Sample records for man-machine interface design

  1. Advanced Aircraft Interfaces: The Machine Side of the Man-Machine Interface (Les Interfaces sur les Avions de Pointe: L’Aspect Machine de l’Interface Homme-Machine)

    DTIC Science & Technology

    1992-10-01

    Manager , Advanced Transport Operating Systems Program Office Langley Research Center Mail Stop 265 Hampton, VA 23665-5225 United States Programme Committee...J.H.Lind, and C.G.Burge Advanced Cockpit - Mission and Image Management 4 by J. Struck Aircrew Acceptance of Automation in the Cockpit 5 by M. Hicks and I...DESIGN CONCEPTS AND TOOLS A Systems Approach to the Advanced Aircraft Man-Machine Interface 23 by F. Armogida Management of Avionics Data in the Cockpit

  2. Proceedings of the 1986 IEEE international conference on systems, man and cybernetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    This book presents the papers given at a conference on man-machine systems. Topics considered at the conference included neural model-based cognitive theory and engineering, user interfaces, adaptive and learning systems, human interaction with robotics, decision making, the testing and evaluation of expert systems, software development, international conflict resolution, intelligent interfaces, automation in man-machine system design aiding, knowledge acquisition in expert systems, advanced architectures for artificial intelligence, pattern recognition, knowledge bases, and machine vision.

  3. Man-systems integration and the man-machine interface

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P.

    1990-01-01

    Viewgraphs on man-systems integration and the man-machine interface are presented. Man-systems integration applies the systems' approach to the integration of the user and the machine to form an effective, symbiotic Man-Machine System (MMS). A MMS is a combination of one or more human beings and one or more physical components that are integrated through the common purpose of achieving some objective. The human operator interacts with the system through the Man-Machine Interface (MMI).

  4. Human factors in the presentation of computer-generated information - Aspects of design and application in automated flight traffic

    NASA Technical Reports Server (NTRS)

    Roske-Hofstrand, Renate J.

    1990-01-01

    The man-machine interface and its influence on the characteristics of computer displays in automated air traffic is discussed. The graphical presentation of spatial relationships and the problems it poses for air traffic control, and the solution of such problems are addressed. Psychological factors involved in the man-machine interface are stressed.

  5. Graphical user interfaces for symbol-oriented database visualization and interaction

    NASA Astrophysics Data System (ADS)

    Brinkschulte, Uwe; Siormanolakis, Marios; Vogelsang, Holger

    1997-04-01

    In this approach, two basic services designed for the engineering of computer based systems are combined: a symbol-oriented man-machine-service and a high speed database-service. The man-machine service is used to build graphical user interfaces (GUIs) for the database service; these interfaces are stored using the database service. The idea is to create a GUI-builder and a GUI-manager for the database service based upon the man-machine service using the concept of symbols. With user-definable and predefined symbols, database contents can be visualized and manipulated in a very flexible and intuitive way. Using the GUI-builder and GUI-manager, a user can build and operate its own graphical user interface for a given database according to its needs without writing a single line of code.

  6. Teleoperator system man-machine interface requirements for satellite retrieval and satellite servicing. Volume 1: Requirements

    NASA Technical Reports Server (NTRS)

    Malone, T. B.

    1972-01-01

    Requirements were determined analytically for the man machine interface for a teleoperator system performing on-orbit satellite retrieval and servicing. Requirements are basically of two types; mission/system requirements, and design requirements or design criteria. Two types of teleoperator systems were considered: a free flying vehicle, and a shuttle attached manipulator. No attempt was made to evaluate the relative effectiveness or efficiency of the two system concepts. The methodology used entailed an application of the Essex Man-Systems analysis technique as well as a complete familiarization with relevant work being performed at government agencies and by private industry.

  7. Development and validation of methods for man-made machine interface evaluation. [for shuttles and shuttle payloads

    NASA Technical Reports Server (NTRS)

    Malone, T. B.; Micocci, A.

    1975-01-01

    The alternate methods of conducting a man-machine interface evaluation are classified as static and dynamic, and are evaluated. A dynamic evaluation tool is presented to provide for a determination of the effectiveness of the man-machine interface in terms of the sequence of operations (task and task sequences) and in terms of the physical characteristics of the interface. This dynamic checklist approach is recommended for shuttle and shuttle payload man-machine interface evaluations based on reduced preparation time, reduced data, and increased sensitivity of critical problems.

  8. Man-machine interfaces in health care

    NASA Technical Reports Server (NTRS)

    Charles, Steve; Williams, Roy E.

    1991-01-01

    The surgeon, like the pilot, is confronted with an ever increasing volume of voice, data, and image input. Simultaneously, the surgeon must control a rapidly growing number of devices to deliver care to the patient. The broad disciplines of man-machine interface design, systems integration, and teleoperation will play a role in the operating room of the future. The purpose of this communication is to report the incorporation of these design concepts into new surgical and laser delivery systems. A review of each general problem area and the systems under development to solve the problems are presented.

  9. Man-machine interface for the control of a lunar transport machine

    NASA Technical Reports Server (NTRS)

    Ashley, Richard; Bacon, Loring; Carlton, Scott Tim; May, Mark; Moore, Jimmy; Peek, Dennis

    1987-01-01

    A proposed first generation human interface control panel is described which will be used to control SKITTER, a three-legged lunar walking machine. Under development at Georgia Tech, SKITTER will be a multi-purpose, un-manned vehicle capable of preparing a site for the proposed lunar base in advance of the arrival of men. This walking machine will be able to accept modular special purpose tools, such as a crane, a core sampling drill, and a digging device, among others. The project was concerned with the design of a human interface which could be used, from earth, to control the movements of SKITTER on the lunar surface. Preliminary inquiries were also made into necessary modifications required to adapt the panel to both a shirt-sleeve lunar environment and to a mobile unit which could be used by a man in a space suit at a lunar work site.

  10. Mobile Tactical HF/VHF/EW System for Ground Forces

    DTIC Science & Technology

    1989-09-01

    presen- tation of what I have learned . I would like to thank my advisor, Professor Robert Partelow, and co-advisor, Commander James R. Powell, for the...analyze newly developed systems to determine how the man- machine interfaces of such systems can best be designed for optimal use by the operators. B...terminals and other controls. If factors like luminance ratio, reflectance, glare illuminance are allowed for good man- machine interface then an effective

  11. Automated visual imaging interface for the plant floor

    NASA Astrophysics Data System (ADS)

    Wutke, John R.

    1991-03-01

    The paper will provide an overview of the challenges facing a user of automated visual imaging (" AVI" ) machines and the philosophies that should be employed in designing them. As manufacturing tools and equipment become more sophisticated it is increasingly difficult to maintain an efficient interaction between the operator and machine. The typical user of an AVI machine in a production environment is technically unsophisticated. Also operator and machine ergonomics are often a neglected or poorly addressed part of an efficient manufacturing process. This paper presents a number of man-machine interface design techniques and philosophies that effectively solve these problems.

  12. Diverse applications of advanced man-telerobot interfaces

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas A.

    1991-01-01

    Advancements in man-machine interfaces and control technologies used in space telerobotics and teleoperators have potential application wherever human operators need to manipulate multi-dimensional spatial relationships. Bilateral six degree-of-freedom position and force cues exchanged between the user and a complex system can broaden and improve the effectiveness of several diverse man-machine interfaces.

  13. Task-Oriented, Naturally Elicited Speech (TONE) Database for the Force Requirements Expert System, Hawaii (FRESH)

    DTIC Science & Technology

    1988-09-01

    Group Subgroup Command and control; Computational linguistics; expert system voice recognition; man- machine interface; U.S. Government 19 Abstract...simulates the characteristics of FRESH on a smaller scale. This study assisted NOSC in developing a voice-recognition, man- machine interface that could...scale. This study assisted NOSC in developing a voice-recogni- tion, man- machine interface that could be used with TONE and upgraded at a later date

  14. Intelligent man/machine interfaces on the space station

    NASA Technical Reports Server (NTRS)

    Daughtrey, Rodney S.

    1987-01-01

    Some important topics in the development of good, intelligent, usable man/machine interfaces for the Space Station are discussed. These computer interfaces should adhere strictly to three concepts or doctrines: generality, simplicity, and elegance. The motivation for natural language interfaces and their use and value on the Space Station, both now and in the future, are discussed.

  15. Distribution of man-machine controls in space teleoperation

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1982-01-01

    The distribution of control between man and machine is dependent on the tasks, available technology, human performance characteristics and control goals. This dependency has very specific projections on systems designed for teleoperation in space. This paper gives a brief outline of the space-related issues and presents the results of advanced teleoperator research and development at the Jet Propulsion Laboratory (JPL). The research and development work includes smart sensors, flexible computer controls and intelligent man-machine interface devices in the area of visual displays and kinesthetic man-machine coupling in remote control of manipulators. Some of the development results have been tested at the Johnson Space Center (JSC) using the simulated full-scale Shuttle Remote Manipulator System (RMS). The research and development work for advanced space teleoperation is far from complete and poses many interdisciplinary challenges.

  16. Toward a mathematical formalism of performance, task difficulty, and activation

    NASA Technical Reports Server (NTRS)

    Samaras, George M.

    1988-01-01

    The rudiments of a mathematical formalism for handling operational, physiological, and psychological concepts are developed for use by the man-machine system design engineer. The formalism provides a framework for developing a structured, systematic approach to the interface design problem, using existing mathematical tools, and simplifying the problem of telling a machine how to measure and use performance.

  17. Open multi-agent control architecture to support virtual-reality-based man-machine interfaces

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel

    2001-10-01

    Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.

  18. Multiple man-machine interfaces

    NASA Technical Reports Server (NTRS)

    Stanton, L.; Cook, C. W.

    1981-01-01

    The multiple man machine interfaces inherent in military pilot training, their social implications, and the issue of possible negative feedback were explored. Modern technology has produced machines which can see, hear, and touch with greater accuracy and precision than human beings. Consequently, the military pilot is more a systems manager, often doing battle against a target he never sees. It is concluded that unquantifiable human activity requires motivation that is not intrinsic in a machine.

  19. Concept Design of the Payload Handling Manipulator System. [space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The design, requirements, and interface definition of a remote manipulator system developed to handle orbiter payloads are presented. End effector design, control system concepts, and man-machine engineering are considered along with crew station requirements and closed circuit television system performance requirements.

  20. Analysis of a display and control system man-machine interface concept. Volume 1: Final technical report

    NASA Technical Reports Server (NTRS)

    Karl, D. R.

    1972-01-01

    An evaluation was made of the feasibility of utilizing a simplified man machine interface concept to manage and control a complex space system involving multiple redundant computers that control multiple redundant subsystems. The concept involves the use of a CRT for display and a simple keyboard for control, with a tree-type control logic for accessing and controlling mission, systems, and subsystem elements. The concept was evaluated in terms of the Phase B space shuttle orbiter, to utilize the wide scope of data management and subsystem control inherent in the central data management subsystem provided by the Phase B design philosophy. Results of these investigations are reported in four volumes.

  1. Compatibility Problems of Network Interfacing.

    ERIC Educational Resources Information Center

    Stevens, Mary Elizabeth

    From the standpoint of information network technology there is a necessary emphasis upon compatibility requirements which, in turn, will be met at least in part by various techniques of achieving convertibility --- between machine and machine, between man and machine, and between man and man. It may be hoped that improved compatibilities between…

  2. MARTI: man-machine animation real-time interface

    NASA Astrophysics Data System (ADS)

    Jones, Christian M.; Dlay, Satnam S.

    1997-05-01

    The research introduces MARTI (man-machine animation real-time interface) for the realization of natural human-machine interfacing. The system uses simple vocal sound-tracks of human speakers to provide lip synchronization of computer graphical facial models. We present novel research in a number of engineering disciplines, which include speech recognition, facial modeling, and computer animation. This interdisciplinary research utilizes the latest, hybrid connectionist/hidden Markov model, speech recognition system to provide very accurate phone recognition and timing for speaker independent continuous speech, and expands on knowledge from the animation industry in the development of accurate facial models and automated animation. The research has many real-world applications which include the provision of a highly accurate and 'natural' man-machine interface to assist user interactions with computer systems and communication with one other using human idiosyncrasies; a complete special effects and animation toolbox providing automatic lip synchronization without the normal constraints of head-sets, joysticks, and skilled animators; compression of video data to well below standard telecommunication channel bandwidth for video communications and multi-media systems; assisting speech training and aids for the handicapped; and facilitating player interaction for 'video gaming' and 'virtual worlds.' MARTI has introduced a new level of realism to man-machine interfacing and special effect animation which has been previously unseen.

  3. Man-Machine Interface (MMI) Requirements Definition and Design Guidelines

    DTIC Science & Technology

    1981-02-01

    be provided to interrogate the user to resolve any input ambiguities resulting from hardware limitations; see Smith and Goodwin, 1971 . Reference...Smith, S. L. and Goodwin, N. C’. Alphabetic data v entry via the Touch-Tone pad: A comment. Human Factors, 1971 , 13(2), 189-190. 41 All~ 1.0 General (con...software designer. Reference: Miller, R. B. Response time in man-computer conversational transactions. In Proceedings of the AFIPS kall Joint Computer

  4. Manned remote work station development article. Volume 3: Development test plan. Appendix A: Manufacturing requirements/schedule

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The tests and procedures for the manned remote work station (MRWS) open cherry picker (OCP) development test article (DTA) are described to validate systems requirements and performance specifications. A development test program is outlined to evaluate key design issues and man/machine interfaces when the MRWS OCP is used in a shuttle support role of satellite servicing and in orbit construction of large structures.

  5. Use of Computer Speech Technologies To Enhance Learning.

    ERIC Educational Resources Information Center

    Ferrell, Joe

    1999-01-01

    Discusses the design of an innovative learning system that uses new technologies for the man-machine interface, incorporating a combination of Automatic Speech Recognition (ASR) and Text To Speech (TTS) synthesis. Highlights include using speech technologies to mimic the attributes of the ideal tutor and design features. (AEF)

  6. Human factors in space telepresence

    NASA Technical Reports Server (NTRS)

    Akin, D. L.; Howard, R. D.; Oliveria, J. S.

    1983-01-01

    The problems of interfacing a human with a teleoperation system, for work in space are discussed. Much of the information presented here is the result of experience gained by the M.I.T. Space Systems Laboratory during the past two years of work on the ARAMIS (Automation, Robotics, and Machine Intelligence Systems) project. Many factors impact the design of the man-machine interface for a teleoperator. The effects of each are described in turn. An annotated bibliography gives the key references that were used. No conclusions are presented as a best design, since much depends on the particular application desired, and the relevant technology is swiftly changing.

  7. Advanced warfighter machine interface (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Franks, Erin

    2005-05-01

    Future military crewmen may have more individual and shared tasks to complete throughout a mission as a result of smaller crew sizes and an increased number of technology interactions. To maintain reasonable workload levels, the Warfighter Machine Interface (WMI) must provide information in a consistent, logical manner, tailored to the environment in which the soldier will be completing their mission. This paper addresses design criteria for creating an advanced, multi-modal warfighter machine interface for on-the-move mounted operations. The Vetronics Technology Integration (VTI) WMI currently provides capabilities such as mission planning and rehearsal, voice and data communications, and manned/unmanned vehicle payload and mobility control. A history of the crewstation and more importantly, the WMI software will be provided with an overview of requirements and criteria used for completing the design. Multiple phases of field and laboratory testing provide the opportunity to evaluate the design and hardware in stationary and motion environments. Lessons learned related to system usability and user performance are presented with mitigation strategies to be tested in the future.

  8. Simulation of the «COSMONAUT-ROBOT» System Interaction on the Lunar Surface Based on Methods of Machine Vision and Computer Graphics

    NASA Astrophysics Data System (ADS)

    Kryuchkov, B. I.; Usov, V. M.; Chertopolokhov, V. A.; Ronzhin, A. L.; Karpov, A. A.

    2017-05-01

    Extravehicular activity (EVA) on the lunar surface, necessary for the future exploration of the Moon, involves extensive use of robots. One of the factors of safe EVA is a proper interaction between cosmonauts and robots in extreme environments. This requires a simple and natural man-machine interface, e.g. multimodal contactless interface based on recognition of gestures and cosmonaut's poses. When travelling in the "Follow Me" mode (master/slave), a robot uses onboard tools for tracking cosmonaut's position and movements, and on the basis of these data builds its itinerary. The interaction in the system "cosmonaut-robot" on the lunar surface is significantly different from that on the Earth surface. For example, a man, dressed in a space suit, has limited fine motor skills. In addition, EVA is quite tiring for the cosmonauts, and a tired human being less accurately performs movements and often makes mistakes. All this leads to new requirements for the convenient use of the man-machine interface designed for EVA. To improve the reliability and stability of human-robot communication it is necessary to provide options for duplicating commands at the task stages and gesture recognition. New tools and techniques for space missions must be examined at the first stage of works in laboratory conditions, and then in field tests (proof tests at the site of application). The article analyzes the methods of detection and tracking of movements and gesture recognition of the cosmonaut during EVA, which can be used for the design of human-machine interface. A scenario for testing these methods by constructing a virtual environment simulating EVA on the lunar surface is proposed. Simulation involves environment visualization and modeling of the use of the "vision" of the robot to track a moving cosmonaut dressed in a spacesuit.

  9. Problems in modeling man machine control behavior in biodynamic environments

    NASA Technical Reports Server (NTRS)

    Jex, H. R.

    1972-01-01

    Reviewed are some current problems in modeling man-machine control behavior in a biodynamic environment. It is given in two parts: (1) a review of the models which are appropriate for manual control behavior and the added elements necessary to deal with biodynamic interfaces; and (2) a review of some biodynamic interface pilot/vehicle problems which have occurred, been solved, or need to be solved.

  10. Man-machine interface requirements - advanced technology

    NASA Technical Reports Server (NTRS)

    Remington, R. W.; Wiener, E. L.

    1984-01-01

    Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.

  11. Zero-G Workstation Design

    NASA Technical Reports Server (NTRS)

    Gundersen, R. T.; Bond, R. L.

    1976-01-01

    Zero-g workstations were designed throughout manned spaceflight, based on different criteria and requirements for different programs. The history of design of these workstations is presented along with a thorough evaluation of selected Skylab workstations (the best zero-g experience available on the subject). The results were applied to on-going and future programs, with special emphasis on the correlation of neutral body posture in zero-g to workstation design. Where selected samples of shuttle orbiter workstations are shown as currently designed and compared to experience gained during prior programs in terms of man machine interface design, the evaluations were done in a generic sense to show the methods of applying evaluative techniques.

  12. Expert Design Advisor

    DTIC Science & Technology

    1990-10-01

    to economic, technological, spatial or logistic concerns, or involve training, man-machine interfaces, or integration into existing systems. Once the...probabilistic reasoning, mixed analysis- and simulation-oriented, mixed computation- and communication-oriented, nonpreemptive static priority...scheduling base, nonrandomized, preemptive static priority scheduling base, randomized, simulation-oriented, and static scheduling base. The selection of both

  13. Sitting in the Pilot's Seat; Optimizing Human-Systems Interfaces for Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Queen, Steven M.; Sanner, Kurt Gregory

    2011-01-01

    One of the pilot-machine interfaces (the forward viewing camera display) for an Unmanned Aerial Vehicle called the DROID (Dryden Remotely Operated Integrated Drone) will be analyzed for optimization. The goal is to create a visual display for the pilot that as closely resembles an out-the-window view as possible. There are currently no standard guidelines for designing pilot-machine interfaces for UAVs. Typically, UAV camera views have a narrow field, which limits the situational awareness (SA) of the pilot. Also, at this time, pilot-UAV interfaces often use displays that have a diagonal length of around 20". Using a small display may result in a distorted and disproportional view for UAV pilots. Making use of a larger display and a camera lens with a wider field of view may minimize the occurrences of pilot error associated with the inability to see "out the window" as in a manned airplane. It is predicted that the pilot will have a less distorted view of the DROID s surroundings, quicker response times and more stable vehicle control. If the experimental results validate this concept, other UAV pilot-machine interfaces will be improved with this design methodology.

  14. The RACE (Research and Development in Advanced Technologies for Europe) Program: A 1989 Update

    DTIC Science & Technology

    1989-12-15

    Definition TV (HDTV) Expcrimcntal Usage . A......a.d..r Dist special 1081 - Broadband User Network Interface (BUNI)..................... 4 1082 ...develop man/machine which will provide a traffic analyzer and generator. interfaces that are consistent across a wide range of ap-plications. 1082 ... 1082 are to provide usage reference models for the different types of e Define IBC quality of service rquiremnts by usage design issue. It deals with

  15. Earth orbital teleoperator visual system evaluation program

    NASA Technical Reports Server (NTRS)

    Shields, N. L., Jr.; Kirkpatrick, M., III; Frederick, P. N.; Malone, T. B.

    1975-01-01

    Empirical tests of range estimation accuracy and resolution, via television, under monoptic and steroptic viewing conditions are discussed. Test data are used to derive man machine interface requirements and make design decisions for an orbital remote manipulator system. Remote manipulator system visual tasks are given and the effects of system parameters of these tasks are evaluated.

  16. Man-machine interface issues in space telerobotics: A JPL research and development program

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1987-01-01

    Technology issues related to the use of robots as man-extension or telerobot systems in space are discussed and exemplified. General considerations are presentd on control and information problems in space teleoperation and on the characteristics of Earth orbital teleoperation. The JPL R and D work in the area of man-machine interface devices and techniques for sensing and computer-based control is briefly summarized. The thrust of this R and D effort is to render space teleoperation efficient and safe through the use of devices and techniques which will permit integrated and task-level (intelligent) two-way control communication between human operator and telerobot machine in Earth orbit. Specific control and information display devices and techniques are discussed and exemplified with development results obtained at JPL in recent years.

  17. Image understanding and the man-machine interface II; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, 18, 1989

    NASA Technical Reports Server (NTRS)

    Barrett, Eamon B. (Editor); Pearson, James J. (Editor)

    1989-01-01

    Image understanding concepts and models, image understanding systems and applications, advanced digital processors and software tools, and advanced man-machine interfaces are among the topics discussed. Particular papers are presented on such topics as neural networks for computer vision, object-based segmentation and color recognition in multispectral images, the application of image algebra to image measurement and feature extraction, and the integration of modeling and graphics to create an infrared signal processing test bed.

  18. Interface design in the process industries

    NASA Technical Reports Server (NTRS)

    Beaverstock, M. C.; Stassen, H. G.; Williamson, R. A.

    1977-01-01

    Every operator runs his plant in accord with his own mental model of the process. In this sense, one characteristic of an ideal man-machine interface is that it be in harmony with that model. With this theme in mind, the paper first reviews the functions of the process operator and compares them with human operators involved in control situations previously studied outside the industrial environment (pilots, air traffic controllers, helmsmen, etc.). A brief history of the operator interface in the process industry and the traditional methodology employed in its design is then presented. Finally, a much more fundamental approach utilizing a model definition of the human operator's behavior is presented.

  19. Research on ARM Numerical Control System

    NASA Astrophysics Data System (ADS)

    Wei, Xu; JiHong, Chen

    Computerized Numerical Control (CNC) machine tools is the foundation of modern manufacturing systems, whose advanced digital technology is the key to solve the problem of sustainable development of machine tool manufacturing industry. The paper is to design CNC system embedded on ARM and indicates the hardware design and the software systems supported. On the hardware side: the driving chip of the motor control unit, as the core of components, is MCX314AL of DSP motion control which is developed by NOVA Electronics Co., Ltd. of Japan. It make convenient to control machine because of its excellent performance, simple interface, easy programming. On the Software side, the uC/OS-2 is selected as the embedded operating system of the open source, which makes a detailed breakdown of the modules of the CNC system. Those priorities are designed according to their actual requirements. The ways of communication between the module and the interrupt response are so different that it guarantees real-time property and reliability of the numerical control system. Therefore, it not only meets the requirements of the current social precision machining, but has good man-machine interface and network support to facilitate a variety of craftsmen use.

  20. Considerations for human-machine interfaces in tele-operations

    NASA Technical Reports Server (NTRS)

    Newport, Curt

    1991-01-01

    Numerous factors impact on the efficiency of tele-operative manipulative work. Generally, these are related to the physical environment of the tele-operator and how he interfaces with robotic control consoles. The capabilities of the operator can be influenced by considerations such as temperature, eye strain, body fatigue, and boredom created by repetitive work tasks. In addition, the successful combination of man and machine will, in part, be determined by the configuration of the visual and physical interfaces available to the teleoperator. The design and operation of system components such as full-scale and mini-master manipulator controllers, servo joysticks, and video monitors will have a direct impact on operational efficiency. As a result, the local environment and the interaction of the operator with the robotic control console have a substantial effect on mission productivity.

  1. Remotely manned systems: Exploration and operation in space; Proceedings of the First National Conference, California Institute of Technology, Pasadena, Calif., September 13-15, 1972.

    NASA Technical Reports Server (NTRS)

    Heer, E.

    1973-01-01

    Free-flying teleoperator systems are discussed, giving attention to earth-orbit mission considerations and Space Tug requirements, free-flying teleoperator requirements and conceptual design, system requirements for a free-flying teleoperator to despin, and the experimental evaluation of remote manipulator systems. Shuttle-Attached Manipulator Systems are considered, together with remote surface vehicle systems, manipulator systems technology, remote sensor and display technology, the man-machine interface, and control and machine intelligence. Nonspace applications are also explored, taking into account implications of nonspace applications, naval applications of remote manipulators, and hand tools and mechanical accessories for a deep submersible. Individual items are announced in this issue.

  2. A COTS-MQS shipborne EO/IR imaging system

    NASA Astrophysics Data System (ADS)

    Hutchinson, Mark A.; Miller, John L.; Weaver, James

    2005-05-01

    The Sea Star SAFIRE is a commercially developed, off the shelf, military qualified system (COTS-MQS) consisting of a 640 by 480 InSb infrared imager, laser rangefinder and visible imager in a gyro-stabilized platform designed for shipborne applications. These applications include search and rescue, surveillance, fire control, fisheries patrol, harbor security, and own-vessel perimeter security and self protection. Particularly challenging considerations unique to shipborne systems include the demanding environment conditions, man-machine interfaces, and effects of atmospheric conditions on sensor performance. Shipborne environmental conditions requiring special attention include electromagnetic fields, as well as resistance to rain, ice and snow, shock, vibration, and salt. Features have been implemented to withstand exposure to water and high humidity; anti-ice/de-ice capability for exposure to snow and ice; wash/wipe of external windows; corrosion resistance for exposure to water and salt spray. A variety of system controller configurations provide man-machine interfaces suitable for operation on ships. EO sensor developments that address areas of haze penetration, glint, and scintillation will be presented.

  3. Real English: A Translator to Enable Natural Language Man-Machine Conversation.

    ERIC Educational Resources Information Center

    Gautin, Harvey

    This dissertation presents a pragmatic interpreter/translator called Real English to serve as a natural language man-machine communication interface in a multi-mode on-line information retrieval system. This multi-mode feature affords the user a library-like searching tool by giving him access to a dictionary, lexicon, thesaurus, synonym table,…

  4. The Design, Development and Testing of Complex Avionics Systems: Conference Proceedings Held at the Avionics Panel Symposium in Las Vegas, Nevada on 27 April-1 May 1987

    DTIC Science & Technology

    1987-12-01

    Normally, the system is decomposed into manageable parts with accurately defined interfaces. By rigidly controlling this process, aerospace companies have...Reference A CHANGE IN SYSTEM DESIGN EMPHASIS: FROM MACHINE TO MAN by M.L.Metersky and J.L.Ryder 16 SESSION I1 - MANAGING THE FUl URE SYSTEM DESIGN...PROCESS MANAGING ADVANCED AVIONIC SYSTEM DESIGN by P.Simons 17 ERGONOMIE PSYCHOSENSORIELLE DES COCKPITS, INTERET DES SYSTEMES INFORMATIQUES INTELLIGENTS

  5. Prosthetic EMG control enhancement through the application of man-machine principles

    NASA Technical Reports Server (NTRS)

    Simcox, W. A.

    1977-01-01

    An area in medicine that appears suitable to man-machine principles is rehabilitation research, particularly when the motor aspects of the body are involved. If one considers the limb, whether functional or not, as the machine, the brain as the controller and the neuromuscular system as the man-machine interface, the human body is reduced to a man-machine system that can benefit from the principles behind such systems. The area of rehabilitation that this paper deals with is that of an arm amputee and his prosthetic device. Reducing this area to its man-machine basics, the problem becomes one of attaining natural multiaxis prosthetic control using Electromyographic activity (EMG) as the means of communication between man and prothesis. In order to use EMG as the communication channel it must be amplified and processed to yield a high information signal suitable for control. The most common processing scheme employed is termed Mean Value Processing. This technique for extracting the useful EMG signal consists of a differential to single ended conversion to the surface activity followed by a rectification and smoothing.

  6. A shuttle and space station manipulator system for assembly, docking, maintenance, cargo handling and spacecraft retrieval (preliminary design). Volume 2: Concept development and selection

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The overall program background, the various system concepts considered, and the rationale for the selected design are described. The concepts for each subsystem are also described and compared. Details are given for the requirements, boom configuration and dynamics, actuators, man/machine interface and control, visual system, control system, environmental control and life support, data processing, and materials.

  7. Human factors model concerning the man-machine interface of mining crewstations

    NASA Technical Reports Server (NTRS)

    Rider, James P.; Unger, Richard L.

    1989-01-01

    The U.S. Bureau of Mines is developing a computer model to analyze the human factors aspect of mining machine operator compartments. The model will be used as a research tool and as a design aid. It will have the capability to perform the following: simulated anthropometric or reach assessment, visibility analysis, illumination analysis, structural analysis of the protective canopy, operator fatigue analysis, and computation of an ingress-egress rating. The model will make extensive use of graphics to simplify data input and output. Two dimensional orthographic projections of the machine and its operator compartment are digitized and the data rebuilt into a three dimensional representation of the mining machine. Anthropometric data from either an individual or any size population may be used. The model is intended for use by equipment manufacturers and mining companies during initial design work on new machines. In addition to its use in machine design, the model should prove helpful as an accident investigation tool and for determining the effects of machine modifications made in the field on the critical areas of visibility and control reach ability.

  8. The reported incidence of man-machine interface issues in Army aviators using the Aviator's Night Vision System (ANVIS) in a combat theatre

    NASA Astrophysics Data System (ADS)

    Hiatt, Keith L.; Rash, Clarence E.

    2011-06-01

    Background: Army Aviators rely on the ANVIS for night operations. Human factors literature notes that the ANVIS man-machine interface results in reports of visual and spinal complaints. This is the first study that has looked at these issues in the much harsher combat environment. Last year, the authors reported on the statistically significant (p<0.01) increased complaints of visual discomfort, degraded visual cues, and incidence of static and dynamic visual illusions in the combat environment [Proc. SPIE, Vol. 7688, 76880G (2010)]. In this paper we present the findings regarding increased spinal complaints and other man-machine interface issues found in the combat environment. Methods: A survey was administered to Aircrew deployed in support of Operation Enduring Freedom (OEF). Results: 82 Aircrew (representing an aggregate of >89,000 flight hours of which >22,000 were with ANVIS) participated. Analysis demonstrated high complaints of almost all levels of back and neck pain. Additionally, the use of body armor and other Aviation Life Support Equipment (ALSE) caused significant ergonomic complaints when used with ANVIS. Conclusions: ANVIS use in a combat environment resulted in higher and different types of reports of spinal symptoms and other man-machine interface issues over what was previously reported. Data from this study may be more operationally relevant than that of the peacetime literature as it is derived from actual combat and not from training flights, and it may have important implications about making combat predictions based on performance in training scenarios. Notably, Aircrew remarked that they could not execute the mission without ANVIS and ALSE and accepted the degraded ergonomic environment.

  9. Re-Design and Beat Testing of the Man-Machine Integration Design and Analysis System: MIDAS

    NASA Technical Reports Server (NTRS)

    Shively, R. Jay; Rutkowski, Michael (Technical Monitor)

    1999-01-01

    The Man-machine Design and Analysis System (MIDAS) is a human factors design and analysis system that combines human cognitive models with 3D CAD models and rapid prototyping and simulation techniques. MIDAS allows designers to ask 'what if' types of questions early in concept exploration and development prior to actual hardware development. The system outputs predictions of operator workload, situational awareness and system performance as well as graphical visualization of the cockpit designs interacting with models of the human in a mission scenario. Recently, MIDAS was re-designed to enhance functionality and usability. The goals driving the redesign include more efficient processing, GUI interface, advances in the memory structures, implementation of external vision models and audition. These changes were detailed in an earlier paper. Two Beta test sites with diverse applications have been chosen. One Beta test site is investigating the development of a new airframe and its interaction with the air traffic management system. The second Beta test effort will investigate 3D auditory cueing in conjunction with traditional visual cueing strategies including panel-mounted and heads-up displays. The progress and lessons learned on each of these projects will be discussed.

