainly computerized radiography (CR) or direct radiography (DR) systems. Mammography is irreplaceable in the diagnosis and early detection of breast cancer, the leading cause of cancer death among women worldwide. A high standard of image quality alongside smaller doses and optimization of procedures are essential if early detection is to occur. This study aimed to determine dosimetry and image quality in 68 mammography services in Minas Gerais using CR or DR systems. The data of this study were collected between the years of 2011 and 2013. The contrast-to-noise ratio proved to be a critical point in the image production chain in digital systems, since 90% of services were not compliant in this regard, mainly for larger PMMA thicknesses (60 and 70 mm). Regarding the image noise, only 31% of these were compliant. The average glandular dose found is of concern, since more than half of the services presented doses above acceptable limits. Therefore, despite the potential benefits of using CR and DR systems, the employment of this technology has to be revised and optimized to achieve better quality image and reduce radiation dose as much as possible.

  14. Digital mammography--DQE versus optimized image quality in clinical environment: an on site study

    NASA Astrophysics Data System (ADS)

    Oberhofer, Nadia; Fracchetti, Alessandro; Springeth, Margareth; Moroder, Ehrenfried

    2010-04-01

    The intrinsic quality of the detection system of 7 different digital mammography units (5 direct radiography DR; 2 computed radiography CR), expressed by DQE, has been compared with their image quality/dose performances in clinical use. DQE measurements followed IEC 62220-1-2 using a tungsten test object for MTF determination. For image quality assessment two different methods have been applied: 1) measurement of contrast to noise ratio (CNR) according to the European guidelines and 2) contrast-detail (CD) evaluation. The latter was carried out with the phantom CDMAM ver. 3.4 and the commercial software CDMAM Analyser ver. 1.1 (both Artinis) for automated image analysis. The overall image quality index IQFinv proposed by the software has been validated. Correspondence between the two methods has been shown figuring out a linear correlation between CNR and IQFinv. All systems were optimized with respect to image quality and average glandular dose (AGD) within the constraints of automatic exposure control (AEC). For each equipment, a good image quality level was defined by means of CD analysis, and the corresponding CNR value considered as target value. The goal was to achieve for different PMMA-phantom thicknesses constant image quality, that means the CNR target value, at minimum dose. All DR systems exhibited higher DQE and significantly better image quality compared to CR systems. Generally switching, where available, to a target/filter combination with an x-ray spectrum of higher mean energy permitted dose savings at equal image quality. However, several systems did not allow to modify the AEC in order to apply optimal radiographic technique in clinical use. The best ratio image quality/dose was achieved by a unit with a-Se detector and W anode only recently available on the market.

  15. Image quality and breast dose of 24 screen-film combinations for mammography.

    PubMed

    Dimakopoulou, A D; Tsalafoutas, I A; Georgiou, E K; Yakoumakis, E N

    2006-02-01

    In this study the effect of different mammographic screen-film combinations on image quality and breast dose, and the correlation between the various image quality parameters, breast dose and the sensitometric parameters of a film were investigated. Three Agfa (MR5-II, HDR, HT), two Kodak (Min-R M, Min-R 2000), one Fuji (AD-M), one Konica (CM-H) and one Ferrania (HM plus) single emulsion mammographic films were combined with three intensifying screens (Agfa HDS, Kodak Min-R 2190 and Fuji AD-MA). The film characteristics were determined by sensitometry, while the image quality and the dose to the breast of the resulting 24 screen-film combinations were assessed using a mammography quality control phantom. For each combination, three images of the phantom were acquired with optical density within three different ranges. Two observers assessed the quality of the 72 phantom images obtained, while the breast dose was calculated from the exposure data required for each image. Large differences among screen-film combinations in terms of image quality and breast dose were identified however, that, could not be correlated with the film's sensitometric characteristics. All films presented the best resolution when combined with the HDS screen at the expense of speed, and the largest speed when combined with the AD-MA screen, without degradation of the overall image quality. However, an ideal screen-film combination presenting the best image quality with the least dose was not identified. It is also worth mentioning that the best performance for a film was not necessarily obtained when this was combined with the screen provided by the same manufacturer. The results of this study clearly demonstrate that comparison of films based on their sensitometric characteristics are of limited value for clinical practice, as their performance is strongly affected by the screens with which they are combined.

  16. Survey of mammography practice in Croatia: equipment performance, image quality and dose.

    PubMed

    Faj, Dario; Posedel, Dario; Stimac, Damir; Ivezic, Zdravko; Kasabasic, Mladen; Ivkovic, Ana; Kubelka, Dragan; Ilakovac, Vesna; Brnic, Zoran; Bjelac, Olivera Ciraj

    2008-01-01

    A national audit of mammography equipment performance, image quality and dose has been conducted in Croatia. Film-processing parameters, optical density (OD), average glandular dose (AGD) to the standard breast, viewing conditions and image quality were examined using TOR(MAM) test object. Average film gradient ranged from 2.6 to 3.7, with a mean of 3.1. Tube voltage used for imaging of the standard 45 mm polymethylmethacrylate phantom ranged from 24 to 34 kV, and OD ranged from 0.75 to 1.94 with a mean of 1.26. AGD to the standard breast ranged from 0.4 to 2.3 mGy with a mean of 1.1 mGy. Besides clinical conditions, the authors have imaged the standard phantom in the referent conditions with 28 kV and OD as close as possible to 1.5. Then, AGD ranged from 0.5 to 2.6 mGy with a mean of 1.3 mGy. Image viewing conditions were generally unsatisfying with ambient light up to 500 lx and most of the viewing boxes with luminance between 1000 and 2000 cd per m(2). TOR(MAM) scoring of images taken in clinical and referent conditions was done by local radiologists in local image viewing conditions and by the referent radiologist in good image viewing conditions. Importance of OD and image viewing conditions for diagnostic information were analysed. The survey showed that the main problem in Croatia is the lack of written quality assurance/quality control (QA/QC) procedures. Consequently, equipment performance, image quality and dose are unstable and activities to improve image quality or to reduce the dose are not evidence-based. This survey also had an educational purpose, introducing in Croatia the QC based on European Commission Guidelines.

  17. Positron emission mammography imaging

    SciTech Connect

    Moses, William W.

    2003-10-02

    This paper examines current trends in Positron Emission Mammography (PEM) instrumentation and the performance tradeoffs inherent in them. The most common geometry is a pair of parallel planes of detector modules. They subtend a larger solid angle around the breast than conventional PET cameras, and so have both higher efficiency and lower cost. Extensions to this geometry include encircling the breast, measuring the depth of interaction (DOI), and dual-modality imaging (PEM and x-ray mammography, as well as PEM and x-ray guided biopsy). The ultimate utility of PEM may not be decided by instrument performance, but by biological and medical factors, such as the patient to patient variation in radiotracer uptake or the as yet undetermined role of PEM in breast cancer diagnosis and treatment.

  18. On image quality metrics and the usefulness of grids in digital mammography

    PubMed Central

    Chen, Han; Danielsson, Mats; Xu, Cheng; Cederström, Björn

    2015-01-01

    Abstract. Antiscatter grids are used in digital mammography to reduce the scattered radiation from the breast and improve image contrast. They are, however, imperfect and lead to partial absorption of primary radiation, as well as failing to absorb all scattered radiation. Nevertheless, the general consensus has been that antiscatter grids improve image quality for the majority of breast types and sizes. There is, however, inconsistency in the literature, and recent results show that a substantial image quality improvement can be achieved even for thick breasts if the grid is disposed of. The purpose of this study was to investigate if differences in the considered imaging task and experimental setup could explain the different outcomes. We estimated the dose reduction that can be achieved if the grid were to be removed as a function of breast thickness with varying geometries and experimental conditions. Image quality was quantified by the signal-difference-to-noise ratio (SDNR) measured using an aluminum (Al) filter on blocks of poly(methyl methacrylate) (PMMA), and images were acquired with and without grid at a constant exposure. We also used a theoretical model validated with Monte Carlo simulations. Both theoretically and experimentally, the main finding was that when a large 4×8  cm2 Al filter was used, the SDNR values for the gridless images were overestimated up to 25% compared to the values for the small 1×1  cm2 filter, and gridless imaging was superior for any PMMA thickness. For the small Al filter, gridless imaging was only superior for PMMAs thinner than 4 cm. This discrepancy can be explained by a different sensitivity to and sampling of the angular scatter spread function, depending on the size of the contrast object. The experimental differences were eliminated either by using a smaller region of interest close to the edge of the large filter or by applying a technique of scatter correction by subtracting the estimated scatter image

  19. Image quality, threshold contrast and mean glandular dose in CR mammography.

    PubMed

    Jakubiak, R R; Gamba, H R; Neves, E B; Peixoto, J E

    2013-09-21

    In many countries, computed radiography (CR) systems represent the majority of equipment used in digital mammography. This study presents a method for optimizing image quality and dose in CR mammography of patients with breast thicknesses between 45 and 75 mm. Initially, clinical images of 67 patients (group 1) were analyzed by three experienced radiologists, reporting about anatomical structures, noise and contrast in low and high pixel value areas, and image sharpness and contrast. Exposure parameters (kV, mAs and target/filter combination) used in the examinations of these patients were reproduced to determine the contrast-to-noise ratio (CNR) and mean glandular dose (MGD). The parameters were also used to radiograph a CDMAM (version 3.4) phantom (Artinis Medical Systems, The Netherlands) for image threshold contrast evaluation. After that, different breast thicknesses were simulated with polymethylmethacrylate layers and various sets of exposure parameters were used in order to determine optimal radiographic parameters. For each simulated breast thickness, optimal beam quality was defined as giving a target CNR to reach the threshold contrast of CDMAM images for acceptable MGD. These results were used for adjustments in the automatic exposure control (AEC) by the maintenance team. Using optimized exposure parameters, clinical images of 63 patients (group 2) were evaluated as described above. Threshold contrast, CNR and MGD for such exposure parameters were also determined. Results showed that the proposed optimization method was effective for all breast thicknesses studied in phantoms. The best result was found for breasts of 75 mm. While in group 1 there was no detection of the 0.1 mm critical diameter detail with threshold contrast below 23%, after the optimization, detection occurred in 47.6% of the images. There was also an average MGD reduction of 7.5%. The clinical image quality criteria were attended in 91.7% for all breast thicknesses evaluated in

  20. Image quality, threshold contrast and mean glandular dose in CR mammography

    NASA Astrophysics Data System (ADS)

    Jakubiak, R. R.; Gamba, H. R.; Neves, E. B.; Peixoto, J. E.

    2013-09-01

    In many countries, computed radiography (CR) systems represent the majority of equipment used in digital mammography. This study presents a method for optimizing image quality and dose in CR mammography of patients with breast thicknesses between 45 and 75 mm. Initially, clinical images of 67 patients (group 1) were analyzed by three experienced radiologists, reporting about anatomical structures, noise and contrast in low and high pixel value areas, and image sharpness and contrast. Exposure parameters (kV, mAs and target/filter combination) used in the examinations of these patients were reproduced to determine the contrast-to-noise ratio (CNR) and mean glandular dose (MGD). The parameters were also used to radiograph a CDMAM (version 3.4) phantom (Artinis Medical Systems, The Netherlands) for image threshold contrast evaluation. After that, different breast thicknesses were simulated with polymethylmethacrylate layers and various sets of exposure parameters were used in order to determine optimal radiographic parameters. For each simulated breast thickness, optimal beam quality was defined as giving a target CNR to reach the threshold contrast of CDMAM images for acceptable MGD. These results were used for adjustments in the automatic exposure control (AEC) by the maintenance team. Using optimized exposure parameters, clinical images of 63 patients (group 2) were evaluated as described above. Threshold contrast, CNR and MGD for such exposure parameters were also determined. Results showed that the proposed optimization method was effective for all breast thicknesses studied in phantoms. The best result was found for breasts of 75 mm. While in group 1 there was no detection of the 0.1 mm critical diameter detail with threshold contrast below 23%, after the optimization, detection occurred in 47.6% of the images. There was also an average MGD reduction of 7.5%. The clinical image quality criteria were attended in 91.7% for all breast thicknesses evaluated in both

  1. Accelerating Monte Carlo image reconstruction of a PMMA phantom through variance reduction techniques for quality control in digital mammography.

    PubMed

    Ramos, M; Ferrer, S; Verdu, G

    2005-01-01

    Mammography is a non-invasive technique used for the detection of breast lesions. The use of this technique in a breast screening program requires a continuous quality control testing in mammography units for ensuring a minimum absorbed glandular dose without modifying image quality. Digital mammography has been progressively introduced in screening centers, since recent evolution of photostimulable phosphor detectors. The aim of this work is the validation of a methodology for reconstructing digital images of a polymethyl-methacrylate (PMMA) phantom (P01 model) under pure Monte Carlo techniques. A reference image has been acquired for this phantom under automatic exposure control (AEC) mode (28 kV and 14 mAs). Some variance reduction techniques (VRT) have been applied to improve the efficiency of the simulations, defined as the number of particles reaching the imaging system per starting particle. All images have been used and stored in DICOM format. The results prove that the signal-to-noise ratio (SNR) of the reconstructed images have been increased with the use of the VRT, showing similar values between different employed tallies. As a conclusion, these images could be used during quality control testing for showing any deviation of the exposition parameters from the desired reference level.

  2. Image quality of a prototype direct conversion detector for digital mammography

    NASA Astrophysics Data System (ADS)

    Mainprize, James G.; Ford, Nancy L.; Yin, Shi; Tumer, Tumay O.; Yaffe, Martin J.

    1999-05-01

    A digital mammography system in which the x-ray sensitive device is a solid-state direct conversion detector is under development. This detector is a 1 mm thick silicon photodiode array hybridized to a CCD read-out, with a 50 micrometer pixel pitch. The detector is designed to be used in a slot-scanned system using time-delay integration (TDI) for signal acquisition. To handle the large signal generated in the photodiode, a novel read-out technique was used, in which charge was integrated 'on-chip' over a small number of rows, and the output of each of these sections was digitally summed 'off-chip' to produce the total integrated signal for each pixel in the image. This two-stage integration process not only allows easy acquisition of large signals, it effectively increases bit depth from 12 bits (for a single section) to approximately 16 (for the total integrated signal). The image quality of the device has been measured and compared to predictions based on cascaded linear systems theory. The resolution of the new detector was determined from the modulation transfer function (MTF) which was obtained from over-sampled edge spread functions (ESF). The ESF was measured in both the scan and slot directions from four repeated images of a tantalum edge. Noise power spectra (NPS) were determined from 40 repeated flat-field images at each of several x-ray exposures. By combining the MTF and NPS measurements, the detective quantum efficiency (DQE) was also determined. The MTF in the non-scanned direction was found to greater than 20% at 10 mm-1 and slightly lower in the scanned direction (approximately equals 10% at 10 mm-1). In all cases, the DQE was at least comparable to film-screen mammography receptors. The DQE at 120 mR detector exposure at zero spatial frequency ranged from 0.4 to 0.6 depending on the sample tested. Electronic noise was fairly low, contributing to less than plus or minus 7 ADU (out of a possible 98304 ADU). Future work will involve re-designing the

  3. Image quality assessment in digital mammography: part I. Technical characterization of the systems

    NASA Astrophysics Data System (ADS)

    Marshall, N. W.; Monnin, P.; Bosmans, H.; Bochud, F. O.; Verdun, F. R.

    2011-07-01

    In many European countries, image quality for digital x-ray systems used in screening mammography is currently specified using a threshold-detail detectability method. This is a two-part study that proposes an alternative method based on calculated detectability for a model observer: the first part of the work presents a characterization of the systems. Eleven digital mammography systems were included in the study; four computed radiography (CR) systems, and a group of seven digital radiography (DR) detectors, composed of three amorphous selenium-based detectors, three caesium iodide scintillator systems and a silicon wafer-based photon counting system. The technical parameters assessed included the system response curve, detector uniformity error, pre-sampling modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE). Approximate quantum noise limited exposure range was examined using a separation of noise sources based upon standard deviation. Noise separation showed that electronic noise was the dominant noise at low detector air kerma for three systems; the remaining systems showed quantum noise limited behaviour between 12.5 and 380 µGy. Greater variation in detector MTF was found for the DR group compared to the CR systems; MTF at 5 mm-1 varied from 0.08 to 0.23 for the CR detectors against a range of 0.16-0.64 for the DR units. The needle CR detector had a higher MTF, lower NNPS and higher DQE at 5 mm-1 than the powder CR phosphors. DQE at 5 mm-1 ranged from 0.02 to 0.20 for the CR systems, while DQE at 5 mm-1 for the DR group ranged from 0.04 to 0.41, indicating higher DQE for the DR detectors and needle CR system than for the powder CR phosphor systems. The technical evaluation section of the study showed that the digital mammography systems were well set up and exhibiting typical performance for the detector technology employed in the respective systems.

  4. Influence of scatter reduction method and monochromatic beams on image quality and dose in mammography.

    PubMed

    Moeckli, Raphaël; Verdun, Francis R; Fiedler, Stefan; Pachoud, Marc; Bulling, Shelley; Schnyder, Pierre; Valley, Jean-François

    2003-12-01

    In mammography, the image contrast and dose delivered to the patient are determined by the x-ray spectrum and the scatter to primary ratio S/P. Thus the quality of the mammographic procedure is highly dependent on the choice of anode and filter material and on the method used to reduce the amount of scattered radiation reaching the detector. Synchrotron radiation is a useful tool to study the effect of beam energy on the optimization of the mammographic process because it delivers a high flux of monochromatic photons. Moreover, because the beam is naturally flat collimated in one direction, a slot can be used instead of a grid for scatter reduction. We have measured the ratio S/P and the transmission factors for grids and slots for monoenergetic synchrotron radiation. In this way the effect of beam energy and scatter rejection method were separated, and their respective importance for image quality and dose analyzed. Our results show that conventional mammographic spectra are not far from optimum and that the use of a slot instead of a grid has an important effect on the optimization of the mammographic process. We propose a simple numerical model to quantify this effect.

  5. Dose and image quality measurements for contrast-enhanced dual energy mammography systems

    NASA Astrophysics Data System (ADS)

    Oduko, J. M.; Homolka, P.; Jones, V.; Whitwam, D.

    2015-03-01

    The results of patient dose surveys of two contrast-enhanced dual energy mammography systems are presented, showing mean glandular doses for both low and high energy components of the exposures. For one system the distribution of doses is of an unusual pattern, very different from that normally measured in patient dose surveys. The contribution of the high energy component of the exposure to the total is shown to be about 20% of that of the low energy component for this system. It is about 33% for the other system, for which the distribution of doses is similar to previously published surveys . A phantom containing disks with a range of different iodine content was used, with tissue-equivalent materials, to investigate the properties of one dual energy system. The iodine signal difference to noise ratio is suggested as a measure of image quality. It was found to remain practically constant as phantom thickness was varied, and increased only slowly (with a power relationship) as air kerma increased. Other measurements showed good reproducibility of the iodine signal difference, and that it was proportional to iodine concentration in the phantom. The iodine signal difference was found to be practically the same for a wide range of phantom thickness and glandularity.

  6. Effect of filter on average glandular dose and image quality in digital mammography

    NASA Astrophysics Data System (ADS)

    Songsaeng, C.; Krisanachinda, A.; Theerakul, K.

    2016-03-01

    To determine the average glandular dose and entrance surface air kerma in both phantoms and patients to assess image quality for different target-filters (W/Rh and W/Ag) in digital mammography system. The compressed breast thickness, compression force, average glandular dose, entrance surface air kerma, peak kilovoltage and tube current time were recorded and compared between W/Rh and W/Ag target filter. The CNR and the figure of merit were used to determine the effect of target filter on image quality. The mean AGD of the W/Rh target filter was 1.75 mGy, the mean ESAK was 6.67 mGy, the mean CBT was 54.1 mm, the mean CF was 14 1bs. The mean AGD of W/Ag target filter was 2.7 mGy, the mean ESAK was 12.6 mGy, the mean CBT was 75.5 mm, the mean CF was 15 1bs. In phantom study, the AGD was 1.2 mGy at 4 cm, 3.3 mGy at 6 cm and 3.83 mGy at 7 cm thickness. The FOM was 24.6, CNR was 9.02 at thickness 6 cm. The FOM was 18.4, CNR was 8.6 at thickness 7 cm. The AGD from Digital Mammogram system with W/Rh of thinner CBT was lower than the AGD from W/Ag target filter.

  7. Evaluation of Doses and Image Quality in Mammography with Screen-Film, CR, and DR Detectors – Application of the ACR Phantom

    PubMed Central

    Ślusarczyk-Kacprzyk, Wioletta; Skrzyński, Witold; Fabiszewska, Ewa

    2016-01-01

    Summary Background Different methods of image quality evaluation are routinely used for analogue and digital mammography systems in Poland. In the present study, image quality for several screen-film (SF), computed radiography (CR), and fully digital (DR) mammography systems was compared directly with the use of the ACR mammography accreditation phantom. Material/Methods Image quality and mean glandular doses were measured and compared for 47 mammography systems in the Mazovia Voivodeship in Poland, including 26 SF systems, 12 CR systems, and 9 DR systems. The mean glandular dose for the breast simulated by 4.5 cm of PMMA was calculated with methods described in the “European guidelines for quality assurance in breast cancer screening and diagnosis”. Visibility of the structures in the image (fibers, microcalcifications, and masses) was evaluated with the mammographic accreditation ACR phantom. Results Image quality for DR systems was significantly higher than for SF and CR systems. Several SF systems failed to pass the image quality tests because of artifacts. The doses were within acceptable limits for all of the systems, but the doses for the CR systems were significantly higher than for the SF and DR systems. Conclusions The best image quality, at a reasonably low dose, was observed for the DR systems. The CR systems are capable of obtaining the same image quality as the SF systems, but only at a significantly higher dose. The ACR phantom can be routinely used to evaluate image quality for all types of mammographic systems. PMID:27617048

  8. A New Full-Field Digital Mammography System with and without the Use of an Advanced Post-Processing Algorithm: Comparison of Image Quality and Diagnostic Performance

    PubMed Central

    Ahn, Hye Shin; Jang, Mijung; Yun, Bo La; Kim, Bohyoung; Ko, Eun Sook; Han, Boo-Kyung; Chang, Jung Min; Yi, Ann; Cho, Nariya; Moon, Woo Kyung; Choi, Hye Young

    2014-01-01

    Objective To compare new full-field digital mammography (FFDM) with and without use of an advanced post-processing algorithm to improve image quality, lesion detection, diagnostic performance, and priority rank. Materials and Methods During a 22-month period, we prospectively enrolled 100 cases of specimen FFDM mammography (Brestige®), which was performed alone or in combination with a post-processing algorithm developed by the manufacturer: group A (SMA), specimen mammography without application of "Mammogram enhancement ver. 2.0"; group B (SMB), specimen mammography with application of "Mammogram enhancement ver. 2.0". Two sets of specimen mammographies were randomly reviewed by five experienced radiologists. Image quality, lesion detection, diagnostic performance, and priority rank with regard to image preference were evaluated. Results Three aspects of image quality (overall quality, contrast, and noise) of the SMB were significantly superior to those of SMA (p < 0.05). SMB was significantly superior to SMA for visualizing calcifications (p < 0.05). Diagnostic performance, as evaluated by cancer score, was similar between SMA and SMB. SMB was preferred to SMA by four of the five reviewers. Conclusion The post-processing algorithm may improve image quality with better image preference in FFDM than without use of the software. PMID:24843234

  9. Rayleigh imaging in spectral mammography

    NASA Astrophysics Data System (ADS)

    Berggren, Karl; Danielsson, Mats; Fredenberg, Erik

    2016-03-01

    Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.

  10. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  11. Experimental evaluation of the image quality and dose in digital mammography: Influence of x-ray spectrum

    NASA Astrophysics Data System (ADS)

    Tomal, A.; Perez, A. M. M. M.; Silva, M. C.; Poletti, M. E.

    2015-11-01

    In this work, we studied experimentally the influence of x-ray spectrum on the contrast-to-noise ratio (CNR) and the average glandular dose (MDG) for two digital mammography systems: Senographe 2000D (GE Medical Systems) and Lorad Selenia (Hologic), with indirect and direct detector imaging technology, respectively. CNR and MGD were determined using PMMA phantoms simulating breasts with thicknesses of 4 cm and 6 cm. All available anode/filter combinations of the systems were evaluated for a wide range of tube voltages values. Results indicated that the Rh/Rh combination provides the highest image quality with the lower mean glandular dose for the Senographe 2000D system. For the Lorad Selenia system, the W/Ag combination at 30 kV showed the best performance, in terms of dose saving and image quality improvement in relation to all tube voltage range. The comparison between the optimal x-ray spectra and those selected by the AEC mode showed that this automatic selection mechanism could be readjusted to optimize the relationship between image quality and dose.

  12. Application of wavelets to the evaluation of phantom images for mammography quality control

    NASA Astrophysics Data System (ADS)

    Alvarez, M.; Pina, D. R.; Miranda, J. R. A.; Duarte, S. B.

    2012-11-01

    The main goal of this work was to develop a methodology for the computed analysis of American College of Radiology (ACR) mammographic phantom images, to be used in a quality control (QC) program of mammographic services. Discrete wavelet transform processing was applied to enhance the quality of images from the ACR mammographic phantom and to allow a lower dose for automatic evaluations of equipment performance in a QC program. Regions of interest (ROIs) containing phantom test objects (e.g., masses, fibers and specks) were focalized for appropriate wavelet processing, which highlighted the characteristics of structures present in each ROI. To minimize false-positive detection, each ROI in the image was submitted to pattern recognition tests, which identified structural details of the focalized test objects. Geometric and morphologic parameters of the processed test object images were used to quantify the final level of image quality. The final purpose of this work was to establish the main computational procedures for algorithms of quality evaluation of ACR phantom images. These procedures were implemented, and satisfactory agreement was obtained when the algorithm scores for image quality were compared with the results of assessments by three experienced radiologists. An exploratory study of a potential dose reduction was performed based on the radiologist scores and on the algorithm evaluation of images treated by wavelet processing. The results were comparable with both methods, although the algorithm had a tendency to provide a lower dose reduction than the evaluation by observers. Nevertheless, the objective and more precise criteria used by the algorithm to score image quality gave the computational result a higher degree of confidence. The developed algorithm demonstrates the potential use of the wavelet image processing approach for objectively evaluating the mammographic image quality level in routine QC tests. The implemented computational procedures

  13. Application of wavelets to the evaluation of phantom images for mammography quality control.

    PubMed

    Alvarez, M; Pina, D R; Miranda, J R A; Duarte, S B

    2012-11-07

    The main goal of this work was to develop a methodology for the computed analysis of American College of Radiology (ACR) mammographic phantom images, to be used in a quality control (QC) program of mammographic services. Discrete wavelet transform processing was applied to enhance the quality of images from the ACR mammographic phantom and to allow a lower dose for automatic evaluations of equipment performance in a QC program. Regions of interest (ROIs) containing phantom test objects (e.g., masses, fibers and specks) were focalized for appropriate wavelet processing, which highlighted the characteristics of structures present in each ROI. To minimize false-positive detection, each ROI in the image was submitted to pattern recognition tests, which identified structural details of the focalized test objects. Geometric and morphologic parameters of the processed test object images were used to quantify the final level of image quality. The final purpose of this work was to establish the main computational procedures for algorithms of quality evaluation of ACR phantom images. These procedures were implemented, and satisfactory agreement was obtained when the algorithm scores for image quality were compared with the results of assessments by three experienced radiologists. An exploratory study of a potential dose reduction was performed based on the radiologist scores and on the algorithm evaluation of images treated by wavelet processing. The results were comparable with both methods, although the algorithm had a tendency to provide a lower dose reduction than the evaluation by observers. Nevertheless, the objective and more precise criteria used by the algorithm to score image quality gave the computational result a higher degree of confidence. The developed algorithm demonstrates the potential use of the wavelet image processing approach for objectively evaluating the mammographic image quality level in routine QC tests. The implemented computational procedures

  14. CR mammography: Design and implementation of a quality control program

    SciTech Connect

    Moreno-Ramirez, A.; Brandan, M. E.; Villasenor-Navarro, Y.; Galvan, H. A.; Ruiz-Trejo, C.

    2012-10-23

    Despite the recent acquisition of significant quantities of computed radiography CR equipment for mammography, Mexican regulations do not specify the performance requirements for digital systems such as those of CR type. The design of a quality control program QCP specific for CR mammography systems was thus considered relevant. International protocols were taken as reference to define tests, procedures and acceptance criteria. The designed QCP was applied in three CR mammography facilities. Important deficiencies in spatial resolution, noise, image receptor homogeneity, artifacts and breast thickness compensation were detected.

  15. CR mammography: Design and implementation of a quality control program

    NASA Astrophysics Data System (ADS)

    Moreno-Ramírez, A.; Brandan, M. E.; Villaseñor-Navarro, Y.; Galván, H. A.; Ruiz-Trejo, C.

    2012-10-01

    Despite the recent acquisition of significant quantities of computed radiography CR equipment for mammography, Mexican regulations do not specify the performance requirements for digital systems such as those of CR type. The design of a quality control program QCP specific for CR mammography systems was thus considered relevant. International protocols were taken as reference to define tests, procedures and acceptance criteria. The designed QCP was applied in three CR mammography facilities. Important deficiencies in spatial resolution, noise, image receptor homogeneity, artifacts and breast thickness compensation were detected.

  16. Initial Image Quality and Clinical Experience with New CR Digital Mammography System: A Phantom and Clinical Study

    SciTech Connect

    Gaona, Enrique; Enriquez, Jesus Gabriel Franco; Alfonso, Beatriz Y. Alvarez; Castellanos, Gustavo Casian

    2008-08-11

    The goal of the study was to evaluate the first CR digital mammography system ( registered Konica-Minolta) in Mexico in clinical routine for cancer detection in a screening population and to determine if high resolution CR digital imaging is equivalent to state-of-the-art screen-film imaging. The mammograms were evaluated by two observers with cytological or histological confirmation for BIRADS 3, 4 and 5. Contrast, exposure and artifacts of the images were evaluated. Different details like skin, retromamillary space and parenchymal structures were judged. The detectability of microcalcifications and lesions were compared and correlated to histology. The difference in sensitivity of CR Mammography (CRM) and Screen Film Mammography (SFM) was not statistically significant. However, CRM had a significantly lower recall rate, and the lesion detection was equal or superior to conventional images. There is no significant difference in the number of microcalcifications and highly suspicious calcifications were equally detected on both film-screen and digital images. Different anatomical regions were better detectable in digital than in conventional mammography.

  17. Image quality evaluation of direct-conversion digital mammography system with new dual a-Se layer detector

    NASA Astrophysics Data System (ADS)

    Kuwabara, Takao; Iwasaki, Nobuyuki; Sendai, Tomonari; Furue, Ryosuke; Agano, Toshitaka

    2009-02-01

    To increase the detection performance of breast cancers in mammograms, we need to improve shape delineation of micro calcifications and tumors. We accomplished this by developing a direct-conversion mammography system with an optical reading method and a new dual a-Se layer detector. The system achieved both small pixel size (50 micrometer) and a high Detective Quantum Efficiency (DQE) realized by 100 % of fill factor and noise reduction. We evaluated image quality performance and determined the best exposure conditions. We measured DQE and Modulation Transfer Function(MTF) according to the IEC62220-1-2. High DQE was maintained at a low radiation dosage, indicating that the optical reading method accompanies low noises. Response of MTF was maintained at up to the Nyquist frequency of 10 cyc/mm, which corresponds to 50 micrometer pixel size. To determine the best exposure conditions, we measured Contrast to Noise Ratio (CNR) and visually evaluated images of a resected breast under conditions of MoMo, MoRh, and WRh. There were occasional disagreements between the exposure conditions for achieving the maximum CNR and those for the best image graded by the visual evaluation. This was probably because CNR measurement does not measure effects of scattered X-ray. The images verified the improvement in detection and delineation performance of micro calcifications and tumors.

  18. Mammography

    MedlinePlus

    ... first test. TYPES OF MAMMOGRAPHY Traditional mammography uses film, similar to routine x-rays. Digital mammography is ... risk of dying of breast cancer compared to film mammography. Three-dimensional (3D) mammography is a type ...

  19. [Influence of Detector Radiation Damage on CR Mammography Quality Control].

    PubMed

    Moriwaki, Atsumi; Ishii, Mie; Terazono, Shiho; Arao, Keiko; Ishii, Rie; Sanada, Taizo; Yoshida, Akira

    2016-05-01

    Recently, radiation damage to the detector apparatus employed in computed radiography (CR) mammography has become problematic. The CR system and the imaging plate (IP) applied to quality control (QC) program were also used in clinical mammography in our hospital, and the IP to which radiation damage has occurred was used for approximately 5 years (approximately 13,000 exposures). We considered using previously acquired QC image data, which is stored in a server, to investigate the influence of radiation damage to an IP. The mammography unit employed in this study was a phase contrast mammography (PCM) Mermaid (KONICA MINOLTA) system. The QC image was made newly, and it was output in the film, and thereafter the optical density of the step-phantom image was measured. An input (digital value)-output (optical density) conversion curve was plotted using the obtained data. The digital values were then converted to optical density values using a reference optical density vs. digital value curve. When a high radiation dose was applied directly, radiation damage occurred at a position on the IP where no object was present. Daily QC for mammography is conducted using an American College of Radiology (ACR) accreditation phantom and acrylic disc, and an environmental background density measurement is performed as one of the management indexes. In this study, the radiation damage sustained by the acrylic disc was shown to differ from that of the background. Thus, it was revealed that QC results are influenced by radiation damage.

  20. Adaptation of a clustered lumpy background model for task-based image quality assessment in x-ray phase-contrast mammography

    PubMed Central

    Zysk, Adam M.; Brankov, Jovan G.; Wernick, Miles N.; Anastasio, Mark A.

    2012-01-01

    Purpose: Since the introduction of clinical x-ray phase-contrast mammography (PCM), a technique that exploits refractive-index variations to create edge enhancement at tissue boundaries, a number of optimization studies employing physical image-quality metrics have been performed. Ideally, task-based assessment of PCM would have been conducted with human readers. These studies have been limited, however, in part due to the large parameter-space of PCM system configurations and the difficulty of employing expert readers for large-scale studies. It has been proposed that numerical observers can be used to approximate the statistical performance of human readers, thus enabling the study of task-based performance over a large parameter-space. Methods: Methods are presented for task-based image quality assessment of PCM images with a numerical observer, the most significant of which is an adapted lumpy background from the conventional mammography literature that accounts for the unique wavefield propagation physics of PCM image formation and will be used with a numerical observer to assess image quality. These methods are demonstrated by performing a PCM task-based image quality study using a numerical observer. This study employs a signal-known-exactly, background-known-statistically Bayesian ideal observer method to assess the detectability of a calcification object in PCM images when the anode spot size and calcification diameter are varied. Results: The first realistic model for the structured background in PCM images has been introduced. A numerical study demonstrating the use of this background model has compared PCM and conventional mammography detection of calcification objects. The study data confirm the strong PCM calcification detectability dependence on anode spot size. These data can be used to balance the trade-off between enhanced image quality and the potential for motion artifacts that comes with use of a reduced spot size and increased exposure time

  1. Grid-less imaging with antiscatter correction software in 2D mammography: the effects on image quality and MGD under a partial virtual clinical validation study

    NASA Astrophysics Data System (ADS)

    Van Peteghem, Nelis; Bemelmans, Frédéric; Bramaje Adversalo, Xenia; Salvagnini, Elena; Marshall, Nicholas; Bosmans, Hilde; Van Ongeval, Chantal

    2016-03-01

    This work investigated the effect of the grid-less acquisition mode with scatter correction software developed by Siemens Healthcare (PRIME mode) on image quality and mean glandular dose (MGD) in a comparative study against a standard mammography system with grid. Image quality was technically quantified with contrast-detail (c-d) analysis and by calculating detectability indices (d') using a non-prewhitening with eye filter model observer (NPWE). MGD was estimated technically using slabs of PMMA and clinically on a set of 11439 patient images. The c-d analysis gave similar results for all mammographic systems examined, although the d' values were slightly lower for the system with PRIME mode when compared to the same system in standard mode (-2.8% to -5.7%, depending on the PMMA thickness). The MGD values corresponding to the PMMA measurements with automatic exposure control indicated a dose reduction from 11.0% to 20.8% for the system with PRIME mode compared to the same system without PRIME mode. The largest dose reductions corresponded to the thinnest PMMA thicknesses. The results from the clinical dosimetry study showed an overall population-averaged dose reduction of 11.6% (up to 27.7% for thinner breasts) for PRIME mode compared to standard mode for breast thicknesses from 20 to 69 mm. These technical image quality measures were then supported using a clinically oriented study whereby simulated clusters of microcalcifications and masses were inserted into patient images and read by radiologists in an AFROC study to quantify their detectability. In line with the technical investigation, no significant difference was found between the two imaging modes (p-value 0.95).

  2. Mammography calibration qualities establishment in a Mo- Mo clinical system

    NASA Astrophysics Data System (ADS)

    Corrêa, E. L.; dos Santos, L. R.; Vivolo, V.; Potiens, M. P. A.

    2016-07-01

    In this study the mammography calibration qualities were established in a clinical mammography system. The objective is to provide the IPEN instruments calibration laboratory with both mammography calibration methods (using a clinical and an industrial system). The results showed a good behavior of mammography equipment, in terms of kVp, PPV and exposure time. The additional filtration of molybdenum is adequate, air-kerma rates were determined and spectra were obtained.

  3. Mammography

    MedlinePlus

    ... mammography facility. top of page What does the equipment look like? A mammography unit is a rectangular ... be notified of the results by the mammography facility. Follow-up examinations may be necessary, and your ...

  4. SU-E-I-88: Mammography Imaging: Does Positioning Matter?

    SciTech Connect

    Zhang, J; Szabunio, M

    2014-06-01

    Purpose: In mammography, compression is imperative for quality images and glandular radiation exposure dose. The thickness of the compressed breast directly determines mammography acquisition parameters. The compressed thickness varies due to variation in technologist practice, even for the same patient imaged at different time. This study is to investigate potential effect of the variation in breast positioning on radiation dose and image quality. Methods: Radiation dose at different thicknesses was measured with a BR-12 breast phantom for both conventional craniocaudal view and tomosynthesis in a Hologic Tomosynthesis mammography system. The CIRS stereotactic needle biopsy training phantom embedded dense masses and microcalcification in various sizes were imaged for image quality evaluation. Radiologists evaluated images. Clinical mammograms from the same patient but acquired at different time were retrospectively retrieved to evaluate potential effects of variation in positioning. Results: Acquisition parameters (kVp and mAs) increase with the increased phantom thickness. Radiation exposure increases following an exponential trend. The stereotactic phantom images showed loss of spatial and contrast resolution with inappropriate positioning. The compressed pressure may not be a good indicator for appropriate positioning. The inclusion of different amount of pectoralis muscle may lead to the same compressed pressure but different compressed thickness. The initial retrospective study of 3 patients showed that there were potential large variations in positioning the same patient at different examination time, resulting in large variations in patient radiation dose and image quality. Conclusion: Variations in patient positioning potentially influence patient radiation dose and image quality. The technologist has the critical responsibility to position patient to provide quality images in spite of different breast and body types. To reduce intra and inter practice

  5. 76 FR 60848 - National Mammography Quality Assurance Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... HUMAN SERVICES Food and Drug Administration National Mammography Quality Assurance Advisory Committee... be open to the public. Name of Committee: National Mammography Quality Assurance Advisory Committee...) Proposed changes to the Mammography Quality Standard Act (MQSA) policies and inspection procedures;...

  6. A task-based quality control metric for digital mammography

    NASA Astrophysics Data System (ADS)

    Maki Bloomquist, A. K.; Mainprize, J. G.; Mawdsley, G. E.; Yaffe, M. J.

    2014-11-01

    A reader study was conducted to tune the parameters of an observer model used to predict the detectability index (dʹ ) of test objects as a task-based quality control (QC) metric for digital mammography. A simple test phantom was imaged to measure the model parameters, namely, noise power spectrum, modulation transfer function and test-object contrast. These are then used in a non-prewhitening observer model, incorporating an eye-filter and internal noise, to predict dʹ. The model was tuned by measuring dʹ of discs in a four-alternative forced choice reader study. For each disc diameter, dʹ was used to estimate the threshold thicknesses for detectability. Data were obtained for six types of digital mammography systems using varying detector technologies and x-ray spectra. A strong correlation was found between measured and modeled values of dʹ, with Pearson correlation coefficient of 0.96. Repeated measurements from separate images of the test phantom show an average coefficient of variation in dʹ for different systems between 0.07 and 0.10. Standard deviations in the threshold thickness ranged between 0.001 and 0.017 mm. The model is robust and the results are relatively system independent, suggesting that observer model dʹ shows promise as a cross platform QC metric for digital mammography.

  7. Establishing daily quality control (QC) in screen-film mammography using leeds tor (max) phantom at the breast imaging unit of USTH-Benavides Cancer Institute

    NASA Astrophysics Data System (ADS)

    Acaba, K. J. C.; Cinco, L. D.; Melchor, J. N.

    2016-03-01

    Daily QC tests performed on screen film mammography (SFM) equipment are essential to ensure that both SFM unit and film processor are working in a consistent manner. The Breast Imaging Unit of USTH-Benavides Cancer Institute has been conducting QC following the test protocols in the IAEA Human Health Series No.2 manual. However, the availability of Leeds breast phantom (CRP E13039) in the facility made the task easier. Instead of carrying out separate tests on AEC constancy and light sensitometry, only one exposure of the phantom is done to accomplish the two tests. It was observed that measurements made on mAs output and optical densities (ODs) using the Leeds TOR (MAX) phantom are comparable with that obtained from the usual conduct of tests, taking into account the attenuation characteristic of the phantom. Image quality parameters such as low contrast and high contrast details were also evaluated from the phantom image. The authors recognize the usefulness of the phantom in determining technical factors that will help improve detection of smallest pathological details on breast images. The phantom is also convenient for daily QC monitoring and economical since less number of films is expended.

  8. Image toggling saves time in mammography

    PubMed Central

    Drew, Trafton; Aizenman, Avi M.; Thompson, Matthew B.; Kovacs, Mark D.; Trambert, Michael; Reicher, Murray A.; Wolfe, Jeremy M.

    2015-01-01

    Abstract. When two images are perfectly aligned, even subtle differences are readily detected when the images are “toggled” back and forth in the same location. However, substantial changes between two photographs can be missed if the images are misaligned (“change blindness”). Nevertheless, recent work from our lab, testing nonradiologists, suggests that toggling misaligned photographs leads to superior performance compared to side-by-side viewing (SBS). In order to determine if a benefit of toggling misaligned images may be observed in clinical mammography, we developed an image toggling technique where pairs of new and prior breast imaging exam images could be efficiently toggled back and forth. Twenty-three radiologists read 10 mammograms evenly divided in toggle and SBS modes. The toggle mode led to a 6-s benefit in reaching a decision [t(22)=5.11, p<.05]. The toggle viewing mode also led to a 5% improvement in diagnostic accuracy, though in our small sample this effect was not statistically reliable. Time savings were found even though successive mammograms were not perfectly aligned. Given the ever-increasing caseload for radiologists, this simple manipulation of how the images are viewed could save valuable time in clinical practice, allowing radiologists to read more cases or spend more time on difficult cases. PMID:26870746

  9. Quality control for digital mammography: Part II recommendations from the ACRIN DMIST trial

    SciTech Connect

    Yaffe, Martin J.; Bloomquist, Aili K.; Mawdsley, Gordon E.

    2006-03-15

    The Digital Mammography Imaging Screening Trial (DMIST), conducted under the auspices of the American College of Radiology Imaging Network (ACRIN), is a clinical trial designed to compare the accuracy of digital versus screen-film mammography in a screening population [E. Pisano et al., ACRIN 6652--Digital vs. Screen-Film Mammography, ACRIN (2001)]. Part I of this work described the Quality Control program developed to ensure consistency and optimal operation of the digital equipment. For many of the tests, there were no failures during the 24 months imaging was performed in DMIST. When systems failed, they generally did so suddenly rather than through gradual deterioration of performance. In this part, the utility and effectiveness of those tests are considered. This suggests that after verification of proper operation, routine extensive testing would be of minimal value. A recommended set of tests is presented including additional and improved tests, which we believe meet the intent and spirit of the Mammography Quality Standards Act regulations to ensure that full-field digital mammography systems are functioning correctly, and consistently producing mammograms of excellent image quality.

  10. Digital mammography, cancer screening: Factors important for image compression

    NASA Technical Reports Server (NTRS)

    Clarke, Laurence P.; Blaine, G. James; Doi, Kunio; Yaffe, Martin J.; Shtern, Faina; Brown, G. Stephen; Winfield, Daniel L.; Kallergi, Maria

    1993-01-01

    The use of digital mammography for breast cancer screening poses several novel problems such as development of digital sensors, computer assisted diagnosis (CAD) methods for image noise suppression, enhancement, and pattern recognition, compression algorithms for image storage, transmission, and remote diagnosis. X-ray digital mammography using novel direct digital detection schemes or film digitizers results in large data sets and, therefore, image compression methods will play a significant role in the image processing and analysis by CAD techniques. In view of the extensive compression required, the relative merit of 'virtually lossless' versus lossy methods should be determined. A brief overview is presented here of the developments of digital sensors, CAD, and compression methods currently proposed and tested for mammography. The objective of the NCI/NASA Working Group on Digital Mammography is to stimulate the interest of the image processing and compression scientific community for this medical application and identify possible dual use technologies within the NASA centers.

  11. Patient satisfaction and quality of care at four diagnostic imaging procedures: mammography, double-contrast barium enema, abdominal ultrasonography and vaginal ultrasonography.

    PubMed

    Loken, K; Steine, S; Laerum, E

    1999-01-01

    The objective of this study was to measure patient satisfaction and to investigate the practical implications of monitoring the quality of care at four radiology procedures. A survey was conducted immediately after the examinations in eight radiology departments: 550 patients attending for mammography, 110 for double-contrast barium enema (DCBE), 97 for abdominal ultrasonography and 90 for vaginal ultrasonography. Outcome measures were seven questionnaire scales: pain, emotional distress, information received, staff's punctuality and technical ability, facilities, and general satisfaction. Response rate was 87 %. Multivariate regression analysis showed significant differences between procedures on all scales (p < 0.001). Differences considered to be of practical importance, i. e. >/= 7 scale points, were detected on five of the scales. Mammography and DCBE caused the most pain, and vaginal US and DCBE caused the most distress. The US procedures entailed dissatisfaction with information about the procedures. The DCBE patients recorded dissatisfaction with the staff's lack of punctuality, and these and the mammography patients recorded dissatisfaction with the facilities. The findings indicate a potential for improving patients' experiences. Several aspects of care, i. e. pain management, attention to the patient's emotional concerns, explanation of procedures, punctuality and quality of the facilities, can be improved.

  12. Scatter correction in digital mammography based on image deconvolution.

    PubMed

    Ducote, J L; Molloi, S

    2010-03-07

    X-ray scatter is a major cause of nonlinearity in densitometry measurements using digital mammography. Previous scatter correction techniques have primarily used a single scatter point spread function to estimate x-ray scatter. In this study, a new algorithm to correct x-ray scatter based on image convolution was implemented using a spatially variant scatter point spread function which is energy and thickness dependent. The scatter kernel was characterized in terms of its scattering fraction (SF) and scatter radial extent (k) on uniform Lucite phantoms with thickness of 0.8-8.0 cm. The algorithm operates on a pixel-by-pixel basis by grouping pixels of similar thicknesses into a series of mask images that are individually deconvolved using Fourier image analysis with a distinct kernel for each image. The algorithm was evaluated with three Lucite step phantoms and one anthropomorphic breast phantom using a full-field digital mammography system at energies of 24, 28, 31 and 49 kVp. The true primary signal was measured with a multi-hole collimator. The effect on image quality was also evaluated. For all 16 studies, the average mean percentage error in estimating the true primary signal was found to be -2.13% and the average rms percentage error was 2.60%. The image quality was seen to improve at every energy up to 25% at 49 kVp. The results indicate that a technique based on a spatially variant scatter point spread function can accurately estimate x-ray scatter.

  13. Full Field Digital Mammography (FFDM) versus CMOS Technology versus Tomosynthesis (DBT) - Which System Increases the Quality of Intraoperative Imaging?

    PubMed

    Schulz-Wendtland, R; Dilbat, G; Bani, M; Fasching, P A; Lux, M P; Wenkel, E; Schwab, S; Loehberg, C R; Jud, S M; Rauh, C; Bayer, C M; Beckmann, M W; Uder, M; Meier-Meitinger, M

    2012-06-01

    Aim: The aim of this prospective clinical study was to assess whether it would be possible to reduce the rate of re-excisions and improve the quality using CMOS technology or digital breast tomosynthesis (DBT) compared to a conventional FFDM system. Material and Methods: An invasive breast cancer (BI-RADS 5) was diagnosed in 200 patients in the period from 5/2011 to 1/2012. After histological verification, a breast-conserving therapy was performed with intraoperative imaging. Three different imaging systems were used: 1) Inspiration™ (Siemens, Erlangen, Germany), amorphous selenium, tungsten source, focus 0.1 mm, resolution 85 µm pixel pitch, 8 l/mm as the standard; 2) BioVision™ (Bioptics, Tucson, USA), flat panel photodiode array, tungsten source, focus 0.05, resolution 50 µm pixel pitch, 12 l/mm; 3) Tomosynthesis (Siemens, Erlangen, Germany), amorphous selenium, tungsten source, focus 0.1 mm, resolution 85 µm pixel pitch, 8 l/mm, range: 50°, 25 projections, scan time > 20 s, geometry: uniform scanning, reconstruction: filtered back projection. The 600 radiograms were prospectively shown to 3 radiologists. Results: Out of a total of 200 patients with histologically confirmed breast cancer (BI-RADS 6) 156 patients required no further operative therapy (re-excision) after breast-conserving therapy. A retrospective analysis (n = 44) showed an increase in sensitivity with tomosynthesis compared to the BioVision™ (CMOS technology) and the Inspiration™ at a magnification of 1.0 : 1.0 of 8 % (p < 0.05), i.e. re-excision would not have been necessary in 16 patients with tomosynthesis. Conclusions: The sensitivity of tomosynthesis for intraoperative radiography is significantly (p < 0.05) higher compared to both CMOS technology and an FFDM system with a conventional detector. Additional studies using higher magnification, e.g. 2.0 : 1.0, but no zooming will be necessary to evaluate the method further.

  14. Computational assessment of mammography accreditation phantom images and correlation with human observer analysis

    NASA Astrophysics Data System (ADS)

    Barufaldi, Bruno; Lau, Kristen C.; Schiabel, Homero; Maidment, D. A.

    2015-03-01

    Routine performance of basic test procedures and dose measurements are essential for assuring high quality of mammograms. International guidelines recommend that breast care providers ascertain that mammography systems produce a constant high quality image, using as low a radiation dose as is reasonably achievable. The main purpose of this research is to develop a framework to monitor radiation dose and image quality in a mixed breast screening and diagnostic imaging environment using an automated tracking system. This study presents a module of this framework, consisting of a computerized system to measure the image quality of the American College of Radiology mammography accreditation phantom. The methods developed combine correlation approaches, matched filters, and data mining techniques. These methods have been used to analyze radiological images of the accreditation phantom. The classification of structures of interest is based upon reports produced by four trained readers. As previously reported, human observers demonstrate great variation in their analysis due to the subjectivity of human visual inspection. The software tool was trained with three sets of 60 phantom images in order to generate decision trees using the software WEKA (Waikato Environment for Knowledge Analysis). When tested with 240 images during the classification step, the tool correctly classified 88%, 99%, and 98%, of fibers, speck groups and masses, respectively. The variation between the computer classification and human reading was comparable to the variation between human readers. This computerized system not only automates the quality control procedure in mammography, but also decreases the subjectivity in the expert evaluation of the phantom images.

  15. Conversion factors between human and automatic readouts of CDMAM phantom images of CR mammography systems

    NASA Astrophysics Data System (ADS)

    Figl, Michael; Homolka, Peter; Osanna-Elliott, Angelika; Semturs, Friedrich; Kaar, Marcus; Hummel, Johann

    2016-09-01

    In mammography screening, profound assessment of technical image quality is imperative. The European protocol for the quality control of the physical and technical aspects of mammography screening (EPQCM) suggests using an alternate fixed choice contrast-detail phantom-like CDMAM. For the evaluation of technical image quality, human or automated readouts can be used. For automatic evaluation, a software (cdcom) is provided by EUREF. If the automated readout indicates unacceptable image quality, additional human readout may be performed overriding the automated readout. As the latter systematically results in higher image quality ratings, conversion factors between both methods are regularly applied. Since most image quality issues with mammography systems arise within CR systems, an assessment restricted to CR systems with data from the Austrian Reference Center in the mammography screening program has been conducted. Forty-five CR systems were evaluated. Human readouts were performed with a randomisation software to avoid bias due to learning effects. Additional automatic evaluation allowed for the computation of conversion factors between human and automatic readouts. These factors were substantially lower compared to those suggested by EUREF, namely 1.21 compared to 1.62 (EUREF UK method) and 1.42 (EUREF EU method) for 0.1 mm, and 1.40 compared to 1.83 (EUREF UK) and 1.73 (EUREF EU) for 0.25 mm structure size, respectively. Using either of these factors to adjust patient dose in order to comply with image quality requirements results in differences in the dose increase of up to 90%. This necessitates a consensus on their proper application and limits the validity of the assessment methods. Clear criteria for CR systems based on appropriate studies should be promoted.

  16. Conversion factors between human and automatic readouts of CDMAM phantom images of CR mammography systems.

    PubMed

    Figl, Michael; Homolka, Peter; Osanna-Elliott, Angelika; Semturs, Friedrich; Kaar, Marcus; Hummel, Johann

    2016-09-21

    In mammography screening, profound assessment of technical image quality is imperative. The European protocol for the quality control of the physical and technical aspects of mammography screening (EPQCM) suggests using an alternate fixed choice contrast-detail phantom-like CDMAM. For the evaluation of technical image quality, human or automated readouts can be used. For automatic evaluation, a software (cdcom) is provided by EUREF. If the automated readout indicates unacceptable image quality, additional human readout may be performed overriding the automated readout. As the latter systematically results in higher image quality ratings, conversion factors between both methods are regularly applied. Since most image quality issues with mammography systems arise within CR systems, an assessment restricted to CR systems with data from the Austrian Reference Center in the mammography screening program has been conducted. Forty-five CR systems were evaluated. Human readouts were performed with a randomisation software to avoid bias due to learning effects. Additional automatic evaluation allowed for the computation of conversion factors between human and automatic readouts. These factors were substantially lower compared to those suggested by EUREF, namely 1.21 compared to 1.62 (EUREF UK method) and 1.42 (EUREF EU method) for 0.1 mm, and 1.40 compared to 1.83 (EUREF UK) and 1.73 (EUREF EU) for 0.25 mm structure size, respectively. Using either of these factors to adjust patient dose in order to comply with image quality requirements results in differences in the dose increase of up to 90%. This necessitates a consensus on their proper application and limits the validity of the assessment methods. Clear criteria for CR systems based on appropriate studies should be promoted.

  17. Automated analysis of phantom images for the evaluation of long-term reproducibility in digital mammography

    NASA Astrophysics Data System (ADS)

    Gennaro, G.; Ferro, F.; Contento, G.; Fornasin, F.; di Maggio, C.

    2007-03-01

    The performance of an automatic software package was evaluated with phantom images acquired by a full-field digital mammography unit. After the validation, the software was used, together with a Leeds TORMAS test object, to model the image acquisition process. Process modelling results were used to evaluate the sensitivity of the method in detecting changes of exposure parameters from routine image quality measurements in digital mammography, which is the ultimate purpose of long-term reproducibility tests. Image quality indices measured by the software included the mean pixel value and standard deviation of circular details and surrounding background, contrast-to-noise ratio and relative contrast; detail counts were also collected. The validation procedure demonstrated that the software localizes the phantom details correctly and the difference between automatic and manual measurements was within few grey levels. Quantitative analysis showed sufficient sensitivity to relate fluctuations in exposure parameters (kVp or mAs) to variations in image quality indices. In comparison, detail counts were found less sensitive in detecting image quality changes, even when limitations due to observer subjectivity were overcome by automatic analysis. In conclusion, long-term reproducibility tests provided by the Leeds TORMAS phantom with quantitative analysis of multiple IQ indices have been demonstrated to be effective in predicting causes of deviation from standard operating conditions and can be used to monitor stability in full-field digital mammography.

  18. An SVM Based Approach for the Analysis Of Mammography Images

    NASA Astrophysics Data System (ADS)

    Gan, X.; Kapsokalivas, L.; Skaliotis, A.; Steinhöfel, K.; Tangaro, S.

    2007-09-01

    Mammography is among the most popular imaging techniques used in the diagnosis of breast cancer. Nevertheless distinguishing between healthy and ill images is hard even for an experienced radiologist, because a single image usually includes several regions of interest (ROIs). The hardness of this classification problem along with the substantial amount of data, gathered from patients' medical history, motivates the use of a machine learning approach as part of a CAD (Computer Aided Detection) tool, aiming to assist radiologists in the characterization of mammography images. Specifically, our approach involves: i) the ROI extraction, ii) the Feature Vector extraction, iii) the Support Vector Machine (SVM) classification of ROIs and iv) the characterization of the whole image. We evaluate the performance of our approach in terms of the SVM's training and testing error and in terms of ROI specificity—sensitivity. The results show a relation between the number of features used and the SVM's performance.

  19. Evaluation of clinical image processing algorithms used in digital mammography.

    PubMed

    Zanca, Federica; Jacobs, Jurgen; Van Ongeval, Chantal; Claus, Filip; Celis, Valerie; Geniets, Catherine; Provost, Veerle; Pauwels, Herman; Marchal, Guy; Bosmans, Hilde

    2009-03-01

    Screening is the only proven approach to reduce the mortality of breast cancer, but significant numbers of breast cancers remain undetected even when all quality assurance guidelines are implemented. With the increasing adoption of digital mammography systems, image processing may be a key factor in the imaging chain. Although to our knowledge statistically significant effects of manufacturer-recommended image processings have not been previously demonstrated, the subjective experience of our radiologists, that the apparent image quality can vary considerably between different algorithms, motivated this study. This article addresses the impact of five such algorithms on the detection of clusters of microcalcifications. A database of unprocessed (raw) images of 200 normal digital mammograms, acquired with the Siemens Novation DR, was collected retrospectively. Realistic simulated microcalcification clusters were inserted in half of the unprocessed images. All unprocessed images were subsequently processed with five manufacturer-recommended image processing algorithms (Agfa Musica 1, IMS Raffaello Mammo 1.2, Sectra Mamea AB Sigmoid, Siemens OPVIEW v2, and Siemens OPVIEW v1). Four breast imaging radiologists were asked to locate and score the clusters in each image on a five point rating scale. The free-response data were analyzed by the jackknife free-response receiver operating characteristic (JAFROC) method and, for comparison, also with the receiver operating characteristic (ROC) method. JAFROC analysis revealed highly significant differences between the image processings (F = 8.51, p < 0.0001), suggesting that image processing strongly impacts the detectability of clusters. Siemens OPVIEW2 and Siemens OPVIEW1 yielded the highest and lowest performances, respectively. ROC analysis of the data also revealed significant differences between the processing but at lower significance (F = 3.47, p = 0.0305) than JAFROC. Both statistical analysis methods revealed that the

  20. Image and Dose Simulation in Support of New Mammography Modalities

    SciTech Connect

    Kuruvilla Verghese

    2002-04-05

    This report summarizes the highlights of the research performed under the 2-year NEER grant from the Department of Energy. The primary outcome of the work was a new Monte Carlo code, MCMIS-DS, for Monte Carlo for Mammography Image Simulation including Differential Sampling. The code was written to generate simulated images and dose distributions from two different new digital x-ray imaging modalities, namely, synchrotron imaging (SI) and a slot geometry digital mammography system called Fisher Senoscan. A differential sampling scheme was added to the code to generate multiple images that included variations in the parameters of the measurement system and the object in a single execution of the code. The code is to serve multiple purposes; (1) to answer questions regarding the contribution of scattered photons to images, (2) for use in design optimization studies, and (3) to do up to second-order perturbation studies to assess the effects of design parameter variations and/or physical parameters of the object (the breast) without having to re-run the code for each set of varied parameters. The accuracy and fidelity of the code were validated by a large variety of benchmark studies using published data and also using experimental results from mammography phantoms on both imaging modalities.

  1. Three-dimensional mammography reconstruction using low-dose projection images

    NASA Astrophysics Data System (ADS)

    Wu, Tao

    A method is described for the reconstruction of three-dimensional distribution of attenuation coefficient of the breast using a limited number of low dose projection images. This method uses the cone beam x-ray geometry, a digital detector and a constrained iterative reconstruction algorithm. The method has been tested on a digital Tomosynthesis mammography system. The total radiation dose to the patient is comparable to that used for one conventional mammogram. The reconstructed image has intrinsically high resolution (˜0.1mm) in two dimensions and lower resolution in the third dimension (˜1mm). Using this method, a breast that is projected into one two-dimensional image in conventional mammography is separated into layers parallel to the two high-resolution dimensions. The thickness of the layer is in the low-resolution dimension. The three-dimensional reconstruction increases the conspicuity of features that is often obscured by overlapping tissues in a single projection. Factors affecting the quality of reconstruction have been investigated by computer simulations. These factors include the scatter, the projection angular range, the shape of the breast and the x-ray energy. Non-uniform distribution of x-ray exposures among projection images and non-uniform-resolution image-acquisition are explored to optimize the image quality within an x-ray dose limit. The method is validated with reconstruction images of mammography phantoms, mastectomy specimens, computer simulations and volunteer patients.

  2. Validation of MTF measurement for digital mammography quality control

    SciTech Connect

    Carton, Ann-Katherine; Vandenbroucke, Dirk; Struye, Luc; Maidment, Andrew D.A.; Kao, Y.-H.; Albert, Michael; Bosmans, Hilde; Marchal, Guy

    2005-06-15

    The modulation transfer function (MTF) describes the spatial resolution properties of imaging systems. In this work, the accuracy of our implementation of the edge method for calculating the presampled MTF was examined. Synthetic edge images with known MTF were used as gold standards for determining the robustness of the edge method. These images simulated realistic data from clinical digital mammography systems, and contained intrinsic system factors that could affect the MTF accuracy, such as noise, scatter, and flat-field nonuniformities. Our algorithm is not influenced by detector dose variations for MTF accuracy up to 1/2 the sampling frequency. We investigated several methods for noise reduction, including truncating the supersampled line spread function (LSF), windowing the LSF, applying a local exponential fit to the LSF, and applying a monotonic constraint to the supersampled edge spread function. Only the monotonic constraint did not introduce a systematic error; the other methods could result in MTF underestimation. Overall, our edge method consistently computed MTFs which were in good agreement with the true MTF. The edge method was then applied to images from a commercial storage-phosphor based digital mammography system. The calculated MTF was affected by the size (sides of 2.5, 5, or 10 cm) and the composition (lead or tungsten) of the edge device. However, the effects on the MTF were observed only with regard to the low frequency drop (LFD). Scatter nonuniformity was dependent on edge size, and could lead to slight underestimation of LFD. Nevertheless, this negative effect could be minimized by using an edge of 5 cm or larger. An edge composed of lead is susceptible to L-fluorescence, which causes overestimation of the LFD. The results of this work are intended to underline the need for clear guidelines if the MTF is to be given a more crucial role in acceptance tests and routine assessment of digital mammography systems: the MTF algorithm and edge

  3. Mammography

    MedlinePlus

    ... is similar to having a conventional film mammogram. Computer-aided detection (CAD) systems search digitized mammographic images for abnormal areas of ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to ...

  4. 75 FR 70011 - Guidance for Industry, Mammography Quality Standards Act Inspectors, and Food and Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... HUMAN SERVICES Food and Drug Administration Guidance for Industry, Mammography Quality Standards Act Inspectors, and Food and Drug Administration Staff; The Mammography Quality Standards Act Final Regulations: Modifications and Additions to Policy Guidance Help System 13; Availability AGENCY: Food and Drug...

  5. Bone mineral imaging using a digital magnification mammography system

    NASA Astrophysics Data System (ADS)

    Toyofuku, Fukai; Tokumori, Kenji; Higashida, Yoshiharu; Arimura, Hidetaka; Morishita, Junji; Ohki, Masafumi

    2008-03-01

    The measurement of bone mineral content is important for diagnosis of demineralization diseases such as osteoporosis. A reliable method of obtaining bone mineral images using a digital magnification mammography system has been developed. The full-field digital phase contrast mammography (PCM) system, which has a molybdenum target of 0.1mm focal spot size, was used with 1.75 x magnification. We have performed several phantom experiments using aluminum step wedges (0.2 mm - 6.0 mm in thickness) and a bone mineral standard phantom composed of calcium carbonate and polyurethane (CaCO 3 concentration: 26.7 - 939.0 mg/cm 3) within a water or Lucite phantom. X-ray spectra on the exposure field are measured using a CdTe detector for evaluation of heel effect. From the equations of x-ray attenuation and the thickness of the subjects, quantitative images of both components were obtained. The quantitative images of the two components were obtained for different tube voltages of 24 kV to 39 kV. The relative accuracy was less than 2.5% for the entire aluminum thickness of 0.5 to 6.0 mm at 5 cm water thickness. Accuracy of bone mineral thickness was within 3.5% for 5cm water phantom. The magnified quantitative images of a hand phantom significantly increased the visibility of fine structures of bones. The digital magnification mammography system is useful not only for measurement of bone mineral content, but also high-resolution quantitative imaging of trabecular structure.

  6. Method for position emission mammography image reconstruction

    DOEpatents

    Smith, Mark Frederick

    2004-10-12

    An image reconstruction method comprising accepting coincidence datat from either a data file or in real time from a pair of detector heads, culling event data that is outside a desired energy range, optionally saving the desired data for each detector position or for each pair of detector pixels on the two detector heads, and then reconstructing the image either by backprojection image reconstruction or by iterative image reconstruction. In the backprojection image reconstruction mode, rays are traced between centers of lines of response (LOR's), counts are then either allocated by nearest pixel interpolation or allocated by an overlap method and then corrected for geometric effects and attenuation and the data file updated. If the iterative image reconstruction option is selected, one implementation is to compute a grid Siddon retracing, and to perform maximum likelihood expectation maiximization (MLEM) computed by either: a) tracing parallel rays between subpixels on opposite detector heads; or b) tracing rays between randomized endpoint locations on opposite detector heads.

  7. Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images

    NASA Astrophysics Data System (ADS)

    Asao, Yasufumi; Hashizume, Yohei; Suita, Takahiro; Nagae, Ken-ichi; Fukutani, Kazuhiko; Sudo, Yoshiaki; Matsushita, Toshikazu; Kobayashi, Shuichi; Tokiwa, Mariko; Yamaga, Iku; Fakhrejahani, Elham; Torii, Masae; Kawashima, Masahiro; Takada, Masahiro; Kanao, Shotaro; Kataoka, Masako; Shiina, Tsuyoshi; Toi, Masakazu

    2016-11-01

    We have constructed a prototype photoacoustic mammography system (PAM-02) capable of simultaneously acquiring photoacoustic (PA) and ultrasound (US) images. Each PA, US, and fused PA/US image can be acquired over a wide area of the breast using the scanning module of a US transducer, a PA detector, and optical prisms. The resolution of the PA images exhibits improvement from 2 to 1 mm compared to images acquired using our previous prototype. The maximum scan area of PAM-02 is 90 mm along the horizontal axis and 150 mm along the vertical axis. In a phantom experiment, the available depth was at least 45 mm. A representative example of the application of the PAM-02 prototype in clinical research at Kyoto University is presented and shows S-factor images, which are considered an approximation parameter related to hemoglobin saturation of tumor-related blood vessels. We confirmed the applicability of the system for anatomical and biological research.

  8. Preliminary results for positron emission mammography: real-time functional breast imaging in a conventional mammography gantry.

    PubMed

    Weinberg, I; Majewski, S; Weisenberger, A; Markowitz, A; Aloj, L; Majewski, L; Danforth, D; Mulshine, J; Cowan, K; Zujewski, J; Chow, C; Jones, E; Chang, V; Berg, W; Frank, J

    1996-07-01

    In order to optimally integrate radiotracer breast imaging within the breast clinic, anatomy and pathology should be easily correlated with functional nuclear medicine breast images. As a first step in the development of a hybrid functional/anatomic breast imaging platform with biopsy capability, a conventional X-ray mammography gantry was modified to image the compressed breast with positron emitters. Phantom studies with the positron emission mammography (PEM) device showed that a 1-cc hot spot could be detected within 5 min. A preliminary clinical trial demonstrated in vivo visualization of primary breast cancer within 4 min. For sites where positron-emitting radionuclides are available, PEM promises to achieve low-cost directed functional examination of breast abnormalities, with the potential for achieving X-ray correlation and image-guided biopsy.

  9. Mammography imaging studies using a laue crystal analyzer

    SciTech Connect

    Chapman, D.; Thomlinson, W.; Arfelli, F. |

    1995-12-31

    Synchrotron based mammography imaging experiments have been performed with monochromatic x-rays in which a laue crystal placed after the object being imaged has been used to split the beam transmitted through the object. The X27C R&D beamline at the National Synchrotron Light Source was used with the white beam monochromatized by a double crystal Si(111) monochromator tuned to 18 keV. The imaging beam was a thin horizontal line approximately 0.5 mm high by 100 mm wide. Images were acquired in line scan mode with the phantom and detector both scanned together. The detector for these experiments was an image plate. A thin Si(l11) laue analyzer was used to diffract a portion of the beam transmitted through the phantom before the image plate detector. This ``scatter free`` diffracted beam was then recorded on the image plate during the phantom scan. Since the thin laue crystal also transmitted a fraction of the incident beam, this beam was also simultaneously recorded on the image plate. The imaging results are interpreted in terms of an x-ray schliere or refractive index inhomogeneities. The analyzer images taken at various points in the rocking curve will be presented.

  10. Comparative Study Of Image Enhancement Algorithms For Digital And Film Mammography

    SciTech Connect

    Delgado-Gonzalez, A.

    2008-08-11

    Here we discuss the application of edge enhancement algorithms on images obtained with a Mammography System which has a Selenium Detector and on the other hand, on images obtained from digitized film mammography. Comparative analysis of such images includes the study of technical aspects of image acquisition, storage, compression and display. A protocol for a local database has been created as a result of this study.

  11. [Full-field digital mammography].

    PubMed

    Bick, U

    2000-12-01

    Due to the extremely high image quality requirements in mammography, there has for a long time been no adequate digital alternative to conventional film-screen mammography. The longest experience so far exists with digital mammography on the basis of storage phosphor (CR) systems. However, at normal dose this technique has a relatively poor signal-to-noise ratio and has not found general acceptance. Recently three novel systems for digital mammography by the companies Fischer (slot-scan detector), Trex (CCD-array), and GE (amorphous silicon detector) have been introduced and are currently under clinical investigation. The main advantage of digital mammography is the linear relationship between dose and detector signal with the possibility of a tailored optimization of image contrast. Other advantages include digital image storage, telemammography, and computer-assisted diagnosis.

  12. [Full-field digital mammography with amorphous silicon-based flat- panel detector: physical imaging characteristics and signal detection].

    PubMed

    Ideguchi, Tadamitsu; Higashida, Yoshiharu; Himuro, Kazuhiko; Ohki, Masafumi; Nakamura, Satoru; Yoshida, Akira; Takagi, Rie; Hatano, Hirohide; Kuwahara, Rie; Toyonaga, Makiko; Tanaka, Isamu; Toyofuku, Fukai

    2004-03-01

    The physical characteristics of a clinical amorphous silicon-based flat-panel imager for full-field digital mammography were investigated. Pre-sampled modulation transfer functions (MTF) were measured by using a slit method. Noise power spectra were determined for different input exposures by fast Fourier transform. The MTFs of full-field digital mammography systems showed significantly higher values than those of the computed radiography (CR) system. The full-field digital mammography system showed a lower noise level than that of the CR system under the same exposure conditions. Contrast detail analysis has been performed to compare the detectability of the full-field digital mammography system with that of the screen-film (Min-R 2000/Min-R 2000) system. The average contrast-detail curves of digital and film images were obtained from the results of observation. Image quality figures (IQF) were also calculated from the individual observer performance tests. The results indicated that the digital contrast-detail curves and IQF, on average, are superior to those of the screen-film system.

  13. An alternative method for noise analysis using pixel variance as part of quality control procedures on digital mammography systems

    NASA Astrophysics Data System (ADS)

    Bouwman, R.; Young, K.; Lazzari, B.; Ravaglia, V.; Broeders, M.; van Engen, R.

    2009-11-01

    According to the European Guidelines for quality assured breast cancer screening and diagnosis, noise analysis is one of the measurements that needs to be performed as part of quality control procedures on digital mammography systems. However, the method recommended in the European Guidelines does not discriminate sufficiently between systems with and without additional noise besides quantum noise. This paper attempts to give an alternative and relatively simple method for noise analysis which can divide noise into electronic noise, structured noise and quantum noise. Quantum noise needs to be the dominant noise source in clinical images for optimal performance of a digital mammography system, and therefore the amount of electronic and structured noise should be minimal. For several digital mammography systems, the noise was separated into components based on the measured pixel value, standard deviation (SD) of the image and the detector entrance dose. The results showed that differences between systems exist. Our findings confirm that the proposed method is able to discriminate systems based on their noise performance and is able to detect possible quality problems. Therefore, we suggest to replace the current method for noise analysis as described in the European Guidelines by the alternative method described in this paper.

  14. Preoperative digital mammography imaging in conservative mastectomy and immediate reconstruction

    PubMed Central

    Angrigiani, Claudio; Hammond, Dennis; Nava, Maurizio; Gonzalez, Eduardo; Rostagno, Roman; Gercovich, Gustavo

    2016-01-01

    Background Digital mammography clearly distinguishes gland tissue density from the overlying non-glandular breast tissue coverage, which corresponds to the existing tissue between the skin and the Cooper’s ligaments surrounding the gland (i.e., dermis and subcutaneous fat). Preoperative digital imaging can determine the thickness of this breast tissue coverage, thus facilitating planning of the most adequate surgical techniques and reconstructive procedures for each case. Methods This study aimed to describe the results of a retrospective study of 352 digital mammograms in 176 patients with different breast volumes who underwent preoperative conservative mastectomies. The breast tissue coverage thickness and its relationship with the breast volume were evaluated. Results The breast tissue coverage thickness ranged from 0.233 to 4.423 cm, with a mean value of 1.952 cm. A comparison of tissue coverage and breast volume revealed a non-direct relationship between these factors. Conclusions Preoperative planning should not depend only on breast volume. Flap evaluations based on preoperative imaging measurements might be helpful when planning a conservative mastectomy. Accordingly, we propose a breast tissue coverage classification (BTCC). PMID:26855903

  15. Dosimetry and kVp standardization for quality assurance of mammography

    NASA Astrophysics Data System (ADS)

    Chu, Chien-Hau; Yuan, Ming-Chen; Huang, Wen-Sheng; Hsieh, Bor-Tsung

    2014-11-01

    Breast cancer mortality rates were significantly reduced in Taiwan after achieving early-stage monitoring with mammography screening. This study establishes an appropriate and traceable calibration infrastructure, which offers calibration services for mammography X-ray quality assurance instrumentation, which is performed clinically on a regular basis. The entrance air kerma, HVL, and kVp of mammography equipment with five different target/filter combinations can be taken as adequate indicators for the level of average glandular dose (AGD). The primary dose standard in mammography uses a free-air ionization chamber to estimate the rate of air kerma. Several correction factors were determined by Monte Carlo simulations and experiments. A secondary kVp standard in mammography is in accordance with the IEC 61676 recommendations. The calibration system of kVp meter uses a high-voltage divider, which is traceable to ITRI primary standard in Taiwan. Dose and kVp verifications were conducted by mammography instruments, which were previously calibrated by NIST and PTB. The evaluation results indicate that the capabilities of this irradiation system met the ISO 4037-1 requirements. The expanded uncertainties (k=2) were 1.03% and 1.6% when the mammography X-ray air kerma rate and kVp meter calibration factors were evaluated using ISO GUM. Experimental verification and a comparison with NIST using transfer ionization chambers yielded differences in calibration factors. Comparison with the PTB using kVp meter indicated a less than 1% difference. The results showed that dose and kVp standards were in reasonable agreement with standard uncertainty. The low uncertainties associated with the obtained results in this work show that the standardization employed can be accurately used for calibration of instrument in mammography in Taiwan.

  16. FDA Certified Mammography Facilities

    MedlinePlus

    ... Products Radiation-Emitting Products Home Radiation-Emitting Products Mammography Quality Standards Act and Program Consumer Information (MQSA) ... it Email Print This list of FDA Certified Mammography Facilities is updated weekly. If you click on ...

  17. Imaging performance of a clinical selenium flat-panel detector for advanced applications in full-field digital mammography

    NASA Astrophysics Data System (ADS)

    Loustauneau, Vincent; Bissonnette, Michel; Cadieux, Sebastien; Hansroul, Marc; Masson, E.; Savard, Serge; Polischuk, Brad T.; Lehtimauki, Mari J.

    2003-06-01

    The advent of digital detectors will enable several advanced imaging applications to be used in the fight against breast cancer. For example, dynamic imaging applications such as tomosynthesis, contrast enhanced and dual energy mammography have demonstrated promising results. In this paper, we will assess the suitability of this detector for these advanced applications. MTF and DQE measurements were performed on a selenium FFDM detector to assess image quality. Ghosting properties of a digital detector are also an important factor, since it can strongly degrade image quality. In this paper, we will also report on the ghosting characteristics of the selenium detector, using typical exposures envisioned to be used in tomosynthesis exams. The physical mechanisms that create ghost images will be discussed and will be quantified.

  18. [A program devoted to dose and quality in mammography (DQM)].

    PubMed

    Rimondi, O; Gambaccini, M; Indovina, P; Candini, G

    1986-03-01

    Radiological units present different exposure values, (even by a factor 100), for the same radiological examination unless special programs are performed in order to optimize the examinations and to reduce variations. The program named DQM, mentioned in the Circular n. 62 of the Ministry of Health, is planned for mammographic optimization. The steps of the programme are: a) collection of the working parameters in each unit, b) dose and image quality evaluation, c) communication of the results and suggestion for corrective actions. The practical aspects of the program and the results of measurements in 65 mammographic units are presented and discussed. The importance of the Quality Assurance, performed by radiologists and physicists is underlined.

  19. Task-based strategy for optimized contrast enhanced breast imaging: Analysis of six imaging techniques for mammography and tomosynthesis

    SciTech Connect

    Ikejimba, Lynda C.; Kiarashi, Nooshin; Ghate, Sujata V.; Samei, Ehsan; Lo, Joseph Y.

    2014-06-15

    Purpose: The use of contrast agents in breast imaging has the capability of enhancing nodule detectability and providing physiological information. Accordingly, there has been a growing trend toward using iodine as a contrast medium in digital mammography (DM) and digital breast tomosynthesis (DBT). Widespread use raises concerns about the best way to use iodine in DM and DBT, and thus a comparison is necessary to evaluate typical iodine-enhanced imaging methods. This study used a task-based observer model to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: unsubtracted mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Methods: Imaging performance was characterized using a detectability index d{sup ′}, derived from the system task transfer function (TTF), an imaging task, iodine signal difference, and the noise power spectrum (NPS). The task modeled a 10 mm diameter lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d{sup ′} was generated as a function of dose and iodine concentration. Results: For all iodine concentrations and dose, temporal subtraction techniques for mammography and tomosynthesis yielded the highest d{sup ′}, while dual energy techniques for both modalities demonstrated the next best performance. Unsubtracted imaging resulted in the lowest d{sup ′} values for both modalities, with unsubtracted mammography performing the worst out of all six paradigms. Conclusions: At any dose, temporal subtraction imaging provides the greatest detectability, with temporally subtracted DBT performing the highest. The authors attribute the successful performance to excellent cancellation of

  20. Task-based strategy for optimized contrast enhanced breast imaging: Analysis of six imaging techniques for mammography and tomosynthesis

    PubMed Central

    Ikejimba, Lynda C.; Kiarashi, Nooshin; Ghate, Sujata V.; Samei, Ehsan; Lo, Joseph Y.

    2014-01-01

    Purpose: The use of contrast agents in breast imaging has the capability of enhancing nodule detectability and providing physiological information. Accordingly, there has been a growing trend toward using iodine as a contrast medium in digital mammography (DM) and digital breast tomosynthesis (DBT). Widespread use raises concerns about the best way to use iodine in DM and DBT, and thus a comparison is necessary to evaluate typical iodine-enhanced imaging methods. This study used a task-based observer model to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: unsubtracted mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Methods: Imaging performance was characterized using a detectability index d′, derived from the system task transfer function (TTF), an imaging task, iodine signal difference, and the noise power spectrum (NPS). The task modeled a 10 mm diameter lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d′ was generated as a function of dose and iodine concentration. Results: For all iodine concentrations and dose, temporal subtraction techniques for mammography and tomosynthesis yielded the highest d′, while dual energy techniques for both modalities demonstrated the next best performance. Unsubtracted imaging resulted in the lowest d′ values for both modalities, with unsubtracted mammography performing the worst out of all six paradigms. Conclusions: At any dose, temporal subtraction imaging provides the greatest detectability, with temporally subtracted DBT performing the highest. The authors attribute the successful performance to excellent cancellation of inplane structures and

  1. A Novel Hand-Held Optical Imager with Real-Time Coregistration Facilities Toward Diagnostic Mammography

    DTIC Science & Technology

    2011-01-01

    1-0004 TITLE: A Novel Hand-Held Optical Imager with Real-Time Coregistration Facilities toward Diagnostic Mammography PRINCIPAL...Summary 3. DATES COVERED (From - To) 1 Jan 2010 – 31 Dec 2010 4. TITLE AND SUBTITLE A Novel Hand-held Optical Imager with Real-Time Coregistration ...translation of a hand-held optical imager with automated coregistration facilities toward 3D tomography. Studies were performed in vivo with healthy female

  2. Microcalcification detection using cone-beam CT mammography with a flat-panel imager.

    PubMed

    Gong, Xing; Vedula, Aruna A; Glick, Stephen J

    2004-06-07

    The purpose of this study was to investigate microcalcification detectability using CT mammography with a flat-panel imager. To achieve this, a computer simulation was developed to model an amorphous-silicon, CsI based flat-panel imager system using a linear cascaded model. The breast was modelled as a hemi-ellipsoid shape with composition of 50% adipose and 50% glandular tissue. Microcalcifications were modelled as small spheres having a composition of calcium carbonate. The results show that with a mean glandular dose equivalent to that typically used in two-view screening mammography, CT mammography with a flat-panel detector is capable of providing images where most microcalcifications are detectable. A receiver operating characteristic (ROC) study was conducted by five physicist observers viewing simulated CT mammography reconstructions. The results suggest that the microcalcification with its diameter equal to or greater than 0.175 mm can be detected with an average area under the ROC curve (AUC) greater than 0.95 using 0.1 or 0.2 mm pixelized detectors. The results also indicate that the optimal pixel size of the detector is around 0.2 mm for microcalcification detection, based on the trade-off between detectability of microcalcifications and the time required for data acquisition and reconstruction.

  3. The relative biological effectiveness of low-dose mammography quality X rays in the human breast MCF-10A cell line.

    PubMed

    Mills, Caitlin E; Thome, Christopher; Koff, David; Andrews, David W; Boreham, Douglas R

    2015-01-01

    Mammography is used to screen a large fraction of the population for breast cancer, and mammography quality X rays are speculated to be more damaging than the higher energy X rays used for other diagnostic procedures. The radiation dose delivered to breast cells as a result of these screening exposures may be a concern. The purpose of this current study was to determine the relative biological effectiveness (RBE) of low-energy mammography X rays for radiation-induced DNA double-strand breaks evaluated using a highly sensitive automated 53BP1 assay. Automation of the 53BP1 assay enabled the quantification and analysis of meaningful image-based features, including foci counting, within the cell nuclei. Nontumorigenic, human breast epithelial MCF-10A cells were irradiated in the low-dose range with approximately 3-30 mGy of 29 kVp mammography X rays or (137)Cs (662 keV) gamma rays. The induction and resolution of the 53BP1 foci did not differ significantly between exposures to (137)Cs gamma rays and 29 kVp X rays. The RBE was calculated to be 1.1 with a standard deviation of 0.2 for the initial number of radiation-induced double-strand breaks. The radiation dose from a single mammogram did not yield a significant change in the number of detectable foci. However, analysis of additional features revealed subtle differences in the distribution of 53BP1 throughout the nuclei after exposure to the different radiation qualities. A single mammogram was sufficient to alter the distribution of 53BP1 within the nuclear area, but not into discrete foci, while a dose-matched gamma exposure was not sufficient to alter the distribution of 53BP1. Our results indicate that exposure to clinically relevant doses of low-energy mammography quality X rays does not induce more DNA double-strand breaks than exposure to higher energy photons.

  4. Evaluation of edge effect due to phase contrast imaging for mammography.

    PubMed

    Matsuo, Satoru; Katafuchi, Tetsuro; Tohyama, Keiko; Morishita, Junji; Yamada, Katsuhiko; Fujita, Hiroshi

    2005-08-01

    It is well-known that the edge effect produced by phase contrast imaging results in the edge enhancement of x-ray images and thereby sharpens those images. It has recently been reported that phase contrast imaging using practical x-ray tubes with small focal spots has improved image sharpness as observed in the phase contrast imaging with x-ray from synchrotron radiation or micro-focus x-ray tubes. In this study, we conducted the phase contrast imaging of a plastic fiber and plant seeds using a customized mammography equipment with a 0.1 mm focal spot, and the improvement of image sharpness was evaluated in terms of spatial frequency response of the images. We observed that the image contrast of the plastic fiber was increased by edge enhancement, and, as predicted elsewhere, spectral analysis revealed that as the spatial frequencies of the x-ray images increased, so did the sharpness gained through phase contrast imaging. Thus, phase contrast imaging using a practical molybdenum anode tube with a 0.1 mm-focal spot would benefit mammography, in which the morphological detectability of small species such as microcalcifications is of great concern. And detectability of tumor-surrounded glandular tissues in dense breast would be also improved by the phase contrast imaging.

  5. Reproducing 2D breast mammography images with 3D printed phantoms

    NASA Astrophysics Data System (ADS)

    Clark, Matthew; Ghammraoui, Bahaa; Badal, Andreu

    2016-03-01

    Mammography is currently the standard imaging modality used to screen women for breast abnormalities and, as a result, it is a tool of great importance for the early detection of breast cancer. Physical phantoms are commonly used as surrogates of breast tissue to evaluate some aspects of the performance of mammography systems. However, most phantoms do not reproduce the anatomic heterogeneity of real breasts. New fabrication technologies, such as 3D printing, have created the opportunity to build more complex, anatomically realistic breast phantoms that could potentially assist in the evaluation of mammography systems. The primary objective of this work is to present a simple, easily reproducible methodology to design and print 3D objects that replicate the attenuation profile observed in real 2D mammograms. The secondary objective is to evaluate the capabilities and limitations of the competing 3D printing technologies, and characterize the x-ray properties of the different materials they use. Printable phantoms can be created using the open-source code introduced in this work, which processes a raw mammography image to estimate the amount of x-ray attenuation at each pixel, and outputs a triangle mesh object that encodes the observed attenuation map. The conversion from the observed pixel gray value to a column of printed material with equivalent attenuation requires certain assumptions and knowledge of multiple imaging system parameters, such as x-ray energy spectrum, source-to-object distance, compressed breast thickness, and average breast material attenuation. A detailed description of the new software, a characterization of the printed materials using x-ray spectroscopy, and an evaluation of the realism of the sample printed phantoms are presented.

  6. The effect of image processing on the detection of cancers in digital mammography.

    PubMed

    Warren, Lucy M; Given-Wilson, Rosalind M; Wallis, Matthew G; Cooke, Julie; Halling-Brown, Mark D; Mackenzie, Alistair; Chakraborty, Dev P; Bosmans, Hilde; Dance, David R; Young, Kenneth C

    2014-08-01

    OBJECTIVE. The objective of our study was to investigate the effect of image processing on the detection of cancers in digital mammography images. MATERIALS AND METHODS. Two hundred seventy pairs of breast images (both breasts, one view) were collected from eight systems using Hologic amorphous selenium detectors: 80 image pairs showed breasts containing subtle malignant masses; 30 image pairs, biopsy-proven benign lesions; 80 image pairs, simulated calcification clusters; and 80 image pairs, no cancer (normal). The 270 image pairs were processed with three types of image processing: standard (full enhancement), low contrast (intermediate enhancement), and pseudo-film-screen (no enhancement). Seven experienced observers inspected the images, locating and rating regions they suspected to be cancer for likelihood of malignancy. The results were analyzed using a jackknife-alternative free-response receiver operating characteristic (JAFROC) analysis. RESULTS. The detection of calcification clusters was significantly affected by the type of image processing: The JAFROC figure of merit (FOM) decreased from 0.65 with standard image processing to 0.63 with low-contrast image processing (p = 0.04) and from 0.65 with standard image processing to 0.61 with film-screen image processing (p = 0.0005). The detection of noncalcification cancers was not significantly different among the image-processing types investigated (p > 0.40). CONCLUSION. These results suggest that image processing has a significant impact on the detection of calcification clusters in digital mammography. For the three image-processing versions and the system investigated, standard image processing was optimal for the detection of calcification clusters. The effect on cancer detection should be considered when selecting the type of image processing in the future.

  7. Mammography accreditation program

    SciTech Connect

    Wilcox, P.

    1993-12-31

    In the mid-1980`s, the movement toward the use of dedicated mammography equipment provided significant improvement in breast cancer detection. However, several studies demonstrated that this change was not sufficient to ensure optimal image quality at a low radiation dose. In particular, the 1985 Nationwide Evaluation of X-ray Trends identified the wide variations in image quality and radiation dose, even from dedicated units. During this time period, the American Cancer Society (ACS) launched its Breast Cancer Awareness Screening Campaign. However, there were concerns about the ability of radiology to respond to the increased demand for optimal screening examinations that would result from the ACS program. To respond to these concerns, the ACS and the American College of Radiology (ACR) established a joint committee on mammography screening in 1986. After much discussion, it was decided to use the ACR Diagnostic Practice Accreditation Program as a model for the development of a mammography accreditation program. However, some constraints were required in order to make the program meet the needs of the ACS. This voluntary, peer review program had to be timely and cost effective. It was determined that the best way to address these needs would be to conduct the program by mail. Finally, by placing emphasis on the educational nature of the program, it would provide an even greater opportunity for improving mammographic quality. The result of this effort was that, almost six years ago, in May 1987, the pilot study for the ACR Mammography Accreditation Program (MAP) began, and in August of that year, the first applications were received. In November 1987, the first 3-year accreditation certificates were awarded.

  8. Interobserver agreement and performance score comparison in quality control using a breast phantom: screen-film mammography vs computed radiography.

    PubMed

    Shimamoto, Kazuhiro; Ikeda, Mitsuru; Satake, Hiroko; Ishigaki, Satoko; Sawaki, Akiko; Ishigaki, Takeo

    2002-09-01

    Our objective was to evaluate interobserver agreement and to compare the performance score in quality control of screen-film mammography and computed radiography (CR) using a breast phantom. Eleven radiologists interpreted a breast phantom image (CIRS model X) by four viewing methods: (a) original screen-film; (b) soft-copy reading of the digitized film image; (c) hard-copy reading of CR using an imaging plate; and (d) soft-copy reading of CR. For the soft-copy reading, a 17-in. CRT monitor (1024x1536x8 bits) was used. The phantom image was evaluated using a scoring system outlined in the instruction manual, and observers judged each object using a three-point rating scale: (a) clearly seen; (b) barely seen; and (c) not seen. For statistical analysis, the kappa statistic was employed. For "mass" depiction, interobserver agreement using CR was significantly lower than when using screen-film ( p<0.05). There was no significant difference in the kappa value for detecting "microcalcification"; however, the performance score of "microcalcification" on CR hard-copy was significantly lower than on the other three viewing methods ( p<0.05). Viewing methods (film or CR, soft-copy or hard-copy) could affect how the phantom image is judged. Paying special attention to viewing conditions is recommended for quality control of CR mammograms.

  9. Complete internal audit of a mammography service in a reference institution for breast imaging*

    PubMed Central

    Badan, Gustavo Machado; Roveda Júnior, Décio; Ferreira, Carlos Alberto Pecci; de Noronha Junior, Ozeas Alves

    2014-01-01

    Objective Undertaking of a complete audit of the service of mammography, as recommended by BI-RADS®, in a private reference institution for breast cancer diagnosis in the city of São Paulo, SP, Brazil, and comparison of results with those recommended by the literature. Materials and Methods Retrospective, analytical and cross-sectional study including 8,000 patients submitted to mammography in the period between April 2010 and March 2011, whose results were subjected to an internal audit. The patients were followed-up until December 2012. Results The radiological classification of 7,249 screening mammograms, according to BI-RADS, was the following: category 0 (1.43%), 1 (7.82%), 2 (80.76%), 3 (8.35%), 4 (1.46%), 5 (0.15%) and 6 (0.03%). The breast cancer detection ratio was 4.8 cases per 1,000 mammograms. Ductal carcinoma in situ was found in 22.8% of cases. Positive predictive values for categories 3, 4 and 5 were 1.3%, 41.3% and 100%, respectively. In the present study, the sensitivity of the method was 97.1% and specificity, 97.4%. Conclusion The complete internal audit of a service of mammography is essential to evaluate the quality of such service, which reflects on an early breast cancer detection and reduction of mortality rates. PMID:25741052

  10. Comparison of software and human observers in reading images of the CDMAM test object to assess digital mammography systems

    NASA Astrophysics Data System (ADS)

    Young, Kenneth C.; Cook, James J. H.; Oduko, Jennifer M.; Bosmans, Hilde

    2006-03-01

    European Guidelines for quality control in digital mammography specify minimum and achievable standards of image quality in terms of threshold contrast, based on readings of images of the CDMAM test object by human observers. However this is time-consuming and has large inter-observer error. To overcome these problems a software program (CDCOM) is available to automatically read CDMAM images, but the optimal method of interpreting the output is not defined. This study evaluates methods of determining threshold contrast from the program, and compares these to human readings for a variety of mammography systems. The methods considered are (A) simple thresholding (B) psychometric curve fitting (C) smoothing and interpolation and (D) smoothing and psychometric curve fitting. Each method leads to similar threshold contrasts but with different reproducibility. Method (A) had relatively poor reproducibility with a standard error in threshold contrast of 18.1 +/- 0.7%. This was reduced to 8.4% by using a contrast-detail curve fitting procedure. Method (D) had the best reproducibility with an error of 6.7%, reducing to 5.1% with curve fitting. A panel of 3 human observers had an error of 4.4% reduced to 2.9 % by curve fitting. All automatic methods led to threshold contrasts that were lower than for humans. The ratio of human to program threshold contrasts varied with detail diameter and was 1.50 +/- .04 (sem) at 0.1mm and 1.82 +/- .06 at 0.25mm for method (D). There were good correlations between the threshold contrast determined by humans and the automated methods.

  11. Development of Digital Steroscopic Imaging Technique in Mammography

    DTIC Science & Technology

    2001-05-01

    imaging technique in which the phantom was shifted instead of the focal spot for acquisition of the left-eye and right-eye images. In a preliminary observer... Phantoms (C) Phantom Evaluation of Full Field Steremammography (D) Evaluation of the Effect of Zooming on Depth Measurements in Digital...interpretation by radiologists and reduce unnecessary biopsies. To accomplish this goal, we first performed phantom studies to develop an optimal imaging

  12. Scatter free imaging for the improvement of breast cancer detection in mammography

    NASA Astrophysics Data System (ADS)

    Green, F. H.; Veale, M. C.; Wilson, M. D.; Seller, P.; Scuffham, J.; Pani, S.

    2016-10-01

    In mammography, the reduction of scattered x-rays is vital due to the low contrast or small dimension of the details that are searched for. The typical method of doing so in current conventional mammography is the anti-scatter grid. The disadvantage of this method is the absorption of a proportion of the primary beam and therefore an increase in dose is required to compensate for the loss of counts. An alternative method is proposed, using quasi-monochromatic beams and a pixellated spectroscopic detector. As Compton-scattered x-rays lose energy in the scattering process, they are detected at a lower energy in the spectrum. Therefore the spectrum can be windowed around the monochromatic energy peak, removing the scattered x-rays from the image. The work presented here shows contrast improvement of up to 50% and contrast to noise ratio improvements of around 20% for scatter free imaging in comparison to full spectrum imaging. Contrast improvements of around 45% were found when comparing scatter free images to conventional polychromatic imaging for both the low contrast test object and the Rachel anthropomorphic breast phantom.

  13. Computer-aided diagnostics of screening mammography using content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Deserno, Thomas M.; Soiron, Michael; de Oliveira, Júlia E. E.; de A. Araújo, Arnaldo

    2012-03-01

    Breast cancer is one of the main causes of death among women in occidental countries. In the last years, screening mammography has been established worldwide for early detection of breast cancer, and computer-aided diagnostics (CAD) is being developed to assist physicians reading mammograms. A promising method for CAD is content-based image retrieval (CBIR). Recently, we have developed a classification scheme of suspicious tissue pattern based on the support vector machine (SVM). In this paper, we continue moving towards automatic CAD of screening mammography. The experiments are based on in total 10,509 radiographs that have been collected from different sources. From this, 3,375 images are provided with one and 430 radiographs with more than one chain code annotation of cancerous regions. In different experiments, this data is divided into 12 and 20 classes, distinguishing between four categories of tissue density, three categories of pathology and in the 20 class problem two categories of different types of lesions. Balancing the number of images in each class yields 233 and 45 images remaining in each of the 12 and 20 classes, respectively. Using a two-dimensional principal component analysis, features are extracted from small patches of 128 x 128 pixels and classified by means of a SVM. Overall, the accuracy of the raw classification was 61.6 % and 52.1 % for the 12 and the 20 class problem, respectively. The confusion matrices are assessed for detailed analysis. Furthermore, an implementation of a SVM-based CBIR system for CADx in screening mammography is presented. In conclusion, with a smarter patch extraction, the CBIR approach might reach precision rates that are helpful for the physicians. This, however, needs more comprehensive evaluation on clinical data.

  14. Digital Mammography with Storage Phosphors

    DTIC Science & Technology

    1993-12-31

    of the data). Phanto imag Image quality of a mammographic unit is often checked with phantoms simulating a breast with the three major disease ...1981; 138:219-22. 28. Andersson I, Andren L, HildelU J, Linell F, Ljungqvist U, Pettersson H: Breast cancer screening with mammography. Radiology...breast scanner (CT/M) in diagnosis of breast diseases . Radiology 1979; 132:647-52. 47. Gisvold JJ,Karsell PR, Reese DF: Computerized tomographic

  15. Performance evaluation of image processing algorithms in digital mammography

    NASA Astrophysics Data System (ADS)

    Zanca, Federica; Van Ongeval, Chantal; Jacobs, Jurgen; Pauwels, Herman; Marchal, Guy; Bosmans, Hilde

    2008-03-01

    The purpose of the study is to evaluate the performance of different image processing algorithms in terms of representation of microcalcification clusters in digital mammograms. Clusters were simulated in clinical raw ("for processing") images. The entire dataset of images consisted of 200 normal mammograms, selected out of our clinical routine cases and acquired with a Siemens Novation DR system. In 100 of the normal images a total of 142 clusters were simulated; the remaining 100 normal mammograms served as true negative input cases. Both abnormal and normal images were processed with 5 commercially available processing algorithms: Siemens OpView1 and Siemens OpView2, Agfa Musica1, Sectra Mamea AB Sigmoid and IMS Raffaello Mammo 1.2. Five observers were asked to locate and score the cluster(s) in each image, by means of dedicated software tool. Observer performance was assessed using the JAFROC Figure of Merit. FROC curves, fitted using the IDCA method, have also been calculated. JAFROC analysis revealed significant differences among the image processing algorithms in the detection of microcalcifications clusters (p=0.0000369). Calculated average Figures of Merit are: 0.758 for Siemens OpView2, 0.747 for IMS Processing 1.2, 0.736 for Agfa Musica1 processing, 0.706 for Sectra Mamea AB Sigmoid processing and 0.703 for Siemens OpView1. This study is a first step towards a quantitative assessment of image processing in terms of cluster detection in clinical mammograms. Although we showed a significant difference among the image processing algorithms, this method does not on its own allow for a global performance ranking of the investigated algorithms.

  16. Optical mammography combined with fluorescence imaging: lesion detection using scatterplots

    PubMed Central

    Leproux, Anaïs; van der Voort, Marjolein; van der Mark, Martin B.; Harbers, Rik; van de Ven, Stephanie M. W. Y.; van Leeuwen, Ton G.

    2011-01-01

    Using scatterplots of 2 or 3 parameters, diffuse optical tomography and fluorescence imaging are combined to improve detectability of breast lesions. Small or low contrast phantom-lesions that were missed in the optical and fluorescence images were detected in the scatterplots. In patient measurements, all tumors were visible and easily differentiated from artifacts and areolas in the scatterplots. The different rate of intake and wash out of the fluorescent contrast agent in the healthy versus malignant tissues was also observed in the scatterplot: this information can be used to discriminate malignant lesion from normal structures. PMID:21483622

  17. Automated Spot Mammography for Improved Imaging of Dense Breasts

    DTIC Science & Technology

    2004-10-01

    Develop breast phantoms ................................................... 20 G) Task 7: Explore possible advantages of using stereo-spot mammo...performed an experiment in which we took full-field and stereo spot collimated images of a custom-made stereoscopic breast phantom (CIRS, Inc...didn’t receive a modular breast phantom from the manufacturer that came even close to meeting our design specifications until very late in the project

  18. Experience in reading digital images may decrease observer accuracy in mammography

    NASA Astrophysics Data System (ADS)

    Rawashdeh, Mohammad A.; Lewis, Sarah J.; Lee, Warwick; Mello-Thoms, Claudia; Reed, Warren M.; McEntee, Mark; Tapia, Kriscia; Brennan, Patrick C.

    2015-03-01

    Rationale and Objectives: To identify parameters linked to higher levels of performance in screening mammography. In particular we explored whether experience in reading digital cases enhances radiologists' performance. Methods: A total of 60 cases were presented to the readers, of which 20 contained cancers and 40 showed no abnormality. Each case comprised of four images and 129 breast readers participated in the study. Each reader was asked to identify and locate any malignancies using a 1-5 confidence scale. All images were displayed using 5MP monitors, supported by radiology workstations with full image manipulation capabilities. A jack-knife free-response receiver operating characteristic, figure of merit (JAFROC, FOM) methodology was employed to assess reader performance. Details were obtained from each reader regarding their experience, qualifications and breast reading activities. Spearman and Mann Whitney U techniques were used for statistical analysis. Results: Higher performance was positively related to numbers of years professionally qualified (r= 0.18; P<0.05), number of years reading breast images (r= 0.24; P<0.01), number of mammography images read per year (r= 0.28; P<0.001) and number of hours reading mammographic images per week (r= 0.19; P<0.04). Unexpectedly, higher performance was inversely linked to previous experience with digital images (r= - 0.17; p<0.05) and further analysis, demonstrated that this finding was due to changes in specificity. Conclusion: This study suggests suggestion that readers with experience in digital images reporting may exhibit a reduced ability to correctly identify normal appearances requires further investigation. Higher performance is linked to number of cases read per year.

  19. Predicting diagnostic error in radiology via eye-tracking and image analytics: Preliminary investigation in mammography

    SciTech Connect

    Voisin, Sophie; Tourassi, Georgia D.; Pinto, Frank; Morin-Ducote, Garnetta; Hudson, Kathleen B.

    2013-10-15

    Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists’ gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels.Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from four Radiology residents and two breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADS images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated.Results: Machine learning can be used to predict diagnostic error by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model [area under the ROC curve (AUC) = 0.792 ± 0.030]. Personalized user modeling was far more accurate for the more experienced readers (AUC = 0.837 ± 0.029) than for the less experienced ones (AUC = 0.667 ± 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features.Conclusions: Diagnostic errors in mammography can be predicted to a good extent by leveraging the radiologists’ gaze behavior and image content.

  20. Predicting diagnostic error in Radiology via eye-tracking and image analytics: Application in mammography

    SciTech Connect

    Voisin, Sophie; Pinto, Frank M; Morin-Ducote, Garnetta; Hudson, Kathy; Tourassi, Georgia

    2013-01-01

    Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels. Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from 4 Radiology residents and 2 breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADs images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated. Results: Diagnostic error can be predicted reliably by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model (AUC=0.79). Personalized user modeling was far more accurate for the more experienced readers (average AUC of 0.837 0.029) than for the less experienced ones (average AUC of 0.667 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features. Conclusions: Diagnostic errors in mammography can be predicted reliably by leveraging the radiologists gaze behavior and image content.

  1. Multimodal hard X-ray imaging of a mammography phantom at a compact synchrotron light source.

    PubMed

    Schleede, Simone; Bech, Martin; Achterhold, Klaus; Potdevin, Guillaume; Gifford, Martin; Loewen, Rod; Limborg, Cecile; Ruth, Ronald; Pfeiffer, Franz

    2012-07-01

    The Compact Light Source is a miniature synchrotron producing X-rays at the interaction point of a counter-propagating laser pulse and electron bunch through the process of inverse Compton scattering. The small transverse size of the luminous region yields a highly coherent beam with an angular divergence of a few milliradians. The intrinsic monochromaticity and coherence of the produced X-rays can be exploited in high-sensitivity differential phase-contrast imaging with a grating-based interferometer. Here, the first multimodal X-ray imaging experiments at the Compact Light Source at a clinically compatible X-ray energy of 21 keV are reported. Dose-compatible measurements of a mammography phantom clearly demonstrate an increase in contrast attainable through differential phase and dark-field imaging over conventional attenuation-based projections.

  2. Effect of image processing version on detection of non-calcification cancers in 2D digital mammography imaging

    NASA Astrophysics Data System (ADS)

    Warren, L. M.; Cooke, J.; Given-Wilson, R. M.; Wallis, M. G.; Halling-Brown, M.; Mackenzie, A.; Chakraborty, D. P.; Bosmans, H.; Dance, D. R.; Young, K. C.

    2013-03-01

    Image processing (IP) is the last step in the digital mammography imaging chain before interpretation by a radiologist. Each manufacturer has their own IP algorithm(s) and the appearance of an image after IP can vary greatly depending upon the algorithm and version used. It is unclear whether these differences can affect cancer detection. This work investigates the effect of IP on the detection of non-calcification cancers by expert observers. Digital mammography images for 190 patients were collected from two screening sites using Hologic amorphous selenium detectors. Eighty of these cases contained non-calcification cancers. The images were processed using three versions of IP from Hologic - default (full enhancement), low contrast (intermediate enhancement) and pseudo screen-film (no enhancement). Seven experienced observers inspected the images and marked the location of regions suspected to be non-calcification cancers assigning a score for likelihood of malignancy. This data was analysed using JAFROC analysis. The observers also scored the clinical interpretation of the entire case using the BSBR classification scale. This was analysed using ROC analysis. The breast density in the region surrounding each cancer and the number of times each cancer was detected were calculated. IP did not have a significant effect on the radiologists' judgment of the likelihood of malignancy of individual lesions or their clinical interpretation of the entire case. No correlation was found between number of times each cancer was detected and the density of breast tissue surrounding that cancer.

  3. Impact of two types of image processing on cancer detection in mammography

    NASA Astrophysics Data System (ADS)

    Warren, Lucy M.; Halling-Brown, Mark D.; Looney, Padraig T.; Dance, David R.; Wilkinson, Louise; Wallis, Matthew G.; Given-Wilson, Rosalind M.; Cooke, Julie; McAvinchey, Rita; Young, Kenneth C.

    2016-03-01

    The impact of image processing on cancer detection is still a concern to radiologists and physicists. This work aims to evaluate the effect of two types of image processing on cancer detection in mammography. An observer study was performed in which six radiologists inspected 349 cases (a mixture of normal cases, benign lesions and cancers) processed with two types of image processing. The observers marked areas they were suspicious were cancers. JAFROC analysis was performed to determine if there was a significant difference in cancer detection between the two types of image processing. Cancer detection was significantly better with the standard setting image processing (flavor A) compared with one that provides enhanced image contrast (flavor B), p = 0.036. The image processing was applied to images of the CDMAM test object, which were then analysed using CDCOM. The threshold gold thickness measured with the CDMAM test object was thinner using flavor A than flavor B image processing. Since Flavor A was found to be superior in both the observer study and the measurements using the CDMAM phantom, this may indicate that measurements using the CDMAM correlate with change in cancer detection with different types of image processing.

  4. Validation of no-reference image quality index for the assessment of digital mammographic images

    NASA Astrophysics Data System (ADS)

    de Oliveira, Helder C. R.; Barufaldi, Bruno; Borges, Lucas R.; Gabarda, Salvador; Bakic, Predrag R.; Maidment, Andrew D. A.; Schiabel, Homero; Vieira, Marcelo A. C.

    2016-03-01

    To ensure optimal clinical performance of digital mammography, it is necessary to obtain images with high spatial resolution and low noise, keeping radiation exposure as low as possible. These requirements directly affect the interpretation of radiologists. The quality of a digital image should be assessed using objective measurements. In general, these methods measure the similarity between a degraded image and an ideal image without degradation (ground-truth), used as a reference. These methods are called Full-Reference Image Quality Assessment (FR-IQA). However, for digital mammography, an image without degradation is not available in clinical practice; thus, an objective method to assess the quality of mammograms must be performed without reference. The purpose of this study is to present a Normalized Anisotropic Quality Index (NAQI), based on the Rényi entropy in the pseudo-Wigner domain, to assess mammography images in terms of spatial resolution and noise without any reference. The method was validated using synthetic images acquired through an anthropomorphic breast software phantom, and the clinical exposures on anthropomorphic breast physical phantoms and patient's mammograms. The results reported by this noreference index follow the same behavior as other well-established full-reference metrics, e.g., the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Reductions of 50% on the radiation dose in phantom images were translated as a decrease of 4dB on the PSNR, 25% on the SSIM and 33% on the NAQI, evidencing that the proposed metric is sensitive to the noise resulted from dose reduction. The clinical results showed that images reduced to 53% and 30% of the standard radiation dose reported reductions of 15% and 25% on the NAQI, respectively. Thus, this index may be used in clinical practice as an image quality indicator to improve the quality assurance programs in mammography; hence, the proposed method reduces the subjectivity

  5. [Analysis of Cost-effectiveness of screening for breast cancer with conventional mammography, digital and magnetic resonance imaging].

    PubMed

    Peregrino, Antonio Augusto de Freitas; Vianna, Cid Manso de Mello; de Almeida, Carlos Eduardo Veloso; Gonzáles, Gabriela Bittencourt; Machado, Samara Cristina Ferreira; Costa e Silva, Frances Valéria; Rodrigues, Marcus Paulo da Silva

    2012-01-01

    A cost-effectiveness analysis was conducted in screening for breast cancer. The use of conventional mammography, digital and magnetic resonance imaging were compared with natural disease history as a baseline. A Markov model projected breast cancer in a group of 100,000 women for a 30 year period, with screening every two years. Four distinct scenarios were modeled: (1) the natural history of breast cancer, as a baseline, (2) conventional film mammography, (3) digital mammography and (4) magnetic resonance imaging. The costs of the scenarios modeled ranged from R$ 194.216,68 for natural history, to R$ 48.614.338,31, for screening with magnetic resonance imaging. The difference in effectiveness between the interventions ranged from 300 to 78.000 years of life gained in the cohort. The ratio of incremental cost-effectiveness in terms of cost per life-year gains, conventional mammographic screening has produced an extra year for R$ 13.573,07. The ICER of magnetic resonance imaging was R$ 2.904.328,88, compared to no screening. In conclusion, it is more cost-effective to perform the screening with conventional mammography than other technological interventions.

  6. Data acquisition and analysis of mammography images at the NSLS June--August 1995

    SciTech Connect

    Arfelli, F.; Burns, C.; Chapman, D. |

    1995-12-31

    At Brookhaven National Laboratory mammography experiments are being carried out at the X27C R and D beamline of the National Synchrotron Light Source using a monochromatic x-ray beam in order to explore the potential of monoenergetic photons for mammographic imaging. In two different periods of beamtime the authors have performed preliminary studies of mammographic imaging using a monochromatic synchrotron radiation source. They used both phantom objects and real tissue samples. Qualitative studies with the contrast-detail phantom show good agreement when compared with the theoretical contrast. As expected, the contrast is higher if the energy is lower. The results show an improved contrast with energies 18 keV and lower compared to images obtained from conventional polyenergetic x-ray imaging systems. The results also show that for similar imaging conditions the monoenergetic mean glandular dose is less than that from polyenergetic sources. This is due both to the increased sensitivity of the image plate detectors and to actual reductions of dose for truly monochromatic beams.

  7. Digital magnification mammography with matched incident exposure: physical imaging properties and detectability of simulated microcalcifications.

    PubMed

    Tanaka, Nobukazu; Naka, Kentaro; Fukushima, Hiroko; Morishita, Junji; Toyofuku, Fukai; Ohki, Masafumi; Higashida, Yoshiharu

    2011-07-01

    Our purpose was to evaluate the usefulness of digital magnification mammography with matched incident exposure by investigating the physical imaging properties and doing an observer performance test. A computed radiography system and a mammographic unit were used in this study. Contact and magnification radiographies of 1.2-1.8 in combination with focal spot sizes of 0.1 mm without grid and 0.3 mm with grid were performed. Physical imaging properties, namely, scatter fraction, total modulation transfer function (MTF) including the presampled MTF and the MTF of focal spot size, and Wiener spectrum (WS), were measured. Detail visibility was evaluated by use of free-response receiver operating characteristic analysis of the detectability of simulated microcalcifications. Scatter fractions decreased considerably as the magnification factor increased without grid technique. In the grid technique, scatter fractions for all magnification techniques were comparable. The total MTFs of magnification techniques with a focal spot size of 0.1 mm improved significantly compared with the conventional contact technique. However, the improvement of the total MTFs of magnification techniques with the combination of 0.3 mm focal spot size was small. The WSs degraded with an increase of the magnification factor compared with the contact technique due to the maintained exposure incident on the object. The observer performance test indicated that the 1.8 magnification technique with the 0.1 mm focal spot size provided higher detectability than did the contact technique. Digital magnification mammography under the same incident exposure conditions improved the detectability of microcalcifications.

  8. Quality control methodology and implementation of X-radiation standards beams, mammography level, following the standard IEC 61267.

    PubMed

    Corrêa, E L; Vivolo, V; Potiens, M P A

    2012-07-01

    This study presents the results of the establishment of a quality control program developed and applied for the X-ray system of the Calibration Laboratory of IPEN. The X-ray standard beams, mammography level, using molybdenum and aluminum as additional filtration were established after the application of this quality control and the spectrometry of these qualities was made. The reference ionization chamber has traceability to the PTB. The radiation qualities RQR-M, RQA-M, RQN-M and RQB-M, following the recommendations of the IEC 61267 and the IAEA TRS 457 were established.

  9. A method for high-energy, low-dose mammography using edge illumination x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Diemoz, Paul C.; Bravin, Alberto; Sztrókay-Gaul, Anikó; Ruat, Marie; Grandl, Susanne; Mayr, Doris; Auweter, Sigrid; Mittone, Alberto; Brun, Emmanuel; Ponchut, Cyril; Reiser, Maximilian F.; Coan, Paola; Olivo, Alessandro

    2016-12-01

    Since the breast is one of the most radiosensitive organs, mammography is arguably the area where lowering radiation dose is of the uttermost importance. Phase-based x-ray imaging methods can provide opportunities in this sense, since they do not require x-rays to be stopped in tissue for image contrast to be generated. Therefore, x-ray energy can be considerably increased compared to those usually exploited by conventional mammography. In this article we show how a novel, optimized approach can lead to considerable dose reductions. This was achieved by matching the edge-illumination phase method, which reaches very high angular sensitivity also at high x-ray energies, to an appropriate image processing algorithm and to a virtually noise-free detection technology capable of reaching almost 100% efficiency at the same energies. Importantly, while proof-of-concept was obtained at a synchrotron, the method has potential for a translation to conventional sources.

  10. Shape determination of microcalcifications in simulated digital mammography images with varying pixel size

    NASA Astrophysics Data System (ADS)

    Ruschin, Mark; Bath, Magnus; Hemdal, Bengt; Tingberg, Anders

    2005-04-01

    The purpose of this work was to study how the pixel size of digital detectors can affect shape determination of microcalcifications in mammography. Screen-film mammograms containing microcalcifications clinically proven to be indicative of malignancy were digitised at 100 lines/mm using a high-resolution Tango drum scanner. Forty microcalcifications were selected to cover an appropriate range of sizes, shapes and contrasts typically found of malignant cases. Based on the measured MTF and NPS of the combined screen-film and scanner system, these digitised images were filtered to simulate images acquired with a square sampling pixel size of 10 μm x 10 μm and a fill factor of one. To simulate images acquired with larger pixel sizes, these finely sampled images were re-binned to yield a range of effective pixel sizes from 20 μm up to 140 μm. An alternative forced-choice (AFC) observer experiment was conducted with eleven observers for this set of digitised microcalcifications to determine how pixel size affects the ability to discriminate shape. It was found that observer score increased with decreasing pixel size down to 60 μm (p<0.01), at which point no significant advantage was obtained by using smaller pixel sizes due to the excessive relative noise-per-pixel. The relative gain in shape discrimination ability at smaller pixel sizes was larger for microcalcifications that were smaller than 500 μm and circular.

  11. A comparison of image interpretation times in full field digital mammography and digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Astley, Susan; Connor, Sophie; Lim, Yit; Tate, Catriona; Entwistle, Helen; Morris, Julie; Whiteside, Sigrid; Sergeant, Jamie; Wilson, Mary; Beetles, Ursula; Boggis, Caroline; Gilbert, Fiona

    2013-03-01

    Digital Breast Tomosynthesis (DBT) provides three-dimensional images of the breast that enable radiologists to discern whether densities are due to overlapping structures or lesions. To aid assessment of the cost-effectiveness of DBT for screening, we have compared the time taken to interpret DBT images and the corresponding two-dimensional Full Field Digital Mammography (FFDM) images. Four Consultant Radiologists experienced in reading FFDM images (4 years 8 months to 8 years) with training in DBT interpretation but more limited experience (137-407 cases in the past 6 months) were timed reading between 24 and 32 two view FFDM and DBT cases. The images were of women recalled from screening for further assessment and women under surveillance because of a family history of breast cancer. FFDM images were read before DBT, according to local practice. The median time for readers to interpret FFDM images was 17.0 seconds, with an interquartile range of 12.3-23.6 seconds. For DBT, the median time was 66.0 seconds, and the interquartile range was 51.1-80.5 seconds. The difference was statistically significant (p<0.001). Reading times were significantly longer in family history clinics (p<0.01). Although it took approximately four times as long to interpret DBT than FFDM images, the cases were more complex than would be expected for routine screening, and with higher mammographic density. The readers were relatively inexperienced in DBT interpretation and may increase their speed over time. The difference in times between clinics may be due to increased throughput at assessment, or decreased density.

  12. Near monochromatic X-rays for digital slot-scan mammography: initial findings.

    PubMed

    Diekmann, Felix; Diekmann, S; Richter, K; Bick, U; Fischer, T; Lawaczeck, R; Press, W-R; Schön, K; Weinmann, H-J; Arkadiev, V; Bjeoumikhov, A; Langhoff, N; Rabe, J; Roth, P; Tilgner, J; Wedell, R; Krumrey, M; Linke, U; Ulm, G; Hamm, B

    2004-09-01

    X-ray spectra are composed of a broad bremsspectrum and anode-characteristic emission lines. In mammography typically molybdenum (Mo), rhodium (Rh) or tungsten (W) anodes are used in combination with Mo, Rh or aluminium filters. Only the photons with energies between 17 and 22 keV of the resulting spectrum are suitable for the soft tissue imaging needed for mammography. The aim of this article is to present first results obtained with a monochromator module mounted at the exit of the X-ray tube of a conventional clinical mammography unit. The experimental setup consists of a Siemens Mammomat 300, an X-ray monochromator module and a linear array detector for image acquisition. The technique is similar to the slot-scan technique known from digital mammography. The experimental machine allows to obtain images both with polychromatic and monochromatic X-rays. Initial evaluation of the system was performed by examination of a contrast-detail phantom (CD-MAM-phantom, Nijmegen, The Netherlands). Images done with the new monochromatic technique were compared to images of the phantom done with polychromatic spectra, with film-screen mammography as well as with digital mammography. The new technique with monochromatic slot-scan mammography resulted in correct identification of 93% of the phantom. Digital slot-scan mammography with polychromatic beam resulted in correct identification of 87%, digital full-field mammography in 83% and conventional film-screen mammography in 70% of the phantom. The results suggest that monochromatization has a potential for improving image quality or decreasing dose in X-ray mammography.