  10. Flexible Parsing.

    DTIC Science & Technology

    1986-06-30

    Machine Studies .. 14. Minton, S. N., Hayes, P. J., and Fain, J. E. Controlling Search in Flexible Parsing. Proc. Ninth Int. Jt. Conf. on Artificial...interaction through the COUSIN command interface", International Journal of Man- Machine Studies , Vol. 19, No. 3, September 1983, pp. 285-305. 8...in a gracefully interacting user interface," "Dynamic strategy selection in flexible parsing," and "Parsing spoken language: a semantic case frame

  11. Strategic Studies Quarterly. Volume 7, Number 4. Winter 2013

    DTIC Science & Technology

    2013-01-01

    databases to bridge the man-machine interface, thereby mak- ing both machines and man more capable of complex thought, independent assessment, and...Edward, “China Steps up Effort to Diversify FX Reserves,” Re- uters, 13 January 2013, http://www.reuters.com/article/2013/01/14/us-china- forex ...of attacks in Israel, Russia, and the United States from 1989 to 2008 (see fig. 2). The analysis combines data from the Global Terrorism Database

  12. The JPL telerobot operator control station. Part 1: Hardware

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.; Tower, John T.; Hunka, George W.; Vansant, Glenn J.

    1989-01-01

    The Operator Control Station of the Jet Propulsion Laboratory (JPL)/NASA Telerobot Demonstrator System provides the man-machine interface between the operator and the system. It provides all the hardware and software for accepting human input for the direct and indirect (supervised) manipulation of the robot arms and tools for task execution. Hardware and software are also provided for the display and feedback of information and control data for the operator's consumption and interaction with the task being executed. The hardware design, system architecture, and its integration and interface with the rest of the Telerobot Demonstrator System are discussed.

  13. Proceedings of the Annual Seminar (First), ’The Art of Communications Interfaces’, Held at Fort Monmouth, New Jersey on 22 April 1976,

    DTIC Science & Technology

    Both the oldest and the newest problem areas in communications electronics interfaces are discussed in conjunction with the currently critical...digital communication system evolution. The oldest interface problem, still the most essential is the man machine communications interfaces. The newest is

  14. Real-time implementation of electromyogram pattern recognition as a control command of man-machine interface.

    PubMed

    Chang, G C; Kang, W J; Luh, J J; Cheng, C K; Lai, J S; Chen, J J; Kuo, T S

    1996-10-01

    The purpose of this study was to develop a real-time electromyogram (EMG) discrimination system to provide control commands for man-machine interface applications. A host computer with a plug-in data acquisition and processing board containing a TMS320 C31 floating-point digital signal processor was used to attain real-time EMG classification. Two-channel EMG signals were collected by two pairs of surface electrodes located bilaterally between the sternocleidomastoid and the upper trapezius. Five motions of the neck and shoulders were discriminated for each subject. The zero-crossing rate was employed to detect the onset of muscle contraction. The cepstral coefficients, derived from autoregressive coefficients and estimated by a recursive least square algorithm, were used as the recognition features. These features were then discriminated using a modified maximum likelihood distance classifier. The total response time of this EMG discrimination system was achieved about within 0.17 s. Four able bodied and two C5/6 quadriplegic subjects took part in the experiment, and achieved 95% mean recognition rate in discrimination between the five specific motions. The response time and the reliability of recognition indicate that this system has the potential to discriminate body motions for man-machine interface applications.

  15. A voyage to Mars: A challenge to collaboration between man and machines

    NASA Technical Reports Server (NTRS)

    Statler, Irving C.

    1991-01-01

    A speech addressing the design of man machine systems for exploration of space beyond Earth orbit from the human factors perspective is presented. Concerns relative to the design of automated and intelligent systems for the NASA Space Exploration Initiative (SEI) missions are largely based on experiences with integrating humans and comparable systems in aviation. The history, present status, and future prospect, of human factors in machine design are discussed in relation to a manned voyage to Mars. Three different cases for design philosophy are presented. The use of simulation is discussed. Recommendations for required research are given.

  16. Manipulator system man-machine interface evaluation program. [technology assessment

    NASA Technical Reports Server (NTRS)

    Malone, T. B.; Kirkpatrick, M.; Shields, N. L.

    1974-01-01

    Application and requirements for remote manipulator systems for future space missions were investigated. A manipulator evaluation program was established to study the effects of various systems parameters on operator performance of tasks necessary for remotely manned missions. The program and laboratory facilities are described. Evaluation criteria and philosophy are discussed.

  17. Man-machine interfaces in LACIE/ERIPS

    NASA Technical Reports Server (NTRS)

    Duprey, B. B. (Principal Investigator)

    1979-01-01

    One of the most important aspects of the interactive portion of the LACIE/ERIPS software system is the way in which the analysis and decision-making capabilities of a human being are integrated with the speed and accuracy of a computer to produce a powerful analysis system. The three major man-machine interfaces in the system are (1) the use of menus for communications between the software and the interactive user; (2) the checkpoint/restart facility to recreate in one job the internal environment achieved in an earlier one; and (3) the error recovery capability which would normally cause job termination. This interactive system, which executes on an IBM 360/75 mainframe, was adapted for use in noninteractive (batch) mode. A case study is presented to show how the interfaces work in practice by defining some fields based on an image screen display, noting the field definitions, and obtaining a film product of the classification map.

  18. IBM PC/IX operating system evaluation plan

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Granier, Martin; Hall, Philip P.; Triantafyllopoulos, Spiros

    1984-01-01

    An evaluation plan for the IBM PC/IX Operating System designed for IBM PC/XT computers is discussed. The evaluation plan covers the areas of performance measurement and evaluation, software facilities available, man-machine interface considerations, networking, and the suitability of PC/IX as a development environment within the University of Southwestern Louisiana NASA PC Research and Development project. In order to compare and evaluate the PC/IX system, comparisons with other available UNIX-based systems are also included.

  19. Teleoperators - Manual/automatic system requirements.

    NASA Technical Reports Server (NTRS)

    Janow, C.; Malone, T. B.

    1973-01-01

    The teleoperator is defined as a remotely controlled, cybernetic, man-machine system designed to extend and augment man's sensory, manipulative, and cognitive capabilities. The teleoperator system incorporates the decision making, adaptive intelligence without requiring its presence. The man and the machine work as a team, each contributing unique and significant capabilities, and each depending on the other to achieve a common goal. Some of the more significant requirements associated with the development of teleoperator systems technology for space, industry, and medicine are examined. Emphasis is placed on the requirement to more effectively use the man and the machine in any man-machine system.

  20. Shuttle waste management system design improvements and flight evaluation

    NASA Technical Reports Server (NTRS)

    Winkler, H. Eugene; Goodman, Jerry R.; Murray, Robert W.; Mcintosh, Mathew E.

    1986-01-01

    The Space Shuttle waste management system has undergone a variety of design changes to improve performance and man-machine interface. These design improvements have resulted in more reliable operation and hygienic usage. Design enhancements include individual urinals, increased urine collection airflows, increased solids storage capacity, easier access to personal hygiene items, and additional wet trash stowage. The development and flight evaluation of these improvements are described herein. The Space Shuttle Orbiter has proved to be an invaluable test bed for development and in-flight evaluation of life support and habitability concepts which involve transport or separation of solids, liquids, and gases in a zero-g environment.

  1. Combat Automation for Airborne Weapon Systems: Man/Machine Interface Trends and Technologies (L’Automatisation du Combat Aerien: Tendances et Technologies pour l’Interface Homme/Machine)

    DTIC Science & Technology

    1993-04-01

    Homme /Machine) Aocesion For ; 1 [ NTIS ’ D:i: Ü J-H CRA& l TAB 3...I’utilisateur. - Enfm, utilise avec le bouton droit de la souris, le poten- tiom&tre de temps 6coul6 permet de charger une alterna- tive dans le syst&me...a a a a rn£Q £ OB E o 15 l | I? ^©J&Mß) NATO ^ OTAN 7 RUE ANCELLE • 92200 NEUILLY-SÜR-SEINE DIFFUSION DES PUBLICATIONS FRANCE AGARD

  2. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA.

    PubMed

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  3. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    PubMed Central

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method. PMID:26884745

  4. The human role in space (THURIS) applications study. Final briefing

    NASA Technical Reports Server (NTRS)

    Maybee, George W.

    1987-01-01

    The THURIS (The Human Role in Space) application is an iterative process involving successive assessments of man/machine mixes in terms of performance, cost and technology to arrive at an optimum man/machine mode for the mission application. The process begins with user inputs which define the mission in terms of an event sequence and performance time requirements. The desired initial operational capability date is also an input requirement. THURIS terms and definitions (e.g., generic activities) are applied to the input data converting it into a form which can be analyzed using the THURIS cost model outputs. The cost model produces tabular and graphical outputs for determining the relative cost-effectiveness of a given man/machine mode and generic activity. A technology database is provided to enable assessment of support equipment availability for selected man/machine modes. If technology gaps exist for an application, the database contains information supportive of further investigation into the relevant technologies. The present study concentrated on testing and enhancing the THURIS cost model and subordinate data files and developing a technology database which interfaces directly with the user via technology readiness displays. This effort has resulted in a more powerful, easy-to-use applications system for optimization of man/machine roles. Volume 1 is an executive summary.

  5. Rapid Prototyping and the Human Factors Engineering Process

    DTIC Science & Technology

    2016-08-29

    8217 without the effort and cost associated with conventional man -in-the-loop simulation. Advocates suggest that rapid prototyping is compatible with...use should be made of man -in-the loop simulation to supplement those analyses, but that such simulation is expensive and time consuming, precluding...conventional man -in-the- loop simulation. Rapid prototyping involves the construction and use of an executable model of a human-machine interface

  6. Space Station man-machine automation trade-off analysis

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Bard, J.; Feinberg, A.

    1985-01-01

    The man machine automation tradeoff methodology presented is of four research tasks comprising the autonomous spacecraft system technology (ASST) project. ASST was established to identify and study system level design problems for autonomous spacecraft. Using the Space Station as an example spacecraft system requiring a certain level of autonomous control, a system level, man machine automation tradeoff methodology is presented that: (1) optimizes man machine mixes for different ground and on orbit crew functions subject to cost, safety, weight, power, and reliability constraints, and (2) plots the best incorporation plan for new, emerging technologies by weighing cost, relative availability, reliability, safety, importance to out year missions, and ease of retrofit. A fairly straightforward approach is taken by the methodology to valuing human productivity, it is still sensitive to the important subtleties associated with designing a well integrated, man machine system. These subtleties include considerations such as crew preference to retain certain spacecraft control functions; or valuing human integration/decision capabilities over equivalent hardware/software where appropriate.

  7. Development of a systems theoretical procedure for evaluation of the work organization of the cockpit crew of a civil transport airplane

    NASA Technical Reports Server (NTRS)

    Fricke, M.; Vees, C.

    1983-01-01

    To achieve optimum design for the man machine interface with aircraft, a description of the interaction and work organization of the cockpit crew is needed. The development of system procedure to evaluate the work organization of pilots while structuring the work process is examined. Statistical data are needed to simulate sequences of pilot actions on the computer. Investigations of computer simulation and applicability for evaluation of crew concepts are discussed.

  8. Man-Machine Interface in Tactical Aircraft Design and Combat Automation (Conference Proceedings Held in Stuttgart (Germany, F.R.) on 28 September-1 October 1987)

    DTIC Science & Technology

    1988-07-01

    the large veiis in the legs and splanchnic region via the carotid sinus baroceptor reflex, and the distensibility charac- teristics of these veins (14...conditioning, by improving anaerobic capacity and muscular strength, has been shown in three separate studies to increase G-duration tolerance--in one study...field study, USN pilots found anaerobic and muscular conditioning particularly beneficial in improving their ACM tolerance (39). The USAF encourages

  9. Introduction of knowledge bases in patient's data management system: role of the user interface.

    PubMed

    Chambrin, M C; Ravaux, P; Jaborska, A; Beugnet, C; Lestavel, P; Chopin, C; Boniface, M

    1995-02-01

    As the number of signals and data to be handled grows in intensive care unit, it is necessary to design more powerful computing systems that integrate and summarize all this information. The manual input of data as e.g. clinical signs and drug prescription and the synthetic representation of these data requires an ever more sophisticated user interface. The introduction of knowledge bases in the data management allows to conceive contextual interfaces. The objective of this paper is to show the importance of the design of the user interface, in the daily use of clinical information system. Then we describe a methodology that uses the man-machine interaction to capture the clinician knowledge during the clinical practice. The different steps are the audit of the user's actions, the elaboration of statistic models allowing the definition of new knowledge, and the validation that is performed before complete integration. A part of this knowledge can be used to improve the user interface. Finally, we describe the implementation of these concepts on a UNIX platform using OSF/MOTIF graphical interface.

  10. State of the art in nuclear telerobotics: focus on the man/machine connection

    NASA Astrophysics Data System (ADS)

    Greaves, Amna E.

    1995-12-01

    The interface between the human controller and remotely operated device is a crux of telerobotic investigation today. This human-to-machine connection is the means by which we communicate our commands to the device, as well as the medium for decision-critical feedback to the operator. The amount of information transferred through the user interface is growing. This can be seen as a direct result of our need to support added complexities, as well as a rapidly expanding domain of applications. A user interface, or UI, is therefore subject to increasing demands to present information in a meaningful manner to the user. Virtual reality, and multi degree-of-freedom input devices lend us the ability to augment the man/machine interface, and handle burgeoning amounts of data in a more intuitive and anthropomorphically correct manner. Along with the aid of 3-D input and output devices, there are several visual tools that can be employed as part of a graphical UI that enhance and accelerate our comprehension of the data being presented. Thus an advanced UI that features these improvements would reduce the amount of fatigue on the teleoperator, increase his level of safety, facilitate learning, augment his control, and potentially reduce task time. This paper investigates the cutting edge concepts and enhancements that lead to the next generation of telerobotic interface systems.

  11. Operability of Space Station Freedom's meteoroid/debris protection system

    NASA Technical Reports Server (NTRS)

    Kahl, Maggie S.; Stokes, Jack W.

    1992-01-01

    The design of Space Station Freedom's external structure must not only protect the spacecraft from the hazardous environment, but also must be compatible with the extra vehicular activity system for assembly and maintenance. The external procedures for module support are utility connections, external orbital replaceable unit changeout, and maintenance of the meteoroid/debris shields and multilayer insulation. All of these interfaces require proper man-machine engineering to be compatible with the extra vehicular activity and manipulator systems. This paper discusses design solutions, including those provided for human interface, to the Space Station Freedom meteoroid/debris protection system. The system advantages and current access capabilities are illustrated through analysis of its configuration over the Space Station Freedom resource nodes and common modules, with emphasis on the cylindrical sections and endcones.

  12. Man-Machine Integrated Design and Analysis System (MIDAS): Functional Overview

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Neukom, Christian

    1998-01-01

    Included in the series of screen print-outs illustrates the structure and function of the Man-Machine Integrated Design and Analysis System (MIDAS). Views into the use of the system and editors are featured. The use-case in this set of graphs includes the development of a simulation scenario.

  13. Aeromechanics and man-machine integration technology opportunities for rotorcraft of the 1990s and beyond

    NASA Technical Reports Server (NTRS)

    Kerr, Andrew W.

    1989-01-01

    Programs related to rotorcraft aeromechanics and man-machine integration are discussed which will support advanced army rotorcraft design. In aeromechanics, recent advances in computational fluid dynamics will be used to characterize the complex unsteady flowfields of rotorcraft, and a second-generation comprehensive helicopter analysis system will be used along with models of aerodynamics, engines, and control systems to study the structural dynamics of rotor/body configurations. The man-machine integration program includes the development of advanced cockpit design technology and the evaluation of cockpit and mission equipment concepts in a real-time full-combat environment.

  14. Man-Machine Communication Through a Teletypewriter.

    ERIC Educational Resources Information Center

    Rubinoff, Morris

    A ten-year research study designed a mechanized information system in the information processing field. Special attention was paid to implementation criteria entering into on-line retrieval through man-machine dialog from a remote typewriter or video terminal and four major areas were investigated: search strategies, machine stored indexer aids,…

  15. Upper limb functional electrical stimulation devices and their man-machine interfaces.

    PubMed

    Venugopalan, L; Taylor, P N; Cobb, J E; Swain, I D

    2015-01-01

    Functional Electrical Stimulation (FES) is a technique that uses electricity to activate the nerves of a muscle that is paralysed due to hemiplegia, multiple sclerosis, Parkinson's disease or spinal cord injury (SCI). FES has been widely used to restore upper limb functions in people with hemiplegia and C5-C7 tetraplegia and has improved their ability to perform their activities of daily living (ADL). At the time of writing, a detailed literature review of the existing upper limb FES devices and their man-machine interfaces (MMI) showed that only the NESS H200 was commercially available. However, the rigid arm splint doesn't fit everyone and prevents the use of a tenodesis grip. Hence, a robust and versatile upper limb FES device that can be used by a wider group of people is required.

  16. THE DESIGN OF A MAN-MACHINE COUNSELING SYSTEM. A PROFESSIONAL PAPER.

    ERIC Educational Resources Information Center

    COGSWELL, J.F.; AND OTHERS

    TWO PROJECTS ON THE DESIGN, DEVELOPMENT, IMPLEMENTATION, AND EVALUATION OF A MAN-MACHINE SYSTEM FOR COUNSELING IN THE PALO ALTO AND LOS ANGELES SCHOOL DISTRICTS ARE REPORTED. THE EARLIER PHILCO 2000 COMPUTER PROGRAMS SIMULATED A COUNSELOR'S WORK IN THE EDUCATIONAL PLANNING INTERVIEW BY ACCEPTING INPUTS SUCH AS SCHOOL GRADES, TEST SCORES, AND…

  17. Human factors - Man-machine symbiosis in space

    NASA Technical Reports Server (NTRS)

    Brown, Jeri W.

    1987-01-01

    The relation between man and machine in space is studied. Early spaceflight and the goal of establishing a permanent space presence are described. The need to consider the physiological, psychological, and social integration of humans for each space mission is examined. Human factors must also be considered in the design of spacecraft. The effective utilization of man and machine capabilities, and research in anthropometry and biomechanics aimed at determining the limitations of spacecrews are discussed.

  18. Study of Man-Machine Communications Systems for Disabled Persons (The Handicapped). Volume IV. Final Report.

    ERIC Educational Resources Information Center

    Kafafian, Haig

    The volume contains experimental instructional materials designed for teacher and handicapped student use with two man-machine communications systems, Cybertype and Cyber-Go-Round, developed as educational aids for the severely handicapped. Cybertype is a writing machine with various possible configurations of portable keyboards with a reduced…

  19. Army-NASA aircrew/aircraft integration program: Phase 4 A(3)I Man-Machine Integration Design and Analysis System (MIDAS) software detailed design document

    NASA Technical Reports Server (NTRS)

    Banda, Carolyn; Bushnell, David; Chen, Scott; Chiu, Alex; Constantine, Betsy; Murray, Jerry; Neukom, Christian; Prevost, Michael; Shankar, Renuka; Staveland, Lowell

    1991-01-01

    The Man-Machine Integration Design and Analysis System (MIDAS) is an integrated suite of software components that constitutes a prototype workstation to aid designers in applying human factors principles to the design of complex human-machine systems. MIDAS is intended to be used at the very early stages of conceptual design to provide an environment wherein designers can use computational representations of the crew station and operator, instead of hardware simulators and man-in-the-loop studies, to discover problems and ask 'what if' questions regarding the projected mission, equipment, and environment. This document is the Software Product Specification for MIDAS. Introductory descriptions of the processing requirements, hardware/software environment, structure, I/O, and control are given in the main body of the document for the overall MIDAS system, with detailed discussion of the individual modules included in Annexes A-J.

  20. Design of handwriting drawing board based on common copper clad laminate

    NASA Astrophysics Data System (ADS)

    Wang, Hongyuan; Gao, Wenzhi; Wang, Yuan

    2015-02-01

    Handwriting drawing board is not only a subject which can be used to write and draw, but also a method to measure and process weak signals. This design adopts 8051 single chip microprocessor as the main controller. It applies a constant-current source[1][2] to copper plate and collects the voltage value according to the resistance divider effect. Then it amplifies the signal with low-noise and high-precision amplifier[3] AD620 which is placed in the low impedance and anti-interference pen. It converts analog signal to digital signal by an 11-channel, 12-bit A/D converter TLC2543. Adoption of average filtering algorithm can effectively improve the measuring accuracy, reduce the error and make the collected voltage signal more stable. The accurate position can be detected by scanning the horizontal and vertical ordinates with the analog switch via the internal bridge of module L298 which can change the direction of X-Y axis signal scan. DM12864 is used as man-machine interface and this hominization design is convenient for man-machine communication. This collecting system has high accuracy, high stability and strong anti-interference capability. It's easy to control and has very large development space in the future.

  1. The JPL telerobot operator control station. Part 2: Software

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.; Landell, B. Patrick; Oxenberg, Sheldon; Morimoto, Carl

    1989-01-01

    The Operator Control Station of the Jet Propulsion Laboratory (JPL)/NASA Telerobot Demonstrator System provides the man-machine interface between the operator and the system. It provides all the hardware and software for accepting human input for the direct and indirect (supervised) manipulation of the robot arms and tools for task execution. Hardware and software are also provided for the display and feedback of information and control data for the operator's consumption and interaction with the task being executed. The software design of the operator control system is discussed.

  2. Technical Evaluation Report on the Propulsion and Energetics Panel 54th (A) Meeting Advanced Control Systems for Aircraft Powerplants.

    DTIC Science & Technology

    1980-03-01

    availability and accuracy were vital to continued advance in electronic control and that the man-machine interface should continue to be addressed. Mr Bentz was...why there is not more digital engine control being brought in on a retro fit basis so as to obtain its advantages. Dr Bentz answered that it was too...surge line. Mr Bentz answered that all engines are being designed with digital control in mind. The issue is whether the systems can withstand the

  3. Research in image management and access

    NASA Technical Reports Server (NTRS)

    Vondran, Raymond F.; Barron, Billy J.

    1993-01-01

    Presently, the problem of over-all library system design has been compounded by the accretion of both function and structure to a basic framework of requirements. While more device power has led to increased functionality, opportunities for reducing system complexity at the user interface level have not always been pursued with equal zeal. The purpose of this book is therefore to set forth and examine these opportunities, within the general framework of human factors research in man-machine interfaces. Human factors may be viewed as a series of trade-off decisions among four polarized objectives: machine resources and user specifications; functionality and user requirements. In the past, a limiting factor was the availability of systems. However, in the last two years, over one hundred libraries supported by many different software configurations have been added to the Internet. This document includes a statistical analysis of human responses to five Internet library systems by key features, development of the ideal online catalog system, and ideal online catalog systems for libraries and information centers.

  4. Automatic Speech Recognition in Air Traffic Control: a Human Factors Perspective

    NASA Technical Reports Server (NTRS)

    Karlsson, Joakim

    1990-01-01

    The introduction of Automatic Speech Recognition (ASR) technology into the Air Traffic Control (ATC) system has the potential to improve overall safety and efficiency. However, because ASR technology is inherently a part of the man-machine interface between the user and the system, the human factors issues involved must be addressed. Here, some of the human factors problems are identified and related methods of investigation are presented. Research at M.I.T.'s Flight Transportation Laboratory is being conducted from a human factors perspective, focusing on intelligent parser design, presentation of feedback, error correction strategy design, and optimal choice of input modalities.

  5. The role of the real-time simulation facility, SIMFAC, in the design, development and performance verification of the Shuttle Remote Manipulator System (SRMS) with man-in-the-loop

    NASA Technical Reports Server (NTRS)

    Mccllough, J. R.; Sharpe, A.; Doetsch, K. H.

    1980-01-01

    The SIMFAC has played a vital role in the design, development, and performance verification of the shuttle remote manipulator system (SRMS) to be installed in the space shuttle orbiter. The facility provides for realistic man-in-the-loop operation of the SRMS by an operator in the operator complex, a flightlike crew station patterned after the orbiter aft flight deck with all necessary man machine interface elements, including SRMS displays and controls and simulated out-of-the-window and CCTV scenes. The characteristics of the manipulator system, including arm and joint servo dynamics and control algorithms, are simulated by a comprehensive mathematical model within the simulation subsystem of the facility. Major studies carried out using SIMFAC include: SRMS parameter sensitivity evaluations; the development, evaluation, and verification of operating procedures; and malfunction simulation and analysis of malfunction performance. Among the most important and comprehensive man-in-the-loop simulations carried out to date on SIMFAC are those which support SRMS performance verification and certification when the SRMS is part of the integrated orbiter-manipulator system.

  6. Human evolution in the age of the intelligent machine

    NASA Technical Reports Server (NTRS)

    Mclaughlin, W. I.

    1983-01-01

    A systems analysis of the future evolution of man can be conducted by analyzing the biological material of the galaxy into three subsystems: man, intelligent machines, and intelligent extraterrestrial organisms. A binomial interpretation is applied to this system wherein each of the subsystems is assigned a designation of success or failure. For man the two alternatives are, respectively, 'decline' or 'flourish', for machine they are 'become intelligent' or 'stay dumb', while for extraterrestrial intelligence the dichotomy is that of 'existence' or 'nonexistence'. The choices for each of three subsystems yield a total of eight possible states for the system. The relative lack of integration between brain components makes man a weak evolutionary contestant compared to machines. It is judged that machines should become dominant on earth within 100 years, probably by means of continuing development of existing man-machine systems. Advanced forms of extraterrestrial intelligence may exist but are too difficult to observe. The prospects for communication with extraterrestrial intelligence are reviewed.

  7. Human evolution in the age of the intelligent machine

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. I.

    A systems analysis of the future evolution of man can be conducted by analyzing the biological material of the galaxy into three subsystems: man, intelligent machines, and intelligent extraterrestrial organisms. A binomial interpretation is applied to this system wherein each of the subsystems is assigned a designation of success or failure. For man the two alternatives are, respectively, 'decline' or 'flourish', for machine they are 'become intelligent' or 'stay dumb', while for extraterrestrial intelligence the dichotomy is that of 'existence' or 'nonexistence'. The choices for each of three subsystems yield a total of eight possible states for the system. The relative lack of integration between brain components makes man a weak evolutionary contestant compared to machines. It is judged that machines should become dominant on earth within 100 years, probably by means of continuing development of existing man-machine systems. Advanced forms of extraterrestrial intelligence may exist but are too difficult to observe. The prospects for communication with extraterrestrial intelligence are reviewed.

  8. A Function-Behavior-State Approach to Designing Human Machine Interface for Nuclear Power Plant Operators

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Zhang, W. J.

    2005-02-01

    This paper presents an approach to human-machine interface design for control room operators of nuclear power plants. The first step in designing an interface for a particular application is to determine information content that needs to be displayed. The design methodology for this step is called the interface design framework (called framework ). Several frameworks have been proposed for applications at varying levels, including process plants. However, none is based on the design and manufacture of a plant system for which the interface is designed. This paper presents an interface design framework which originates from design theory and methodology for general technical systems. Specifically, the framework is based on a set of core concepts of a function-behavior-state model originally proposed by the artificial intelligence research community and widely applied in the design research community. Benefits of this new framework include the provision of a model-based fault diagnosis facility, and the seamless integration of the design (manufacture, maintenance) of plants and the design of human-machine interfaces. The missing linkage between design and operation of a plant was one of the causes of the Three Mile Island nuclear reactor incident. A simulated plant system is presented to explain how to apply this framework in designing an interface. The resulting human-machine interface is discussed; specifically, several fault diagnosis examples are elaborated to demonstrate how this interface could support operators' fault diagnosis in an unanticipated situation.

  9. Geolocating thermal binoculars based on a software defined camera core incorporating HOT MCT grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Pillans, Luke; Harmer, Jack; Edwards, Tim; Richardson, Lee

    2016-05-01

    Geolocation is the process of calculating a target position based on bearing and range relative to the known location of the observer. A high performance thermal imager with integrated geolocation functions is a powerful long range targeting device. Firefly is a software defined camera core incorporating a system-on-a-chip processor running the AndroidTM operating system. The processor has a range of industry standard serial interfaces which were used to interface to peripheral devices including a laser rangefinder and a digital magnetic compass. The core has built in Global Positioning System (GPS) which provides the third variable required for geolocation. The graphical capability of Firefly allowed flexibility in the design of the man-machine interface (MMI), so the finished system can give access to extensive functionality without appearing cumbersome or over-complicated to the user. This paper covers both the hardware and software design of the system, including how the camera core influenced the selection of peripheral hardware, and the MMI design process which incorporated user feedback at various stages.

  10. Third Conference on Artificial Intelligence for Space Applications, part 1

    NASA Technical Reports Server (NTRS)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1987-01-01

    The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed.

  11. An evaluation of the ATM man/machine interface. Phase 3: Analysis of SL-3 and SL-4 data

    NASA Technical Reports Server (NTRS)

    Bathurst, J. R., Jr.; Pain, R. F.; Ludewig, D. B.

    1974-01-01

    The functional adequacy of human factored crew operated systems under operational zero-gravity conditions is considered. Skylab ATM experiment operations generated sufficient telemetry and voice transcript data to support such an assessment effort. Discussions are presented pertaining to the methodology and procedures used to evaluate the hardware, training and directive aspects of Skylab 3 and Skylab 4 manned ATM experiment operations.

  12. We can't explore space without it - Common human space needs for exploration spaceflight

    NASA Technical Reports Server (NTRS)

    Daues, K. R.; Erwin, H. O.

    1992-01-01

    An overview is conducted of physiological, psychological, and human-interface requirements for manned spaceflight programs to establish common criteria. Attention is given to the comfort levels relevant to human support in exploration mission spacecraft and planetary habitats, and three comfort levels (CLs) are established. The levels include: (1) CL-1 for basic crew life support; (2) CL-2 for enabling the nominal completion of mission science; and (3) CL-3 which provides for enhanced life support and user-friendly interface systems. CL-2 support systems can include systems for EVA, workstations, and activity centers for repairs and enhanced utilization of payload and human/machine integration. CL-3 supports can be useful for maintaining crew psychological and physiological health as well as the design of comfortable and earthlike surroundings. While all missions require CL-1 commonality, CL-2 commonality is required only for EVA systems, display nomenclature, and restraint designs.

  13. Keyboard and message evaluation for cockpit input to data link

    DOT National Transportation Integrated Search

    1971-11-01

    The project reported-herein studied some methods for implementation of the man-machine interface of Digital Data Link for Air Traffic Control. An analysis of information transfer requirements indicated that a vocabulary or less than 200 words could y...

  14. TFTR diagnostic control and data acquisition system

    NASA Astrophysics Data System (ADS)

    Sauthoff, N. R.; Daniels, R. E.

    1985-05-01

    General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man-machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ``groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development.

  15. TFTR diagnostic control and data acquisition system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauthoff, N.R.; Daniels, R.E.; PPL Computer Division

    1985-05-01

    General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man--machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ''groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development.

  16. New technique for simulation of microgravity and variable gravity conditions

    NASA Astrophysics Data System (ADS)

    de la Rosa, R.; Alonso, A.; Abasolo, D. E.; Hornero, R.; Abasolo, D. E.

    2005-08-01

    This paper suggests a microgravity or variable gravity conditions simulator based on a Neuromuscular Control System (NCS), working as a man-machine interface. The subject under training lies on an active platform that counteracts his weight. And a Virtual Reality (VR) system displays a simulated environment, where the subject can interact a number of settings: extravehicular activity (EVA), walking on the Moon or training the limb response faced with variable acceleration scenes. Results related to real-time voluntary control have been achieved with neuromuscular interfaces at the Bioengineering Group in the University of Valladolid. It has been employed a custom real-time system to train arm movements. This paper outlines a more complex design that can complement other training facilities, like the buoyancy pool, in the task of microgravity simulation.

  17. A modular approach for assessing the effect of radiation environments on man in operational systems. The radiobiological vulnerability of man during task performance

    NASA Technical Reports Server (NTRS)

    Ewing, D. E.

    1972-01-01

    A modular approach for assessing the affects of radiation environments on man in operational systems has been developed. The feasibility of the model has been proved and the practicality has been assessed. It has been applied to one operational system to date and information obtained has been submitted to systems analysts and mission planners for the assessment of man's vulnerability and impact on systems survivability. In addition, the model has been developed so that the radiobiological data can be input to a sophisticated man-machine interface model to properly relate the radiobiological stress with other mission stresses including the effects of a degraded system.

  18. Insect-machine interface based neurocybernetics.

    PubMed

    Bozkurt, Alper; Gilmour, Robert F; Sinha, Ayesa; Stern, David; Lal, Amit

    2009-06-01

    We present details of a novel bioelectric interface formed by placing microfabricated probes into insect during metamorphic growth cycles. The inserted microprobes emerge with the insect where the development of tissue around the electronics during the pupal development allows mechanically stable and electrically reliable structures coupled to the insect. Remarkably, the insects do not react adversely or otherwise to the inserted electronics in the pupae stage, as is true when the electrodes are inserted in adult stages. We report on the electrical and mechanical characteristics of this novel bioelectronic interface, which we believe would be adopted by many investigators trying to investigate biological behavior in insects with negligible or minimal traumatic effect encountered when probes are inserted in adult stages. This novel insect-machine interface also allows for hybrid insect-machine platforms for further studies. As an application, we demonstrate our first results toward navigation of flight in moths. When instrumented with equipment to gather information for environmental sensing, such insects potentially can assist man to monitor the ecosystems that we share with them for sustainability. The simplicity of the optimized surgical procedure we invented allows for batch insertions to the insect for automatic and mass production of such hybrid insect-machine platforms. Therefore, our bioelectronic interface and hybrid insect-machine platform enables multidisciplinary scientific and engineering studies not only to investigate the details of insect behavioral physiology but also to control it.

  19. Man/Machine Interaction Dynamics And Performance (MMIDAP) capability

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    1991-01-01

    The creation of an ability to study interaction dynamics between a machine and its human operator can be approached from a myriad of directions. The Man/Machine Interaction Dynamics and Performance (MMIDAP) project seeks to create an ability to study the consequences of machine design alternatives relative to the performance of both machine and operator. The class of machines to which this study is directed includes those that require the intelligent physical exertions of a human operator. While Goddard's Flight Telerobotic's program was expected to be a major user, basic engineering design and biomedical applications reach far beyond telerobotics. Ongoing efforts are outlined of the GSFC and its University and small business collaborators to integrate both human performance and musculoskeletal data bases with analysis capabilities necessary to enable the study of dynamic actions, reactions, and performance of coupled machine/operator systems.

  20. Man-machine interface analysis of the flight design system

    NASA Technical Reports Server (NTRS)

    Ramsey, H. R.; Atwood, M. E.; Willoughby, J. K.

    1978-01-01

    The objective of the current effort was to perform a broad analysis of the human factors issues involved in the design of the Flight Design System (FDS). The analysis was intended to include characteristics of the system itself, such as: (1) basic structure and functional capabilities of FDS; (2) user backgrounds, capabilities, and possible modes of use; (3) FDS interactive dialogue, problem solving aids; (4) system data management capabilities; and to include, as well, such system related matters as: (1) flight design team structure; (2) roles of technicians; (3) user training; and (4) methods of evaluating system performance. Wherever possible, specific recommendations are made. In other cases, the issues which seem most important are identified. In some cases, additional analyses or experiments which might provide resolution are suggested.

  1. Quadcopter control using a BCI

    NASA Astrophysics Data System (ADS)

    Rosca, S.; Leba, M.; Ionica, A.; Gamulescu, O.

    2018-01-01

    The paper presents how there can be interconnected two ubiquitous elements nowadays. On one hand, the drones, which are increasingly present and integrated into more and more fields of activity, beyond the military applications they come from, moving towards entertainment, real-estate, delivery and so on. On the other hand, unconventional man-machine interfaces, which are generous topics to explore now and in the future. Of these, we chose brain computer interface (BCI), which allows human-machine interaction without requiring any moving elements. The research consists of mathematical modeling and numerical simulation of a drone and a BCI. Then there is presented an application using a Parrot mini-drone and an Emotiv Insight BCI.

  2. From pilot's associate to satellite controller's associate

    NASA Technical Reports Server (NTRS)

    Neyland, David L.; Lizza, Carl; Merkel, Philip A.

    1992-01-01

    Associate technology is an emerging engineering discipline wherein intelligent automation can significantly augment the performance of man-machine systems. An associate system is one that monitors operator activity and adapts its operational behavior accordingly. Associate technology is most effectively applied when mapped into management of the human-machine interface and display-control loop in typical manned systems. This paper addresses the potential for application of associate technology into the arena of intelligent command and control of satellite systems, from diagnosis of onboard and onground of satellite systems fault conditions, to execution of nominal satellite control functions. Rather than specifying a specific solution, this paper draws parallels between the Pilot's Associate concept and the domain of satellite control.

  3. Human-machine interface for a VR-based medical imaging environment

    NASA Astrophysics Data System (ADS)

    Krapichler, Christian; Haubner, Michael; Loesch, Andreas; Lang, Manfred K.; Englmeier, Karl-Hans

    1997-05-01

    Modern 3D scanning techniques like magnetic resonance imaging (MRI) or computed tomography (CT) produce high- quality images of the human anatomy. Virtual environments open new ways to display and to analyze those tomograms. Compared with today's inspection of 2D image sequences, physicians are empowered to recognize spatial coherencies and examine pathological regions more facile, diagnosis and therapy planning can be accelerated. For that purpose a powerful human-machine interface is required, which offers a variety of tools and features to enable both exploration and manipulation of the 3D data. Man-machine communication has to be intuitive and efficacious to avoid long accustoming times and to enhance familiarity with and acceptance of the interface. Hence, interaction capabilities in virtual worlds should be comparable to those in the real work to allow utilization of our natural experiences. In this paper the integration of hand gestures and visual focus, two important aspects in modern human-computer interaction, into a medical imaging environment is shown. With the presented human- machine interface, including virtual reality displaying and interaction techniques, radiologists can be supported in their work. Further, virtual environments can even alleviate communication between specialists from different fields or in educational and training applications.

  4. First Annual Workshop on Space Operations Automation and Robotics (SOAR 87)

    NASA Technical Reports Server (NTRS)

    Griffin, Sandy (Editor)

    1987-01-01

    Several topics relative to automation and robotics technology are discussed. Automation of checkout, ground support, and logistics; automated software development; man-machine interfaces; neural networks; systems engineering and distributed/parallel processing architectures; and artificial intelligence/expert systems are among the topics covered.

  5. The Computer as Adaptive Instructional Decision Maker.

    ERIC Educational Resources Information Center

    Kopstein, Felix F.; Seidel, Robert J.

    The computer's potential for education, and most particularly for instruction, is contingent on the development of a class of instructional decision models (formal instructional strategies) that interact with the student through appropriate peripheral equipment (man-machine interfaces). Computer hardware and software by themselves should not be…

  6. Humans and machines in space: The vision, the challenge, the payoff; AAS Goddard Memorial Symposium, 29th, Washington, DC, March 14-15, 1991

    NASA Astrophysics Data System (ADS)

    Johnson, Bradley; May, Gayle L.; Korn, Paula

    A recent symposium produced papers in the areas of solar system exploration, man machine interfaces, cybernetics, virtual reality, telerobotics, life support systems and the scientific and technology spinoff from the NASA space program. A number of papers also addressed the social and economic impacts of the space program. For individual titles, see A95-87468 through A95-87479.

  7. Software and Human-Machine Interface Development for Environmental Controls Subsystem Support

    NASA Technical Reports Server (NTRS)

    Dobson, Matthew

    2018-01-01

    The Space Launch System (SLS) is the next premier launch vehicle for NASA. It is the next stage of manned space exploration from American soil, and will be the platform in which we push further beyond Earth orbit. In preparation of the SLS maiden voyage on Exploration Mission 1 (EM-1), the existing ground support architecture at Kennedy Space Center required significant overhaul and updating. A comprehensive upgrade of controls systems was necessary, including programmable logic controller software, as well as Launch Control Center (LCC) firing room and local launch pad displays for technician use. Environmental control acts as an integral component in these systems, being the foremost system for conditioning the pad and extremely sensitive launch vehicle until T-0. The Environmental Controls Subsystem (ECS) required testing and modification to meet the requirements of the designed system, as well as the human factors requirements of NASA software for Validation and Verification (V&V). This term saw significant strides in the progress and functionality of the human-machine interfaces used at the launch pad, and improved integration with the controller code.

  8. Design Control Systems of Human Machine Interface in the NTVS-2894 Seat Grinder Machine to Increase the Productivity

    NASA Astrophysics Data System (ADS)

    Ardi, S.; Ardyansyah, D.

    2018-02-01

    In the Manufacturing of automotive spare parts, increased sales of vehicles is resulted in increased demand for production of engine valve of the customer. To meet customer demand, we carry out improvement and overhaul of the NTVS-2894 seat grinder machine on a machining line. NTVS-2894 seat grinder machine has been decreased machine productivity, the amount of trouble, and the amount of downtime. To overcome these problems on overhaul the NTVS-2984 seat grinder machine include mechanical and programs, is to do the design and manufacture of HMI (Human Machine Interface) GP-4501T program. Because of the time prior to the overhaul, NTVS-2894 seat grinder machine does not have a backup HMI (Human Machine Interface) program. The goal of the design and manufacture in this program is to improve the achievement of production, and allows an operator to operate beside it easier to troubleshoot the NTVS-2894 seat grinder machine thereby reducing downtime on the NTVS-2894 seat grinder machine. The results after the design are HMI program successfully made it back, machine productivity increased by 34.8%, the amount of trouble, and downtime decreased 40% decrease from 3,160 minutes to 1,700 minutes. The implication of our design, it could facilitate the operator in operating machine and the technician easer to maintain and do the troubleshooting the machine problems.

  9. Location and acquisition of objects in unpredictable locations. [a teleoperator system with a computer for manipulator control

    NASA Technical Reports Server (NTRS)

    Sword, A. J.; Park, W. T.

    1975-01-01

    A teleoperator system with a computer for manipulator control to combine the capabilities of both man and computer to accomplish a task is described. This system allows objects in unpredictable locations to be successfully located and acquired. By using a method of characterizing the work-space together with man's ability to plan a strategy and coarsely locate an object, the computer is provided with enough information to complete the tedious part of the task. In addition, the use of voice control is shown to be a useful component of the man/machine interface.

  10. Lunar exploration rover program developments

    NASA Technical Reports Server (NTRS)

    Klarer, P. R.

    1994-01-01

    The Robotic All Terrain Lunar Exploration Rover (RATLER) design concept began at Sandia National Laboratories in late 1991 with a series of small, proof-of-principle, working scale models. The models proved the viability of the concept for high mobility through mechanical simplicity, and eventually received internal funding at Sandia National Laboratories for full scale, proof-of-concept prototype development. Whereas the proof-of-principle models demonstrated the mechanical design's capabilities for mobility, the full scale proof-of-concept design currently under development is intended to support field operations for experiments in telerobotics, autonomous robotic operations, telerobotic field geology, and advanced man-machine interface concepts. The development program's current status is described, including an outline of the program's work over the past year, recent accomplishments, and plans for follow-on development work.

  11. Computer interface for mechanical arm

    NASA Technical Reports Server (NTRS)

    Derocher, W. L.; Zermuehlen, R. O.

    1978-01-01

    Man/machine interface commands computer-controlled mechanical arm. Remotely-controlled arm has six degrees of freedom and is controlled through "supervisory-control" mode, in which all motions of arm follow set of preprogramed sequences. For simplicity, few prescribed commands are required to accomplish entire operation. Applications include operating computer-controlled arm to handle radioactive of explosive materials or commanding arm to perform functions in hostile environments. Modified version using displays may be applied in medicine.

  12. A new six-degree-of-freedom force-reflecting hand controller for space telerobotics

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas; Snow, Edward; Townsend, William; Robinson, Lee; Hanson, Joe

    1990-01-01

    A new 6 degree of freedom universal Force Reflecting Hand Controller (FRHC) was designed for use as the man-machine interface in teleoperated and telerobotic flight systems. The features of this new design include highly intuitive operation, excellent kinesthetic feedback, high fidelity force/torque feedback, a kinematically simple structure, mechanically decoupled motion in all 6 DOF, good back-drivability, and zero backlash. In addition, the new design has a much larger work envelope, smaller stowage volume, greater stiffness and responsiveness, and better overlap of the human operator's range of motion than do previous designs. The utility and basic operation of a new, flight prototype FRHC called the Model X is briefly discussed. The design heritage, general design goals, and design implementation of this advanced new generation of FRHCs are presented, followed by a discussion of basic features and the results of initial testing.

  13. Skylab materials processing facility experiment developer's report

    NASA Technical Reports Server (NTRS)

    Parks, P. G.

    1975-01-01

    The development of the Skylab M512 Materials Processing Facility is traced from the design of a portable, self-contained electron beam welding system for terrestrial applications to the highly complex experiment system ultimately developed for three Skylab missions. The M512 experiment facility was designed to support six in-space experiments intended to explore the advantages of manufacturing materials in the near-zero-gravity environment of Earth orbit. Detailed descriptions of the M512 facility and related experiment hardware are provided, with discussions of hardware verification and man-machine interfaces included. An analysis of the operation of the facility and experiments during the three Skylab missions is presented, including discussions of the hardware performance, anomalies, and data returned to earth.

  14. Multifunction display system, volume 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and construction of a multifunction display man/machine interface for use with a 4 pi IBM-360 System are described. The system is capable of displaying superimposed volatile alphanumeric and graphical data on a 512 x 512 element plasma panel, and holographically stored multicolor archival information. The volatile data may be entered from a keyboard or by means of an I/O interface to the 360 system. A 2-page memory local to the display is provided for storing the entered data. The archival data is stored as a phase hologram on a vinyl tape strip. This data is accessible by means of a rapid transport system which responds to inputs provided by the I/O channel on the keyboard. As many as 500 frames may be stored on a tape strip for access in under 6 seconds.

  15. End-User Use of Data Base Query Language: Pros and Cons.

    ERIC Educational Resources Information Center

    Nicholes, Walter

    1988-01-01

    Man-machine interface, the concept of a computer "query," a review of database technology, and a description of the use of query languages at Brigham Young University are discussed. The pros and cons of end-user use of database query languages are explored. (Author/MLW)

  16. Transient Classifier Systems and Man-Machine Interface Research.

    DTIC Science & Technology

    1987-08-31

    different timbre from two different resonant sources, i.e., like a violin and oboe emitting nearly the same fundamental mode fre- quency, but each with its...the subjects by examing both hits and misses for signal and noise stimuli. A pairwise com- parison of the means resulted in significant differences (at

  17. Study of Man-Machine Communications Systems for the Handicapped. Interim Report.

    ERIC Educational Resources Information Center

    Kafafian, Haig

    Newly developed communications systems for exceptional children include Cybercom; CYBERTYPE; Cyberplace, a keyless keyboard; Cyberphone, a telephonic communication system for deaf and speech impaired persons; Cyberlamp, a visual display; Cyberview, a fiber optic bundle remote visual display; Cybersem, an interface for the blind, fingerless, and…

  18. A force-controllable macro-micro manipulator and its application to medical robots

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Uecker, Darrin R.; Wang, Yulun

    1994-01-01

    This paper describes an 8-degrees-of-freedom macro-micro robot. This robot is capable of performing tasks that require accurate force control, such as polishing, finishing, grinding, deburring, and cleaning. The design of the macro-micro mechanism, the control algorithms, and the hardware/software implementation of the algorithms are described in this paper. Initial experimental results are reported. In addition, this paper includes a discussion of medical surgery and the role that force control may play. We introduce a new class of robotic systems collectively called Robotic Enhancement Technology (RET). RET systems introduce the combination of robotic manipulation with human control to perform manipulation tasks beyond the individual capability of either human or machine. The RET class of robotic systems offers new challenges in mechanism design, control-law development, and man/machine interface design. We believe force-controllable mechanisms such as the macro-micro structure we have developed are a necessary part of RET. Work in progress in the area of RET systems and their application to minimally invasive surgery is presented, along with future research directions.

  19. Mobility Systems For Robotic Vehicles

    NASA Astrophysics Data System (ADS)

    Chun, Wendell

    1987-02-01

    The majority of existing robotic systems can be decomposed into five distinct subsystems: locomotion, control/man-machine interface (MMI), sensors, power source, and manipulator. When designing robotic vehicles, there are two main requirements: first, to design for the environment and second, for the task. The environment can be correlated with known missions. This can be seen by analyzing existing mobile robots. Ground mobile systems are generally wheeled, tracked, or legged. More recently, underwater vehicles have gained greater attention. For example, Jason Jr. made history by surveying the sunken luxury liner, the Titanic. The next big surge of robotic vehicles will be in space. This will evolve as a result of NASA's commitment to the Space Station. The foreseeable robots will interface with current systems as well as standalone, free-flying systems. A space robotic vehicle is similar to its underwater counterpart with very few differences. Their commonality includes missions and degrees-of-freedom. The issues of stability and communication are inherent in both systems and environment.

  20. Research and design of smart grid monitoring control via terminal based on iOS system

    NASA Astrophysics Data System (ADS)

    Fu, Wei; Gong, Li; Chen, Heli; Pan, Guangji

    2017-06-01

    Aiming at a series of problems existing in current smart grid monitoring Control Terminal, such as high costs, poor portability, simple monitoring system, poor software extensions, low system reliability when transmitting information, single man-machine interface, poor security, etc., smart grid remote monitoring system based on the iOS system has been designed. The system interacts with smart grid server so that it can acquire grid data through WiFi/3G/4G networks, and monitor each grid line running status, as well as power plant equipment operating conditions. When it occurs an exception in the power plant, incident information can be sent to the user iOS terminal equipment timely, which will provide troubleshooting information to help the grid staff to make the right decisions in a timely manner, to avoid further accidents. Field tests have shown the system realizes the integrated grid monitoring functions, low maintenance cost, friendly interface, high security and reliability, and it possesses certain applicable value.

  1. Advanced system functions for the office information system

    NASA Astrophysics Data System (ADS)

    Ishikawa, Tetsuya

    First, author describes the functions needed for information management system in office. Next, he mentions the requisites for the enhancement of system functions. In order to make enhancement of system functions, he states, it is necessary to examine them comprehensively from every point of view including processing hour and cost. In this paper, he concentrates on the enhancement of man-machine interface (= human interface), that is, how to make system easy to use for the office workers.

  2. AAAIC '88 - Aerospace Applications of Artificial Intelligence; Proceedings of the Fourth Annual Conference, Dayton, OH, Oct. 25-27, 1988. Volumes 1 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.R.; Netrologic, Inc., San Diego, CA)

    1988-01-01

    Topics presented include integrating neural networks and expert systems, neural networks and signal processing, machine learning, cognition and avionics applications, artificial intelligence and man-machine interface issues, real time expert systems, artificial intelligence, and engineering applications. Also considered are advanced problem solving techniques, combinational optimization for scheduling and resource control, data fusion/sensor fusion, back propagation with momentum, shared weights and recurrency, automatic target recognition, cybernetics, optical neural networks.

  3. Semantic based man-machine interface for real-time communication

    NASA Technical Reports Server (NTRS)

    Ali, M.; Ai, C.-S.

    1988-01-01

    A flight expert system (FLES) was developed to assist pilots in monitoring, diagnosing and recovering from in-flight faults. To provide a communications interface between the flight crew and FLES, a natural language interface (NALI) was implemented. Input to NALI is processed by three processors: (1) the semantics parser; (2) the knowledge retriever; and (3) the response generator. First the semantic parser extracts meaningful words and phrases to generate an internal representation of the query. At this point, the semantic parser has the ability to map different input forms related to the same concept into the same internal representation. Then the knowledge retriever analyzes and stores the context of the query to aid in resolving ellipses and pronoun references. At the end of this process, a sequence of retrievel functions is created as a first step in generating the proper response. Finally, the response generator generates the natural language response to the query. The architecture of NALI was designed to process both temporal and nontemporal queries. The architecture and implementation of NALI are described.

  4. The control of manual entry accuracy in management/engineering information systems, phase 1

    NASA Technical Reports Server (NTRS)

    Hays, Daniel; Nocke, Henry; Wilson, Harold; Woo, John, Jr.; Woo, June

    1987-01-01

    It was shown that clerical personnel can be tested for proofreading performance under simulated industrial conditions. A statistical study showed that errors in proofreading follow an extreme value probability theory. The study showed that innovative man/machine interfaces can be developed to improve and control accuracy during data entry.

  5. Adaptive Training and Collective Decision Support Based on Man-Machine Interface

    DTIC Science & Technology

    2016-03-02

    Emotiv Inc., Figure 1) for collection of EEG data. This device is wireless and transmits data via Bluetooth to a PC using a USB dongle. The... Bluetooth to a PC using a USB dongle. The advantage of the system over others is the ability to collect high resolution EEG data without complicated

  6. MoManI: a tool to facilitate research, analysis, and teaching of computer models

    NASA Astrophysics Data System (ADS)

    Howells, Mark; Pelakauskas, Martynas; Almulla, Youssef; Tkaczyk, Alan H.; Zepeda, Eduardo

    2017-04-01

    Allocating limited resource efficiently is a task to which efficient planning and policy design aspires. This may be a non-trivial task. For example, the seventh sustainable development goal (SDG) of Agenda 2030 is to provide access to affordable sustainable energy to all. On the one hand, energy is required to realise almost all other SDGs. (A clinic requires electricity for fridges to store vaccines for maternal health, irrigate agriculture requires energy to pump water to crops in dry periods etc.) On the other hand, the energy system is non-trivial. It requires the mapping of resource, its conversion into useable energy and then into machines that we use to meet our needs. That requires new tools that draw from standard techniques, best-in-class models and allow the analyst to develop new models. Thus we present the Model Management Infrastructure (MoManI). MoManI is used to develop, manage, run, store input and results data for linear programming models. MoManI, is a browser-based open source interface for systems modelling. It is available to various user audiences, from policy makers and planners through to academics. For example, we implement the Open Source energy Modelling System (OSeMOSYS) in MoManI. OSeMOSYS is a specialized energy model generator. A typical OSeMOSYS model would represent the current energy system of a country, region or city; in it, equations and constraints are specified; and calibrated to a base year. From that future technologies and policy options are represented. From those scenarios are designed and run. Efficient allocation of energy resource and expenditure on technology is calculated. Finally, results are visualized. At present this is done in relatively rigid interfaces or via (for some) cumbersome text files. Implementing and operating OSeMOSYS in MoManI shortens the learning curve and reduces phobia associated with the complexity of computer modelling, thereby supporting effective capacity building activities. The novel structure of MoManI allows different teams to collaborate simultaneously from around the globe. Each user can easily edit and update any part of the modelling process: from the underlying mathematical equations of OSeMOSYS through to the visualization of results. Going forward, this tools' flexible structure will make it a potential interface for a larger selection of modelling tools, thus extending its use from OSeMOSYS for energy to other systems modelling, moving beyond SDG7 to others.

  7. Human machine interface display design document.

    DOT National Transportation Integrated Search

    2008-01-01

    The purpose of this document is to describe the design for the human machine interface : (HMI) display for the Next Generation 9-1-1 (NG9-1-1) System (or system of systems) : based on the initial Tier 1 requirements identified for the NG9-1-1 S...

  8. Human-Robot Control Strategies for the NASA/DARPA Robonaut

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Culbert, Chris J.; Ambrose, Robert O.; Huber, E.; Bluethmann, W. J.

    2003-01-01

    The Robotic Systems Technology Branch at the NASA Johnson Space Center (JSC) is currently developing robot systems to reduce the Extra-Vehicular Activity (EVA) and planetary exploration burden on astronauts. One such system, Robonaut, is capable of interfacing with external Space Station systems that currently have only human interfaces. Robonaut is human scale, anthropomorphic, and designed to approach the dexterity of a space-suited astronaut. Robonaut can perform numerous human rated tasks, including actuating tether hooks, manipulating flexible materials, soldering wires, grasping handrails to move along space station mockups, and mating connectors. More recently, developments in autonomous control and perception for Robonaut have enabled dexterous, real-time man-machine interaction. Robonaut is now capable of acting as a practical autonomous assistant to the human, providing and accepting tools by reacting to body language. A versatile, vision-based algorithm for matching range silhouettes is used for monitoring human activity as well as estimating tool pose.

  9. Design of an autonomous Lunar construction utility vehicle

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Chew, Mason; Dixon, Iain (Editor)

    1990-01-01

    In order to prepare a site for a manned lunar base, an autonomously operated construction vehicle is necessary. A Lunar Construction Utility Vehicle (LCUV), which utilizes interchangeable construction implements, was designed conceptually. Some elements of the machine were studied in greater detail. Design of an elastic loop track system has advanced to the testing stage. A standard coupling device was designed to insure a proper connection between the different construction tools and the LCUV. Autonomous control of the track drive motors was simulated successfully through the use of a joystick and computer interface. A study of hydrogen-oxygen fuel cells has produced estimates of reactant and product size requirements and identified multi-layer insulation techniques. Research on a 100 kW heat rejection system has determined that it is necessary to house a radiator panel on a utility trailer. The impact of a 720 hr use cycle has produced a very large logistical support lien which requires further study.

  10. Literate Specification: Using Design Rationale To Support Formal Methods in the Development of Human-Machine Interfaces.

    ERIC Educational Resources Information Center

    Johnson, Christopher W.

    1996-01-01

    The development of safety-critical systems (aircraft cockpits and reactor control rooms) is qualitatively different from that of other interactive systems. These differences impose burdens on design teams that must ensure the development of human-machine interfaces. Analyzes strengths and weaknesses of formal methods for the design of user…

  11. Man-Machine Communication in Remote Manipulation: Task-Oriented Supervisory Command Language (TOSC).

    DTIC Science & Technology

    1980-03-01

    ORIENTED SUPERVISORY CONTROL SYSTEM METHODOLOGY 3-1 3.1 Overview 3-1 3.2 Background 3-3 3.2.1 General 3-3 3.2.2 Preliminary Principles of Command Language...Design 3-4 3.2.3 Preliminary Principles of Feedback Display Design 3-9 3.3 Man-Machine Communication Models 3-12 3.3.1 Background 3-12 3.3.2 Adapted...and feedback mode. The work ends with the presentation of a performance prediction model and a set of principles and guidelines, applicable to the

  12. Hitts Law? A test of the relationship between information load and movement precision

    NASA Technical Reports Server (NTRS)

    Zaleski, M.; Moray, N.

    1986-01-01

    Recent technological developments have made viable a man-machine interface heavily dependent on graphics and pointing devices. This has led to new interest in classical reaction and movement time work by Human Factors specialists. Two experiments were designed and run to test the dependence of target capture time on information load (Hitt's Law) and movement precision (Fitts' Law). The proposed model linearly combines Hitt's and Fitts' results into a combination law which then might be called Hitts' Law. Subjects were required to react to stimuli by manipulating a joystick so as to cause a cursor to capture a target on a CRT screen. Response entropy and the relative precision of the capture movement were crossed in a factorial design and data obtained that were found to support the model.

  13. Computer-Based Arithmetic Test Generation

    ERIC Educational Resources Information Center

    Trocchi, Robert F.

    1973-01-01

    The computer can be a welcome partner in the instructional process, but only if there is man-machine interaction. Man should not compromise system design because of available hardware; the computer must fit the system design for the result to represent an acceptable solution to instructional technology. The Arithmetic Test Generator system fits…

  14. A Machine Learning System for Analyzing Human Tactics in a Game

    NASA Astrophysics Data System (ADS)

    Ito, Hirotaka; Tanaka, Toshimitsu; Sugie, Noboru

    In order to realize advanced man-machine interfaces, it is desired to develop a system that can infer the mental state of human users and then return appropriate responses. As the first step toward the above goal, we developed a system capable of inferring human tactics in a simple game played between the system and a human. We present a machine learning system that plays a color expectation game. The system infers the tactics of the opponent, and then decides the action based on the result. We employed a modified version of classifier system like XCS in order to design the system. In addition, three methods are proposed in order to accelerate the learning rate. They are a masking method, an iterative method, and tactics templates. The results of computer experiments confirmed that the proposed methods effectively accelerate the machine learning. The masking method and the iterative method are effective to a simple strategy that considers only a part of past information. However, study speed of these methods is not enough for the tactics that refers to a lot of past information. For the case, the tactics template was able to settle the study rapidly when the tactics is identified.

  15. [A computer-aided image diagnosis and study system].

    PubMed

    Li, Zhangyong; Xie, Zhengxiang

    2004-08-01

    The revolution in information processing, particularly the digitizing of medicine, has changed the medical study, work and management. This paper reports a method to design a system for computer-aided image diagnosis and study. Combined with some good idea of graph-text system and picture archives communicate system (PACS), the system was realized and used for "prescription through computer", "managing images" and "reading images under computer and helping the diagnosis". Also typical examples were constructed in a database and used to teach the beginners. The system was developed by the visual developing tools based on object oriented programming (OOP) and was carried into operation on the Windows 9X platform. The system possesses friendly man-machine interface.

  16. Man-machine analysis of translation and work tasks of Skylab films

    NASA Technical Reports Server (NTRS)

    Hosler, W. W.; Boelter, J. G.; Morrow, J. R., Jr.; Jackson, J. T.

    1979-01-01

    An objective approach to determine the concurrent validity of computer-graphic models is real time film analysis. This technique was illustrated through the procedures and results obtained in an evaluation of translation of Skylab mission astronauts. The quantitative analysis was facilitated by the use of an electronic film analyzer, minicomputer, and specifically supportive software. The uses of this technique for human factors research are: (1) validation of theoretical operator models; (2) biokinetic analysis; (3) objective data evaluation; (4) dynamic anthropometry; (5) empirical time-line analysis; and (6) consideration of human variability. Computer assisted techniques for interface design and evaluation have the potential for improving the capability for human factors engineering.

  17. Final Report of Work Done on Contract NONR-4010(03).

    ERIC Educational Resources Information Center

    Chapanis, Alphonse

    The 24 papers listed report the findings of a study funded by the Office of Naval Research. The study concentrated on the sensory and cognitive factors in man-machine interfaces. The papers are categorized into three groups: perception studies, human engineering studies, and methodological papers. A brief summary of the most noteworthy findings in…

  18. Cooperative analysis expert situation assessment research

    NASA Technical Reports Server (NTRS)

    Mccown, Michael G.

    1987-01-01

    For the past few decades, Rome Air Development Center (RADC) has been conducting research in Artificial Intelligence (AI). When the recent advances in hardware technology made many AI techniques practical, the Intelligence and Reconnaissance Directorate of RADC initiated an applications program entitled Knowledge Based Intelligence Systems (KBIS). The goal of the program is the development of a generic Intelligent Analyst System, an open machine with the framework for intelligence analysis, natural language processing, and man-machine interface techniques, needing only the specific problem domain knowledge to be operationally useful. The development of KBIS is described.

  19. Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke.

    PubMed

    McConnell, Alistair C; Moioli, Renan C; Brasil, Fabricio L; Vallejo, Marta; Corne, David W; Vargas, Patricia A; Stokes, Adam A

    2017-06-28

    To review the state of the art of robotic-aided hand physiotherapy for post-stroke rehabilitation, including the use of brain-machine interfaces. Each patient has a unique clinical history and, in response to personalized treatment needs, research into individualized and at-home treatment options has expanded rapidly in recent years. This has resulted in the development of many devices and design strategies for use in stroke rehabilitation. The development progression of robotic-aided hand physiotherapy devices and brain-machine interface systems is outlined, focussing on those with mechanisms and control strategies designed to improve recovery outcomes of the hand post-stroke. A total of 110 commercial and non-commercial hand and wrist devices, spanning the 2 major core designs: end-effector and exoskeleton are reviewed. The growing body of evidence on the efficacy and relevance of incorporating brain-machine interfaces in stroke rehabilitation is summarized. The challenges involved in integrating robotic rehabilitation into the healthcare system are discussed. This review provides novel insights into the use of robotics in physiotherapy practice, and may help system designers to develop new devices.

  20. Man-machine interface and control of the shuttle digital flight system

    NASA Technical Reports Server (NTRS)

    Burghduff, R. D.; Lewis, J. L., Jr.

    1985-01-01

    The space shuttle main engine (SSME) presented new requirements in the design of controls for large pump fed liquid rocket engine systems. These requirements were the need for built in full mission support capability, and complexity and flexibility of function not previously needed in this type of application. An engine mounted programmable digital control system was developed to meet these requirements. The engine system and controller and their function are described. Design challenges encountered during the course of development included accommodation for a very severe engine environment, the implementation of redundancy and redundancy management to provide fail operational/fail safe capability, removal of heat from the package, and significant constraints on computer memory size and processing time. The flexibility offered by programmable control reshaped the approach to engine design and development and set the pattern for future controls development in these types of applications.

  1. Design Guidelines and Criteria for User/Operator Transactions with Battlefield Automated Systems. Volume 5. Background Literature

    DTIC Science & Technology

    1981-02-01

    the machine . ARI’s efforts in this area focus on human perfor- mance problems related to interactions with command and control centers, and on issues...improvement of the user- machine interface. Lacking consistent design principles, current practice results in a fragmented and unsystematic approach to system...complexity in the user- machine interface of BAS, ARI supported this effort for develop- me:nt of an online language for Army tactical intelligence

  2. Design of a 32-Channel EEG System for Brain Control Interface Applications

    PubMed Central

    Wang, Ching-Sung

    2012-01-01

    This study integrates the hardware circuit design and the development support of the software interface to achieve a 32-channel EEG system for BCI applications. Since the EEG signals of human bodies are generally very weak, in addition to preventing noise interference, it also requires avoiding the waveform distortion as well as waveform offset and so on; therefore, the design of a preamplifier with high common-mode rejection ratio and high signal-to-noise ratio is very important. Moreover, the friction between the electrode pads and the skin as well as the design of dual power supply will generate DC bias which affects the measurement signals. For this reason, this study specially designs an improved single-power AC-coupled circuit, which effectively reduces the DC bias and improves the error caused by the effects of part errors. At the same time, the digital way is applied to design the adjustable amplification and filter function, which can design for different EEG frequency bands. For the analog circuit, a frequency band will be taken out through the filtering circuit and then the digital filtering design will be used to adjust the extracted frequency band for the target frequency band, combining with MATLAB to design man-machine interface for displaying brain wave. Finally the measured signals are compared to the traditional 32-channel EEG signals. In addition to meeting the IFCN standards, the system design also conducted measurement verification in the standard EEG isolation room in order to demonstrate the accuracy and reliability of this system design. PMID:22778545

  3. Design of a 32-channel EEG system for brain control interface applications.

    PubMed

    Wang, Ching-Sung

    2012-01-01

    This study integrates the hardware circuit design and the development support of the software interface to achieve a 32-channel EEG system for BCI applications. Since the EEG signals of human bodies are generally very weak, in addition to preventing noise interference, it also requires avoiding the waveform distortion as well as waveform offset and so on; therefore, the design of a preamplifier with high common-mode rejection ratio and high signal-to-noise ratio is very important. Moreover, the friction between the electrode pads and the skin as well as the design of dual power supply will generate DC bias which affects the measurement signals. For this reason, this study specially designs an improved single-power AC-coupled circuit, which effectively reduces the DC bias and improves the error caused by the effects of part errors. At the same time, the digital way is applied to design the adjustable amplification and filter function, which can design for different EEG frequency bands. For the analog circuit, a frequency band will be taken out through the filtering circuit and then the digital filtering design will be used to adjust the extracted frequency band for the target frequency band, combining with MATLAB to design man-machine interface for displaying brain wave. Finally the measured signals are compared to the traditional 32-channel EEG signals. In addition to meeting the IFCN standards, the system design also conducted measurement verification in the standard EEG isolation room in order to demonstrate the accuracy and reliability of this system design.