  13. First results with real-time selenium-based full-field digital mammography three-dimensional imaging system

    NASA Astrophysics Data System (ADS)

    Lehtimaki, Mari; Pamilo, Martti; Raulisto, Leena; Kalke, Martti

    2004-05-01

    Our goal in this paper is to evaluate the capability of real-time selenium-technology-based full-field digital mammography (FFDM) system in breast tomosynthesis. The objective of this study is to find out the present status of amorphous selenium technology in the sense of advanced applications in clinical use. We were using tuned aperture computed tomography (TACT+) 3-dimensional (3D) technology for reconstruction. Under evaluation were amorphous selenium signal-to-noise-ratio, flat panel image artefacts and acquisition time to perform full-field digital mammography 3D examination. To be able to validate the system we used a special breast phantom. We found out that 3D imaging technology provides diagnostic value and benefits over 2-dimensional (2D) imaging. 3D TACT advantages are to define if mammography finding is caused by a real abnormal lesion or by superposition of normal parenchymal structures, to be able to diagnose and analyze the findings properly, to detect changes in breast tissue which would otherwise be missed, to verify the possible multifocality of the breast cancers, to verify the correct target for biopsies and to reduce number of biopsies performed. Slice visualization and 3D volume model provide greater diagnostic information compared to 2D projection screening and diagnostic imaging.

  14. A Novel Method to Assess Incompleteness of Mammography Reports

    PubMed Central

    Gimenez, Francisco J.; Wu, Yirong; Burnside, Elizabeth S.; Rubin, Daniel L.

    2014-01-01

    Mammography has been shown to improve outcomes of women with breast cancer, but it is subject to inter-reader variability. One well-documented source of such variability is in the content of mammography reports. The mammography report is of crucial importance, since it documents the radiologist’s imaging observations, interpretation of those observations in terms of likelihood of malignancy, and suggested patient management. In this paper, we define an incompleteness score to measure how incomplete the information content is in the mammography report and provide an algorithm to calculate this metric. We then show that the incompleteness score can be used to predict errors in interpretation. This method has 82.6% accuracy at predicting errors in interpretation and can possibly reduce total diagnostic errors by up to 21.7%. Such a method can easily be modified to suit other domains that depend on quality reporting. PMID:25954448

  15. A novel method to assess incompleteness of mammography reports.

    PubMed

    Gimenez, Francisco J; Wu, Yirong; Burnside, Elizabeth S; Rubin, Daniel L

    2014-01-01

    Mammography has been shown to improve outcomes of women with breast cancer, but it is subject to inter-reader variability. One well-documented source of such variability is in the content of mammography reports. The mammography report is of crucial importance, since it documents the radiologist's imaging observations, interpretation of those observations in terms of likelihood of malignancy, and suggested patient management. In this paper, we define an incompleteness score to measure how incomplete the information content is in the mammography report and provide an algorithm to calculate this metric. We then show that the incompleteness score can be used to predict errors in interpretation. This method has 82.6% accuracy at predicting errors in interpretation and can possibly reduce total diagnostic errors by up to 21.7%. Such a method can easily be modified to suit other domains that depend on quality reporting.

  16. EDITORIAL: Optical mammography: Imaging and characterization of breast lesions by pulsed near-infrared laser light (OPTIMAMM)

    NASA Astrophysics Data System (ADS)

    Hebden, Jeremy C.; Rinneberg, Herbert

    2005-06-01

    The Commission of the European Union (EU) conceived its Fifth Framework Programme (FP5) to identify the priorities for the European Union's research, technological development and demonstration activities for the period 1998-2002. By encouraging collaborative research between groups in different member countries, FP5 was intended to help solve problems the EU is facing and respond to major socio-economic challenges. The programme focused on a number of objectives and areas combining technological, industrial, economic, social and cultural aspects. A specific call was made, under its `Quality of Life and Management of Living Resources' section, for proposals which aim to explore improvements in non-invasive methods of imaging for early diagnosis and clinical evaluation of disease. Among the projects successfully funded under the FP5 programme was one entitled `Optical mammography: Imaging and characterization of breast lesions by pulsed near-infrared laser light', known by its acronym OPTIMAMM. The project involved a consortium of nine partners, comprising ten applied science and clinical research groups based in six EU countries, with overall administration and management provided by the Physikalisch-Technische Bundesanstalt, Berlin, Germany. The broad aim of the OPTIMAMM project was to combine multi-disciplinary basic (physics, engineering, mathematics, computer science) and clinical (oncology, histology) research to assess the diagnostic potential of time-domain optical and photoacoustic mammography as novel, non-invasive imaging modalities for the detection and clinical evaluation of breast lesions. Funding for the project, at a total cost of about 1.67 MEuro, began in December 2000 for a period of three years, although a zero-cost extension was granted to enable the ongoing project activities to continue until the end of May 2004. The importance of developing new tools for the detection and diagnosis of breast disease is evident from the very high incidence and

  17. The mammography project at the SYRMEP beamline.

    PubMed

    Dreossi, D; Abrami, A; Arfelli, F; Bregant, P; Casarin, K; Chenda, V; Cova, M A; Longo, R; Menk, R-H; Quai, E; Quaia, E; Rigon, L; Rokvic, T; Sanabor, D; Tonutti, M; Tromba, G; Vascotto, A; Zanconati, F; Castelli, E

    2008-12-01

    A clinical program for X-ray phase contrast (PhC) mammography with synchrotron radiation (SR) has been started in March 2006 at the SYRMEP beamline of Elettra, the SR facility in Trieste, Italy. The original beamline layout has been modified substantially and a clinical facility has been realized. In order to fulfill all security requirements, dedicated systems have been designed and implemented, following redundancy criteria and "fail safe" philosophy. Planar radiographic images are obtained by scanning simultaneously the patient and the detector through the stationary and laminar SR beam. In this first phase of the project a commercial screen-film system has been used as image receptor. Upon approval by the respective authorities, the mammography program is about half way to conclusion. Up to now about 50 patients have been examined. The patients are volunteers recruited by the radiologist after conventional examinations at the hospital resulted in an uncertain diagnosis. As an example one case of PhC SR mammography is shown and compared to conventional digital mammography. Preliminary analysis shows the high diagnostic quality of the PhC SR images that were acquired with equal or less delivered dose compared to the conventional ones.

  18. Comparison of breast tissue measurements using magnetic resonance imaging, digital mammography and a mathematical algorithm

    NASA Astrophysics Data System (ADS)

    Lu, Lee-Jane W.; Nishino, Thomas K.; Johnson, Raleigh F.; Nayeem, Fatima; Brunder, Donald G.; Ju, Hyunsu; Leonard, Morton H., Jr.; Grady, James J.; Khamapirad, Tuenchit

    2012-11-01

    Women with mostly mammographically dense fibroglandular tissue (breast density, BD) have a four- to six-fold increased risk for breast cancer compared to women with little BD. BD is most frequently estimated from two-dimensional (2D) views of mammograms by a histogram segmentation approach (HSM) and more recently by a mathematical algorithm consisting of mammographic imaging parameters (MATH). Two non-invasive clinical magnetic resonance imaging (MRI) protocols: 3D gradient-echo (3DGRE) and short tau inversion recovery (STIR) were modified for 3D volumetric reconstruction of the breast for measuring fatty and fibroglandular tissue volumes by a Gaussian-distribution curve-fitting algorithm. Replicate breast exams (N = 2 to 7 replicates in six women) by 3DGRE and STIR were highly reproducible for all tissue-volume estimates (coefficients of variation <5%). Reliability studies compared measurements from four methods, 3DGRE, STIR, HSM, and MATH (N = 95 women) by linear regression and intra-class correlation (ICC) analyses. Rsqr, regression slopes, and ICC, respectively, were (1) 0.76-0.86, 0.8-1.1, and 0.87-0.92 for %-gland tissue, (2) 0.72-0.82, 0.64-0.96, and 0.77-0.91, for glandular volume, (3) 0.87-0.98, 0.94-1.07, and 0.89-0.99, for fat volume, and (4) 0.89-0.98, 0.94-1.00, and 0.89-0.98, for total breast volume. For all values estimated, the correlation was stronger for comparisons between the two MRI than between each MRI versus mammography, and between each MRI versus MATH data than between each MRI versus HSM data. All ICC values were >0.75 indicating that all four methods were reliable for measuring BD and that the mathematical algorithm and the two complimentary non-invasive MRI protocols could objectively and reliably estimate different types of breast tissues.

  19. Quantification of image quality using information theory.

    PubMed

    Niimi, Takanaga; Maeda, Hisatoshi; Ikeda, Mitsuru; Imai, Kuniharu

    2011-12-01

    Aims of present study were to examine usefulness of information theory in visual assessment of image quality. We applied first order approximation of the Shannon's information theory to compute information losses (IL). Images of a contrast-detail mammography (CDMAM) phantom were acquired with computed radiographies for various radiation doses. Information content was defined as the entropy Σp( i )log(1/p ( i )), in which detection probabilities p ( i ) were calculated from distribution of detection rate of the CDMAM. IL was defined as the difference between information content and information obtained. IL decreased with increases in the disk diameters (P < 0.0001, ANOVA) and in the radiation doses (P < 0.002, F-test). Sums of IL, which we call total information losses (TIL), were closely correlated with the image quality figures (r = 0.985). TIL was dependent on the distribution of image reading ability of each examinee, even when average reading ratio was the same in the group. TIL was shown to be sensitive to the observers' distribution of image readings and was expected to improve the evaluation of image quality.

  20. Imaging lobular breast carcinoma: comparison of synchrotron radiation DEI-CT technique with clinical CT, mammography and histology

    NASA Astrophysics Data System (ADS)

    Fiedler, S.; Bravin, A.; Keyriläinen, J.; Fernández, M.; Suortti, P.; Thomlinson, W.; Tenhunen, M.; Virkkunen, P.; Karjalainen-Lindsberg, M.-L.

    2004-01-01

    Different modalities for imaging cancer-bearing breast tissue samples are described and compared. The images include clinical mammograms and computed tomography (CT) images, CT images with partly coherent synchrotron radiation (SR), and CT and radiography images taken with SR using the diffraction enhanced imaging (DEI) method. The images are evaluated by a radiologist and compared with histopathological examination of the samples. Two cases of lobular carcinoma are studied in detail. The indications of cancer are very weak or invisible in the conventional images, but the morphological changes due to invasion of cancer become pronounced in the images taken by the DEI method. The strands penetrating adipose tissue are seen clearly in the DEI-CT images, and the histopathology confirms that some strands contain the so-called 'Indian file' formations of cancer cells. The radiation dose is carefully measured for each of the imaging modalities. The mean glandular dose (MGD) for 50% glandular breast tissue is about 1 mGy in conventional mammography and less than 0.25 mGy in projection DEI, while in the clinical CT imaging the MGD is very high, about 45 mGy. The entrance dose of 95 mGy in DEI-CT imaging gives rise to an MGD of 40 mGy, but the dose may be reduced by an order of magnitude, because the contrast is very large in most images.

  1. Research in digital mammography and tomosynthesis at the University of Toronto.

    PubMed

    Yaffe, Martin J

    2014-07-01

    There have been major advances in the field of breast cancer imaging since the early 1970s, both in technological improvements and in the use of the methods of medical physics and image analysis to optimize image quality. The introduction of digital mammography in 2000 provided a marked improvement in imaging of dense breasts. In addition, it became possible to produce tomographic and functional images on modified digital mammography systems. Digital imaging also greatly facilitated the extraction of quantitative information from images. My laboratory has been fortunate in being able to participate in some of these exciting developments. I will highlight some of the areas of our research interest which include modeling of the image formation process, development of high-resolution X-ray detectors for digital mammography and investigating new methods for analyzing image quality. I will also describe our more recent work on developing new applications of digital mammography including tomosynthesis, contrast-enhanced mammography, and measurement of breast density. Finally, I will point to a new area for our research--the application of the techniques of medical imaging to making pathology more quantitative to contribute to use of biomarkers for better characterizing breast cancer and directing therapeutic decisions.

  2. Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer.

    PubMed

    Lee, Carol H; Dershaw, D David; Kopans, Daniel; Evans, Phil; Monsees, Barbara; Monticciolo, Debra; Brenner, R James; Bassett, Lawrence; Berg, Wendie; Feig, Stephen; Hendrick, Edward; Mendelson, Ellen; D'Orsi, Carl; Sickles, Edward; Burhenne, Linda Warren

    2010-01-01

    Screening for breast cancer with mammography has been shown to decrease mortality from breast cancer, and mammography is the mainstay of screening for clinically occult disease. Mammography, however, has well-recognized limitations, and recently, other imaging including ultrasound and magnetic resonance imaging have been used as adjunctive screening tools, mainly for women who may be at increased risk for the development of breast cancer. The Society of Breast Imaging and the Breast Imaging Commission of the ACR are issuing these recommendations to provide guidance to patients and clinicians on the use of imaging to screen for breast cancer. Wherever possible, the recommendations are based on available evidence. Where evidence is lacking, the recommendations are based on consensus opinions of the fellows and executive committee of the Society of Breast Imaging and the members of the Breast Imaging Commission of the ACR.

  3. Linear image reconstruction for a diffuse optical mammography system in a noncompressed geometry using scattering fluid.

    PubMed

    Nielsen, Tim; Brendel, Bernhard; Ziegler, Ronny; van Beek, Michiel; Uhlemann, Falk; Bontus, Claas; Koehler, Thomas

    2009-04-01

    Diffuse optical tomography (DOT) is a potential new imaging modality to detect or monitor breast lesions. Recently, Philips developed a new DOT system capable of transmission and fluorescence imaging, where the investigated breast is hanging freely into the measurement cup containing scattering fluid. We present a fast and robust image reconstruction algorithm that is used for the transmission measurements. The algorithm is based on the Rytov approximation. We show that this algorithm can be used over a wide range of tissue optical properties if the reconstruction is adapted to each patient. We use estimates of the breast shape and average tissue optical properties to initialize the reconstruction, which improves the image quality significantly. We demonstrate the capability of the measurement system and reconstruction to image breast lesions by clinical examples.

  4. Magnetic Resonance Imaging as an Adjunct to Mammography for Breast Cancer Screening in Women at Less Than High Risk for Breast Cancer: A Health Technology Assessment

    PubMed Central

    Nikitovic-Jokic, Milica; Holubowich, Corinne

    2016-01-01

    Background Screening with mammography can detect breast cancer early, before clinical symptoms appear. Some cancers, however, are not captured with mammography screening alone. Among women at high risk for breast cancer, magnetic resonance imaging (MRI) has been suggested as a safe adjunct (supplemental) screening tool that can detect breast cancers missed on screening mammography, potentially reducing the number of deaths associated with the disease. However, the use of adjunct screening tests may also increase the number of false-positive test results, which may lead to unnecessary follow-up testing, as well as patient stress and anxiety. We investigated the benefits and harms of MRI as an adjunct to mammography compared with mammography alone for screening women at less than high risk (average or higher than average risk) for breast cancer. Methods We searched Ovid MEDLINE, Ovid Embase, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects (DARE), Centre for Reviews and Dissemination (CRD) Health Technology Assessment Database, and National Health Service (NHS) Economic Evaluation Database, from January 2002 to January 2016, for evidence of effectiveness, harms, and diagnostic accuracy. Only studies evaluating the use of screening breast MRI as an adjunct to mammography in the specified populations were included. Results No studies in women at less than high risk for breast cancer met our inclusion criteria. Conclusions It remains uncertain if the use of adjunct screening breast MRI in women at less than high risk (average or higher than average risk) for breast cancer will reduce breast cancer–related mortality without significant increases in unnecessary follow-up testing and treatment. PMID:27990198

  5. Automated quality assessment in three-dimensional breast ultrasound images.

    PubMed

    Schwaab, Julia; Diez, Yago; Oliver, Arnau; Martí, Robert; van Zelst, Jan; Gubern-Mérida, Albert; Mourri, Ahmed Bensouda; Gregori, Johannes; Günther, Matthias

    2016-04-01

    Automated three-dimensional breast ultrasound (ABUS) is a valuable adjunct to x-ray mammography for breast cancer screening of women with dense breasts. High image quality is essential for proper diagnostics and computer-aided detection. We propose an automated image quality assessment system for ABUS images that detects artifacts at the time of acquisition. Therefore, we study three aspects that can corrupt ABUS images: the nipple position relative to the rest of the breast, the shadow caused by the nipple, and the shape of the breast contour on the image. Image processing and machine learning algorithms are combined to detect these artifacts based on 368 clinical ABUS images that have been rated manually by two experienced clinicians. At a specificity of 0.99, 55% of the images that were rated as low quality are detected by the proposed algorithms. The areas under the ROC curves of the single classifiers are 0.99 for the nipple position, 0.84 for the nipple shadow, and 0.89 for the breast contour shape. The proposed algorithms work fast and reliably, which makes them adequate for online evaluation of image quality during acquisition. The presented concept may be extended to further image modalities and quality aspects.

  6. Breast Cancer: Comparative Effectiveness of Positron Emission Mammography and MR Imaging in Presurgical Planning for the Ipsilateral Breast1

    PubMed Central

    Madsen, Kathleen S.; Schilling, Kathy; Tartar, Marie; Pisano, Etta D.; Larsen, Linda Hovanessian; Narayanan, Deepa; Ozonoff, Al; Miller, Joel P.; Kalinyak, Judith E.

    2011-01-01

    Purpose: To determine the performance of positron emission mammography (PEM), as compared with magnetic resonance (MR) imaging, including the effect on surgical management, in ipsilateral breasts with cancer. Materials and Methods: Four hundred seventy-two women with newly diagnosed breast cancer who were offered breast-conserving surgery consented from September 2006 to November 2008 to participate in a multicenter institutional review board–approved, HIPAA-compliant protocol. Participants underwent contrast material–enhanced MR imaging and fluorine 18 fluorodeoxyglucose PEM in randomized order; resultant images were interpreted independently. Added biopsies and changes in surgical procedure for the ipsilateral breast were correlated with histopathologic findings. Performance characteristics were compared by using the McNemar test and generalized estimating equations. Results: Three hundred eighty-eight women (median age, 58 years; age range, 26–93 years; median estimated tumor size, 1.5 cm) completed the study. Additional cancers were found in 82 (21%) women (82 ipsilateral breasts; median tumor size, 0.7 cm). Twenty-eight (34%) of the 82 breasts were identified with both PEM and MR imaging; 21 (26%) breasts, with MR imaging only; 14 (17%) breasts, with PEM only; and seven (8.5%) breasts, with mammography and ultrasonography. Twelve (15%) cases of additional cancer were missed at all imaging examinations. Integration of PEM and MR imaging increased cancer detection—to 61 (74%) of 82 breasts versus 49 (60%) of 82 breasts identified with MR imaging alone (P < .001). Of 306 breasts without additional cancer, 279 (91.2%) were correctly assessed with PEM compared with 264 (86.3%) that were correctly assessed with MR imaging (P = .03). The positive predictive value of biopsy prompted by PEM findings (47 [66%] of 71 cases) was higher than that of biopsy prompted by MR findings (61 [53%] of 116 cases) (P = .016). Of 116 additional cancers, 61 (53%) were depicted

  7. Study of quality perception in medical images based on comparison of contrast enhancement techniques in mammographic images

    NASA Astrophysics Data System (ADS)

    Matheus, B.; Verçosa, L. B.; Barufaldi, B.; Schiabel, H.

    2014-03-01

    With the absolute prevalence of digital images in mammography several new tools became available for radiologist; such as CAD schemes, digital zoom and contrast alteration. This work focuses in contrast variation and how the radiologist reacts to these changes when asked to evaluated image quality. Three contrast enhancing techniques were used in this study: conventional equalization, CCB Correction [1] - a digitization correction - and value subtraction. A set of 100 images was used in tests from some available online mammographic databases. The tests consisted of the presentation of all four versions of an image (original plus the three contrast enhanced images) to the specialist, requested to rank each one from the best up to worst quality for diagnosis. Analysis of results has demonstrated that CCB Correction [1] produced better images in almost all cases. Equalization, which mathematically produces a better contrast, was considered the worst for mammography image quality enhancement in the majority of cases (69.7%). The value subtraction procedure produced images considered better than the original in 84% of cases. Tests indicate that, for the radiologist's perception, it seems more important to guaranty full visualization of nuances than a high contrast image. Another result observed is that the "ideal" scanner curve does not yield the best result for a mammographic image. The important contrast range is the middle of the histogram, where nodules and masses need to be seen and clearly distinguished.

  8. Digital breast tomosynthesis: application of 2D digital mammography CAD to detection of microcalcification clusters on planar projection image

    NASA Astrophysics Data System (ADS)

    Samala, Ravi K.; Chan, Heang-Ping; Lu, Yao; Hadjiiski, Lubomir; Wei, Jun; Helvie, Mark

    2015-03-01

    Computer-aided detection (CAD) has the potential to aid radiologists in detection of microcalcification clusters (MCs). CAD for digital breast tomosynthesis (DBT) can be developed by using the reconstructed volume, the projection views or other derivatives as input. We have developed a novel method of generating a single planar projection (PPJ) image from a regularized DBT volume to emphasize the high contrast objects such as microcalcifications while removing the anatomical background and noise. In this work, we adapted a CAD system developed for digital mammography (CADDM) to the PPJ image and compared its performance with our CAD system developed for DBT volumes (CADDBT) in the same set of cases. For microcalcification detection in the PPJ image using the CADDM system, the background removal preprocessing step designed for DM was not needed. The other methods and processing steps in the CADDM system were kept without modification while the parameters were optimized with a training set. The linear discriminant analysis classifier using cluster based features was retrained to generate a discriminant score to be used as decision variable. For view-based FROC analysis, at 80% sensitivity, an FP rate of 1.95/volume and 1.54/image were achieved, respectively, for CADDBT and CADDM in an independent test set. At a threshold of 1.2 FPs per image or per DBT volume, the nonparametric analysis of the area under the FROC curve shows that the optimized CADDM for PPJ is significantly better than CADDBT. However, the performance of CADDM drops at higher sensitivity or FP rate, resulting in similar overall performance between the two CAD systems. The higher sensitivity of the CADDM in the low FP rate region and vice versa for the CADDBT indicate that a joint CAD system combining detection in the DBT volume and the PPJ image has the potential to increase the sensitivity and reduce the FP rate.

  9. Evolution of mammographic image quality in the state of Rio de Janeiro*

    PubMed Central

    Villar, Vanessa Cristina Felippe Lopes; Seta, Marismary Horsth De; de Andrade, Carla Lourenço Tavares; Delamarque, Elizabete Vianna; de Azevedo, Ana Cecília Pedrosa

    2015-01-01

    Objective To evaluate the evolution of mammographic image quality in the state of Rio de Janeiro on the basis of parameters measured and analyzed during health surveillance inspections in the period from 2006 to 2011. Materials and Methods Descriptive study analyzing parameters connected with imaging quality of 52 mammography apparatuses inspected at least twice with a one-year interval. Results Amongst the 16 analyzed parameters, 7 presented more than 70% of conformity, namely: compression paddle pressure intensity (85.1%), films development (72.7%), film response (72.7%), low contrast fine detail (92.2%), tumor mass visualization (76.5%), absence of image artifacts (94.1%), mammography-specific developers availability (88.2%). On the other hand, relevant parameters were below 50% conformity, namely: monthly image quality control testing (28.8%) and high contrast details with respect to microcalcifications visualization (47.1%). Conclusion The analysis revealed critical situations in terms of compliance with the health surveillance standards. Priority should be given to those mammography apparatuses that remained non-compliant at the second inspection performed within the one-year interval. PMID:25987749

  10. Gold silver alloy nanoparticles (GSAN): an imaging probe for breast cancer screening with dual-energy mammography or computed tomography

    NASA Astrophysics Data System (ADS)

    Naha, Pratap C.; Lau, Kristen C.; Hsu, Jessica C.; Hajfathalian, Maryam; Mian, Shaameen; Chhour, Peter; Uppuluri, Lahari; McDonald, Elizabeth S.; Maidment, Andrew D. A.; Cormode, David P.

    2016-07-01

    Earlier detection of breast cancer reduces mortality from this disease. As a result, the development of better screening techniques is a topic of intense interest. Contrast-enhanced dual-energy mammography (DEM) is a novel technique that has improved sensitivity for cancer detection. However, the development of contrast agents for this technique is in its infancy. We herein report gold-silver alloy nanoparticles (GSAN) that have potent DEM contrast properties and improved biocompatibility. GSAN formulations containing a range of gold : silver ratios and capped with m-PEG were synthesized and characterized using various analytical methods. DEM and computed tomography (CT) phantom imaging showed that GSAN produced robust contrast that was comparable to silver alone. Cell viability, reactive oxygen species generation and DNA damage results revealed that the formulations with 30% or higher gold content are cytocompatible to Hep G2 and J774A.1 cells. In vivo imaging was performed in mice with and without breast tumors. The results showed that GSAN produce strong DEM and CT contrast and accumulated in tumors. Furthermore, both in vivo imaging and ex vivo analysis indicated the excretion of GSAN via both urine and feces. In summary, GSAN produce strong DEM and CT contrast, and has potential for both blood pool imaging and for breast cancer screening.Earlier detection of breast cancer reduces mortality from this disease. As a result, the development of better screening techniques is a topic of intense interest. Contrast-enhanced dual-energy mammography (DEM) is a novel technique that has improved sensitivity for cancer detection. However, the development of contrast agents for this technique is in its infancy. We herein report gold-silver alloy nanoparticles (GSAN) that have potent DEM contrast properties and improved biocompatibility. GSAN formulations containing a range of gold : silver ratios and capped with m-PEG were synthesized and characterized using various

  11. Modeling error in assessment of mammographic image features for improved computer-aided mammography training: initial experience

    NASA Astrophysics Data System (ADS)

    Mazurowski, Maciej A.; Tourassi, Georgia D.

    2011-03-01

    In this study we investigate the hypothesis that there exist patterns in erroneous assessment of BI-RADS image features among radiology trainees when performing diagnostic interpretation of mammograms. We also investigate whether these error making patterns can be captured by individual user models. To test our hypothesis we propose a user modeling algorithm that uses the previous readings of a trainee to identify whether certain BI-RADS feature values (e.g. "spiculated" value for "margin" feature) are associated with higher than usual likelihood that the feature will be assessed incorrectly. In our experiments we used readings of 3 radiology residents and 7 breast imaging experts for 33 breast masses for the following BI-RADS features: parenchyma density, mass margin, mass shape and mass density. The expert readings were considered as the gold standard. Rule-based individual user models were developed and tested using the leave one-one-out crossvalidation scheme. Our experimental evaluation showed that the individual user models are accurate in identifying cases for which errors are more likely to be made. The user models captured regularities in error making for all 3 residents. This finding supports our hypothesis about existence of individual error making patterns in assessment of mammographic image features using the BI-RADS lexicon. Explicit user models identifying the weaknesses of each resident could be of great use when developing and adapting a personalized training plan to meet the resident's individual needs. Such approach fits well with the framework of adaptive computer-aided educational systems in mammography we have proposed before.

  12. Elasto-Mammography: Elastic Property Reconstruction in Breast Tissues

    SciTech Connect

    Wang, Z. G.; Liu, Y.; Wang, G.; Sun, L. Z.

    2008-02-15

    Mammography is the primary method for screening and detecting breast cancers. However, it frequently fails to detect small tumors and is not quite specific in terms of tumor benignity and malignancy. The objective of this paper is to develop a new imaging modality called elasto-mammography that generates the modulus elastograms based on conventional mammographs. A new elastic reconstruction method is described based on elastography and mammography for breast tissues. Elastic distribution can be reconstructed through the measurement of displacement provided by mammographic projection. It is shown that the proposed elasto-mammography provides higher sensitivity and specificity than the conventional mammography on its own for breast cancer diagnosis.

  13. Comparison of air kerma measurements for tungsten anode based mammography x-ray beam qualities (EURAMET.RI(I)-S4.1)

    NASA Astrophysics Data System (ADS)

    Csete, I.; Büermann, L.; Gomola, I.

    2016-01-01

    A comparison of the air kerma standards for x-radiation qualities used in mammography was performed between the PTB and the IAEA. Two reference-class ionization chamber types Radcal RC6M and Magna A650 of the IAEA and tungsten anode based beam qualities with Mo and Al external filtrations (W+Mo, W+Al) established at both laboratories were selected for the comparison. The calibration coefficients, NK_air, were determined for the transfer chambers at the PTB in May 2015 and before and after this at the IAEA Dosimetry Laboratory. The results show good agreement, to be well within the 0.55 % standard uncertainty of the comparison. Correction factors to determine NK_air for these beam qualities based on calibration in RQR-M mammography beam qualities, established according to the IEC 61267 standard, were also calculated for the Radcal RC6M, 10X5-6M, and Magna A650 types of chambers. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  14. Digital Mammography and Digital Breast Tomosynthesis.

    PubMed

    Moseley, Tanya W

    2016-06-01

    Breast imaging technology has advanced significantly from the 1930s until the present. American women have a 1 in 8 chance of developing breast cancer. Mammography has been proven in multiple clinical trials to reduce breast cancer mortality. Although a mainstay of breast imaging and improved from film-screen mammography, digital mammography is not a perfect examination. Overlapping obscuring breast tissue limits mammographic interpretation. Breast digital tomosynthesis reduces and/or eliminates overlapping obscuring breast tissue. Although there are some disadvantages with digital breast tomosynthesis, this relatively lost-cost technology may be used effectively in the screening and diagnostic settings.

  15. A comparison of the performance of modern screen-film and digital mammography systems

    NASA Astrophysics Data System (ADS)

    Monnin, P.; Gutierrez, D.; Bulling, S.; Lepori, D.; Valley, J.-F.; Verdun, F. R.

    2005-06-01

    This work compares the detector performance and image quality of the new Kodak Min-R EV mammography screen-film system with the Fuji CR Profect detector and with other current mammography screen-film systems from Agfa, Fuji and Kodak. Basic image quality parameters (MTF, NPS, NEQ and DQE) were evaluated for a 28 kV Mo/Mo (HVL = 0.646 mm Al) beam using different mAs exposure settings. Compared with other screen-film systems, the new Kodak Min-R EV detector has the highest contrast and a low intrinsic noise level, giving better NEQ and DQE results, especially at high optical density. Thus, the properties of the new mammography film approach those of a fine mammography detector, especially at low frequency range. Screen-film systems provide the best resolution. The presampling MTF of the digital detector has a value of 15% at the Nyquist frequency and, due to the spread size of the laser beam, the use of a smaller pixel size would not permit a significant improvement of the detector resolution. The dual collection reading technology increases significantly the low frequency DQE of the Fuji CR system that can at present compete with the most efficient mammography screen-film systems.

  16. A comparison of the performance of modern screen-film and digital mammography systems.

    PubMed

    Monnin, P; Gutierrez, D; Bulling, S; Lepori, D; Valley, J-F; Verdun, F R

    2005-06-07

    This work compares the detector performance and image quality of the new Kodak Min-R EV mammography screen-film system with the Fuji CR Profect detector and with other current mammography screen-film systems from Agfa, Fuji and Kodak. Basic image quality parameters (MTF, NPS, NEQ and DQE) were evaluated for a 28 kV Mo/Mo (HVL = 0.646 mm Al) beam using different mAs exposure settings. Compared with other screen-film systems, the new Kodak Min-R EV detector has the highest contrast and a low intrinsic noise level, giving better NEQ and DQE results, especially at high optical density. Thus, the properties of the new mammography film approach those of a fine mammography detector, especially at low frequency range. Screen-film systems provide the best resolution. The presampling MTF of the digital detector has a value of 15% at the Nyquist frequency and, due to the spread size of the laser beam, the use of a smaller pixel size would not permit a significant improvement of the detector resolution. The dual collection reading technology increases significantly the low frequency DQE of the Fuji CR system that can at present compete with the most efficient mammography screen-film systems.

  17. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    NASA Astrophysics Data System (ADS)

    Wang, Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco

    2012-07-01

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  18. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    SciTech Connect

    Wang Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco

    2012-07-31

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  19. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    SciTech Connect

    Keller, Brad M.; Nathan, Diane L.; Wang Yan; Zheng Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina

    2012-08-15

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., 'FOR PROCESSING') and vendor postprocessed (i.e., 'FOR PRESENTATION'), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then

  20. D3D augmented reality imaging system: proof of concept in mammography

    PubMed Central

    Douglas, David B; Petricoin, Emanuel F; Liotta, Lance; Wilson, Eugene

    2016-01-01

    Purpose The purpose of this article is to present images from simulated breast microcalcifications and assess the pattern of the microcalcifications with a technical development called “depth 3-dimensional (D3D) augmented reality”. Materials and methods A computer, head display unit, joystick, D3D augmented reality software, and an in-house script of simulated data of breast microcalcifications in a ductal distribution were used. No patient data was used and no statistical analysis was performed. Results The D3D augmented reality system demonstrated stereoscopic depth perception by presenting a unique image to each eye, focal point convergence, head position tracking, 3D cursor, and joystick fly-through. Conclusion The D3D augmented reality imaging system offers image viewing with depth perception and focal point convergence. The D3D augmented reality system should be tested to determine its utility in clinical practice. PMID:27563261

  1. A complete software application for automatic registration of x-ray mammography and magnetic resonance images

    SciTech Connect

    Solves-Llorens, J. A.; Rupérez, M. J. Monserrat, C.; Lloret, M.

    2014-08-15

    Purpose: This work presents a complete and automatic software application to aid radiologists in breast cancer diagnosis. The application is a fully automated method that performs a complete registration of magnetic resonance (MR) images and x-ray (XR) images in both directions (from MR to XR and from XR to MR) and for both x-ray mammograms, craniocaudal (CC), and mediolateral oblique (MLO). This new approximation allows radiologists to mark points in the MR images and, without any manual intervention, it provides their corresponding points in both types of XR mammograms and vice versa. Methods: The application automatically segments magnetic resonance images and x-ray images using the C-Means method and the Otsu method, respectively. It compresses the magnetic resonance images in both directions, CC and MLO, using a biomechanical model of the breast that distinguishes the specific biomechanical behavior of each one of its three tissues (skin, fat, and glandular tissue) separately. It makes a projection of both compressions and registers them with the original XR images using affine transformations and nonrigid registration methods. Results: The application has been validated by two expert radiologists. This was carried out through a quantitative validation on 14 data sets in which the Euclidean distance between points marked by the radiologists and the corresponding points obtained by the application were measured. The results showed a mean error of 4.2 ± 1.9 mm for the MRI to CC registration, 4.8 ± 1.3 mm for the MRI to MLO registration, and 4.1 ± 1.3 mm for the CC and MLO to MRI registration. Conclusions: A complete software application that automatically registers XR and MR images of the breast has been implemented. The application permits radiologists to estimate the position of a lesion that is suspected of being a tumor in an imaging modality based on its position in another different modality with a clinically acceptable error. The results show that the

  2. Near-infrared spectral imaging of the female breast for quantitative oximetry in optical mammography

    SciTech Connect

    Yu Yang; Liu Ning; Sassaroli, Angelo; Fantini, Sergio

    2009-04-01

    We present a hybrid continuous-wave, frequency-domain instrument for near-infrared spectral imaging of the female breast based on a tandem, planar scanning of one illumination optical fiber and one collection optical fiber configured in a transmission geometry. The spatial sampling rate of 25 points/cm{sup 2} is increased to 400 points/cm{sup 2} by postprocessing the data with a 2D cubic spline interpolation. We then apply a previously developed spatial second-derivative algorithm to an edge-corrected intensity image (N-image) to enhance the visibility and resolution of optical inhomogeneities in breast tissue such as blood vessels and tumors. The spectral data at each image pixel consist of 515-point spectra over the 650-900 nm wavelength range, thus featuring a spectral density of two data points per nanometer. We process the measured spectra with a paired-wavelength spectral analysis method to quantify the oxygen saturation of detected optical inhomogeneities, under the assumption that they feature a locally higher hemoglobin concentration. Our initial measurements on two healthy human subjects have generated high-resolution optical mammograms displaying a network of blood vessels with values of hemoglobin saturation typically falling within the 60%-95% range, which is physiologically reasonable. This approach to spectral imaging and oximetry of the breast has the potential to efficiently exploit the high intrinsic contrast provided by hemoglobin in breast tissue and to contribute a useful tool in the detection, diagnosis, and monitoring of breast pathologies.

  3. [Follow-up of surgical biopsies in microcalcifications of the breast. Comparative analysis of patients submitted to mammography and digitalization of mammographic images].

    PubMed

    Rulli, A; Cirocchi, R; Vento, A R; Naninato, P; Zanetti, A; Carli, L

    1997-01-01

    Improvements in the techniques of preoperative needle localization of nonpalpable breast lesions that have been detected at mammography, coupled with surgical biopsy of smaller volumes of breast tissue and the use of local anesthesia have produced a more aggressive attitude toward early biopsy of lesions that are suspected of malignancy. The authors report the follow-up in 92 cases, who underwent breast biopsy for microcalcifications with no palpable lesions. In 46 women the presence of microcalcifications was evaluated through a computerized instrument which allows digitalization of the image.

  4. An interactive method based on the live wire for segmentation of the breast in mammography images.

    PubMed

    Zewei, Zhang; Tianyue, Wang; Li, Guo; Tingting, Wang; Lu, Xu

    2014-01-01

    In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.

  5. Dual-energy contrast-enhanced mammography.

    PubMed

    Travieso Aja, M M; Rodríguez Rodríguez, M; Alayón Hernández, S; Vega Benítez, V; Luzardo, O P

    2014-01-01

    The degree of vascularization in breast lesions is related to their malignancy. For this reason, functional diagnostic imaging techniques have become important in recent years. Dual-energy contrast-enhanced mammography is a new, apparently promising technique in breast cancer that provides information about the degree of vascularization of the lesion in addition to the morphological information provided by conventional mammography. This article describes the state of the art for dual-energy contrast-enhanced mammography. Based on 15 months' clinical experience, we illustrate this review with clinical cases that allow us to discuss the advantages and limitations of this technique.

  6. Performance characterization of computed radiography based mammography systems

    NASA Astrophysics Data System (ADS)

    Singh, Abhinav; Desai, Nikunj; Valentino, Daniel J.

    2010-04-01

    Computed Radiography (CR) is a cost-effective technology for digital mammography. In order to optimize the quality of images obtained using CR Mammography, we characterized the effect on image quality of the electrooptical components of the CR imaging chain. The metrics used to assess the image quality included the Contrast to Noise Ratio (CNR), Modulation Transfer Function (MTF), Noise Power Spectrum (NPS), Detective Quantum Efficiency (DQE) and Contrast Detail Response Phantom (CDMAM 3.4 Artinis Medical Systems). An 18×24 cm high-resolution granular phosphor imaging plate (AGFA MM3.0) was used to acquire the images. Contrast detail was measured using a GUI developed for the CDMAM phantom that was scored by independent observers. The range of theoretically acceptable values measured for the CR laser was (5-36) mW and voltage range for PMT's was (4-8) V. The light detection amplifier was investigated, and the optimal Laser Power and PMT gain used for scanning was measured. The tools that we used (CNR, MTF, NPS, DQE and Contrast-detail phantom) provided an effective means of selecting optimal values for the electro-optical components of the system. The procedure enabled us to obtain good quality CR mammograms that have less noise and improved contrast.

  7. Image Enhancement, Image Quality, and Noise

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Hines, Glenn D.

    2005-01-01

    The Multiscale Retinex With Color Restoration (MSRCR) is a non-linear image enhancement algorithm that provides simultaneous dynamic range compression, color constancy and rendition. The overall impact is to brighten up areas of poor contrast/lightness but not at the expense of saturating areas of good contrast/brightness. The downside is that with the poor signal-to-noise ratio that most image acquisition devices have in dark regions, noise can also be greatly enhanced thus affecting overall image quality. In this paper, we will discuss the impact of the MSRCR on the overall quality of an enhanced image as a function of the strength of shadows in an image, and as a function of the root-mean-square (RMS) signal-to-noise (SNR) ratio of the image.

  8. Automated Area Beam Equalization Mammography for Improved Imaging of Dense Breasts

    DTIC Science & Technology

    2005-08-01

    glandular dose of the whole breast can be calculated from the sum of all pixilated igD , within an ROI in the mammogram weighted by the fraction of...and mask and creates a weighted average glandular dose igD , image. An ROI around the breast region can be drawn manually. The total sum within

  9. A similarity learning approach to content-based image retrieval: application to digital mammography.

    PubMed

    El-Naqa, Issam; Yang, Yongyi; Galatsanos, Nikolas P; Nishikawa, Robert M; Wernick, Miles N

    2004-10-01

    In this paper, we describe an approach to content-based retrieval of medical images from a database, and provide a preliminary demonstration of our approach as applied to retrieval of digital mammograms. Content-based image retrieval (CBIR) refers to the retrieval of images from a database using information derived from the images themselves, rather than solely from accompanying text indices. In the medical-imaging context, the ultimate aim of CBIR is to provide radiologists with a diagnostic aid in the form of a display of relevant past cases, along with proven pathology and other suitable information. CBIR may also be useful as a training tool for medical students and residents. The goal of information retrieval is to recall from a database information that is relevant to the user's query. The most challenging aspect of CBIR is the definition of relevance (similarity), which is used to guide the retrieval machine. In this paper, we pursue a new approach, in which similarity is learned from training examples provided by human observers. Specifically, we explore the use of neural networks and support vector machines to predict the user's notion of similarity. Within this framework we propose using a hierarchal learning approach, which consists of a cascade of a binary classifier and a regression module to optimize retrieval effectiveness and efficiency. We also explore how to incorporate online human interaction to achieve relevance feedback in this learning framework. Our experiments are based on a database consisting of 76 mammograms, all of which contain clustered microcalcifications (MCs). Our goal is to retrieve mammogram images containing similar MC clusters to that in a query. The performance of the retrieval system is evaluated using precision-recall curves computed using a cross-validation procedure. Our experimental results demonstrate that: 1) the learning framework can accurately predict the perceptual similarity reported by human observers, thereby

  10. Retinal Image Quality During Accommodation

    PubMed Central

    López-Gil, N.; Martin, J.; Liu, T.; Bradley, A.; Díaz-Muñoz, D.; Thibos, L.

    2013-01-01

    Purpose We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Methods Subjects viewed a monochromatic (552nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Results Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Conclusions Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye’s higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced

  11. Evaluating the Effect of Image Preprocessing on an Information-Theoretic CAD System in Mammography

    PubMed Central

    Tourassi, Georgia D.; Ike, Robert; Singh, Swatee; Harrawood, Brian

    2008-01-01

    Rationale and Objectives In our earlier studies we reported an evidence-based Computer Assisted Decision (CAD) system for location-specific interrogation of mammograms. A content-based image retrieval framework with information theoretic (IT) similarity measures serves as the foundation for this system. Specifically, the normalized mutual information (NMI) was shown to be the most effective similarity measure for reduction of false positive marks generated by other, prescreening mass detection schemes. The objective of this work was to investigate the importance of image filtering as a possible preprocessing step in our IT-CAD system. Materials and Methods Different filters were applied, each one aiming to compensate for known limitations of the NMI similarity measure. The study was based on a region-of-interest database that included true masses and false positive regions from digitized mammograms. Results Receiver Operating Characteristics (ROC) analysis showed that IT-CAD is affected slightly by image filtering. Modest, yet statistically significant performance gain was observed with median filtering (overall ROC area index Az improved from 0.78 to 0.82). However, Gabor filtering improved performance for the high sensitivity portion of the ROC curve where a typical false positive reduction scheme should operate (partial ROC area index 0.90Az improved from 0.33 to 0.37). Fusion of IT-CAD decisions from different filtering schemes markedly improved performance (Az=0.90 and 0.90Az=0.55). At 95% sensitivity, the system’s specificity improved by 36.6%. Conclusion Additional improvement in false positive reduction can be achieved by incorporating image filtering as a preprocessing step in our information-theoretic CAD system. PMID:18423320

  12. New mammography screen/film combinations: Imaging characteristics and radiation dose

    SciTech Connect

    Kimme-Smith, C.; Bassett, L.W.; Gold, R.H.; Zheutlin, J.; Gornbein, J.A. )

    1990-04-01

    Five types of film (Kodak OM, Kodak OM-SO177, Konica CM, Dupont Microvision, and Fuji MiMa) exposed in combination with seven different intensifying screens (Min R, Min R Medium, Siemens Orthox MA, Kyokka HR Mammo Fine, Agfa Gevaert Detail S (old and new), and Konica Monarch) were processed for either 90 sec (at 33.3{degrees}C) or 3 min (at 35.0 degrees C). The films imaged a Computerized Imaging Reference System phantom with additional detail test objects placed on its surface to produce four groups of objects with which to evaluate resolution and contrast. For objects that tested resolution, the Kyokka HR Mammo Fine (Fuji) screen was statistically significantly superior; for objects that tested contrast, the Konica Monarch screen was statistically significantly superior. Extended processing did not affect Dupont and Kodak OM film as much as it affected the other films. It did affect contrast for the other films tested. The mean glandular doses from gridless exposures ranged from 32 to 80 mrad (0.32-0.80 mGy) over all film/screen/processing combinations for a 4.5-cm-thick test object. Several new film/screen combinations can provide images superior to the Kodak Min R/OM combination at a reduced radiation dose. The Kyokka HR Mammo Fine (Fuji) screen was found statistically superior in radiographic resolution of mammographic test objects and the Konica Monarch screen was found to be superior in defining contrast.

  13. New mammography screen/film combinations: imaging characteristics and radiation dose.

    PubMed

    Kimme-Smith, C; Bassett, L W; Gold, R H; Zheutlin, J; Gornbein, J A

    1990-04-01

    Five types of film (Kodak OM, Kodak OM-SO177, Konica CM, Dupont Microvision, and Fuji MiMa) exposed in combination with seven different intensifying screens (Min R, Min R Medium, Siemens Orthox MA, Kyokka HR Mammo Fine, Agfa Gevaert Detail S (old and new), and Konica Monarch) were processed for either 90 sec (at 33.3 degrees C) or 3 min (at 35.0 degrees C). The films imaged a Computerized Imaging Reference System phantom with additional detail test objects placed on its surface to produce four groups of objects with which to evaluate resolution and contrast. For objects that tested resolution, the Kyokka HR Mammo Fine (Fuji) screen was statistically significantly superior; for objects that tested contrast, the Konica Monarch screen was statistically significantly superior. Extended processing did not affect Dupont and Kodak OM film as much as it affected the other films. It did affect contrast for the other films tested. The mean glandular doses from gridless exposures ranged from 32 to 80 mrad (0.32-0.80 mGy) over all film/screen/processing combinations for a 4.5-cm-thick test object. Several new film/screen combinations can provide images superior to the Kodak Min R/OM combination at a reduced radiation dose. The Kyokka HR Mammo Fine (Fuji) screen was found statistically superior in radiographic resolution of mammographic test objects and the Konica Monarch screen was found to be superior in defining contrast.

  14. Broadband optical mammography instrument for depth-resolved imaging and local dynamic measurements

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Nishanth; Kainerstorfer, Jana M.; Sassaroli, Angelo; Anderson, Pamela G.; Fantini, Sergio

    2016-02-01

    We present a continuous-wave instrument for non-invasive diffuse optical imaging of the breast in a parallel-plate transmission geometry. The instrument measures continuous spectra in the wavelength range 650-1000 nm, with an intensity noise level <1.5% and a spatial sampling rate of 5 points/cm in the x- and y-directions. We collect the optical transmission at four locations, one collinear and three offset with respect to the illumination optical fiber, to recover the depth of optical inhomogeneities in the tissue. We imaged a tissue-like, breast shaped, silicone phantom (6 cm thick) with two embedded absorbing structures: a black circle (1.7 cm in diameter) and a black stripe (3 mm wide), designed to mimic a tumor and a blood vessel, respectively. The use of a spatially multiplexed detection scheme allows for the generation of on-axis and off-axis projection images simultaneously, as opposed to requiring multiple scans, thus decreasing scan-time and motion artifacts. This technique localizes detected inhomogeneities in 3D and accurately assigns their depth to within 1 mm in the ideal conditions of otherwise homogeneous tissue-like phantoms. We also measured induced hemodynamic changes in the breast of a healthy human subject at a selected location (no scanning). We applied a cyclic, arterial blood pressure perturbation by alternating inflation (to a pressure of 200 mmHg) and deflation of a pneumatic cuff around the subject's thigh at a frequency of 0.05 Hz, and measured oscillations with amplitudes up to 1 μM and 0.2 μM in the tissue concentrations of oxyhemoglobin and deoxyhemoglobin, respectively. These hemodynamic oscillations provide information about the vascular structure and functional integrity in tissue, and may be used to assess healthy or abnormal perfusion in a clinical setting.

  15. Effects of Reduced Compression in Digital Breast Tomosynthesis on Pain, Anxiety, and Image Quality

    PubMed Central

    Abdullah Suhaimi, Siti Aishah; Mohamed, Afifah; Ahmad, Mahadir; Chelliah, Kanaga Kumari

    2015-01-01

    Background Most women are reluctant to undergo breast cancer screenings due to the pain and anxiety they experience. Sectional three-dimensional (3-D) breasttomosynthesis was introduced to improve cancer detection, but breast compression is still used for the acquisition of images. This study was conducted to investigate the effects of reduced compression force on pain, anxiety and image quality in digital breast tomosynthesis (DBT). Methods A total of 130 women underwent screening mammography using convenience sampling with standard and reduced compression force at the breast clinic. A validated questionnaire of 20 items on the state anxiety level and a 4-point verbal rating scale on the pain level were conducted after the mammography. Craniocaudal (CC) and mediolateral oblique (MLO) projections were performed with standard compression, but only the CC view was performed with reduced compression. Two independent radiologists evaluated the images using image criteria scores (ICS) and the Breast Imaging-Reporting and Data System (BI-RADS). Results Standard compression exhibited significantly increased scores for pain and anxiety levels compared with reduced compression (P < 0.001). Both radiologists scored the standard and reduced compression images as equal, with scores of 87.5% and 92.5% for ICS and BI-RADS scoring, respectively. Conclusions Reduced compression force in DBT reduces anxiety and pain levels without compromising image quality. PMID:28223884

  16. A comparison of the performance of digital mammography systems.

    PubMed

    Monnin, P; Gutierrez, D; Bulling, S; Guntern, D; Verdun, F R

    2007-03-01

    An objective analysis of image quality parameters was performed for six digital mammography systems. The presampled modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) for the systems were determined at different doses, for 28 kVp with a Mo/Mo or W/Al target/filter combination and 2 mm of additional aluminium filtration. The flat-panel units have higher MTF and DQE in the mid to high frequency range than standard CR systems. The highest DQE, over the whole dose range, is for the slit-scanning direct photon counting system. Dual-side read CR can overcome the inherent x-ray absorption and signal collection limitations of standard CR mammography, improving the low-frequency DQE by 40%, to the same level as full-field systems, but it does not improve the poor spatial resolution of phosphor.

  17. A comparison of the performance of digital mammography systems

    SciTech Connect

    Monnin, P.; Gutierrez, D.; Bulling, S.; Guntern, D.; Verdun, F. R.

    2007-03-15

    An objective analysis of image quality parameters was performed for six digital mammography systems. The presampled modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) for the systems were determined at different doses, for 28 kVp with a Mo/Mo or W/Al target/filter combination and 2 mm of additional aluminium filtration. The flat-panel units have higher MTF and DQE in the mid to high frequency range than standard CR systems. The highest DQE, over the whole dose range, is for the slit-scanning direct photon counting system. Dual-side read CR can overcome the inherent x-ray absorption and signal collection limitations of standard CR mammography, improving the low-frequency DQE by 40%, to the same level as full-field systems, but it does not improve the poor spatial resolution of phosphor.

  18. Image quality and dose assessment in digital breast tomosynthesis: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Baptista, M.; Di Maria, S.; Oliveira, N.; Matela, N.; Janeiro, L.; Almeida, P.; Vaz, P.

    2014-11-01

    Mammography is considered a standard technique for the early detection of breast cancer. However, its sensitivity is limited essentially due to the issue of the overlapping breast tissue. This limitation can be partially overcome, with a relatively new technique, called digital breast tomosynthesis (DBT). For this technique, optimization of acquisition parameters which maximize image quality, whilst complying with the ALARA principle, continues to be an area of considerable research. The aim of this work was to study the best quantum energies that optimize the image quality with the lowest achievable dose in DBT and compare these results with the digital mammography (DM) ones. Monte Carlo simulations were performed using the state-of-the-art computer program MCNPX 2.7.0 in order to generate several 2D cranio-caudal (CC) projections obtained during an acquisition of a standard DBT examination. Moreover, glandular absorbed doses and photon flux calculations, for each projection image, were performed. A homogeneous breast computational phantom with 50%/50% glandular/adipose tissue composition was used and two compressed breast thicknesses were evaluated: 4 cm and 8 cm. The simulated projection images were afterwards reconstructed with an algebraic reconstruction tool and the signal difference to noise ratio (SDNR) was calculated in order to evaluate the image quality in DBT and DM. Finally, a thorough comparison between the results obtained in terms of SDNR and dose assessment in DBT and DM was performed.

  19. A proposal for a national mammography database: content, purpose, and value.

    PubMed

    Osuch, J R; Anthony, M; Bassett, L W; DeBor, M; D'Orsi, C; Hendrick, R E; Linver, M; Smith, R

    1995-06-01

    A national mammography database is a centralized, computerized method of data collection consisting of two possible parts: a national mammography audit and a system for monitoring and tracking patients. A national mammography audit refers to collecting and analyzing medical audit data of individual mammography practices at a national level and is a critical step in improving the interpretive component of mammography. The monitoring and tracking component refers to a centralized system that provides women and physicians with a recruitment and follow-up mechanism to optimize participation in mammography services. Both parts of a national mammography database represent important components in the improvement of mammography quality. However, unique scientific, legal, and fiscal concerns are important to consider before establishing a national mammography database.

  20. Study on computer-aided diagnosis of hepatic MR imaging and mammography

    SciTech Connect

    Zhang Xuejun

    2005-04-01

    It is well known that the liver is an organ easily attacked by diseases. The purpose of this study is to develop a computer-aided diagnosis (CAD) scheme for helping radiologists to differentiate hepatic diseases more efficiently. Our software named LIVERANN integrated the magnetic resonance (MR) imaging findings with different pulse sequences to classify the five categories of hepatic diseases by using the artificial neural network (ANN) method. The intensity and homogeneity within the region of interest (ROI) delineated by a radiologist were automatically calculated to obtain numerical data by the program for input signals to the ANN. Outputs were the five pathological categories of hepatic diseases (hepatic cyst, hepatocellular carcinoma, dysplasia in cirrhosis, cavernous hemangioma, and metastasis). The experiment demonstrated a testing accuracy of 93% from 80 patients. In order to differentiate the cirrhosis from normal liver, the volume ratio of left to whole (LTW) was proposed to quantify the degree of cirrhosis by three-dimensional (3D) volume analysis. The liver region was firstly extracted from computed tomography (CT) or MR slices based on edge detection algorithms, and then separated into left lobe and right lobe by the hepatic umbilical fissure. The volume ratio of these two parts showed that the LTW ratio in the liver was significantly improved in the differentiation performance, with (25.6%{+-}4.3%) in cirrhosis versus the normal liver (16.4%{+-}5.4%). In addition, the application of the ANN method for detecting clustered microcalcifications in masses on mammograms was described here as well. A new structural ANN, so-called a shift-invariant artificial neural network (SIANN), was integrated with our triple-ring filter (TRF) method in our CAD system. As the result, the sensitivity of detecting clusters was improved from 90% by our previous TRF method to 95% by using both SIANN and TRF.

  1. Barriers to screening mammography.

    PubMed

    Sarma, Elizabeth A

    2015-01-01

    Breast cancer (BRCA) is the second most commonly diagnosed cancer among women in the USA, and mammography is an effective means for the early detection of BRCA. Identifying the barriers to screening mammography can inform research, policy and practice aiming to increase mammography adherence. A literature review was conducted to determine common barriers to screening mammography adherence. PsycINFO and PubMed databases were searched to identify studies published between 2000 and 2012 that examined barriers associated with reduced mammography adherence. Three thematic groups of barriers, based on social ecology, were identified from the literature: healthcare system-level, social and individual-level barriers. Researchers must consider screening behaviour in context and, therefore, should simultaneously consider each level of barriers when attempting to understand screening behaviour and create interventions to increase mammography adherence.

  2. Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors: Automated measurement development for full field digital mammography

    SciTech Connect

    Fowler, E. E.; Sellers, T. A.; Lu, B.; Heine, J. J.

    2013-11-15

    Purpose: The Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors are used for standardized mammographic reporting and are assessed visually. This reporting is clinically relevant because breast composition can impact mammographic sensitivity and is a breast cancer risk factor. New techniques are presented and evaluated for generating automated BI-RADS breast composition descriptors using both raw and calibrated full field digital mammography (FFDM) image data.Methods: A matched case-control dataset with FFDM images was used to develop three automated measures for the BI-RADS breast composition descriptors. Histograms of each calibrated mammogram in the percent glandular (pg) representation were processed to create the new BR{sub pg} measure. Two previously validated measures of breast density derived from calibrated and raw mammograms were converted to the new BR{sub vc} and BR{sub vr} measures, respectively. These three measures were compared with the radiologist-reported BI-RADS compositions assessments from the patient records. The authors used two optimization strategies with differential evolution to create these measures: method-1 used breast cancer status; and method-2 matched the reported BI-RADS descriptors. Weighted kappa (κ) analysis was used to assess the agreement between the new measures and the reported measures. Each measure's association with breast cancer was evaluated with odds ratios (ORs) adjusted for body mass index, breast area, and menopausal status. ORs were estimated as per unit increase with 95% confidence intervals.Results: The three BI-RADS measures generated by method-1 had κ between 0.25–0.34. These measures were significantly associated with breast cancer status in the adjusted models: (a) OR = 1.87 (1.34, 2.59) for BR{sub pg}; (b) OR = 1.93 (1.36, 2.74) for BR{sub vc}; and (c) OR = 1.37 (1.05, 1.80) for BR{sub vr}. The measures generated by method-2 had κ between 0.42–0.45. Two of these measures

  3. Frequency-Domain Optical Mammography

    DTIC Science & Technology

    2001-10-01

    optical measurements on breast-like phantoms (Months 19-24) a. Prepare the breast-like phantoms (optical inhomogeneities + strongly scattering...reveals contralateral hemodynamic changes upon hemi- imaging of solid phantoms for optical mammography. Appl Opt field paradigm. Vision Res 41: 97...1064 nm for the Nd:YAG, 660-1180 nm (tunable) for the Ti:sapphire, and 625-780 nm (tunable) for dye lasers using DCM or oxanine 1 dyes. A unique

  4. Video and image quality

    NASA Astrophysics Data System (ADS)

    Aldridge, Jim

    1995-09-01

    This paper presents some of the results of a UK government research program into methods of improving the effectiveness of CCTV surveillance systems. The paper identifies the major components of video security systems and primary causes of unsatisfactory images. A method is outline for relating the picture detail limitations imposed by each system component on overall system performance. The paper also points out some possible difficulties arising from the use of emerging new technology.

  5. Contrast to Noise Ratio and Contrast Detail Analysis in Mammography:A Monte Carlo Study

    NASA Astrophysics Data System (ADS)

    Metaxas, V.; Delis, H.; Kalogeropoulou, C.; Zampakis, P.; Panayiotakis, G.

    2015-09-01

    The mammographic spectrum is one of the major factors affecting image quality in mammography. In this study, a Monte Carlo (MC) simulation model was used to evaluate image quality characteristics of various mammographic spectra. The anode/filter combinations evaluated, were those traditionally used in mammography, for tube voltages between 26 and 30 kVp. The imaging performance was investigated in terms of Contrast to Noise Ratio (CNR) and Contrast Detail (CD) analysis, by involving human observers, utilizing a mathematical CD phantom. Soft spectra provided the best characteristics in terms of both CNR and CD scores, while tube voltage had a limited effect. W-anode spectra filtered with k-edge filters demonstrated an improved performance, that sometimes was better compared to softer x-ray spectra, produced by Mo or Rh anode. Regarding the filter material, k-edge filters showed superior performance compared to Al filters.

  6. Comparative performance of modern digital mammography systems in a large breast screening program

    SciTech Connect

    Yaffe, Martin J. Bloomquist, Aili K.; Hunter, David M.; Mawdsley, Gordon E.; Chiarelli, Anna M.; Muradali, Derek; Mainprize, James G.

    2013-12-15

    Purpose: To compare physical measures pertaining to image quality among digital mammography systems utilized in a large breast screening program. To examine qualitatively differences in these measures and differences in clinical cancer detection rates between CR and DR among sites within that program. Methods: As part of the routine quality assurance program for screening, field measurements are made of several variables considered to correlate with the diagnostic quality of medical images including: modulation transfer function, noise equivalent quanta, d′ (an index of lesion detectability) and air kerma to allow estimation of mean glandular dose. In addition, images of the mammography accreditation phantom are evaluated. Results: It was found that overall there were marked differences between the performance measures of DR and CR mammography systems. In particular, the modulation transfer functions obtained with the DR systems were found to be higher, even for larger detector element sizes. Similarly, the noise equivalent quanta, d′, and the phantom scores were higher, while the failure rates associated with low signal-to-noise ratio and high dose were lower with DR. These results were consistent with previous findings in the authors’ program that the breast cancer detection rates at sites employing CR technology were, on average, 30.6% lower than those that used DR mammography. Conclusions: While the clinical study was not large enough to allow a statistically powered system-by-system assessment of cancer detection accuracy, the physical measures expressing spatial resolution, and signal-to-noise ratio are consistent with the published finding that sites employing CR systems had lower cancer detection rates than those using DR systems for screening mammography.