  4. NASA's Man-Systems Integration Standards: A Human Factors Engineering Standard for Everyone in the Nineties

    NASA Technical Reports Server (NTRS)

    Booher, Cletis R.; Goldsberry, Betty S.

    1994-01-01

    During the second half of the 1980s, a document was created by the National Aeronautics and Space Administration (NASA) to aid in the application of good human factors engineering and human interface practices to the design and development of hardware and systems for use in all United States manned space flight programs. This comprehensive document, known as NASA-STD-3000, the Man-Systems Integration Standards (MSIS), attempts to address, from a human factors engineering/human interface standpoint, all of the various types of equipment with which manned space flight crew members must deal. Basically, all of the human interface situations addressed in the MSIS are present in terrestrially based systems also. The premise of this paper is that, starting with this already created standard, comprehensive documents addressing human factors engineering and human interface concerns could be developed to aid in the design of almost any type of equipment or system which humans interface with in any terrestrial environment. Utilizing the systems and processes currently in place in the MSIS Development Facility at the Johnson Space Center in Houston, TX, any number of MSIS volumes addressing the human factors / human interface needs of any terrestrially based (or, for that matter, airborne) system could be created.

  5. Flexible software architecture for user-interface and machine control in laboratory automation.

    PubMed

    Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E

    1998-10-01

    We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.

  6. Man-machine Integration Design and Analysis System (MIDAS) Task Loading Model (TLM) experimental and software detailed design report

    NASA Technical Reports Server (NTRS)

    Staveland, Lowell

    1994-01-01

    This is the experimental and software detailed design report for the prototype task loading model (TLM) developed as part of the man-machine integration design and analysis system (MIDAS), as implemented and tested in phase 6 of the Army-NASA Aircrew/Aircraft Integration (A3I) Program. The A3I program is an exploratory development effort to advance the capabilities and use of computational representations of human performance and behavior in the design, synthesis, and analysis of manned systems. The MIDAS TLM computationally models the demands designs impose on operators to aide engineers in the conceptual design of aircraft crewstations. This report describes TLM and the results of a series of experiments which were run this phase to test its capabilities as a predictive task demand modeling tool. Specifically, it includes discussions of: the inputs and outputs of TLM, the theories underlying it, the results of the test experiments, the use of the TLM as both stand alone tool and part of a complete human operator simulation, and a brief introduction to the TLM software design.

  7. 30 CFR 18.48 - Circuit-interrupting devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... two-pole switch of the “dead-man-control” type that must be held closed by hand and will open when hand pressure is released. (e) A machine designed to operate from both trolley wire and portable cable.... Such a switch shall be designed to prevent electrical connection to the machine frame when the cable is...

  8. 30 CFR 18.48 - Circuit-interrupting devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... two-pole switch of the “dead-man-control” type that must be held closed by hand and will open when hand pressure is released. (e) A machine designed to operate from both trolley wire and portable cable.... Such a switch shall be designed to prevent electrical connection to the machine frame when the cable is...

  9. Design of Remote Monitoring System of Irrigation based on GSM and ZigBee Technology

    NASA Astrophysics Data System (ADS)

    Xiao xi, Zheng; Fang, Zhao; Shuaifei, Shao

    2018-03-01

    To solve the problems of low level of irrigation and waste of water resources, a remote monitoring system for farmland irrigation based on GSM communication technology and ZigBee technology was designed. The system is composed of sensors, GSM communication module, ZigBee module, host computer, valve and so on. The system detects and closes the pump and the electromagnetic valve according to the need of the system, and transmits the monitoring information to the host computer or the user’s Mobile phone through the GSM communication network. Experiments show that the system has low power consumption, friendly man-machine interface, convenient and simple. It can monitor agricultural environment remotely and control related irrigation equipment at any time and place, and can better meet the needs of remote monitoring of farmland irrigation.

  10. The Apollo Lightcraft Project

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The overall goal for this NASA/USRA-sponsored 'Apollo Lightcraft Project' is to develop a revolutionary launch vehicle technology that can reduce payload transport costs by a factor of 1000 below the Space Shuttle Orbiter. The RPI design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. This second year focused on systems integration and analysis of the 'Apollo Lightcraft'. This beam-powered, single-stage-to-orbit vehicle is envisioned as the globe-trotting family shuttlecraft of the 21st century. Detailed investigations of the Apollo Lightcraft Project during the second year of study helped evolve the propulsion system design, while focusing on the following areas: (1) man/machine interface; (2) flight control systems; (3) power beaming system architecture; (4) reentry aerodynamics; (5) shroud structural dynamics; and (6) optimal trajectory analysis.

  11. The Concept of C2 Communication and Information Support

    DTIC Science & Technology

    2004-06-01

    communication and information literacy , • Sensors: technology and systematic development as a branch, • Military prognosis research (combat models...intelligence, • Visualization of actions, suitable forms of information presentation, • Techniques of learning CIS users communication and information ... literacy , • Sensors: technology and systematic development as a branch, • Military prognosis research (combat models), • Man - machine interface. CISu

  12. Optimal design method to minimize users' thinking mapping load in human-machine interactions.

    PubMed

    Huang, Yanqun; Li, Xu; Zhang, Jie

    2015-01-01

    The discrepancy between human cognition and machine requirements/behaviors usually results in serious mental thinking mapping loads or even disasters in product operating. It is important to help people avoid human-machine interaction confusions and difficulties in today's mental work mastered society. Improving the usability of a product and minimizing user's thinking mapping and interpreting load in human-machine interactions. An optimal human-machine interface design method is introduced, which is based on the purpose of minimizing the mental load in thinking mapping process between users' intentions and affordance of product interface states. By analyzing the users' thinking mapping problem, an operating action model is constructed. According to human natural instincts and acquired knowledge, an expected ideal design with minimized thinking loads is uniquely determined at first. Then, creative alternatives, in terms of the way human obtains operational information, are provided as digital interface states datasets. In the last, using the cluster analysis method, an optimum solution is picked out from alternatives, by calculating the distances between two datasets. Considering multiple factors to minimize users' thinking mapping loads, a solution nearest to the ideal value is found in the human-car interaction design case. The clustering results show its effectiveness in finding an optimum solution to the mental load minimizing problems in human-machine interaction design.

  13. SAINT: A combined simulation language for modeling man-machine systems

    NASA Technical Reports Server (NTRS)

    Seifert, D. J.

    1979-01-01

    SAINT (Systems Analysis of Integrated Networks of Tasks) is a network modeling and simulation technique for design and analysis of complex man machine systems. SAINT provides the conceptual framework for representing systems that consist of discrete task elements, continuous state variables, and interactions between them. It also provides a mechanism for combining human performance models and dynamic system behaviors in a single modeling structure. The SAINT technique is described and applications of the SAINT are discussed.

  14. Assessment of Human Factors

    NASA Technical Reports Server (NTRS)

    Mount, Frances; Foley, Tico

    1999-01-01

    Human Factors Engineering, often referred to as Ergonomics, is a science that applies a detailed understanding of human characteristics, capabilities, and limitations to the design, evaluation, and operation of environments, tools, and systems for work and daily living. Human Factors is the investigation, design, and evaluation of equipment, techniques, procedures, facilities, and human interfaces, and encompasses all aspects of human activity from manual labor to mental processing and leisure time enjoyments. In spaceflight applications, human factors engineering seeks to: (1) ensure that a task can be accomplished, (2) maintain productivity during spaceflight, and (3) ensure the habitability of the pressurized living areas. DSO 904 served as a vehicle for the verification and elucidation of human factors principles and tools in the microgravity environment. Over six flights, twelve topics were investigated. This study documented the strengths and limitations of human operators in a complex, multifaceted, and unique environment. By focusing on the man-machine interface in space flight activities, it was determined which designs allow astronauts to be optimally productive during valuable and costly space flights. Among the most promising areas of inquiry were procedures, tools, habitat, environmental conditions, tasking, work load, flexibility, and individual control over work.

  15. Experimental Characterization and Modeling of Thermal Contact Resistance of Electric Machine Stator-to-Cooling Jacket Interface Under Interference Fit Loading

    DOE PAGES

    Cousineau, Justine Emily; Bennion, Kevin S.; Chieduko, Victor; ...

    2018-05-08

    Cooling of electric machines is a key to increasing power density and improving reliability. This paper focuses on the design of a machine using a cooling jacket wrapped around the stator. The thermal contact resistance (TCR) between the electric machine stator and cooling jacket is a significant factor in overall performance and is not well characterized. This interface is typically an interference fit subject to compressive pressure exceeding 5 MPa. An experimental investigation of this interface was carried out using a thermal transmittance setup using pressures between 5 and 10 MPa. Furthermore, the results were compared to currently available modelsmore » for contact resistance, and one model was adapted for prediction of TCR in future motor designs.« less

  16. Experimental Characterization and Modeling of Thermal Contact Resistance of Electric Machine Stator-to-Cooling Jacket Interface Under Interference Fit Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousineau, Justine Emily; Bennion, Kevin S.; Chieduko, Victor

    Cooling of electric machines is a key to increasing power density and improving reliability. This paper focuses on the design of a machine using a cooling jacket wrapped around the stator. The thermal contact resistance (TCR) between the electric machine stator and cooling jacket is a significant factor in overall performance and is not well characterized. This interface is typically an interference fit subject to compressive pressure exceeding 5 MPa. An experimental investigation of this interface was carried out using a thermal transmittance setup using pressures between 5 and 10 MPa. Furthermore, the results were compared to currently available modelsmore » for contact resistance, and one model was adapted for prediction of TCR in future motor designs.« less

  17. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles.

    PubMed

    Eom, Hwisoo; Lee, Sang Hun

    2015-06-12

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model.

  18. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles

    PubMed Central

    Eom, Hwisoo; Lee, Sang Hun

    2015-01-01

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model. PMID:26076406

  19. Intelligent interface design and evaluation

    NASA Technical Reports Server (NTRS)

    Greitzer, Frank L.

    1988-01-01

    Intelligent interface concepts and systematic approaches to assessing their functionality are discussed. Four general features of intelligent interfaces are described: interaction efficiency, subtask automation, context sensitivity, and use of an appropriate design metaphor. Three evaluation methods are discussed: Functional Analysis, Part-Task Evaluation, and Operational Testing. Design and evaluation concepts are illustrated with examples from a prototype expert system interface for environmental control and life support systems for manned space platforms.

  20. Complete scanpaths analysis toolbox.

    PubMed

    Augustyniak, Piotr; Mikrut, Zbigniew

    2006-01-01

    This paper presents a complete open software environment for control, data processing and assessment of visual experiments. Visual experiments are widely used in research on human perception physiology and the results are applicable to various visual information-based man-machine interfacing, human-emulated automatic visual systems or scanpath-based learning of perceptual habits. The toolbox is designed for Matlab platform and supports infra-red reflection-based eyetracker in calibration and scanpath analysis modes. Toolbox procedures are organized in three layers: the lower one, communicating with the eyetracker output file, the middle detecting scanpath events on a physiological background and the one upper consisting of experiment schedule scripts, statistics and summaries. Several examples of visual experiments carried out with use of the presented toolbox complete the paper.

  1. Enhanced operator interface for hand-held landmine detector

    NASA Astrophysics Data System (ADS)

    Herman, Herman; McMahill, Jeffrey D.; Kantor, George

    2001-10-01

    As landmines get harder to detect, the complexity of landmine detectors has also been increasing. To increase the probability of detection and decrease the false alarm rate of low metallic landmines, many detectors employ multiple sensing modalities, which include radar and metal detector. Unfortunately, the operator interface for these new detectors stays pretty much the same as for the older detectors. Although the amount of information that the new detectors acquire has increased significantly, the interface has been limited to a simple audio interface. We are currently developing a hybrid audiovisual interface for enhancing the overall performance of the detector. The hybrid audiovisual interface combines the simplicity of the audio output with the rich spatial content of the video display. It is designed to optimally present the output of the detector and also to give the proper feedback to the operator. Instead of presenting all the data to the operator simultaneously, the interface allows the operator to access the information as needed. This capability is critical to avoid information overload, which can significantly reduce the performance of the operator. The audio is used as the primary notification signal, while the video is used for further feedback, discrimination, localization and sensor fusion. The idea is to let the operator gets the feedback that he needs and enable him to look at the data in the most efficient way. We are also looking at a hybrid man-machine detection system which utilizes precise sweeping by the machine and powerful human cognitive ability. In such a hybrid system, the operator is free to concentrate on discriminant task, such as manually fusing the output of the different sensing modalities, instead of worrying about the proper sweep technique. In developing this concept, we have been using the virtual mien lane to validate some of these concepts. We obtained some very encouraging results form our preliminary test. It clearly shows that with the proper feedback, the performance of the operator can be improved significantly in a very short time.

  2. Will Anything Useful Come Out of Virtual Reality? Examination of a Naval Application

    DTIC Science & Technology

    1993-05-01

    The term virtual reality can encompass varying meanings, but some generally accepted attributes of a virtual environment are that it is immersive...technology, but at present there are few practical applications which are utilizing the broad range of virtual reality technology. This paper will discuss an...Operability, operator functions, Virtual reality , Man-machine interface, Decision aids/decision making, Decision support. ASW.

  3. TDRSS operations control analysis study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The use of an operational Tracking and Data Relay Satellite System (TDRSS) and the remaining ground stations for the STDN (GSTDN) was investigated. The operational aspects of TDRSS concepts, GSTDN as a 14-site network, and GSTDN as a 7 site-network were compared and operations control concepts for the configurations developed. Man/machine interface, scheduling system, and hardware/software tradeoff analyses were among the factors considered in the analysis.

  4. The desktop interface in intelligent tutoring systems

    NASA Technical Reports Server (NTRS)

    Baudendistel, Stephen; Hua, Grace

    1987-01-01

    The interface between an Intelligent Tutoring System (ITS) and the person being tutored is critical to the success of the learning process. If the interface to the ITS is confusing or non-supportive of the tutored domain, the effectiveness of the instruction will be diminished or lost entirely. Consequently, the interface to an ITS should be highly integrated with the domain to provide a robust and semantically rich learning environment. In building an ITS for ZetaLISP on a LISP Machine, a Desktop Interface was designed to support a programming learning environment. Using the bitmapped display, windows, and mouse, three desktops were designed to support self-study and tutoring of ZetaLISP. Through organization, well-defined boundaries, and domain support facilities, the desktops provide substantial flexibility and power for the student and facilitate learning ZetaLISP programming while screening the student from the complex LISP Machine environment. The student can concentrate on learning ZetaLISP programming and not on how to operate the interface or a LISP Machine.

  5. CESAR research in intelligent machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbin, C.R.

    1986-01-01

    The Center for Engineering Systems Advanced Research (CESAR) was established in 1983 as a national center for multidisciplinary, long-range research and development in machine intelligence and advanced control theory for energy-related applications. Intelligent machines of interest here are artificially created operational systems that are capable of autonomous decision making and action. The initial emphasis for research is remote operations, with specific application to dexterous manipulation in unstructured dangerous environments where explosives, toxic chemicals, or radioactivity may be present, or in other environments with significant risk such as coal mining or oceanographic missions. Potential benefits include reduced risk to man inmore » hazardous situations, machine replication of scarce expertise, minimization of human error due to fear or fatigue, and enhanced capability using high resolution sensors and powerful computers. A CESAR goal is to explore the interface between the advanced teleoperation capability of today, and the autonomous machines of the future.« less

  6. Space station data system analysis/architecture study. Task 2: Options development DR-5. Volume 1: Technology options

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The second task in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This volume identifies the preferred options in the technology category and characterizes these options with respect to performance attributes, constraints, cost, and risk. The technology category includes advanced materials, processes, and techniques that can be used to enhance the implementation of SSDS design structures. The specific areas discussed are mass storage, including space and round on-line storage and off-line storage; man/machine interface; data processing hardware, including flight computers and advanced/fault tolerant computer architectures; and software, including data compression algorithms, on-board high level languages, and software tools. Also discussed are artificial intelligence applications and hard-wire communications.

  7. The NASA automation and robotics technology program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee B.; Montemerlo, Melvin D.

    1986-01-01

    The development and objectives of the NASA automation and robotics technology program are reviewed. The objectives of the program are to utilize AI and robotics to increase the probability of mission success; decrease the cost of ground control; and increase the capability and flexibility of space operations. There is a need for real-time computational capability; an effective man-machine interface; and techniques to validate automated systems. Current programs in the areas of sensing and perception, task planning and reasoning, control execution, operator interface, and system architecture and integration are described. Programs aimed at demonstrating the capabilities of telerobotics and system autonomy are discussed.

  8. Transfer of control system interface solutions from other domains to the thermal power industry.

    PubMed

    Bligård, L-O; Andersson, J; Osvalder, A-L

    2012-01-01

    In a thermal power plant the operators' roles are to control and monitor the process to achieve efficient and safe production. To achieve this, the human-machine interfaces have a central part. The interfaces need to be updated and upgraded together with the technical functionality to maintain optimal operation. One way of achieving relevant updates is to study other domains and see how they have solved similar issues in their design solutions. The purpose of this paper is to present how interface design solution ideas can be transferred from domains with operator control to thermal power plants. In the study 15 domains were compared using a model for categorisation of human-machine systems. The result from the domain comparison showed that nuclear power, refinery and ship engine control were most similar to thermal power control. From the findings a basic interface structure and three specific display solutions were proposed for thermal power control: process parameter overview, plant overview, and feed water view. The systematic comparison of the properties of a human-machine system allowed interface designers to find suitable objects, structures and navigation logics in a range of domains that could be transferred to the thermal power domain.

  9. GODDESS: A Goal-Directed Decision Structuring System.

    DTIC Science & Technology

    1980-06-01

    differ- ent support techniques. From a practical viewpoint, though, the major drawback of manual interviews is their length and cost. Since real - time ...conducting his future inquiries. A direct man-machine interface could provide three distinct advantages. First, it offers the capability of real - time ...knowledge in tree form. In many real -world applications, the decision maker may not perceive a problem in the form of a time sequence of decision

  10. The ZOG Technology Demonstration Project: A System Evaluation of USS CARL VINSON (CVN 70)

    DTIC Science & Technology

    1984-12-01

    part of a larger project involving development of a wide range of computer technologies, including artifcial intelligence and a long-range computer...shipboard manage- ment, aircraft management, expert systems, menu selection, man- machine interface, artificial intelligence , automation; shipboard It AWM...functions, planning, evaluation, training, hierarchical data bases The objective of this project was to conduct an evaluation of ZOG, a general purpose

  11. Man-Machine Integration Design and Analysis System (MIDAS) v5: Augmentations, Motivations, and Directions for Aeronautics Applications

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2011-01-01

    As automation and advanced technologies are introduced into transport systems ranging from the Next Generation Air Transportation System termed NextGen, to the advanced surface transportation systems as exemplified by the Intelligent Transportations Systems, to future systems designed for space exploration, there is an increased need to validly predict how the future systems will be vulnerable to error given the demands imposed by the assistive technologies. One formalized approach to study the impact of assistive technologies on the human operator in a safe and non-obtrusive manner is through the use of human performance models (HPMs). HPMs play an integral role when complex human-system designs are proposed, developed, and tested. One HPM tool termed the Man-machine Integration Design and Analysis System (MIDAS) is a NASA Ames Research Center HPM software tool that has been applied to predict human-system performance in various domains since 1986. MIDAS is a dynamic, integrated HPM and simulation environment that facilitates the design, visualization, and computational evaluation of complex man-machine system concepts in simulated operational environments. The paper will discuss a range of aviation specific applications including an approach used to model human error for NASA s Aviation Safety Program, and what-if analyses to evaluate flight deck technologies for NextGen operations. This chapter will culminate by raising two challenges for the field of predictive HPMs for complex human-system designs that evaluate assistive technologies: that of (1) model transparency and (2) model validation.

  12. Lunar regolith bagging system

    NASA Technical Reports Server (NTRS)

    Cannon, Reuben; Henninger, Scott; Levandoski, Mark; Perkins, Jim; Pitchon, Jack; Swats, Robin; Wessels, Roger

    1990-01-01

    A design of a lunar regolith bag and bagging system is described. The bags of regolith are to be used for construction applications on the lunar surface. The machine is designed to be used in conjunction with the lunar SKITTER currently under development. The bags for this system are 1 cu ft volume and are made from a fiberglass composite weave. The machinery is constructed mostly from a boron/aluminum composite. The machine can fill 120 bags per hour and work for 8 hours a day. The man hours to machine hours ratio to operate the machine is .5/8.

  13. [Study for portable dynamic ECG monitor and recorder].

    PubMed

    Yang, Pengcheng; Li, Yongqin; Chen, Bihua

    2012-09-01

    This Paper presents a portable dynamic ECG monitor system based on MSP430F149 microcontroller. The electrocardiogram detecting system consists of ECG detecting circuit, man-machine interaction module, MSP430F149 and upper computer software. The ECG detecting circuit including a preamplifier, second-order Butterworth low-pass filter, high-pass filter, and 50Hz trap circuit to detects electrocardiogram and depresses various kinds of interference effectively. A microcontroller is used to collect three channel analog signals which can be displayed on TFT LCD. A SD card is used to record real-time data continuously and implement the FTA16 file system. In the end, a host computer system interface is also designed to analyze the ECG signal and the analysis results can provide diagnosis references to clinical doctors.

  14. Materials and optimized designs for human-machine interfaces via epidermal electronics.

    PubMed

    Jeong, Jae-Woong; Yeo, Woon-Hong; Akhtar, Aadeel; Norton, James J S; Kwack, Young-Jin; Li, Shuo; Jung, Sung-Young; Su, Yewang; Lee, Woosik; Xia, Jing; Cheng, Huanyu; Huang, Yonggang; Choi, Woon-Seop; Bretl, Timothy; Rogers, John A

    2013-12-17

    Thin, soft, and elastic electronics with physical properties well matched to the epidermis can be conformally and robustly integrated with the skin. Materials and optimized designs for such devices are presented for surface electromyography (sEMG). The findings enable sEMG from wide ranging areas of the body. The measurements have quality sufficient for advanced forms of human-machine interface. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A Tool for Assessing the Text Legibility of Digital Human Machine Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roger Lew; Ronald L. Boring; Thomas A. Ulrich

    2015-08-01

    A tool intended to aid qualified professionals in the assessment of the legibility of text presented on a digital display is described. The assessment of legibility is primarily for the purposes of designing and analyzing human machine interfaces in accordance with NUREG-0700 and MIL-STD 1472G. The tool addresses shortcomings of existing guidelines by providing more accurate metrics of text legibility with greater sensitivity to design alternatives.

  16. DESIGN AND EVALUATION OF INDIVIDUAL ELEMENTS OF THE INTERFACE FOR AN AGRICULTURAL MACHINE.

    PubMed

    Rakhra, Aadesh K; Mann, Danny D

    2018-01-29

    If a user-centered approach is not used to design information displays, the quantity and quality of information presented to the user may not match the needs of the user, or it may exceed the capability of the human operator for processing and using that information. The result may be an excessive mental workload and reduced situation awareness of the operator, which can negatively affect the machine performance and operational outcomes. The increasing use of technology in agricultural machines may expose the human operator to excessive and undesirable information if the operator's information needs and information processing capabilities are ignored. In this study, a user-centered approach was used to design specific interface elements for an agricultural air seeder. Designs of the interface elements were evaluated in a laboratory environment by developing high-fidelity prototypes. Evaluations of the user interface elements yielded significant improvement in situation awareness (up to 11%; overall mean difference = 5.0 (4.8%), 95% CI (6.4728, 3.5939), p 0.0001). Mental workload was reduced by up to 19.7% (overall mean difference = -5.2 (-7.9%), n = 30, a = 0.05). Study participants rated the overall performance of the newly designed user-centered interface elements higher in comparison to the previous designs (overall mean difference = 27.3 (189.8%), 99% CI (35.150, 19.384), p 0.0001. Copyright© by the American Society of Agricultural Engineers.

  17. Recoding Numerics to Geometrics for Complex Discrimination Tasks; A Feasibility Study of Coding Strategy.

    ERIC Educational Resources Information Center

    Simpkins, John D.

    Processing complex multivariate information effectively when relational properties of information sub-groups are ambiguous is difficult for man and man-machine systems. However, the information processing task is made easier through code study, cybernetic planning, and accurate display mechanisms. An exploratory laboratory study designed for the…

  18. 21 CFR 870.4220 - Cardiopulmonary bypass heart-lung machine console.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass heart-lung machine console... Cardiopulmonary bypass heart-lung machine console. (a) Identification. A cardiopulmonary bypass heart-lung machine... heart-lung machine. The console is designed to interface with the basic units used in a gas exchange...

  19. 21 CFR 870.4220 - Cardiopulmonary bypass heart-lung machine console.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cardiopulmonary bypass heart-lung machine console... Cardiopulmonary bypass heart-lung machine console. (a) Identification. A cardiopulmonary bypass heart-lung machine... heart-lung machine. The console is designed to interface with the basic units used in a gas exchange...

  20. 21 CFR 870.4220 - Cardiopulmonary bypass heart-lung machine console.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cardiopulmonary bypass heart-lung machine console... Cardiopulmonary bypass heart-lung machine console. (a) Identification. A cardiopulmonary bypass heart-lung machine... heart-lung machine. The console is designed to interface with the basic units used in a gas exchange...

  1. 21 CFR 870.4220 - Cardiopulmonary bypass heart-lung machine console.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass heart-lung machine console... Cardiopulmonary bypass heart-lung machine console. (a) Identification. A cardiopulmonary bypass heart-lung machine... heart-lung machine. The console is designed to interface with the basic units used in a gas exchange...

  2. 21 CFR 870.4220 - Cardiopulmonary bypass heart-lung machine console.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiopulmonary bypass heart-lung machine console... Cardiopulmonary bypass heart-lung machine console. (a) Identification. A cardiopulmonary bypass heart-lung machine... heart-lung machine. The console is designed to interface with the basic units used in a gas exchange...

  3. An overview of the artificial intelligence and expert systems component of RICIS

    NASA Technical Reports Server (NTRS)

    Feagin, Terry

    1987-01-01

    Artificial Intelligence and Expert Systems are the important component of RICIS (Research Institute and Information Systems) research program. For space applications, a number of problem areas that should be able to make good use of the above tools include: resource allocation and management, control and monitoring, environmental control and life support, power distribution, communications scheduling, orbit and attitude maintenance, redundancy management, intelligent man-machine interfaces and fault detection, isolation and recovery.

  4. Acquisition of Cooperative Small Unmanned Aerial Systems for Advancing Man Machine Interface Research

    DTIC Science & Technology

    2016-08-24

    global sensor field of views (FOVs), mimicking biological systems such as an insect fly eye , but allowing multiple aperture configurations. Due to...synthetic, global sensor field of views (FOVs), mimicking biological systems such as an insect fly eye , but allowing multiple aperture configurations. Due to...such as an insect fly eye , but allowing multiple aperture configurations. Due to the desired nature of distributed networked aerial vehicles (for the

  5. Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications.

  6. Human Factors Report on Information Management Requirements for Next- Generation Manned Bombers

    DTIC Science & Technology

    1987-12-01

    34 James , W. G. (1984). Al applications to military pilot decision aiding -- A perspective • transition. In Third Aerospace Behavioral Engineering Techno.ogy...8217- - . . . Basden , A. (1983). On the application of expert systems. International Journal of Man-Machine Studies, 19, 461-477. Ben-Bassat, M. and Freedy, A...augmentation system design by defining, developing, and applying appropriate design techniques for a variety of airborne platforms. James , W. G

  7. History for Auto-Mechanics and Machine Trades Students. A Teacher's Guide.

    ERIC Educational Resources Information Center

    Puntureri, Thomas

    The guide for an American history curriculum is designed to give students insight into their field of study by including material on the development of the machine industry and related industries. It is divided into 18 basic units covering shop history and development, American industrialization, sociological development of man, American politics,…

  8. Construction in space - Toward a fresh definition of the man/machine relation

    NASA Technical Reports Server (NTRS)

    Watters, H. H.; Stokes, J. W.

    1979-01-01

    The EVA (extravehicular activity) project forming part of the space construction process is reviewed. The manual EVA constuction, demonstrated by the crew of Skylab 3 by assembling a modest space structure in the form of the twin-pole sunshade, is considered, indicating that the experiment dispelled many doubts about man's ability to execute routine and contingency EVA operations. Tests demonstrating the feasibility of remote teleoperator rendezvous, station keeping, and docking operations, using hand controllers for direct input and television for feedback, are noted. Future plans for designing space construction machines are mentioned.

  9. Linear-hall sensor based force detecting unit for lower limb exoskeleton

    NASA Astrophysics Data System (ADS)

    Li, Hongwu; Zhu, Yanhe; Zhao, Jie; Wang, Tianshuo; Zhang, Zongwei

    2018-04-01

    This paper describes a knee-joint human-machine interaction force sensor for lower-limb force-assistance exoskeleton. The structure is designed based on hall sensor and series elastic actuator (SEA) structure. The work we have done includes the structure design, the parameter determination and dynamic simulation. By converting the force signal into macro displacement and output voltage, we completed the measurement of man-machine interaction force. And it is proved by experiments that the design is simple, stable and low-cost.

  10. An operator interface design for a telerobotic inspection system

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Tso, Kam S.; Hayati, Samad

    1993-01-01

    The operator interface has recently emerged as an important element for efficient and safe interactions between human operators and telerobotics. Advances in graphical user interface and graphics technologies enable us to produce very efficient operator interface designs. This paper describes an efficient graphical operator interface design newly developed for remote surface inspection at NASA-JPL. The interface, designed so that remote surface inspection can be performed by a single operator with an integrated robot control and image inspection capability, supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.

  11. Design of Human-Machine Interface and altering of pelvic obliquity with RGR Trainer.

    PubMed

    Pietrusinski, Maciej; Unluhisarcikli, Ozer; Mavroidis, Constantinos; Cajigas, Iahn; Bonato, Paolo

    2011-01-01

    The Robotic Gait Rehabilitation (RGR) Trainer targets secondary gait deviations in stroke survivors undergoing rehabilitation. Using an impedance control strategy and a linear electromagnetic actuator, the device generates a force field to control pelvic obliquity through a Human-Machine Interface (i.e. a lower body exoskeleton). Herein we describe the design of the RGR Trainer Human-Machine Interface (HMI) and we demonstrate the system's ability to alter the pattern of movement of the pelvis during gait in a healthy subject. Results are shown for experiments during which we induced hip-hiking - in healthy subjects. Our findings indicate that the RGR Trainer has the ability of affecting pelvic obliquity during gait. Furthermore, we provide preliminary evidence of short-term retention of the modified pelvic obliquity pattern induced by the RGR Trainer. © 2011 IEEE

  12. Design of Human – Machine Interface and Altering of Pelvic Obliquity with RGR Trainer

    PubMed Central

    Pietrusinski, Maciej; Unluhisarcikli, Ozer; Mavroidis, Constantinos; Cajigas, Iahn; Bonato, Paolo

    2012-01-01

    The Robotic Gait Rehabilitation (RGR) Trainer targets secondary gait deviations in stroke survivors undergoing rehabilitation. Using an impedance control strategy and a linear electromagnetic actuator, the device generates a force field to control pelvic obliquity through a Human-Machine Interface (i.e. a lower body exoskeleton). Herein we describe the design of the RGR Trainer Human-Machine Interface (HMI) and we demonstrate the system’s ability to alter the pattern of movement of the pelvis during gait in a healthy subject. Results are shown for experiments during which we induced hip-hiking – in healthy subjects. Our findings indicate that the RGR Trainer has the ability of affecting pelvic obliquity during gait. Furthermore, we provide preliminary evidence of short-term retention of the modified pelvic obliquity pattern induced by the RGR Trainer. PMID:22275693

  13. The Mind and the Machine. On the Conceptual and Moral Implications of Brain-Machine Interaction.

    PubMed

    Schermer, Maartje

    2009-12-01

    Brain-machine interfaces are a growing field of research and application. The increasing possibilities to connect the human brain to electronic devices and computer software can be put to use in medicine, the military, and entertainment. Concrete technologies include cochlear implants, Deep Brain Stimulation, neurofeedback and neuroprosthesis. The expectations for the near and further future are high, though it is difficult to separate hope from hype. The focus in this paper is on the effects that these new technologies may have on our 'symbolic order'-on the ways in which popular categories and concepts may change or be reinterpreted. First, the blurring distinction between man and machine and the idea of the cyborg are discussed. It is argued that the morally relevant difference is that between persons and non-persons, which does not necessarily coincide with the distinction between man and machine. The concept of the person remains useful. It may, however, become more difficult to assess the limits of the human body. Next, the distinction between body and mind is discussed. The mind is increasingly seen as a function of the brain, and thus understood in bodily and mechanical terms. This raises questions concerning concepts of free will and moral responsibility that may have far reaching consequences in the field of law, where some have argued for a revision of our criminal justice system, from retributivist to consequentialist. Even without such a (unlikely and unwarranted) revision occurring, brain-machine interactions raise many interesting questions regarding distribution and attribution of responsibility.