  7. Predicting contrast detail performance from objective measurements in digital mammography

    NASA Astrophysics Data System (ADS)

    Young, Kenneth C.; Alsager, Abdulaziz; Dance, David R.; Oduko, Jennifer M.; Gundogdu, Ozcan; Spyrou, Nicholas M.

    2009-02-01

    European Guidelines for quality control in digital mammography specify minimum and achievable standards of image quality in terms of threshold contrast, based on readings of images of the CDMAM test object by human observers. However the methodology is time-consuming and has large inter- and intra-observer error. To overcome these problems a software program is available to automatically read CDMAM images. An alternative approach would be to predict threshold contrast from measurements of DQE and MTF using a model of the imaging process. A simple signal-matched noise-integration model has been used to predict the contrast detail response of five different types of commercial digital mammography system (Siemens Inspiration, GE Senographe DS, and three types of Konica Minolta computerised radiography system). Measurements were made of the MTF and DQE of each detector and the noise equivalent apertures calculated. For each system sets of 16 images of the CDMAM test object were acquired at a range of dose levels and contrast-detail plots obtained using human observers and automated reading. The theoretically and experimentally determined threshold contrasts were compared. An encouragingly good level of agreement was found between the experimental data and theoretical predictions.

  8. Perspectives of Mobile Versus Fixed Mammography in Santa Clara County, California: A Focus Group Study

    PubMed Central

    Chang-Halpenny, Christine; Kumarasamy, Narmadan A; Venegas, Angela; Braddock III, Clarence H

    2016-01-01

    environment for patients and ensuring the quality of mammography images.  PMID:27014528

  9. Image quality (IQ) guided multispectral image compression

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  10. Grid infrastructures for developing mammography CAD systems.

    PubMed

    Ramos-Pollan, Raul; Franco, Jose M; Sevilla, Jorge; Guevara-Lopez, Miguel A; de Posada, Naimy Gonzalez; Loureiro, Joanna; Ramos, Isabel

    2010-01-01

    This paper presents a set of technologies developed to exploit Grid infrastructures for breast cancer CAD, that include (1) federated repositories of mammography images and clinical data over Grid storage, (2) a workstation for mammography image analysis and diagnosis and (3) a framework for data analysis and training machine learning classifiers over Grid computing power specially tuned for medical image based data. An experimental mammography digital repository of approximately 300 mammograms from the MIAS database was created and classifiers were built achieving a 0.85 average area under the ROC curve in a dataset of 100 selected mammograms with representative pathological lesions and normal cases. Similar results were achieved with classifiers built for the UCI Breast Cancer Wisconsin dataset (699 features vectors). Now these technologies are being validated in a real medical environment at the Faculty of Medicine in Porto University after a process of integrating the tools within the clinicians workflows and IT systems.

  11. Composite x-ray image assembly for large-field digital mammography with one- and two-dimensional positioning of a focal plane array

    NASA Technical Reports Server (NTRS)

    Halama, G.; McAdoo, J.; Liu, H.

    1998-01-01

    To demonstrate the feasibility of a novel large-field digital mammography technique, a 1024 x 1024 pixel Loral charge-coupled device (CCD) focal plane array (FPA) was positioned in a mammographic field with one- and two-dimensional scan sequences to obtain 950 x 1800 pixel and 3600 x 3600 pixel composite images, respectively. These experiments verify that precise positioning of FPAs produced seamless composites and that the CCD mosaic concept has potential for high-resolution, large-field imaging. The proposed CCD mosaic concept resembles a checkerboard pattern with spacing left between the CCDs for the driver and readout electronics. To obtain a complete x-ray image, the mosaic must be repositioned four times, with an x-ray exposure at each position. To reduce the patient dose, a lead shield with appropriately patterned holes is placed between the x-ray source and the patient. The high-precision motorized translation stages and the fiber-coupled-scintillating-screen-CCD sensor assembly were placed in the position usually occupied by the film cassette. Because of the high mechanical precision, seamless composites were constructed from the subimages. This paper discusses the positioning, image alignment procedure, and composite image results. The paper only addresses the formation of a seamless composite image from subimages and will not consider the effects of the lead shield, multiple CCDs, or the speed of motion.

  12. [Advances in research on automatic exposure control of mammography system].

    PubMed

    Wang, Guoyi; Ye, Chengfu; Wu, Haiming; Wang, Tainfu; Zhang, Hong

    2014-12-01

    Mammography imaging is one of the most demanding imaging modalities from the point of view of the bal- ance between image quality (the visibility of small size and/or low contrast structures) and dose (screening of many asymptomatic people). Therefore, since the introduction of the first dedicated mammographic units, many efforts have been directed to seek the best possible image quality while minimizing patient dose. The performance of auto- matic exposure control (AEC) is the manifestation of this demand. The theory of AEC includes exposure detection and optimization and also involves some accomplished methodology. This review presents the development and present situa- tion of spectrum optimization, detector evolution, and the way how to accomplish and evaluate AEC methods.

  13. Landsat image data quality studies

    NASA Technical Reports Server (NTRS)

    Schueler, C. F.; Salomonson, V. V.

    1985-01-01

    Preliminary results of the Landsat-4 Image Data Quality Analysis (LIDQA) program to characterize the data obtained using the Thematic Mapper (TM) instrument on board the Landsat-4 and Landsat-5 satellites are reported. TM design specifications were compared to the obtained data with respect to four criteria, including spatial resolution; geometric fidelity; information content; and image relativity to Multispectral Scanner (MSS) data. The overall performance of the TM was rated excellent despite minor instabilities and radiometric anomalies in the data. Spatial performance of the TM exceeded design specifications in terms of both image sharpness and geometric accuracy, and the image utility of the TM data was at least twice as high as MSS data. The separability of alfalfa and sugar beet fields in a TM image is demonstrated.

  14. Technology assessment: observer study directly compares screen/film to CR mammography

    NASA Astrophysics Data System (ADS)

    Fletcher-Heath, Lynn; Richards, Anne; Ryan-Kron, Susan

    2007-03-01

    A new study supports and expands upon a previous reporting that computed radiography (CR) mammography offers as good, or better, image quality than state-of-the-art screen/film mammography. The suitability of CR mammography is explored through qualitative and quantitative study components: feature comparison and cancer detection rates of each modality. Images were collected from 150 normal and 50 biopsy-confirmed subjects representing a range of breast and pathology types. Comparison views were collected without releasing compression, using automatic exposure control on Kodak MIN-R films, followed by CR. Digital images were displayed as both softcopy (S/C) and hardcopy (H/C) for the feature comparison, and S/C for the cancer detection task. The qualitative assessment used preference scores from five board-certified radiologists obtained while viewing 100 screen/film-CR pairs from the cancer subjects for S/C and H/C CR output. Fifteen general image-quality features were rated, and up to 12 additional features were rated for each pair, based on the pathology present. Results demonstrate that CR is equivalent or preferred to conventional mammography for overall image quality (89% S/C, 95% H/C), image contrast (95% S/C, 98% H/C), sharpness (86% S/C, 93% H/C), and noise (94% S/C, 91% H/C). The quantitative objective was satisfied by asking 10 board-certified radiologists to provide a BI-RADS TM score and probability of malignancy per breast for each modality of the 200 cases. At least 28 days passed between observations of the same case. Average sensitivity and specificity was 0.89 and 0.82 for CR and 0.91 and 0.82 for screen/film, respectively.

  15. Optimization of image quality in breast tomosynthesis using lumpectomy and mastectomy specimens

    NASA Astrophysics Data System (ADS)

    Timberg, Pontus; Ruschin, Mark; Båth, Magnus; Hemdal, Bengt; Andersson, Ingvar; Svahn, Tony; Mattsson, Sören; Tingberg, Anders

    2007-03-01

    The purpose of this study was to determine how image quality in breast tomosynthesis (BT) is affected when acquisition modes are varied, using human breast specimens containing malignant tumors and/or microcalcifications. Images of thirty-one breast lumpectomy and mastectomy specimens were acquired on a BT prototype based on a Mammomat Novation (Siemens) full-field digital mammography system. BT image acquisitions of the same specimens were performed varying the number of projections, angular range, and detector signal collection mode (binned and nonbinned in the scan direction). An enhanced filtered back projection reconstruction method was applied with constant settings of spectral and slice thickness filters. The quality of these images was evaluated via relative visual grading analysis (VGA) human observer performance experiments using image quality criteria. Results from the relative VGA study indicate that image quality increases with number of projections and angular range. A binned detector collecting mode results in less noise, but reduced resolution of structures. Human breast specimens seem to be suitable for comparing image sets in BT with image quality criteria.

  16. Optimal photon energy comparison between digital breast tomosynthesis and mammography: a case study.

    PubMed

    Di Maria, S; Baptista, M; Felix, M; Oliveira, N; Matela, N; Janeiro, L; Vaz, P; Orvalho, L; Silva, A

    2014-06-01

    A comparison, in terms of the optimal energy that maximizes the image quality between digital breast tomosynthesis (DBT) and digital mammography (DM) was performed in a MAMMOMAT Inspiration system (Siemens) based on amorphous selenium flat panel detector. In this paper we measured the image quality by the signal difference-to-noise ratio (SDNR), and the patient risk by the mean glandular dose (MGD). Using these quantities we compared the optimal voltage that maximizes the image quality both in breast tomosynthesis and standard mammography acquisition mode. The comparison for the two acquisition modes was performed for a W/Rh anode filter combinations by using a 4.5 cm tissue equivalent mammography phantom. Moreover, in order to check if the used equipment was quantum noise limited, the relation of the relative noise with respect to the detector dose was evaluated. Results showed that in the tomosynthesis acquisition mode the optimal voltage is 28 kV, whereas in standard mammography the optimal voltage is 30 kV. The automatic exposure control (AEC) of the system selects 28 kV as optimal voltage both for DBT and DM. Monte Carlo simulations showed a qualitative agreement with the AEC selection system, since an optimal monochromatic energy of 20 keV was found both for DBT and DM. Moreover, the check about the noise showed that the system is not completely quantum noise limited, and this issue could explain the experimental slight difference in terms of optimal voltage between DBT and DM. According to these results, the use of higher voltage settings is not justified for the improvement of the image quality during a DBT examination.

  17. High dynamic range CMOS-based mammography detector for FFDM and DBT

    NASA Astrophysics Data System (ADS)

    Peters, Inge M.; Smit, Chiel; Miller, James J.; Lomako, Andrey

    2016-03-01

    Digital Breast Tomosynthesis (DBT) requires excellent image quality in a dynamic mode at very low dose levels while Full Field Digital Mammography (FFDM) is a static imaging modality that requires high saturation dose levels. These opposing requirements can only be met by a dynamic detector with a high dynamic range. This paper will discuss a wafer-scale CMOS-based mammography detector with 49.5 μm pixels and a CsI scintillator. Excellent image quality is obtained for FFDM as well as DBT applications, comparing favorably with a-Se detectors that dominate the X-ray mammography market today. The typical dynamic range of a mammography detector is not high enough to accommodate both the low noise and the high saturation dose requirements for DBT and FFDM applications, respectively. An approach based on gain switching does not provide the signal-to-noise benefits in the low-dose DBT conditions. The solution to this is to add frame summing functionality to the detector. In one X-ray pulse several image frames will be acquired and summed. The requirements to implement this into a detector are low noise levels, high frame rates and low lag performance, all of which are unique characteristics of CMOS detectors. Results are presented to prove that excellent image quality is achieved, using a single detector for both DBT as well as FFDM dose conditions. This method of frame summing gave the opportunity to optimize the detector noise and saturation level for DBT applications, to achieve high DQE level at low dose, without compromising the FFDM performance.

  18. FDA Certified Mammography Facilities

    MedlinePlus

    ... Program Consumer Information (MQSA) Search for a Certified Facility Share Tweet Linkedin Pin it More sharing options ... Email Print This list of FDA Certified Mammography Facilities is updated weekly. If you click on Search ...

  19. Perceived image quality assessment for color images on mobile displays

    NASA Astrophysics Data System (ADS)

    Jang, Hyesung; Kim, Choon-Woo

    2015-01-01

    With increase in size and resolution of mobile displays and advances in embedded processors for image enhancement, perceived quality of images on mobile displays has been drastically improved. This paper presents a quantitative method to evaluate perceived image quality of color images on mobile displays. Three image quality attributes, colorfulness, contrast and brightness, are chosen to represent perceived image quality. Image quality assessment models are constructed based on results of human visual experiments. In this paper, three phase human visual experiments are designed to achieve credible outcomes while reducing time and resources needed for visual experiments. Values of parameters of image quality assessment models are estimated based on results from human visual experiments. Performances of different image quality assessment models are compared.

  20. Radiation protection program for early detection of breast cancer in a mammography facility

    NASA Astrophysics Data System (ADS)

    Villagomez Casimiro, Mariana; Ruiz Trejo, Cesar; Espejo Fonseca, Ruby

    2014-11-01

    Mammography is the best tool for early detection of Breast Cancer. In this diagnostic radiology modality it is necessary to establish the criteria to ensure the proper use and operation of the equipment used to obtain mammographic images in order to contribute to the safe use of ionizing radiation. The aim of the work was to implement at FUCAM-AC the radiation protection program which must be established for patients and radiation workers according to Mexican standards [1-4]. To achieve this goal, radiation protection and quality control manuals were elaborated [5]. Furthermore, a quality control program (QCP) in the mammography systems (analog/digital), darkroom included, has been implemented. Daily sensitometry, non-variability of the image quality, visualizing artifacts, revision of the equipment mechanical stability, compression force and analysis of repetition studies are some of the QCP routine tests that must be performed by radiological technicians of this institution as a set of actions to ensure the protection of patients. Image quality and patients dose assessment were performed on 4 analog equipment installed in 2 mobile units. In relation to dose assessment, all equipment passed the acceptance criteria (<3 mGy per projection). The image quality test showed that most images (70%)- presented artifacts. A brief summary of the results of quality control tests applied to the equipment and film processor are presented. To maintain an adequate level of quality and safety at FUCAM-AC is necessary that the proposed radiation protection program in this work is applied.

  1. Radiation protection program for early detection of breast cancer in a mammography facility

    SciTech Connect

    Mariana, Villagomez Casimiro E-mail: cesar@fisica.unam.mx; Cesar, Ruiz Trejo E-mail: cesar@fisica.unam.mx; Ruby, Espejo Fonseca

    2014-11-07

    Mammography is the best tool for early detection of Breast Cancer. In this diagnostic radiology modality it is necessary to establish the criteria to ensure the proper use and operation of the equipment used to obtain mammographic images in order to contribute to the safe use of ionizing radiation. The aim of the work was to implement at FUCAM-AC the radiation protection program which must be established for patients and radiation workers according to Mexican standards [1–4]. To achieve this goal, radiation protection and quality control manuals were elaborated [5]. Furthermore, a quality control program (QCP) in the mammography systems (analog/digital), darkroom included, has been implemented. Daily sensitometry, non-variability of the image quality, visualizing artifacts, revision of the equipment mechanical stability, compression force and analysis of repetition studies are some of the QCP routine tests that must be performed by radiological technicians of this institution as a set of actions to ensure the protection of patients. Image quality and patients dose assessment were performed on 4 analog equipment installed in 2 mobile units. In relation to dose assessment, all equipment passed the acceptance criteria (<3 mGy per projection). The image quality test showed that most images (70%)– presented artifacts. A brief summary of the results of quality control tests applied to the equipment and film processor are presented. To maintain an adequate level of quality and safety at FUCAM-AC is necessary that the proposed radiation protection program in this work is applied.

  2. [A method of iris image quality evaluation].

    PubMed

    Murat, Hamit; Mao, Dawei; Tong, Qinye

    2006-04-01

    Iris image quality evaluation plays a very important part in iris computer recognition. An iris image quality evaluation method was introduced into this study to distinguish good image from bad image caused by pupil distortion, blurred boundary, two circles appearing not concentric, and severe occlusion by eyelids and eyelashes. The tests based on this method gave good results.

  3. Technology transfer in digital mammography. Report of the Joint National Cancer Institute-National Aeronautics and Space Administration workshop of May 19-20, 1993.

    PubMed

    Winfield, D; Silbiger, M; Brown, G S; Clarke, L; Dwyer, S; Yaffe, M; Shtern, F

    1994-04-01

    Digital mammography is one of the most promising novel technologies for further improvement of early detection of breast cancer, offering important potential advantages: 1) improved image quality; 2) digital image processing for improved lesion contrast; 3) computer-aided diagnosis for enhanced radiologic interpretation; and 4) teleradiology for facilitated radiologic consultation. The Diagnostic Imaging Research Branch of the National Cancer Institute (NCI) recently funded an international, multidisciplinary, multi-institutional Digital Mammography Development Group for collaborations between NCI, the academic community, and industry to facilitate the integrated development and implementation of digital mammographic systems. Currently, however, digital mammography faces a number of fundamental technological roadblocks: 1) cost-effective digital detectors and displays for imaging systems; 2) the need for novel algorithms for image processing and computer-aided diagnosis; and 3) high performance, low cost digital networks to provide an "information superhighway" for teleradiology. To solve some of these technological problems, the Diagnostic Imaging Research Branch of NCI joined efforts with the Technology Transfer Division of the National Aeronautics and Space Administration to pursue a federal technology transfer program in digital mammography. The authors discuss the findings and recommendations of the workshop entitled "Technology Transfer in Digital Mammography," which was organized and held jointly by the NCI and the National Aeronautics and Space Administration in May, 1993. Numerous innovative technologies of varying degree of promise for digital mammography were presented at the conference. In this article, specific technologies presented at the workshop by the federal and federally-supported laboratories are described, and critiques of these technologies by the leaders of the medical imaging community are presented.

  4. Computer vision and artificial intelligence in mammography.

    PubMed

    Vyborny, C J; Giger, M L

    1994-03-01

    The revolution in digital computer technology that has made possible new and sophisticated imaging techniques may next influence the interpretation of radiologic images. In mammography, computer vision and artificial intelligence techniques have been used successfully to detect or to characterize abnormalities on digital images. Radiologists supplied with this information often perform better at mammographic detection or characterization tasks in observer studies than do unaided radiologists. This technology therefore could decrease errors in mammographic interpretation that continue to plague human observers.

  5. Dual-energy contrast-enhanced spectral mammography (CESM).

    PubMed

    Daniaux, Martin; De Zordo, Tobias; Santner, Wolfram; Amort, Birgit; Koppelstätter, Florian; Jaschke, Werner; Dromain, Clarisse; Oberaigner, Willi; Hubalek, Michael; Marth, Christian

    2015-10-01

    Dual-energy contrast-enhanced mammography is one of the latest developments in breast care. Imaging with contrast agents in breast cancer was already known from previous magnetic resonance imaging and computed tomography studies. However, high costs, limited availability-or high radiation dose-led to the development of contrast-enhanced spectral mammography (CESM). We reviewed the current literature, present our experience, discuss the advantages and drawbacks of CESM and look at the future of this innovative technique.

  6. Developing a comprehensive database management system for organization and evaluation of mammography datasets.

    PubMed

    Wu, Yirong; Rubin, Daniel L; Woods, Ryan W; Elezaby, Mai; Burnside, Elizabeth S

    2014-01-01

    We aimed to design and develop a comprehensive mammography database system (CMDB) to collect clinical datasets for outcome assessment and development of decision support tools. A Health Insurance Portability and Accountability Act (HIPAA) compliant CMDB was created to store multi-relational datasets of demographic risk factors and mammogram results using the Breast Imaging Reporting and Data System (BI-RADS) lexicon. The CMDB collected both biopsy pathology outcomes, in a breast pathology lexicon compiled by extending BI-RADS, and our institutional breast cancer registry. The audit results derived from the CMDB were in accordance with Mammography Quality Standards Act (MQSA) audits and national benchmarks. The CMDB has managed the challenges of multi-level organization demanded by the complexity of mammography practice and lexicon development in pathology. We foresee that the CMDB will be useful for efficient quality assurance audits and development of decision support tools to improve breast cancer diagnosis. Our procedure of developing the CMDB provides a framework to build a detailed data repository for breast imaging quality control and research, which has the potential to augment existing resources.

  7. Developing a Comprehensive Database Management System for Organization and Evaluation of Mammography Datasets

    PubMed Central

    Wu, Yirong; Rubin, Daniel L; Woods, Ryan W; Elezaby, Mai; Burnside, Elizabeth S

    2014-01-01

    We aimed to design and develop a comprehensive mammography database system (CMDB) to collect clinical datasets for outcome assessment and development of decision support tools. A Health Insurance Portability and Accountability Act (HIPAA) compliant CMDB was created to store multi-relational datasets of demographic risk factors and mammogram results using the Breast Imaging Reporting and Data System (BI-RADS) lexicon. The CMDB collected both biopsy pathology outcomes, in a breast pathology lexicon compiled by extending BI-RADS, and our institutional breast cancer registry. The audit results derived from the CMDB were in accordance with Mammography Quality Standards Act (MQSA) audits and national benchmarks. The CMDB has managed the challenges of multi-level organization demanded by the complexity of mammography practice and lexicon development in pathology. We foresee that the CMDB will be useful for efficient quality assurance audits and development of decision support tools to improve breast cancer diagnosis. Our procedure of developing the CMDB provides a framework to build a detailed data repository for breast imaging quality control and research, which has the potential to augment existing resources. PMID:25368510

  8. Digital Mammography: Improvements in Breast Cancer Diagnostic

    NASA Astrophysics Data System (ADS)

    Montaño Zetina, Luis Manuel

    2006-01-01

    X-ray mammography is the most sensitive imaging technique for early detection of breast cancer (diagnostics). It is performed by a radiological system equipped with a rotating molybdenum (Mo) anode tube with an additional Mo filter. In the production of X-ray, bremsstrahlung photons produce an intense diffuse radiation, affecting the contrast between normal and cancerous tissue. So it is known that a good mammographic imaging can help to detect cancer in the first stages avoiding surgery, amputation or even death. In the last years there has been some developments in new imaging techniques to improve the contrast spatial resolution between different tissues: digital imaging, or the so call digital mammography. Digital mammographic imaging is considered an improvement in the prevention of breast cancer due to the advantages it offers.

  9. Digital Mammography: Improvements in Breast Cancer Diagnostic

    SciTech Connect

    Montano Zetina, Luis Manuel

    2006-01-06

    X-ray mammography is the most sensitive imaging technique for early detection of breast cancer (diagnostics). It is performed by a radiological system equipped with a rotating molybdenum (Mo) anode tube with an additional Mo filter. In the production of X-ray, bremsstrahlung photons produce an intense diffuse radiation, affecting the contrast between normal and cancerous tissue. So it is known that a good mammographic imaging can help to detect cancer in the first stages avoiding surgery, amputation or even death. In the last years there has been some developments in new imaging techniques to improve the contrast spatial resolution between different tissues: digital imaging, or the so call digital mammography. Digital mammographic imaging is considered an improvement in the prevention of breast cancer due to the advantages it offers.

  10. Uncertainty modeling for ontology-based mammography annotation with intelligent BI-RADS scoring.

    PubMed

    Bulu, Hakan; Alpkocak, Adil; Balci, Pinar

    2013-05-01

    This paper presents an ontology-based annotation system and BI-RADS (Breast Imaging Reporting and Data System) score reasoning with Semantic Web technologies in mammography. The annotation system is based on the Mammography Annotation Ontology (MAO) where the BI-RADS score reasoning works. However, ontologies are based on crisp logic and they cannot handle uncertainty. Consequently, we propose a Bayesian-based approach to model uncertainty in mammography ontology and make reasoning possible using BI-RADS scores with SQWRL (Semantic Query-enhanced Web Rule Language). First, we give general information about our system and present details of mammography annotation ontology, its main concepts and relationships. Then, we express uncertainty in mammography and present approaches to handle uncertainty issues. System is evaluated with a manually annotated dataset DEMS (Dokuz Eylul University Mammography Set) and DDSM (Digital Database for Screening Mammography). We give the result of experimentations in terms of accuracy, sensitivity, precision and uncertainty level measures.

  11. Infrared image quality evaluation method without reference image

    NASA Astrophysics Data System (ADS)

    Yue, Song; Ren, Tingting; Wang, Chengsheng; Lei, Bo; Zhang, Zhijie

    2013-09-01

    Since infrared image quality depends on many factors such as optical performance and electrical noise of thermal imager, image quality evaluation becomes an important issue which can conduce to both image processing afterward and capability improving of thermal imager. There are two ways of infrared image quality evaluation, with or without reference image. For real-time thermal image, the method without reference image is preferred because it is difficult to get a standard image. Although there are various kinds of methods for evaluation, there is no general metric for image quality evaluation. This paper introduces a novel method to evaluate infrared image without reference image from five aspects: noise, clarity, information volume and levels, information in frequency domain and the capability of automatic target recognition. Generally, the basic image quality is obtained from the first four aspects, and the quality of target is acquired from the last aspect. The proposed method is tested on several infrared images captured by different thermal imagers. Calculate the indicators and compare with human vision results. The evaluation shows that this method successfully describes the characteristics of infrared image and the result is consistent with human vision system.

  12. Assessing product image quality for online shopping

    NASA Astrophysics Data System (ADS)

    Goswami, Anjan; Chung, Sung H.; Chittar, Naren; Islam, Atiq

    2012-01-01

    Assessing product-image quality is important in the context of online shopping. A high quality image that conveys more information about a product can boost the buyer's confidence and can get more attention. However, the notion of image quality for product-images is not the same as that in other domains. The perception of quality of product-images depends not only on various photographic quality features but also on various high level features such as clarity of the foreground or goodness of the background etc. In this paper, we define a notion of product-image quality based on various such features. We conduct a crowd-sourced experiment to collect user judgments on thousands of eBay's images. We formulate a multi-class classification problem for modeling image quality by classifying images into good, fair and poor quality based on the guided perceptual notions from the judges. We also conduct experiments with regression using average crowd-sourced human judgments as target. We compute a pseudo-regression score with expected average of predicted classes and also compute a score from the regression technique. We design many experiments with various sampling and voting schemes with crowd-sourced data and construct various experimental image quality models. Most of our models have reasonable accuracies (greater or equal to 70%) on test data set. We observe that our computed image quality score has a high (0.66) rank correlation with average votes from the crowd sourced human judgments.

  13. Advantages of gridless full-field digital mammography

    NASA Astrophysics Data System (ADS)

    Nykanen, Kirsi; Siltanen, Samuli

    2003-06-01

    The purpose of the study was to find out whether the image quality in full-field digital mammography can be improved while lowering the patient dose by removing the anti-scatter grid. Moreover, a fast approximate computational algorithm was developed for determining the scattered field in a real mammogram. The method is non-iterative, robust against noise, and works without modification for any scatter-to-primary ratio. Furthermore, it is computationally effective since it is based on fast Fourier transform (FFT). It was found out that the wide dynamic range of digital detectors leads to decrease in patient dose from 10.9% up to 46.6% at breast thickness of 2cm and from 0.8% up to 40.8% at breast thickness of 4cm depending on the efficiency of the removed grid. At constant patient dose the increase in contrast-to-noise ratio is 5.8% - 36.9% and 0.4%-30.0% accordingly at those two breast thickness. The convolution-based X-ray scatter model was considered. The developed scatter removal method was demonstrated with simulated mammograms and applied to clinical full-field digital mammograms acquired with a high-end digital flat panel detector based on amorphous selenium. Errors in reconstructed scattered fields were 0.3% in case of an ideal simulated mammogram and 7.4% in case of a real simulated mammogram (3cm breast). Applications where the scattered field needs to be determined include 3-D mammography and dual-energy breast imaging. In screening mammography gray-scale optimization eliminates the effect of scattering.

  14. Referenceless image quality evaluation for whole slide imaging

    PubMed Central

    Hashimoto, Noriaki; Bautista, Pinky A.; Yamaguchi, Masahiro; Ohyama, Nagaaki; Yagi, Yukako

    2012-01-01

    Objective: The image quality in whole slide imaging (WSI) is one of the most important issues for the practical use of WSI scanners. In this paper, we proposed an image quality evaluation method for scanned slide images in which no reference image is required. Methods: While most of the conventional methods for no-reference evaluation only deal with one image degradation at a time, the proposed method is capable of assessing both blur and noise by using an evaluation index which is calculated using the sharpness and noise information of the images in a given training data set by linear regression analysis. The linear regression coefficients can be determined in two ways depending on the purpose of the evaluation. For objective quality evaluation, the coefficients are determined using a reference image with mean square error as the objective value in the analysis. On the other hand, for subjective quality evaluation, the subjective scores given by human observers are used as the objective values in the analysis. The predictive linear regression models for the objective and subjective image quality evaluations, which were constructed using training images, were then used on test data wherein the calculated objective values are construed as the evaluation indices. Results: The results of our experiments confirmed the effectiveness of the proposed image quality evaluation method in both objective and subjective image quality measurements. Finally, we demonstrated the application of the proposed evaluation method to the WSI image quality assessment and automatic rescanning in the WSI scanner. PMID:22530177

  15. Feasibility of using LODOX technology for mammography

    NASA Astrophysics Data System (ADS)

    Lease, Alyson; Vaughan, Christopher; Beningfield, Stephan; Potgieter, Herman; Booysen, Andre

    2002-05-01

    The LODOX (Low Dose X-ray) Scanner, created by De Beers, is currently being clinically tested at the Trauma Unit of Groote Schuur Hospital and the University of Cape Town in South Africa. High quality images with exceedingly low radiation suggest that the technology may also be used to identify breast cancer lesions and microcalcifications. The measured LODOX modulation transfer function averages 6 percent at 10 cycles per millimeter, while the detected quantum efficiency is approximately 25 percent at 1 cycle per millimeter. The mean glandular doses calculated for a breast thickness of 4 cm at various intensities -- ranging from 0.022 rad at 70mAs to 0.043 rad at 125mAs -- were approximately 10 times less than the value designated by the American College of Radiology (0.3 rad per breast image). At 40kV, LODOX exhibits an average half value layer of 1.59 mm of Al (compared to 0.3 to 0.4 mm recommended for mammography), illustrating the unfavorable higher penetration of LODOX X-rays. The extremely low radiation dose delivered by the LODOX suggests that the technology would be feasible for detecting and diagnosing cancers in the sensitive tissue of the breast, once adjustments to X-ray range and beam hardness had been accomplished.

  16. Advantages and Disadvantages of Mammography Screening

    PubMed Central

    Heywang-Köbrunner, Sylvia H.; Hacker, Astrid; Sedlacek, Stefan

    2011-01-01

    Summary Mammography screening is the only method presently considered appropriate for mass screening of asymptomatic women. Its frequent use, however, warrants diligent analysis of potential side effects. Radiation risk is far below the natural yearly risk of breast cancer and should not be used as an argument against screening. False-positive calls lead to additional imaging or histopathological assessment, mainly percutaneous breast biopsy. These measures are tolerated and accepted fairly well. Their number is limited by strict quality assurance and constant training. Interval cancers represent a limitation of breast screening that should prompt further research for optimization. Evaluation of overdiagnosis is a highly debated topic in the literature. According to the probably most realistic available calculations, overdiagnosis is acceptable as it is compensated by the potential mortality reduction. Nonetheless, this potential side effect warrants optimal adjustment of therapy to the patient's individual risk. The mortality reduction seen in randomized studies was confirmed by results from national screening programs. A recent case referent study indicated that improvements in mortality reduction run parallel to improved mammographic techniques. Use of less aggressive therapies is another valuable effect of screening. Awareness of potential problems, strict quality assurance, and further research should help to further develop screening programs. PMID:21779225

  17. Determination of mass attenuation coefficients for threshold contrast evaluation in digital mammography

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Semturs, Friedrich; Menhart, Susanne; Figl, Michael

    2010-04-01

    According to the 'European protocol for the quality control of the physical and technical aspects of mammography screening' (EPQC) image quality digital mammography units has to be evaluated at different breast thicknesses. At the standard thickness of 50 mm polymethyl methacrylate (PMMA) image quality is determined by the analysis of CDMAM contrast detail phantom images where threshold contrasts are calculated for different gold disc diameters. To extend these results to other breast thicknesses contrast-to-noise ratios (CNR) and threshold contrast (TC) visibilities have to be calculated for all required thicknesses. To calculate the latter the mass attenuation coefficient (MAC) of gold has to be known for all possible beam qualities in the tube voltage range between 26 and 32 kV. In this paper we first determined the threshold contrast visibility using the CDMAM phantom with the same beam quality at different current-time products (mAs). We can derive from Rose theory that CNR • CT • α = const, where α is the diameter of the gold cylinder. From this the corresponding attenuation coefficients can be calculated. This procedure was repeated for four different beam qualities (Mo/Mo 27kV, Rh/Rh 29kV, Rh/Rh 31 kV, and W/Rh 29 kV)). Next, we measured the aluminium half value layer (HVL) of all x-ray spectra relevant for mammography. Using a first order Taylor expansion of MAC as a function of HVL, all other desired MAC can be calculated. The MAC as a function of the HVL was derived to MAChvl = -286.97 * hvl+186.03 with R2 = 0.997, where MAChvl indicates the MAC for all specific x-ray spectrum defined by its aluminium half value layer. Based on this function all necessary MACs needed for quality assurance (QA) were calculated. The results were in good agreement with the data found in the protocol.

  18. Characterization of scatter in digital mammography from physical measurements

    SciTech Connect

    Leon, Stephanie M. Wagner, Louis K.; Brateman, Libby F.

    2014-06-15

    Purpose: That scattered radiation negatively impacts the quality of medical radiographic imaging is well known. In mammography, even slight amounts of scatter reduce the high contrast required for subtle soft-tissue imaging. In current clinical mammography, image contrast is partially improved by use of an antiscatter grid. This form of scatter rejection comes with a sizeable dose penalty related to the concomitant elimination of valuable primary radiation. Digital mammography allows the use of image processing as a method of scatter correction that might avoid effects that negatively impact primary radiation, while potentially providing more contrast improvement than is currently possible with a grid. For this approach to be feasible, a detailed characterization of the scatter is needed. Previous research has modeled scatter as a constant background that serves as a DC bias across the imaging surface. The goal of this study was to provide a more substantive data set for characterizing the spatially-variant features of scatter radiation at the image detector of modern mammography units. Methods: This data set was acquired from a model of the radiation beam as a matrix of very narrow rays or pencil beams. As each pencil beam penetrates tissue, the pencil widens in a predictable manner due to the production of scatter. The resultant spreading of the pencil beam at the detector surface can be characterized by two parameters: mean radial extent (MRE) and scatter fraction (SF). The SF and MRE were calculated from measurements obtained using the beam stop method. Two digital mammography units were utilized, and the SF and MRE were found as functions of target, filter, tube potential, phantom thickness, and presence or absence of a grid. These values were then used to generate general equations allowing the SF and MRE to be calculated for any combination of the above parameters. Results: With a grid, the SF ranged from a minimum of about 0.05 to a maximum of about 0

  19. Process perspective on image quality evaluation

    NASA Astrophysics Data System (ADS)

    Leisti, Tuomas; Halonen, Raisa; Kokkonen, Anna; Weckman, Hanna; Mettänen, Marja; Lensu, Lasse; Ritala, Risto; Oittinen, Pirkko; Nyman, Göte

    2008-01-01

    The psychological complexity of multivariate image quality evaluation makes it difficult to develop general image quality metrics. Quality evaluation includes several mental processes and ignoring these processes and the use of a few test images can lead to biased results. By using a qualitative/quantitative (Interpretation Based Quality, IBQ) methodology, we examined the process of pair-wise comparison in a setting, where the quality of the images printed by laser printer on different paper grades was evaluated. Test image consisted of a picture of a table covered with several objects. Three other images were also used, photographs of a woman, cityscape and countryside. In addition to the pair-wise comparisons, observers (N=10) were interviewed about the subjective quality attributes they used in making their quality decisions. An examination of the individual pair-wise comparisons revealed serious inconsistencies in observers' evaluations on the test image content, but not on other contexts. The qualitative analysis showed that this inconsistency was due to the observers' focus of attention. The lack of easily recognizable context in the test image may have contributed to this inconsistency. To obtain reliable knowledge of the effect of image context or attention on subjective image quality, a qualitative methodology is needed.

  20. Automatic no-reference image quality assessment.

    PubMed

    Li, Hongjun; Hu, Wei; Xu, Zi-Neng

    2016-01-01

    No-reference image quality assessment aims to predict the visual quality of distorted images without examining the original image as a reference. Most no-reference image quality metrics which have been already proposed are designed for one or a set of predefined specific distortion types and are unlikely to generalize for evaluating images degraded with other types of distortion. There is a strong need of no-reference image quality assessment methods which are applicable to various distortions. In this paper, the authors proposed a no-reference image quality assessment method based on a natural image statistic model in the wavelet transform domain. A generalized Gaussian density model is employed to summarize the marginal distribution of wavelet coefficients of the test images, so that correlative parameters are needed for the evaluation of image quality. The proposed algorithm is tested on three large-scale benchmark databases. Experimental results demonstrate that the proposed algorithm is easy to implement and computational efficient. Furthermore, our method can be applied to many well-known types of image distortions, and achieves a good quality of prediction performance.

  1. Method for inserting noise in digital mammography to simulate reduction in radiation dose

    NASA Astrophysics Data System (ADS)

    Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Vieira, Marcelo A. C.

    2015-03-01

    The quality of clinical x-ray images is closely related to the radiation dose used in the imaging study. The general principle for selecting the radiation is ALARA ("as low as reasonably achievable"). The practical optimization, however, remains challenging. It is well known that reducing the radiation dose increases the quantum noise, which could compromise the image quality. In order to conduct studies about dose reduction in mammography, it would be necessary to acquire repeated clinical images, from the same patient, with different dose levels. However, such practice would be unethical due to radiation related risks. One solution is to simulate the effects of dose reduction in clinical images. This work proposes a new method, based on the Anscombe transformation, which simulates dose reduction in digital mammography by inserting quantum noise into clinical mammograms acquired with the standard radiation dose. Thus, it is possible to simulate different levels of radiation doses without exposing the patient to new levels of radiation. Results showed that the achieved quality of simulated images generated with our method is the same as when using other methods found in the literature, with the novelty of using the Anscombe transformation for converting signal-independent Gaussian noise into signal-dependent quantum noise.

  2. Image quality, compression and segmentation in medicine.

    PubMed

    Morgan, Pam; Frankish, Clive

    2002-12-01

    This review considers image quality in the context of the evolving technology of image compression, and the effects image compression has on perceived quality. The concepts of lossless, perceptually lossless, and diagnostically lossless but lossy compression are described, as well as the possibility of segmented images, combining lossy compression with perceptually lossless regions of interest. The different requirements for diagnostic and training images are also discussed. The lack of established methods for image quality evaluation is highlighted and available methods discussed in the light of the information that may be inferred from them. Confounding variables are also identified. Areas requiring further research are illustrated, including differences in perceptual quality requirements for different image modalities, image regions, diagnostic subtleties, and tasks. It is argued that existing tools for measuring image quality need to be refined and new methods developed. The ultimate aim should be the development of standards for image quality evaluation which take into consideration both the task requirements of the images and the acceptability of the images to the users.

  3. Beyond the mammography debate: a moderate perspective.

    PubMed

    Kaniklidis, C

    2015-06-01

    After some decades of contention, one can almost despair and conclude that (paraphrasing) "the mammography debate you will have with you always." Against that sentiment, in this review I argue, after reflecting on some of the major themes of this long-standing debate, that we must begin to move beyond the narrow borders of claim and counterclaim to seek consensus on what the balance of methodologically sound and critically appraised evidence demonstrates, and also to find overlooked underlying convergences; after acknowledging the reality of some residual and non-trivial harms from mammography, to promote effective strategies for harm mitigation; and to encourage deployment of new screening modalities that will render many of the issues and concerns in the debate obsolete. To these ends, I provide a sketch of what this looking forward and beyond the current debate might look like, leveraging advantages from abbreviated breast magnetic resonance imaging technologies (such as the ultrafast and twist protocols) and from digital breast tomosynthesis-also known as three-dimensional mammography. I also locate the debate within the broader context of mammography in the real world as it plays out not for the disputants, but for the stakeholders themselves: the screening-eligible patients and the physicians in the front lines who are charged with enabling both the acts of screening and the facts of screening at their maximally objective and patient-accessible levels to facilitate informed decisions.

  4. Beyond the mammography debate: a moderate perspective

    PubMed Central

    Kaniklidis, C

    2015-01-01

    After some decades of contention, one can almost despair and conclude that (paraphrasing) “the mammography debate you will have with you always.” Against that sentiment, in this review I argue, after reflecting on some of the major themes of this long-standing debate, that we must begin to move beyond the narrow borders of claim and counterclaim to seek consensus on what the balance of methodologically sound and critically appraised evidence demonstrates, and also to find overlooked underlying convergences; after acknowledging the reality of some residual and non-trivial harms from mammography, to promote effective strategies for harm mitigation; and to encourage deployment of new screening modalities that will render many of the issues and concerns in the debate obsolete. To these ends, I provide a sketch of what this looking forward and beyond the current debate might look like, leveraging advantages from abbreviated breast magnetic resonance imaging technologies (such as the ultrafast and twist protocols) and from digital breast tomosynthesis—also known as three-dimensional mammography. I also locate the debate within the broader context of mammography in the real world as it plays out not for the disputants, but for the stakeholders themselves: the screening-eligible patients and the physicians in the front lines who are charged with enabling both the acts of screening and the facts of screening at their maximally objective and patient-accessible levels to facilitate informed decisions. PMID:26089721

  5. TU-CD-207-03: Time Evolution of Texture Parameters of Subtracted Images Obtained by Contrast-Enhanced Digital Mammography (CEDM)

    SciTech Connect

    Mateos, M-J; Brandan, M-E; Gastelum, A; Marquez, J

    2015-06-15

    Purpose: To evaluate the time evolution of texture parameters, based on the gray level co-occurrence matrix (GLCM), in subtracted images of 17 patients (10 malignant and 7 benign) subjected to contrast-enhanced digital mammography (CEDM). The goal is to determine the sensitivity of texture to iodine uptake at the lesion, and its correlation (or lack of) with mean-pixel-value (MPV). Methods: Acquisition of clinical images followed a single-energy CEDM protocol using Rh/Rh/48 kV plus external 0.5 cm Al from a Senographe DS unit. Prior to the iodine-based contrast medium (CM) administration a mask image was acquired; four CM images were obtained 1, 2, 3, and 5 minutes after CM injection. Temporal series were obtained by logarithmic subtraction of registered CM minus mask images.Regions of interest (ROI) for the lesion were drawn by a radiologist and the texture was analyzed. GLCM was evaluated at a 3 pixel distance, 0° angle, and 64 gray-levels. Pixels identified as registration errors were excluded from the computation. 17 texture parameters were chosen, classified according to similarity into 7 groups, and analyzed. Results: In all cases the texture parameters within a group have similar dynamic behavior. Two texture groups (associated to cluster and sum mean) show a strong correlation with MPV; their average correlation coefficient (ACC) is r{sup 2}=0.90. Other two groups (contrast, homogeneity) remain constant with time, that is, a low-sensitivity to CM uptake. Three groups (regularity, lacunarity and diagonal moment) are sensitive to CM uptake but less correlated with MPV; their ACC is r{sup 2}=0.78. Conclusion: This analysis has shown that, at least groups associated to regularity, lacunarity and diagonal moment offer dynamical information additional to the mean pixel value due to the presence of CM at the lesion. The next step will be the analysis in terms of the lesion pathology. Authors thank PAPIIT-IN105813 for support. Consejo Nacional de Ciencia Y

  6. False-negative contrast-enhanced spectral mammography: use of more than one imaging modality and application of the triple test avoids misdiagnosis.

    PubMed

    Taylor, Donna; O'Hanlon, Susan; Latham, Bruce

    2017-03-31

    A 50-year-old woman presented with chest tenderness. On examination, both breasts were lumpy. Bilateral mammography showed heterogeneously dense parenchyma, with possible stromal distortion laterally on the right at the 0900 position. On ultrasound (US), a corresponding 13×9×10 mm irregular hypoechoic mass with internal vascularity was noted and both breasts had a complex heterogeneous fibroglandular background pattern. US-guided core biopsy with marker clip insertion was performed with the diagnosis of a grade 2 invasive ductal carcinoma (IDC). In view of the parenchymal pattern on mammography and US, contrast-enhanced spectral mammography (CESM) was performed for local staging. Mild background enhancement was noted, but there was no enhancement at the lesion site. The patient elected to have bilateral mastectomies and sentinel node biopsies. Final histopathology showed a node negative 11 mm grade 2 oestrogen and progesterone receptor positive, IDC.

  7. Mammography and Other Screening Tests for Breast Problems

    MedlinePlus

    ... What are the risks of mammography? • What is digital mammography? • What is a clinical breast exam? • How ... mammogram does not increase cancer risk. What is digital mammography? Digital mammography is a type of mammography ...

  8. Cardiac catheterization laboratory imaging quality assurance program.

    PubMed

    Wondrow, M A; Laskey, W K; Hildner, F J; Cusma, J; Holmes, D R

    2001-01-01

    With the recent approval of the National Electrical Manufacturers Association (NEMA) standard for "Characteristics of and Test Procedures for a Phantom to Benchmark Cardiac Fluoroscopic and Photographic Performance," comprehensive cardiac image assurance control programs are now possible. This standard was developed by a joint NEMA/Society for Cardiac Angiography and Interventions (SCA&I) working group of imaging manufacturers and cardiology society professionals over the past 4 years. This article details a cardiac catheterization laboratory image quality assurance and control program that includes the new standard along with current regulatory requirements for cardiac imaging. Because of the recent proliferation of digital imaging equipment, quality assurance for cardiac imaging fluoroscopy and digital imaging are critical. Included are the previous works recommended by the American College of Cardiology (ACC) and American Heart Association (AHA), Society for Cardiac Angiographers and Interventions (SCA&I), and authors of previous image quality subjects.

  9. Are phantoms useful for predicting the potential of dose reduction in full-field digital mammography?

    NASA Astrophysics Data System (ADS)

    Gennaro, Gisella; Katz, Luc; Souchay, Henri; Alberelli, Claudio; di Maggio, Cosimo

    2005-04-01

    A phantom study was performed in full-field digital mammography to investigate the opportunity and the magnitude of a possible dose reduction that would leave the image quality above the accepted thresholds associated with some classical phantoms. This preliminary work is intended to lay the groundwork for a future clinical study on the impact of dose reduction on clinical results. Three different mammography phantoms (ACR RMI 156, CIRS 11A and CDMAM 3.4) were imaged by a full-field digital mammography unit (GE Senographe 2000D) at different dose levels. Images were rated by three observers with softcopy reading and scoring methods specific to each phantom. Different types of data analysis were applied to the ACR (American College of Radiology) and the other two phantoms, respectively. With reference to the minimum acceptance score in screen/film accreditation programmes, the ACR phantom showed that about 45% dose reduction could be applied, while keeping the phantom scores above that threshold. A relative comparison was done for CIRS and CDMAM, for which no threshold is defined. CIRS scoring remained close to the reference level down to 40% dose reduction, the inter- and intra-observer variability being the main source of uncertainty. Contrast-detail curves provided by CDMAM overlapped down to 50% dose reduction, at least for object contrast values ranging between 30% and 3%. This multi-phantom study shows the potential of further reducing the dose in full-field digital mammography beyond the current values. A common dose reduction factor around 50% seems acceptable for all phantoms. However, caution is required before extrapolating the results for clinical use, given the limitations of these widely used phantoms, mainly related to their limited dynamic range and uniform background.

  10. A Novel Hand-Held Optical Imager with Real-Time Co-Registration Facilities Towards Diagnostic Mammography

    DTIC Science & Technology

    2012-01-01

    underneath the breast), as shown in Fig. 9. No fluorescenc was injected into the human subject. Average optical properties of normal breast tissues (i.e...right (i.e., toward the 3 o’ clock direc - tion from the center). The images show that within this central region, there is maximum signal intensity...perfect and imperfect (100:1) uptake conditions in ( liquid ) tissue phantoms and in vitro. Upon summation of multiple scans (fluorescence intensity images

  11. A Novel Hand-Held Optical Imager with Real-Time Co-registration Facilities toward Diagnostic Mammography

    DTIC Science & Technology

    2010-01-01

    used to simulate a tumor and was placed underneath the flap of the breast tissue (i.e. between breast tissue and chest wall, underneath the tissue...optical imaging. Work Completed to Date: Proposed Task A: Implement a 3D motion tracking device in order to randomly track the movement of the...hand-held probe on the tissue surface. A 3D tracking system was implemented on the probe in order to perform coregistered imaging using MATLAB /LabView

  12. Elasto-mammography: Theory, Algorithm, and Phantom Study

    PubMed Central

    Liu, Y.; Sun, L. Z.; Wang, G.; Fajardo, L. L.

    2006-01-01

    A new imaging modality framework, called elasto-mammography, is proposed to generate the elastograms of breast tissues based on conventional X-ray mammography. The displacement information is extracted from mammography projections before and after breast compression. Incorporating the displacement measurement, an elastography reconstruction algorithm is specifically developed to estimate the elastic moduli of heterogeneous breast tissues. Case studies with numerical breast phantoms are conducted to demonstrate the capability of the proposed elasto-mammography. Effects of noise with measurement, geometric mismatch, and elastic contrast ratio are evaluated in the numerical simulations. It is shown that the proposed methodology is stable and robust for characterization of the elastic moduli of breast tissues from the projective displacement measurement. PMID:23165036

  13. Retinal image quality assessment using generic features

    NASA Astrophysics Data System (ADS)

    Fasih, Mahnaz; Langlois, J. M. Pierre; Ben Tahar, Houssem; Cheriet, Farida

    2014-03-01

    Retinal image quality assessment is an important step in automated eye disease diagnosis. Diagnosis accuracy is highly dependent on the quality of retinal images, because poor image quality might prevent the observation of significant eye features and disease manifestations. A robust algorithm is therefore required in order to evaluate the quality of images in a large database. We developed an algorithm for retinal image quality assessment based on generic features that is independent from segmentation methods. It exploits the local sharpness and texture features by applying the cumulative probability of blur detection metric and run-length encoding algorithm, respectively. The quality features are combined to evaluate the image's suitability for diagnosis purposes. Based on the recommendations of medical experts and our experience, we compared a global and a local approach. A support vector machine with radial basis functions was used as a nonlinear classifier in order to classify images to gradable and ungradable groups. We applied our methodology to 65 images of size 2592×1944 pixels that had been graded by a medical expert. The expert evaluated 38 images as gradable and 27 as ungradable. The results indicate very good agreement between the proposed algorithm's predictions and the medical expert's judgment: the sensitivity and specificity for the local approach are respectively 92% and 94%. The algorithm demonstrates sufficient robustness to identify relevant images for automated diagnosis.

  14. TU-CD-207-08: Intrinsic Image Quality Comparison of Synthesized 2-D and FFDM Images

    SciTech Connect

    Nelson, J; Wells, J; Samei, E

    2015-06-15

    Purpose: With the combined interest of managing patient dose, maintaining or improving image quality, and maintaining or improving the diagnostic utility of mammographic data, this study aims to compare the intrinsic image quality of Hologic’s synthesized 2-D (C-View) and 2-D FFDM images in terms of resolution, contrast, and noise. Methods: This study utilized a novel 3-D printed anthropomorphic breast phantom in addition to the American College of Radiology (ACR) mammography accreditation phantom. Analysis of the 3-D anthropomorphic phantom included visual assessment of resolution and analysis of the normalized noise power spectrum. Analysis of the ACR phantom included both visual inspection and objective automated analysis using in-house software. The software incorporates image- and object-specific CNR visibility thresholds which account for image characteristics such as noise texture which affect object visualization. T- test statistical analysis was also performed on ACR phantom scores. Results: The spatial resolution of C-View images is markedly lower (at least 50% worse) than that of FFDM. And while this is generally associated with the benefit of reduced relative noise magnitude, the noise in C-View images tends to have a more mottled (predominantly low-frequency) texture. In general, for high contrast objects, C-View provides superior visualization over FFDM; however this benefit diminishes for low contrast objects and is applicable only to objects that are sufficiently larger than the spatial resolution threshold. Based on both observer and automated ACR phantom analysis, between 50–70% of C-View images failed to meet ACR minimum accreditation requirements – primarily due to insufficient (unbroken) fiber visibility. Conclusion: Compared to FFDM, C-View offers better depiction of objects of certain size and contrast, but provides poorer overall resolution and noise properties. Based on these findings, the utilization of C-View images in the clinical

  15. A glass-ceramic plate for mammography.

    SciTech Connect

    Johnson, J. A.; Schweizer, S.; Lubinsky, A. R.; Nuclear Engineering Division; Univ. of Paderborn; State Univ. of New York at Stony Brook

    2007-01-01

    We developed translucent glass-ceramic image plates for digital mammography. The glass ceramics are based on europium-doped fluorozirconate glasses, which were additionally doped with chlorine to initiate the nucleation of barium chloride nanoparticles therein. The X-ray image is stored in the form of stable electron-hole pairs, which can be read out afterwards with a scanning laser beam in a 'photostimulated luminescence' (PSL) process. Measurements of the required stimulating exposure, integrated PSL signal, and optical light spreading of the stimulating laser light were performed to allow projection of the detective quantum efficiency (DQE) for the proposed X-ray storage phosphor system. The projected DQE is compared with commercially available electronic mammography systems.

  16. Added value of semi-quantitative breast-specific gamma imaging in the work-up of suspicious breast lesions compared to mammography, ultrasound and 3-T MRI

    PubMed Central

    Seymer, A; Keinrath, P; Holzmannhofer, J; Pirich, C; Hergan, K; Meissnitzer, M W

    2015-01-01

    Objective: To prospectively analyse the diagnostic value of semi-quantitative breast-specific gamma imaging (BSGI) in the work-up of suspicious breast lesions compared with that of mammography (MG), breast ultrasound and MRI of the breast. Methods: Within a 15-month period, 67 patients with 92 breast lesions rated as Category IV or V according to the breast imaging reporting and data system detected with MG and/or ultrasound were included into the study. After the injection of 740–1110 MBq of Technetium-99m (99mTc) SestaMIBI intravenously, scintigrams were obtained in two projections comparable to MG. The BSGI was analysed visually and semi-quantitatively by calculating a relative uptake factor (X). With the exception of two patients with cardiac pacemakers, all patients underwent 3-T breast MRI. Biopsy results were obtained as the reference standard in all patients. Sensitivity, specificity, positive- and negative-predictive values, accuracy and area under the curve were calculated for each modality. Results: Among the 92 lesions, 67 (72.8%) were malignant. 60 of the 67 cancers of any size were detected by BSGI with an overall sensitivity of 90%, only exceeded by ultrasound with a sensitivity of 99%. The sensitivity of BSGI for lesions <1 cm declined significantly to 60%. Overall specificity of ultrasound was only 20%. Specificity, accuracy and positive-predictive value were the highest for BSGI (56%, 80% and 85%, respectively). X was significantly higher for malignant lesions (mean, 4.27) and differed significantly between ductal types (mean, 4.53) and the other histopathological entities (mean, 3.12). Conclusion: Semi-quantitative BSGI with calculation of the relative uptake factor (X) can help to characterize breast lesions. BSGI negativity may obviate the need for biopsy of breast lesions >1 cm with low or intermediate prevalence for malignancy. Advances in knowledge: Compared with morphological imaging modalities, specificity, positive

  17. Preliminary experience with monoenergetic photon mammography

    SciTech Connect

    Johnston, R.E.; Washburn, D.; Pisano, E.; Thomlinson, W.C.; Chapman, D.; Gmur, N.F.; Zhong, Zhong; Sayers, D.

    1995-12-31

    We are using a beam port at the National Synchrotron Light Source facility at Brookhaven National Laboratory as a source of monoenergetic photons. The photon source is radiation from a bending magnet on the X-ray storage ring and provides a usable X-ray spectrum from 5 keV to over 50 keV. A tunable crystal monochromotor is used for energy selection. The beam is 79mm wide and 0.5 mm high. We imaged the ACR mammography phantom and a contrast-detail phantom using a phosphor plate as the unaging detector. Phantom images were obtained at 16, 18, 20 and 22 keV. Phantom thickness varied from 15 mm to 82 mm. These images were compared to images obtained with a conventional dedicated mammography unit. Subjective preliminary results show that image contrast of the monoenergetic images is similar to those obtained from the conventional x-ray source with somewhat sharper and cleaner images from the monoenergetic source. Quantitative analysis shows that the monoenergetic images have improved contrast compared to the polyenergetic derived images. Entrance skin dose measurements show a factor of 5 to 10 times less radiation for the monoenergetic images with equivalent or better contrast Although there remain a number of technical problems to be addressed and much more work to be done, we are encouraged to further explore the use of monoenergetic imaging.

  18. MO-AB-207-04: ACR Update in Mammography

    SciTech Connect

    Berns, E.

    2015-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date as the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.

  19. BREAST: a novel method to improve the diagnostic efficacy of mammography

    NASA Astrophysics Data System (ADS)

    Brennan, P. C.; Tapia, K.; Ryan, J.; Lee, W.

    2013-03-01

    High quality breast imaging and accurate image assessment are critical to the early diagnoses, treatment and management of women with breast cancer. Breast Screen Reader Assessment Strategy (BREAST) provides a platform, accessible by researchers and clinicians world-wide, which will contain image data bases, algorithms to assess reader performance and on-line systems for image evaluation. The platform will contribute to the diagnostic efficacy of breast imaging in Australia and beyond on two fronts: reducing errors in mammography, and transforming our assessment of novel technologies and techniques. Mammography is the primary diagnostic tool for detecting breast cancer with over 800,000 women X-rayed each year in Australia, however, it fails to detect 30% of breast cancers with a number of missed cancers being visible on the image [1-6]. BREAST will monitor the mistakes, identify reasons for mammographic errors, and facilitate innovative solutions to reduce error rates. The BREAST platform has the potential to enable expert assessment of breast imaging innovations, anywhere in the world where experts or innovations are located. Currently, innovations are often being assessed by limited numbers of individuals who happen to be geographically located close to the innovation, resulting in equivocal studies with low statistical power. BREAST will transform this current paradigm by enabling large numbers of experts to assess any new method or technology using our embedded evaluation methods. We are confident that this world-first system will play an important part in the future efficacy of breast imaging.

  20. Optimization of synthetic aperture image quality

    NASA Astrophysics Data System (ADS)

    Moshavegh, Ramin; Jensen, Jonas; Villagomez-Hoyos, Carlos A.; Stuart, Matthias B.; Hemmsen, Martin Christian; Jensen, Jørgen Arendt

    2016-04-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameters effecting the image quality of SA is of great importance, and this paper proposes an advanced procedure for optimizing the parameters essential for acquiring an optimal image quality, while generating high resolution SA images. Optimization of the image quality is mainly performed based on measures such as F-number, number of emissions and the aperture size. They are considered to be the most contributing acquisition factors in the quality of the high resolution images in SA. Therefore, the performance of image quality is quantified in terms of full-width at half maximum (FWHM) and the cystic resolution (CTR). The results of the study showed that SA imaging with only 32 emissions and maximum sweep angle of 22 degrees yields a very good image quality compared with using 256 emissions and the full aperture size. Therefore the number of emissions and the maximum sweep angle in the SA can be optimized to reach a reasonably good performance, and to increase the frame rate by lowering the required number of emissions. All the measurements are performed using the experimental SARUS scanner connected to a λ/2-pitch transducer. A wire phantom and a tissue mimicking phantom containing anechoic cysts are scanned using the optimized parameters for the transducer. Measurements coincide with simulations.

  1. Feasibility study for positron emission mammography.

    PubMed

    Thompson, C J; Murthy, K; Weinberg, I N; Mako, F

    1994-04-01

    A feasibility study is presented for a small, low-cost, dedicated device for positron emission mammography. Two detector arrays above and below the breast would be placed in a conventional mammography unit. These detectors are sensitive to positron annihilation radiation, and are connected to a coincidence circuit and a multiplane image memory. Images of the distribution of positron-emitting isotope are obtained in real time by incrementing the memory location at the intersection of each line of response. Monte Carlo simulations of a breast phantom are compared with actual scans of this phantom in a conventional PET scanner. The simulations and experimental data are used to predict the performance of the proposed system. Spatial resolution experiments using very narrow bismuth germanate BGO crystals suggest that spatial resolutions of about 2 mm should be possible. The efficiency of the proposed device is about ten times that of a conventional brain scanner. The scatter fraction is greater, but the scattered radiation has a very flat distribution. By designing the device to fit in an existing mammography unit, conventional mammograms can be taken after the injection of the radio-pharmaceutical allowing exact registration of the emission and conventional mammographic images.