  14. A Concept for Optimizing Behavioural Effectiveness & Efficiency

    NASA Astrophysics Data System (ADS)

    Barca, Jan Carlo; Rumantir, Grace; Li, Raymond

    Both humans and machines exhibit strengths and weaknesses that can be enhanced by merging the two entities. This research aims to provide a broader understanding of how closer interactions between these two entities can facilitate more optimal goal-directed performance through the use of artificial extensions of the human body. Such extensions may assist us in adapting to and manipulating our environments in a more effective way than any system known today. To demonstrate this concept, we have developed a simulation where a semi interactive virtual spider can be navigated through an environment consisting of several obstacles and a virtual predator capable of killing the spider. The virtual spider can be navigated through the use of three different control systems that can be used to assist in optimising overall goal directed performance. The first two control systems use, an onscreen button interface and a touch sensor, respectively to facilitate human navigation of the spider. The third control system is an autonomous navigation system through the use of machine intelligence embedded in the spider. This system enables the spider to navigate and react to changes in its local environment. The results of this study indicate that machines should be allowed to override human control in order to maximise the benefits of collaboration between man and machine. This research further indicates that the development of strong machine intelligence, sensor systems that engage all human senses, extra sensory input systems, physical remote manipulators, multiple intelligent extensions of the human body, as well as a tighter symbiosis between man and machine, can support an upgrade of the human form.

  15. MIDAS Website. Revised

    NASA Technical Reports Server (NTRS)

    Goodman, Allen; Shively, R. Joy (Technical Monitor)

    1997-01-01

    MIDAS, Man-machine Integration Design and Analysis System, is a unique combination of software tools aimed at reducing design cycle time, supporting quantitative predictions of human-system effectiveness and improving the design of crew stations and their associated operating procedures. This project is supported jointly by the US Army and NASA.

  16. A machine for the preliminary investigation of design features influencing the wear behaviour of knee prostheses.

    PubMed

    McGloughlin, T M; Murphy, D M; Kavanagh, A G

    2004-01-01

    Degradation of tibial inserts in vivo has been found to be multifactorial in nature, resulting in a complex interaction of many variables. A range of kinematic conditions occurs at the tibio-femoral interface, giving rise to various degrees of rolling and sliding at this interface. The movement of the tibio-femoral contact point may be an influential factor in the overall wear of ultra-high molecular weight polyethylene (UHMWPE) tibial components. As part of this study a three-station wear-test machine was designed and built to investigate the influence of rolling and sliding on the wear behaviour of specific design aspects of contemporary knee prostheses. Using the machine, it is possible to monitor the effect of various slide roll ratios on the performance of contemporary bearing designs from a geometrical and materials perspective.

  17. Design of monitoring system for mail-sorting based on the Profibus S7 series PLC

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Jia, S. H.; Wang, Y. H.; Liu, H.; Tang, G. C.

    2017-01-01

    With the rapid development of the postal express, the workload of mail sorting is increasing, but the automatic technology of mail sorting is not mature enough. In view of this, the system uses Siemens S7-300 PLC as the main station controller, PLC of Siemens S7-200/400 is from the station controller, through the man-machine interface configuration software MCGS, PROFIBUS-DP communication, RFID technology and mechanical sorting hand achieve mail classification sorting monitoring. Among them, distinguish mail-sorting by scanning RFID posted in the mail electronic bar code (fixed code), the system uses the corresponding controller on the acquisition of information processing, the processed information transmit to the sorting manipulator by PROFIBUS-DP. The system can realize accurate and efficient mail sorting, which will promote the development of mail sorting technology.

  18. Symposium on Aviation Psychology, 1st, Ohio State University, Columbus, OH, April 21, 22, 1981, Proceedings

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The impact of modern technology on the role, responsibility, authority, and performance of human operators in modern aircraft and ATC systems was examined in terms of principles defined by Paul Fitts. Research into human factors in aircraft operations and the use of human factors engineering for aircraft safety improvements were discussed, and features of the man-machine interface in computerized cockpit warning systems are examined. The design and operational features of computerized avionics displays and HUDs are described, along with results of investigations into pilot decision-making behavior, aircrew procedural compliance, and aircrew judgment training programs. Experiments in vision and visual perception are detailed, as are behavioral studies of crew workload, coordination, and complement. The effectiveness of pilot selection, screening, and training techniques are assessed, as are methods for evaluating pilot performance.

  19. Tactile stimulations and wheel rotation responses: toward augmented lane departure warning systems

    PubMed Central

    Tandonnet, Christophe; Burle, Borís; Vidal, Franck; Hasbroucq, Thierry

    2014-01-01

    When an on-board system detects a drift of a vehicle to the left or to the right, in what way should the information be delivered to the driver? Car manufacturers have so far neglected relevant results from Experimental Psychology and Cognitive Neuroscience. Here we show that this situation possibly led to the sub-optimal design of a lane departure warning system (AFIL, PSA Peugeot Citroën) implemented in commercially available automobile vehicles. Twenty participants performed a two-choice reaction time task in which they were to respond by clockwise or counter-clockwise wheel-rotations to tactile stimulations of their left or right wrist. They performed poorer when responding counter-clockwise to the right vibration and clockwise to the left vibration (incompatible mapping) than when responding according to the reverse (compatible) mapping. This suggests that AFIL implements the worse (incompatible) mapping for the operators. This effect depended on initial practice with the interface. The present research illustrates how basic approaches in Cognitive Science may benefit to Human Factors Engineering and ultimately improve man-machine interfaces and show how initial learning can affect interference effects. PMID:25324791

  20. Test and Evaluation Master Plan (TEMP) for the Navy Occupational Health Information Management System (NOHIMS). Appendix A through Appendix U.

    DTIC Science & Technology

    1985-04-24

    reliability/ downtime/ communication lines/ man-machine interface/ other: 2. A noticeable (to the user) failure happens about and that number has been...improving/ steady/ getting.worse. 3. The number of failures /errors for NOHIMS is acceptable/ somewhat acceptable/ somewhat unacceptable/ unacceptable...somewhat fast/ somewhat slow/ slow. 7. When a NWHIMS failure occurs, it affects the day-to-day provision of medical care because work procedures must

  1. Mission Accomplished! Or Not? A Study about Success in Information Operations

    DTIC Science & Technology

    2012-09-01

    sensors and presented on a man-machine interface, e.g., a computer screen or on a radar plan position indicator. In modern warfare, staff and...has to be achievable; otherwise, it can be viewed simply as dreaming. Compared to sea, land and even air warfare, information warfare is a young...shares some of its characteristics with the air and sea domains. All of them exist without borders. In addition, they cannot be fortified or

  2. Applications of artificial intelligence to rotorcraft

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy H.

    1987-01-01

    The application of AI technology may have significant potential payoff for rotorcraft. In the near term, the status of the technology will limit its applicability to decision aids rather than total automation. The specific application areas are categorized into onboard and nonflight aids. The onboard applications include: fault monitoring, diagnosis, and reconfiguration; mission and tactics planning; situation assessment; navigation aids, especially in nap-of-the-earth flight; and adaptive man-machine interfaces. The nonflight applications include training and maintenance diagnostics.

  3. ONRASIA Scientific Information Bulletin, Volume 17, Number 2, April/June 1992

    DTIC Science & Technology

    1992-06-01

    studying the role of overcomplete- Tel: +81-422-59-4201 seminar on wavelets was chosen to be ness properties and their applications Fax: +81-422-59-3393...technologies, explore interactive environment for man- to emulate various types of cache proto- applications, and study how theycan be machine interface...cols. The Keio professors specifically integrated. Flexible integration is seen want to study the kind of logic simula- as an important goal in order for

  4. Automation Applications in an Advanced Air Traffic Management System : Volume 3. Methodology for Man-Machine Task Allocation

    DOT National Transportation Integrated Search

    1974-08-01

    Volume 3 describes the methodology for man-machine task allocation. It contains a description of man and machine performance capabilities and an explanation of the methodology employed to allocate tasks to human or automated resources. It also presen...

  5. Interface Metaphors for Interactive Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasper, Robert J.; Blaha, Leslie M.

    To promote more interactive and dynamic machine learn- ing, we revisit the notion of user-interface metaphors. User-interface metaphors provide intuitive constructs for supporting user needs through interface design elements. A user-interface metaphor provides a visual or action pattern that leverages a user’s knowledge of another domain. Metaphors suggest both the visual representations that should be used in a display as well as the interactions that should be afforded to the user. We argue that user-interface metaphors can also offer a method of extracting interaction-based user feedback for use in machine learning. Metaphors offer indirect, context-based information that can be usedmore » in addition to explicit user inputs, such as user-provided labels. Implicit information from user interactions with metaphors can augment explicit user input for active learning paradigms. Or it might be leveraged in systems where explicit user inputs are more challenging to obtain. Each interaction with the metaphor provides an opportunity to gather data and learn. We argue this approach is especially important in streaming applications, where we desire machine learning systems that can adapt to dynamic, changing data.« less

  6. Human factor engineering based design and modernization of control rooms with new I and C systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larraz, J.; Rejas, L.; Ortega, F.

    2012-07-01

    Instrumentation and Control (I and C) systems of the latest nuclear power plants are based on the use of digital technology, distributed control systems and the integration of information in data networks (Distributed Control and Instrumentation Systems). This has a repercussion on Control Rooms (CRs), where the operations and monitoring interfaces correspond to these systems. These technologies are also used in modernizing I and C systems in currently operative nuclear power plants. The new interfaces provide additional capabilities for operation and supervision, as well as a high degree of flexibility, versatility and reliability. An example of this is the implementationmore » of solutions such as compact stations, high level supervision screens, overview displays, computerized procedures, new operational support systems or intelligent alarms processing systems in the modernized Man-Machine Interface (MMI). These changes in the MMI are accompanied by newly added Software (SW) controls and new solutions in automation. Tecnatom has been leading various projects in this area for several years, both in Asian countries and in the United States, using in all cases international standards from which Tecnatom own methodologies have been developed and optimized. The experience acquired in applying this methodology to the design of new control rooms is to a large extent applicable also to the modernization of current control rooms. An adequate design of the interface between the operator and the systems will facilitate safe operation, contribute to the prompt identification of problems and help in the distribution of tasks and communications between the different members of the operating shift. Based on Tecnatom experience in the field, this article presents the methodological approach used as well as the most relevant aspects of this kind of project. (authors)« less

  7. Human Machine Interfaces for Teleoperators and Virtual Environments

    NASA Technical Reports Server (NTRS)

    Durlach, Nathaniel I. (Compiler); Sheridan, Thomas B. (Compiler); Ellis, Stephen R. (Compiler)

    1991-01-01

    In Mar. 1990, a meeting organized around the general theme of teleoperation research into virtual environment display technology was conducted. This is a collection of conference-related fragments that will give a glimpse of the potential of the following fields and how they interplay: sensorimotor performance; human-machine interfaces; teleoperation; virtual environments; performance measurement and evaluation methods; and design principles and predictive models.

  8. Study of Man-Machine Communications Systems for Disabled Persons (The Handicapped). Volume VII. Final Report.

    ERIC Educational Resources Information Center

    Kafafian, Haig

    Teaching instructions, lesson plans, and exercises are provided for severely physically and/or neurologically handicapped persons learning to use the Cybertype electric writing machine with a tongue-body keyboard. The keyboard, which has eight double-throw toggle switches and a three-position state-selector switch, is designed to be used by…

  9. The use of graphics in the design of the human-telerobot interface

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Smith, Randy L.

    1989-01-01

    The Man-Systems Telerobotics Laboratory (MSTL) of NASA's Johnson Space Center employs computer graphics tools in their design and evaluation of the Flight Telerobotic Servicer (FTS) human/telerobot interface on the Shuttle and on the Space Station. It has been determined by the MSTL that the use of computer graphics can promote more expedient and less costly design endeavors. Several specific examples of computer graphics applied to the FTS user interface by the MSTL are described.

  10. Study on Performance of Integration Control by Man and Machine in Stage of Final Approaching for Spaceship Rendezvous and Docking

    NASA Astrophysics Data System (ADS)

    Zhou, Qianxiang; Liu, Zhongqi

    With the development of manned space technology, space rendezvous and docking (RVD) technology will play a more and more important role. The astronauts’ participation in a final close period of man-machine combination control is an important way of RVD technology. Spacecraft RVD control involves control problem of a total of 12 degrees of freedom (location) and attitude which it relative to the inertial space the orbit. Therefore, in order to reduce the astronauts’ operation load and reduce the security requirements to the ground station and achieve an optimal performance of the whole man-machine system, it is need to study how to design the number of control parameters of astronaut or aircraft automatic control system. In this study, with the laboratory conditions on the ground, a method was put forward to develop an experimental system in which the performance evaluation of spaceship RVD integration control by man and machine could be completed. After the RVD precision requirements were determined, 26 male volunteers aged 20-40 took part in the performance evaluation experiments. The RVD integration control success rates and total thruster ignition time were chosen as evaluation indices. Results show that if less than three RVD parameters control tasks were finished by subject and the rest of parameters control task completed by automation, the RVD success rate would be larger than eighty-eight percent and the fuel consumption would be optimized. In addition, there were two subjects who finished the whole six RVD parameters control tasks by enough train. In conclusion, if the astronauts' role should be integrated into the RVD control, it was suitable for them to finish the heading, pitch and roll control in order to assure the man-machine system high performance. If astronauts were needed to finish all parameter control, two points should be taken into consideration, one was enough fuel and another was enough long operation time.

  11. Research interface on a programmable ultrasound scanner.

    PubMed

    Shamdasani, Vijay; Bae, Unmin; Sikdar, Siddhartha; Yoo, Yang Mo; Karadayi, Kerem; Managuli, Ravi; Kim, Yongmin

    2008-07-01

    Commercial ultrasound machines in the past did not provide the ultrasound researchers access to raw ultrasound data. Lack of this ability has impeded evaluation and clinical testing of novel ultrasound algorithms and applications. Recently, we developed a flexible ultrasound back-end where all the processing for the conventional ultrasound modes, such as B, M, color flow and spectral Doppler, was performed in software. The back-end has been incorporated into a commercial ultrasound machine, the Hitachi HiVision 5500. The goal of this work is to develop an ultrasound research interface on the back-end for acquiring raw ultrasound data from the machine. The research interface has been designed as a software module on the ultrasound back-end. To increase the amount of raw ultrasound data that can be spooled in the limited memory available on the back-end, we have developed a method that can losslessly compress the ultrasound data in real time. The raw ultrasound data could be obtained in any conventional ultrasound mode, including duplex and triplex modes. Furthermore, use of the research interface does not decrease the frame rate or otherwise affect the clinical usability of the machine. The lossless compression of the ultrasound data in real time can increase the amount of data spooled by approximately 2.3 times, thus allowing more than 6s of raw ultrasound data to be acquired in all the modes. The interface has been used not only for early testing of new ideas with in vitro data from phantoms, but also for acquiring in vivo data for fine-tuning ultrasound applications and conducting clinical studies. We present several examples of how newer ultrasound applications, such as elastography, vibration imaging and 3D imaging, have benefited from this research interface. Since the research interface is entirely implemented in software, it can be deployed on existing HiVision 5500 ultrasound machines and may be easily upgraded in the future. The developed research interface can aid researchers in the rapid testing and clinical evaluation of new ultrasound algorithms and applications. Additionally, we believe that our approach would be applicable to designing research interfaces on other ultrasound machines.

  12. Man Machine Systems in Education.

    ERIC Educational Resources Information Center

    Sall, Malkit S.

    This review of the research literature on the interaction between humans and computers discusses how man machine systems can be utilized effectively in the learning-teaching process, especially in secondary education. Beginning with a definition of man machine systems and comments on the poor quality of much of the computer-based learning material…

  13. Objective evaluation of situation awareness for dynamic decision makers in teleoperations

    NASA Technical Reports Server (NTRS)

    Endsley, Mica R.

    1991-01-01

    Situation awareness, a current mental mode of the environment, is critical to the ability of operators to perform complex and dynamic tasks. This should be particularly true for teleoperators, who are separated from the situation they need to be aware of. The design of the man-machine interface must be guided by the goal of maintaining and enhancing situation awareness. The objective of this work has been to build a foundation upon which research in the area can proceed. A model of dynamic human decision making which is inclusive of situation awareness will be presented, along with a definition of situation awareness. A method for measuring situation awareness will also be presented as a tool for evaluating design concepts. The Situation Awareness Global Assessment Technique (SAGAT) is an objective measure of situation awareness originally developed for the fighter cockpit environment. The results of SAGAT validation efforts will be presented. Implications of this research for teleoperators and other operators of dynamic systems will be discussed.

  14. The War in Man; Media and Machines.

    ERIC Educational Resources Information Center

    Wilhelmsen, Frederick D.; Bret, Jane

    The authors present a picture of contemporary man torn by conflicting forces, caught in a psychic house divided against itself, a victim of war between media and machines. Machines, they state, represent the rationalistic tradition which has brought man to the brink of psychic and social disaster. The media they see as offering hope--true…

  15. Adaptive displays and controllers using alternative feedback.

    PubMed

    Repperger, D W

    2004-12-01

    Investigations on the design of haptic (force reflecting joystick or force display) controllers were conducted by viewing the display of force information within the context of several different paradigms. First, using analogies from electrical and mechanical systems, certain schemes of the haptic interface were hypothesized which may improve the human-machine interaction with respect to various criteria. A discussion is given on how this interaction benefits the electrical and mechanical system. To generalize this concept to the design of human-machine interfaces, three studies with haptic mechanisms were then synthesized and analyzed.

  16. Visualization tool for human-machine interface designers

    NASA Astrophysics Data System (ADS)

    Prevost, Michael P.; Banda, Carolyn P.

    1991-06-01

    As modern human-machine systems continue to grow in capabilities and complexity, system operators are faced with integrating and managing increased quantities of information. Since many information components are highly related to each other, optimizing the spatial and temporal aspects of presenting information to the operator has become a formidable task for the human-machine interface (HMI) designer. The authors describe a tool in an early stage of development, the Information Source Layout Editor (ISLE). This tool is to be used for information presentation design and analysis; it uses human factors guidelines to assist the HMI designer in the spatial layout of the information required by machine operators to perform their tasks effectively. These human factors guidelines address such areas as the functional and physical relatedness of information sources. By representing these relationships with metaphors such as spring tension, attractors, and repellers, the tool can help designers visualize the complex constraint space and interacting effects of moving displays to various alternate locations. The tool contains techniques for visualizing the relative 'goodness' of a configuration, as well as mechanisms such as optimization vectors to provide guidance toward a more optimal design. Also available is a rule-based design checker to determine compliance with selected human factors guidelines.

  17. Some effects of stress on users of a voice recognition system: A preliminary inquiry

    NASA Astrophysics Data System (ADS)

    French, B. A.

    1983-03-01

    Recent work with Automatic Speech Recognition has focused on applications and productivity considerations in the man-machine interface. This thesis is an attempt to see if placing users of such equipment under time-induced stress has an effect on their percent correct recognition rates. Subjects were given a message-handling task of fixed length and allowed progressively shorter times to attempt to complete it. Questionnaire responses indicate stress levels increased with decreased time-allowance; recognition rates decreased as time was reduced.

  18. Test and Evaluation of the Man-Machine Interface between the Apache Longbow and an Unmanned Aerial Vehicle

    DTIC Science & Technology

    2000-04-01

    two week test was a part of an The Boeing Company is studying a concept that on- going Boeing internal research and development involves teaming a...study and effectiveness of attack/reconnaissance teams. A assessment of employment modes and their major concern is the level of crew interaction...Based on the UAV control mode, these controls will Test subjects received training concerning the operate either the TADS sensors (control mode mne

  19. Development and experimentation of an eye/brain/task testbed

    NASA Technical Reports Server (NTRS)

    Harrington, Nora; Villarreal, James

    1987-01-01

    The principal objective is to develop a laboratory testbed that will provide a unique capability to elicit, control, record, and analyze the relationship of operator task loading, operator eye movement, and operator brain wave data in a computer system environment. The ramifications of an integrated eye/brain monitor to the man machine interface are staggering. The success of such a system would benefit users of space and defense, paraplegics, and the monitoring of boring screens (nuclear power plants, air defense, etc.)

  20. Roles and needs of man in space

    NASA Technical Reports Server (NTRS)

    Von Puttkamer, J.

    1983-01-01

    Human capabilities and requirements on space missions are discussed. Utilitarian and humanistic motivations for manned missions are considered, and a general program of development from easy space access and return, to a permanent LEO presence, to the limited self-sufficiency of man in space, is proposed. Man's potential as scientific observer, operator, and engineer/technician is illustrated with examples from the Apollo and Skylab missions. It is shown that future increases in man's space presence will require significant improvements in habitation technology, crew comfort and safety, operational effectiveness and reliability, and man/machine interactions: man-tended systems must be standardized and adapted to (mainly EVA) human servicing; permanently manned systems must be designed to attain levels of comfort, privacy, and overall habitability more like those expected on the ground.

  1. Filament Winding of a Ship Hull. A Study of the Design of a 30 Ft. Filament Wound Model of a 150 Ft. GRP (Glass Reinforced Plastic) Ship.

    DTIC Science & Technology

    1983-10-01

    by block number) Naval Ship Structures; Composites . Glass Reinforced Plastics, Filament Winding, Minesweepers. 20. ABSTRACT (Continue on reverse side...associated with this method of manufacturing a ship hull out of Glass Reinforced Plastic (GRP). Winding machine and man- drel concepts were reviewed... machine and mandrel concepts were reviewed, as well as the structural requirements and possible materials. A design of a 1/5th scale (30 ft) model

  2. Control system software, simulation, and robotic applications

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    1991-01-01

    All essential existing capabilities needed to create a man-machine interaction dynamics and performance (MMIDAP) capability are reviewed. The multibody system dynamics software program Order N DISCOS will be used for machine and musculo-skeletal dynamics modeling. The program JACK will be used for estimating and animating whole body human response to given loading situations and motion constraints. The basic elements of performance (BEP) task decomposition methodologies associated with the Human Performance Institute database will be used for performance assessment. Techniques for resolving the statically indeterminant muscular load sharing problem will be used for a detailed understanding of potential musculotendon or ligamentous fatigue, pain, discomfort, and trauma. The envisioned capacity is to be used for mechanical system design, human performance assessment, extrapolation of man/machine interaction test data, biomedical engineering, and soft prototyping within a concurrent engineering (CE) system.

  3. Man-machine cooperation in advanced teleoperation

    NASA Technical Reports Server (NTRS)

    Fiorini, Paolo; Das, Hari; Lee, Sukhan

    1993-01-01

    Teleoperation experiments at JPL have shown that advanced features in a telerobotic system are a necessary condition for good results, but that they are not sufficient to assure consistently good performance by the operators. Two or three operators are normally used during training and experiments to maintain the desired performance. An alternative to this multi-operator control station is a man-machine interface embedding computer programs that can perform some of the operator's functions. In this paper we present our first experiments with these concepts, in which we focused on the areas of real-time task monitoring and interactive path planning. In the first case, when performing a known task, the operator has an automatic aid for setting control parameters and camera views. In the second case, an interactive path planner will rank different path alternatives so that the operator will make the correct control decision. The monitoring function has been implemented with a neural network doing the real-time task segmentation. The interactive path planner was implemented for redundant manipulators to specify arm configurations across the desired path and satisfy geometric, task, and performance constraints.

  4. A restrained-torque-based motion instructor: forearm flexion/extension-driving exoskeleton

    NASA Astrophysics Data System (ADS)

    Nishimura, Takuya; Nomura, Yoshihiko; Sakamoto, Ryota

    2013-01-01

    When learning complicated movements by ourselves, we encounter such problems as a self-rightness. The self-rightness results in a lack of detail and objectivity, and it may cause to miss essences and even twist the essences. Thus, we sometimes fall into the habits of doing inappropriate motions. To solve these problems or to alleviate the problems as could as possible, we have been developed mechanical man-machine human interfaces to support us learning such motions as cultural gestures and sports form. One of the promising interfaces is a wearable exoskeleton mechanical system. As of the first try, we have made a prototype of a 2-link 1-DOF rotational elbow joint interface that is applied for teaching extension-flexion operations with forearms and have found its potential abilities for teaching the initiating and continuing flection motion of the elbow.

  5. Cognitive engineering models: A prerequisite to the design of human-computer interaction in complex dynamic systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1993-01-01

    This chapter examines a class of human-computer interaction applications, specifically the design of human-computer interaction for the operators of complex systems. Such systems include space systems (e.g., manned systems such as the Shuttle or space station, and unmanned systems such as NASA scientific satellites), aviation systems (e.g., the flight deck of 'glass cockpit' airplanes or air traffic control) and industrial systems (e.g., power plants, telephone networks, and sophisticated, e.g., 'lights out,' manufacturing facilities). The main body of human-computer interaction (HCI) research complements but does not directly address the primary issues involved in human-computer interaction design for operators of complex systems. Interfaces to complex systems are somewhat special. The 'user' in such systems - i.e., the human operator responsible for safe and effective system operation - is highly skilled, someone who in human-machine systems engineering is sometimes characterized as 'well trained, well motivated'. The 'job' or task context is paramount and, thus, human-computer interaction is subordinate to human job interaction. The design of human interaction with complex systems, i.e., the design of human job interaction, is sometimes called cognitive engineering.

  6. Concurrent Image Processing Executive (CIPE)

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Cooper, Gregory T.; Groom, Steven L.; Mazer, Alan S.; Williams, Winifred I.

    1988-01-01

    The design and implementation of a Concurrent Image Processing Executive (CIPE), which is intended to become the support system software for a prototype high performance science analysis workstation are discussed. The target machine for this software is a JPL/Caltech Mark IIIfp Hypercube hosted by either a MASSCOMP 5600 or a Sun-3, Sun-4 workstation; however, the design will accommodate other concurrent machines of similar architecture, i.e., local memory, multiple-instruction-multiple-data (MIMD) machines. The CIPE system provides both a multimode user interface and an applications programmer interface, and has been designed around four loosely coupled modules; (1) user interface, (2) host-resident executive, (3) hypercube-resident executive, and (4) application functions. The loose coupling between modules allows modification of a particular module without significantly affecting the other modules in the system. In order to enhance hypercube memory utilization and to allow expansion of image processing capabilities, a specialized program management method, incremental loading, was devised. To minimize data transfer between host and hypercube a data management method which distributes, redistributes, and tracks data set information was implemented.

  7. Air-condition Control System of Weaving Workshop Based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Song, Jian

    The project of air-condition measurement and control system based on LabVIEW is put forward for the sake of controlling effectively the environmental targets in the weaving workshop. In this project, which is based on the virtual instrument technology and in which LabVIEW development platform by NI is adopted, the system is constructed on the basis of the virtual instrument technology. It is composed of the upper PC, central control nodes based on CC2530, sensor nodes, sensor modules and executive device. Fuzzy control algorithm is employed to achieve the accuracy control of the temperature and humidity. A user-friendly man-machine interaction interface is designed with virtual instrument technology at the core of the software. It is shown by experiments that the measurement and control system can run stably and reliably and meet the functional requirements for controlling the weaving workshop.

  8. Gesture-Controlled Interfaces for Self-Service Machines

    NASA Technical Reports Server (NTRS)

    Cohen, Charles J.; Beach, Glenn

    2006-01-01

    Gesture-controlled interfaces are software- driven systems that facilitate device control by translating visual hand and body signals into commands. Such interfaces could be especially attractive for controlling self-service machines (SSMs) for example, public information kiosks, ticket dispensers, gasoline pumps, and automated teller machines (see figure). A gesture-controlled interface would include a vision subsystem comprising one or more charge-coupled-device video cameras (at least two would be needed to acquire three-dimensional images of gestures). The output of the vision system would be processed by a pure software gesture-recognition subsystem. Then a translator subsystem would convert a sequence of recognized gestures into commands for the SSM to be controlled; these could include, for example, a command to display requested information, change control settings, or actuate a ticket- or cash-dispensing mechanism. Depending on the design and operational requirements of the SSM to be controlled, the gesture-controlled interface could be designed to respond to specific static gestures, dynamic gestures, or both. Static and dynamic gestures can include stationary or moving hand signals, arm poses or motions, and/or whole-body postures or motions. Static gestures would be recognized on the basis of their shapes; dynamic gestures would be recognized on the basis of both their shapes and their motions. Because dynamic gestures include temporal as well as spatial content, this gesture- controlled interface can extract more information from dynamic than it can from static gestures.

  9. Cybernetic prosthesis

    NASA Technical Reports Server (NTRS)

    Mann, R. W.

    1974-01-01

    Design and development of a prosthetic device fitted to an above elbow amputee is reported that derives control information from the human to modulate power to an actuator to drive the substitute limb. In turn, the artificial limb generates sensory information feedback to the human nervous system and brain. This synergetic unity feeds efferent or motor control information from the human to the machine, and the machine responds, delivering afferent or sensory information back to the man.

  10. RoboCup-Rescue: an international cooperative research project of robotics and AI for the disaster mitigation problem

    NASA Astrophysics Data System (ADS)

    Tadokoro, Satoshi; Kitano, Hiroaki; Takahashi, Tomoichi; Noda, Itsuki; Matsubara, Hitoshi; Shinjoh, Atsushi; Koto, Tetsuo; Takeuchi, Ikuo; Takahashi, Hironao; Matsuno, Fumitoshi; Hatayama, Mitsunori; Nobe, Jun; Shimada, Susumu

    2000-07-01

    This paper introduces the RoboCup-Rescue Simulation Project, a contribution to the disaster mitigation, search and rescue problem. A comprehensive urban disaster simulator is constructed on distributed computers. Heterogeneous intelligent agents such as fire fighters, victims and volunteers conduct search and rescue activities in this virtual disaster world. A real world interface integrates various sensor systems and controllers of infrastructures in the real cities with the real world. Real-time simulation is synchronized with actual disasters, computing complex relationship between various damage factors and agent behaviors. A mission-critical man-machine interface provides portability and robustness of disaster mitigation centers, and augmented-reality interfaces for rescue in real disasters. It also provides a virtual- reality training function for the public. This diverse spectrum of RoboCup-Rescue contributes to the creation of the safer social system.

  11. New method for measuring the laser-induced damage threshold of optical thin film

    NASA Astrophysics Data System (ADS)

    Su, Jun-hong; Wang, Hong; Xi, Ying-xue

    2012-10-01

    The laser-induced damage threshold (LIDT) of thin film means that the thin film can withstand a maximum intensity of laser radiation. The film will be damaged when the irradiation under high laser intensity is greater than the value of LIDT. In this paper, an experimental platform with measurement operator interfaces and control procedures in the VB circumstance is built according to ISO11254-1. In order to obtain more accurate results than that with manual measurement, in the software system, a hardware device can be controlled by control widget on the operator interfaces. According to the sample characteristic, critical parameters of the LIDT measurement system such as spot diameter, damage threshold region, and critical damage pixel number are set up on the man-machine conversation interface, which could realize intelligent measurements of the LIDT. According to experimental data, the LIDT is obtained by fitting damage curve automatically.

  12. State transition storyboards: A tool for designing the Goldstone solar system radar data acquisition system user interface software

    NASA Technical Reports Server (NTRS)

    Howard, S. D.

    1987-01-01

    Effective user interface design in software systems is a complex task that takes place without adequate modeling tools. By combining state transition diagrams and the storyboard technique of filmmakers, State Transition Storyboards were developed to provide a detailed modeling technique for the Goldstone Solar System Radar Data Acquisition System human-machine interface. Illustrations are included with a description of the modeling technique.

  13. Basics of robotics and manipulators in endoscopic surgery.

    PubMed

    Rininsland, H H

    1993-06-01

    The experience with sophisticated remote handling systems for nuclear operations in inaccessible rooms can to a large extent be transferred to the development of robotics and telemanipulators for endoscopic surgery. A telemanipulator system is described consisting of manipulator, endeffector and tools, 3-D video-endoscope, sensors, intelligent control system, modeling and graphic simulation and man-machine interfaces as the main components or subsystems. Such a telemanipulator seems to be medically worthwhile and technically feasible, but needs a lot of effort from different scientific disciplines to become a safe and reliable instrument for future endoscopic surgery.

  14. High-autonomy control of space resource processing plants

    NASA Technical Reports Server (NTRS)

    Schooley, Larry C.; Zeigler, Bernard P.; Cellier, Francois E.; Wang, Fei-Yue

    1993-01-01

    A highly autonomous intelligent command/control architecture has been developed for planetary surface base industrial process plants and Space Station Freedom experimental facilities. The architecture makes use of a high-level task-oriented mode with supervisory control from one or several remote sites, and integrates advanced network communications concepts and state-of-the-art man/machine interfaces with the most advanced autonomous intelligent control. Attention is given to the full-dynamics model of a Martian oxygen-production plant, event-based/fuzzy-logic process control, and fault management practices.