  2. Quantitative analysis of performance of selenium flat-panel detector for interventional mammography

    NASA Astrophysics Data System (ADS)

    Debrie, Anne; Polischuk, Brad T.; Rougeot, Henri; Hansroul, Marc; Poliquin, Eric; Caron, Mario; Wong, Kerwin; Shukri, Ziad; Martin, Jean-Pierre

    2000-04-01

    The purpose of this paper is to analyze the image quality of a selenium-based flat panel detector suited for digital interventional mammography. To characterize the image quality, the DQE was measured at various x-ray exposures. The results indicate that when the detector is quantum noise limited, the DQE is independent of the exposure. A measurement of the quantum detection efficiency of 90% indicates that an electrostatic field shaping effect within the selenium layer gives a greater collection efficiency than that predicted simply by the geometric fill factor of each pixel collection electrode. Measurements were also conducted to determine the relative strength of ghost images on the detector. An image of a high contrast object using an exposure of 183 mR was acquired, followed by a low exposure 6 mR flat field image. No visual indication of a ghost could be found in the latter image even after appropriate windowing and leveling of the image was performed. A subjective comparison of image quality between film/screen and the detector was conducted by acquiring images of the ACR phantom under various exposure conditions. The digital images were printed on film using optimally adjusted LUT's. The resulting images were randomly presented to 15 non-trained observers, who assessed a score for each image. The comparison results show that the image quality obtained with the digital detector is superior to the images acquired with film/screen.

  3. Mammography: an update of the EUSOBI recommendations on information for women.

    PubMed

    Sardanelli, Francesco; Fallenberg, Eva M; Clauser, Paola; Trimboli, Rubina M; Camps-Herrero, Julia; Helbich, Thomas H; Forrai, Gabor

    2017-02-01

    This article summarises the information to be offered to women about mammography. After a delineation of the aim of early diagnosis of breast cancer, the difference between screening mammography and diagnostic mammography is explained. The need to bring images and reports from the previous mammogram (and from other recent breast imaging examinations) is highlighted. Mammography technique and procedure are described with particular attention to discomfort and pain experienced by a small number of women who undergo the test. Information is given on the recall during a screening programme and on the request for further work-up after a diagnostic mammography. The logic of the mammography report and of classification systems such as R1-R5 and BI-RADS is illustrated, and brief but clear information is given about the diagnostic performance of the test, with particular reference to interval cancers, i.e., those cancers that are missed at screening mammography. Moreover, the breast cancer risk due to radiation exposure from mammography is compared to the reduction in mortality obtained with the test, and the concept of overdiagnosis is presented with a reliable estimation of its extent. Information about new mammographic technologies (tomosynthesis and contrast-enhanced spectral mammography) is also given. Finally, frequently asked questions are answered.

  4. Electrical Inspection Oriented Thermal Image Quality Assessment

    NASA Astrophysics Data System (ADS)

    Lin, Ying; Wang, Menglin; Gong, Xiaojin; Guo, Zhihong; Geng, Yujie; Bai, Demeng

    2017-01-01

    This paper presents an approach to access the quality of thermal images that are specially used in electrical inspection. In this application, no reference images are given for quality assessment. Therefore, we first analyze the characteristics for these thermal images. Then, four quantitative measurements, which are one-dimensional (1D) entropy, two-dimensional (2D) entropy, centrality, and No-Reference Structural Sharpness (NRSS), are investigated to measure the information content, the centrality for objects of interest, and the sharpness of images. Moreover, in order to provide a more intuitive measure for human operators, we assign each image with a discrete rate based on these quantitative measurements via the k-nearest neighbor (KNN) method. The proposed approach has been validated in a dataset composed of 2,336 images. Experiments show that our quality assessment results are consistent with subjective assessment.

  5. Image Quality Ranking Method for Microscopy

    PubMed Central

    Koho, Sami; Fazeli, Elnaz; Eriksson, John E.; Hänninen, Pekka E.

    2016-01-01

    Automated analysis of microscope images is necessitated by the increased need for high-resolution follow up of events in time. Manually finding the right images to be analyzed, or eliminated from data analysis are common day-to-day problems in microscopy research today, and the constantly growing size of image datasets does not help the matter. We propose a simple method and a software tool for sorting images within a dataset, according to their relative quality. We demonstrate the applicability of our method in finding good quality images in a STED microscope sample preparation optimization image dataset. The results are validated by comparisons to subjective opinion scores, as well as five state-of-the-art blind image quality assessment methods. We also show how our method can be applied to eliminate useless out-of-focus images in a High-Content-Screening experiment. We further evaluate the ability of our image quality ranking method to detect out-of-focus images, by extensive simulations, and by comparing its performance against previously published, well-established microscopy autofocus metrics. PMID:27364703

  6. Image Quality Ranking Method for Microscopy

    NASA Astrophysics Data System (ADS)

    Koho, Sami; Fazeli, Elnaz; Eriksson, John E.; Hänninen, Pekka E.

    2016-07-01

    Automated analysis of microscope images is necessitated by the increased need for high-resolution follow up of events in time. Manually finding the right images to be analyzed, or eliminated from data analysis are common day-to-day problems in microscopy research today, and the constantly growing size of image datasets does not help the matter. We propose a simple method and a software tool for sorting images within a dataset, according to their relative quality. We demonstrate the applicability of our method in finding good quality images in a STED microscope sample preparation optimization image dataset. The results are validated by comparisons to subjective opinion scores, as well as five state-of-the-art blind image quality assessment methods. We also show how our method can be applied to eliminate useless out-of-focus images in a High-Content-Screening experiment. We further evaluate the ability of our image quality ranking method to detect out-of-focus images, by extensive simulations, and by comparing its performance against previously published, well-established microscopy autofocus metrics.

  7. Profiling Sensitivity to Image Quality.

    DTIC Science & Technology

    1981-10-01

    results were used to derive minimum resolution thresholds for photogram- metric compilation. DEVELOPGROUND CONTROL DFTB BJISE ...... ’- XPCR1M FN7 FORM...fusion or electronic correlation of the images. Referring to Table 1, it is apparent that those occurrences were stereomodels whose photos contained... electronic /video equipment to correlate stereo images. The data indicates that below a threshold level, fusion/ electronic correlation is not possible

  8. Evaluation of automatic exposure control options in digital mammography.

    PubMed

    Zhou, Yifang; Scott, Alexander; Allahverdian, Janet; Frankel, Steve

    2014-01-01

    To quantify the trade-offs of dose and image quality among pre-loaded automatic exposure control (AEC) options in digital mammography, two AEC tables from the Hologic Selenia digital mammography system were compared: the default AEC "table 0" and AEC "table 1". Realistically-shaped phantoms consisting of tissue-equivalent material of various thicknesses (4.5 cm-7 cm) were imaged to obtain a figure of merit (FOM), the squared contrast-to-noise ratio per mean glandular dose. To relate the results to pathological findings and to evaluate the overall performance, the measured contrast-to-noise ratios were applied to simulated lesions on the anthropomorphic breast phantom images, producing various lesion configurations which were blindly scored. It was found that the AEC table 1 improves the low contrast FOM by 11% to 20% for the breast thicknesses of 4.5-6 cm. However, for the 7 cm thick breast, the AEC table 1 decreases the low contrast FOM by 17%. For microcalcifications, the AEC table 1 improves the FOM slightly for the breast thicknesses of 4.5--6 cm and decreases it by 18% at a thickness of 7 cm. The lesion simulation showed enhanced contrast due to the AEC table 1 for the breast thicknesses of 5 cm, 6 cm, and 7 cm, but the enhancement gradually reduces as the thickness increases. The lesion reading showed that the microcalcification detection was scored significantly higher from the AEC table 1 for the thicknesses 5 cm, 6 cm, and 7 cm. The corresponding improvement of mass detection scores was also observed but not consistently significant over the thickness range.

  9. Mammography-oncogenecity at low doses.

    PubMed

    Heyes, G J; Mill, A J; Charles, M W

    2009-06-01

    dose exposure, it is not a low dose rate examination, and protraction of dose should not be confused with fractionation. Although there is potential for a suppressive effect at low doses, recent epidemiological data, and several international radiation risk assessments, continue to promote the linear no-threshold (LNT) model. Finally, recent studies have shown that magnetic resonance imaging (MRI) is more sensitive than mammography in detecting invasive breast cancer in women with a genetic sensitivity. Since an increase in the risk associated with mammographic screening would blur the justification of exposure for this high risk subgroup, the use of other (non-ionising) screening modalities is preferable.

  10. No training blind image quality assessment

    NASA Astrophysics Data System (ADS)

    Chu, Ying; Mou, Xuanqin; Ji, Zhen

    2014-03-01

    State of the art blind image quality assessment (IQA) methods generally extract perceptual features from the training images, and send them into support vector machine (SVM) to learn the regression model, which could be used to further predict the quality scores of the testing images. However, these methods need complicated training and learning, and the evaluation results are sensitive to image contents and learning strategies. In this paper, two novel blind IQA metrics without training and learning are firstly proposed. The new methods extract perceptual features, i.e., the shape consistency of conditional histograms, from the joint histograms of neighboring divisive normalization transform coefficients of distorted images, and then compare the length attribute of the extracted features with that of the reference images and degraded images in the LIVE database. For the first method, a cluster center is found in the feature attribute space of the natural reference images, and the distance between the feature attribute of the distorted image and the cluster center is adopted as the quality label. The second method utilizes the feature attributes and subjective scores of all the images in the LIVE database to construct a dictionary, and the final quality score is calculated by interpolating the subjective scores of nearby words in the dictionary. Unlike the traditional SVM based blind IQA methods, the proposed metrics have explicit expressions, which reflect the relationships of the perceptual features and the image quality well. Experiment results in the publicly available databases such as LIVE, CSIQ and TID2008 had shown the effectiveness of the proposed methods, and the performances are fairly acceptable.

  11. Clinical value of mammography in diagnosis and identification of breast mass

    PubMed Central

    Li, Hongjun; Zhang, Shanhua; Wang, Qingyuan; Zhu, Rongguang

    2016-01-01

    Objective: To study the effect and clinical value of mammography in the diagnosis of breast lump so as to improve the diagnosis level of breast cancer. Methods: A retrospective analysis was carried out on clinical data of 110 patients with mammary lump confirmed by pathology to study the compliance of mammography diagnosis and Pathology diagnosis in breast lump, and the detection of microcalcifications, phyllode, and observe the image performance of mammography. Taking infitrating ductal carcinoma (IDC) as an example, the correlation of image performance and clinical pathological features of different types was studied so as to predict if mammography performance was effective in the treatment and prognosis in breast cancer. Results: Taking Breast Imaging Reporting and Data System (BI-RADS) grade 4A as the critical point, the sensitivity, specificity and accuracy of mammography was 90.80% (109/120), 84.60% (126/149) and 87.40% (235/269); taking BI-RADS grade 4B as the critical point, the sensitivity, specificity and accuracy of mammography was 85.00% (102/120), 93.30% (139/149) and 89.60% (241/269); the correlation analysis suggested that, there was some kind of correlation between the mammography performance and clinical features of breast cancer. Conclusion: Mammography is worth being promoted in clinic for its significant clinical value in diagnosing and identifying breast lump. PMID:27648060

  12. Retinal image quality assessment based on image clarity and content

    NASA Astrophysics Data System (ADS)

    Abdel-Hamid, Lamiaa; El-Rafei, Ahmed; El-Ramly, Salwa; Michelson, Georg; Hornegger, Joachim

    2016-09-01

    Retinal image quality assessment (RIQA) is an essential step in automated screening systems to avoid misdiagnosis caused by processing poor quality retinal images. A no-reference transform-based RIQA algorithm is introduced that assesses images based on five clarity and content quality issues: sharpness, illumination, homogeneity, field definition, and content. Transform-based RIQA algorithms have the advantage of considering retinal structures while being computationally inexpensive. Wavelet-based features are proposed to evaluate the sharpness and overall illumination of the images. A retinal saturation channel is designed and used along with wavelet-based features for homogeneity assessment. The presented sharpness and illumination features are utilized to assure adequate field definition, whereas color information is used to exclude nonretinal images. Several publicly available datasets of varying quality grades are utilized to evaluate the feature sets resulting in area under the receiver operating characteristic curve above 0.99 for each of the individual feature sets. The overall quality is assessed by a classifier that uses the collective features as an input vector. The classification results show superior performance of the algorithm in comparison to other methods from literature. Moreover, the algorithm addresses efficiently and comprehensively various quality issues and is suitable for automatic screening systems.

  13. X-ray light valve (XLV): a novel detectors' technology for digital mammography

    NASA Astrophysics Data System (ADS)

    Marcovici, Sorin; Sukhovatkin, Vlad; Oakham, Peter

    2014-03-01

    A novel method, based on X-ray Light Valve (XLV) technology, is proposed for making good image quality yet inexpensive flat panel detectors for digital mammography. The digital mammography markets, particularly in the developing countries, demand quality machines at substantially lower prices than the ones available today. Continuous pressure is applied on x-ray detectors' manufacturers to reduce the flat panel detectors' prices. XLV presents a unique opportunity to achieve the needed price - performance characteristics for direct conversion, x-ray detectors. The XLV based detectors combine the proven, superior, spatial resolution of a-Se with the simplicity and low cost of liquid crystals and optical scanning. The x-ray quanta absorbed by a 200 μm a-Se produce electron - hole pairs that move under an electric field to the top and bottom of a-Se layer. This 2D charge distribution creates at the interface with the liquid crystals a continuous (analog) charge image corresponding to the impinging radiation's information. Under the influence of local electrical charges next to them, the liquid crystals twist proportionally to the charges and vary their light reflectivity. A scanning light source illuminates the liquid crystals while an associated, pixilated photo-detector, having a 42 μm pixel size, captures the light reflected by the liquid crystals and converts it in16 bit words that are transmitted to the machine for image processing and display. The paper will describe a novel XLV, 25 cm x 30 cm, flat panel detector structure and its underlying physics as well as its preliminary performance measured on several engineering prototypes. In particular, the paper will present the results of measuring XLV detectors' DQE, MTF, dynamic range, low contrast resolution and dynamic behavior. Finally, the paper will introduce the new, low cost, XLV detector based, digital mammography machine under development at XLV Diagnostics Inc.

  14. Physical characteristics of a full-field digital mammography system

    NASA Astrophysics Data System (ADS)

    Suryanarayanan, Sankararaman; Karellas, Andrew; Vedantham, Srinivasan

    2004-11-01

    The physical performance characteristics of a flat-panel clinical full-field digital mammography (FFDM) system were investigated for a variety of mammographic X-ray spectral conditions. The system was investigated using 26 kVp: Mo/Mo, 28 kVp: Mo/Rh, and 30 kVp: Rh/Rh, with polymethyl methacrylate (PMMA) "tissue equivalent material" of thickness 20, 45, and 60 mm for each of three X-ray spectra, resulting in nine different spectral conditions. The experimental results were compared with a theoretical cascaded linear systems-based model that has been developed independently by other investigators. The FFDM imager (Senographe 2000D, GE Medical Systems, Milwaukee, WI) uses an amorphous silicon (aSi:H) photodiode (100 μm pixel) array directly coupled to a cesium iodide (CsI) scintillator. The spatial resolution of the digital mammography system was determined by measuring the presampling modulation transfer function (MTF). The noise power spectra (NPS) of the system were measured under the different mammographic X-ray spectral conditions at an exposure of approximately 10 mR to the detector from which corresponding detective quantum efficiencies (DQE) were determined. The experimental results provide additional information on the performance of the mammographic system for a broader range of experimental conditions than have been reported in the past. The flat-panel imager exhibits favorable physical quality characteristics under the conditions investigated. The experimental results were compared with theoretical estimates under various spectral conditions and demonstrated good agreement.

  15. Monotonic correlation analysis of image quality measures for image fusion

    NASA Astrophysics Data System (ADS)

    Kaplan, Lance M.; Burks, Stephen D.; Moore, Richard K.; Nguyen, Quang

    2008-04-01

    The next generation of night vision goggles will fuse image intensified and long wave infra-red to create a hybrid image that will enable soldiers to better interpret their surroundings during nighttime missions. Paramount to the development of such goggles is the exploitation of image quality (IQ) measures to automatically determine the best image fusion algorithm for a particular task. This work introduces a novel monotonic correlation coefficient to investigate how well possible IQ features correlate to actual human performance, which is measured by a perception study. The paper will demonstrate how monotonic correlation can identify worthy features that could be overlooked by traditional correlation values.

  16. Perceptual Quality Assessment of Screen Content Images.

    PubMed

    Yang, Huan; Fang, Yuming; Lin, Weisi

    2015-11-01

    Research on screen content images (SCIs) becomes important as they are increasingly used in multi-device communication applications. In this paper, we present a study on perceptual quality assessment of distorted SCIs subjectively and objectively. We construct a large-scale screen image quality assessment database (SIQAD) consisting of 20 source and 980 distorted SCIs. In order to get the subjective quality scores and investigate, which part (text or picture) contributes more to the overall visual quality, the single stimulus methodology with 11 point numerical scale is employed to obtain three kinds of subjective scores corresponding to the entire, textual, and pictorial regions, respectively. According to the analysis of subjective data, we propose a weighting strategy to account for the correlation among these three kinds of subjective scores. Furthermore, we design an objective metric to measure the visual quality of distorted SCIs by considering the visual difference of textual and pictorial regions. The experimental results demonstrate that the proposed SCI perceptual quality assessment scheme, consisting of the objective metric and the weighting strategy, can achieve better performance than 11 state-of-the-art IQA methods. To the best of our knowledge, the SIQAD is the first large-scale database published for quality evaluation of SCIs, and this research is the first attempt to explore the perceptual quality assessment of distorted SCIs.

  17. FFDM image quality assessment using computerized image texture analysis

    NASA Astrophysics Data System (ADS)

    Berger, Rachelle; Carton, Ann-Katherine; Maidment, Andrew D. A.; Kontos, Despina

    2010-04-01

    Quantitative measures of image quality (IQ) are routinely obtained during the evaluation of imaging systems. These measures, however, do not necessarily correlate with the IQ of the actual clinical images, which can also be affected by factors such as patient positioning. No quantitative method currently exists to evaluate clinical IQ. Therefore, we investigated the potential of using computerized image texture analysis to quantitatively assess IQ. Our hypothesis is that image texture features can be used to assess IQ as a measure of the image signal-to-noise ratio (SNR). To test feasibility, the "Rachel" anthropomorphic breast phantom (Model 169, Gammex RMI) was imaged with a Senographe 2000D FFDM system (GE Healthcare) using 220 unique exposure settings (target/filter, kVs, and mAs combinations). The mAs were varied from 10%-300% of that required for an average glandular dose (AGD) of 1.8 mGy. A 2.5cm2 retroareolar region of interest (ROI) was segmented from each image. The SNR was computed from the ROIs segmented from images linear with dose (i.e., raw images) after flat-field and off-set correction. Image texture features of skewness, coarseness, contrast, energy, homogeneity, and fractal dimension were computed from the Premium ViewTM postprocessed image ROIs. Multiple linear regression demonstrated a strong association between the computed image texture features and SNR (R2=0.92, p<=0.001). When including kV, target and filter as additional predictor variables, a stronger association with SNR was observed (R2=0.95, p<=0.001). The strong associations indicate that computerized image texture analysis can be used to measure image SNR and potentially aid in automating IQ assessment as a component of the clinical workflow. Further work is underway to validate our findings in larger clinical datasets.

  18. Subjective matters: from image quality to image psychology

    NASA Astrophysics Data System (ADS)

    Fedorovskaya, Elena A.; De Ridder, Huib

    2013-03-01

    From the advent of digital imaging through several decades of studies, the human vision research community systematically focused on perceived image quality and digital artifacts due to resolution, compression, gamma, dynamic range, capture and reproduction noise, blur, etc., to help overcome existing technological challenges and shortcomings. Technological advances made digital images and digital multimedia nearly flawless in quality, and ubiquitous and pervasive in usage, provide us with the exciting but at the same time demanding possibility to turn to the domain of human experience including higher psychological functions, such as cognition, emotion, awareness, social interaction, consciousness and Self. In this paper we will outline the evolution of human centered multidisciplinary studies related to imaging and propose steps and potential foci of future research.

  19. Geometric assessment of image quality using digital image registration techniques

    NASA Technical Reports Server (NTRS)

    Tisdale, G. E.

    1976-01-01

    Image registration techniques were developed to perform a geometric quality assessment of multispectral and multitemporal image pairs. Based upon LANDSAT tapes, accuracies to a small fraction of a pixel were demonstrated. Because it is insensitive to the choice of registration areas, the technique is well suited to performance in an automatic system. It may be implemented at megapixel-per-second rates using a commercial minicomputer in combination with a special purpose digital preprocessor.

  20. Image quality measures and their performance

    NASA Technical Reports Server (NTRS)

    Eskicioglu, Ahmet M.; Fisher, Paul S.; Chen, Si-Yuan

    1994-01-01

    A number of quality measures are evaluated for gray scale image compression. They are all bivariate exploiting the differences between corresponding pixels in the original and degraded images. It is shown that although some numerical measures correlate well with the observers' response for a given compression technique, they are not reliable for an evaluation across different techniques. The two graphical measures (histograms and Hosaka plots), however, can be used to appropriately specify not only the amount, but also the type of degradation in reconstructed images.

  1. Does resolution really increase image quality?

    NASA Astrophysics Data System (ADS)

    Tisse, Christel-Loïc; Guichard, Frédéric; Cao, Frédéric

    2008-02-01

    A general trend in the CMOS image sensor market is for increasing resolution (by having a larger number of pixels) while keeping a small form factor by shrinking photosite size. This article discusses the impact of this trend on some of the main attributes of image quality. The first example is image sharpness. A smaller pitch theoretically allows a larger limiting resolution which is derived from the Modulation Transfer Function (MTF). But recent sensor technologies (1.75μm, and soon 1.45μm) with typical aperture f/2.8 are clearly reaching the size of the diffraction blur spot. A second example is the impact on pixel light sensitivity and image sensor noise. For photonic noise, the Signal-to-Noise-Ratio (SNR) is typically a decreasing function of the resolution. To evaluate whether shrinking pixel size could be beneficial to the image quality, the tradeoff between spatial resolution and light sensitivity is examined by comparing the image information capacity of sensors with varying pixel size. A theoretical analysis that takes into consideration measured and predictive models of pixel performance degradation and improvement associated with CMOS imager technology scaling, is presented. This analysis is completed by a benchmarking of recent commercial sensors with different pixel technologies.

  2. Image Quality in Analog and Digital Microtechniques.

    ERIC Educational Resources Information Center

    White, William

    1991-01-01

    Discusses the basic principles of the application of microfilm (analog) and electronic (digital) technologies for data storage. Image quality is examined, searching and retrieval capabilities are considered, and hardcopy output resolution is described. It is concluded that microfilm is still the preferred archival medium. (5 references) (LRW)

  3. Image Quality Indicator for Infrared Inspections

    NASA Technical Reports Server (NTRS)

    Burke, Eric

    2011-01-01

    The quality of images generated during an infrared thermal inspection depends on many system variables, settings, and parameters to include the focal length setting of the IR camera lens. If any relevant parameter is incorrect or sub-optimal, the resulting IR images will usually exhibit inherent unsharpness and lack of resolution. Traditional reference standards and image quality indicators (IQIs) are made of representative hardware samples and contain representative flaws of concern. These standards are used to verify that representative flaws can be detected with the current IR system settings. However, these traditional standards do not enable the operator to quantify the quality limitations of the resulting images, i.e. determine the inherent maximum image sensitivity and image resolution. As a result, the operator does not have the ability to optimize the IR inspection system prior to data acquisition. The innovative IQI described here eliminates this limitation and enables the operator to objectively quantify and optimize the relevant variables of the IR inspection system, resulting in enhanced image quality with consistency and repeatability in the inspection application. The IR IQI consists of various copper foil features of known sizes that are printed on a dielectric non-conductive board. The significant difference in thermal conductivity between the two materials ensures that each appears with a distinct grayscale or brightness in the resulting IR image. Therefore, the IR image of the IQI exhibits high contrast between the copper features and the underlying dielectric board, which is required to detect the edges of the various copper features. The copper features consist of individual elements of various shapes and sizes, or of element-pairs of known shapes and sizes and with known spacing between the elements creating the pair. For example, filled copper circles with various diameters can be used as individual elements to quantify the image sensitivity

  4. Prediction of Viking lander camera image quality

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Burcher, E. E.; Jobson, D. J.; Wall, S. D.

    1976-01-01

    Formulations are presented that permit prediction of image quality as a function of camera performance, surface radiance properties, and lighting and viewing geometry. Predictions made for a wide range of surface radiance properties reveal that image quality depends strongly on proper camera dynamic range command and on favorable lighting and viewing geometry. Proper camera dynamic range commands depend mostly on the surface albedo that will be encountered. Favorable lighting and viewing geometries depend mostly on lander orientation with respect to the diurnal sun path over the landing site, and tend to be independent of surface albedo and illumination scattering function. Side lighting with low sun elevation angles (10 to 30 deg) is generally favorable for imaging spatial details and slopes, whereas high sun elevation angles are favorable for measuring spectral reflectances.

  5. Naturalness and interestingness of test images for visual quality evaluation

    NASA Astrophysics Data System (ADS)

    Halonen, Raisa; Westman, Stina; Oittinen, Pirkko

    2011-01-01

    Balanced and representative test images are needed to study perceived visual quality in various application domains. This study investigates naturalness and interestingness as image quality attributes in the context of test images. Taking a top-down approach we aim to find the dimensions which constitute naturalness and interestingness in test images and the relationship between these high-level quality attributes. We compare existing collections of test images (e.g. Sony sRGB images, ISO 12640 images, Kodak images, Nokia images and test images developed within our group) in an experiment combining quality sorting and structured interviews. Based on the data gathered we analyze the viewer-supplied criteria for naturalness and interestingness across image types, quality levels and judges. This study advances our understanding of subjective image quality criteria and enables the validation of current test images, furthering their development.

  6. Medical Imaging Image Quality Assessment with Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Michail, C. M.; Karpetas, G. E.; Fountos, G. P.; Kalyvas, N. I.; Martini, Niki; Koukou, Vaia; Valais, I. G.; Kandarakis, I. S.

    2015-09-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction, with cluster computing. The PET scanner simulated in this study was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the Modulation Transfer Function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL algorithm. OSMAPOSL reconstruction was assessed by using various subsets (3 to 21) and iterations (1 to 20), as well as by using various beta (hyper) parameter values. MTF values were found to increase up to the 12th iteration whereas remain almost constant thereafter. MTF improves by using lower beta values. The simulated PET evaluation method based on the TLC plane source can be also useful in research for the further development of PET and SPECT scanners though GATE simulations.

  7. Image registration for DSA quality enhancement.

    PubMed

    Buzug, T M; Weese, J

    1998-01-01

    A generalized framework for histogram-based similarity measures is presented and applied to the image-enhancement task in digital subtraction angiography (DSA). The class of differentiable, strictly convex weighting functions is identified as suitable weightings of histograms for measuring the degree of clustering that goes along with registration. With respect to computation time, the energy similarity measure is the function of choice for the registration of mask and contrast image prior to subtraction. The robustness of the energy measure is studied for geometrical image distortions like rotation and scaling. Additionally, it is investigated how the histogram binning and inhomogeneous motion inside the templates influence the quality of the similarity measure. Finally, the registration success for the automated procedure is compared with the manually shift-corrected image pair of the head.

  8. Triple-energy contrast enhanced digital mammography

    NASA Astrophysics Data System (ADS)

    Puong, Sylvie; Milioni de Carvalho, Pablo; Muller, Serge

    2010-04-01

    With the injection of iodine, Contrast Enhanced Digital Mammography (CEDM) provides functional information about breast tumour angiogenesis that can potentially help in cancer diagnosis. In order to generate iodine images in which the gray level is proportional to the iodine thickness, temporal and dual-energy approaches have already been considered. The dual-energy method offers the advantage of less patient motion artifacts and better comfort during the exam. However, this approach requires knowledge of the breast thickness at each pixel. Generally, as compression is applied, the breast thickness at each pixel is taken as the compression thickness. Nevertheless, in the breast border region, this assumption is not correct anymore and this causes inaccuracies in the iodine image. Triple-Energy CEDM could overcome these limitations by providing supplemental information in the form of a third image acquired with a different spectrum than the other two. This precludes the need of a priori knowledge of the breast thickness. Moreover, with Triple-Energy CEDM, breast thickness and glandularity maps could potentially be derived. In this study, we first focused on the method to recombine the three images in order to generate the iodine image, analyzing the performance of either quadratic, cubic or conic recombination functions. Then, we studied the optimal acquisition spectra in order to maximize the iodine SDNR in the recombined image for a given target total glandular dose. The concept of Triple-Energy CEDM was validated on simulated textured images and poly-energetic images acquired with a conventional X-ray mammography tube.

  9. Blind image quality assessment via deep learning.

    PubMed

    Hou, Weilong; Gao, Xinbo; Tao, Dacheng; Li, Xuelong

    2015-06-01

    This paper investigates how to blindly evaluate the visual quality of an image by learning rules from linguistic descriptions. Extensive psychological evidence shows that humans prefer to conduct evaluations qualitatively rather than numerically. The qualitative evaluations are then converted into the numerical scores to fairly benchmark objective image quality assessment (IQA) metrics. Recently, lots of learning-based IQA models are proposed by analyzing the mapping from the images to numerical ratings. However, the learnt mapping can hardly be accurate enough because some information has been lost in such an irreversible conversion from the linguistic descriptions to numerical scores. In this paper, we propose a blind IQA model, which learns qualitative evaluations directly and outputs numerical scores for general utilization and fair comparison. Images are represented by natural scene statistics features. A discriminative deep model is trained to classify the features into five grades, corresponding to five explicit mental concepts, i.e., excellent, good, fair, poor, and bad. A newly designed quality pooling is then applied to convert the qualitative labels into scores. The classification framework is not only much more natural than the regression-based models, but also robust to the small sample size problem. Thorough experiments are conducted on popular databases to verify the model's effectiveness, efficiency, and robustness.

  10. Technology evaluation center assessment synopsis: full-field digital mammography.

    PubMed

    Rothenberg, Barbara M; Ziegler, Kathleen M; Aronson, Naomi

    2006-08-01

    Full-field digital mammography (FFDM) is proposed as an alternative to screen-film mammography (SFM). The ability to separate and optimize the acquisition, storage, and display of images may allow greater visualization of breast cancers at equal or lower radiation doses, especially in younger women and those with denser breasts. This is a synopsis of a systematic review by the Blue Cross Blue Shield Association Technology Evaluation Center. This updated systematic review primarily incorporated the results of the ACR Imaging Network(R) Digital Mammographic Imaging Screening Trial (DMIST), which provided results on 42,760 asymptomatic women who underwent both FFDM and SFM and showed with reasonable certainty that there was no difference in the accuracy of the 2 modalities for asymptomatic women in general, with some advantages of FFDM in certain subgroups. There were no strong, new studies on the use of digital mammography compared with film mammography in a diagnostic population. However, the DMIST results indicated that tumors detected by FFDM, but not by SFM, were likely to be invasive carcinomas or medium-grade to high-grade ductal carcinoma in situ. On the basis of the suppositions that these are the cancers of greatest interest and the ones more likely to be found in a diagnostic population and that the diagnostic population may be younger on average than the screening population, it was concluded that there is sufficient evidence to support the use of FFDM for diagnostic purposes.

  11. Retinal image quality in the rodent eye.

    PubMed

    Artal, P; Herreros de Tejada, P; Muñoz Tedó, C; Green, D G

    1998-01-01

    Many rodents do not see well. For a target to be resolved by a rat or a mouse, it must subtend a visual angle of a degree or more. It is commonly assumed that this poor spatial resolving capacity is due to neural rather than optical limitations, but the quality of the retinal image has not been well characterized in these animals. We have modified a double-pass apparatus, initially designed for the human eye, so it could be used with rodents to measure the modulation transfer function (MTF) of the eye's optics. That is, the double-pass retinal image of a monochromatic (lambda = 632.8 nm) point source was digitized with a CCD camera. From these double-pass measurements, the single-pass MTF was computed under a variety of conditions of focus and with different pupil sizes. Even with the eye in best focus, the image quality in both rats and mice is exceedingly poor. With a 1-mm pupil, for example, the MTF in the rat had an upper limit of about 2.5 cycles/deg, rather than the 28 cycles/deg one would obtain if the eye were a diffraction-limited system. These images are about 10 times worse than the comparable retinal images in the human eye. Using our measurements of the optics and the published behavioral and electrophysiological contrast sensitivity functions (CSFs) of rats, we have calculated the CSF that the rat would have if it had perfect rather than poor optics. We find, interestingly, that diffraction-limited optics would produce only slight improvement overall. That is, in spite of retinal images which are of very low quality, the upper limit of visual resolution in rodents is neurally determined. Rats and mice seem to have eyes in which the optics and retina/brain are well matched.

  12. Dried fruits quality assessment by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Serranti, Silvia; Gargiulo, Aldo; Bonifazi, Giuseppe

    2012-05-01

    Dried fruits products present different market values according to their quality. Such a quality is usually quantified in terms of freshness of the products, as well as presence of contaminants (pieces of shell, husk, and small stones), defects, mould and decays. The combination of these parameters, in terms of relative presence, represent a fundamental set of attributes conditioning dried fruits humans-senses-detectable-attributes (visual appearance, organolectic properties, etc.) and their overall quality in terms of marketable products. Sorting-selection strategies exist but sometimes they fail when a higher degree of detection is required especially if addressed to discriminate between dried fruits of relatively small dimensions and when aiming to perform an "early detection" of pathogen agents responsible of future moulds and decays development. Surface characteristics of dried fruits can be investigated by hyperspectral imaging (HSI). In this paper, specific and "ad hoc" applications addressed to propose quality detection logics, adopting a hyperspectral imaging (HSI) based approach, are described, compared and critically evaluated. Reflectance spectra of selected dried fruits (hazelnuts) of different quality and characterized by the presence of different contaminants and defects have been acquired by a laboratory device equipped with two HSI systems working in two different spectral ranges: visible-near infrared field (400-1000 nm) and near infrared field (1000-1700 nm). The spectra have been processed and results evaluated adopting both a simple and fast wavelength band ratio approach and a more sophisticated classification logic based on principal component (PCA) analysis.

  13. Obesity, Gynecological Factors, and Abnormal Mammography Follow-Up in Minority and Medically Underserved Women

    PubMed Central

    Wujcik, Debra; Lin, Jin-Mann S.; Grau, Ana; Wilson, Veronica; Champion, Victoria; Zheng, Wei; Egan, Kathleen M.

    2009-01-01

    Abstract Background The relationship between obesity and screening mammography adherence has been examined previously, yet few studies have investigated obesity as a potential mediator of timely follow-up of abnormal (Breast Imaging Reporting and Data System [BIRADS-0]) mammography results in minority and medically underserved patients. Methods We conducted a retrospective cohort study of 35 women who did not return for follow-up >6 months from index abnormal mammography and 41 who returned for follow-up ≤6 months in Nashville, Tennessee. Patients with a BIRADS-0 mammography event in 2003–2004 were identified by chart review. Breast cancer risk factors were collected by telephone interview. Multivariate logistic regression was performed on selected factors with return for diagnostic follow-up. Results Obesity and gynecological history were significant predictors of abnormal mammography resolution. A significantly higher frequency of obese women delayed return for mammography resolution compared with nonobese women (64.7% vs. 35.3%). A greater number of hysterectomized women returned for diagnostic follow-up compared with their counterparts without a hysterectomy (77.8% vs. 22.2%). Obese patients were more likely to delay follow-up >6 months (adjusted OR 4.09, p = 0.02). Conversely, hysterectomized women were significantly more likely to return for timely mammography follow-up ≤6 months (adjusted OR 7.95, p = 0.007). Conclusions Study results suggest that weight status and gynecological history influence patients' decisions to participate in mammography follow-up studies. Strategies are necessary to reduce weight-related barriers to mammography follow-up in the healthcare system including provider training related to mammography screening of obese women. PMID:19558307

  14. Quantification of breast arterial calcification using full field digital mammography.

    PubMed

    Molloi, Sabee; Xu, Tong; Ducote, Justin; Iribarren, Carlos

    2008-04-01

    Breast arterial calcification is commonly detected on some mammograms. Previous studies indicate that breast arterial calcification is evidence of general atherosclerotic vascular disease and it may be a useful marker of coronary artery disease. It can potentially be a useful tool for assessment of coronary artery disease in women since mammography is widely used as a screening tool for early detection of breast cancer. However, there are currently no available techniques for quantification of calcium mass using mammography. The purpose of this study was to determine whether it is possible to quantify breast arterial calcium mass using standard digital mammography. An anthropomorphic breast phantom along with a vessel calcification phantom was imaged using a full field digital mammography system. Densitometry was used to quantify calcium mass. A calcium calibration measurement was performed at each phantom thickness and beam energy. The known (K) and measured (M) calcium mass on 5 and 9 cm thickness phantoms were related by M=0.964K -0.288 mg (r=0.997 and SEE=0.878 mg) and M=1.004K+0.324 mg (r=0.994 and SEE = 1.32 mg), respectively. The results indicate that accurate calcium mass measurements can be made without correction for scatter glare as long as careful calcium calibration is made for each breast thickness. The results also indicate that composition variations and differences of approximately 1 cm between calibration phantom and breast thickness introduce only minimal error in calcium measurement. The uncertainty in magnification is expected to cause up to 5% and 15% error in calcium mass for 5 and 9 cm breast thicknesses, respectively. In conclusion, a densitometry technique for quantification of breast arterial calcium mass was validated using standard full field digital mammography. The results demonstrated the feasibility and potential utility of the densitometry technique for accurate quantification of breast arterial calcium mass using standard digital

  15. Quantification of breast arterial calcification using full field digital mammography

    PubMed Central

    Molloi, Sabee; Xu, Tong; Ducote, Justin; Iribarren, Carlos

    2008-01-01

    Breast arterial calcification is commonly detected on some mammograms. Previous studies indicate that breast arterial calcification is evidence of general atherosclerotic vascular disease and it may be a useful marker of coronary artery disease. It can potentially be a useful tool for assessment of coronary artery disease in women since mammography is widely used as a screening tool for early detection of breast cancer. However, there are currently no available techniques for quantification of calcium mass using mammography. The purpose of this study was to determine whether it is possible to quantify breast arterial calcium mass using standard digital mammography. An anthropomorphic breast phantom along with a vessel calcification phantom was imaged using a full field digital mammography system. Densitometry was used to quantify calcium mass. A calcium calibration measurement was performed at each phantom thickness and beam energy. The known (K) and measured (M) calcium mass on 5 and 9 cm thickness phantoms were related by M=0.964K−0.288 mg (r=0.997 and SEE=0.878 mg) and M=1.004K+0.324 mg (r=0.994 and SEE=1.32 mg), respectively. The results indicate that accurate calcium mass measurements can be made without correction for scatter glare as long as careful calcium calibration is made for each breast thickness. The results also indicate that composition variations and differences of approximately 1 cm between calibration phantom and breast thickness introduce only minimal error in calcium measurement. The uncertainty in magnification is expected to cause up to 5% and 15% error in calcium mass for 5 and 9 cm breast thicknesses, respectively. In conclusion, a densitometry technique for quantification of breast arterial calcium mass was validated using standard full field digital mammography. The results demonstrated the feasibility and potential utility of the densitometry technique for accurate quantification of breast arterial calcium mass using standard digital

  16. Quantification of breast arterial calcification using full field digital mammography

    SciTech Connect

    Molloi, Sabee; Xu Tong; Ducote, Justin; Iribarren, Carlos

    2008-04-15

    Breast arterial calcification is commonly detected on some mammograms. Previous studies indicate that breast arterial calcification is evidence of general atherosclerotic vascular disease and it may be a useful marker of coronary artery disease. It can potentially be a useful tool for assessment of coronary artery disease in women since mammography is widely used as a screening tool for early detection of breast cancer. However, there are currently no available techniques for quantification of calcium mass using mammography. The purpose of this study was to determine whether it is possible to quantify breast arterial calcium mass using standard digital mammography. An anthropomorphic breast phantom along with a vessel calcification phantom was imaged using a full field digital mammography system. Densitometry was used to quantify calcium mass. A calcium calibration measurement was performed at each phantom thickness and beam energy. The known (K) and measured (M) calcium mass on 5 and 9 cm thickness phantoms were related by M=0.964K-0.288 mg (r=0.997 and SEE=0.878 mg) and M=1.004K+0.324 mg (r=0.994 and SEE=1.32 mg), respectively. The results indicate that accurate calcium mass measurements can be made without correction for scatter glare as long as careful calcium calibration is made for each breast thickness. The results also indicate that composition variations and differences of approximately 1 cm between calibration phantom and breast thickness introduce only minimal error in calcium measurement. The uncertainty in magnification is expected to cause up to 5% and 15% error in calcium mass for 5 and 9 cm breast thicknesses, respectively. In conclusion, a densitometry technique for quantification of breast arterial calcium mass was validated using standard full field digital mammography. The results demonstrated the feasibility and potential utility of the densitometry technique for accurate quantification of breast arterial calcium mass using standard digital

  17. Phase contrast digital mammography using molybdenum x-ray: clinical implications in detectability improvement

    NASA Astrophysics Data System (ADS)

    Freedman, Matthew T.; Lo, Shih-Chung B.; Honda, Chika; Makariou, Erini; Sisney, Gale; Pien, Edward; Ohara, Hiromu; Ishisaka, Akira; Shimada, Fumio

    2003-06-01

    We have applied phase imaging on digital mammography to investigate adequate contrast of printed images for digital phase contrast mammography using a practical molybdenum X-ray tube. Phase contrast mammography procedures were performed with defined air gap (e.g., 0.6 m) configuration using customized mammography equipment and a computed radiography (CR) system. Magnified (x2) phase contrast images acquired with 0.0875mm per pixel were mapped onto the laser imager resolution at 0.04375mm per pixel for printing life-size object on wet processing silver halide recording film. For contact mammography of screen-film system, we used MinR2000 system as a baseline method. ACR 156 phantom printed images with contrasts of 2.8, 3.7, 4.9, 5.7 and 6.7 were evaluated by five radiologists. The ACR scores for the life-size image based on the 2 times magnified phase contrast image acquired by the computed radiography were higher than the scores of MinR2000 image, when the contrast of printed images for both methods was 3.7. The ACR scores were lower in the low contrast images (i.e., 2.8) than its higher contrast counterparts (i.e., >= 3.7) for all techniques used. The detectability improvement should be due to higher spatial resolution and lower noise in the phase contrast images.

  18. Mammography Screening – as of 2013

    PubMed Central

    Heywang-Koebrunner, S.; Bock, K.; Heindel, W.; Hecht, G.; Regitz-Jedermann, L.; Hacker, A.; Kaeaeb-Sanyal, V.

    2013-01-01

    Introduction: Since 2008 the German Mammography Screening Programme has been available throughout Germany to all women aged between 50 and 69. The programme strictly follows the European Guidelines. There are controversial discussions in the media as well as in the specialised press. Materials and Methods: Overview of the available data with regard to an evaluation of randomised studies and with regard to quality-assured screening programmes in accordance with EU Guidelines (including data from 18 screening countries). Results: Positive effects of screening: reduction in mortality, less invasive treatment. Negative effects: False-positive diagnoses and biopsy recommendations, so-called overdiagnoses, radiation dose. Limits of screening: Interval carcinomas, incomplete reduction in mortality. A mathematical synopsis of the latest publications from the European screening programmes with the diagnosis rates in Germany determined from > 4.6 million screening examinations produces the following: a total of 10 000 mammograms are created for 1000 women (P) taking part in the Mammography Screening Programme (each of whom undergoes 10 mammograms in 20 years). Overall, the risk of triggering breast cancer through a mammogram is very clearly below the annual natural risk of suffering from breast cancer. In the German screening, of these 1000 women, an average of 288 women are called back once in 20 years as a result of changes that are ultimately benign (< 3 % per cycle). Of these, 74 of the 288 women undergo a biopsy due to a benign change (false-positive biopsy recommendations, usually punch or vacuum biopsies). According to EUROSCREEN, 71 carcinomas develop among participants (56 are discovered in the screening, 15 in the interval), and 67 carcinomas among non-participants (N-P) (in some cases, several years later) during this period. The 4 additional diagnoses among the Ps are referred to as overdiagnoses, as they do not contribute to a reduction in mortality

  19. Digital mammography: physical principles and future applications.

    PubMed

    Gambaccini, Mauro; Baldelli, Paola

    2003-01-01

    Mammography is currently considered the best tool for the detection of breast cancer, pathology with a rate of incidence in constant increase. To produce the radiological picture a screen film combination is conventionally used. One of the inherent limitations of screen- film combination is the fact that the detection, display and storage processes are one and the same, making it impossible to separately optimize each stage. These limitations can be overcome with digital systems. In this work we evaluate the main characteristics of digital detectors available on the market and we compare the performance of digital and conventional systems. Digital mammography, due to the possibility to process images, offers many potential advantages, among these the possibility to introduce the dual-energy technique which employs the composition of two digital images obtained with two different energies to enhance the inherent contrast of pathologies by removing the uniform background. This technique was previously tested by using synchrotron monochromatic beam and a digital detector, and then the Senographe 2000D full-field digital system manufactured by GE Medical Systems. In this work we present preliminary results and the future applications of this technique.

  20. Comparison of signal to noise ratios from spatial and frequency domain formulations of nonprewhitening model observers in digital mammography

    SciTech Connect

    Sisini, Francesco; Zanca, Federica; Marshall, Nicholas W.; Taibi, Angelo; Cardarelli, Paolo; Bosmans, Hilde

    2012-09-15

    Purpose: Image quality indices based upon model observers are promising alternatives to laborious human readings of contrast-detail images. This is especially appealing in digital mammography as limiting values for contrast thresholds determine, according to some international protocols, the acceptability of these systems in the radiological practice. The objective of the present study was to compare the signal to noise ratios (SNR) obtained with two nonprewhitening matched filter model observer approaches, one in the spatial domain and the other in the frequency domain, and with both of them worked out for disks as present in the CDMAM phantom. Methods: The analysis was performed using images acquired with the Siemens Novation and Inspiration digital mammography systems. The spatial domain formulation uses a series of high dose CDMAM images as the signal and a routine exposure of two flood images to calculate the covariance matrix. The frequency domain approach uses the mathematical description of a disk and modulation transfer function (MTF) and noise power spectrum (NPS) calculated from images. Results: For both systems most of the SNR values calculated in the frequency domain were in very good agreement with the SNR values calculated in the spatial domain. Both the formulations in the frequency domain and in the spatial domain show a linear relationship between SNR and the diameter of the CDMAM discs. Conclusions: The results suggest that both formulations of the model observer lead to very similar figures of merit. This is a step forward in the adoption of figures of merit based on NPS and MTF for the acceptance testing of mammography systems.

  1. Subjective experience of image quality: attributes, definitions, and decision making of subjective image quality

    NASA Astrophysics Data System (ADS)

    Leisti, Tuomas; Radun, Jenni; Virtanen, Toni; Halonen, Raisa; Nyman, Göte

    2009-01-01

    Subjective quality rating does not reflect the properties of the image directly, but it is the outcome of a quality decision making process, which includes quantification of subjective quality experience. Such a rich subjective content is often ignored. We conducted two experiments (with 28 and 20 observers), in order to study the effect of paper grade on image quality experience of the ink-jet prints. Image quality experience was studied using a grouping task and a quality rating task. Both tasks included an interview, but in the latter task we examined the relations of different subjective attributes in this experience. We found out that the observers use an attribute hierarchy, where the high-level attributes are more experiential, general and abstract, while low-level attributes are more detailed and concrete. This may reflect the hierarchy of the human visual system. We also noticed that while the observers show variable subjective criteria for IQ, the reliability of average subjective estimates is high: when two different observer groups estimated the same images in the two experiments, correlations between the mean ratings were between .986 and .994, depending on the image content.

  2. Visual pattern degradation based image quality assessment

    NASA Astrophysics Data System (ADS)

    Wu, Jinjian; Li, Leida; Shi, Guangming; Lin, Weisi; Wan, Wenfei

    2015-08-01

    In this paper, we introduce a visual pattern degradation based full-reference (FR) image quality assessment (IQA) method. Researches on visual recognition indicate that the human visual system (HVS) is highly adaptive to extract visual structures for scene understanding. Existing structure degradation based IQA methods mainly take local luminance contrast to represent structure, and measure quality as degradation on luminance contrast. In this paper, we suggest that structure includes not only luminance contrast but also orientation information. Therefore, we analyze the orientation characteristic for structure description. Inspired by the orientation selectivity mechanism in the primary visual cortex, we introduce a novel visual pattern to represent the structure of a local region. Then, the quality is measured as the degradations on both luminance contrast and visual pattern. Experimental results on Five benchmark databases demonstrate that the proposed visual pattern can effectively represent visual structure and the proposed IQA method performs better than the existing IQA metrics.

  3. Improving Secondary Ion Mass Spectrometry Image Quality with Image Fusion

    NASA Astrophysics Data System (ADS)

    Tarolli, Jay G.; Jackson, Lauren M.; Winograd, Nicholas

    2014-12-01

    The spatial resolution of chemical images acquired with cluster secondary ion mass spectrometry (SIMS) is limited not only by the size of the probe utilized to create the images but also by detection sensitivity. As the probe size is reduced to below 1 μm, for example, a low signal in each pixel limits lateral resolution because of counting statistics considerations. Although it can be useful to implement numerical methods to mitigate this problem, here we investigate the use of image fusion to combine information from scanning electron microscope (SEM) data with chemically resolved SIMS images. The advantage of this approach is that the higher intensity and, hence, spatial resolution of the electron images can help to improve the quality of the SIMS images without sacrificing chemical specificity. Using a pan-sharpening algorithm, the method is illustrated using synthetic data, experimental data acquired from a metallic grid sample, and experimental data acquired from a lawn of algae cells. The results show that up to an order of magnitude increase in spatial resolution is possible to achieve. A cross-correlation metric is utilized for evaluating the reliability of the procedure.

  4. Improving Secondary Ion Mass Spectrometry Image Quality with Image Fusion

    PubMed Central

    Tarolli, Jay G.; Jackson, Lauren M.; Winograd, Nicholas

    2014-01-01

    The spatial resolution of chemical images acquired with cluster secondary ion mass spectrometry (SIMS) is limited not only by the size of the probe utilized to create the images, but also by detection sensitivity. As the probe size is reduced to below 1 µm, for example, a low signal in each pixel limits lateral resolution due to counting statistics considerations. Although it can be useful to implement numerical methods to mitigate this problem, here we investigate the use of image fusion to combine information from scanning electron microscope (SEM) data with chemically resolved SIMS images. The advantage of this approach is that the higher intensity and, hence, spatial resolution of the electron images can help to improve the quality of the SIMS images without sacrificing chemical specificity. Using a pan-sharpening algorithm, the method is illustrated using synthetic data, experimental data acquired from a metallic grid sample, and experimental data acquired from a lawn of algae cells. The results show that up to an order of magnitude increase in spatial resolution is possible to achieve. A cross-correlation metric is utilized for evaluating the reliability of the procedure. PMID:24912432

  5. Optimization of contrast-enhanced spectral mammography depending on clinical indication

    PubMed Central

    Dromain, Clarisse; Canale, Sandra; Saab-Puong, Sylvie; Carton, Ann-Katherine; Muller, Serge; Fallenberg, Eva Maria

    2014-01-01

    Abstract. The objective is to optimize low-energy (LE) and high-energy (HE) exposure parameters of contrast-enhanced spectral mammography (CESM) examinations in four different clinical applications for which different levels of average glandular dose (AGD) and ratios between LE and total doses are required. The optimization was performed on a Senographe DS with a SenoBright® upgrade. Simulations were performed to find the optima by maximizing the contrast-to-noise ratio (CNR) on the recombined CESM image using different targeted doses and LE image quality. The linearity between iodine concentration and CNR as well as the minimal detectable iodine concentration was assessed. The image quality of the LE image was assessed on the CDMAM contrast-detail phantom. Experiments confirmed the optima found on simulation. The CNR was higher for each clinical indication than for SenoBright®, including the screening indication for which the total AGD was 22% lower. Minimal iodine concentrations detectable in the case of a 3-mm-diameter round tumor were 12.5% lower than those obtained for the same dose in the clinical routine. LE image quality satisfied EUREF acceptable limits for threshold contrast. This newly optimized set of acquisition parameters allows increased contrast detectability compared to parameters currently used without a significant loss in LE image quality. PMID:26158058

  6. Digital Mammography with a Mosaic of CCD Arrays

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); McAdoo, James A. (Inventor)

    1998-01-01

    A digital mammography device uses a mosaic of electronic digital imaging arrays to scan an x-ray image is discussed. The mosaic of arrays is repositioned several times to expose different portions of the image, until the entire image is scanned. The data generated by the arrays during each exposure is stored in a computer. After the final exposure, the computer combines data of the several partial images to produce a composite of the original x-ray image. An aperture plate is used to reduce scatter and the overall exposure of the patient to x-rays.

  7. Reconstruction algorithm for improved ultrasound image quality.

    PubMed

    Madore, Bruno; Meral, F Can

    2012-02-01

    A new algorithm is proposed for reconstructing raw RF data into ultrasound images. Previous delay-and-sum beamforming reconstruction algorithms are essentially one-dimensional, because a sum is performed across all receiving elements. In contrast, the present approach is two-dimensional, potentially allowing any time point from any receiving element to contribute to any pixel location. Computer-intensive matrix inversions are performed once, in advance, to create a reconstruction matrix that can be reused indefinitely for a given probe and imaging geometry. Individual images are generated through a single matrix multiplication with the raw RF data, without any need for separate envelope detection or gridding steps. Raw RF data sets were acquired using a commercially available digital ultrasound engine for three imaging geometries: a 64-element array with a rectangular field-of- view (FOV), the same probe with a sector-shaped FOV, and a 128-element array with rectangular FOV. The acquired data were reconstructed using our proposed method and a delay- and-sum beamforming algorithm for comparison purposes. Point spread function (PSF) measurements from metal wires in a water bath showed that the proposed method was able to reduce the size of the PSF and its spatial integral by about 20 to 38%. Images from a commercially available quality-assurance phantom had greater spatial resolution and contrast when reconstructed with the proposed approach.

  8. Model-based quantification of image quality

    NASA Technical Reports Server (NTRS)

    Hazra, Rajeeb; Miller, Keith W.; Park, Stephen K.

    1989-01-01

    In 1982, Park and Schowengerdt published an end-to-end analysis of a digital imaging system quantifying three principal degradation components: (1) image blur - blurring caused by the acquisition system, (2) aliasing - caused by insufficient sampling, and (3) reconstruction blur - blurring caused by the imperfect interpolative reconstruction. This analysis, which measures degradation as the square of the radiometric error, includes the sample-scene phase as an explicit random parameter and characterizes the image degradation caused by imperfect acquisition and reconstruction together with the effects of undersampling and random sample-scene phases. In a recent paper Mitchell and Netravelli displayed the visual effects of the above mentioned degradations and presented subjective analysis about their relative importance in determining image quality. The primary aim of the research is to use the analysis of Park and Schowengerdt to correlate their mathematical criteria for measuring image degradations with subjective visual criteria. Insight gained from this research can be exploited in the end-to-end design of optical systems, so that system parameters (transfer functions of the acquisition and display systems) can be designed relative to each other, to obtain the best possible results using quantitative measurements.

  9. Image simulation and a model of noise power spectra across a range of mammographic beam qualities

    SciTech Connect

    Mackenzie, Alistair Dance, David R.; Young, Kenneth C.; Diaz, Oliver

    2014-12-15

    in CR. The use of the quantum noise correction factor reduced the difference from the model to the real NPS to generally within 4%. The use of the quantum noise correction improved the conversion of ASEh image to CRc image but had no difference for the conversion to CSI images. Conclusions: A practical method for estimating the NPS at any dose and over a range of beam qualities for mammography has been demonstrated. The noise model was incorporated into a methodology for converting an image to appear as if acquired on a different detector. The method can now be extended to work for a wide range of beam qualities and can be applied to the conversion of mammograms.

  10. Hyperspectral and multispectral imaging for evaluating food safety and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spectral imaging technologies have been developed rapidly during the past decade. This paper presents hyperspectral and multispectral imaging technologies in the area of food safety and quality evaluation, with an introduction, demonstration, and summarization of the spectral imaging techniques avai...

  11. Adaptive Computer-Assisted Mammography Training for Improved Breast Cancer Screening

    DTIC Science & Technology

    2013-10-01

    disease . The project includes: Observer studies to collect reading data from radiology trainees; Extraction of image features (human- and computer- based...mammography in breast cancer detection and lower mortality associated the disease . 15. SUBJECT TERMS Mammography, radiology, education, user modeling...associated the disease . BODY: Overall progress: Specific aim Expected Actual 1.1 Prepare the database of screening mammograms (year 1, months 1-6

  12. Contrast-Enhanced Digital Mammography and Angiogenesis

    SciTech Connect

    Rosado-Mendez, I.; Palma, B. A.; Villasenor, Y.; Benitez-Bribiesca, L.; Brandan, M. E.

    2007-11-26

    Angiogenesis could be a means for pouring contrast media around tumors. In this work, optimization of radiological parameters for contrast-enhanced subtraction techniques in mammography has been performed. A modification of Lemacks' analytical formalism was implemented to model the X-ray absorption in the breast with contrast medium and detection by a digital image receptor. Preliminary results of signal-to-noise ratio analysis show the advantage of subtracting two images taken at different energies, one prior and one posterior to the injection of contrast medium. Preliminary experimental results using a custom-made phantom have shown good agreement with calculations. A proposal is presented for the clinical application of the optimized technique, which aims at finding correlations between angiogenesis indicators and dynamic variables of contrast medium uptake.

  13. A relationship between slide quality and image quality in whole slide imaging (WSI).

    PubMed

    Yagi, Yukako; Gilbertson, John R

    2008-07-15

    This study examined the effect of tissue section thickness and consistency--parameters outside the direct control of the imaging devices themselves--on WSI capture speed and image quality. Preliminary data indicates that thinner, more consistent tissue sectioning (such as those produced by automated tissue sectioning robots) results in significantly faster WSI capture times and better image quality. A variety of tissue types (including human breast, mouse embryo, mouse brain, etc.) were sectioned using an (AS-200) Automated Tissue Sectioning System (Kurabo Industries, Osaka Japan) at thicknesses from 2 - 9 microm (at one microm intervals) and stained with H&E by a standard method. The resulting slides were imaged with 5 different WSI devices (ScanScope CS, Aperio, CA; iScan, BioImagene, CA; DX40, DMetrix, AZ; NanoZoomer, Hamamatsu Photonics K.K., Japan; Mirax Scan, Carl Zeiss Inc., Germany) with sampling periods of 0.43 - 0.69 microm/pixel. Slides with different tissue thicknesses were compared for image quality, appropriate number of focus points, and overall scanning speed. Thinner sections (i.e. 3 microm sections versus 7 microm) required significantly fewer focus points and had significantly lower (10-15%) capture times. Improvement was seen with all devices and tissues tested. Furthermore, a panel of experienced pathologist judged image quality to be significantly better (for example, with better apparent resolution of nucleoli) with the thinner sections. Automated tissue sectioning is a very new technology; however, the AS-200 seems to be able to produce thinner, more consistent, flatter sections than manual methods at reasonably high throughput. The resulting tissue sections seem to be easier for a WSI system's focusing systems to deal with (compared to manually cut slides). Teaming an automated tissue-sectioning device with a WSI device shows promise in producing faster WSI throughput with better image quality.

  14. Image analysis for dental bone quality assessment using CBCT imaging

    NASA Astrophysics Data System (ADS)

    Suprijanto; Epsilawati, L.; Hajarini, M. S.; Juliastuti, E.; Susanti, H.

    2016-03-01

    Cone beam computerized tomography (CBCT) is one of X-ray imaging modalities that are applied in dentistry. Its modality can visualize the oral region in 3D and in a high resolution. CBCT jaw image has potential information for the assessment of bone quality that often used for pre-operative implant planning. We propose comparison method based on normalized histogram (NH) on the region of inter-dental septum and premolar teeth. Furthermore, the NH characteristic from normal and abnormal bone condition are compared and analyzed. Four test parameters are proposed, i.e. the difference between teeth and bone average intensity (s), the ratio between bone and teeth average intensity (n) of NH, the difference between teeth and bone peak value (Δp) of NH, and the ratio between teeth and bone of NH range (r). The results showed that n, s, and Δp have potential to be the classification parameters of dental calcium density.

  15. Phase mammography - a new technique for breast investigation

    NASA Astrophysics Data System (ADS)

    Ingal, Viktor N.; Beliaevskaya, Elena A.; Brianskaya, Alla P.; Merkurieva, Raisa D.