  15. Naval Applications of Virtual Reality,

    DTIC Science & Technology

    1993-01-01

    Expert Virtual Reality Special Report 󈨡, pp. 67- 72. 14. SUBJECT TERMS 15 NUMBER o0 PAGES man-machine interface virtual reality decision support...collective and individual performance. -" Virtual reality projects could help *y by Mark Gembicki Av-t-abilty CodesA Avafllat Idt Iofe and David Rousseau...alt- 67 VIRTUAL . REALITY SPECIAl, REPORT r-OPY avcriaikxb to DD)C qg .- 154,41X~~~~~~~~~~~~j 1411 iI..:41 T a].’ 1,1 4 1111 I 4 1 * .11 ~ 4 l.~w111511 I

  16. Advanced Avionics and the Military Aircraft Man/Machine Interface.

    DTIC Science & Technology

    1982-07-01

    voiture au bas c~t6 de la route, angle d’incidence de l’aile, etc ... Le domaine de variation de chacun de ces param~tres de fonctionnement est en gdn6...ral limit6. Les limites, du domaine autoris6 sont bien souvent floues ; en toute rigueur il faut adniettre qu’au milieu du domaine autoristi, la...rapidement catastrophique 11 est n6anmoihs commode de parler de limite de domaine autoris6 pour chaque para- m~tre de fonctionnement tout en gardant A

  17. Land Vehicle Navigation ? A Worldwide Perspective

    NASA Astrophysics Data System (ADS)

    French, Robert L.

    This paper was presented at the NAV '90 conference and was first published in the Journal in 1991 (Vol. 44, p. 25). It is followed by comments from Christopher Querée.The future shakeout and consolidation of vehicle navigation technologies and systems approaches will occur primarily in the vehicle location, mobile data communications, and man/machine interface areas. Digital maps will not be directly affected because, although there is still a dearth of formal standards, there is already a high degree of uniformity among approaches being pursued in all parts of the world.

  18. Some research advances in computer graphics that will enhance applications to engineering design

    NASA Technical Reports Server (NTRS)

    Allan, J. J., III

    1975-01-01

    Research in man/machine interactions and graphics hardware/software that will enhance applications to engineering design was described. Research aspects of executive systems, command languages, and networking used in the computer applications laboratory are mentioned. Finally, a few areas where little or no research is being done were identified.

  19. Software Engineering for User Interfaces. Technical Report.

    ERIC Educational Resources Information Center

    Draper, Stephen W.; Norman, Donald A.

    The discipline of software engineering can be extended in a natural way to deal with the issues raised by a systematic approach to the design of human-machine interfaces. The user should be treated as part of the system being designed and projects should be organized to take into account the current lack of a priori knowledge of user interface…

  20. Software architecture for time-constrained machine vision applications

    NASA Astrophysics Data System (ADS)

    Usamentiaga, Rubén; Molleda, Julio; García, Daniel F.; Bulnes, Francisco G.

    2013-01-01

    Real-time image and video processing applications require skilled architects, and recent trends in the hardware platform make the design and implementation of these applications increasingly complex. Many frameworks and libraries have been proposed or commercialized to simplify the design and tuning of real-time image processing applications. However, they tend to lack flexibility, because they are normally oriented toward particular types of applications, or they impose specific data processing models such as the pipeline. Other issues include large memory footprints, difficulty for reuse, and inefficient execution on multicore processors. We present a novel software architecture for time-constrained machine vision applications that addresses these issues. The architecture is divided into three layers. The platform abstraction layer provides a high-level application programming interface for the rest of the architecture. The messaging layer provides a message-passing interface based on a dynamic publish/subscribe pattern. A topic-based filtering in which messages are published to topics is used to route the messages from the publishers to the subscribers interested in a particular type of message. The application layer provides a repository for reusable application modules designed for machine vision applications. These modules, which include acquisition, visualization, communication, user interface, and data processing, take advantage of the power of well-known libraries such as OpenCV, Intel IPP, or CUDA. Finally, the proposed architecture is applied to a real machine vision application: a jam detector for steel pickling lines.

  1. Continuous performance measurement in flight systems. [sequential control model

    NASA Technical Reports Server (NTRS)

    Connelly, E. M.; Sloan, N. A.; Zeskind, R. M.

    1975-01-01

    The desired response of many man machine control systems can be formulated as a solution to an optimal control synthesis problem where the cost index is given and the resulting optimal trajectories correspond to the desired trajectories of the man machine system. Optimal control synthesis provides the reference criteria and the significance of error information required for performance measurement. The synthesis procedure described provides a continuous performance measure (CPM) which is independent of the mechanism generating the control action. Therefore, the technique provides a meaningful method for online evaluation of man's control capability in terms of total man machine performance.

  2. ClearTK 2.0: Design Patterns for Machine Learning in UIMA

    PubMed Central

    Bethard, Steven; Ogren, Philip; Becker, Lee

    2014-01-01

    ClearTK adds machine learning functionality to the UIMA framework, providing wrappers to popular machine learning libraries, a rich feature extraction library that works across different classifiers, and utilities for applying and evaluating machine learning models. Since its inception in 2008, ClearTK has evolved in response to feedback from developers and the community. This evolution has followed a number of important design principles including: conceptually simple annotator interfaces, readable pipeline descriptions, minimal collection readers, type system agnostic code, modules organized for ease of import, and assisting user comprehension of the complex UIMA framework. PMID:29104966

  3. ClearTK 2.0: Design Patterns for Machine Learning in UIMA.

    PubMed

    Bethard, Steven; Ogren, Philip; Becker, Lee

    2014-05-01

    ClearTK adds machine learning functionality to the UIMA framework, providing wrappers to popular machine learning libraries, a rich feature extraction library that works across different classifiers, and utilities for applying and evaluating machine learning models. Since its inception in 2008, ClearTK has evolved in response to feedback from developers and the community. This evolution has followed a number of important design principles including: conceptually simple annotator interfaces, readable pipeline descriptions, minimal collection readers, type system agnostic code, modules organized for ease of import, and assisting user comprehension of the complex UIMA framework.

  4. Concurrent Image Processing Executive (CIPE). Volume 1: Design overview

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Groom, Steven L.; Mazer, Alan S.; Williams, Winifred I.

    1990-01-01

    The design and implementation of a Concurrent Image Processing Executive (CIPE), which is intended to become the support system software for a prototype high performance science analysis workstation are described. The target machine for this software is a JPL/Caltech Mark 3fp Hypercube hosted by either a MASSCOMP 5600 or a Sun-3, Sun-4 workstation; however, the design will accommodate other concurrent machines of similar architecture, i.e., local memory, multiple-instruction-multiple-data (MIMD) machines. The CIPE system provides both a multimode user interface and an applications programmer interface, and has been designed around four loosely coupled modules: user interface, host-resident executive, hypercube-resident executive, and application functions. The loose coupling between modules allows modification of a particular module without significantly affecting the other modules in the system. In order to enhance hypercube memory utilization and to allow expansion of image processing capabilities, a specialized program management method, incremental loading, was devised. To minimize data transfer between host and hypercube, a data management method which distributes, redistributes, and tracks data set information was implemented. The data management also allows data sharing among application programs. The CIPE software architecture provides a flexible environment for scientific analysis of complex remote sensing image data, such as planetary data and imaging spectrometry, utilizing state-of-the-art concurrent computation capabilities.

  5. Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces

    PubMed Central

    Herbert, Robert; Kim, Jong-Hoon; Kim, Yun Soung; Lee, Hye Moon

    2018-01-01

    Flexible hybrid electronics (FHE), designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas. PMID:29364861

  6. Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces.

    PubMed

    Herbert, Robert; Kim, Jong-Hoon; Kim, Yun Soung; Lee, Hye Moon; Yeo, Woon-Hong

    2018-01-24

    Flexible hybrid electronics (FHE), designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas.

  7. Man/computer communication in a space environment

    NASA Technical Reports Server (NTRS)

    Hodges, B. C.; Montoya, G.

    1973-01-01

    The present work reports on a study of the technology required to advance the state of the art in man/machine communications. The study involved the development and demonstration of both hardware and software to effectively implement man/computer interactive channels of communication. While tactile and visual man/computer communications equipment are standard methods of interaction with machines, man's speech is a natural media for inquiry and control. As part of this study, a word recognition unit was developed capable of recognizing a minimum of one hundred different words or sentences in any one of the currently used conversational languages. The study has proven that efficiency in communication between man and computer can be achieved when the vocabulary to be used is structured in a manner compatible with the rigid communication requirements of the machine while at the same time responsive to the informational needs of the man.

  8. FSW of Aluminum Tailor Welded Blanks across Machine Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovanski, Yuri; Upadhyay, Piyush; Carlson, Blair

    2015-02-16

    Development and characterization of friction stir welded aluminum tailor welded blanks was successfully carried out on three separate machine platforms. Each was a commercially available, gantry style, multi-axis machine designed specifically for friction stir welding. Weld parameters were developed to support high volume production of dissimilar thickness aluminum tailor welded blanks at speeds of 3 m/min and greater. Parameters originally developed on an ultra-high stiffness servo driven machine where first transferred to a high stiffness servo-hydraulic friction stir welding machine, and subsequently transferred to a purpose built machine designed to accommodate thin sheet aluminum welding. The inherent beam stiffness, bearingmore » compliance, and control system for each machine were distinctly unique, which posed specific challenges in transferring welding parameters across machine platforms. This work documents the challenges imposed by successfully transferring weld parameters from machine to machine, produced from different manufacturers and with unique control systems and interfaces.« less

  9. Haptics-based immersive telerobotic system for improvised explosive device disposal: Are two hands better than one?

    NASA Astrophysics Data System (ADS)

    Erickson, David; Lacheray, Hervé; Lambert, Jason Michel; Mantegh, Iraj; Crymble, Derry; Daly, John; Zhao, Yan

    2012-06-01

    State-of-the-art robotic explosive ordnance disposal robotics have not, in general, adopted recent advances in control technology and man-machine interfaces and lag many years behind academia. This paper describes the Haptics-based Immersive Telerobotic System project investigating an immersive telepresence envrionment incorporating advanced vehicle control systems, Augmented immersive sensory feedback, dynamic 3D visual information, and haptic feedback for explosive ordnance disposal operators. The project aim is to provide operatiors a more sophisticated interface and expand sensory input to perform complex tasks to defeat improvised explosive devices successfully. The introduction of haptics and immersive teleprescence has the potential to shift the way teleprescence systems work for explosive ordnance disposal tasks or more widely for first responders scenarios involving remote unmanned ground vehicles.

  10. Virtual reality for intelligent and interactive operating, training, and visualization systems

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Schluse, Michael

    2000-10-01

    Virtual Reality Methods allow a new and intuitive way of communication between man and machine. The basic idea of Virtual Reality (VR) is the generation of artificial computer simulated worlds, which the user not only can look at but also can interact with actively using data glove and data helmet. The main emphasis for the use of such techniques at the IRF is the development of a new generation of operator interfaces for the control of robots and other automation components and for intelligent training systems for complex tasks. The basic idea of the methods developed at the IRF for the realization of Projective Virtual Reality is to let the user work in the virtual world as he would act in reality. The user actions are recognized by the Virtual reality System and by means of new and intelligent control software projected onto the automation components like robots which afterwards perform the necessary actions in reality to execute the users task. In this operation mode the user no longer has to be a robot expert to generate tasks for robots or to program them, because intelligent control software recognizes the users intention and generated automatically the commands for nearly every automation component. Now, Virtual Reality Methods are ideally suited for universal man-machine-interfaces for the control and supervision of a big class of automation components, interactive training and visualization systems. The Virtual Reality System of the IRF-COSIMIR/VR- forms the basis for different projects starting with the control of space automation systems in the projects CIROS, VITAL and GETEX, the realization of a comprehensive development tool for the International Space Station and last but not least with the realistic simulation fire extinguishing, forest machines and excavators which will be presented in the final paper in addition to the key ideas of this Virtual Reality System.

  11. The Utilization of Navy People-Related RDT&E (Research, Development, Test, and Evaluation): Fiscal Year 1983.

    DTIC Science & Technology

    1984-06-01

    emostraion. Tese eserch ool wee deignted and experimental demonstrations wre successfully con- for demonstrations. These research tools wre designated ...Topics 4.02 Instructional Systems Design Methodology Instructional Systems Development and Effectiveness Evaluation .................................... 1...6 53 0 0 67w Report Page 10.07 Human Performance Variables/Factors 10.08 Man-Machine Design Methodology Computer Assisted Methods for Human

  12. Analysis of tasks for dynamic man/machine load balancing in advanced helicopters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgensen, C.C.

    1987-10-01

    This report considers task allocation requirements imposed by advanced helicopter designs incorporating mixes of human pilots and intelligent machines. Specifically, it develops an analogy between load balancing using distributed non-homogeneous multiprocessors and human team functions. A taxonomy is presented which can be used to identify task combinations likely to cause overload for dynamic scheduling and process allocation mechanisms. Designer criteria are given for function decomposition, separation of control from data, and communication handling for dynamic tasks. Possible effects of n-p complete scheduling problems are noted and a class of combinatorial optimization methods are examined.

  13. Development of the FITS tools package for multiple software environments

    NASA Technical Reports Server (NTRS)

    Pence, W. D.; Blackburn, J. K.

    1992-01-01

    The HEASARC is developing a package of general purpose software for analyzing data files in FITS format. This paper describes the design philosophy which makes the software both machine-independent (it runs on VAXs, Suns, and DEC-stations) and software environment-independent. Currently the software can be compiled and linked to produce IRAF tasks, or alternatively, the same source code can be used to generate stand-alone tasks using one of two implementations of a user-parameter interface library. The machine independence of the software is achieved by writing the source code in ANSI standard Fortran or C, using the machine-independent FITSIO subroutine interface for all data file I/O, and using a standard user-parameter subroutine interface for all user I/O. The latter interface is based on the Fortran IRAF Parameter File interface developed at STScI. The IRAF tasks are built by linking to the IRAF implementation of this parameter interface library. Two other implementations of this parameter interface library, which have no IRAF dependencies, are now available which can be used to generate stand-alone executable tasks. These stand-alone tasks can simply be executed from the machine operating system prompt either by supplying all the task parameters on the command line or by entering the task name after which the user will be prompted for any required parameters. A first release of this FTOOLS package is now publicly available. The currently available tasks are described, along with instructions on how to obtain a copy of the software.

  14. Design of conveyor type machine with numerical control for manufacturing of extrusion thermoplastic thread

    NASA Astrophysics Data System (ADS)

    Gorbunova, T. N.; Koltunov, I. I.; Tumanova, M. B.

    2018-05-01

    The article is devoted to the development of a model and control program for a 3D printer working based on extrusion technology. The article contains descriptions of all components of the machine and blocks of the interface of the control program.

  15. Robust Real-Time Musculoskeletal Modeling Driven by Electromyograms.

    PubMed

    Durandau, Guillaume; Farina, Dario; Sartori, Massimo

    2018-03-01

    Current clinical biomechanics involves lengthy data acquisition and time-consuming offline analyses with biomechanical models not operating in real-time for man-machine interfacing. We developed a method that enables online analysis of neuromusculoskeletal function in vivo in the intact human. We used electromyography (EMG)-driven musculoskeletal modeling to simulate all transformations from muscle excitation onset (EMGs) to mechanical moment production around multiple lower-limb degrees of freedom (DOFs). We developed a calibration algorithm that enables adjusting musculoskeletal model parameters specifically to an individual's anthropometry and force-generating capacity. We incorporated the modeling paradigm into a computationally efficient, generic framework that can be interfaced in real-time with any movement data collection system. The framework demonstrated the ability of computing forces in 13 lower-limb muscle-tendon units and resulting moments about three joint DOFs simultaneously in real-time. Remarkably, it was capable of extrapolating beyond calibration conditions, i.e., predicting accurate joint moments during six unseen tasks and one unseen DOF. The proposed framework can dramatically reduce evaluation latency in current clinical biomechanics and open up new avenues for establishing prompt and personalized treatments, as well as for establishing natural interfaces between patients and rehabilitation systems. The integration of EMG with numerical modeling will enable simulating realistic neuromuscular strategies in conditions including muscular/orthopedic deficit, which could not be robustly simulated via pure modeling formulations. This will enable translation to clinical settings and development of healthcare technologies including real-time bio-feedback of internal mechanical forces and direct patient-machine interfacing.

  16. Human capabilities in space. [man machine interaction

    NASA Technical Reports Server (NTRS)

    Nicogossian, A. E.

    1984-01-01

    Man's ability to live and perform useful work in space was demonstrated throughout the history of manned space flight. Current planning envisions a multi-functional space station. Man's unique abilities to respond to the unforeseen and to operate at a level of complexity exceeding any reasonable amount of previous planning distinguish him from present day machines. His limitations, however, include his inherent inability to survive without protection, his limited strength, and his propensity to make mistakes when performing repetitive and monotonous tasks. By contrast, an automated system does routine and delicate tasks, exerts force smoothly and precisely, stores, and recalls large amounts of data, and performs deductive reasoning while maintaining a relative insensitivity to the environment. The establishment of a permanent presence of man in space demands that man and machines be appropriately combined in spaceborne systems. To achieve this optimal combination, research is needed in such diverse fields as artificial intelligence, robotics, behavioral psychology, economics, and human factors engineering.

  17. A novel device for head gesture measurement system in combination with eye-controlled human machine interface

    NASA Astrophysics Data System (ADS)

    Lin, Chern-Sheng; Ho, Chien-Wa; Chang, Kai-Chieh; Hung, San-Shan; Shei, Hung-Jung; Yeh, Mau-Shiun

    2006-06-01

    This study describes the design and combination of an eye-controlled and a head-controlled human-machine interface system. This system is a highly effective human-machine interface, detecting head movement by changing positions and numbers of light sources on the head. When the users utilize the head-mounted display to browse a computer screen, the system will catch the images of the user's eyes with CCD cameras, which can also measure the angle and position of the light sources. In the eye-tracking system, the program in the computer will locate each center point of the pupils in the images, and record the information on moving traces and pupil diameters. In the head gesture measurement system, the user wears a double-source eyeglass frame, so the system catches images of the user's head by using a CCD camera in front of the user. The computer program will locate the center point of the head, transferring it to the screen coordinates, and then the user can control the cursor by head motions. We combine the eye-controlled and head-controlled human-machine interface system for the virtual reality applications.

  18. Integration of Modelling and Graphics to Create an Infrared Signal Processing Test Bed

    NASA Astrophysics Data System (ADS)

    Sethi, H. R.; Ralph, John E.

    1989-03-01

    The work reported in this paper was carried out as part of a contract with MoD (PE) UK. It considers the problems associated with realistic modelling of a passive infrared system in an operational environment. Ideally all aspects of the system and environment should be integrated into a complete end-to-end simulation but in the past limited computing power has prevented this. Recent developments in workstation technology and the increasing availability of parallel processing techniques makes the end-to-end simulation possible. However the complexity and speed of such simulations means difficulties for the operator in controlling the software and understanding the results. These difficulties can be greatly reduced by providing an extremely user friendly interface and a very flexible, high power, high resolution colour graphics capability. Most system modelling is based on separate software simulation of the individual components of the system itself and its environment. These component models may have their own characteristic inbuilt assumptions and approximations, may be written in the language favoured by the originator and may have a wide variety of input and output conventions and requirements. The models and their limitations need to be matched to the range of conditions appropriate to the operational scenerio. A comprehensive set of data bases needs to be generated by the component models and these data bases must be made readily available to the investigator. Performance measures need to be defined and displayed in some convenient graphics form. Some options are presented for combining available hardware and software to create an environment within which the models can be integrated, and which provide the required man-machine interface, graphics and computing power. The impact of massively parallel processing and artificial intelligence will be discussed. Parallel processing will make real time end-to-end simulation possible and will greatly improve the graphical visualisation of the model output data. Artificial intelligence should help to enhance the man-machine interface.

  19. A manned-machine space station construction concept

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr.; Bush, H. G.; Wallsom, R. E.; Dorsey, J. T.; Rhodes, M. D.

    1984-01-01

    A design concept for the construction of a permanent manned space station is developed and discussed. The main considerations examined in developing the design concept are: (1) the support structure of the station be stiff enough to preclude the need for an elaborate on-orbit system to control structural response, (2) the station support structure and solar power system be compatible with existing technology, and (3) the station be capable of growing in a systematic modular fashion. The concept is developed around the assembly of truss platforms by pressure-suited astronauts operating in extravehicular activity (EVA), assisted by a machine (Assembly and Transport Vehicle, ATV) to position the astronauts at joint locations where they latch truss members in place. The ATV is a mobile platform that is attached to and moves on the station support structure using pegs attached to each truss joint. The operation of the ATV is described and a number of conceptual configurations for potential space stations are developed.

  20. Geometric dimension model of virtual astronaut body for ergonomic analysis of man-machine space system

    NASA Astrophysics Data System (ADS)

    Qianxiang, Zhou

    2012-07-01

    It is very important to clarify the geometric characteristic of human body segment and constitute analysis model for ergonomic design and the application of ergonomic virtual human. The typical anthropometric data of 1122 Chinese men aged 20-35 years were collected using three-dimensional laser scanner for human body. According to the correlation between different parameters, curve fitting were made between seven trunk parameters and ten body parameters with the SPSS 16.0 software. It can be concluded that hip circumference and shoulder breadth are the most important parameters in the models and the two parameters have high correlation with the others parameters of human body. By comparison with the conventional regressive curves, the present regression equation with the seven trunk parameters is more accurate to forecast the geometric dimensions of head, neck, height and the four limbs with high precision. Therefore, it is greatly valuable for ergonomic design and analysis of man-machine system.This result will be very useful to astronaut body model analysis and application.

  1. Reliability Evaluation and Improvement Approach of Chemical Production Man - Machine - Environment System

    NASA Astrophysics Data System (ADS)

    Miao, Yongchun; Kang, Rongxue; Chen, Xuefeng

    2017-12-01

    In recent years, with the gradual extension of reliability research, the study of production system reliability has become the hot topic in various industries. Man-machine-environment system is a complex system composed of human factors, machinery equipment and environment. The reliability of individual factor must be analyzed in order to gradually transit to the research of three-factor reliability. Meanwhile, the dynamic relationship among man-machine-environment should be considered to establish an effective blurry evaluation mechanism to truly and effectively analyze the reliability of such systems. In this paper, based on the system engineering, fuzzy theory, reliability theory, human error, environmental impact and machinery equipment failure theory, the reliabilities of human factor, machinery equipment and environment of some chemical production system were studied by the method of fuzzy evaluation. At last, the reliability of man-machine-environment system was calculated to obtain the weighted result, which indicated that the reliability value of this chemical production system was 86.29. Through the given evaluation domain it can be seen that the reliability of man-machine-environment integrated system is in a good status, and the effective measures for further improvement were proposed according to the fuzzy calculation results.

  2. Space Station Human Factors Research Review. Volume 1: EVA Research and Development

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (Editor); Vykukal, H. C. (Editor)

    1988-01-01

    An overview is presented of extravehicular activity (EVA) research and development activities at Ames. The majority of the program was devoted to presentations by the three contractors working in parallel on the EVA System Phase A Study, focusing on Implications for Man-Systems Design. Overhead visuals are included for a mission results summary, space station EVA requirements and interface accommodations summary, human productivity study cross-task coordination, and advanced EVAS Phase A study implications for man-systems design. Articles are also included on subsea approach to work systems development and advanced EVA system design requirements.

  3. Analytical study of electrical disconnect system for use on manned and unmanned missions

    NASA Technical Reports Server (NTRS)

    Rosener, A. A.; Lenda, J. A.; Trummer, R. O.

    1976-01-01

    The objective of this contract is to establish an optimum electrical disconnect system design(s) for use on manned and unmanned missions. The purpose of the disconnect system is to electrically mate and demate the spacecraft to subsystem module interfaces to accomplish orbital operations. The results of Task 1 and Task 2 of the effort are presented. Task 1 involves the definition of the functional, operational, and environmental requirements for the connector system to support the leading prototype candidate concepts. Task 2 involves the documentation review and survey of available existing connector designs.

  4. A forestry application simulation of man-machine techniques for analyzing remotely sensed data

    NASA Technical Reports Server (NTRS)

    Berkebile, J.; Russell, J.; Lube, B.

    1976-01-01

    The typical steps in the analysis of remotely sensed data for a forestry applications example are simulated. The example uses numerically-oriented pattern recognition techniques and emphasizes man-machine interaction.

  5. Decoding the non-stationary neuron spike trains by dual Monte Carlo point process estimation in motor Brain Machine Interfaces.

    PubMed

    Liao, Yuxi; Li, Hongbao; Zhang, Qiaosheng; Fan, Gong; Wang, Yiwen; Zheng, Xiaoxiang

    2014-01-01

    Decoding algorithm in motor Brain Machine Interfaces translates the neural signals to movement parameters. They usually assume the connection between the neural firings and movements to be stationary, which is not true according to the recent studies that observe the time-varying neuron tuning property. This property results from the neural plasticity and motor learning etc., which leads to the degeneration of the decoding performance when the model is fixed. To track the non-stationary neuron tuning during decoding, we propose a dual model approach based on Monte Carlo point process filtering method that enables the estimation also on the dynamic tuning parameters. When applied on both simulated neural signal and in vivo BMI data, the proposed adaptive method performs better than the one with static tuning parameters, which raises a promising way to design a long-term-performing model for Brain Machine Interfaces decoder.

  6. Real-time on-board orbit determination with DORIS

    NASA Technical Reports Server (NTRS)

    Berthias, J.-P.; Jayles, C.; Pradines, D.

    1993-01-01

    A spaceborne orbit determination system is being developed by the French Space Agency (CNES) for the SPOT 4 satellite. It processes DORIS measurements to produce an orbit with an accuracy of about 50O meters rms. In order to evaluate the reliability of the software, it was combined with the MERCATOR man/machine interface and used to process the TOPEX/Poseidon DORIS data in near real time during the validation phase of the instrument, at JPL and at CNES. This paper gives an overview of the orbit determination system and presents the results of the TOPEX/Poseidon experiment.

  7. Study of Man-Machine Communications Systems for Disabled Persons (The Handicapped). Volume V. Final Report.

    ERIC Educational Resources Information Center

    Kafafian, Haig

    Instructions are given for teaching severely physically and/or neurologically handicapped students to use the 14-key Cybertype man-machine communications system, an electric writing machine with a simplified keyboard to enable persons with limited motor ability or coordination to communicate in written form. Explained are the various possible…

  8. Study of Man-Machine Communications Systems for the Handicapped. Volume III. Final Report.

    ERIC Educational Resources Information Center

    Kafafian, Haig

    The report describes a series of studies conducted to determine the extent to which severly handicapped students who were able to comprehend language and language structure but who were not able to write or type could communicate using various man-machine systems. Included among the systems tested were specialized electric typewriting machines, a…

  9. Reliability and the design process at Honeywell Avionics Division

    NASA Technical Reports Server (NTRS)

    Bezat, A.

    1981-01-01

    The division's philosophy for designed-in reliability and a comparison of reliability programs for space, manned military aircraft, and commercial aircraft, are presented. Topics include: the reliability interface with design and production; the concept phase through final proposal; the design, development, test and evaluation phase; the production phase; and the commonality among space, military, and commercial avionics.

  10. Effects of checklist interface on non-verbal crew communications

    NASA Technical Reports Server (NTRS)

    Segal, Leon D.

    1994-01-01

    The investigation looked at the effects of the spatial layout and functionality of cockpit displays and controls on crew communication. Specifically, the study focused on the intra-cockpit crew interaction, and subsequent task performance, of airline pilots flying different configurations of a new electronic checklist, designed and tested in a high-fidelity simulator at NASA Ames Research Center. The first part of this proposal establishes the theoretical background for the assumptions underlying the research, suggesting that in the context of the interaction between a multi-operator crew and a machine, the design and configuration of the interface will affect interactions between individual operators and the machine, and subsequently, the interaction between operators. In view of the latest trends in cockpit interface design and flight-deck technology, in particular, the centralization of displays and controls, the introduction identifies certain problems associated with these modern designs and suggests specific design issues to which the expected results could be applied. A detailed research program and methodology is outlined and the results are described and discussed. Overall, differences in cockpit design were shown to impact the activity within the cockpit, including interactions between pilots and aircraft and the cooperative interactions between pilots.

  11. Charting the energy landscape of metal/organic interfaces via machine learning

    NASA Astrophysics Data System (ADS)

    Scherbela, Michael; Hörmann, Lukas; Jeindl, Andreas; Obersteiner, Veronika; Hofmann, Oliver T.

    2018-04-01

    The rich polymorphism exhibited by inorganic/organic interfaces is a major challenge for materials design. In this work, we present a method to efficiently explore the potential energy surface and predict the formation energies of polymorphs and defects. This is achieved by training a machine learning model on a list of only 100 candidate structures that are evaluated via dispersion-corrected density functional theory (DFT) calculations. We demonstrate the power of this approach for tetracyanoethylene on Ag(100) and explain the anisotropic ordering that is observed experimentally.

  12. Charting the energy landscape of metal/organic interfaces via machine learning

    DOE PAGES

    Scherbela, Michael; Hormann, Lukas; Jeindl, Andreas; ...

    2018-04-17

    The rich polymorphism exhibited by inorganic/organic interfaces is a major challenge for materials design. Here in this work, we present a method to efficiently explore the potential energy surface and predict the formation energies of polymorphs and defects. This is achieved by training a machine learning model on a list of only 100 candidate structures that are evaluated via dispersion-corrected density functional theory (DFT) calculations. Finally, we demonstrate the power of this approach for tetracyanoethylene on Ag(100) and explain the anisotropic ordering that is observed experimentally.

  13. Charting the energy landscape of metal/organic interfaces via machine learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherbela, Michael; Hormann, Lukas; Jeindl, Andreas

    The rich polymorphism exhibited by inorganic/organic interfaces is a major challenge for materials design. Here in this work, we present a method to efficiently explore the potential energy surface and predict the formation energies of polymorphs and defects. This is achieved by training a machine learning model on a list of only 100 candidate structures that are evaluated via dispersion-corrected density functional theory (DFT) calculations. Finally, we demonstrate the power of this approach for tetracyanoethylene on Ag(100) and explain the anisotropic ordering that is observed experimentally.

  14. Intelligible machine learning with malibu.

    PubMed

    Langlois, Robert E; Lu, Hui

    2008-01-01

    malibu is an open-source machine learning work-bench developed in C/C++ for high-performance real-world applications, namely bioinformatics and medical informatics. It leverages third-party machine learning implementations for more robust bug-free software. This workbench handles several well-studied supervised machine learning problems including classification, regression, importance-weighted classification and multiple-instance learning. The malibu interface was designed to create reproducible experiments ideally run in a remote and/or command line environment. The software can be found at: http://proteomics.bioengr. uic.edu/malibu/index.html.

  15. Apollo Lightcraft Project

    NASA Technical Reports Server (NTRS)

    Myrabo, Leik N.; Smith, Wayne L. (Editor); Decusatis, Casimer; Frazier, Scott R.; Garrison, James L., Jr.; Meltzer, Jonathan S.; Minucci, Marco A.; Moder, Jeffrey P.; Morales, Ciro; Mueller, Mark T.

    1988-01-01

    This second year of the NASA/USRA-sponsored Advanced Aeronautical Design effort focused on systems integration and analysis of the Apollo Lightcraft. This beam-powered, single-stage-to-orbit vehicle is envisioned as the shuttlecraft of the 21st century. The five person vehicle was inspired largely by the Apollo Command Module, then reconfigured to include a new front seat with dual cockpit controls for the pilot and co-pilot, while still retaining the 3-abreast crew accommodations in the rear seat. The gross liftoff mass is 5550 kg, of which 500 kg is the payload and 300 kg is the LH2 propellant. The round trip cost to orbit is projected to be three orders of magnitude lower than the current space shuttle orbiter. The advanced laser-driven 5-speed combined-cycle engine has shiftpoints at Mach 1, 5, 11 and 25+. The Apollo Lightcraft can climb into low Earth orbit in three minutes, or fly to any spot on the globe in less than 45 minutes. Detailed investigations of the Apollo Lightcraft Project this second year further evolved the propulsion system design, while focusing on the following areas: (1) man/machine interface; (2) flight control systems; (3) power beaming system architecture; (4) re-entry aerodynamics; (5) shroud structural dynamics; and (6) optimal trajectory analysis. The principal new findings are documented. Advanced design efforts for the next academic year (1988/1989) will center on a one meter+ diameter spacecraft: the Lightcraft Technology Demonstrator (LTD). Detailed engineering design and analyses, as well as critical proof-of-concept experiments, will be carried out on this small, near-term machine. As presently conceived, the LTD could be constructed using state of the art components derived from existing liquid chemical rocket engine technology, advanced composite materials, and high power laser optics.

  16. Flight telerobotic servicer legacy

    NASA Astrophysics Data System (ADS)

    Shattuck, Paul L.; Lowrie, James W.

    1992-11-01

    The Flight Telerobotic Servicer (FTS) was developed to enhance and provide a safe alternative to human presence in space. The first step for this system was a precursor development test flight (DTF-1) on the Space Shuttle. DTF-1 was to be a pathfinder for manned flight safety of robotic systems. The broad objectives of this mission were three-fold: flight validation of telerobotic manipulator (design, control algorithms, man/machine interfaces, safety); demonstration of dexterous manipulator capabilities on specific building block tasks; and correlation of manipulator performance in space with ground predictions. The DTF-1 system is comprised of a payload bay element (7-DOF manipulator with controllers, end-of-arm gripper and camera, telerobot body with head cameras and electronics module, task panel, and MPESS truss) and an aft flight deck element (force-reflecting hand controller, crew restraint, command and display panel and monitors). The approach used to develop the DTF-1 hardware, software and operations involved flight qualification of components from commercial, military, space, and R controller, end-of-arm tooling, force/torque transducer) and the development of the telerobotic system for space applications. The system is capable of teleoperation and autonomous control (advances state of the art); reliable (two-fault tolerance); and safe (man-rated). Benefits from the development flight included space validation of critical telerobotic technologies and resolution of significant safety issues relating to telerobotic operations in the Shuttle bay or in the vicinity of other space assets. This paper discusses the lessons learned and technology evolution that stemmed from developing and integrating a dexterous robot into a manned system, the Space Shuttle. Particular emphasis is placed on the safety and reliability requirements for a man-rated system as these are the critical factors which drive the overall system architecture. Other topics focused on include: task requirements and operational concepts for servicing and maintenance of space platforms; origins of technology for dexterous robotic systems; issues associated with space qualification of components; and development of the industrial base to support space robotics.

  17. Free-flying teleoperator requirements and conceptual design.

    NASA Technical Reports Server (NTRS)

    Onega, G. T.; Clingman, J. H.

    1973-01-01

    A teleoperator, as defined by NASA, is a remotely controlled cybernetic man-machine system designed to augment and extend man's sensory, manipulative, and cognitive capabilities. Teleoperator systems can fulfill an important function in the Space Shuttle program. They can retrieve automated satellites for refurbishment and reuse. Cargo can be transferred over short or large distances and orbital operations can be supported. A requirements analysis is discussed, giving attention to the teleoperator spacecraft, docking and stowage systems, display and controls, propulsion, guidance, navigation, control, the manipulators, the video system, the electrical power, and aspects of communication and data management. Questions of concept definition and evaluation are also examined.

  18. A Custom Robotic System for Inspecting HEPA Filters in the Payload Changeout Room at the NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Spencer, James E., Jr.; Looney, Joe

    1994-01-01

    In this paper, the prime objective is to describe a custom 4-dof (degree-of-freedom) robotic arm capable of autonomously or telerobotically performing systematic HEPA filter inspection and certification in the Shuttle Launch Pad Payload Changeout Rooms (PCR's) on pads A and B at the Kennedy Space Center, Florida. This HEPA filter inspection robot (HFIR) has been designed to be easily deployable and is equipped with the necessary sensory devices, control hardware, software and man-machine interfaces needed to implement HEPA filter inspection reliably and efficiently without damaging the filters or colliding with existing PCR structures or filters. The main purpose of the HFIR is to implement an automated positioning system to move special inspection sensors in pre-defined or manual patterns for the purpose of verifying filter integrity and efficiency. This will ultimately relieve NASA Payload Operations from significant problems associated with time, cost and personnel safety, impacts realized during non-automated PCR HFIR filter certification.

  19. Scanpath-based analysis of objects conspicuity in context of human vision physiology.

    PubMed

    Augustyniak, Piotr

    2007-01-01

    This paper discusses principal aspects of objects conspicuity investigated with use of an eye tracker and interpreted on the background of human vision physiology. Proper management of objects conspicuity is fundamental in several leading edge applications in the information society like advertisement, web design, man-machine interfacing and ergonomics. Although some common rules of human perception are applied since centuries in the art, the interest of human perception process is motivated today by the need of gather and maintain the recipient attention by putting selected messages in front of the others. Our research uses the visual tasks methodology and series of progressively modified natural images. The modifying details were attributed by their size, color and position while the scanpath-derived gaze points confirmed or not the act of perception. The statistical analysis yielded the probability of detail perception and correlations with the attributes. This probability conforms to the knowledge about the retina anatomy and perception physiology, although we use noninvasive methods only.

  20. Task-oriented display design - Concept and example

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1989-01-01

    The general topic was in the area of display design alternatives for improved man-machine performance. The intent was to define and assess a display design concept oriented toward providing this task-oriented information. The major focus of this concept deals with the processing of data into parameters that are more relevant to the task of the human operator. Closely coupled to this concept of relevant information is the form or manner in which this information is actually presented. Conventional forms of presentation are normally a direct representation of the underlying data. By providing information in a form that is more easily assimilated and understood, a reduction in human error and cognitive workload may be obtained. A description of this proposed concept with a design example is provided. The application for the example was an engine display for a generic, twin-engine civil transport aircraft. The product of this concept was evaluated against a functionally similar, traditional display. The results of this evaluation showed that a task-oriented approach to design is a viable concept with regard to reducing user error and cognitive workload. The goal of this design process, providing task-oriented information to the user, both in content and form, appears to be a feasible mechanism for increasing the overall performance of a man-machine system.

  1. Task-oriented display design: Concept and example

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1989-01-01

    The general topic was in the area of display design alternatives for improved man-machine performance. The intent was to define and assess a display design concept oriented toward providing this task-oriented information. The major focus of this concept deals with the processing of data into parameters that are more relevant to the task of the human operator. Closely coupled to this concept of relevant information is the form or manner in which this information is actually presented. Conventional forms of presentation are normally a direct representation of the underlying data. By providing information in a form that is more easily assimilated and understood, a reduction in human error and cognitive workload may be obtained. A description of this proposed concept with a design example is provided. The application for the example was an engine display for a generic, twin-engine civil transport aircraft. The product of this concept was evaluated against a functionally similar, traditional display. The results of this evaluation showed that a task-oriented approach to design is a viable concept with regard to reducing user error and cognitive workload. The goal of this design process, providing task-oriented information to the user, both in content and form, appears to be a feasible mechanism for increasing the overall performance of a man-machine system.

  2. Proceedings of the NASA Conference on Space Telerobotics, volume 1

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty.

  3. Visually Coupled Systems (VCS): The Virtual Panoramic Display (VPD) System

    NASA Technical Reports Server (NTRS)

    Kocian, Dean F.

    1992-01-01

    The development and impact is described of new visually coupled system (VCS) equipment designed to support engineering and human factors research in the military aircraft cockpit environment. VCS represents an advanced man-machine interface (MMI). Its potential to improve aircrew situational awareness seems enormous, but its superiority over the conventional cockpit MMI has not been established in a conclusive and rigorous fashion. What has been missing is a 'systems' approach to technology advancement that is comprehensive enough to produce conclusive results concerning the operational viability of the VCS concept and verify any risk factors that might be involved with its general use in the cockpit. The advanced VCS configuration described here, was ruggedized for use in military aircraft environments and was dubbed the Virtual Panoramic Display (VPD). It was designed to answer the VCS portion of the systems problem, and is implemented as a modular system whose performance can be tailored to specific application requirements. The overall system concept and the design of the two most important electronic subsystems that support the helmet mounted parts, a new militarized version of the magnetic helmet mounted sight and correspondingly similar helmet display electronics, are discussed in detail. Significant emphasis is given to illustrating how particular design features in the hardware improve overall system performance and support research activities.

  4. A system-level approach to automation research

    NASA Technical Reports Server (NTRS)

    Harrison, F. W.; Orlando, N. E.

    1984-01-01

    Automation is the application of self-regulating mechanical and electronic devices to processes that can be accomplished with the human organs of perception, decision, and actuation. The successful application of automation to a system process should reduce man/system interaction and the perceived complexity of the system, or should increase affordability, productivity, quality control, and safety. The expense, time constraints, and risk factors associated with extravehicular activities have led the Automation Technology Branch (ATB), as part of the NASA Automation Research and Technology Program, to investigate the use of robots and teleoperators as automation aids in the context of space operations. The ATB program addresses three major areas: (1) basic research in autonomous operations, (2) human factors research on man-machine interfaces with remote systems, and (3) the integration and analysis of automated systems. This paper reviews the current ATB research in the area of robotics and teleoperators.

  5. Intelligent Adaptive Interface: A Design Tool for Enhancing Human-Machine System Performances

    DTIC Science & Technology

    2009-10-01

    and customizable. Thus, an intelligent interface should tailor its parameters to certain prescribed specifications or convert itself and adjust to...Computer Interaction 3(2): 87-122. [51] Schereiber, G., Akkermans, H., Anjewierden, A., de Hoog , R., Shadbolt, N., Van de Velde, W., & Wielinga, W

  6. The Bartlesville System; TGISS Software Documentation.

    ERIC Educational Resources Information Center

    Roberts, Tommy L.; And Others

    TGISS (Total Guidance Information Support System) is an information storage and retrieval system specifically designed to meet the needs and requirements of a counselor in the Bartlesville Public School environment. The system, which is a combination of man/machine capabilities, includes the hardware and software necessary to extend the…

  7. Human-machine interface hardware: The next decade

    NASA Technical Reports Server (NTRS)

    Marcus, Elizabeth A.

    1991-01-01

    In order to understand where human-machine interface hardware is headed, it is important to understand where we are today, how we got there, and what our goals for the future are. As computers become more capable, faster, and programs become more sophisticated, it becomes apparent that the interface hardware is the key to an exciting future in computing. How can a user interact and control a seemingly limitless array of parameters effectively? Today, the answer is most often a limitless array of controls. The link between these controls and human sensory motor capabilities does not utilize existing human capabilities to their full extent. Interface hardware for teleoperation and virtual environments is now facing a crossroad in design. Therefore, we as developers need to explore how the combination of interface hardware, human capabilities, and user experience can be blended to get the best performance today and in the future.

  8. Advanced telepresence surgery system development.

    PubMed

    Jensen, J F; Hill, J W

    1996-01-01

    SRI International is currently developing a prototype remote telepresence surgery system, for the Advanced Research Projects Agency (ARPA), that will bring life-saving surgical care to wounded soldiers in the zone of combat. Remote surgery also has potentially important applications in civilian medicine. In addition, telepresence will find wide medical use in local surgery, in endoscopic, laparoscopic, and microsurgery applications. Key elements of the telepresence technology now being developed for ARPA, including the telepresence surgeon's workstation (TSW) and associated servo control systems, will have direct application to these areas of minimally invasive surgery. The TSW technology will also find use in surgical training, where it will provide an immersive visual and haptic interface for interaction with computer-based anatomical models. In this paper, we discuss our ongoing development of the MEDFAST telesurgery system, focusing on the TSW man-machine interface and its associated servo control electronics.

  9. A rapid prototyping/artificial intelligence approach to space station-era information management and access

    NASA Technical Reports Server (NTRS)

    Carnahan, Richard S., Jr.; Corey, Stephen M.; Snow, John B.

    1989-01-01

    Applications of rapid prototyping and Artificial Intelligence techniques to problems associated with Space Station-era information management systems are described. In particular, the work is centered on issues related to: (1) intelligent man-machine interfaces applied to scientific data user support, and (2) the requirement that intelligent information management systems (IIMS) be able to efficiently process metadata updates concerning types of data handled. The advanced IIMS represents functional capabilities driven almost entirely by the needs of potential users. Space Station-era scientific data projected to be generated is likely to be significantly greater than data currently processed and analyzed. Information about scientific data must be presented clearly, concisely, and with support features to allow users at all levels of expertise efficient and cost-effective data access. Additionally, mechanisms for allowing more efficient IIMS metadata update processes must be addressed. The work reported covers the following IIMS design aspects: IIMS data and metadata modeling, including the automatic updating of IIMS-contained metadata, IIMS user-system interface considerations, including significant problems associated with remote access, user profiles, and on-line tutorial capabilities, and development of an IIMS query and browse facility, including the capability to deal with spatial information. A working prototype has been developed and is being enhanced.

  10. [Training cortical signals by means of a BMI-EEG system, its evolution and intervention. A case report].

    PubMed

    Monge-Pereira, E; Casatorres Perez-Higueras, I; Fernandez-Gonzalez, P; Ibanez-Pereda, J; Serrano, J I; Molina-Rueda, F

    2017-04-16

    In the last years, new technologies such as the brain-machine interfaces (BMI) have been incorporated in the rehabilitation process of subjects with stroke. These systems are able to detect motion intention, analyzing the cortical signals using different techniques such as the electroencephalography (EEG). This information could guide different interfaces such as robotic devices, electrical stimulation or virtual reality. A 40 years-old man with stroke with two months from the injury participated in this study. We used a BMI based on EEG. The subject's motion intention was analyzed calculating the event-related desynchronization. The upper limb motor function was evaluated with the Fugl-Meyer Assessment and the participant's satisfaction was evaluated using the QUEST 2.0. The intervention using a physical therapist as an interface was carried out without difficulty. The BMI systems detect cortical changes in a subacute stroke subject. These changes are coherent with the evolution observed using the Fugl-Meyer Assessment.

  11. Delivering key signals to the machine: seeking the electric signal that muscles emanate

    NASA Astrophysics Data System (ADS)

    Bani Hashim, A. Y.; Maslan, M. N.; Izamshah, R.; Mohamad, I. S.

    2014-11-01

    Due to the limitation of electric power generation in the human body, present human-machine interfaces have not been successful because of the nature of standard electronics circuit designs, which do not consider the specifications of signals that resulted from the skin. In general, the outcomes and applications of human-machine interfaces are limited to custom-designed subsystems, such as neuroprosthesis. We seek to model the bio dynamical of sub skin into equivalent mathematical definitions, descriptions, and theorems. Within the human skin, there are networks of nerves that permit the skin to function as a multi dimension transducer. We investigate the nature of structural skin. Apart from multiple networks of nerves, there are other segments within the skin such as minute muscles. We identify the segments that are active when there is an electromyography activity. When the nervous system is firing signals, the muscle is being stimulated. We evaluate the phenomena of biodynamic of the muscles that is concerned with the electromyography activity of the nervous system. In effect, we design a relationship between the human somatosensory and synthetic systems sensory as the union of a complete set of the new domain of the functional system. This classifies electromyogram waveforms linked to intent thought of an operator. The system will become the basis for delivering key signals to machine such that the machine is under operator's intent, hence slavery.

  12. Integrated intelligent sensor for the textile industry

    NASA Astrophysics Data System (ADS)

    Peltie, Philippe; David, Dominique

    1996-08-01

    A new sensor has been developed for pantyhose inspection. Unlike a first complete inspection machine devoted to post- manufacturing control of the whole panty, this sensor will be directly integrated on currently existing manufacturing machines, and will combine advantages of miniaturization is to design an intelligent, compact and very cheap product, which should be integrated without requiring any modifications of host machines. The sensor part was designed to achieve closed acquisition, and various solutions have been explored to maintain adequate depth of field. The illumination source will be integrated in the device. The processing part will include correction facilities and electronic processing. Finally, high-level information will be output in order to interface directly with the manufacturing machine automate.

  13. A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface

    PubMed Central

    Su, Yi; Routhu, Sudhamayee; Moon, Kee S.; Lee, Sung Q.; Youm, WooSub; Ozturk, Yusuf

    2016-01-01

    All neural information systems (NIS) rely on sensing neural activity to supply commands and control signals for computers, machines and a variety of prosthetic devices. Invasive systems achieve a high signal-to-noise ratio (SNR) by eliminating the volume conduction problems caused by tissue and bone. An implantable brain machine interface (BMI) using intracortical electrodes provides excellent detection of a broad range of frequency oscillatory activities through the placement of a sensor in direct contact with cortex. This paper introduces a compact-sized implantable wireless 32-channel bidirectional brain machine interface (BBMI) to be used with freely-moving primates. The system is designed to monitor brain sensorimotor rhythms and present current stimuli with a configurable duration, frequency and amplitude in real time to the brain based on the brain activity report. The battery is charged via a novel ultrasonic wireless power delivery module developed for efficient delivery of power into a deeply-implanted system. The system was successfully tested through bench tests and in vivo tests on a behaving primate to record the local field potential (LFP) oscillation and stimulate the target area at the same time. PMID:27669264

  14. Crew interface analysis: Selected articles on space human factors research, 1987 - 1991

    NASA Technical Reports Server (NTRS)

    Bagian, Tandi (Compiler)

    1993-01-01

    As part of the Flight Crew Support Division at NASA, the Crew Interface Analysis Section is dedicated to the study of human factors in the manned space program. It assumes a specialized role that focuses on answering operational questions pertaining to NASA's Space Shuttle and Space Station Freedom Programs. One of the section's key contributions is to provide knowledge and information about human capabilities and limitations that promote optimal spacecraft and habitat design and use to enhance crew safety and productivity. The section provides human factors engineering for the ongoing missions as well as proposed missions that aim to put human settlements on the Moon and Mars. Research providing solutions to operational issues is the primary objective of the Crew Interface Analysis Section. The studies represent such subdisciplines as ergonomics, space habitability, man-computer interaction, and remote operator interaction.

  15. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.

    PubMed

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  16. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP

    PubMed Central

    Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency. PMID:26448740

  17. THE COMPUTER AND THE ARCHITECTURAL PROFESSION.

    ERIC Educational Resources Information Center

    HAVILAND, DAVID S.

    THE ROLE OF ADVANCING TECHNOLOGY IN THE FIELD OF ARCHITECTURE IS DISCUSSED IN THIS REPORT. PROBLEMS IN COMMUNICATION AND THE DESIGN PROCESS ARE IDENTIFIED. ADVANTAGES AND DISADVANTAGES OF COMPUTERS ARE MENTIONED IN RELATION TO MAN AND MACHINE INTERACTION. PRESENT AND FUTURE IMPLICATIONS OF COMPUTER USAGE ARE IDENTIFIED AND DISCUSSED WITH RESPECT…

  18. Low-cost boring mill

    NASA Technical Reports Server (NTRS)

    Hibdon, R. A.

    1979-01-01

    Portable unit and special fixture serve as boring mill. Machine, fabricated primarily from scrap metal, was designed and set up in about 12 working days. It has reduced setup and boring time by 66 percent as compared with existing boring miles, thereby making latter available for other jobs. Unit can be operated by one man.

  19. Man-machine communication - A transparent switchboard for computers

    NASA Technical Reports Server (NTRS)

    Rasmussen, H.

    1971-01-01

    Device uses pattern of transparent contact touch points that are put on cathode ray tube screen. Touch point system compels more precise and unambiguous communication between man and machine than is possible with any other means, and speeds up operation responses.

  20. Controlling the autonomy of a reconnaissance robot

    NASA Astrophysics Data System (ADS)

    Dalgalarrondo, Andre; Dufourd, Delphine; Filliat, David

    2004-09-01

    In this paper, we present our research on the control of a mobile robot for indoor reconnaissance missions. Based on previous work concerning our robot control architecture HARPIC, we have developed a man machine interface and software components that allow a human operator to control a robot at different levels of autonomy. This work aims at studying how a robot could be helpful in indoor reconnaissance and surveillance missions in hostile environment. In such missions, since a soldier faces many threats and must protect himself while looking around and holding his weapon, he cannot devote his attention to the teleoperation of the robot. Moreover, robots are not yet able to conduct complex missions in a fully autonomous mode. Thus, in a pragmatic way, we have built a software that allows dynamic swapping between control modes (manual, safeguarded and behavior-based) while automatically performing map building and localization of the robot. It also includes surveillance functions like movement detection and is designed for multirobot extensions. We first describe the design of our agent-based robot control architecture and discuss the various ways to control and interact with a robot. The main modules and functionalities implementing those ideas in our architecture are detailed. More precisely, we show how we combine manual controls, obstacle avoidance, wall and corridor following, way point and planned travelling. Some experiments on a Pioneer robot equipped with various sensors are presented. Finally, we suggest some promising directions for the development of robots and user interfaces for hostile environment and discuss our planned future improvements.

  1. Proceedings of the 8th Annual Conference on Manual Control

    NASA Technical Reports Server (NTRS)

    Pew, R. W.

    1972-01-01

    The volume presents recent developments in the field of manual control theory and applications. The papers give analytical methods as well as examples of the important interplay between man and machine, such as how man controls and stabilizes machine dynamics, and how machines extend man's capability. Included in the broad range of subjects are procedures to evaluate and identify display systems, controllers, manipulators, human operators, aircraft, and non-flying vehicles. Of particular interest is the continuing trend of applying control theory to problems in medicine and psychology, as well as to problems in vehicle control.

  2. The human role in space: Technology, economics and optimization

    NASA Technical Reports Server (NTRS)

    Hall, S. B. (Editor)

    1985-01-01

    Man-machine interactions in space are explored in detail. The role and the degree of direct involvement of humans that will be required in future space missions are investigated. An attempt is made to establish valid criteria for allocating functional activities between humans and machines and to provide insight into the technological requirements, economics, and benefits of the human presence in space. Six basic categories of man-machine interactions are considered: manual, supported, augmented, teleoperated, supervised, and independent. Appendices are included which provide human capability data, project analyses, activity timeline profiles and data sheets for 37 generic activities, support equipment and human capabilities required in these activities, and cumulative costs as a function of activity for seven man-machine modes.

  3. Neuromechanism Study of Insect–Machine Interface: Flight Control by Neural Electrical Stimulation

    PubMed Central

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A.; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect–machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee–machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control. PMID:25409523

  4. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    PubMed

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect-machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  5. A phase one AR/C system design

    NASA Technical Reports Server (NTRS)

    Kachmar, Peter M.; Polutchko, Robert J.; Matusky, Martin; Chu, William; Jackson, William; Montez, Moises

    1991-01-01

    The Phase One AR&C System Design integrates an evolutionary design based on the legacy of previous mission successes, flight tested components from manned Rendezvous and Proximity Operations (RPO) space programs, and additional AR&C components validated using proven methods. The Phase One system has a modular, open architecture with the standardized interfaces proposed for Space Station Freedom system architecture.

  6. Design, fabrication and test of a trace contaminant control system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A trace contaminant control system was designed, fabricated, and evaluated to determine suitability of the system concept to future manned spacecraft. Two different models were considered. The load model initially required by the contract was based on the Space Station Prototype (SSP) general specifications SVSK HS4655, reflecting a change from a 9 man crew to a 6 man crew of the model developed in previous phases of this effort. Trade studies and a system preliminary design were accomplished based on this contaminant load, including computer analyses to define the optimum system configuration in terms of component arrangements, flow rates and component sizing. At the completion of the preliminary design effort a revised contaminant load model was developed for the SSP. Additional analyses were then conducted to define the impact of this new contaminant load model on the system configuration. A full scale foam-core mock-up with the appropriate SSP system interfaces was also fabricated.

  7. Design Evaluation for Personnel, Training and Human Factors (DEPTH) Final Report.

    DTIC Science & Technology

    1998-01-17

    human activity was primarily intended to facilitate man-machine design analyses of complex systems. By importing computer aided design (CAD) data, the human figure models and analysis algorithms can help to ensure components can be seen, reached, lifted and removed by most maintainers. These simulations are also useful for logistics data capture, training, and task analysis. DEPTH was also found to be useful in obtaining task descriptions for technical

  8. Selectivity and Longevity of Peripheral-Nerve and Machine Interfaces: A Review

    PubMed Central

    Ghafoor, Usman; Kim, Sohee; Hong, Keum-Shik

    2017-01-01

    For those individuals with upper-extremity amputation, a daily normal living activity is no longer possible or it requires additional effort and time. With the aim of restoring their sensory and motor functions, theoretical and technological investigations have been carried out in the field of neuroprosthetic systems. For transmission of sensory feedback, several interfacing modalities including indirect (non-invasive), direct-to-peripheral-nerve (invasive), and cortical stimulation have been applied. Peripheral nerve interfaces demonstrate an edge over the cortical interfaces due to the sensitivity in attaining cortical brain signals. The peripheral nerve interfaces are highly dependent on interface designs and are required to be biocompatible with the nerves to achieve prolonged stability and longevity. Another criterion is the selection of nerves that allows minimal invasiveness and damages as well as high selectivity for a large number of nerve fascicles. In this paper, we review the nerve-machine interface modalities noted above with more focus on peripheral nerve interfaces, which are responsible for provision of sensory feedback. The invasive interfaces for recording and stimulation of electro-neurographic signals include intra-fascicular, regenerative-type interfaces that provide multiple contact channels to a group of axons inside the nerve and the extra-neural-cuff-type interfaces that enable interaction with many axons around the periphery of the nerve. Section Current Prosthetic Technology summarizes the advancements made to date in the field of neuroprosthetics toward the achievement of a bidirectional nerve-machine interface with more focus on sensory feedback. In the Discussion section, the authors propose a hybrid interface technique for achieving better selectivity and long-term stability using the available nerve interfacing techniques. PMID:29163122

  9. 27. Bollinger twinchain tandem, pigcasting machine, located at the north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Bollinger twin-chain tandem, pig-casting machine, located at the north end of the plant. Prior to closing, approximately 40 percent of the plant's: iron production was cast into pigs and sold to foundry customers. The pig-casting machine employed a controller, lime man, trough man, and crane operator. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  10. Formal verification of human-automation interaction

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Heymann, Michael

    2002-01-01

    This paper discusses a formal and rigorous approach to the analysis of operator interaction with machines. It addresses the acute problem of detecting design errors in human-machine interaction and focuses on verifying the correctness of the interaction in complex and automated control systems. The paper describes a systematic methodology for evaluating whether the interface provides the necessary information about the machine to enable the operator to perform a specified task successfully and unambiguously. It also addresses the adequacy of information provided to the user via training material (e.g., user manual) about the machine's behavior. The essentials of the methodology, which can be automated and applied to the verification of large systems, are illustrated by several examples and through a case study of pilot interaction with an autopilot aboard a modern commercial aircraft. The expected application of this methodology is an augmentation and enhancement, by formal verification, of human-automation interfaces.

  11. A New Facility Design and Work Method for the Quantitative Fit Testing Laboratory

    DTIC Science & Technology

    1989-05-01

    AtRV=’Uk kUB C RELEASEIW R190 I ERNEST A. HAYGOOD, 1st Lt, USAF Executive Officer, Civilian Institution Proarams 17. COSATI CODES 18. SUBJECT TERMS...22. NAME O RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Mdud. e Cd) 22c. OFFICE SYMBOL ERNEST A. HAYGOOD, lst Lt, USAF (513) 255-2259 A AFIT/CI DO Form 1473...Morgan et al. C1963) define a link as "any connection between a man and a machine or between one man and another" (p. 322). Lippert [1971) studied the

  12. Network Modeling and Energy-Efficiency Optimization for Advanced Machine-to-Machine Sensor Networks

    PubMed Central

    Jung, Sungmo; Kim, Jong Hyun; Kim, Seoksoo

    2012-01-01

    Wireless machine-to-machine sensor networks with multiple radio interfaces are expected to have several advantages, including high spatial scalability, low event detection latency, and low energy consumption. Here, we propose a network model design method involving network approximation and an optimized multi-tiered clustering algorithm that maximizes node lifespan by minimizing energy consumption in a non-uniformly distributed network. Simulation results show that the cluster scales and network parameters determined with the proposed method facilitate a more efficient performance compared to existing methods. PMID:23202190

  13. Development of sensitized pick coal interface detector system

    NASA Technical Reports Server (NTRS)

    Burchill, R. F.

    1979-01-01

    One approach for detection of the coal interface is measurement of the pick cutting hoads and shock through the use of pick strain gage load cells and accelerometers. The cutting drum of a long wall mining machine contains a number of cutting picks. In order to measure pick loads and shocks, one pick was instrumented and telementry used to transmit the signals from the drum to an instrument-type tape recorder. A data system using FM telemetry was designed to transfer cutting bit load and shock information from the drum of a longwall shearer coal mining machine to a chassis mounted data recorder.

  14. Study About Ceiling Design for Main Control Room of NPP with HFE

    NASA Astrophysics Data System (ADS)

    Gu, Pengfei; Ni, Ying; Chen, Weihua; Chen, Bo; Zhang, Jianbo; Liang, Huihui

    Recently since human factor engineering (HFE) has been used in control room design of nuclear power plant (NPP), the human-machine interface (HMI) has been gradual to develop harmoniously, especially the use of the digital technology. Comparing with the analog technology which was used to human-machine interface in the past, human-machine interaction has been more enhanced. HFE and the main control room (MCR) design engineering of NPP is a combination of multidisciplinary cross, mainly related to electrical and instrument control, reactor, machinery, systems engineering and management disciplines. However, MCR is not only equipped with HMI provided by the equipments, but also more important for the operator to provide a work environment, such as the main control room ceiling. The ceiling design of main control room related to HFE which influences the performance of staff should also be considered in the design of the environment and aesthetic factors, especially the introduction of professional design experience and evaluation method. Based on Ling Ao phase II and Hong Yanhe project implementation experience, the study analyzes lighting effect, space partition, vision load about the ceiling of main control room of NPP. Combining with the requirements of standards, the advantages and disadvantages of the main control room ceiling design has been discussed, and considering the requirements of lightweight, noise reduction, fire prevention, moisture protection, the ceiling design solution of the main control room also has been discussed.

  15. Man-Machine Communication Research.

    DTIC Science & Technology

    1977-02-01

    communication difficulty for the computer-naive; discovery of major communication structures in human communication that have been left out of man-machine...processes; creation of a new overview of how human communication functions in cooperative task-oriented activity; and assistance in ARPA policy formation on CAI equipment development.

  16. The effects of time delay in man-machine control systems: Implications for design of flight simulator Visual-Display-Delay compensation

    NASA Technical Reports Server (NTRS)

    Crane, D. F.

    1984-01-01

    When human operators are performing precision tracking tasks, their dynamic response can often be modeled by quasilinear describing functions. That fact permits analysis of the effects of delay in certain man machine control systems using linear control system analysis techniques. The analysis indicates that a reduction in system stability is the immediate effect of additional control system delay, and that system characteristics moderate or exaggerate the importance of the delay. A selection of data (simulator and flight test) consistent with the analysis is reviewed. Flight simulator visual-display delay compensation, designed to restore pilot aircraft system stability, was evaluated in several studies which are reviewed here. The studies range from single-axis, tracking-task experiments (with sufficient subjects and trials to establish the statistical significance of the results) to a brief evaluation of compensation of a computer generated imagery (CGI) visual display system in a full six degree of freedom simulation. The compensation was effective, improvements in pilot performance and workload or aircraft handling qualities rating (HQR) were observed. Results from recent aircraft handling qualities research literature, which support the compensation design approach, are also reviewed.

  17. 49 CFR Appendix E to Part 236 - Human-Machine Interface (HMI) Design

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... operator to change position; (4) Arrange controls according to their expected order of use; (5) Group similar controls together; (6) Design for high stimulus-response compatibility (geometric and conceptual); (7) Design safety-critical controls to require more than one positive action to activate (e.g., auto...

  18. 49 CFR Appendix E to Part 236 - Human-Machine Interface (HMI) Design

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... operator to change position; (4) Arrange controls according to their expected order of use; (5) Group similar controls together; (6) Design for high stimulus-response compatibility (geometric and conceptual); (7) Design safety-critical controls to require more than one positive action to activate (e.g., auto...

  19. 49 CFR Appendix E to Part 236 - Human-Machine Interface (HMI) Design

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... operator to change position; (4) Arrange controls according to their expected order of use; (5) Group similar controls together; (6) Design for high stimulus-response compatibility (geometric and conceptual); (7) Design safety-critical controls to require more than one positive action to activate (e.g., auto...

  20. 49 CFR Appendix E to Part 236 - Human-Machine Interface (HMI) Design

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... operator to change position; (4) Arrange controls according to their expected order of use; (5) Group similar controls together; (6) Design for high stimulus-response compatibility (geometric and conceptual); (7) Design safety-critical controls to require more than one positive action to activate (e.g., auto...

  1. 49 CFR Appendix E to Part 236 - Human-Machine Interface (HMI) Design

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... operator to change position; (4) Arrange controls according to their expected order of use; (5) Group similar controls together; (6) Design for high stimulus-response compatibility (geometric and conceptual); (7) Design safety-critical controls to require more than one positive action to activate (e.g., auto...

  2. Guidelines on ergonomic aspects of control rooms

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M.; Bocast, A. K.; Stewart, L. J.

    1983-01-01

    The anthropometry, workstation design, and environmental design of control rooms are outlined. The automated interface and VDTs and displays and various modes of communication between the system and the human operator using VDTs are discussed. The man in the loop is examined, the single controller single task framework and multiple controller multiple tasks issues are considered.

  3. The role of automation and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Schappell, R. T.

    1983-07-01

    Consideration is given to emerging technologies that are not currently in common use, yet will be mature enough for implementation in a space station. Artificial intelligence (AI) will permit more autonomous operation and improve the man-machine interfaces. Technology goals include the development of expert systems, a natural language query system, automated planning systems, and AI image understanding systems. Intelligent robots and teleoperators will be needed, together with improved sensory systems for the robotics, housekeeping, vehicle control, and spacecraft housekeeping systems. Finally, NASA is developing the ROBSIM computer program to evaluate level of automation, perform parametric studies and error analyses, optimize trajectories and control systems, and assess AI technology.

  4. Reconfigurable Mobile System - Ground, sea and air applications

    NASA Astrophysics Data System (ADS)

    Lamonica, Gary L.; Sturges, James W.

    1990-11-01

    The Reconfigurable Mobile System (RMS) is a highly mobile data-processing unit for military users requiring real-time access to data gathered by airborne (and other) reconnaissance data. RMS combines high-performance computation and image processing workstations with resources for command/control/communications in a single, lightweight shelter. RMS is composed of off-the-shelf components, and is easily reconfigurable to land-vehicle or shipboard versions. Mission planning, which involves an airborne sensor platform's sensor coverage, considered aircraft/sensor capabilities in conjunction with weather, terrain, and threat scenarios. RMS's man-machine interface concept facilitates user familiarization and features iron-based function selection and windowing.

  5. A Prototype Decision Support System for the Location of Military Water Points.

    DTIC Science & Technology

    1980-06-01

    create an environ- ment which is conductive to an efficient man/machine decision making system . This could be accomplished by designing the operating...Figure 12. Flowchart of Program COMPUTE 50 Procedure This Decision Support System was designed to be interactive. That is, it requests data from the user...Pg. 82-114, 1974. 24. Geoffrion, A.M. and G.W. Graves, "Multicomodity Distribution System Design by Benders Partition", Management Science, Vol. 20, Pg

  6. Applications of EVA guidelines and design criteria. Volume 3: EVA systems cost model formating

    NASA Technical Reports Server (NTRS)

    Brown, N. E.