    1998-09-01

    A new phase radiography technique for investigation and diagnosis of neoplasms in breast tissue is proposed. Forty-four mammography samples with adenocarcinoma that had been prepared after mastectomy were tested in a new phase radiography device. It was shown that the phase images manifest the changes in parenchyma structure due to malignancy and microcalcifications up to images/0031-9155/43/9/009/img6.gif" ALIGN="MIDDLE"/> in size. Results obtained were verified by histological examination. A contrast of the phase images of small microcalcifications and distortions of the stroma architecture ranges up to 40-60%; spatial resolution is about images/0031-9155/43/9/009/img7.gif" ALIGN="MIDDLE"/>. The proposed technique offers outstanding possibilities for digital mammography. The small and large details of structure manifest themselves with practically the same contrast. Phase images differ from those obtained in mammography and many details still require further decoding.

  16. Theoretical analysis of high-resolution digital mammography

    NASA Astrophysics Data System (ADS)

    Suryanarayanan, Sankararaman; Karellas, Andrew; Vedantham, Srinivasan; Sechopoulos, Ioannis

    2006-06-01

    The performance of a high-resolution charge coupled device-based full-field digital mammography imager was analysed using a mathematical framework based on an adaptation of cascaded linear systems theory described by other investigators. This work has been conducted in order to understand the impact of various design parameters on the physical performance characteristics of the imager. Specifically, the effect of pixel size, scintillator thickness and packing density, x-ray spectra, air kerma, dark current, charge integration time, and pixel fill-factor on the frequency dependent detective quantum efficiency was studied using a charge-coupled device as a reference platform. The imaging system was modelled as a series of physical processes with gain and spatial spreading. For each stage, the signal and noise power spectra were computed and propagated through the imaging chain as inputs to subsequent stages. Good agreement between experimental and theoretical predictions was obtained for various x-ray spectral conditions that were investigated. The modulation transfer function, MTF(f) and detective quantum efficiency DQE(f) characteristics obtained in this study are encouraging and comparable to other digital mammography systems. The results of this study strongly suggest the feasibility of large area scintillator-based digital mammography imagers with pixel sizes below 100 µm.

  17. Finger vein image quality evaluation using support vector machines

    NASA Astrophysics Data System (ADS)

    Yang, Lu; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2013-02-01

    In an automatic finger-vein recognition system, finger-vein image quality is significant for segmentation, enhancement, and matching processes. In this paper, we propose a finger-vein image quality evaluation method using support vector machines (SVMs). We extract three features including the gradient, image contrast, and information capacity from the input image. An SVM model is built on the training images with annotated quality labels (i.e., high/low) and then applied to unseen images for quality evaluation. To resolve the class-imbalance problem in the training data, we perform oversampling for the minority class with random-synthetic minority oversampling technique. Cross-validation is also employed to verify the reliability and stability of the learned model. Our experimental results show the effectiveness of our method in evaluating the quality of finger-vein images, and by discarding low-quality images detected by our method, the overall finger-vein recognition performance is considerably improved.

  18. Experience with a proposed teleradiology system for digital mammography

    NASA Astrophysics Data System (ADS)

    Saulnier, Emilie T.; Mitchell, Robert J.; Abdel-Malek, Aiman A.; Dudding, Kathryn E.

    1995-05-01

    Teleradiology offers significant improvement in efficiency and effectiveness over current practices in traditional film/screen-based diagnosis. In the context of digital mammography, the increasing number of women who need to be screened for breast cancer, including those in remote rural regions, make the advantages of teleradiology especially attractive for digital mammography. At the same time, the size and resolution of digital mammograms are among the most challenging to support in a cost effective teleradiology system. This paper describes a teleradiology architecture developed for use with digital mammography by GE Corporate Research and Development in collaboration with Massachusetts General Hospital under National Cancer Institute (NCI/NIH) grant number R01 CA60246-01. Experience with a testbed prototype is described. The telemammography architecture is intended to consist of a main mammography diagnostic site serving several remote screening sites. As patient exams become available, they are forwarded by an image server to the diagnostic site over a WAN communications link. A radiologist at the diagnostic site views a patient exam as it arrives, interprets it, and then relays a report back to the technician at the remote site. A secondary future scenario consists of mobile units which forward images to a remote site, which then forwards them to the main diagnostic site. The testbed architecture is based on the Digital Imaging and Communications in Medicine (DICOM) standard, created by the American College of Radiology (ACR) and National Electrical Manufacturers Association (NEMA). A specification of vendor-independent data formats and data transfer services for digital medical images, DICOM specifies a protocol suite starting at the application layer downward, including the TCP/IP layers. The current DICOM definition does not provide an information element that is specifically tailored to mammography, so we have used the DICOM secondary capture data format

  19. Blind image quality assessment using a general regression neural network.

    PubMed

    Li, Chaofeng; Bovik, Alan Conrad; Wu, Xiaojun

    2011-05-01

    We develop a no-reference image quality assessment (QA) algorithm that deploys a general regression neural network (GRNN). The new algorithm is trained on and successfully assesses image quality, relative to human subjectivity, across a range of distortion types. The features deployed for QA include the mean value of phase congruency image, the entropy of phase congruency image, the entropy of the distorted image, and the gradient of the distorted image. Image quality estimation is accomplished by approximating the functional relationship between these features and subjective mean opinion scores using a GRNN. Our experimental results show that the new method accords closely with human subjective judgment.

  20. Image quality metrics for optical coherence angiography

    PubMed Central

    Lozzi, Andrea; Agrawal, Anant; Boretsky, Adam; Welle, Cristin G.; Hammer, Daniel X.

    2015-01-01

    We characterized image quality in optical coherence angiography (OCA) en face planes of mouse cortical capillary network in terms of signal-to-noise ratio (SNR) and Weber contrast (Wc) through a novel mask-based segmentation method. The method was used to compare two adjacent B-scan processing algorithms, (1) average absolute difference (AAD) and (2) standard deviation (SD), while varying the number of lateral cross-sections acquired (also known as the gate length, N). AAD and SD are identical at N = 2 and exhibited similar image quality for N<10. However, AAD is relatively less susceptible to bulk tissue motion artifact than SD. SNR and Wc were 15% and 35% higher for AAD from N = 25 to 100. In addition data sets were acquired with two objective lenses with different magnifications to quantify the effect of lateral resolution on fine capillary detection. The lower power objective yielded a significant mean broadening of 17% in Full Width Half Maximum (FWHM) diameter. These results may guide study and device designs for OCA capillary and blood flow quantification. PMID:26203372

  1. Breast Cancer and Mammography: Summary of the Educational Impact of a Low-Cost Mammography Program.

    ERIC Educational Resources Information Center

    Gresham, Louise S.; And Others

    1988-01-01

    A mammography public education program which used newspaper press releases, local talk shows, news segments, and announcements, flyers, advertisements, and presentations to companies and select populations increased public awareness and decreased misconceptions about mammography. (CB)

  2. PATIENT EXPOSURE DURING PLAIN RADIOGRAPHY AND MAMMOGRAPHY IN JAPAN IN 1974-2014.

    PubMed

    Matsunaga, Yuta; Kawaguchi, Ai; Kobayashi, Kenichi; Kobayashi, Masanao; Asada, Yasuki; Minami, Kazuyuki; Suzuki, Shoichi; Chida, Koichi

    2017-03-01

    We investigated changes in the entrance skin dose (ESD) and the mean glandular dose (MGD) during plain radiography or mammography in Japan from 1974 to 2014. Surveys regarding the conditions used for plain radiography and mammography were performed throughout Japan in 1974, 1979, 1989, 1993, 1997, 2001, 2003, 2007, 2011 and 2014. The anatomical regions considered were categorised as follows: skull anteroposterior (AP), lumbar AP, lumbar lateral (LAT), pelvis (AP), ankle, chest posteroanterior (PA), Guthmann (lateral pelviography for pregnant women), infant hip joint and mammography. The doses for all anatomical regions decreased from 1974 to 1993. The MGD for mammography remained low from 1993 to 2014, and the ESDs for chest (PA) radiography trended upward. After the 2000s, the use of digital imaging increased in Japan. This is the first long-term study to examine changes in ESDs and MGDs in Japan.

  3. WE-A-12A-01: Medical Physics 1.0 to 2.0, Session 2: Radiography, Mammography and Fluoroscopy

    SciTech Connect

    Gingold, E; Karellas, A; Strauss, K

    2014-06-15

    Medical Physics 2.0 is a bold vision for an existential transition of clinical imaging physics in face of the new realities of value-based and evidencebased medicine, comparative effectiveness, and meaningful use. It speaks to how clinical imaging physics can expand beyond traditional insular models of inspection and acceptance testing, oriented toward compliance, towards team-based models of operational engagement, prospective definition and assurance of effective use, and retrospective evaluation of clinical performance. Organized into four sessions of the AAPM, this particular session focuses on three specific modalities as outlined below. Radiography 2.0: The development of electronic capture in recent years has changed the landscape and spurred reinvestment by healthcare providers. The radiography presentation will explore how the diagnostic medical physicist must adapt to these changes to support radiographic imaging, and how she/he can add value in radiography practice over the next 5-10 years. Topics of discussion include new metrology of evaluation, new models of clinical engagement, and effective integration of new technologies. Mammography 2.0: Mammography has been an interesting testing ground on the effectiveness of close involvement of medical physicists with equipment in the past twenty years. The outcomes have clearly shown major improvements in image quality and significant reduction in the average glandular dose. However, the medical physicist's role in mammography has been largely focused to annual surveys and with limited input on operational issues with image artifacts, optimal mammographic acquisition mode and problems with image quality. This mammography presentation will address why and how medical physicists must be prepared to address the new models of practice that include new metrics of performance and the integration of new technologies (DBT, syncretized mammograms, contrast mammography, breast CT) into clinical practice. Fluoroscopy 2

  4. Determination of Tube Output (kVp) and Exposure Mode for Breast Phantom of Various Thicknesses/Glandularity for Digital Mammography

    PubMed Central

    IZDIHAR, Kamal; KANAGA, Kumari Chelliah; KRISHNAPILLAI, Vijayalakshimi; SULAIMAN, Tamanang

    2015-01-01

    Background: Optimisation of average glandular dose (AGD) for two-dimensional (2D) mammography is important, as imaging using ionizing radiation has the probability to induce cancer resulting from stochastic effects. This study aims to observe the effects of kVp, anode/filter material, and exposure mode on the dose and image quality of 2D mammography. Methods: This experimental study was conducted using full-field digital mammography. The entrance surface air kerma was determined using thermoluminescent dosimeter (TLD) 100H and ionization chamber (IC) on three types of Computerized Imaging Reference System (CIRS) phantom with 50/50, 30/70, and 20/80 breast glandularity, respectively, in the auto-time mode and auto-filter mode. The Euref protocol was used to calculate the AGD while the image quality was evaluated using contrast-to-noise ratio (CNR), figure of merit (FOM), and image quality figure (IQF). Results: It is shown that AGD values in the auto-time mode did not decrease significantly with the increasing tube voltage of the silver filter (r = −0.187, P > 0.05) and rhodium filter (r = −0.131, P > 0.05) for all the phantoms. The general linear model showed that AGD for all phantoms had a significant effect between different exposure factors [F (6,12.3) = 4.48 and mode of exposure F (1,86) = 4.17, P < 0.05, respectively] but there is no significant difference between the different anode/filter combination [F (1,4) = 0.571]. Conclusion: In summary, the 28, 29, and 31 kVp are the optimum kVp for 50%, 30%, and 20% breast glandularity, respectively. Besides the auto-filter mode is suitable for 50%, 30%, and 20% breast glandularity because it is automatic, faster, and may avoid error done by the operator. PMID:25892949

  5. Development of a fast read-out system of a single photon counting detector for mammography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Lopez, F. C.; Rigon, L.; Longo, R.; Arfelli, F.; Bergamaschi, A.; Chen, R. C.; Dreossi, D.; Schmitt, B.; Vallazza, E.; Castelli, E.

    2011-12-01

    A single-photon counting detector read-out system for mammography with synchrotron radiation has been developed with the aim to meet the needs of the mammographic imaging station of the SYRMEP beamline at ELETTRA. The system called PICASSO (Phase Imaging for Clinical Application with Silicon detector and Synchrotron radiatiOn) is a modular detector that implements a read-out system with MYTHEN II ASICs, an embedded Linux-based controller board and a Scientific Linux acquisition workstation. The system architecture and characteristics are herein presented. The system was tested at the SYRMEP beamline and achieved a frame rate of 33 Hz for 8448 channels at 24-bit dynamic range, and it is capable of continuously acquiring up to 2000 frames. Standard mammographic phantoms were imaged and good quality images were obtained at doses comparable with what is delivered in conventional full field mammographic systems.

  6. Postmortem validation of breast density using dual-energy mammography

    PubMed Central

    Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-01-01

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer. PMID:25086548

  7. Postmortem validation of breast density using dual-energy mammography

    SciTech Connect

    Molloi, Sabee Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-08-15

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.

  8. [The attitude before subclinical breast lesions on mammography].

    PubMed

    Blidaru, A; Sebeni, M; Bordea, C; Viişoreanu, C; Bălănescu, I

    2000-01-01

    Mammographic screening and improvement of mammography resolution have resulted in the increasingly frequent identification of small-size mammary lesions that have no clinical expression. If in Western countries, approximately one quarter of breast cancers are discovered when clinically occult, in Romania such cases are rare and, most of the times, discovered merely by chance. Infraclinical mammary lesions identified by mammography pose problems concerning the appropriate response. The paper assesses the various diagnosis and therapy choices as well as the localization techniques to be employed in order to establish the best approach. We describe twelve cases of infraclinical mammary lesions identified by mammography. In two of this cases fine needle aspiration biopsy with cytological examination was used, and in one case we performed core biopsy and histological examination. In those cases, lesion localization has been performed using stereotactic X-ray devices. In nine cases, we performed excisional biopsy with histologic assessment. In four of those cases, the lesions proved to be malignant. Preoperative localization was performed with hookwires placed in the proximity of the lesion under mammographic control. In five of those cases, lesion coordinates have been determined by stereotaxy. Using this technique, we removed, in all cases, the clinical lesions identified by mammography. We believe surgical excision to be the best approach in such lesions. Total removal of the lesion enables a thorough histopathological examination resulting in more accurate diagnosis. Curative surgery is also possible within the same surgical procedure. Unless preoperative localization is performed the surgeon is in the position to excise an image that has no clinical expression. Under this circumstances surgical removal is performed blind, as the lesion is hard to be found even intraoperatory. Preoperative localization provides guidance to the surgeon, ensures removal of the lesion

  9. X-ray source for mammography

    DOEpatents

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  10. Digital mammography performed with computed radiography technology.

    PubMed

    Jouan, B

    1999-07-01

    Introduced by Fuji Photo Film Japan in the early 1980s, computed radiography (CR) technology has developed considerably since then to become the mature widely installed technology it is today (about 7500 systems worldwide). Various mammographic examinations require high performance results to which CR complies on demand or following some procedures such as geometrical magnification carried out during the examination. The basic CR principles and digital image processing as well as technical improvements are detailed in this study, which also includes a synthesis of the articles on CR mammographic applications referenced in the bibliography, focusing on strong points, limits and current methods of surpassing these limits. New CR technology development perspectives in mammography and computed assisted diagnosis (CAD) algorithms will allow wider use of this method in the near future.

  11. X-ray source for mammography

    DOEpatents

    Logan, C.M.

    1994-12-20

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  12. Instrumentation optimization for positron emission mammography

    SciTech Connect

    Moses, William W.; Qi, Jinyi

    2003-06-05

    The past several years have seen designs for PET cameras optimized to image the breast, commonly known as Positron Emission Mammography or PEM cameras. The guiding principal behind PEM instrumentation is that a camera whose field of view is restricted to a single breast has higher performance and lower cost than a conventional PET camera. The most common geometry is a pair of parallel planes of detector modules, although geometries that encircle the breast have also been proposed. The ability of the detector modules to measure the depth of interaction (DOI) is also a relevant feature. This paper finds that while both the additional solid angle coverage afforded by encircling the breast and the decreased blurring afforded by the DOI measurement improve performance, the ability to measure DOI is more important than the ability to encircle the breast.

  13. MO-AB-207-00: ACR Update in MR, CT, Nuclear Medicine, and Mammography

    SciTech Connect

    2015-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date as the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.

  14. TU-A-18C-01: ACR Accreditation Updates in CT, Ultrasound, Mammography and MRI

    SciTech Connect

    Price, R; Berns, E; Hangiandreou, N; McNitt-Gray, M

    2014-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, the ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date as the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, mammography, ultrasound, and computed tomography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program. To understand the new requirements of the ACR ultrasound accreditation program, and roles the physicist can play in annual equipment surveys and setting up and supervising the routine QC program. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process.

  15. 75 FR 11542 - Agency Information Collection Activities; Proposed Collection; Comment Request; Mammography...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ...; and standards for mammography equipment, personnel, and practices, including quality assurance. The..., quality assurance and quality control standards, and have a medical reporting and recordkeeping program, a medical outcomes audit program, and a consumer compliant mechanism. On the basis of this...

  16. Using short-wave infrared imaging for fruit quality evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Lee, Dah-Jye; Desai, Alok

    2013-12-01

    Quality evaluation of agricultural and food products is important for processing, inventory control, and marketing. Fruit size and surface quality are two important quality factors for high-quality fruit such as Medjool dates. Fruit size is usually measured by length that can be done easily by simple image processing techniques. Surface quality evaluation on the other hand requires more complicated design, both in image acquisition and image processing. Skin delamination is considered a major factor that affects fruit quality and its value. This paper presents an efficient histogram analysis and image processing technique that is designed specifically for real-time surface quality evaluation of Medjool dates. This approach, based on short-wave infrared imaging, provides excellent image contrast between the fruit surface and delaminated skin, which allows significant simplification of image processing algorithm and reduction of computational power requirements. The proposed quality grading method requires very simple training procedure to obtain a gray scale image histogram for each quality level. Using histogram comparison, each date is assigned to one of the four quality levels and an optimal threshold is calculated for segmenting skin delamination areas from the fruit surface. The percentage of the fruit surface that has skin delamination can then be calculated for quality evaluation. This method has been implemented and used for commercial production and proven to be efficient and accurate.

  17. Physical characteristics of five clinical systems for digital mammography

    SciTech Connect

    Lazzari, B.; Belli, G.; Gori, C.; Rosselli Del Turco, M.

    2007-07-15

    our quantitative analysis demonstrated a higher DQE for direct conversion technology when compared to that of the indirect conversion. The NEQ behavior of each system can be exploited to select the optimum exposure level set in clinical practice to ensure minimum patient dose though adequate image quality. The detailed results of the physical characterization of the digital systems reported in this work allow the quantitative comparison of different technologies as well as the definition of reference values for subsequent quality control tests. The method developed in this work is suitable to be reproduced in any medical physics department for the previously described goals.

  18. Physical characteristics of five clinical systems for digital mammography.

    PubMed

    Lazzari, B; Belli, G; Gori, C; Rosselli Del Turco, M

    2007-07-01

    our quantitative analysis demonstrated a higher DQE for direct conversion technology when compared to that of the indirect conversion. The NEQ behavior of each system can be exploited to select the optimum exposure level set in clinical practice to ensure minimum patient dose though adequate image quality. The detailed results of the physical characterization of the digital systems reported in this work allow the quantitative comparison of different technologies as well as the definition of reference values for subsequent quality control tests. The method developed in this work is suitable to be reproduced in any medical physics department for the previously described goals.

  19. Practical guidelines for radiographers to improve computed radiography image quality.

    PubMed

    Pongnapang, N

    2005-10-01

    Computed Radiography (CR) has become a major digital imaging modality in a modern radiological department. CR system changes workflow from the conventional way of using film/screen by employing photostimulable phosphor plate technology. This results in the changing perspectives of technical, artefacts and quality control issues in radiology departments. Guidelines for better image quality in digital medical enterprise include professional guidelines for users and the quality control programme specifically designed to serve the best quality of clinical images. Radiographers who understand technological shift of the CR from conventional method can employ optimization of CR images. Proper anatomic collimation and exposure techniques for each radiographic projection are crucial steps in producing quality digital images. Matching image processing with specific anatomy is also important factor that radiographers should realise. Successful shift from conventional to fully digitised radiology department requires skilful radiographers who utilise the technology and a successful quality control program from teamwork in the department.

  20. Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques

    PubMed Central

    Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh

    2016-01-01

    Background: Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. Methods: In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. Results: With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Conclusion: Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications. PMID:28077898

  1. Study of digital mammographic equipments by phantom image quality.

    PubMed

    Mayo, P; Rodenas, F; Verdú, G; Campayo, J M; Villaescusa, J I

    2006-01-01

    Nowadays, the digital radiographic equipments are replacing the traditional film-screen equipments and it is necessary to update the parameters to guarantee the quality of the process. Contrast-detail phantoms are applied to digital radiography to study the threshold contrast-detail sensitivity at operation conditions of the equipment. The phantom that is studied in this work is CDMAM 3.4. One of the most extended indexes to measure the image quality in an objective way is the image quality figure (IQF). The aim of this work is to study the image quality of different images contrast-detail phantom CDMAM 3.4, carrying out the automatic detection of the contrast-detail combination and to establish a parameter which characterize in an objective way the mammographic image quality. This is useful to compare images obtained at different digital mammographic equipments to study the functioning of the equipments that facilitates the evaluation of image contrast and detail resolution.

  2. LANDSAT-4 image data quality analysis

    NASA Technical Reports Server (NTRS)

    Anuta, P. E. (Principal Investigator)

    1982-01-01

    Work done on evaluating the geometric and radiometric quality of early LANDSAT-4 sensor data is described. Band to band and channel to channel registration evaluations were carried out using a line correlator. Visual blink comparisons were run on an image display to observe band to band registration over 512 x 512 pixel blocks. The results indicate a .5 pixel line misregistration between the 1.55 to 1.75, 2.08 to 2.35 micrometer bands and the first four bands. Also a four 30M line and column misregistration of the thermal IR band was observed. Radiometric evaluation included mean and variance analysis of individual detectors and principal components analysis. Results indicate that detector bias for all bands is very close or within tolerance. Bright spots were observed in the thermal IR band on an 18 line by 128 pixel grid. No explanation for this was pursued. The general overall quality of the TM was judged to be very high.

  3. Food quality assessment by NIR hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Whitworth, Martin B.; Millar, Samuel J.; Chau, Astor

    2010-04-01

    Near infrared reflectance (NIR) spectroscopy is well established in the food industry for rapid compositional analysis of bulk samples. NIR hyperspectral imaging provides new opportunities to measure the spatial distribution of components such as moisture and fat, and to identify and measure specific regions of composite samples. An NIR hyperspectral imaging system has been constructed for food research applications, incorporating a SWIR camera with a cooled 14 bit HgCdTe detector and N25E spectrograph (Specim Ltd, Finland). Samples are scanned in a pushbroom mode using a motorised stage. The system has a spectral resolution of 256 pixels covering a range of 970-2500 nm and a spatial resolution of 320 pixels covering a swathe adjustable from 8 to 300 mm. Images are acquired at a rate of up to 100 lines s-1, enabling samples to be scanned within a few seconds. Data are captured using SpectralCube software (Specim) and analysed using ENVI and IDL (ITT Visual Information Solutions). Several food applications are presented. The strength of individual absorbance bands enables the distribution of particular components to be assessed. Examples are shown for detection of added gluten in wheat flour and to study the effect of processing conditions on fat distribution in chips/French fries. More detailed quantitative calibrations have been developed to study evolution of the moisture distribution in baguettes during storage at different humidities, to assess freshness of fish using measurements of whole cod and fillets, and for prediction of beef quality by identification and separate measurement of lean and fat regions.

  4. Reduced-reference image quality assessment using moment method

    NASA Astrophysics Data System (ADS)

    Yang, Diwei; Shen, Yuantong; Shen, Yongluo; Li, Hongwei

    2016-10-01

    Reduced-reference image quality assessment (RR IQA) aims to evaluate the perceptual quality of a distorted image through partial information of the corresponding reference image. In this paper, a novel RR IQA metric is proposed by using the moment method. We claim that the first and second moments of wavelet coefficients of natural images can have approximate and regular change that are disturbed by different types of distortions, and that this disturbance can be relevant to human perceptions of quality. We measure the difference of these statistical parameters between reference and distorted image to predict the visual quality degradation. The introduced IQA metric is suitable for implementation and has relatively low computational complexity. The experimental results on Laboratory for Image and Video Engineering (LIVE) and Tampere Image Database (TID) image databases indicate that the proposed metric has a good predictive performance.

  5. Mission-driven evaluation of imaging system quality

    NASA Astrophysics Data System (ADS)

    Kattnig, Alain Philippe; Ferhani, Ouamar; Primot, Jéro‸Me

    2001-12-01

    Image-quality criteria are usually intended to achieve the best possible image at a given sampling rate, which is ill-suited to applications where the detection of well-defined geometric and radiometric properties of scenes or objects are paramount. The quality criterion developed here for designing observation systems is based on properties of the objects to be viewed. It is thus an object-oriented imaging quality criterion rather than an image-oriented one. We also propose to go beyond optimization and calibrate a numerical scale that can be used to rate the quality of the service delivered by any observation system.

  6. Quality Assessment of Sharpened Images: Challenges, Methodology, and Objective Metrics.

    PubMed

    Krasula, Lukas; Le Callet, Patrick; Fliegel, Karel; Klima, Milos

    2017-01-10

    Most of the effort in image quality assessment (QA) has been so far dedicated to the degradation of the image. However, there are also many algorithms in the image processing chain that can enhance the quality of an input image. These include procedures for contrast enhancement, deblurring, sharpening, up-sampling, denoising, transfer function compensation, etc. In this work, possible strategies for the quality assessment of sharpened images are investigated. This task is not trivial because the sharpening techniques can increase the perceived quality, as well as introduce artifacts leading to the quality drop (over-sharpening). Here, the framework specifically adapted for the quality assessment of sharpened images and objective metrics comparison in this context is introduced. However, the framework can be adopted in other quality assessment areas as well. The problem of selecting the correct procedure for subjective evaluation was addressed and a subjective test on blurred, sharpened, and over-sharpened images was performed in order to demonstrate the use of the framework. The obtained ground-truth data were used for testing the suitability of state-ofthe- art objective quality metrics for the assessment of sharpened images. The comparison was performed by novel procedure using ROC analyses which is found more appropriate for the task than standard methods. Furthermore, seven possible augmentations of the no-reference S3 metric adapted for sharpened images are proposed. The performance of the metric is significantly improved and also superior over the rest of the tested quality criteria with respect to the subjective data.

  7. Quantitative image quality evaluation for cardiac CT reconstructions

    NASA Astrophysics Data System (ADS)

    Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.; Balhorn, William; Okerlund, Darin R.

    2016-03-01

    Maintaining image quality in the presence of motion is always desirable and challenging in clinical Cardiac CT imaging. Different image-reconstruction algorithms are available on current commercial CT systems that attempt to achieve this goal. It is widely accepted that image-quality assessment should be task-based and involve specific tasks, observers, and associated figures of merits. In this work, we developed an observer model that performed the task of estimating the percentage of plaque in a vessel from CT images. We compared task performance of Cardiac CT image data reconstructed using a conventional FBP reconstruction algorithm and the SnapShot Freeze (SSF) algorithm, each at default and optimal reconstruction cardiac phases. The purpose of this work is to design an approach for quantitative image-quality evaluation of temporal resolution for Cardiac CT systems. To simulate heart motion, a moving coronary type phantom synchronized with an ECG signal was used. Three different percentage plaques embedded in a 3 mm vessel phantom were imaged multiple times under motion free, 60 bpm, and 80 bpm heart rates. Static (motion free) images of this phantom were taken as reference images for image template generation. Independent ROIs from the 60 bpm and 80 bpm images were generated by vessel tracking. The observer performed estimation tasks using these ROIs. Ensemble mean square error (EMSE) was used as the figure of merit. Results suggest that the quality of SSF images is superior to the quality of FBP images in higher heart-rate scans.

  8. Breast cancer detection and classification in digital mammography based on Non-Subsampled Contourlet Transform (NSCT) and Super Resolution.

    PubMed

    Pak, Fatemeh; Kanan, Hamidreza Rashidy; Alikhassi, Afsaneh

    2015-11-01

    Breast cancer is one of the most perilous diseases among women. Breast screening is a method of detecting breast cancer at a very early stage which can reduce the mortality rate. Mammography is a standard method for the early diagnosis of breast cancer. In this paper, a new algorithm is proposed for breast cancer detection and classification in digital mammography based on Non-Subsampled Contourlet Transform (NSCT) and Super Resolution (SR). The presented algorithm includes three main parts including pre-processing, feature extraction and classification. In the pre-processing stage, after determining the region of interest (ROI) by an automatic technique, the quality of image is improved using NSCT and SR algorithm. In the feature extraction part, several features of the image components are extracted and skewness of each feature is calculated. Finally, AdaBoost algorithm is used to classify and determine the probability of benign and malign disease. The obtained results on Mammographic Image Analysis Society (MIAS) database indicate the significant performance and superiority of the proposed method in comparison with the state of the art approaches. According to the obtained results, the proposed technique achieves 91.43% and 6.42% as a mean accuracy and FPR, respectively.

  9. Searching for the limit of image quality in film radiography

    SciTech Connect

    Vaessen, B.; Perdieus, P.; Florens, R.

    1993-12-31

    Radiographic film image quality in general was, and in most cases still is, considered as a very subjective and rather vague parameter. Yet it is of vital importance to the NDT and related quality control and quality assurance industry. Therefore, lately Agfa has put a major effort into quantifying image quality in an objective, measurable way. It was in the framework of this optimization project, that the authors, based on these new insights in imaging of industrial film systems, strived to search for the limit of the highest achievable image quality. In this paper they report these results. They not only report these results in an academic way, meaning how this highest image quality can be achieved under lab conditions, but also how these same results can be obtained under practical e.g. field-conditions.

  10. What do users really perceive: probing the subjective image quality

    NASA Astrophysics Data System (ADS)

    Nyman, Göte; Radun, Jenni; Leisti, Tuomas; Oja, Joni; Ojanen, Harri; Olives, Jean-Luc; Vuori, Tero; Häkkinen, Jukka

    2006-01-01

    Image evaluation schemes must fulfill both objective and subjective requirements. Objective image quality evaluation models are often preferred over subjective quality evaluation, because of their fastness and cost-effectiveness. However, the correlation between subjective and objective estimations is often poor. One of the key reasons for this is that it is not known what image features subjects use when they evaluate image quality. We have studied subjective image quality evaluation in the case of image sharpness. We used an Interpretation-based Quality (IBQ) approach, which combines both qualitative and quantitative approaches to probe the observer's quality experience. Here we examine how naive subjects experienced and classified natural images, whose sharpness was changing. Together the psychometric and qualitative information obtained allows the correlation of quantitative evaluation data with its underlying subjective attribute sets. This offers guidelines to product designers and developers who are responsible for image quality. Combining these methods makes the end-user experience approachable and offers new ways to improve objective image quality evaluation schemes.

  11. Effects on MR images compression in tissue classification quality

    NASA Astrophysics Data System (ADS)

    Santalla, H.; Meschino, G.; Ballarin, V.

    2007-11-01

    It is known that image compression is required to optimize the storage in memory. Moreover, transmission speed can be significantly improved. Lossless compression is used without controversy in medicine, though benefits are limited. If we compress images lossy, where image can not be totally recovered; we can only recover an approximation. In this point definition of "quality" is essential. What we understand for "quality"? How can we evaluate a compressed image? Quality in images is an attribute whit several definitions and interpretations, which actually depend on the posterior use we want to give them. This work proposes a quantitative analysis of quality for lossy compressed Magnetic Resonance (MR) images, and their influence in automatic tissue classification, accomplished with these images.

  12. Barriers to Mammography among Inadequately Screened Women

    ERIC Educational Resources Information Center

    Stoll, Carolyn R. T.; Roberts, Summer; Cheng, Meng-Ru; Crayton, Eloise V.; Jackson, Sherrill; Politi, Mary C.

    2015-01-01

    Mammography use has increased over the past 20 years, yet more than 30% of women remain inadequately screened. Structural barriers can deter individuals from screening, however, cognitive, emotional, and communication barriers may also prevent mammography use. This study sought to identify the impact of number and type of barriers on mammography…

  13. Frequently Asked Questions about Digital Mammography

    MedlinePlus

    ... is a mammography system where the x-ray film used in screen-film mammography is replaced by solid-state detectors, similar ... on a computer screen, or printed on special films to look like screen-film mammograms. Types of ...

  14. Automated FMV image quality assessment based on power spectrum statistics

    NASA Astrophysics Data System (ADS)

    Kalukin, Andrew

    2015-05-01

    Factors that degrade image quality in video and other sensor collections, such as noise, blurring, and poor resolution, also affect the spatial power spectrum of imagery. Prior research in human vision and image science from the last few decades has shown that the image power spectrum can be useful for assessing the quality of static images. The research in this article explores the possibility of using the image power spectrum to automatically evaluate full-motion video (FMV) imagery frame by frame. This procedure makes it possible to identify anomalous images and scene changes, and to keep track of gradual changes in quality as collection progresses. This article will describe a method to apply power spectral image quality metrics for images subjected to simulated blurring, blocking, and noise. As a preliminary test on videos from multiple sources, image quality measurements for image frames from 185 videos are compared to analyst ratings based on ground sampling distance. The goal of the research is to develop an automated system for tracking image quality during real-time collection, and to assign ratings to video clips for long-term storage, calibrated to standards such as the National Imagery Interpretability Rating System (NIIRS).

  15. Ultrasound as an Adjunct to Mammography for Breast Cancer Screening: A Health Technology Assessment

    PubMed Central

    Nikitovic-Jokic, Milica; Tu, Hong Anh; Palimaka, Stefan; Higgins, Caroline; Holubowich, Corinne

    2016-01-01

    . Conclusions We found no evidence that evaluated the comparative effectiveness or diagnostic accuracy of screening breast ultrasound as an adjunct to mammography among average-risk women aged 50 years and over. In women at high risk of developing breast cancer, there is low-quality evidence that screening with mammography and adjunct ultrasound detects additional cases of disease, with improved sensitivity compared to mammography alone. Screening with adjunct ultrasound also increases the number of false-positive findings and subsequent biopsy recommendations. It is unclear if the use of screening breast ultrasound as an adjunct to mammography will reduce breast cancer–related mortality among high-risk women. The annual cost burden of using adjunct ultrasound to screen high-risk women who cannot receive MRI in Ontario would be small. PMID:27468326

  16. The study of surgical image quality evaluation system by subjective quality factor method

    NASA Astrophysics Data System (ADS)

    Zhang, Jian J.; Xuan, Jason R.; Yang, Xirong; Yu, Honggang; Koullick, Edouard

    2016-03-01

    GreenLightTM procedure is an effective and economical way of treatment of benign prostate hyperplasia (BPH); there are almost a million of patients treated with GreenLightTM worldwide. During the surgical procedure, the surgeon or physician will rely on the monitoring video system to survey and confirm the surgical progress. There are a few obstructions that could greatly affect the image quality of the monitoring video, like laser glare by the tissue and body fluid, air bubbles and debris generated by tissue evaporation, and bleeding, just to name a few. In order to improve the physician's visual experience of a laser surgical procedure, the system performance parameter related to image quality needs to be well defined. However, since image quality is the integrated set of perceptions of the overall degree of excellence of an image, or in other words, image quality is the perceptually weighted combination of significant attributes (contrast, graininess …) of an image when considered in its marketplace or application, there is no standard definition on overall image or video quality especially for the no-reference case (without a standard chart as reference). In this study, Subjective Quality Factor (SQF) and acutance are used for no-reference image quality evaluation. Basic image quality parameters, like sharpness, color accuracy, size of obstruction and transmission of obstruction, are used as subparameter to define the rating scale for image quality evaluation or comparison. Sample image groups were evaluated by human observers according to the rating scale. Surveys of physician groups were also conducted with lab generated sample videos. The study shows that human subjective perception is a trustworthy way of image quality evaluation. More systematic investigation on the relationship between video quality and image quality of each frame will be conducted as a future study.

  17. Comparison of the polynomial model against explicit measurements of noise components for different mammography systems

    NASA Astrophysics Data System (ADS)

    Monnin, P.; Bosmans, H.; Verdun, F. R.; Marshall, N. W.

    2014-10-01

    Given the adverse impact of image noise on the perception of important clinical details in digital mammography, routine quality control measurements should include an evaluation of noise. The European Guidelines, for example, employ a second-order polynomial fit of pixel variance as a function of detector air kerma (DAK) to decompose noise into quantum, electronic and fixed pattern (FP) components and assess the DAK range where quantum noise dominates. This work examines the robustness of the polynomial method against an explicit noise decomposition method. The two methods were applied to variance and noise power spectrum (NPS) data from six digital mammography units. Twenty homogeneously exposed images were acquired with PMMA blocks for target DAKs ranging from 6.25 to 1600 µGy. Both methods were explored for the effects of data weighting and squared fit coefficients during the curve fitting, the influence of the additional filter material (2 mm Al versus 40 mm PMMA) and noise de-trending. Finally, spatial stationarity of noise was assessed. Data weighting improved noise model fitting over large DAK ranges, especially at low detector exposures. The polynomial and explicit decompositions generally agreed for quantum and electronic noise but FP noise fraction was consistently underestimated by the polynomial method. Noise decomposition as a function of position in the image showed limited noise stationarity, especially for FP noise; thus the position of the region of interest (ROI) used for noise decomposition may influence fractional noise composition. The ROI area and position used in the Guidelines offer an acceptable estimation of noise components. While there are limitations to the polynomial model, when used with care and with appropriate data weighting, the method offers a simple and robust means of examining the detector noise components as a function of detector exposure.

  18. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality.

    PubMed

    Vano, E; Geiger, B; Schreiner, A; Back, C; Beissel, J

    2005-12-07

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 microGy/frame (cine) and 5 and 95 mGy min(-1) (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  19. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    NASA Astrophysics Data System (ADS)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  20. Can pictorial images communicate the quality of pain successfully?

    PubMed Central

    Knapp, Peter; Morley, Stephen; Stones, Catherine

    2015-01-01

    Chronic pain is common and difficult for patients to communicate to health professionals. It may include neuropathic elements which require specialised treatment. A little used approach to communicating the quality of pain is through the use of images. This study aimed to test the ability of a set of 12 images depicting different sensory pain qualities to successfully communicate those qualities. Images were presented to 25 student nurses and 38 design students. Students were asked to write down words or phrases describing the quality of pain they felt was being communicated by each image. They were asked to provide as many or as few as occurred to them. The images were extremely heterogeneous in their ability to convey qualities of pain accurately. Only 2 of the 12 images were correctly interpreted by more than 70% of the sample. There was a significant difference between the two student groups, with nurses being significantly better at interpreting the images than the design students. Clearly, attention needs to be given not only to the content of images designed to depict the sensory qualities of pain but also to the differing audiences who may use them. Education, verbal ability, ethnicity and a multiplicity of other factors may influence the understanding and use of such images. Considerable work is needed to develop a set of images which is sufficiently culturally appropriate and effective for general use. PMID:26516574

  1. Can pictorial images communicate the quality of pain successfully?

    PubMed

    Closs, S José; Knapp, Peter; Morley, Stephen; Stones, Catherine

    2015-08-01

    Chronic pain is common and difficult for patients to communicate to health professionals. It may include neuropathic elements which require specialised treatment. A little used approach to communicating the quality of pain is through the use of images. This study aimed to test the ability of a set of 12 images depicting different sensory pain qualities to successfully communicate those qualities. Images were presented to 25 student nurses and 38 design students. Students were asked to write down words or phrases describing the quality of pain they felt was being communicated by each image. They were asked to provide as many or as few as occurred to them. The images were extremely heterogeneous in their ability to convey qualities of pain accurately. Only 2 of the 12 images were correctly interpreted by more than 70% of the sample. There was a significant difference between the two student groups, with nurses being significantly better at interpreting the images than the design students. Clearly, attention needs to be given not only to the content of images designed to depict the sensory qualities of pain but also to the differing audiences who may use them. Education, verbal ability, ethnicity and a multiplicity of other factors may influence the understanding and use of such images. Considerable work is needed to develop a set of images which is sufficiently culturally appropriate and effective for general use.

  2. Image quality assessment for CT used on small animals

    NASA Astrophysics Data System (ADS)

    Cisneros, Isabela Paredes; Agulles-Pedrós, Luis

    2016-07-01

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MatLab, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  3. Fractal analysis for reduced reference image quality assessment.

    PubMed

    Xu, Yong; Liu, Delei; Quan, Yuhui; Le Callet, Patrick

    2015-07-01

    In this paper, multifractal analysis is adapted to reduced-reference image quality assessment (RR-IQA). A novel RR-QA approach is proposed, which measures the difference of spatial arrangement between the reference image and the distorted image in terms of spatial regularity measured by fractal dimension. An image is first expressed in Log-Gabor domain. Then, fractal dimensions are computed on each Log-Gabor subband and concatenated as a feature vector. Finally, the extracted features are pooled as the quality score of the distorted image using l1 distance. Compared with existing approaches, the proposed method measures image quality from the perspective of the spatial distribution of image patterns. The proposed method was evaluated on seven public benchmark data sets. Experimental results have demonstrated the excellent performance of the proposed method in comparison with state-of-the-art approaches.

  4. Raman chemical imaging system for food safety and quality inspection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raman chemical imaging technique combines Raman spectroscopy and digital imaging to visualize composition and structure of a target, and it offers great potential for food safety and quality research. In this study, a laboratory-based Raman chemical imaging platform was designed and developed. The i...

  5. The simulation of adaptive optical image even and pulse noise and research of image quality evaluation

    NASA Astrophysics Data System (ADS)

    Wen, Changli; Xu, Yuannan; Xu, Rong; Liu, Changhai; Men, Tao; Niu, Wei

    2013-09-01

    As optical image becomes more and more important in adaptive optics area, and adaptive optical telescopes play a more and more important role in the detection system on the ground, and the images we get are so many that we need find a suitable method to choose good quality images automatically in order to save human power, people pay more and more attention in image's evaluation methods and their characteristics. According to different image degradation model, the applicability of different image's quality evaluation method will be different. Researchers have paid most attention in how to improve or build new method to evaluate degraded images. Now we should change our way to take some research in the models of degradation of images, the reasons of image degradation, and the relations among different degraded images and different image quality evaluation methods. In this paper, we build models of even noise and pulse noise based on their definition and get degraded images using these models, and we take research in six kinds of usual image quality evaluation methods such as square error method, sum of multi-power of grey scale method, entropy method, Fisher function method, Sobel method, and sum of grads method, and we make computer software for these methods to use easily to evaluate all kinds of images input. Then we evaluate the images' qualities with different evaluation methods and analyze the results of six kinds of methods, and finally we get many important results. Such as the characteristics of every method for evaluating qualities of degraded images of even noise, the characteristics of every method for evaluating qualities of degraded images of pulse noise, and the best method to evaluate images which affected by tow kinds of noise both and the characteristics of this method. These results are important to image's choosing automatically, and this will help we to manage the images we get through adaptive optical telescopes base on the ground.

  6. Image processing system performance prediction and product quality evaluation

    NASA Technical Reports Server (NTRS)

    Stein, E. K.; Hammill, H. B. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. A new technique for image processing system performance prediction and product quality evaluation was developed. It was entirely objective, quantitative, and general, and should prove useful in system design and quality control. The technique and its application to determination of quality control procedures for the Earth Resources Technology Satellite NASA Data Processing Facility are described.

  7. Knowledge Discovery from Structured Mammography Reports Using Inductive Logic Programming

    PubMed Central

    Burnside, Elizabeth S.; Davis, Jesse; Costa, Vítor Santos; de Castro Dutra, Inês; Kahn, Charles E.; Fine, Jason; Page, David

    2005-01-01

    The development of large mammography databases provides an opportunity for knowledge discovery and data mining techniques to recognize patterns not previously appreciated. Using a database from a breast imaging practice containing patient risk factors, imaging findings, and biopsy results, we tested whether inductive logic programming (ILP) could discover interesting hypotheses that could subsequently be tested and validated. The ILP algorithm discovered two hypotheses from the data that were 1) judged as interesting by a subspecialty-trained mammographer and 2) validated by analysis of the data itself. PMID:16779009

  8. Optical mammography: a new technique for visualizing breast lesions in women presenting non palpable BIRADS 4-5 imaging findings: preliminary results with radiologic-pathologic correlation.

    PubMed

    Athanasiou, Alexandra; Vanel, Daniel; Fournier, Laure; Balleyguier, Corinne

    2007-02-28

    The purpose of this prospective study is to determine the diagnostic accuracy of near-infrared breast optical absorption imaging in patients with Breast Imaging Reporting and Data System (BIRADS) 4-5 non-palpable lesions scheduled for biopsy, using pathology after core or excisional biopsy as a reference. The patient's breast was positioned onto a panel of red light-emitting diodes (640 nm). A soft membrane was inflated to exert a uniform pressure on the breast. Transmitted light was detected using a CCD camera. The entire acquisition sequence took 1 minute. Image processing generated dynamic images displayed in colour scale, to reveal time-dependent changes in the transmitted light intensity caused by the pressure change. Dynamic curves were classified in two categories: consistently decreasing intensity suspicious for malignancy, and sinusoidal increasing intensity considered as benign. Seventy-eight women consulting for non-palpable breast lesions were initially included in the study. An imaging-histology correlation was obtained for seventy-two patients, the remaining six patients were excluded for technical optical scan reasons. We experienced an overall sensitivity of 73% and specificity of 38%, the false negative results being mainly small size (<10 mm) infiltrating malignant lesions and ductal carcinoma in situ (DCIS). False positive results were seen in benign proliferative lesions. Dynamic optical breast imaging is a novel, low-cost, non-invasive technique yielding a new type of information about the physiology of breast lesions. Absorption is due to haemoglobin and its products, therefore reflecting the angiogenic status of breast tumours.

  9. Analyzing and Improving Image Quality in Reflective Ghost Imaging

    DTIC Science & Technology

    2011-02-01

    imaging." Phys. Rev. A 79, 023833 (2009). [7] R . E . Meyers , K. S. Deacon. and Y. Shih, "Ghost-imaging experiment by measuring reflected photons," Phys...Rev. A 77, 041801 (2008). [8] R . E . Meyers and K. S. Deacon, "Quantum ghost imaging experiments at ARL," Proc. SPIE 7815. 781501 (2010). [9] J. H

  10. Diffraction enhanced x-ray imaging

    SciTech Connect

    Thomlinson, W.; Zhong, Z.; Chapman, D.; Johnston, R.E.; Sayers, D.

    1997-09-01

    Diffraction enhanced imaging (DEI) is a new x-ray radiographic imaging modality using synchrotron x-rays which produces images of thick absorbing objects that are almost completely free of scatter. They show dramatically improved contrast over standard imaging applied to the same phantoms. The contrast is based not only on attenuation but also the refraction and diffraction properties of the sample. The diffraction component and the apparent absorption component (absorption plus extinction contrast) can each be determined independently. This imaging method may improve the image quality for medical applications such as mammography.

  11. No-reference visual quality assessment for image inpainting

    NASA Astrophysics Data System (ADS)

    Voronin, V. V.; Frantc, V. A.; Marchuk, V. I.; Sherstobitov, A. I.; Egiazarian, K.

    2015-03-01

    Inpainting has received a lot of attention in recent years and quality assessment is an important task to evaluate different image reconstruction approaches. In many cases inpainting methods introduce a blur in sharp transitions in image and image contours in the recovery of large areas with missing pixels and often fail to recover curvy boundary edges. Quantitative metrics of inpainting results currently do not exist and researchers use human comparisons to evaluate their methodologies and techniques. Most objective quality assessment methods rely on a reference image, which is often not available in inpainting applications. Usually researchers use subjective quality assessment by human observers. It is difficult and time consuming procedure. This paper focuses on a machine learning approach for no-reference visual quality assessment for image inpainting based on the human visual property. Our method is based on observation that Local Binary Patterns well describe local structural information of the image. We use a support vector regression learned on assessed by human images to predict perceived quality of inpainted images. We demonstrate how our predicted quality value correlates with qualitative opinion in a human observer study. Results are shown on a human-scored dataset for different inpainting methods.

  12. Image quality transfer and applications in diffusion MRI.

    PubMed

    Alexander, Daniel C; Zikic, Darko; Ghosh, Aurobrata; Tanno, Ryutaro; Wottschel, Viktor; Zhang, Jiaying; Kaden, Enrico; Dyrby, Tim B; Sotiropoulos, Stamatios N; Zhang, Hui; Criminisi, Antonio

    2017-03-03

    This paper introduces a new computational imaging technique called image quality transfer (IQT). IQT uses machine learning to transfer the rich information available from one-off experimental medical imaging devices to the abundant but lower-quality data from routine acquisitions. The procedure uses matched pairs to learn mappings from low-quality to corresponding high-quality images. Once learned, these mappings then augment unseen low quality images, for example by enhancing image resolution or information content. Here, we demonstrate IQT using a simple patch-regression implementation and the uniquely rich diffusion MRI data set from the human connectome project (HCP). Results highlight potential benefits of IQT in both brain connectivity mapping and microstructure imaging. In brain connectivity mapping, IQT reveals, from standard data sets, thin connection pathways that tractography normally requires specialised data to reconstruct. In microstructure imaging, IQT shows potential in estimating, from standard "single-shell" data (one non-zero b-value), maps of microstructural parameters that normally require specialised multi-shell data. Further experiments show strong generalisability, highlighting IQT's benefits even when the training set does not directly represent the application domain. The concept extends naturally to many other imaging modalities and reconstruction problems.

  13. Meat quality evaluation by hyperspectral imaging technique: an overview.

    PubMed

    Elmasry, Gamal; Barbin, Douglas F; Sun, Da-Wen; Allen, Paul

    2012-01-01

    During the last two decades, a number of methods have been developed to objectively measure meat quality attributes. Hyperspectral imaging technique as one of these methods has been regarded as a smart and promising analytical tool for analyses conducted in research and industries. Recently there has been a renewed interest in using hyperspectral imaging in quality evaluation of different food products. The main inducement for developing the hyperspectral imaging system is to integrate both spectroscopy and imaging techniques in one system to make direct identification of different components and their spatial distribution in the tested product. By combining spatial and spectral details together, hyperspectral imaging has proved to be a promising technology for objective meat quality evaluation. The literature presented in this paper clearly reveals that hyperspectral imaging approaches have a huge potential for gaining rapid information about the chemical structure and related physical properties of all types of meat. In addition to its ability for effectively quantifying and characterizing quality attributes of some important visual features of meat such as color, quality grade, marbling, maturity, and texture, it is able to measure multiple chemical constituents simultaneously without monotonous sample preparation. Although this technology has not yet been sufficiently exploited in meat process and quality assessment, its potential is promising. Developing a quality evaluation system based on hyperspectral imaging technology to assess the meat quality parameters and to ensure its authentication would bring economical benefits to the meat industry by increasing consumer confidence in the quality of the meat products. This paper provides a detailed overview of the recently developed approaches and latest research efforts exerted in hyperspectral imaging technology developed for evaluating the quality of different meat products and the possibility of its widespread

  14. Image quality assessment by preprocessing and full reference model combination

    NASA Astrophysics Data System (ADS)

    Bianco, S.; Ciocca, G.; Marini, F.; Schettini, R.

    2009-01-01

    This paper focuses on full-reference image quality assessment and presents different computational strategies aimed to improve the robustness and accuracy of some well known and widely used state of the art models, namely the Structural Similarity approach (SSIM) by Wang and Bovik and the S-CIELAB spatial-color model by Zhang and Wandell. We investigate the hypothesis that combining error images with a visual attention model could allow a better fit of the psycho-visual data of the LIVE Image Quality assessment Database Release 2. We show that the proposed quality assessment metric better correlates with the experimental data.

  15. Family/friend recommendations and mammography intentions: the roles of perceived mammography norms and support

    PubMed Central

    Molina, Yamile; Ornelas, India J.; Doty, Sarah L.; Bishop, Sonia; Beresford, Shirley A. A.; Coronado, Gloria D.

    2015-01-01

    Identifying factors that increase mammography use among Latinas is an important public health priority. Latinas are more likely to report mammography intentions and use, if a family member or friend recommends that they get a mammogram. Little is known about the mechanisms underlying the relationship between social interactions and mammography intentions. Theory suggests that family/friend recommendations increase perceived mammography norms (others believe a woman should obtain a mammogram) and support (others will help her obtain a mammogram), which in turn increase mammography intentions and use. We tested these hypotheses with data from the ¡Fortaleza Latina! study, a randomized controlled trial including 539 Latinas in Washington State. Women whose family/friend recommended they get a mammogram within the last year were more likely to report mammography intentions, norms and support. Perceived mammography norms mediated the relationship between family/friend recommendations and intentions, Mediated Effect = 0.38, 95%CI [0.20, 0.61], but not support, Mediated Effect = 0.002, 95%CI [−0.07, 0.07]. Our findings suggest perceived mammography norms are a potential mechanism underlying the effect of family/friend recommendations on mammography use among Latinas. Our findings make an important contribution to theory about the associations of social interactions, perceptions and health behaviors. PMID:26324395

  16. Family/friend recommendations and mammography intentions: the roles of perceived mammography norms and support.

    PubMed

    Molina, Yamile; Ornelas, India J; Doty, Sarah L; Bishop, Sonia; Beresford, Shirley A A; Coronado, Gloria D

    2015-10-01

    Identifying factors that increase mammography use among Latinas is an important public health priority. Latinas are more likely to report mammography intentions and use, if a family member or friend recommends that they get a mammogram. Little is known about the mechanisms underlying the relationship between social interactions and mammography intentions. Theory suggests that family/friend recommendations increase perceived mammography norms (others believe a woman should obtain a mammogram) and support (others will help her obtain a mammogram), which in turn increase mammography intentions and use. We tested these hypotheses with data from the ¡Fortaleza Latina! study, a randomized controlled trial including 539 Latinas in Washington State. Women whose family/friend recommended they get a mammogram within the last year were more likely to report mammography intentions, norms and support. Perceived mammography norms mediated the relationship between family/friend recommendations and intentions, Mediated Effect = 0.38, 95%CI [0.20, 0.61], but not support, Mediated Effect = 0.002, 95%CI [-0.07, 0.07]. Our findings suggest perceived mammography norms are a potential mechanism underlying the effect of family/friend recommendations on mammography use among Latinas. Our findings make an important contribution to theory about the associations of social interactions, perceptions and health behaviors.

  17. Improvement of image quality in holographic microscopy.

    PubMed

    Budhiraja, C J; Som, S C

    1981-05-15

    A novel technique of noise reduction in holographic microscopy has been experimentally studied. It has been shown that significant improvement in the holomicroscopic images of actual low-contrast continuous tone biological objects can be achieved without trade off in image resolution. The technique makes use of holographically produced multidirectional phase gratings used as diffusers and the continuous addition of subchannel holograms. It has been shown that the self-imaging property of this type of diffuser makes the use of these diffusers ideal for microscopic objects. Experimental results have also been presented to demonstrate real-time image processing capability of this technique.

  18. Positron Emission Mammography with Multiple Angle Acquisition

    SciTech Connect

    Mark F. Smith; Stan Majewski; Raymond R. Raylman

    2002-11-01

    Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FDG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activity concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three- dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.

  19. Positron Emission Mammography with Multiple Angle Acquisition

    SciTech Connect

    Mark F. Smith; Stan Majewski; Raymond R. Raylman

    2002-11-01

    Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FbG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activity concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three-dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.

  20. Impact of varying transmission bandwidth on image quality.

    PubMed

    Broderick, T J; Harnett, B M; Merriam, N R; Kapoor, V; Doarn, C R; Merrell, R C

    2001-01-01

    The objective of this paper is to determine the effect of varying transmission bandwidth on image quality in laparoscopic surgery. Surgeons located in remote operating rooms connected through a telemedicine link must be able to transmit medical images for interaction. Image clarity and color fidelity are of critical importance in telementoring laparoscopic procedures. The clarity of laparoscopic images was measured by assessing visual acuity using a video image of a Snellen eye chart obtained with standard diameter laparoscopes (2, 5, and 10 mm). The clarity of the local image was then compared to that of remote images transmitted using various bandwidths and connection protocols [33.6 Kbps POTS (IP), 128 Kbps ISDN, 384 Kbps ISDN, 10 Mbps LAN (IP)]. The laparoscopes were subsequently used to view standard color placards. These color images were sent via similar transmission bandwidths and connection protocols. The local and remote images of the color placards were compared to determine the effect of the transmission protocols on color fidelity. Use of laparoscopes of different diameter does not significantly affect image clarity or color fidelity as long as the laparoscopes are positioned at their optimal working distance. Decreasing transmission bandwidth does not significantly affect image clarity or color fidelity when sufficient time is allowed for the algorithms to redraw the remote image. Remote telementoring of laparoscopic procedures is feasible. However, low bandwidth connections require slow and/or temporarily stopped camera movements for the quality of the remote video image to approximate that of the local video image.

  1. Validating self-reported mammography use in vulnerable communities: findings and recommendations

    PubMed Central

    Allgood, Kristi L.; Rauscher, Garth H.; Whitman, Steven; Vasquez-Jones, Giselle; Shah, Ami M.

    2014-01-01

    Background Most health surveys ask women whether they have had a recent mammogram, all of which report mammography use (past two years) at about 70–80% regardless of race or residence. We examined the potential extent of over-reporting of mammography use in low income African-American and Latina women, and whether self-report inaccuracies might bias estimated associations between patient characteristics and mammography use. Methods Using venue based sampling in two poor communities on the west side of Chicago, we asked eligible women living in two west side communities of Chicago to complete a survey about breast health (n=2,200) and to provide consent to view their medical record. Of the n=1,909 women who screened eligible for medical record review, n=1,566 consented (82%). We obtained medical records of all women who provided both permission and a valid local mammography facility (n=1,221). We compared the self-reported responses from the survey to the imaging reports found in the medical record (documented). To account for missing data we conducted multiple imputations for key demographic variables and report standard measures of accuracy. Results Although 73% of women self-reported a mammogram in the last 2 years, only 45% of self-reports were documented. Over-reporting of mammography use was observed for all three ethnic groups. Conclusions These results suggest considerable over-estimation of prevalence of use in these vulnerable populations. Impact Relying on known faulty self-reported mammography data as a measure of mammography use provides an overly optimistic picture of utilization, a problem that may be exacerbated in vulnerable minority communities. PMID:24859870

  2. Feature maps driven no-reference image quality prediction of authentically distorted images

    NASA Astrophysics Data System (ADS)

    Ghadiyaram, Deepti; Bovik, Alan C.

    2015-03-01

    Current blind image quality prediction models rely on benchmark databases comprised of singly and synthetically distorted images, thereby learning image features that are only adequate to predict human perceived visual quality on such inauthentic distortions. However, real world images often contain complex mixtures of multiple distortions. Rather than a) discounting the effect of these mixtures of distortions on an image's perceptual quality and considering only the dominant distortion or b) using features that are only proven to be efficient for singly distorted images, we deeply study the natural scene statistics of authentically distorted images, in different color spaces and transform domains. We propose a feature-maps-driven statistical approach which avoids any latent assumptions about the type of distortion(s) contained in an image, and focuses instead on modeling the remarkable consistencies in the scene statistics of real world images in the absence of distortions. We design a deep belief network that takes model-based statistical image features derived from a very large database of authentically distorted images as input and discovers good feature representations by generalizing over different distortion types, mixtures, and severities, which are later used to learn a regressor for quality prediction. We demonstrate the remarkable competence of our features for improving automatic perceptual quality prediction on a benchmark database and on the newly designed LIVE Authentic Image Quality Challenge Database and show that our approach of combining robust statistical features and the deep belief network dramatically outperforms the state-of-the-art.

  3. A comparison of an Agfa and Kodak film-screen combination for mammography.

    PubMed

    Dudson, J

    1994-12-01

    A recently introduced Agfa film-screen combination used for mammography was compared with a widely used Kodak film-screen combination. This comparison involved evaluating the image quality and calculating a reference mean glandular dose for a breast phantom recommended by the ACPSEM. The image quality and dose were evaluated for a grid and non-grid technique as well as a range of kilovoltages. For the large area test objects in the phantom, the Agfa combination performed better. This reflected the high contrast capability of this film-screen combination. For the Kodak combination a better image score was achieved for the small area objects. These objects are indicative of the modulation transfer function and resolution characteristics of the film-screen combination. The reference mean glandular dose showed that at least 20% less dose was required for the Agfa combination. Although the Agfa combination offered improved contrast and dose saving, the Kodak combination was preferred because of the better representation of the small area objects which are an important element for early detection of breast cancer.

  4. Photoreceptor waveguides and effective retinal image quality

    NASA Astrophysics Data System (ADS)

    Vohnsen, Brian

    2007-03-01

    Individual photoreceptor waveguiding suggests that the entire retina can be considered as a composite fiber-optic element relating a retinal image to a corresponding waveguided image. In such a scheme, a visual sensation is produced only when the latter interacts with the pigments of the outer photoreceptor segments. Here the possible consequences of photoreceptor waveguiding on vision are studied with important implications for the pupil-apodization method commonly used to incorporate directional effects of the retina. In the absence of aberrations, it is found that the two approaches give identical predictions for an effective retinal image only when the pupil apodization is chosen twice as narrow as suggested by the traditional Stiles-Crawford effect. In addition, phase variations in the retinal field due to ocular aberrations can delicately alter a waveguided image, and this may provide plausible justification for an improved visual sensation as compared with what should be expected on the grounds of a retinal image only.

  5. Perceived no reference image quality measurement for chromatic aberration

    NASA Astrophysics Data System (ADS)

    Lamb, Anupama B.; Khambete, Madhuri

    2016-03-01

    Today there is need for no reference (NR) objective perceived image quality measurement techniques as conducting subjective experiments and making reference image available is a very difficult task. Very few NR perceived image quality measurement algorithms are available for color distortions like chromatic aberration (CA), color quantization with dither, and color saturation. We proposed NR image quality assessment (NR-IQA) algorithms for images distorted with CA. CA is mostly observed in images taken with digital cameras, having higher sensor resolution with inexpensive lenses. We compared our metric performance with two state-of-the-art NR blur techniques, one full reference IQA technique and three general-purpose NR-IQA techniques, although they are not tailored for CA. We used a CA dataset in the TID-2013 color image database to evaluate performance. Proposed algorithms give comparable performance with state-of-the-art techniques in terms of performance parameters and outperform them in terms of monotonicity and computational complexity. We have also discovered that the proposed CA algorithm best predicts perceived image quality of images distorted with realistic CA.

  6. Mammography screening services: market segments and messages.

    PubMed

    Scammon, D L; Smith, J A; Beard, T

    1991-01-01

    Mammography has become a vital tool for the early detection of breast cancer. Although many organizations and health care facilities are working to educate and motivate women to take advantage of the life saving opportunity that is offered through screening mammography, only twenty percent of women who should be screened actually have the procedure performed. In order to reach women who have not been screened, it is important to learn which factors most strongly motivate those women who do choose to have a mammogram. Depth interviews with 18 women attending a mobile mammography unit were conducted to explore the decision making process of women obtaining mammography screening services and to develop a profile of prevalent emotions, attitudes, and feelings associated with receiving breast cancer screening services. Analysis of the interview transcripts revealed several important themes to which health care professionals can direct marketing and health promotion strategies.

  7. Dosimetry and image quality assessment in a direct radiography system

    PubMed Central

    Oliveira, Bruno Beraldo; de Oliveira, Marcio Alves; Paixão, Lucas; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2014-01-01

    Objective To evaluate the mean glandular dose with a solid state detector and the image quality in a direct radiography system, utilizing phantoms. Materials and Methods Irradiations were performed with automatic exposure control and polymethyl methacrylate slabs with different thicknesses to calculate glandular dose values. The image quality was evaluated by means of the structures visualized on the images of the phantoms. Results Considering the uncertainty of the measurements, the mean glandular dose results are in agreement with the values provided by the equipment and with internationally adopted reference levels. Results obtained from images of the phantoms were in agreement with the reference values. Conclusion The present study contributes to verify the equipment conformity as regards dose values and image quality. PMID:25741119

  8. Web-based psychometric evaluation of image quality

    NASA Astrophysics Data System (ADS)

    Sprow, Iris; Baranczuk, Zofia; Stamm, Tobias; Zolliker, Peter

    2009-01-01

    The measurement of image quality requires the judgement by the human visual system. This paper describes a psycho-visual test technique that uses the internet as a test platform to identify image quality in a more time-effective manner, comparing the visual response data with the results from the same test in a lab-based environment and estimate the usefulness of the internet as a platform for scaling studies.

  9. Benefits and harms of mammography screening.

    PubMed

    Løberg, Magnus; Lousdal, Mette Lise; Bretthauer, Michael; Kalager, Mette

    2015-05-01

    Mammography screening for breast cancer is widely available in many countries. Initially praised as a universal achievement to improve women's health and to reduce the burden of breast cancer, the benefits and harms of mammography screening have been debated heatedly in the past years. This review discusses the benefits and harms of mammography screening in light of findings from randomized trials and from more recent observational studies performed in the era of modern diagnostics and treatment. The main benefit of mammography screening is reduction of breast-cancer related death. Relative reductions vary from about 15 to 25% in randomized trials to more recent estimates of 13 to 17% in meta-analyses of observational studies. Using UK population data of 2007, for 1,000 women invited to biennial mammography screening for 20 years from age 50, 2 to 3 women are prevented from dying of breast cancer. All-cause mortality is unchanged. Overdiagnosis of breast cancer is the main harm of mammography screening. Based on recent estimates from the United States, the relative amount of overdiagnosis (including ductal carcinoma in situ and invasive cancer) is 31%. This results in 15 women overdiagnosed for every 1,000 women invited to biennial mammography screening for 20 years from age 50. Women should be unpassionately informed about the benefits and harms of mammography screening using absolute effect sizes in a comprehensible fashion. In an era of limited health care resources, screening services need to be scrutinized and compared with each other with regard to effectiveness, cost-effectiveness and harms.

  10. Evaluation of an improved algorithm for producing realistic 3D breast software phantoms: Application for mammography

    PubMed Central

    Bliznakova, K.; Suryanarayanan, S.; Karellas, A.; Pallikarakis, N.

    2010-01-01

    Purpose: This work presents an improved algorithm for the generation of 3D breast software phantoms and its evaluation for mammography. Methods: The improved methodology has evolved from a previously presented 3D noncompressed breast modeling method used for the creation of breast models of different size, shape, and composition. The breast phantom is composed of breast surface, duct system and terminal ductal lobular units, Cooper’s ligaments, lymphatic and blood vessel systems, pectoral muscle, skin, 3D mammographic background texture, and breast abnormalities. The key improvement is the development of a new algorithm for 3D mammographic texture generation. Simulated images of the enhanced 3D breast model without lesions were produced by simulating mammographic image acquisition and were evaluated subjectively and quantitatively. For evaluation purposes, a database with regions of interest taken from simulated and real mammograms was created. Four experienced radiologists participated in a visual subjective evaluation trial, as they judged the quality of the simulated mammograms, using the new algorithm compared to mammograms, obtained with the old modeling approach. In addition, extensive quantitative evaluation included power spectral analysis and calculation of fractal dimension, skewness, and kurtosis of simulated and real mammograms from the database. Results: The results from the subjective evaluation strongly suggest that the new methodology for mammographic breast texture creates improved breast models compared to the old approach. Calculated parameters on simulated images such as β exponent deducted from the power law spectral analysis and fractal dimension are similar to those calculated on real mammograms. The results for the kurtosis and skewness are also in good coincidence with those calculated from clinical images. Comparison with similar calculations published in the literature showed good agreement in the majority of cases. Conclusions: The

  11. Evaluation of an improved algorithm for producing realistic 3D breast software phantoms: Application for mammography

    SciTech Connect

    Bliznakova, K.; Suryanarayanan, S.; Karellas, A.; Pallikarakis, N.

    2010-11-15

    Purpose: This work presents an improved algorithm for the generation of 3D breast software phantoms and its evaluation for mammography. Methods: The improved methodology has evolved from a previously presented 3D noncompressed breast modeling method used for the creation of breast models of different size, shape, and composition. The breast phantom is composed of breast surface, duct system and terminal ductal lobular units, Cooper's ligaments, lymphatic and blood vessel systems, pectoral muscle, skin, 3D mammographic background texture, and breast abnormalities. The key improvement is the development of a new algorithm for 3D mammographic texture generation. Simulated images of the enhanced 3D breast model without lesions were produced by simulating mammographic image acquisition and were evaluated subjectively and quantitatively. For evaluation purposes, a database with regions of interest taken from simulated and real mammograms was created. Four experienced radiologists participated in a visual subjective evaluation trial, as they judged the quality of the simulated mammograms, using the new algorithm compared to mammograms, obtained with the old modeling approach. In addition, extensive quantitative evaluation included power spectral analysis and calculation of fractal dimension, skewness, and kurtosis of simulated and real mammograms from the database. Results: The results from the subjective evaluation strongly suggest that the new methodology for mammographic breast texture creates improved breast models compared to the old approach. Calculated parameters on simulated images such as {beta} exponent deducted from the power law spectral analysis and fractal dimension are similar to those calculated on real mammograms. The results for the kurtosis and skewness are also in good coincidence with those calculated from clinical images. Comparison with similar calculations published in the literature showed good agreement in the majority of cases. Conclusions: The

  12. Do shorter wavelengths improve contrast in optical mammography?

    NASA Astrophysics Data System (ADS)

    Taroni, P.; Pifferi, A.; Torricelli, A.; Spinelli, L.; Danesini, G. M.; Cubeddu, R.

    2004-04-01

    The detection of tumours with time-resolved transmittance imaging relies essentially on blood absorption. Previous theoretical and phantom studies have shown that both contrast and spatial resolution of optical images are affected by the optical properties of the background medium, and high absorption and scattering are generally beneficial. Based on these observations, wavelengths shorter than presently used (680-780 nm) could be profitable for optical mammography. A study was thus performed analysing time-resolved transmittance images at 637, 656, 683 and 785 nm obtained from 26 patients bearing 16 tumours and 15 cysts. The optical contrast proved to increase upon decreasing wavelengths for the detection of cancers in late-gated intensity images, with higher gain in contrast for lesions of smaller size (<1.5 cm diameter). For cysts either a progressive increase or decrease in contrast with wavelength was observed in scattering images.

  13. Comparison of full-field digital mammography to screen-film mammography with respect to contrast and spatial resolution in tissue equivalent breast phantoms.

    PubMed

    Kuzmiak, Cherie M; Pisano, Etta D; Cole, Elodia B; Zeng, Donglin; Burns, Charles B; Roberto, Craig; Pavic, Dag; Lee, Yeonhee; Seo, Bo Kyoung; Koomen, Marcia; Washburn, David

    2005-10-01

    To determine if the improved contrast resolution of full-field digital mammography (FFDM) with reduced spatial resolution allows for superior or equal phantom object detection compared with screen-film mammography (SFM). Tissue equivalent breast phantoms simulating an adipose to glandular ratio of 50/50,30/70, and 20/80 were imaged according to each manufacturers' recommendation with four full-field digital mammography units (Fuji, Sectra, Fischer, and General Electric) and a screen-film mammography unit (MammoMatII 2000, Siemens, Munich, Germany). A total of 20 images were obtained in both hard- and soft-copy formats. For the purpose of soft-copy display, the screen-film hard-copy images were digitized with a 50 microm micron scanner. Six radiologists, experts in breast imaging, and three physicists, experts in scoring mammography phantoms, participated in a reader study where each reader scored each phantom for visibility of line-pairs and for 24 objects (fibers, clusters of specks, and masses). The data were recorded, entered into a database, and analyzed by a mixed-effect model. The limiting spatial resolution in line-pairs per millimeter visible with the digital units was less, regardless of display modality used, than that provided by the screen-film unit. The difference was statistically significant for the General Electric (p < 0.01) and Fuji digital mammography units (p = 0.03). With respect to the number of visible objects, a statistically significant higher number could be detected with the screen-film unit as compared to the Fischer (p < 0.01) and Sectra (p < 0.01) digital mammography units, but there was no significant difference between the other digital units and screen film. Overall, there was significantly better performance on the 50/50 phantom than with the 30/70 and 20/80 phantoms (p = 0.01, p < 0.01) for object visibility. For the digital mammography units, soft-copy display performed better than hard-copy display for the Fischer and Sectra

  14. Mammography, thermography, and ultrasound in breast cancer detection

    SciTech Connect

    Basset, L.W.; Gold, R.H.

    1982-01-01

    The book begins with a brief discussion of the history of mammography and a good review and discussion of the mammorgraphy controversy. The section on diagnosis is excellent with very good anatomic-pathologic correlation of the mammography signs. The preoperative localization is well described. Section 3 on performing the examination is an excellent discussion of the various modes of mammography and their techniques. Magnification mammography, computed tomographic mammography, thermography, sonomammography, and ductography are very well covered. In Section 4, the benefits and risk of mammography are well discussed enabling the reader to understand the controversy surrounding breast cancer detection techniques.

  15. A quantitative approach to evaluate image quality of whole slide imaging scanners

    PubMed Central

    Shrestha, Prarthana; Kneepkens, R.; Vrijnsen, J.; Vossen, D.; Abels, E.; Hulsken, B.

    2016-01-01

    Context: The quality of images produced by whole slide imaging (WSI) scanners has a direct influence on the readers’ performance and reliability of the clinical diagnosis. Therefore, WSI scanners should produce not only high quality but also consistent quality images. Aim: We aim to evaluate reproducibility of WSI scanners based on the quality of images produced over time and among multiple scanners. The evaluation is independent of content or context of test specimen. Methods: The ultimate judge of image quality is a pathologist, however, subjective evaluations are heavily influenced by the complexity of a case and subtle variations introduced by a scanner can be easily overlooked. Therefore, we employed a quantitative image quality assessment method based on clinically relevant parameters, such as sharpness and brightness, acquired in a survey of pathologists. The acceptable level of quality per parameter was determined in a subjective study. The evaluation of scanner reproducibility was conducted with Philips Ultra-Fast Scanners. A set of 36 HercepTest™ slides were used in three sub-studies addressing variations due to systems and time, producing 8640 test images for evaluation. Results: The results showed that the majority of images in all the sub-studies are within the acceptable quality level; however, some scanners produce higher quality images more often than others. The results are independent of case types, and they match our perception of quality. Conclusion: The quantitative image quality assessment method was successfully applied in the HercepTest™ slides to evaluate WSI scanner reproducibility. The proposed method is generic and applicable to any other types of slide stains and scanners. PMID:28197359

  16. Frequency-domain optical mammography: edge effect corrections.

    PubMed

    Fantini, S; Franceschini, M A; Gaida, G; Gratton, E; Jess, H; Mantulin, W W; Moesta, K T; Schlag, P M; Kaschke, M

    1996-01-01

    We have investigated the problem of edge effects in laser-beam transillumination scanning of the human breast. Edge effects arise from tissue thickness variability along the scanned area, and from lateral photon losses through the sides of the breast. Edge effects can be effectively corrected in frequency-domain measurements by employing a two-step procedure: (1) use of the phase information to calculate an effective tissue thickness for each pixel location; (2) application of the knowledge of tissue thickness to calculate an edge-corrected optical image from the ac signal image. The measurements were conducted with a light mammography apparatus (LIMA) designed for feasibility tests in the clinical environment. Operating in the frequency-domain (110 MHz), this instrument performs a transillumination optical scan at two wavelengths (685 and 825 nm). We applied the proposed two-step procedure to data from breast phantoms and from human breasts. The processed images provide higher contrast and detectability in optical mammography with respect to raw data breast images.

  17. Applying image quality in cell phone cameras: lens distortion

    NASA Astrophysics Data System (ADS)

    Baxter, Donald; Goma, Sergio R.; Aleksic, Milivoje

    2009-01-01

    This paper describes the framework used in one of the pilot studies run under the I3A CPIQ initiative to quantify overall image quality in cell-phone cameras. The framework is based on a multivariate formalism which tries to predict overall image quality from individual image quality attributes and was validated in a CPIQ pilot program. The pilot study focuses on image quality distortions introduced in the optical path of a cell-phone camera, which may or may not be corrected in the image processing path. The assumption is that the captured image used is JPEG compressed and the cellphone camera is set to 'auto' mode. As the used framework requires that the individual attributes to be relatively perceptually orthogonal, in the pilot study, the attributes used are lens geometric distortion (LGD) and lateral chromatic aberrations (LCA). The goal of this paper is to present the framework of this pilot project starting with the definition of the individual attributes, up to their quantification in JNDs of quality, a requirement of the multivariate formalism, therefore both objective and subjective evaluations were used. A major distinction in the objective part from the 'DSC imaging world' is that the LCA/LGD distortions found in cell-phone cameras, rarely exhibit radial behavior, therefore a radial mapping/modeling cannot be used in this case.

  18. A slot-scanned photodiode-array/CCD hybrid detector for digital mammography.

    PubMed

    Mainprize, James G; Ford, Nancy L; Yin, Shi; Tümer, Türmay; Yaffe, Martin J

    2002-02-01

    We have developed a novel direct conversion detector for use in a slot-scanning digital mammography system. The slot-scan concept allows for dose efficient scatter rejection and the ability to use small detectors to produce a large-area image. The detector is a hybrid design with a 1.0 mm thick silicon PIN photodiode array (the x-ray absorber) indium-bump bonded to a CCD readout that is operated in time-delay integration (TDI) mode. Because the charge capacity requirement for good image quality exceeds the capabilities of standard CCDs, a novel CCD was developed. This CCD consists of 24 independent sections, each acting as a miniature CCD with eight rows for TDI. The signal from each section is combined off-chip to produce a full signal image. The MTF and DQE for the device was measured at several exposures and compared to a linear systems model of signal and noise propagation. Because of the scanning nature of TDI imaging, both the MTF(f) and DQE(f) are reduced along the direction of the scanning motion. For a 26 kVp spectrum, the DQE(0) was measured to be 0.75+/-0.02 for an exposure of 1.29 x 10(-5) C/kg (50 mR).

  19. [New mammography technologies and their impact on radiation dose].

    PubMed

    Chevalier del Rio, M

    2013-12-01

    This article reviews new mammography technologies resulting from advances in digital detectors and processing techniques. Most are just starting to be commercialized or are in the clinical trial phase. The results of clinical trials with the new 2D techniques (contrast-enhanced techniques or stereotactic techniques) show they are useful for diagnosing cancer. However, the greater complexity of the image acquisition process suggests that their use will be limited to particular cases such as inconclusive lesions or women with high risk for developing breast cancer. Among the 3D technologies (breast tomography and breast tomosynthesis), only breast tomosynthesis has been implemented in clinical practice, so it is the only technique for which it is possible to know the sensitivity, specificity, and radiation dose delivered. This article describes the principles underlying the way breast tomosynthesis works and the techniques used for image acquisition and reconstruction. It also summarizes the main results obtained in clinical studies, which generally show that breast tomosynthesis increases the breast cancer detection rate while decreasing the recall rate and number of biopsies taken. The protocol for breast tomosynthesis approved by the Food and Drug Administration (USA) consists of two conventional mammography projections for each breast and two tomosynthesis projections for each breast. This means multiplying the risks of inducing cancer and death associated with 2D mammography by a factor between 2 and 3 (2.6-3.3 and 0.7-0.9 per 100,000 women exposed when 50 years old, respectively). The protocol for breast tomosynthesis examinations is one of the aspects that is essential to determine when including tomosynthesis in screening programs and routine breast imaging.

  20. Medical imaging 4

    SciTech Connect

    Loew, M.H. )

    1990-01-01

    This book is covered under the following topics: human visual pattern recognition, fractals, rules, and segments, three-dimensional image processing, MRI, MRI and mammography, clinical applications 1, angiography, image processing systems, image processing poster session.

  1. 21 CFR 900.12 - Quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Quality standards. 900.12 Section 900.12 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MAMMOGRAPHY QUALITY STANDARDS ACT MAMMOGRAPHY Quality Standards and Certification § 900.12 Quality standards....

  2. Raman chemical imaging technology for food safety and quality evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raman chemical imaging combines Raman spectroscopy and digital imaging to visualize composition and morphology of a target. This technique offers great potential for food safety and quality research. Most commercial Raman instruments perform measurement at microscopic level, and the spatial range ca...

  3. Family/Friend Recommendations and Mammography Intentions: The Roles of Perceived Mammography Norms and Support

    ERIC Educational Resources Information Center

    Molina, Yamile; Ornelas, India J.; Doty, Sarah L.; Bishop, Sonia; Beresford, Shirley A. A.; Coronado, Gloria D.

    2015-01-01

    Identifying factors that increase mammography use among Latinas is an important public health priority. Latinas are more likely to report mammography intentions and use, if a family member or friend recommends that they get a mammogram. Little is known about the mechanisms underlying the relationship between social interactions and mammography…

  4. Digital image quality measurements by objective and subjective methods from series of parametrically degraded images

    NASA Astrophysics Data System (ADS)

    Tachó, Aura; Mitjà, Carles; Martínez, Bea; Escofet, Jaume; Ralló, Miquel

    2013-11-01

    Many digital image applications like digitization of cultural heritage for preservation purposes operate with compressed files in one or more image observing steps. For this kind of applications JPEG compression is one of the most widely used. Compression level, final file size and quality loss are parameters that must be managed optimally. Although this loss can be monitored by means of objective image quality measurements, the real challenge is to know how it can be related with the perceived image quality by observers. A pictorial image has been degraded by two different procedures. The first, applying different levels of low pass filtering by convolving the image with progressively broad Gauss kernels. The second, saving the original file to a series of JPEG compression levels. In both cases, the objective image quality measurement is done by analysis of the image power spectrum. In order to obtain a measure of the perceived image quality, both series of degraded images are displayed on a computer screen organized in random pairs. The observers are compelled to choose the best image of each pair. Finally, a ranking is established applying Thurstone scaling method. Results obtained by both measurements are compared between them and with other objective measurement method as the Slanted Edge Test.

  5. Selective pattern enhancement processing for digital mammography, algorithms, and the visual evaluation

    NASA Astrophysics Data System (ADS)

    Yamada, Masahiko; Shimura, Kazuo; Nagata, Takefumi

    2003-05-01

    In order to enhance the micro calcifications selectively without enhancing noises, PEM (Pattern Enhancement Processing for Mammography) has been developed by utilizing not only the frequency information but also the structural information of the specified objects. PEM processing uses two structural characteristics i.e. steep edge structure and low-density isolated-point structure. The visual evaluation of PEM processing was done using two different resolution CR mammography images. The enhanced image by PEM processing was compared with the image without enhancement, and the conventional usharp-mask processed image. In the PEM processed image, an increase of noises due to enhancement was suppressed as compared with that in the conventional unsharp-mask processed image. The evaluation using CDMAM phantom showed that PEM processing improved the detection performance of a minute circular pattern. By combining PEM processing with the low and medium frequency enhancement processing, both mammary glands and micro calcifications are clearly enhanced.

  6. TU-EF-207-02: Spectral Mammography Based on Photon Counting Detectors

    SciTech Connect

    Molloi, S.

    2015-06-15

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  7. Multiple-image encryption based on triple interferences for flexibly decrypting high-quality images.

    PubMed

    Li, Wei-Na; Phan, Anh-Hoang; Piao, Mei-Lan; Kim, Nam

    2015-04-10

    We propose a multiple-image encryption (MIE) scheme based on triple interferences for flexibly decrypting high-quality images. Each image is discretionarily deciphered without decrypting a series of other images earlier. Since it does not involve any cascaded encryption orders, the image can be decrypted flexibly by using the novel method. Computer simulation demonstrated that the proposed method's running time is less than approximately 1/4 that of the previous similar MIE method. Moreover, the decrypted image is perfectly correlated with the original image, and due to many phase functions serving as decryption keys, this method is more secure and robust.

  8. Image science and image-quality research in the Optical Sciences Center

    NASA Astrophysics Data System (ADS)

    Barrett, Harrison H.; Myers, Kyle J.

    2014-09-01

    This paper reviews the history of research into imaging and image quality at the Optical Sciences Center (OSC), with emphasis on the period 1970-1990. The work of various students in the areas of psychophysical studies of human observers of images; mathematical model observers; image simulation and analysis, and the application of these methods to radiology and nuclear medicine is summarized. The rapid progress in computational power, at OSC and elsewhere, which enabled the steady advances in imaging and the emergence of a science of imaging, is also traced. The implications of these advances to ongoing research and the current Image Science curriculum at the College of Optical Sciences are discussed.

  9. The effect of image quality and forensic expertise in facial image comparisons.

    PubMed

    Norell, Kristin; Läthén, Klas Brorsson; Bergström, Peter; Rice, Allyson; Natu, Vaidehi; O'Toole, Alice

    2015-03-01

    Images of perpetrators in surveillance video footage are often used as evidence in court. In this study, identification accuracy was compared for forensic experts and untrained persons in facial image comparisons as well as the impact of image quality. Participants viewed thirty image pairs and were asked to rate the level of support garnered from their observations for concluding whether or not the two images showed the same person. Forensic experts reached their conclusions with significantly fewer errors than did untrained participants. They were also better than novices at determining when two high-quality images depicted the same person. Notably, lower image quality led to more careful conclusions by experts, but not for untrained participants. In summary, the untrained participants had more false negatives and false positives than experts, which in the latter case could lead to a higher risk of an innocent person being convicted for an untrained witness.

  10. LANDSAT-4 image data quality analysis

    NASA Technical Reports Server (NTRS)

    Anuta, P. E.

    1984-01-01

    Methods were developed for estimating point spread functions from image data. Roads and bridges in dark backgrounds are being examined as well as other smoothing methods for reducing noise in the estimated point spread function. Tomographic techniques were used to estimate two dimensional point spread functions. Reformatting software changes were implemented to handle formats for LANDSAT-5 data.

  11. Toward optimal color image quality of television display

    NASA Astrophysics Data System (ADS)

    MacDonald, Lindsay W.; Endrikhovski, Sergej N.; Bech, Soren; Jensen, Kaj

    1999-12-01

    A general framework and first experimental results are presented for the `OPTimal IMage Appearance' (OPTIMA) project, which aims to develop a computational model for achieving optimal color appearance of natural images on adaptive CRT television displays. To achieve this goal we considered the perceptual constraints determining quality of displayed images and how they could be quantified. The practical value of the notion of optimal image appearance was translated from the high level of the perceptual constraints into a method for setting the display's parameters at the physical level. In general, the whole framework of quality determination includes: (1) evaluation of perceived quality; (2) evaluation of the individual perceptual attributes; and (3) correlation between the physical measurements, psychometric parameters and the subjective responses. We performed a series of psychophysical experiments, with observers viewing a series of color images on a high-end consumer television display, to investigate the relationships between Overall Image Quality and four quality-related attributes: Brightness Rendering, Chromatic Rendering, Visibility of Details and Overall Naturalness. The results of the experiments presented in this paper suggest that these attributes are highly inter-correlated.

  12. A Dynamic Image Quality Evaluation of Videofluoroscopy Images: Considerations for Telepractice Applications.

    PubMed

    Burns, Clare L; Keir, Benjamin; Ward, Elizabeth C; Hill, Anne J; Farrell, Anna; Phillips, Nick; Porter, Linda

    2015-08-01

    High-quality fluoroscopy images are required for accurate interpretation of videofluoroscopic swallow studies (VFSS) by speech pathologists and radiologists. Consequently, integral to developing any system to conduct VFSS remotely via telepractice is ensuring that the quality of the VFSS images transferred via the telepractice system is optimized. This study evaluates the extent of change observed in image quality when videofluoroscopic images are transmitted from a digital fluoroscopy system to (a) current clinical equipment (KayPentax Digital Swallowing Workstation, and b) four different telepractice system configurations. The telepractice system configurations consisted of either a local C20 or C60 Cisco TelePresence System (codec unit) connected to the digital fluoroscopy system and linked to a second remote C20 or C60 Cisco TelePresence System via a network running at speeds of either 2, 4 or 6 megabits per second (Mbit/s). Image quality was tested using the NEMA XR 21 Phantom, and results demonstrated some loss in spatial resolution, low contrast detectability and temporal resolution for all transferred images when compared to the fluoroscopy source. When using higher capacity codec units and/or the highest bandwidths to support data transmission, image quality transmitted through the telepractice system was found to be comparable if not better than the current clinical system. This study confirms that telepractice systems can be designed to support fluoroscopy image transfer and highlights important considerations when developing telepractice systems for VFSS analysis to ensure high-quality radiological image reproduction.

  13. Image quality improvement of polygon computer generated holography.

    PubMed

    Pang, Xiao-Ning; Chen, Ding-Chen; Ding, Yi-Cong; Chen, Yi-Gui; Jiang, Shao-Ji; Dong, Jian-Wen

    2015-07-27

    Quality of holographic reconstruction image is seriously affected by undesirable messy fringes in polygon-based computer generated holography. Here, several methods have been proposed to improve the image quality, including a modified encoding method based on spatial-domain Fraunhofer diffraction and a specific LED light source. Fast Fourier transform is applied to the basic element of polygon and fringe-invisible reconstruction is achieved after introducing initial random phase. Furthermore, we find that the image with satisfactory fidelity and sharp edge can be reconstructed by either a LED with moderate coherence level or a modulator with small pixel pitch. Satisfactory image quality without obvious speckle noise is observed under the illumination of bandpass-filter-aided LED. The experimental results are consistent well with the correlation analysis on the acceptable viewing angle and the coherence length of the light source.

  14. APQ-102 imaging radar digital image quality study

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1982-01-01

    A modified APQ-102 sidelooking radar collected synthetic aperture radar (SAR) data which was digitized and recorded on wideband magnetic tape. These tapes were then ground processed into computer compatible tapes (CCT's). The CCT's may then be processed into high resolution radar images by software on the CYBER computer.

  15. Peripheral Aberrations and Image Quality for Contact Lens Correction

    PubMed Central

    Shen, Jie; Thibos, Larry N.

    2011-01-01

    Purpose Contact lenses reduced the degree of hyperopic field curvature present in myopic eyes and rigid contact lenses reduced sphero-cylindrical image blur on the peripheral retina, but their effect on higher order aberrations and overall optical quality of the eye in the peripheral visual field is still unknown. The purpose of our study was to evaluate peripheral wavefront aberrations and image quality across the visual field before and after contact lens correction. Methods A commercial Hartmann-Shack aberrometer was used to measure ocular wavefront errors in 5° steps out to 30° of eccentricity along the horizontal meridian in uncorrected eyes and when the same eyes are corrected with soft or rigid contact lenses. Wavefront aberrations and image quality were determined for the full elliptical pupil encountered in off-axis measurements. Results Ocular higher-order aberrations increase away from fovea in the uncorrected eye. Third-order aberrations are larger and increase faster with eccentricity compared to the other higher-order aberrations. Contact lenses increase all higher-order aberrations except 3rd-order Zernike terms. Nevertheless, a net increase in image quality across the horizontal visual field for objects located at the foveal far point is achieved with rigid lenses, whereas soft contact lenses reduce image quality. Conclusions Second order aberrations limit image quality more than higher-order aberrations in the periphery. Although second-order aberrations are reduced by contact lenses, the resulting gain in image quality is partially offset by increased amounts of higher-order aberrations. To fully realize the benefits of correcting higher-order aberrations in the peripheral field requires improved correction of second-order aberrations as well. PMID:21873925

  16. Volumetric lean percentage measurement using dual energy mammography

    PubMed Central

    Ducote, Justin L.; Klopfer, Michael J.; Molloi, S.

    2011-01-01

    Purpose: Currently, there is no accepted standard for measuring breast density. Dual energy mammography, which has demonstrated accurate measurement in phantoms, has been proposed as one possible method. To examine the use of chemical analysis as a possible means to validate breast density measurements from dual energy mammography, a bovine tissue model was investigated. Known quantities of lean and adipose tissue were compared with composition values measured from dual energy images and chemical analysis. Methods: Theoretical simulations were performed to assess the impact variations in breast composition would have on measurement of breast density from a single calibration. Fourteen ex-vivo tissue samples composed of varying amounts of pure lean tissue and pure adipose tissue (lean percentage) from 0 to 100%, in increments of 10%, were imaged using dual energy mammography. This was followed by chemical analysis based on desiccation, trituration, and fat extraction with petroleum ether to determine water, lipid, and protein content. The volumetric lean percentage (VLP) as measured from images (VLPI) and as derived from chemical analysis data (VLPCA) were compared with the VLP calculated from measurements of sample mass with a scale (VLPM). Finally, data from the bovine tissue model in this study were compared to compositional data from a previous report of human tissue composition. Results: The results from simulation suggest a substantial impact on measuring breast density is likely due to changes in anatomical breast composition. VLPI was related to the VLPM by VLPI = 1.53 VLPM + 10.0 (r2>0.99). VLPCA was related to VLPM by VLPCA = 0.76 VLPM + 22.8 (r2>0.99). VLPI was related to VLPCA by VLPI = 2.00 VLPCA − 35.6 (r2>0.99). Bovine adipose tissue was shown to be very similar to human adipose tissue in terms of water, lipid, and protein content with RMS differences of 1.2%. Bovine lean tissue was shown to be very similar to human skeletal

  17. Learning Receptive Fields and Quality Lookups for Blind Quality Assessment of Stereoscopic Images.

    PubMed

    Shao, Feng; Lin, Weisi; Wang, Shanshan; Jiang, Gangyi; Yu, Mei; Dai, Qionghai

    2016-03-01

    Blind quality assessment of 3D images encounters more new challenges than its 2D counterparts. In this paper, we propose a blind quality assessment for stereoscopic images by learning the characteristics of receptive fields (RFs) from perspective of dictionary learning, and constructing quality lookups to replace human opinion scores without performance loss. The important feature of the proposed method is that we do not need a large set of samples of distorted stereoscopic images and the corresponding human opinion scores to learn a regression model. To be more specific, in the training phase, we learn local RFs (LRFs) and global RFs (GRFs) from the reference and distorted stereoscopic images, respectively, and construct their corresponding local quality lookups (LQLs) and global quality lookups (GQLs). In the testing phase, blind quality pooling can be easily achieved by searching optimal GRF and LRF indexes from the learnt LQLs and GQLs, and the quality score is obtained by combining the LRF and GRF indexes together. Experimental results on three publicly 3D image quality assessment databases demonstrate that in comparison with the existing methods, the devised algorithm achieves high consistent alignment with subjective assessment.

  18. Principles of CT: radiation dose and image quality.

    PubMed

    Goldman, Lee W

    2007-12-01

    This article discusses CT radiation dose, the measurement of CT dose, and CT image quality. The most commonly used dose descriptor is CT dose index, which represents the dose to a location (e.g., depth) in a scanned volume from a complete series of slices. A weighted average of the CT dose index measured at the center and periphery of dose phantoms provides a convenient single-number estimate of patient dose for a procedure, and this value (or a related indicator that includes the scanned length) is often displayed on the operator's console. CT image quality, as in most imaging, is described in terms of contrast, spatial resolution, image noise, and artifacts. A strength of CT is its ability to visualize structures of low contrast in a subject, a task that is limited primarily by noise and is therefore closely associated with radiation dose: The higher the dose contributing to the image, the less apparent is image noise and the easier it is to perceive low-contrast structures. Spatial resolution is ultimately limited by sampling, but both image noise and resolution are strongly affected by the reconstruction filter. As a result, diagnostically acceptable image quality at acceptable doses of radiation requires appropriately designed clinical protocols, including appropriate kilovolt peaks, amperages, slice thicknesses, and reconstruction filters.

  19. Tools and methods for exposure control optimization in digital mammography in presence of texture

    NASA Astrophysics Data System (ADS)

    Grosjean, Bénédicte; Muller, Serge; Souchay, Henri

    2007-03-01

    To accurately detect radiological signs of cancer, mammography requires the best possible image quality for a target patient dose. The application of automatic optimization of parameters (AOP) to digital systems has been improved recently. The metric used to derive this AOP was based on the expected CNR of calcium material in a uniform background. In this work, we use a new metric, based on the detection performance of an a-contrario observer on lesions in simulated images. Breast images at various thicknesses and glandularity levels were simulated with flat and textured backgrounds. Various exposure spectra (Mo/Mo, Mo/Rh and Rh/Rh anode/filter materials, kVp ranging from 25 to 33 kV) were considered. The tube output has been normalized in order to obtain comparable AGD values for each image of a given breast over the various acquisition techniques. Images were scored with the a-contrario observer, the performance criterion being the minimal lesion size needed to reach a given detection threshold. The optimal spectra are found similar to those delivered by the AOP in both flat and textured backgrounds. The choice of the anode/filter combination appears to be more critical than kVp adjustments in particular for the thicker breasts. Our approach also yields an estimate of the detection variability due to texture signal. We found that the anatomical structure variability cannot be overcome by beam quality optimization of the current system in presence of complex background, which confirms the potential benefit of any imaging technology reducing the variability of detection due to texture.

  20. High dynamic range image compression by optimizing tone mapped image quality index.

    PubMed

    Ma, Kede; Yeganeh, Hojatollah; Zeng, Kai; Wang, Zhou

    2015-10-01

    Tone mapping operators (TMOs) aim to compress high dynamic range (HDR) images to low dynamic range (LDR) ones so as to visualize HDR images on standard displays. Most existing TMOs were demonstrated on specific examples without being thoroughly evaluated using well-designed and subject-validated image quality assessment models. A recently proposed tone mapped image quality index (TMQI) made one of the first attempts on objective quality assessment of tone mapped images. Here, we propose a substantially different approach to design TMO. Instead of using any predefined systematic computational structure for tone mapping (such as analytic image transformations and/or explicit contrast/edge enhancement), we directly navigate in the space of all images, searching for the image that optimizes an improved TMQI. In particular, we first improve the two building blocks in TMQI—structural fidelity and statistical naturalness components—leading to a TMQI-II metric. We then propose an iterative algorithm that alternatively improves the structural fidelity and statistical naturalness of the resulting image. Numerical and subjective experiments demonstrate that the proposed algorithm consistently produces better quality tone mapped images even when the initial images of the iteration are created by the most competitive TMOs. Meanwhile, these results also validate the superiority of TMQI-II over TMQI.

  1. Visualization of Deformable Image Registration Quality using Local Image Dissimilarity.

    PubMed

    Schlachter, Matthias; Fechter, Tobias; Jurisic, Miro; Schimek-Jasch, Tanja; Oehlke, Oliver; Adebahr, Sonja; Birkfellner, Wolfgang; Nestle, Ursula; Buhler, Katja

    2016-04-29

    Deformable image registration (DIR) has the potential to improve modern radiotherapy in many aspects, including volume definition, treatment planning and image-guided adaptive radiotherapy. Studies have shown its possible clinical benefits. However, measuring DIR accuracy is difficult without known ground truth, but necessary before integration in the radiotherapy workflow. Visual assessment is an important step towards clinical acceptance. We propose a visualization framework which supports the exploration and the assessment of DIR accuracy. It offers different interaction and visualization features for exploration of candidate regions to simplify the process of visual assessment. The visualization is based on voxel-wise comparison of local image patches for which dissimilarity measures are computed and visualized to indicate locally the registration results. We performed an evaluation with three radiation oncologists to demonstrate the viability of our approach. In the evaluation, lung regions were rated by the participants with regards to their visual accuracy and compared to the registration error measured with expert defined landmarks. Regions rated as "accepted" had an average registration error of 1.8 mm, with the highest single landmark error being 3.3 mm. Additionally, survey results show that the proposed visualizations support a fast and intuitive investigation of DIR accuracy, and are suitable for finding even small errors.

  2. Visualization of Deformable Image Registration Quality Using Local Image Dissimilarity.

    PubMed

    Schlachter, Matthias; Fechter, Tobias; Jurisic, Miro; Schimek-Jasch, Tanja; Oehlke, Oliver; Adebahr, Sonja; Birkfellner, Wolfgang; Nestle, Ursula; Bu Hler, Katja

    2016-10-01

    Deformable image registration (DIR) has the potential to improve modern radiotherapy in many aspects, including volume definition, treatment planning and image-guided adaptive radiotherapy. Studies have shown its possible clinical benefits. However, measuring DIR accuracy is difficult without known ground truth, but necessary before integration in the radiotherapy workflow. Visual assessment is an important step towards clinical acceptance. We propose a visualization framework which supports the exploration and the assessment of DIR accuracy. It offers different interaction and visualization features for exploration of candidate regions to simplify the process of visual assessment. The visualization is based on voxel-wise comparison of local image patches for which dissimilarity measures are computed and visualized to indicate locally the registration results. We performed an evaluation with three radiation oncologists to demonstrate the viability of our approach. In the evaluation, lung regions were rated by the participants with regards to their visual accuracy and compared to the registration error measured with expert defined landmarks. Regions rated as "accepted" had an average registration error of 1.8 mm, with the highest single landmark error being 3.3 mm. Additionally, survey results show that the proposed visualizations support a fast and intuitive investigation of DIR accuracy, and are suitable for finding even small errors.

  3. Breast dosimetry in clinical mammography

    NASA Astrophysics Data System (ADS)

    Benevides, Luis Alberto Do Rego

    The objective of this study was show that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. In the study, AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The protocol proposes the use of a fiber-optic coupled (FOCD) or Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeter to measure the entrance skin exposure at the time of the mammogram without interfering with diagnostic information of the mammogram. The study showed that FOCD had sensitivity with less than 7% energy dependence, linear in all tube current-time product stations, and was reproducible within 2%. FOCD was superior to MOSFET dosimeter in sensitivity, reusability, and reproducibility. The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. In addition, the study population anthropometric

  4. [Application of brilliant x-rays in mammography. Development and perspectives of phase contrast techniques].

    PubMed

    Schneider, T; Coan, P; Habs, D; Reiser, M

    2008-04-01

    The early and reliable detection of breast cancer is often difficult with conventional mammography, especially within dense breast parenchyma. An alternative approach using x-rays are phase-sensitive imaging techniques, which are able to visualize the borders of tissues with different refraction indices with very high contrast. These phase contrast imaging techniques can generate projection images with much less glandular dose than conventional mammography. Even the acquisition of phase contrast CT data sets with an acceptable exposure dose is possible. As brilliant x-ray beams are required for phase contrast imaging, which up to now were only available at synchrotron facilities, these methods were restricted to only a few laboratories. However, with the advent of newly developed high intensity lasers which are also able to produce such radiation, a widespread and affordable use of this technique seems realistic. The further development of phase contrast imaging is funded by the excellence cluster MAP of the Munich universities.

  5. Body image and quality of life in a Spanish population

    PubMed Central

    Lobera, Ignacio Jáuregui; Ríos, Patricia Bolaños

    2011-01-01

    Purpose The aim of the current study was to analyze the psychometric properties, factor structure, and internal consistency of the Spanish version of the Body Image Quality of Life Inventory (BIQLI-SP) as well as its test–retest reliability. Further objectives were to analyze different relationships with key dimensions of psychosocial functioning (ie, self-esteem, presence of psychopathological symptoms, eating and body image-related problems, and perceived stress) and to evaluate differences in body image quality of life due to gender. Patients and methods The sample comprised 417 students without any psychiatric history, recruited from the Pablo de Olavide University and the University of Seville. There were 140 men (33.57%) and 277 women (66.43%), and the mean age was 21.62 years (standard deviation = 5.12). After obtaining informed consent from all participants, the following questionnaires were administered: BIQLI, Eating Disorder Inventory-2 (EDI-2), Perceived Stress Questionnaire (PSQ), Self-Esteem Scale (SES), and Symptom Checklist-90-Revised (SCL-90-R). Results The BIQLI-SP shows adequate psychometric properties, and it may be useful to determine the body image quality of life in different physical conditions. A more positive body image quality of life is associated with better self-esteem, better psychological wellbeing, and fewer eating-related dysfunctional attitudes, this being more evident among women. Conclusion The BIQLI-SP may be useful to determine the body image quality of life in different contexts with regard to dermatology, cosmetic and reconstructive surgery, and endocrinology, among others. In these fields of study, a new trend has emerged to assess body image-related quality of life. PMID:21403794

  6. Sparse feature fidelity for perceptual image quality assessment.

    PubMed

    Chang, Hua-Wen; Yang, Hua; Gan, Yong; Wang, Ming-Hui

    2013-10-01

    The prediction of an image quality metric (IQM) should be consistent with subjective human evaluation. As the human visual system (HVS) is critical to visual perception, modeling of the HVS is regarded as the most suitable way to achieve perceptual quality predictions. Sparse coding that is equivalent to independent component analysis (ICA) can provide a very good description of the receptive fields of simple cells in the primary visual cortex, which is the most important part of the HVS. With this inspiration, a quality metric called sparse feature fidelity (SFF) is proposed for full-reference image quality assessment (IQA) on the basis of transformation of images into sparse representations in the primary visual cortex. The proposed method is based on the sparse features that are acquired by a feature detector, which is trained on samples of natural images by an ICA algorithm. In addition, two strategies are designed to simulate the properties of the visual perception: 1) visual attention and 2) visual threshold. The computation of SFF has two stages: training and fidelity computation, in addition, the fidelity computation consists of two components: feature similarity and luminance correlation. The feature similarity measures the structure differences between the two images, whereas the luminance correlation evaluates brightness distortions. SFF also reflects the chromatic properties of the HVS, and it is very effective for color IQA. The experimental results on five image databases show that SFF has a better performance in matching subjective ratings compared with the leading IQMs.

  7. Slider-adjusted softcopy ruler for calibrated image quality assessment

    NASA Astrophysics Data System (ADS)

    Jin, Elaine W.; Keelan, Brian W.

    2010-01-01

    ISO 20462 part 3 standardized the hardcopy quality ruler and a softcopy quality ruler based on a binary sort approach involving paired comparisons. The new softcopy ruler method described here utilizes a slider bar to match the quality of the ruler to that of the test image, which is found to substantially reduce the time required per assessment (30 to 15.5 s), with only a modest loss of precision (standard deviations of 2.5 to 2.9 just noticeable differences). In combination, these metrics implied a 20% improvement in the standard error of the mean achievable in a fixed amount of judging time. Ruler images calibrated against the standard quality scale of ISO 20462 are generated for 21 scenes, at 31 quality levels each, achieved through variation of sharpness, while other attributes are held near their preferred positions. The images are bundled with documentation and a MATLAB source code for a graphical user interface that administers softcopy ruler experiments, and these materials are donated to the International Imaging Industry Association for distribution. In conjunction with a specified large flat panel display, these materials should enable users to conduct softcopy quality ruler experiments with minimum effort, and should reduce the barriers to performing calibrated psychophysical measurements.

  8. An approach for quantitative image quality analysis for CT

    NASA Astrophysics Data System (ADS)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  9. Visibility of microcalcifications in computed and screen-film mammography

    NASA Astrophysics Data System (ADS)

    Cowen, Arnold R.; Launders, Jason H.; Jadav, Mark; Brettle, David S.

    1997-08-01

    Due to the clinically and technically demanding nature of breast x-ray imaging, mammography still remains one of the few essentially film-based radiological imaging techniques in modern medical imaging. There are a range of possible benefits available if a practical and economical direct digital imaging technique can be introduced to routine clinical practice. There has been much debate regarding the minimum specification required for direct digital acquisition. One such direct digital system available is computed radiography (CR), which has a modest specification when compared with modern screen-film mammography (SFM) systems. This paper details two psychophysical studies in which the detection of simulated microcalcifications with CR has been directly compared to that with SFM. The first study found that under scatter-free conditions the minimum detectable size of microcalcification was approximately images/0031-9155/42/8/005/img8.gif" ALIGN="TOP"/> for both SFM and CR. The second study found that SFM had a 4.6% higher probability of observers being able to correctly identify the shape of images/0031-9155/42/8/005/img9.gif" ALIGN="TOP"/> diameter test details; there was no significant difference for either larger or smaller test details. From the results of these studies it has been demonstrated that the modest specification of CR, in terms of limiting resolution, does not translate into a dramatic difference in the perception of details at the limit of detectability. When judging the imaging performance of a system it is more important to compare the signal-to-noise ratio transfer spectrum characteristics, rather than simply the modulation transfer function.

  10. Real-time computer treatment of THz passive device images with the high image quality

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2012-06-01

    We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.

  11. Investigation of perceptual attributes for mobile display image quality

    NASA Astrophysics Data System (ADS)

    Gong, Rui; Xu, Haisong; Wang, Qing; Wang, Zhehong; Li, Haifeng

    2013-08-01

    Large-scale psychophysical experiments are carried out on two types of mobile displays to evaluate the perceived image quality (IQ). Eight perceptual attributes, i.e., naturalness, colorfulness, brightness, contrast, sharpness, clearness, preference, and overall IQ, are visually assessed via categorical judgment method for various application types of test images, which were manipulated by different methods. Their correlations are deeply discussed, and further factor analysis revealed the two essential components to describe the overall IQ, i.e., the component of image detail aspect and the component of color information aspect. Clearness and naturalness are regarded as two principal factors for natural scene images, whereas clearness and colorfulness were selected as key attributes affecting the overall IQ for other application types of images. Accordingly, based on these selected attributes, two kinds of empirical models are built to predict the overall IQ of mobile displays for different application types of images.

  12. The Role of MR Mammography in Differentiating Benign from Malignant in Suspicious Breast Masses

    PubMed Central

    Balasubramanian, Padhmini; Murugesan, Vijaya Karthikeyan

    2016-01-01

    Introduction Magnetic Resonance (MR) Mammography is being increasingly used now-a-days for the evaluation of breast lesions. Aim To find out the effectiveness and the exact role of MR mammography in differentiating benign lesions from malignant lesions in patients with palpable, suspicious breast masses found on routine conventional imaging techniques. Materials and Methods It was a prospective study wherein patients with suspicious breast lesions were subjected to MR mammography. The morphological feature (smooth vs irregular margin) and the enhancement patterns (Type Ia/Ib vs Type II vs Type III) of the lesions were assessed and finally the effectiveness of MR mammography in differentiating benign and malignant lesions was judged by taking the histopathological diagnosis as the gold standard. Results A total of 33 patients with 35 breast lesions were finally analysed. The sensitivity, specificity, Positive Predictive Value (PPV) and the Negative Predictive Value (NPV) in differentiating benign from malignant breast lesion for the type of margin on MR mammography was 95.45%, 84.6%, 91.3% and 91.7%, while for the type of enhancement curve it was 76.2%, 90.9%, 94.1% and 66.7% respectively. The sensitivity and negative predictive value for the type of margins was statistically better when compared to the type of enhancement curve in differentiating benign from malignant lesions but the specificity and PPV though better for the type of enhancement curve was not found to be statistically significant. Conclusion MR mammography was found to be an effective tool in differentiating benign from malignant suspicious breast lesions. The type of margin and the enhancement patterns both individually and in combination provide the clinicians with ample information so as to decide on further management. PMID:27790545

  13. TU-CD-207-01: Characterization of Breast Tissue Composition Using Spectral Mammography

    SciTech Connect

    Ding, H; Cho, H; Kumar, N; Sennung, D; Ng, A Lam; Molloi, S

    2015-06-15

    Purpose: To investigate the feasibility of characterizing the chemical composition of breast tissue, in terms of water and lipid, by using spectral mammography in simulation and postmortem studies. Methods: Analytical simulations were performed to obtain low- and high-energy signals of breast tissue based on previously reported water, lipid, and protein contents. Dual-energy decomposition was used to characterize the simulated breast tissue into water and lipid basis materials and the measured water density was compared to the known value. In experimental studies, postmortem breasts were imaged with a spectral mammography system based on a scanning multi-slit Si strip photon-counting detector. Low- and high-energy images were acquired simultaneously from a single exposure by sorting the recorded photons into the corresponding energy bins. Dual-energy material decomposition of the low- and high-energy images yielded individual pixel measurements of breast tissue composition in terms of water and lipid thicknesses. After imaging, each postmortem breast was chemically decomposed into water, lipid and protein. The water density calculated from chemical analysis was used as the reference gold standard. Correlation of the water density measurements between spectral mammography and chemical analysis was analyzed using linear regression. Results: Both simulation and postmortem studies showed good linear correlation between the decomposed water thickness using spectral mammography and chemical analysis. The slope of the linear fitting function in the simulation and postmortem studies were 1.15 and 1.21, respectively. Conclusion: The results indicate that breast tissue composition, in terms of water and lipid, can be accurately measured using spectral mammography. Quantitative breast tissue composition can potentially be used to stratify patients according to their breast cancer risk.

  14. Advanced imaging assessment of bone quality.

    PubMed

    Genant, Harry K; Jiang, Yebin

    2006-04-01

    Noninvasive and/or nondestructive techniques can provide structural information about bone, beyond simple bone densitometry. While the latter provides important information about osteoporotic fracture risk, many studies indicate that bone mineral density (BMD) only partly explains bone strength. Quantitative assessment of macrostructural characteristics, such as geometry, and microstructural features, such as relative trabecular volume, trabecular spacing, and connectivity, may improve our ability to estimate bone strength. Methods for quantitatively assessing macrostructure include (besides conventional radiographs) dual X ray absorptiometry (DXA) and computed tomography (CT), particularly volumetric quantitative computed tomography (vQCT). Methods for assessing microstructure of trabecular bone noninvasively and/or nondestructively include high-resolution computed tomography (hrCT), microcomputed tomography (micro-CT), high-resolution magnetic resonance (hrMR), and micromagnetic resonance (micro-MR). vQCT, hrCT, and hrMR are generally applicable in vivo; micro-CT and micro-MR are principally applicable in vitro. Despite progress, problems remain. The important balances between spatial resolution and sampling size, or between signal-to-noise and radiation dose or acquisition time, need further consideration, as do the complexity and expense of the methods versus their availability and accessibility. Clinically, the challenges for bone imaging include balancing the advantages of simple bone densitometry versus the more complex architectural features of bone, or the deeper research requirements versus the broader clinical needs. The biological differences between the peripheral appendicular skeleton and the central axial skeleton must be further addressed. Finally, the relative merits of these sophisticated imaging techniques must be weighed with respect to their applications as diagnostic procedures, requiring high accuracy or reliability, versus their monitoring

  15. LANDSAT 4 image data quality analysis

    NASA Technical Reports Server (NTRS)

    Anuta, P. E.

    1983-01-01

    A comparative analysis of TM and MSS data was completed and the results indicate that there are half as many separable spectral classes in the MSS data than in TM. In addition, the minimum separability between classes was also much less in MSS data. Radiometric data quality was also investigated for the TM by computing power spectrum estimates for dark-level data from Lake Michigan. Two significant coherent noise frequencies were observed, one with a wavelength of 3.12 pixels and the other with a 17 pixel wavelength. The amplitude was small (nominally .6 digital count standard deviation) and the noise appears primarily in Bands 3 and 4. No significant levels were observed in other bands. Scan angle dependent brightness effects were also evaluated.

  16. Image quality of mixed convolution kernel in thoracic computed tomography.

    PubMed

    Neubauer, Jakob; Spira, Eva Maria; Strube, Juliane; Langer, Mathias; Voss, Christian; Kotter, Elmar

    2016-11-01

    The mixed convolution kernel alters his properties geographically according to the depicted organ structure, especially for the lung. Therefore, we compared the image quality of the mixed convolution kernel to standard soft and hard kernel reconstructions for different organ structures in thoracic computed tomography (CT) images.Our Ethics Committee approved this prospective study. In total, 31 patients who underwent contrast-enhanced thoracic CT studies were included after informed consent. Axial reconstructions were performed with hard, soft, and mixed convolution kernel. Three independent and blinded observers rated the image quality according to the European Guidelines for Quality Criteria of Thoracic CT for 13 organ structures. The observers rated the depiction of the structures in all reconstructions on a 5-point Likert scale. Statistical analysis was performed with the Friedman Test and post hoc analysis with the Wilcoxon rank-sum test.Compared to the soft convolution kernel, the mixed convolution kernel was rated with a higher image quality for lung parenchyma, segmental bronchi, and the border between the pleura and the thoracic wall (P < 0.03). Compared to the hard convolution kernel, the mixed convolution kernel was rated with a higher image quality for aorta, anterior mediastinal structures, paratracheal soft tissue, hilar lymph nodes, esophagus, pleuromediastinal border, large and medium sized pulmonary vessels and abdomen (P < 0.004) but a lower image quality for trachea, segmental bronchi, lung parenchyma, and skeleton (P < 0.001).The mixed convolution kernel cannot fully substitute the standard CT reconstructions. Hard and soft convolution kernel reconstructions still seem to be mandatory for thoracic CT.

  17. Free software for performing physical analysis of systems for digital radiography and mammography

    SciTech Connect

    Donini, Bruno; Lanconelli, Nico; Rivetti, Stefano; Bertolini, Marco

    2014-05-15

    Purpose: In this paper, the authors present a free software for assisting users in achieving the physical characterization of x-ray digital systems and image quality checks. Methods: The program was developed as a plugin of a well-known public-domain suite ImageJ. The software can assist users in calculating various physical parameters such as the response curve (also termed signal transfer property), modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE). It also includes the computation of some image quality checks: defective pixel analysis, uniformity, dark analysis, and lag. Results: The software was made available in 2009 and has been used during the last couple of years by many users who gave us valuable feedback for improving its usability. It was tested for achieving the physical characterization of several clinical systems for digital radiography and mammography. Various published papers made use of the outcomes of the plugin. Conclusions: This software is potentially beneficial to a variety of users: physicists working in hospitals, staff working in radiological departments, such as medical physicists, physicians, engineers. The plugin, together with a brief user manual, are freely available and can be found online ( http://www.medphys.it/downloads.htm ). With our plugin users can estimate all three most important parameters used for physical characterization (MTF, NPS, and also DQE). The plugin can run on any operating system equipped with ImageJ suite. The authors validated the software by comparing MTF and NPS curves on a common set of images with those obtained with other dedicated programs, achieving a very good agreement.

  18. Determination of pasture quality using airborne hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Pullanagari, R. R.; Kereszturi, G.; Yule, Ian J.; Irwin, M. E.

    2015-10-01

    Pasture quality is a critical determinant which influences animal performance (live weight gain, milk and meat production) and animal health. Assessment of pasture quality is therefore required to assist farmers with grazing planning and management, benchmarking between seasons and years. Traditionally, pasture quality is determined by field sampling which is laborious, expensive and time consuming, and the information is not available in real-time. Hyperspectral remote sensing has potential to accurately quantify biochemical composition of pasture over wide areas in great spatial detail. In this study an airborne imaging spectrometer (AisaFENIX, Specim) was used with a spectral range of 380-2500 nm with 448 spectral bands. A case study of a 600 ha hill country farm in New Zealand is used to illustrate the use of the system. Radiometric and atmospheric corrections, along with automatized georectification of the imagery using Digital Elevation Model (DEM), were applied to the raw images to convert into geocoded reflectance images. Then a multivariate statistical method, partial least squares (PLS), was applied to estimate pasture quality such as crude protein (CP) and metabolisable energy (ME) from canopy reflectance. The results from this study revealed that estimates of CP and ME had a R2 of 0.77 and 0.79, and RMSECV of 2.97 and 0.81 respectively. By utilizing these regression models, spatial maps were created over the imaged area. These pasture quality maps can be used for adopting precision agriculture practices which improves farm profitability and environmental sustainability.

  19. Presence capture cameras - a new challenge to the image quality

    NASA Astrophysics Data System (ADS)

    Peltoketo, Veli-Tapani

    2016-04-01

    Commercial presence capture cameras are coming to the markets and a new era of visual entertainment starts to get its shape. Since the true presence capturing is still a very new technology, the real technical solutions are just passed a prototyping phase and they vary a lot. Presence capture cameras have still the same quality issues to tackle as previous phases of digital imaging but also numerous new ones. This work concentrates to the quality challenges of presence capture cameras. A camera system which can record 3D audio-visual reality as it is has to have several camera modules, several microphones and especially technology which can synchronize output of several sources to a seamless and smooth virtual reality experience. Several traditional quality features are still valid in presence capture cameras. Features like color fidelity, noise removal, resolution and dynamic range create the base of virtual reality stream quality. However, co-operation of several cameras brings a new dimension for these quality factors. Also new quality features can be validated. For example, how the camera streams should be stitched together with 3D experience without noticeable errors and how to validate the stitching? The work describes quality factors which are still valid in the presence capture cameras and defines the importance of those. Moreover, new challenges of presence capture cameras are investigated in image and video quality point of view. The work contains considerations how well current measurement methods can be used in presence capture cameras.

  20. Quality assurance in dental radiography: intra-oral image quality analysis.

    PubMed

    Bolas, Andrew; Fitzgerald, Maurice

    With the introduction of criteria for clinical audit by the Irish Dental Council, and the statutory requirement on dentists to introduce this into their practice, this article will introduce the basic concepts of quality standards in intra-oral radiography and the subsequent application of these standards in an image quality audit cycle. Subjective image quality analysis is not a new concept, but its application can prove beneficial to both patient and dental practitioner. The ALARA (as low as reasonably achievable) principle is fundamental in radiation protection, and therefore the prevention of repeat exposures demonstrates one facet of this that the dental practitioner can employ within daily practice.

  1. Radiation dose and image quality for paediatric interventional cardiology.

    PubMed

    Vano, E; Ubeda, C; Leyton, F; Miranda, P

    2008-08-07

    Radiation dose and image quality for paediatric protocols in a biplane x-ray system used for interventional cardiology have been evaluated. Entrance surface air kerma (ESAK) and image quality using a test object and polymethyl methacrylate (PMMA) phantoms have been measured for the typical paediatric patient thicknesses (4-20 cm of PMMA). Images from fluoroscopy (low, medium and high) and cine modes have been archived in digital imaging and communications in medicine (DICOM) format. Signal-to-noise ratio (SNR), figure of merit (FOM), contrast (CO), contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) have been computed from the images. Data on dose transferred to the DICOM header have been used to test the values of the dosimetric display at the interventional reference point. ESAK for fluoroscopy modes ranges from 0.15 to 36.60 microGy/frame when moving from 4 to 20 cm PMMA. For cine, these values range from 2.80 to 161.10 microGy/frame. SNR, FOM, CO, CNR and HCSR are improved for high fluoroscopy and cine modes and maintained roughly constant for the different thicknesses. Cumulative dose at the interventional reference point resulted 25-45% higher than the skin dose for the vertical C-arm (depending of the phantom thickness). ESAK and numerical image quality parameters allow the verification of the proper setting of the x-ray system. Knowing the increases in dose per frame when increasing phantom thicknesses together with the image quality parameters will help cardiologists in the good management of patient dose and allow them to select the best imaging acquisition mode during clinical procedures.

  2. Radiation dose and image quality for paediatric interventional cardiology

    NASA Astrophysics Data System (ADS)

    Vano, E.; Ubeda, C.; Leyton, F.; Miranda, P.

    2008-08-01

    Radiation dose and image quality for paediatric protocols in a biplane x-ray system used for interventional cardiology have been evaluated. Entrance surface air kerma (ESAK) and image quality using a test object and polymethyl methacrylate (PMMA) phantoms have been measured for the typical paediatric patient thicknesses (4-20 cm of PMMA). Images from fluoroscopy (low, medium and high) and cine modes have been archived in digital imaging and communications in medicine (DICOM) format. Signal-to-noise ratio (SNR), figure of merit (FOM), contrast (CO), contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) have been computed from the images. Data on dose transferred to the DICOM header have been used to test the values of the dosimetric display at the interventional reference point. ESAK for fluoroscopy modes ranges from 0.15 to 36.60 µGy/frame when moving from 4 to 20 cm PMMA. For cine, these values range from 2.80 to 161.10 µGy/frame. SNR, FOM, CO, CNR and HCSR are improved for high fluoroscopy and cine modes and maintained roughly constant for the different thicknesses. Cumulative dose at the interventional reference point resulted 25-45% higher than the skin dose for the vertical C-arm (depending of the phantom thickness). ESAK and numerical image quality parameters allow the verification of the proper setting of the x-ray system. Knowing the increases in dose per frame when increasing phantom thicknesses together with the image quality parameters will help cardiologists in the good management of patient dose and allow them to select the best imaging acquisition mode during clinical procedures.

  3. Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics

    NASA Astrophysics Data System (ADS)

    King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.

    2011-03-01

    The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.

  4. Are image quality metrics adequate to evaluate the quality of geometric objects?

    NASA Astrophysics Data System (ADS)

    Rogowitz, Bernice E.; Rushmeier, Holly E.

    2001-06-01

    Geometric objects are often represented by many millions of triangles or polygons, which limits the ease with which they can be transmitted and displayed electronically. This has lead to the development of many algorithms for simplifying geometric models, and to the recognition that metrics are required to evaluate their success. The goal is to create computer graphic renderings of the object that do not appear to be degraded to a human observer. The perceptual evaluation of simplified objects is a new topic. One approach has been to sue image-based metrics to predict the perceived degradation of simplified 3D models. Since that 2D images of 3D objects can have significantly different perceived quality, depending on the direction of the illumination, 2D measures of image quality may not adequately capture the perceived quality of 3D objects. To address this question, we conducted experiments in which we explicitly compared the perceived quality of animated 3D objects and their corresponding 2D still image projections. Our results suggest that 2D judgements do not provide a good predictor of 3D image quality, and identify a need to develop 'object quality metrics.'

  5. Patient doses and image quality in digital chest radiology.

    PubMed

    Salát, D; Nikodemová, D

    2008-01-01

    Chest X-ray examination is one of the most frequently required procedures used in clinical practice. For studying the image quality of different X-ray digital systems and for the control of patient doses during chest radiological examinations, the standard anthropomorphic lung/chest phantom RSD 330 has been used and exposed in different digital modalities available in Slovakia. To compare different techniques of chest examination, a special software has been developed that enables researchers to compare digital imaging and communications in medicine header images from different digital modalities, using a special viewer. In this paper, this special software has been used for an anonymous correspondent audit for testing image quality evaluation by comparing various parameters of chest imaging, evaluated by 84 Slovak radiologists. The results of the comparison have shown that the majority of the participating radiologists felt that the highest image quality is reached with a flat panel, assessed by the entrance surface dose value, which is approximately 75% lower than the diagnostic reference level of chest examination given in the Slovak legislation. Besides the results of the audit, the possibilities of using the software for optimisation, education and training of medical students, radiological assistants, physicists and radiologists in the field of digital radiology will be described.

  6. Optical tomography as adjunct to x-ray mammography: methods and results

    NASA Astrophysics Data System (ADS)

    Khayat, Mario; Ichalalene, Zahia; Mincu, Niculae; Leblond, Fredéric; Guilman, Olga; Djeziri, Salim

    2007-02-01

    Recent years have seen significant efforts deployed to apply optical imaging techniques in clinical indications. Optical mammography as an adjunct to X-ray mammography is one such application. 3D optical mammography relies on the sensitivity of near-infrared light to endogenous breast chromophores in order to generate in vivo functional views of the breast. This work presents prospective tissue characterization results from a multi-site clinical study targeting optical tomography as an adjunct to conventional mammography. A 2 nd -generation multi-wavelength time-domain acquisition system was used to scan a wide population of women presenting normal or suspicious X-ray mammograms. Application specific algorithms based on a diffusive model of light transport were used to quantify the breast's optical properties and derive 3D images of physiological indices. Using histopathological findings as a gold standard, results confirm that optically derived parameters provide statistically significant discrimination between malignant and benign tissue in wide population of subjects. The methodology developed for case reviews, lesion delineation and characterization allows for better translation of the optical data to the more traditional x-ray paradigm while maintaining efficacy. They also point to the need for guidelines that facilitate correlation of optical data if those results are to be confirmed in a clinical setting.

  7. SKE/BKE task-based methodology for calculating Hotelling observer SNR in mammography

    NASA Astrophysics Data System (ADS)

    Liu, Haimo; Kyprianou, Iacovos S.; Badano, Aldo; Myers, Kyle J.; Jennings, Robert J.; Park, Subok; Kaczmarek, Richard V.; Chakrabarti, Kish

    2009-02-01

    A common method for evaluating projection mammography is Contrast-Detail (CD) curves derived from the CD phantom for Mammography (CDMAM). The CD curves are derived either by human observers, or by automated readings. Both methods have drawbacks which limit their reliability. The human based reading is significantly affected by reader variability, reduced precision and bias. On the other hand, the automated methods suffer from limited statistics. The purpose of this paper is to develop a simple and reliable methodology for the evaluation of mammographic imaging systems using the Signal Known Exactly/Background Known Exactly (SKE/BKE) detection task for signals relevant to mammography. In this paper, we used the spatial definition of the ideal, linear (Hotelling) observer to calculate the task-specific SNR for mammography and discussed the results. The noise covariance matrix as well as the detector response H matrix of the imaging system were estimated and used to calculate the SNRSKEBKE for the simulated discs of the CDMAM. The SNR as a function of exposure, disc diameter and thickness were calculated.

  8. Quality assessment for multitemporal and multisensor image fusion

    NASA Astrophysics Data System (ADS)

    Ehlers, Manfred; Klonus, Sascha

    2008-10-01

    Generally, image fusion methods are classified into three levels: pixel level (iconic), feature level (symbolic) and knowledge or decision level. In this paper we focus on iconic techniques for image fusion. There exist a number of established fusion techniques that can be used to merge high spatial resolution panchromatic and lower spatial resolution multispectral images that are simultaneously recorded by one sensor. This is done to create high resolution multispectral image datasets (pansharpening). In most cases, these techniques provide very good results, i.e. they retain the high spatial resolution of the panchromatic image and the spectral information from the multispectral image. These techniques, when applied to multitemporal and/or multisensoral image data, still create spatially enhanced datasets but usually at the expense of the spectral consistency. In this study, a series of nine multitemporal multispectral remote sensing images (seven SPOT scenes and one FORMOSAT scene) is fused with one panchromatic Ikonos image. A number of techniques are employed to analyze the quality of the fusion process. The images are visually and quantitatively evaluated for spectral characteristics preservation and for spatial resolution improvement. Overall, the Ehlers fusion which was developed for spectral characteristics preservation for multi-date and multi-sensor fusion showed the best results. It could not only be proven that the Ehlers fusion is superior to all other tested algorithms but also the only one that guarantees an excellent color preservation for all dates and sensors.

  9. New algorithm for the passive THz image quality enhancement

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2016-04-01

    We propose a new approach for THz image quality enhancing using correlation function between the image under consideration and a standard image. The standard image moves in two directions along a image under analysis. As a result, 2 D correlation function is obtained. Multiplying this function by color number belonging to a grey scale, we restore the image under the analysis. This allows to suppress a noise on a new image. This method allows to see the person clothes details that it means multi-times increasing of the passive THz camera temperature resolution. We discuss a choice of standard image characteristics for an achievement of correlation function for high contrast. Other feature of our approach arises from a possibility of a person image coming to the THz camera by using a computer processing of the image only. It means that we can "decrease" a distance between a person and the passive THz camera. This algorithm is very convenient for using and has a high performance.

  10. Physical evaluation of a needle photostimulable phosphor based CR mammography system

    SciTech Connect

    Marshall, Nicholas W.; Lemmens, Kim; Bosmans, Hilde

    2012-02-15

    Purpose: Needle phosphor based computed radiography (CR) systems promise improved image quality compared to powder phosphor based CR units for x-ray screening mammography. This paper compares the imaging performance of needle CR cassettes, powder based CR cassettes and a well established amorphous selenium (a-Se) based flat panel based mammography system, using consistent beam qualities. Methods: Detector performance was assessed using modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE). Mammography system performance was assessed against levels from the European Guidelines, including threshold gold thickness (c-d), relative signal difference to noise (SdNR) and mean glandular dose, for automatic exposure control settings suggested by the manufacturers. The needle based Agfa HM5.0 CR detector was compared against the single sided readout Agfa MM3.0R and dual sided readout Fuji Profect CS powder CR plates using a 28 kV Mo/Rh spectrum, while a 28 kV W/Rh spectrum was used to compare the Agfa HM5.0 against the Siemens MAMMOMAT Inspiration a-Se based system. Results: MTF at 5 mm{sup -1} was 0.16 and 0.24 for the needle CR detector in the fast and slow scan directions, respectively, indicating a slight improvement ({approx}20%) over the two powder CR systems but remained 50% lower than the result at 5 mm{sup -1} for the a-Se detector ({approx}0.55). Structured screen noise was lower for the needle phosphor compared to the powder plates. CR system gain, estimated from the measured absorption fraction and NNPS results, was 6.3 for the (single sided) needle phosphor and 5.1 and 7.2 for the single sided and dual sided powder phosphor systems. Peak DQE at {approx}100 {mu}Gy was 0.47 for the needle system compared to peak DQE figures of 0.33 and 0.46 for the single sided readout powder plates and dual sided readout plates. The high frequency DQE (at 5 mm{sup -1}) was 0.19 for the needle CR plates, a factor of

  11. Primary Non-Hodgkin Lymphoma of the Breast: Ultrasonography, Elastography, Digital Mammography, Contrast-Enhanced Digital Mammography, and Pathology Findings.

    PubMed

    Gkali, Christina An; Chalazonitis, Athanasios N; Feida, Eleni; Giannos, Aris; Sotiropoulou, Maria; Dimitrakakis, Constantine; Loutradis, Dimitrios

    2015-12-01

    Lymphomas constitute approximately 0.15% of malignant mammary neoplasms. Less than 0.5% of all malignant lymphomas involve the breast primarily. Primary non-Hodgkin breast lymphoma is usually right sided. The combined therapy approach, with chemotherapy and radiotherapy, is the most successful treatment. Mastectomy offers no benefit in the treatment of primary non-Hodgkin breast lymphoma. To the author's knowledge, this is the first published case of primary non-Hodgkin breast lymphoma reported with conventional ultrasonography, elastography (both freehand and acoustic radiation force impulse imaging), digital mammography, contrast-enhanced digital mammography, and pathology findings. A 45-year-old woman presented with a lump in the right breast for 2 months. There was no evidence of systemic lymphoma or leukemia when the breast lesion was detected. Imaging findings were negative for lymphoma. Ipsilateral lymph nodes were not palpable. The mass was resected, and histopathology findings were diagnostic of non-Hodgkin lymphoma. Immunohistochemistry was confirmatory of non-Hodgkin lymphoma, diffuse large cell type of B-cell lineage. Although primary and secondary lymphomas of the breast are rare entities, they should be considered in the differential diagnosis of breast malignancies.

  12. Body image quality of life in eating disorders

    PubMed Central

    Jáuregui Lobera, Ignacio; Bolaños Ríos, Patricia

    2011-01-01

    Purpose: The objective was to examine how body image affects quality of life in an eating-disorder (ED) clinical sample, a non-ED clinical sample, and a nonclinical sample. We hypothesized that ED patients would show the worst body image quality of life. We also hypothesized that body image quality of life would have a stronger negative association with specific ED-related variables than with other psychological and psychopathological variables, mainly among ED patients. On the basis of previous studies, the influence of gender on the results was explored, too. Patients and methods: The final sample comprised 70 ED patients (mean age 22.65 ± 7.76 years; 59 women and 11 men); 106 were patients with other psychiatric disorders (mean age 28.20 ± 6.52; 67 women and 39 men), and 135 were university students (mean age 21.57 ± 2.58; 81 women and 54 men), with no psychiatric history. After having obtained informed consent, the following questionnaires were administered: Body Image Quality of Life Inventory-Spanish version (BIQLI-SP), Eating Disorders Inventory-2 (EDI-2), Perceived Stress Questionnaire (PSQ), Self-Esteem Scale (SES), and Symptom Checklist-90-Revised (SCL-90-R). Results: The ED patients’ ratings on the BIQLI-SP were the lowest and negatively scored (BIQLI-SP means: +20.18, +5.14, and −6.18, in the student group, the non-ED patient group, and the ED group, respectively). The effect of body image on quality of life was more negative in the ED group in all items of the BIQLI-SP. Body image quality of life was negatively associated with specific ED-related variables, more than with other psychological and psychopathological variables, but not especially among ED patients. Conclusion: Body image quality of life was affected not only by specific pathologies related to body image disturbances, but also by other psychopathological syndromes. Nevertheless, the greatest effect was related to ED, and seemed to be more negative among men. This finding is the

  13. Image quality testing of assembled IR camera modules

    NASA Astrophysics Data System (ADS)

    Winters, Daniel; Erichsen, Patrik

    2013-10-01

    Infrared (IR) camera modules for the LWIR (8-12_m) that combine IR imaging optics with microbolometer focal plane array (FPA) sensors with readout electronics are becoming more and more a mass market product. At the same time, steady improvements in sensor resolution in the higher priced markets raise the requirement for imaging performance of objectives and the proper alignment between objective and FPA. This puts pressure on camera manufacturers and system integrators to assess the image quality of finished camera modules in a cost-efficient and automated way for quality control or during end-of-line testing. In this paper we present recent development work done in the field of image quality testing of IR camera modules. This technology provides a wealth of additional information in contrast to the more traditional test methods like minimum resolvable temperature difference (MRTD) which give only a subjective overall test result. Parameters that can be measured are image quality via the modulation transfer function (MTF) for broadband or with various bandpass filters on- and off-axis and optical parameters like e.g. effective focal length (EFL) and distortion. If the camera module allows for refocusing the optics, additional parameters like best focus plane, image plane tilt, auto-focus quality, chief ray angle etc. can be characterized. Additionally, the homogeneity and response of the sensor with the optics can be characterized in order to calculate the appropriate tables for non-uniformity correction (NUC). The technology can also be used to control active alignment methods during mechanical assembly of optics to high resolution sensors. Other important points that are discussed are the flexibility of the technology to test IR modules with different form factors, electrical interfaces and last but not least the suitability for fully automated measurements in mass production.

  14. Pain with mammography: fact or fiction?

    PubMed

    Nielsen, B; Miaskowski, C; Dibble, S L

    1993-05-01

    This article presents an overview of current knowledge about mammography-related pain and discomfort. Possible causes of pain and discomfort are discussed along with the results of two pilot studies that investigated the prevalence and severity of pain and discomfort associated with film-screen mammograms in a mobile screening program. Based on these studies, the authors conclude that pain is a problem for a significant number of women from diverse ethnic and socioeconomic backgrounds. A nursing care plan is provided to assist nurses in reducing mammography-related pain and discomfort.

  15. A Methodology for Anatomic Ultrasound Image Diagnostic Quality Assessment.

    PubMed

    Hemmsen, Martin Christian; Lange, Theis; Brandt, Andreas Hjelm; Nielsen, Michael Bachmann; Jensen, Jorgen Arendt

    2017-01-01

    This paper discusses the methods for the assessment of ultrasound image quality based on our experiences with evaluating new methods for anatomic imaging. It presents a methodology to ensure a fair assessment between competing imaging methods using clinically relevant evaluations. The methodology is valuable in the continuing process of method optimization and guided development of new imaging methods. It includes a three phased study plan covering from initial prototype development to clinical assessment. Recommendations to the clinical assessment protocol, software, and statistical analysis are presented. Earlier uses of the methodology has shown that it ensures validity of the assessment, as it separates the influences between developer, investigator, and assessor once a research protocol has been established. This separation reduces confounding influences on the result from the developer to properly reveal the clinical value. This paper exemplifies the methodology using recent studies of synthetic aperture sequential beamforming tissue harmonic imaging.

  16. Quality criteria for simulator images - A literature review

    NASA Astrophysics Data System (ADS)

    Padmos, Pieter; Milders, Maarten V.

    1992-12-01

    Quality criteria are presented for each of about 30 different outside-world image features of computer-generated image systems on vehicle simulators (e.g., airplane, tank, ship). Criteria derived are based on a literature review. In addition to purely physical properties related to image presentation (e.g., field size, contrast ratio, update frequency), attention is paid to image content (e.g., number of polygons, surface treatments, moving objects) and various other features (e.g., electro-optical aids, vehicle-terrain interactions, modeling tools, instruction tools). Included in this paper are an introduction on visual perception, separate discussions of each image feature including terminology definitions, and suggestions for further research.

  17. Quality assurance methodology and applications to abdominal imaging PQI.

    PubMed

    Paushter, David M; Thomas, Stephen

    2016-03-01

    Quality assurance has increasingly become an integral part of medicine, with tandem goals of increasing patient safety and procedural quality, improving efficiency, lowering cost, and ultimately improving patient outcomes. This article reviews quality assurance methodology, ranging from the PDSA cycle to the application of lean techniques, aimed at operational efficiency, to continually evaluate and revise the health care environment. Alignment of goals for practices, hospitals, and healthcare organizations is critical, requiring clear objectives, adequate resources, and transparent reporting. In addition, there is a significant role played by regulatory bodies and oversight organizations in determining external benchmarks of quality, practice, and individual certification and reimbursement. Finally, practical application of quality principles to practice improvement projects in abdominal imaging will be presented.

  18. Identifying Sociocultural Barriers to Mammography Adherence Among Appalachian Kentucky Women

    PubMed Central

    Cohen, Elisia L.; Wilson, Bethney R.; Vanderpool, Robin C.; Collins, Tom

    2016-01-01

    Despite lower breast cancer incidence rates, Appalachian women evidence lower frequency of screening mammography and higher mortality risk for breast cancer compared to non-Appalachian women in Kentucky, and in the United States, overall. Utilizing data from 27 in-depth interviews from women in seven Appalachian Kentucky counties, this study examines how Appalachian women explain sociocultural barriers and facilitators to timely screening mammography, and explores their common narratives about their mammography experiences. The women describe how pain and embarrassment, less personal and less professional mammography experiences, cancer fears, and poor provider communication pose barriers to timely and appropriate mammography schedule adherence and follow-up care. The study also identifies how improving communication strategies in the mammography encounter may improve mammography experiences and adherence to screening guidelines. PMID:25668682

  19. Identifying Sociocultural Barriers to Mammography Adherence Among Appalachian Kentucky Women.

    PubMed

    Cohen, Elisia L; Wilson, Bethney R; Vanderpool, Robin C; Collins, Tom

    2016-01-01

    Despite lower breast cancer incidence rates, Appalachian women evidence lower frequency of screening mammography and higher mortality risk for breast cancer compared to non-Appalachian women in Kentucky, and in the United States, overall. Utilizing data from 27 in-depth interviews from women in seven Appalachian Kentucky counties, this study examines how Appalachian women explain sociocultural barriers and facilitators to timely screening mammography, and explores their common narratives about their mammography experiences. The women describe how pain and embarrassment, less personal and less professional mammography experiences, cancer fears, and poor provider communication pose barriers to timely and appropriate mammography schedule adherence and follow-up care. The study also identifies how improving communication strategies in the mammography encounter may improve mammography experiences and adherence to screening guidelines.

  20. Image quality, space-qualified UV interference filters

    NASA Technical Reports Server (NTRS)

    Mooney, Thomas A.

    1992-01-01

    The progress during the contract period is described. The project involved fabrication of image quality, space-qualified bandpass filters in the 200-350 nm spectral region. Ion-assisted deposition (IAD) was applied to produce stable, reasonably durable filter coatings on space compatible UV substrates. Thin film materials and UV transmitting substrates were tested for resistance to simulated space effects.

  1. Simultaneous analysis and quality assurance for diffusion tensor imaging.

    PubMed

    Lauzon, Carolyn B; Asman, Andrew J; Esparza, Michael L; Burns, Scott S; Fan, Qiuyun; Gao, Yurui; Anderson, Adam W; Davis, Nicole; Cutting, Laurie E; Landman, Bennett A

    2013-01-01

    Diffusion tensor imaging (DTI) enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI) acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio). However, recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a graphical summary quality analysis (QA) report. We assess the utility of this streamlined approach for empirical quality assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a statistically significant amount of time (over 70%) while improving the consistency of QA between a DTI expert and a pool of research associates. Projection of QA metrics to a low

  2. Simultaneous Analysis and Quality Assurance for Diffusion Tensor Imaging

    PubMed Central

    Lauzon, Carolyn B.; Asman, Andrew J.; Esparza, Michael L.; Burns, Scott S.; Fan, Qiuyun; Gao, Yurui; Anderson, Adam W.; Davis, Nicole; Cutting, Laurie E.; Landman, Bennett A.

    2013-01-01

    Diffusion tensor imaging (DTI) enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI) acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio). However, recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a graphical summary quality analysis (QA) report. We assess the utility of this streamlined approach for empirical quality assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a statistically significant amount of time (over 70%) while improving the consistency of QA between a DTI expert and a pool of research associates. Projection of QA metrics to a low

  3. X-ray absorptiometry of the breast using mammographic exposure factors: application to units featuring automatic beam quality selection.

    PubMed

    Kotre, C J

    2010-06-01

    A number of studies have identified the relationship between the visual appearance of high breast density at mammography and an increased risk of breast cancer. Approaches to quantify the amount of glandular tissue within the breast from mammography have so far concentrated on image-based methods. Here, it is proposed that the X-ray parameters automatically selected by the mammography unit can be used to estimate the thickness of glandular tissue overlying the automatic exposure sensor area, provided that the unit can be appropriately calibrated. This is a non-trivial task for modern mammography units that feature automatic beam quality selection, as the number of tube potential and X-ray target/filter combinations used to cover the range of breast sizes and compositions can be large, leading to a potentially unworkable number of curve fits and interpolations. Using appropriate models for the attenuation of the glandular breast in conjunction with a constrained set of physical phantom measurements, it is demonstrated that calibration for X-ray absorptiometry can be achieved despite the large number of possible exposure factor combinations employed by modern mammography units. The main source of error on the estimated glandular tissue thickness using this method is shown to be uncertainty in the measured compressed breast thickness. An additional correction for this source of error is investigated and applied. Initial surveys of glandular thickness for a cohort of women undergoing breast screening are presented.

  4. A Novel Image Quality Assessment with Globally and Locally Consilient Visual Quality Perception.

    PubMed

    Bae, Sung-Ho; Kim, Munchurl

    2016-03-25

    Computational models for image quality assessment (IQA) have been developed by exploring effective features that are consistent with the characteristics of human visual system (HVS) for visual quality perception. In this paper, we firstly reveal that many existing features used in computational IQA methods can hardly characterize visual quality perception for local image characteristics and various distortion types. To solve this problem, we propose a new IQA method, called Structural Contrast-Quality Index (SC-QI) by adopting a structural contrast index (SCI) which can well characterize local and global visual quality perceptions for various image characteristics with structural-distortion types. In addition to SCI, we devise some other perceptually important features for our SC-QI that can effectively reflect the characteristics of HVS for contrast sensitivity and chrominance component variation. Furthermore, we develop a modified SC-QI, called structural contrast distortion metric (SC-DM) which inherits desirable mathematical properties of valid distance metricability and quasi-convexity. So, it can effectively be used as a distance metric for image quality optimization problems. Extensive experimental results show that both SC-QI and SC-DM can very well characterize the HVS's properties of visual quality perception for local image characteristics and various distortion types, which is a distinctive merit of our methods compared to other IQA methods. As a result, both SC-QI and SC-DM have better performances with a strong consilience of global and local visual quality perception as well as with much lower computation complexity, compared to state-of-the-art IQA methods. The MATLAB source codes of the proposed SC-QI and SC-DM are publicly available online at https://sites.google.com/site/sunghobaecv/iqa.

  5. A Novel Image Quality Assessment With Globally and Locally Consilient Visual Quality Perception.

    PubMed

    Bae, Sung-Ho; Kim, Munchurl

    2016-05-01

    Computational models for image quality assessment (IQA) have been developed by exploring effective features that are consistent with the characteristics of a human visual system (HVS) for visual quality perception. In this paper, we first reveal that many existing features used in computational IQA methods can hardly characterize visual quality perception for local image characteristics and various distortion types. To solve this problem, we propose a new IQA method, called the structural contrast-quality index (SC-QI), by adopting a structural contrast index (SCI), which can well characterize local and global visual quality perceptions for various image characteristics with structural-distortion types. In addition to SCI, we devise some other perceptually important features for our SC-QI that can effectively reflect the characteristics of HVS for contrast sensitivity and chrominance component variation. Furthermore, we develop a modified SC-QI, called structural contrast distortion metric (SC-DM), which inherits desirable mathematical properties of valid distance metricability and quasi-convexity. So, it can effectively be used as a distance metric for image quality optimization problems. Extensive experimental results show that both SC-QI and SC-DM can very well characterize the HVS's properties of visual quality perception for local image characteristics and various distortion types, which is a distinctive merit of our methods compared with other IQA methods. As a result, both SC-QI and SC-DM have better performances with a strong consilience of global and local visual quality perception as well as with much lower computation complexity, compared with the state-of-the-art IQA methods. The MATLAB source codes of the proposed SC-QI and SC-DM are publicly available online at https://sites.google.com/site/sunghobaecv/iqa.

  6. Access to Mammography Facilities and Detection of Breast Cancer by Screening Mammography: A GIS Approach.

    PubMed

    Rahman, Selina; Price, James H; Dignan, Mark; Rahman, Saleh; Lindquist, Peter S; Jordan, Timothy R

    2009-01-01

    OBJECTIVES: The objective of the study was to examine the association between access to mammography facilities and utilization of screening mammography in an urban population. METHODS: Data on female breast cancer cases were obtained from an extensive mammography surveillance project. Distance to mammography facilities was measured by using GIS, which was followed by measuring geographical access to mammography facilities using Floating Catchment Area (FCA) method (considering all available facilities within an arbitrary radius from the woman's residence by using Arc GIS 9.0 software). RESULTS: Of 2,024 women, 91.4% were Caucasian; age ranged from 25 to 98 years; most (95%) were non-Hispanic in origin. Logistic regression found age, family history, hormone replacement therapy, physician recommendation, and breast cancer stage at diagnosis to be significant predictors of having had a previous mammogram. Women having higher access to mammography facilities were less likely to have had a previous mammogram compared to women who had low access, considering all the facilities within 10 miles (OR=0.41, CI=0.22-0.76), 30 miles (OR=0.52, CI=0.29-0.91) and 40 miles (OR=0.51, CI=0.28-0.92) radiuses. CONCLUSIONS: Physical distance to mammography facilities does not necessarily predict utilization of mammogram and greater access does not assure greater utilizations, due to constraints imposed by socio economic and cultural barriers. Future studies should focus on measuring access to mammography facilities capturing a broader dimension of access considering qualitative aspect of facilities, as well as other travel impedances.

  7. Techniques to evaluate the quality of medical images

    NASA Astrophysics Data System (ADS)

    Perez-Diaz, Marlen

    2014-11-01

    There is not a perfect agree in the definition of medical image quality from the physician and physicist point of view. The present conference analyzes the standard techniques used to grade image quality. In the first place, an analysis about how viewing conditions related to environment, monitor used or physician experience determines the subjective evaluation is done. After that, the physics point of view is analyzed including the advantage and disadvantage of the main published methods like: Quality Control Tests, Mathematical metrics, Modulation Transfer Function, Noise Power Spectrum, System Response Curve and Mathematical observers. Each method is exemplified with the results of updated papers. We concluded that the most successful methods up to the present have been those which include simulations of the Human Visual System. They have good correlation between the results of the objective metrics and the subjective evaluation made by the observers.

  8. Automatic image quality assessment for uterine cervical imagery

    NASA Astrophysics Data System (ADS)

    Gu, Jia; Li, Wenjing

    2006-03-01

    Uterine cervical cancer is the second most common cancer among women worldwide. However, its death rate can be dramatically reduced by appropriate treatment, if early detection is available. We are developing a Computer-Aided-Diagnosis (CAD) system to facilitate colposcopic examinations for cervical cancer screening and diagnosis. Unfortunately, the effort to develop fully automated cervical cancer diagnostic algorithms is hindered by the paucity of high quality, standardized imaging data. The limited quality of cervical imagery can be attributed to several factors, including: incorrect instrumental settings or positioning, glint (specular reflection), blur due to poor focus, and physical contaminants. Glint eliminates the color information in affected pixels and can therefore introduce artifacts in feature extraction algorithms. Instrumental settings that result in an inadequate dynamic range or an overly constrained region of interest can reduce or eliminate pixel information and thus make image analysis algorithms unreliable. Poor focus causes image blur with a consequent loss of texture information. In addition, a variety of physical contaminants, such as blood, can obscure the desired scene and reduce or eliminate diagnostic information from affected areas. Thus, automated feedback should be provided to the colposcopist as a means to promote corrective actions. In this paper, we describe automated image quality assessment techniques, which include region of interest detection and assessment, contrast dynamic range assessment, blur detection, and contaminant detection. We have tested these algorithms using clinical colposcopic imagery, and plan to implement these algorithms in a CAD system designed to simplify high quality data acquisition. Moreover, these algorithms may also be suitable for image quality assessment in telemedicine applications.

  9. Full-Reference Image Quality Assessment with Linear Combination of Genetically Selected Quality Measures

    PubMed Central

    2016-01-01

    Information carried by an image can be distorted due to different image processing steps introduced by different electronic means of storage and communication. Therefore, development of algorithms which can automatically assess a quality of the image in a way that is consistent with human evaluation is important. In this paper, an approach to image quality assessment (IQA) is proposed in which the quality of a given image is evaluated jointly by several IQA approaches. At first, in order to obtain such joint models, an optimisation problem of IQA measures aggregation is defined, where a weighted sum of their outputs, i.e., objective scores, is used as the aggregation operator. Then, the weight of each measure is considered as a decision variable in a problem of minimisation of root mean square error between obtained objective scores and subjective scores. Subjective scores reflect ground-truth and involve evaluation of images by human observers. The optimisation problem is solved using a genetic algorithm, which also selects suitable measures used in aggregation. Obtained multimeasures are evaluated on four largest widely used image benchmarks and compared against state-of-the-art full-reference IQA approaches. Results of comparison reveal that the proposed approach outperforms other competing measures. PMID:27341493

  10. A study of image quality for radar image processing. [synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    King, R. W.; Kaupp, V. H.; Waite, W. P.; Macdonald, H. C.

    1982-01-01

    Methods developed for image quality metrics are reviewed with focus on basic interpretation or recognition elements including: tone or color; shape; pattern; size; shadow; texture; site; association or context; and resolution. Seven metrics are believed to show promise as a way of characterizing the quality of an image: (1) the dynamic range of intensities in the displayed image; (2) the system signal-to-noise ratio; (3) the system spatial bandwidth or bandpass; (4) the system resolution or acutance; (5) the normalized-mean-square-error as a measure of geometric fidelity; (6) the perceptual mean square error; and (7) the radar threshold quality factor. Selective levels of degradation are being applied to simulated synthetic radar images to test the validity of these metrics.

  11. Diagnostic criteria for mass lesions differentiating in electrical impedance mammography

    NASA Astrophysics Data System (ADS)

    A, Karpov; M, Korotkova

    2013-04-01

    The purpose of this research was to determine the diagnostic criteria for differentiating volumetric lesions in the mammary gland in electrical impedance mammography. The research was carried out utilizing the electrical impedance computer mammograph llMEIK v.5.6gg®, which enables to acquire images of 3-D conductivity distribution layers within mamma's tissues up to 5 cm depth. The weighted reciprocal projection method was employed to reconstruct the 3-D electric conductivity distribution of the examined organ. The results of 3,710 electrical impedance examinations were analyzed. The analysis of a volumetric lesion included assessment of its shape, contour, internal electrical structure and changes of the surrounding tissues. Moreover, mammary gland status was evaluated with the help of comparative and age-related electrical conductivity curves. The diagnostic chart is provided. Each criterion is measured in points. Using the numerical score for evaluation of mass and non-volumetric lesions within the mammary gland in electrical impedance mammography allowed comparing this information to BI-RADS categories developed by American College of Radiology experts. The article is illustrated with electrical impedance mammograms and tables.

  12. High-Resolution Mammography Detector Employing Optical Switching Readout

    NASA Astrophysics Data System (ADS)

    Irisawa, Kaku; Kaneko, Yasuhisa; Yamane, Katsutoshi; Sendai, Tomonari; Hosoi, Yuichi

    Conceiving a new detector structure, FUJIFILM Corporation has successfully put its invention of an X-ray detector employing "Optical Switching" into practical use. Since Optical Switching Technology allows an electrode structure to be easily designed, both high resolution of pixel pitch and low electrical noise readout have been achieved, which have consequently realized the world's smallest pixel size of 50×50 μm2 from a Direct-conversion FPD system as well as high DQE. The digital mammography system equipped with this detector enables to acquire high definition images while maintaining granularity. Its outstanding feature is to be able to acquire high-precision images of microcalcifications which is an important index in breast examination.

  13. Evaluation of image quality of a new CCD-based system for chest imaging

    NASA Astrophysics Data System (ADS)

    Sund, Patrik; Kheddache, Susanne; Mansson, Lars G.; Bath, Magnus; Tylen, Ulf

    2000-04-01

    The Imix radiography system (Qy Imix Ab, Finland)consists of an intensifying screen, optics, and a CCD camera. An upgrade of this system (Imix 2000) with a red-emitting screen and new optics has recently been released. The image quality of Imix (original version), Imix 200, and two storage-phosphor systems, Fuji FCR 9501 and Agfa ADC70 was evaluated in physical terms (DQE) and with visual grading of the visibility of anatomical structures in clinical images (141 kV). PA chest images of 50 healthy volunteers were evaluated by experienced radiologists. All images were evaluated on Siemens Simomed monitors, using the European Quality Criteria. The maximum DQE values for Imix, Imix 2000, Agfa and Fuji were 11%, 14%, 17% and 19%, respectively (141kV, 5μGy). Using the visual grading, the observers rated the systems in the following descending order. Fuji, Imix 2000, Agfa, and Imix. Thus, the upgrade to Imix 2000 resulted in higher DQE values and a significant improvement in clinical image quality. The visual grading agrees reasonably well with the DQE results; however, Imix 2000 received a better score than what could be expected from the DQE measurements. Keywords: CCD Technique, Chest Imaging, Digital Radiography, DQE, Image Quality, Visual Grading Analysis

  14. Objective Quality Assessment and Perceptual Compression of Screen Content Images.

    PubMed

    Wang, Shiqi; Gu, Ke; Zeng, Kai; Wang, Zhou; Lin, Weisi

    2016-05-25

    Screen content image (SCI) has recently emerged as an active topic due to the rapidly increasing demand in many graphically rich services such as wireless displays and virtual desktops. Image quality models play an important role in measuring and optimizing user experience of SCI compression and transmission systems, but are currently lacking. SCIs are often composed of pictorial regions and computer generated textual/graphical content, which exhibit different statistical properties that often lead to different viewer behaviors. Inspired by this, we propose an objective quality assessment approach for SCIs that incorporates both visual field adaptation and information content weighting into structural similarity based local quality assessment. Furthermore, we develop a perceptual screen content coding scheme based on the newly proposed quality assessment measure, targeting at further improving the SCI compression performance. Experimental results show that the proposed quality assessment method not only better predicts the perceptual quality of SCIs, but also demonstrates great potentials in the design of perceptually optimal SCI compression schemes.

  15. Implementation of Synthesized Two-dimensional Mammography in a Population-based Digital Breast Tomosynthesis Screening Program.

    PubMed

    Zuckerman, Samantha P; Conant, Emily F; Keller, Brad M; Maidment, Andrew D A; Barufaldi, Bruno; Weinstein, Susan P; Synnestvedt, Marie; McDonald, Elizabeth S

    2016-12-01

    Purpose To evaluate the early implementation of synthesized two-dimensional (s2D) mammography in a population screened entirely with s2D and digital breast tomosynthesis (DBT) (referred to as s2D/DBT) and compare recall rates and cancer detection rates to historic outcomes of digital mammography combined with DBT (referred to as digital mammography/DBT) screening. Materials and Methods This was an institutional review board-approved and HIPAA-compliant retrospective interpretation of prospectively acquired data with waiver of informed consent. Compared were recall rates, biopsy rates, cancer detection rates, and radiation dose for 15 571 women screened with digital mammography/DBT from October 1, 2011, to February 28, 2013, and 5366 women screened with s2D/DBT from January 7, 2015, to June 30, 2015. Two-sample z tests of equal proportions were used to determine statistical significance. Results Recall rate for s2D/DBT versus digital mammography/DBT was 7.1% versus 8.8%, respectively (P < .001). Biopsy rate for s2D/DBT versus digital mammography/DBT decreased (1.3% vs 2.0%, respectively; P = .001). There was no significant difference in cancer detection rate for s2D/DBT versus digital mammography/DBT (5.03 of 1000 vs 5.45 of 1000, respectively; P = .72). The average glandular dose was 39% lower in s2D/DBT versus digital mammography/DBT (4.88 mGy vs 7.97 mGy, respectively; P < .001). Conclusion Screening with s2D/DBT in a large urban practice resulted in similar outcomes compared with digital mammography/DBT imaging. Screening with s2D/DBT allowed for the benefits of DBT with a decrease in radiation dose compared with digital mammography/DBT. (©) RSNA, 2016 An earlier incorrect version of this article appeared online. This article was corrected on August 11, 2016.

  16. Contrast-Medium-Enhanced Digital Mammography: Contrast vs. Iodine Concentration Phantom Calibration

    SciTech Connect

    Rosado-Mendez, I.; Brandan, M. E.; Villasenor, Y.; Benitez-Bribiesca, L.

    2008-08-11

    This work deals with the application of the contrast-medium-enhanced digital subtraction mammography technique in order to calibrate the contrast level in subtracted phantom images as function of iodine concentration to perform dynamic studies of the contrast-medium uptake in the breast. Previously optimized dual-energy temporal subtraction modalities were used (a) to determine radiological parameters for a dynamic clinical study composed of 1 mask+3 post-contrast images limiting the total mean glandular dose to 2.5 mGy, and (b) to perform a contrast vs iodine concentration calibration using a custom-made phantom. Calculated exposure values were applied using a commercial full-field digital mammography unit. Contrast in subtracted phantom images (one mask and one post-CM) is linear as function of iodine concentration, although the sensitivity (contrast per iodine concentration) decreases beyond 8 mg/mL. This calibration seems to apply only to thin and normal thickness breasts.

  17. CT image quality over time: comparison of image quality for six different CT scanners over a six-year period.

    PubMed

    Roa, Ana Maria A; Andersen, Hilde K; Martinsen, Anne Catrine T

    2015-03-08

    UNSCEAR concluded that increased use of CT scanning caused dramatic changes in population dose. Therefore, international radiation protection authorities demand: 1) periodical quality assurance tests with respect to image quality and radiation dose, and 2) optimization of all examination protocols with respect to image quality and radiation dose. This study aimed to evaluate and analyze multiple image quality parameters and variability measured throughout time for six different CT scanners from four different vendors, in order to evaluate the current methodology for QA controls of CT systems. The results from this study indicate that there is minor drifting in the image noise and uniformity and in the spatial resolution over time for CT scanners, independent of vendors. The HU for different object densities vary between different CT scanner models from different vendors, and over time for one specific CT scanner. Future tests of interphantom and intraphantom variations, along with inclusion of more CT scanners, are necessary to establish robust baselines and recommendations of methodology for QA controls of CT systems, independent of model and vendor.

  18. Achieving Quality in Cardiovascular Imaging II: proceedings from the Second American College of Cardiology -- Duke University Medical Center Think Tank on Quality in Cardiovascular Imaging.

    PubMed

    Douglas, Pamela S; Chen, Jersey; Gillam, Linda; Hendel, Robert; Hundley, W Gregory; Masoudi, Frederick; Patel, Manesh R; Peterson, Eric

    2009-02-01

    Despite rapid technologic advances and sustained growth, less attention has been focused on quality in imaging than in other areas of cardiovascular medicine. To address this deficit, representatives from cardiovascular imaging societies, private payers, government agencies, the medical imaging industry, and experts in quality measurement met in the second Quality in Cardiovascular Imaging Think Tank. The participants endorsed the previous consensus definition of quality in imaging and proposed quality measures. Additional areas of needed effort included data standardization and structured reporting, appropriateness criteria, imaging registries, laboratory accreditation, partnership development, and imaging research. The second American College of Cardiology-Duke University Think Tank continued the process of the development, dissemination, and adoption of quality improvement initiatives for all cardiovascular imaging modalities.

  19. A quality assurance program for the on-board imagers.

    PubMed

    Yoo, Sua; Kim, Gwe-Ya; Hammoud, Rabih; Elder, Eric; Pawlicki, Todd; Guan, Huaiqun; Fox, Timothy; Luxton, Gary; Yin, Fang-Fang; Munro, Peter

    2006-11-01

    To develop a quality assurance (QA) program for the On-Board Imager (OBI) system and to summarize the results of these QA tests over extended periods from multiple institutions. Both the radiographic and cone-beam computed tomography (CBCT) mode of operation have been evaluated. The QA programs from four institutions have been combined to generate a series of tests for evaluating the performance of the On-Board Imager. The combined QA program consists of three parts: (1) safety and functionality, (2) geometry, and (3) image quality. Safety and functionality tests evaluate the functionality of safety features and the clinical operation of the entire system during the tube warm-up. Geometry QA verifies the geometric accuracy and stability of the OBI/CBCT hardware/software. Image quality QA monitors spatial resolution and contrast sensitivity of the radiographic images. Image quality QA for CBCT includes tests for Hounsfield Unit (HU) linearity, HU uniformity, spatial linearity, and scan slice geometry, in addition. All safety and functionality tests passed on a daily basis. The average accuracy of the OBI isocenter was better than 1.5 mm with a range of variation of less than 1 mm over 8 months. The average accuracy of arm positions in the mechanical geometry QA was better than 1 mm, with a range of variation of less than 1 mm over 8 months. Measurements of other geometry QA tests showed stable results within tolerance throughout the test periods. Radiographic contrast sensitivity ranged between 2.2% and 3.2% and spatial resolution ranged between 1.25 and 1.6 lp/mm. Over four months the CBCT images showed stable spatial linearity, scan slice geometry, contrast resolution (1%; <7 mm disk) and spatial resolution (>6 lp/cm). The HU linearity was within +/-40 HU for all measurements. By combining test methods from multiple institutions, we have developed a comprehensive, yet practical, set of QA tests for the OBI system. Use of the tests over extended periods show that

  20. Effects of task and image properties on visual-attention deployment in image-quality assessment

    NASA Astrophysics Data System (ADS)

    Alers, Hani; Redi, Judith; Liu, Hantao; Heynderickx, Ingrid

    2015-03-01

    It is important to understand how humans view images and how their behavior is affected by changes in the properties of the viewed images and the task they are given, particularly the task of scoring the image quality (IQ). This is a complex behavior that holds great importance for the field of image-quality research. This work builds upon 4 years of research work spanning three databases studying image-viewing behavior. Using eye-tracking equipment, it was possible to collect information on human viewing behavior of different kinds of stimuli and under different experimental settings. This work performs a cross-analysis on the results from all these databases using state-of-the-art similarity measures. The results strongly show that asking the viewers to score the IQ significantly changes their viewing behavior. Also muting the color saturation seems to affect the saliency of the images. However, a change in IQ was not consistently found to modify visual attention deployment, neither under free looking nor during scoring. These results are helpful in gaining a better understanding of image viewing behavior under different conditions. They also have important implications on work that collects subjective image-quality scores from human observers.

  1. Reduced reference image quality assessment via sub-image similarity based redundancy measurement

    NASA Astrophysics Data System (ADS)

    Mou, Xuanqin; Xue, Wufeng; Zhang, Lei

    2012-03-01

    The reduced reference (RR) image quality assessment (IQA) has been attracting much attention from researchers for its loyalty to human perception and flexibility in practice. A promising RR metric should be able to predict the perceptual quality of an image accurately while using as few features as possible. In this paper, a novel RR metric is presented, whose novelty lies in two aspects. Firstly, it measures the image redundancy by calculating the so-called Sub-image Similarity (SIS), and the image quality is measured by comparing the SIS between the reference image and the test image. Secondly, the SIS is computed by the ratios of NSE (Non-shift Edge) between pairs of sub-images. Experiments on two IQA databases (i.e. LIVE and CSIQ databases) show that by using only 6 features, the proposed metric can work very well with high correlations between the subjective and objective scores. In particular, it works consistently well across all the distortion types.

  2. Screening Mammography in Older Women: A Review

    PubMed Central

    Walter, Louise C.; Schonberg, Mara A.

    2015-01-01

    Importance Guidelines recommend individualizing screening mammography decisions for women 75 and older. However, little pragmatic guidance is available to inform this approach. Objective To provide an evidence-based approach to individualizing decision-making about screening mammography that considers older women's risk of breast cancer and the potential benefits and harms of screening in the context of varying life expectancies and preferences. Evidence Acquisition We searched PubMed for English-language studies in peer-reviewed journals published from January 1, 1990 to February 1, 2014 to identify risk factors for late-life breast cancer in women 65 and older and to quantify the benefits and harms of screening mammography for women 75 and older. Findings Age is the major risk factor for late-life breast cancer. In general, traditional breast cancer risk factors (e.g., age at first birth, age at menarche) that represent hormonal exposures in the distant past are less predictive of late-life breast cancer than factors indicating recent exposure to endogenous hormones (e.g., bone mass, obesity). None of the randomized trials of screening mammography included women over age 74, such that it is uncertain whether screening mammography is beneficial in these women. Observational data favor extending screening mammography to older women who have a life expectancy > 5-10 years. Modeling studies suggest approximately 2 fewer women per 1,000 die from breast cancer if women in their 70's continue biennial screening for 10 years, versus stopping screening at age 69. Potential benefits must be weighed with potential harms of continued screening over ten years, which include false-positive mammograms (~200 per 1,000 women screened) and overdiagnosis (~13 per 1,000 women screened). Providing these frequencies both verbally and graphically may help inform older women's decision-making. Conclusions and Relevance For women with less than a 5-10 year life expectancy

  3. How much image noise can be added in cardiac x-ray imaging without loss in perceived image quality?

    NASA Astrophysics Data System (ADS)

    Gislason-Lee, Amber J.; Kumcu, Asli; Kengyelics, Stephen M.; Rhodes, Laura A.; Davies, Andrew G.

    2015-03-01

    Dynamic X-ray imaging systems are used for interventional cardiac procedures to treat coronary heart disease. X-ray settings are controlled automatically by specially-designed X-ray dose control mechanisms whose role is to ensure an adequate level of image quality is maintained with an acceptable radiation dose to the patient. Current commonplace dose control designs quantify image quality by performing a simple technical measurement directly from the image. However, the utility of cardiac X-ray images is in their interpretation by a cardiologist during an interventional procedure, rather than in a technical measurement. With the long term goal of devising a clinically-relevant image quality metric for an intelligent dose control system, we aim to investigate the relationship of image noise with clinical professionals' perception of dynamic image sequences. Computer-generated noise was added, in incremental amounts, to angiograms of five different patients selected to represent the range of adult cardiac patient sizes. A two alternative forced choice staircase experiment was used to determine the amount of noise which can be added to a patient image sequences without changing image quality as perceived by clinical professionals. Twenty-five viewing sessions (five for each patient) were completed by thirteen observers. Results demonstrated scope to increase the noise of cardiac X-ray images by up to 21% +/- 8% before it is noticeable by clinical professionals. This indicates a potential for 21% radiation dose reduction since X-ray image noise and radiation dose are directly related; this would be beneficial to both patients and personnel.

  4. Improvement of material decomposition and image quality in dual-energy radiography by reducing image noise

    NASA Astrophysics Data System (ADS)

    Lee, D.; Kim, Y.-s.; Choi, S.; Lee, H.; Choi, S.; Jo, B. D.; Jeon, P.-H.; Kim, H.; Kim, D.; Kim, H.; Kim, H.-J.

    2016-08-01

    Although digital radiography has been widely used for screening human anatomical structures in clinical situations, it has several limitations due to anatomical overlapping. To resolve this problem, dual-energy imaging techniques, which provide a method for decomposing overlying anatomical structures, have been suggested as alternative imaging techniques. Previous studies have reported several dual-energy techniques, each resulting in different image qualities. In this study, we compared three dual-energy techniques: simple log subtraction (SLS), simple smoothing of a high-energy image (SSH), and anti-correlated noise reduction (ACNR) with respect to material thickness quantification and image quality. To evaluate dual-energy radiography, we conducted Monte Carlo simulation and experimental phantom studies. The Geant 4 Application for Tomographic Emission (GATE) v 6.0 and tungsten anode spectral model using interpolation polynomials (TASMIP) codes were used for simulation studies and digital radiography, and human chest phantoms were used for experimental studies. The results of the simulation study showed improved image contrast-to-noise ratio (CNR) and coefficient of variation (COV) values and bone thickness estimation accuracy by applying the ACNR and SSH methods. Furthermore, the chest phantom images showed better image quality with the SSH and ACNR methods compared to the SLS method. In particular, the bone texture characteristics were well-described by applying the SSH and ACNR methods. In conclusion, the SSH and ACNR methods improved the accuracy of material quantification and image quality in dual-energy radiography compared to SLS. Our results can contribute to better diagnostic capabilities of dual-energy images and accurate material quantification in various clinical situations.

  5. COATLI: an all-sky robotic optical imager with 0.3 arcsec image quality

    NASA Astrophysics Data System (ADS)

    Watson, Alan M.; Cuevas Cardona, Salvador; Alvarez Nuñez, Luis C.; Ángeles, Fernando; Becerra-Godínez, Rosa L.; Chapa, Oscar; Farah, Alejandro S.; Fuentes-Fernández, Jorge; Figueroa, Liliana; Langarica Lebre, Rosalía.; Quiróz, Fernando; Román-Zúñiga, Carlos G.; Ruíz-Diáz-Soto, Jaime; Tejada, Carlos; Tinoco, Silvio J.

    2016-08-01

    COATLI will provide 0.3 arcsec FWHM images from 550 to 900 nm over a large fraction of the sky. It consists of a robotic 50-cm telescope with a diffraction-limited fast-guiding imager. Since the telescope is small, fast guiding will provide diffraction-limited image quality over a field of at least 1 arcmin and with coverage of a large fraction of the sky, even in relatively poor seeing. The COATLI telescope will be installed at the at the Observatorio Astronómico Nacional in Sierra San Pedro Mártir, México, during 2016 and the diffraction-limited imager will follow in 2017.

  6. No-reference image quality assessment in the spatial domain.

    PubMed

    Mittal, Anish; Moorthy, Anush Krishna; Bovik, Alan Conrad

    2012-12-01

    We propose a natural scene statistic-based distortion-generic blind/no-reference (NR) image quality assessment (IQA) model that operates in the spatial domain. The new model, dubbed blind/referenceless image spatial quality evaluator (BRISQUE) does not compute distortion-specific features, such as ringing, blur, or blocking, but instead uses scene statistics of locally normalized luminance coefficients to quantify possible losses of "naturalness" in the image due to the presence of distortions, thereby leading to a holistic measure of quality. The underlying features used derive from the empirical distribution of locally normalized luminances and products of locally normalized luminances under a spatial natural scene statistic model. No transformation to another coordinate frame (DCT, wavelet, etc.) is required, distinguishing it from prior NR IQA approaches. Despite its simplicity, we are able to show that BRISQUE is statistically better than the full-reference peak signal-to-noise ratio and the structural similarity index, and is highly competitive with respect to all present-day distortion-generic NR IQA algorithms. BRISQUE has very low computational complexity, making it well suited for real time applications. BRISQUE features may be used for distortion-identification as well. To illustrate a new practical application of BRISQUE, we describe how a nonblind image denoising algorithm can be augmented with BRISQUE in order to perform blind image denoising. Results show that BRISQUE augmentation leads to performance improvements over state-of-the-art methods. A software release of BRISQUE is available online: http://live.ece.utexas.edu/research/quality/BRISQUE_release.zip for public use and evaluation.

  7. Metal artifact reduction and image quality evaluation of lumbar spine CT images using metal sinogram segmentation.

    PubMed

    Kaewlek, Titipong; Koolpiruck, Diew; Thongvigitmanee, Saowapak; Mongkolsuk, Manus; Thammakittiphan, Sastrawut; Tritrakarn, Siri-on; Chiewvit, Pipat

    2015-01-01

    Metal artifacts often appear in the images of computed tomography (CT) imaging. In the case of lumbar spine CT images, artifacts disturb the images of critical organs. These artifacts can affect the diagnosis, treatment, and follow up care of the patient. One approach to metal artifact reduction is the sinogram completion method. A mixed-variable thresholding (MixVT) technique to identify the suitable metal sinogram is proposed. This technique consists of four steps: 1) identify the metal objects in the image by using k-mean clustering with the soft cluster assignment, 2) transform the image by separating it into two sinograms, one of which is the sinogram of the metal object, with the surrounding tissue shown in the second sinogram. The boundary of the metal sinogram is then found by the MixVT technique, 3) estimate the new value of the missing data in the metal sinogram by linear interpolation from the surrounding tissue sinogram, 4) reconstruct a modified sinogram by using filtered back-projection and complete the image by adding back the image of the metal object into the reconstructed image to form the complete image. The quantitative and clinical image quality evaluation of our proposed technique demonstrated a significant improvement in image clarity and detail, which enhances the effectiveness of diagnosis and treatment.

  8. Image Quality Analysis of Various Gastrointestinal Endoscopes: Why Image Quality Is a Prerequisite for Proper Diagnostic and Therapeutic Endoscopy

    PubMed Central

    Ko, Weon Jin; An, Pyeong; Ko, Kwang Hyun; Hahm, Ki Baik; Hong, Sung Pyo

    2015-01-01

    Arising from human curiosity in terms of the desire to look within the human body, endoscopy has undergone significant advances in modern medicine. Direct visualization of the gastrointestinal (GI) tract by traditional endoscopy was first introduced over 50 years ago, after which fairly rapid advancement from rigid esophagogastric scopes to flexible scopes and high definition videoscopes has occurred. In an effort towards early detection of precancerous lesions in the GI tract, several high-technology imaging scopes have been developed, including narrow band imaging, autofocus imaging, magnified endoscopy, and confocal microendoscopy. However, these modern developments have resulted in fundamental imaging technology being skewed towards red-green-blue and this technology has obscured the advantages of other endoscope techniques. In this review article, we have described the importance of image quality analysis using a survey to consider the diversity of endoscope system selection in order to better achieve diagnostic and therapeutic goals. The ultimate aims can be achieved through the adoption of modern endoscopy systems that obtain high image quality. PMID:26473119

  9. 2D vs. 3D mammography observer study

    NASA Astrophysics Data System (ADS)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  10. Quality assessment of butter cookies applying multispectral imaging.

    PubMed

    Andresen, Mette S; Dissing, Bjørn S; Løje, Hanne

    2013-07-01

    A method for characterization of butter cookie quality by assessing the surface browning and water content using multispectral images is presented. Based on evaluations of the browning of butter cookies, cookies were manually divided into groups. From this categorization, reference values were calculated for a statistical prediction model correlating multispectral images with a browning score. The browning score is calculated as a function of oven temperature and baking time. It is presented as a quadratic response surface. The investigated process window was the intervals 4-16 min and 160-200°C in a forced convection electrically heated oven. In addition to the browning score, a model for predicting the average water content based on the same images is presented. This shows how multispectral images of butter cookies may be used for the assessment of different quality parameters. Statistical analysis showed that the most significant wavelengths for browning predictions were in the interval 400-700 nm and the wavelengths significant for water prediction were primarily located in the near-infrared spectrum. The water prediction model was found to correctly estimate the average water content with an absolute error of 0.22%. From the images it was also possible to follow the browning and drying propagation from the cookie edge toward the center.

  11. Study on classification of pork quality using hyperspectral imaging technique

    NASA Astrophysics Data System (ADS)

    Zeng, Shan; Bai, Jun; Wang, Haibin

    2015-12-01

    The relative problems' research of chilled meat, thawed meat and spoiled meat discrimination by hyperspectral image technique were proposed, such the section of feature wavelengths, et al. First, based on 400 ~ 1000nm range hyperspectral image data of testing pork samples, by K-medoids clustering algorithm based on manifold distance, we select 30 important wavelengths from 753 wavelengths, and thus select 8 feature wavelengths (454.4, 477.5, 529.3, 546.8, 568.4, 580.3, 589.9 and 781.2nm) based on the discrimination value. Then 8 texture features of each image under 8 feature wavelengths were respectively extracted by two-dimensional Gabor wavelets transform as pork quality feature. Finally, we build a pork quality classification model using the fuzzy C-mean clustering algorithm. Through the experiment of extracting feature wavelengths, we found that although the hyperspectral images between adjacent bands have a strong linear correlation, they show a significant non-linear manifold relationship from the entire band. K-medoids clustering algorithm based on manifold distance used in this paper for selecting the characteristic wavelengths, which is more reasonable than traditional principal component analysis (PCA). Through the classification result, we conclude that hyperspectral imaging technology can distinguish among chilled meat, thawed meat and spoiled meat accurately.

  12. Optimizing 3D image quality and performance for stereoscopic gaming

    NASA Astrophysics Data System (ADS)

    Flack, Julien; Sanderson, Hugh; Pegg, Steven; Kwok, Simon; Paterson, Daniel

    2009-02-01

    The successful introduction of stereoscopic TV systems, such as Samsung's 3D Ready Plasma, requires high quality 3D content to be commercially available to the consumer. Console and PC games provide the most readily accessible source of high quality 3D content. This paper describes innovative developments in a generic, PC-based game driver architecture that addresses the two key issues affecting 3D gaming: quality and speed. At the heart of the quality issue are the same considerations that studios face producing stereoscopic renders from CG movies: how best to perform the mapping from a geometric CG environment into the stereoscopic display volume. The major difference being that for game drivers this mapping cannot be choreographed by hand but must be automatically calculated in real-time without significant impact on performance. Performance is a critical issue when dealing with gaming. Stereoscopic gaming has traditionally meant rendering the scene twice with the associated performance overhead. An alternative approach is to render the scene from one virtual camera position and use information from the z-buffer to generate a stereo pair using Depth-Image-Based Rendering (DIBR). We analyze this trade-off in more detail and provide some results relating to both 3D image quality and render performance.

  13. Comparison-based Image Quality Assessment for Selecting Image Restoration Parameters.

    PubMed

    Liang, Haoyi; Weller, Daniel

    2016-08-19

    Image quality assessment (IQA) is traditionally classified into full-reference (FR) IQA, reduced-reference (RR) IQA, and no-reference (NR) IQA according to the amount of information required from the original image. Although NRIQA and RR-IQA are widely used in practical applications, room for improvement still remains because of the lack of the reference image. Inspired by the fact that in many applications, such as parameter selection for image restoration algorithms, a series of distorted images are available, the authors propose a novel comparison-based image quality assessment (C-IQA) framework. The new comparison-based framework parallels FRIQA by requiring two input images, an