    1973-01-01

    The development of a model for estimating the impact of manned EVA costs on future payloads is discussed. Basic information on the EV crewman requirements, equipment, physical and operational characteristics, and vehicle interfaces is provided. The cost model is being designed to allow system designers to quantify the impact of EVA on vehicle and payload systems.

  7. Development of techniques to enhance man/machine communication

    NASA Technical Reports Server (NTRS)

    Targ, R.; Cole, P.; Puthoff, H.

    1974-01-01

    A four-state random stimulus generator, considered to function as an ESP teaching machine was used to investigate an approach to facilitating interactions between man and machines. A subject tries to guess in which of four states the machine is. The machine offers the user feedback and reinforcement as to the correctness of his choice. Using this machine, 148 volunteer subjects were screened under various protocols. Several whose learning slope and/or mean score departed significantly from chance expectation were identified. Direct physiological evidence of perception of remote stimuli not presented to any known sense of the percipient using electroencephalographic (EEG) output when a light was flashed in a distant room was also studied.

  8. Role-Based And Adaptive User Interface Designs In A Teledermatology Consult System: A Way To Secure And A Way To Enhance

    PubMed Central

    Lin, Yi-Jung; Speedie, Stuart

    2003-01-01

    User interface design is one of the most important parts of developing applications. Nowadays, a quality user interface must not only accommodate interaction between machines and users, but also needs to recognize the differences and provide functionalities for users from role-to-role or even individual-to-individual. With the web-based application of our Teledermatology consult system, the development environment provides us highly useful opportunities to create dynamic user interfaces, which lets us to gain greater access control and has the potential to increase efficiency of the system. We will describe the two models of user interfaces in our system: Role-based and Adaptive. PMID:14728419

  9. GLOBECOM '85 - Global Telecommunications Conference, New Orleans, LA, December 2-5, 1985, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    Various papers on global telecommunications are presented. The general topics addressed include: multiservice integration with optical fibers, multicompany owned telecommunication networks, softworks quality and reliability, advanced on-board processing, impact of new services and systems on operations and maintenance, analytical studies of protocols for data communication networks, topics in packet radio networking, CCITT No. 7 to support new services, document processing and communication, antenna technology and system aspects in satellite communications. Also considered are: communication systems modelling methodology, experimental integrated local area voice/data nets, spread spectrum communications, motion video at the DS-0 rate, optical and data communications, intelligent work stations, switch performance analysis, novel radio communication systems, wireless local networks, ISDN services, LAN communication protocols, user-system interface, radio propagation and performance, mobile satellite system, software for computer networks, VLSI for ISDN terminals, quality management, man-machine interfaces in switching, and local area network performance.

  10. Human-Vehicle Interface for Semi-Autonomous Operation of Uninhabited Aero Vehicles

    NASA Technical Reports Server (NTRS)

    Jones, Henry L.; Frew, Eric W.; Woodley, Bruce R.; Rock, Stephen M.

    2001-01-01

    The robustness of autonomous robotic systems to unanticipated circumstances is typically insufficient for use in the field. The many skills of human user often fill this gap in robotic capability. To incorporate the human into the system, a useful interaction between man and machine must exist. This interaction should enable useful communication to be exchanged in a natural way between human and robot on a variety of levels. This report describes the current human-robot interaction for the Stanford HUMMINGBIRD autonomous helicopter. In particular, the report discusses the elements of the system that enable multiple levels of communication. An intelligent system agent manages the different inputs given to the helicopter. An advanced user interface gives the user and helicopter a method for exchanging useful information. Using this human-robot interaction, the HUMMINGBIRD has carried out various autonomous search, tracking, and retrieval missions.

  11. Adjustable impedance, force feedback and command language aids for telerobotics (parts 1-4 of an 8-part MIT progress report)

    NASA Technical Reports Server (NTRS)

    Sheridan, Thomas B.; Raju, G. Jagganath; Buzan, Forrest T.; Yared, Wael; Park, Jong

    1989-01-01

    Projects recently completed or in progress at MIT Man-Machine Systems Laboratory are summarized. (1) A 2-part impedance network model of a single degree of freedom remote manipulation system is presented in which a human operator at the master port interacts with a task object at the slave port in a remote location is presented. (2) The extension of the predictor concept to include force feedback and dynamic modeling of the manipulator and the environment is addressed. (3) A system was constructed to infer intent from the operator's commands and the teleoperation context, and generalize this information to interpret future commands. (4) A command language system is being designed that is robust, easy to learn, and has more natural man-machine communication. A general telerobot problem selected as an important command language context is finding a collision-free path for a robot.

  12. Biocybernetic factors in human perception and memory

    NASA Technical Reports Server (NTRS)

    Lai, D. C.

    1975-01-01

    The objective of this research is to develop biocybernetic techniques for use in the analysis and development of skills required for the enhancement of concrete images of the 'eidetic' type. The scan patterns of the eye during inspection of scenes are treated as indicators of the brain's strategy for the intake of visual information. The authors determine the features that differentiate visual scan patterns associated with superior imagery from scan patterns associated with inferior imagery, and simultaneously differentiate the EEG features correlated with superior imagery from those correlated with inferior imagery. A closely-coupled man-machine system has been designed to generate image enhancement and to train the individual to exert greater voluntary control over his own imagery. The models for EEG signals and saccadic eye movement in the man-machine system have been completed. The report describes the details of these models and discusses their usefulness.

  13. Whole-cell biocomputing

    NASA Technical Reports Server (NTRS)

    Simpson, M. L.; Sayler, G. S.; Fleming, J. T.; Applegate, B.

    2001-01-01

    The ability to manipulate systems on the molecular scale naturally leads to speculation about the rational design of molecular-scale machines. Cells might be the ultimate molecular-scale machines and our ability to engineer them is relatively advanced when compared with our ability to control the synthesis and direct the assembly of man-made materials. Indeed, engineered whole cells deployed in biosensors can be considered one of the practical successes of molecular-scale devices. However, these devices explore only a small portion of cellular functionality. Individual cells or self-organized groups of cells perform extremely complex functions that include sensing, communication, navigation, cooperation and even fabrication of synthetic nanoscopic materials. In natural systems, these capabilities are controlled by complex genetic regulatory circuits, which are only partially understood and not readily accessible for use in engineered systems. Here, we focus on efforts to mimic the functionality of man-made information-processing systems within whole cells.

  14. Intelligent Adaptive Systems: Literature Research of Design Guidance for Intelligent Adaptive Automation and Interfaces

    DTIC Science & Technology

    2007-09-01

    behaviour based on past experience of interacting with the operator), and mobile (i.e., can move themselves from one machine to another). Edwards argues that...Sofge, D., Bugajska, M., Adams, W., Perzanowski, D., and Schultz, A. (2003). Agent-based Multimodal Interface for Dynamically Autonomous Mobile Robots...based architecture can provide a natural and scalable approach to implementing a multimodal interface to control mobile robots through dynamic

  15. Optical HMI with biomechanical energy harvesters integrated in textile supports

    NASA Astrophysics Data System (ADS)

    De Pasquale, G.; Kim, SG; De Pasquale, D.

    2015-12-01

    This paper reports the design, prototyping and experimental validation of a human-machine interface (HMI), named GoldFinger, integrated into a glove with energy harvesting from fingers motion. The device is addressed to medical applications, design tools, virtual reality field and to industrial applications where the interaction with machines is restricted by safety procedures. The HMI prototype includes four piezoelectric transducers applied to the fingers backside at PIP (proximal inter-phalangeal) joints, electric wires embedded in the fabric connecting the transducers, aluminum case for the electronics, wearable switch made with conductive fabrics to turn the communication channel on and off, and a LED. The electronic circuit used to manage the power and to control the light emitter includes a diodes bridge, leveling capacitors, storage battery and switch made by conductive fabric. The communication with the machine is managed by dedicated software, which includes the user interface, the optical tracking, and the continuous updating of the machine microcontroller. The energetic benefit of energy harvester on the battery lifetime is inversely proportional to the activation time of the optical emitter. In most applications, the optical port is active for 1 to 5% of the time, corresponding to battery lifetime increasing between about 14% and 70%.

  16. Two Dimensional Display for a Naval Duel: Man-Machine Interactive Game.

    DTIC Science & Technology

    Man-machine interactive games simulating naval duels are being conducted at the University of Pennsylvania. The players act as the commanding...officers of their respective vessels. They navigate, detect, and analyze their own and their opponent’s activities in the duel . The report describes the two

  17. Advances in Machine Technology.

    PubMed

    Clark, William R; Villa, Gianluca; Neri, Mauro; Ronco, Claudio

    2018-01-01

    Continuous renal replacement therapy (CRRT) machines have evolved into devices specifically designed for critically ill over the past 40 years. In this chapter, a brief history of this evolution is first provided, with emphasis on the manner in which changes have been made to address the specific needs of the critically ill patient with acute kidney injury. Subsequently, specific examples of technology developments for CRRT machines are discussed, including the user interface, pumps, pressure monitoring, safety features, and anticoagulation capabilities. © 2018 S. Karger AG, Basel.

  18. Intelligent Systems and Advanced User Interfaces for Design, Operation, and Maintenance of Command Management Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    Historically Command Management Systems (CMS) have been large, expensive, spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for CMS systems. Current MOC (mission operations center) hardware and software include Unix workstations, the C/C++ and Java programming languages, and X and Java window interfaces representations. This configuration provides the power and flexibility to support sophisticated systems and intelligent user interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision making, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of the issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, design and analysis tools from a human-machine systems engineering point of view (e.g., operator and designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well as continuity for CMS design and development across spacecraft with varying needs. The savings in this case is in software reuse at all stages of the software engineering process.

  19. Spikes, Local Field Potentials, and Electrocorticogram Characterization during Motor Learning in Rats for Brain Machine Interface Tasks.

    PubMed

    Marzullo, T C; Dudley, J R; Miller, C R; Trejo, L; Kipke, D R

    2005-01-01

    Brain machine interface development typically falls into two arenas, invasive extracellular recording and non-invasive electroencephalogram recording methods. The relationship between action potentials and field potentials is not well understood, and investigation of interrelationships may improve design of neuroprosthetic control systems. Rats were trained on a motor learning task whereby they had to insert their noses into an aperture while simultaneously pressing down on levers with their forepaws; spikes, local field potentials (LFPs), and electrocorticograms (ECoGs) over the motor cortex were recorded and characterized. Preliminary results suggest that the LFP activity in lower cortical layers oscillates with the ECoG.

  20. Effects of target and distractor saturations on the cognitive performance of an integrated display interface

    NASA Astrophysics Data System (ADS)

    Xue, Chengqi; Li, Jing; Wang, Haiyan; Niu, Yafeng

    2015-01-01

    Color coding is often used to enhance decision quality in complex man-machine interfaces of integrated display systems. However, people are easily distracted by irrelevant colors and by the numerous data points and complex structures in the interface. Although an increasing number of studies are seriously focusing on the problem of achieving efficient color coding, few are able to determine the effects of target and distractor saturations on cognitive performance. To study the performances of target colors among distractors, a systematic experiment is conducted to assess the influence of high and low saturated targets on cognitive performance, and the affecting extent of different saturated distractors of homogeneous colors on targets. According to the analysis of the reaction time through the non-parametric statistical method, a calculation method of the cognitive performance of each color is proposed. Based on the calculation of the color differences and the accumulation of the reaction times, it is shown that with the different saturated distractors of homogeneous colors, the high saturated yellow targets perform better than the low saturated ones, and the green and blue targets have moderate performances. When searching for a singleton target placed on a black background, the color difference between the target and the distractor should be more than 20Δ E*ab units in the yellow saturation coding, whereas the color difference should be more than 40Δ E*ab units in the blue and green saturation coding. In addition, as regards saturation coding, the influence of the color difference between the target and the background on cognitive performance is greater than that of the color difference between the target and the distractor. Seemingly, the hue attribute determines whether the saturation difference between the target and the distractor affects the cognitive performance. Based on the experimental results, the simulation design of the instrument dials in a flight situation awareness interface is completed and tested. Simulation results show the feasibility of the method of choosing the target and distractor colors, and the proposed research provides the instruction for the color saturation design of the interface.

  1. UIVerify: A Web-Based Tool for Verification and Automatic Generation of User Interfaces

    NASA Technical Reports Server (NTRS)

    Shiffman, Smadar; Degani, Asaf; Heymann, Michael

    2004-01-01

    In this poster, we describe a web-based tool for verification and automatic generation of user interfaces. The verification component of the tool accepts as input a model of a machine and a model of its interface, and checks that the interface is adequate (correct). The generation component of the tool accepts a model of a given machine and the user's task, and then generates a correct and succinct interface. This write-up will demonstrate the usefulness of the tool by verifying the correctness of a user interface to a flight-control system. The poster will include two more examples of using the tool: verification of the interface to an espresso machine, and automatic generation of a succinct interface to a large hypothetical machine.

  2. The fly wheel exercise device (FWED): A countermeasure against bone loss and muscle atrophy

    NASA Astrophysics Data System (ADS)

    Hueser, Detlev; Wolff, Christian; Berg, Hans E.; Tesch, Per A.; Cork, Michael

    2008-01-01

    The flywheel exercise device (FWED) is planned for use as an in-flight exercise system, to demonstrate its efficacy as a countermeasure device to prevent muscle atrophy, bone loss and impairment of muscle function in human beings in response to long duration spaceflight. It is intended to be used on the International Space Station (ISS) and will be launched by the European cargo carrier, the automated transfer vehicle (ATV) in late 2005. The FWED is a non-gravity-dependent mechanical device based on the Yo-Yo principle, which provides resistance during coupled concentric and eccentric muscle actions, through the inertia of a spinning flywheel. Currently, the development of a FWED Flight and Ground Model is in progress and is due to be completed in May 2004. An earlier developed prototype is available that has been used for various ground studies. Our FWED design provides a maximum of built-in safety and support to the operation by one astronaut. This is achieved in particular by innovative mechanical design features and an easy, safe to use man-machine interface. The modular design is optimized for efficient set-up and maintenance operations to be performed in orbit by the crew. The mechanical subsystem of the FWED includes a μg disturbance suspension, which minimizes the mechanical disturbances of the exercising subject at the mechanical interface to the ISS. During the FWED operation the astronaut is guided through the exercises by the data management subsystem, which acquires sensor data from the FWED, calculates and displays real-time feedback to the subject, and stores all data on hard disk and personalized storage media for later scientific analysis.

  3. Soldier-Machine Interface for the Army Future Combat System: Literature Review, Requirements, and Emerging Design Principles

    DTIC Science & Technology

    2003-04-01

    Development vs . Iterative Design ............................ II-7 3. Getting to Know the User: Designing for Usability, Utility, and Pleasure...III-1 2. Terrain Focus .................................................................................... III-1 3. Display vs . Control...heterogeneous, and it diverged into broad philosophical issues, such as “design as engineering” vs . “design as art” and the utility of controlled

  4. Investigation into interactive graphics data base exchange via Gerber data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, R.E.

    1980-03-01

    Data representing the same interactive grahic design vary greatly from one graphics system manufacturer to another. Therefore, translating the data into a common form to effect data base exchange is a difficult problem. This study examines the use of the Gerber language as a common data form through which design data could be exchanged between unlike systems. For this study Applicon Graphic System was used cyclically to check retention or degeneration of the data integrity when the original design was extracted/defined in the Gerber language and reentered into the AGS utilizing various Gerber Interface Programs. The various parts of thismore » study include the transferring of data not only in the 2D environment, but 2D to 3D and 3D to 2D. Even though plots of the files appear very similar, the individual data bases are very dissimilar. Programs, both present and future, that might supply needed information or design aids and characteristics would find it virtually impossible to do so from a data base lacking the sophistication and completeness of the original AGS data base. Man-machine hours required to bring the data base back to original quality would be extensive. The loss of data base integrity shown by this study was restricted to an AGS to AGS transfer. The loss could very easily be magnified if the transfer were between unlike systems. 8 figures. (RWR)« less

  5. Manned geosynchronous mission requirements and system analysis study extension. Manned Orbital Transfer Vehicle (MOTV) capabilities handbook and user guide

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The primary change in crew capsule definition is a smaller MOTV crew capsule, switching from a 3-man capsule to a 2-man capsule. A second change permitted crew accommodations for sleeping and privacy to be combined with the flight station. The current baseline DRM, ER1, requires 2 men for 3 to 4 days to repair a multi-disciplined GOE Platform and a modest amount of mission dedicated hardware. A 2-man MOTV crew capsule to be used as a design reference point for the OTV, and its interfaces between the STS and other associated equipment or facilities are described in detail. The functional capabilities of the 2-man capsule, as well as its application to a wide range of generic missions, is also presented. The MOTV turnaround is addressed and significant requirements for both space based and ground based scenarios are summarized.

  6. Memory interface simulator: A computer design aid

    NASA Technical Reports Server (NTRS)

    Taylor, D. S.; Williams, T.; Weatherbee, J. E.

    1972-01-01

    Results are presented of a study conducted with a digital simulation model being used in the design of the Automatically Reconfigurable Modular Multiprocessor System (ARMMS), a candidate computer system for future manned and unmanned space missions. The model simulates the activity involved as instructions are fetched from random access memory for execution in one of the system central processing units. A series of model runs measured instruction execution time under various assumptions pertaining to the CPU's and the interface between the CPU's and RAM. Design tradeoffs are presented in the following areas: Bus widths, CPU microprogram read only memory cycle time, multiple instruction fetch, and instruction mix.

  7. A Graphical Operator Interface for a Telerobotic Inspection System

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Tso, K. S.; Hayati, S.

    1993-01-01

    Operator interface has recently emerged as an important element for efficient and safe operatorinteractions with the telerobotic system. Recent advances in graphical user interface (GUI) andgraphics/video merging technologies enable development of more efficient, flexible operatorinterfaces. This paper describes an advanced graphical operator interface newly developed for aremote surface inspection system at Jet Propulsion Laboratory. The interface has been designed sothat remote surface inspection can be performed by a single operator with an integrated robot controland image inspection capability. It supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.

  8. Biocybernetic Control in Man-Machine Interaction

    DTIC Science & Technology

    1976-03-01

    manently ( prosthesis , limb control, sensory substitution etc ) or temporarily (hi-performance aircraft in hi-G pull, spacecraft occupants in low...through some kind of computer terminal albeit probably one that was designed espe- cially for the task. An aircraft cockpit or the control console of...such as the new Biomedical P7M. The BCI oroqra’n is interactive and designed to run in real-time but otherwise woud give identical results. Selection

  9. Proceedings of the NASA Conference on Space Telerobotics, volume 3

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research.

  10. Man vs. Machine: A Junior-level Laboratory Exercise Comparing Human and Instrumental Detection Limits

    ERIC Educational Resources Information Center

    Elias, Ryan J.; Hopfer, Helene; Hofstaedter, Amanda N.; Hayes, John E.

    2017-01-01

    The human nose is a very sensitive detector and is able to detect potent aroma compounds down to low ng/L levels. These levels are often below detection limits of analytical instrumentation. The following laboratory exercise is designed to compare instrumental and human methods for the detection of volatile odor active compounds. Reference…

  11. Development of an automatic subsea blowout preventer stack control system using PLC based SCADA.

    PubMed

    Cai, Baoping; Liu, Yonghong; Liu, Zengkai; Wang, Fei; Tian, Xiaojie; Zhang, Yanzhen

    2012-01-01

    An extremely reliable remote control system for subsea blowout preventer stack is developed based on the off-the-shelf triple modular redundancy system. To meet a high reliability requirement, various redundancy techniques such as controller redundancy, bus redundancy and network redundancy are used to design the system hardware architecture. The control logic, human-machine interface graphical design and redundant databases are developed by using the off-the-shelf software. A series of experiments were performed in laboratory to test the subsea blowout preventer stack control system. The results showed that the tested subsea blowout preventer functions could be executed successfully. For the faults of programmable logic controllers, discrete input groups and analog input groups, the control system could give correct alarms in the human-machine interface. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Development of sensitized pick coal interface detector system

    NASA Technical Reports Server (NTRS)

    Burchill, R. F.

    1982-01-01

    One approach for detection of the coal interface is measurement of pick cutting loads and shock through the use of pick strain gage load cells and accelerometers. The cutting drum of a long wall mining machine contains a number of cutting picks. In order to measure pick loads and shocks, one pick was instrumented and telemetry used to transmit the signals from the drum to an instrument-type tape recorder. A data system using FM telemetry was designed to transfer cutting bit load and shock information from the drum of a longwall shearer coal mining machine to a chassis mounted data recorder. The design of components in the test data system were finalized, the required instruments were assembled, the instrument system was evaluated in an above-ground simulation test, and an underground test series to obtain tape recorded sensor data was conducted.

  13. The Body-Machine Interface: A new perspective on an old theme

    PubMed Central

    Casadio, Maura; Ranganathan, Rajiv; Mussa-Ivaldi, Ferdinando A.

    2012-01-01

    Body-machine interfaces establish a way to interact with a variety of devices, allowing their users to extend the limits of their performance. Recent advances in this field, ranging from computer-interfaces to bionic limbs, have had important consequences for people with movement disorders. In this article, we provide an overview of the basic concepts underlying the body-machine interface with special emphasis on their use for rehabilitation and for operating assistive devices. We outline the steps involved in building such an interface and we highlight the critical role of body-machine interfaces in addressing theoretical issues in motor control as well as their utility in movement rehabilitation. PMID:23237465

  14. Future developments in brain-machine interface research.

    PubMed

    Lebedev, Mikhail A; Tate, Andrew J; Hanson, Timothy L; Li, Zheng; O'Doherty, Joseph E; Winans, Jesse A; Ifft, Peter J; Zhuang, Katie Z; Fitzsimmons, Nathan A; Schwarz, David A; Fuller, Andrew M; An, Je Hi; Nicolelis, Miguel A L

    2011-01-01

    Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL) Center for Neuroprosthetics, to bring this new technology to clinical fruition.

  15. Man-Machine Interface System for Neuromuscular Training and Evaluation Based on EMG and MMG Signals

    PubMed Central

    de la Rosa, Ramon; Alonso, Alonso; Carrera, Albano; Durán, Ramon; Fernández, Patricia

    2010-01-01

    This paper presents the UVa-NTS (University of Valladolid Neuromuscular Training System), a multifunction and portable Neuromuscular Training System. The UVa-NTS is designed to analyze the voluntary control of severe neuromotor handicapped patients, their interactive response, and their adaptation to neuromuscular interface systems, such as neural prostheses or domotic applications. Thus, it is an excellent tool to evaluate the residual muscle capabilities in the handicapped. The UVa-NTS is composed of a custom signal conditioning front-end and a computer. The front-end electronics is described thoroughly as well as the overall features of the custom software implementation. The software system is composed of a set of graphical training tools and a processing core. The UVa-NTS works with two classes of neuromuscular signals: the classic myoelectric signals (MES) and, as a novelty, the myomechanic signals (MMS). In order to evaluate the performance of the processing core, a complete analysis has been done to classify its efficiency and to check that it fulfils with the real-time constraints. Tests were performed both with healthy and selected impaired subjects. The adaptation was achieved rapidly, applying a predefined protocol for the UVa-NTS set of training tools. Fine voluntary control was demonstrated to be reached with the myoelectric signals. And the UVa-NTS demonstrated to provide a satisfactory voluntary control when applying the myomechanic signals. PMID:22163515

  16. Man-machine interface system for neuromuscular training and evaluation based on EMG and MMG signals.

    PubMed

    de la Rosa, Ramon; Alonso, Alonso; Carrera, Albano; Durán, Ramon; Fernández, Patricia

    2010-01-01

    This paper presents the UVa-NTS (University of Valladolid Neuromuscular Training System), a multifunction and portable Neuromuscular Training System. The UVa-NTS is designed to analyze the voluntary control of severe neuromotor handicapped patients, their interactive response, and their adaptation to neuromuscular interface systems, such as neural prostheses or domotic applications. Thus, it is an excellent tool to evaluate the residual muscle capabilities in the handicapped. The UVa-NTS is composed of a custom signal conditioning front-end and a computer. The front-end electronics is described thoroughly as well as the overall features of the custom software implementation. The software system is composed of a set of graphical training tools and a processing core. The UVa-NTS works with two classes of neuromuscular signals: the classic myoelectric signals (MES) and, as a novelty, the myomechanic signals (MMS). In order to evaluate the performance of the processing core, a complete analysis has been done to classify its efficiency and to check that it fulfils with the real-time constraints. Tests were performed both with healthy and selected impaired subjects. The adaptation was achieved rapidly, applying a predefined protocol for the UVa-NTS set of training tools. Fine voluntary control was demonstrated to be reached with the myoelectric signals. And the UVa-NTS demonstrated to provide a satisfactory voluntary control when applying the myomechanic signals.

  17. The PennBMBI: Design of a General Purpose Wireless Brain-Machine-Brain Interface System.

    PubMed

    Liu, Xilin; Zhang, Milin; Subei, Basheer; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan

    2015-04-01

    In this paper, a general purpose wireless Brain-Machine-Brain Interface (BMBI) system is presented. The system integrates four battery-powered wireless devices for the implementation of a closed-loop sensorimotor neural interface, including a neural signal analyzer, a neural stimulator, a body-area sensor node and a graphic user interface implemented on the PC end. The neural signal analyzer features a four channel analog front-end with configurable bandpass filter, gain stage, digitization resolution, and sampling rate. The target frequency band is configurable from EEG to single unit activity. A noise floor of 4.69 μVrms is achieved over a bandwidth from 0.05 Hz to 6 kHz. Digital filtering, neural feature extraction, spike detection, sensing-stimulating modulation, and compressed sensing measurement are realized in a central processing unit integrated in the analyzer. A flash memory card is also integrated in the analyzer. A 2-channel neural stimulator with a compliance voltage up to ± 12 V is included. The stimulator is capable of delivering unipolar or bipolar, charge-balanced current pulses with programmable pulse shape, amplitude, width, pulse train frequency and latency. A multi-functional sensor node, including an accelerometer, a temperature sensor, a flexiforce sensor and a general sensor extension port has been designed. A computer interface is designed to monitor, control and configure all aforementioned devices via a wireless link, according to a custom designed communication protocol. Wireless closed-loop operation between the sensory devices, neural stimulator, and neural signal analyzer can be configured. The proposed system was designed to link two sites in the brain, bridging the brain and external hardware, as well as creating new sensory and motor pathways for clinical practice. Bench test and in vivo experiments are performed to verify the functions and performances of the system.

  18. A methodology for the design and evaluation of user interfaces for interactive information systems. Ph.D. Thesis Final Report, 1 Jul. 1985 - 31 Dec. 1987

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Farooq, Mohammad U.

    1986-01-01

    The definition of proposed research addressing the development and validation of a methodology for the design and evaluation of user interfaces for interactive information systems is given. The major objectives of this research are: the development of a comprehensive, objective, and generalizable methodology for the design and evaluation of user interfaces for information systems; the development of equations and/or analytical models to characterize user behavior and the performance of a designed interface; the design of a prototype system for the development and administration of user interfaces; and the design and use of controlled experiments to support the research and test/validate the proposed methodology. The proposed design methodology views the user interface as a virtual machine composed of three layers: an interactive layer, a dialogue manager layer, and an application interface layer. A command language model of user system interactions is presented because of its inherent simplicity and structured approach based on interaction events. All interaction events have a common structure based on common generic elements necessary for a successful dialogue. It is shown that, using this model, various types of interfaces could be designed and implemented to accommodate various categories of users. The implementation methodology is discussed in terms of how to store and organize the information.

  19. Detecting Mode Confusion Through Formal Modeling and Analysis

    NASA Technical Reports Server (NTRS)

    Miller, Steven P.; Potts, James N.

    1999-01-01

    Aircraft safety has improved steadily over the last few decades. While much of this improvement can be attributed to the introduction of advanced automation in the cockpit, the growing complexity of these systems also increases the potential for the pilots to become confused about what the automation is doing. This phenomenon, often referred to as mode confusion, has been involved in several accidents involving modern aircraft. This report describes an effort by Rockwell Collins and NASA Langley to identify potential sources of mode confusion through two complementary strategies. The first is to create a clear, executable model of the automation, connect it to a simulation of the flight deck, and use this combination to review of the behavior of the automation and the man-machine interface with the designers, pilots, and experts in human factors. The second strategy is to conduct mathematical analyses of the model by translating it into a formal specification suitable for analysis with automated tools. The approach is illustrated by applying it to a hypothetical, but still realistic, example of the mode logic of a Flight Guidance System.

  20. ``DMS-R, the Brain of the ISS'', 10 Years of Continuous Successful Operation in Space

    NASA Astrophysics Data System (ADS)

    Wolff, Bernd; Scheffers, Peter

    2012-08-01

    Space industries on both sides of the Atlantic were faced with a new situation of collaboration in the beginning of the 1990s.In 1995, industrial cooperation between ASTRIUM ST, Bremen and RSC-E, Moscow started aiming the outfitting of the Russian Service Module ZVEZDA for the ISS with computers. The requested equipments had to provide not only redundancy but fault tolerance and high availability. The design and development of two fault tolerant computers, (FTCs) responsible for the telemetry (Telemetry Computer: TC) and the central control (CC), as well as the man machine interface CPC were contracted to ASTRIUM ST, Bremen. The computer system is responsible e.g. for the life support system and the ISS re-boost control.In July 2000, the integration of the Russian Service Module ZVEZDA with Russian ZARYA FGB and American Node 1 bears witness for transatlantic and European cooperation.The Russian Service module ZVEZDA provides several basic functions as Avionics Control, the Environmental Control and Life Support (ECLS) in the ISS and control of the docked Automatic Transfer Vehicle (ATV) which includes re-boost of ISS. If these elementary functions fail or do not work reliable the effects for the ISS will be catastrophic with respect to Safety (manned space) and ISS mission.For that reason the responsible computer system Data Management System - Russia (DMS-R) is also called "The brain of the ISS".The Russian Service module ZVEZDA, including DMS-R, was launched on 12th of July, 2000. DMS-R was operational also during launch and docking.The talk provide information about the definition, design and development of DMS-R, the integration of DMS-R in the Russian Service module and the maintenance of the system in space. Besides the technical aspects are also the German - Russian cooperation an important subject of this speech. An outlook finalises the talk providing further development activities and application of fault tolerant systems.The importance of the DMS-R equipment for the ISS related to availability and reliability is reported in paragraph 1.2, describing a serious incident.The DMS-R architecture, consisting of two fault tolerant computers, their interconnection via MIL 1553 STD Bus and the Control Post Computer (CPC) as man- machine interface is given in figure 1. The main data transfer within the ISS and therefore also the Russian segment is managed by the MIL1553 STD bus. The focus of this script is neither the operational concept nor the fault tolerant design according the Byzantine Theorem, but the architectural embedment. One fault tolerant computer consists out of up to four fault containment regions (FCR), comparing in- and output data and deciding by majority voting whether a faulty FCR has to be isolated. For this purpose all data have to pass the so-called fault management element and are distributed to the other participants in the computer pool (FTC). Each fault containment region is connected to the avionic busses of the vehicle avionics system. In case of a faulty FCR (wrong calculation result was detected by the other FCRs or by build-in self-detection) the dedicated FCR will reset itself or will be reset by the others. The bus controller functions of the isolated FCR will be taken over according to a specific deterministic scheme from another FCR. The FTC data throughput will be maintained, the FTC operation will continue without interruption. Each FCR consists of an application CPU board (ALB), the fault management layer (FML), the avionics bus interface board (AVI) and a power supply (PSU), sharing a VME data bus.The FML is fully transparent, in terms of I/O accessibility, to the application S/W and votes the data autonomously received from the avionics busses and transmitted from the application.

  1. Diamond turning machine controller implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, themore » control computer hardware and software, are discussed in detail below.« less

  2. Modified automatic teller machine prototype for older adults: a case study of participative approach to inclusive design.

    PubMed

    Chan, Chetwyn C H; Wong, Alex W K; Lee, Tatia M C; Chi, Iris

    2009-03-01

    The goal of this study was to enhance an existing automated teller machine (ATM) human-machine interface in order to accommodate the needs of older adults. Older adults were involved in the design and field test of the modified ATM prototype. The design of the user interface and functionality took the cognitive and physical abilities of older adults into account. The modified ATM system included only "cash withdrawal" and "transfer" functions based on the task demands and needs for services of older adults. One hundred and forty-one older adults (aged 60 or above) participated in the field test by operating modified or existing ATM systems. Those who operated the modified system were found to have significantly higher success rates than those who operated the existing system. The enhancement was most significant among older adults who had lower ATM-related abilities, a lower level of education, and no prior experience of using ATMs. This study demonstrates the usefulness of using a universal design and participatory approach to modify the existing ATM system for use by older adults. However, it also leads to a reduction in functionality of the enhanced system. Future studies should explore ways to develop a universal design ATM system which can satisfy the abilities and needs of all users in the entire population.

  3. Research on Automatic Ticketing Interface Design of Tianjin South Station under the Background of Aging

    NASA Astrophysics Data System (ADS)

    Zhenghui, Zhao

    2018-04-01

    Based on the context of increasingly serious aging problem in China, the psychological characteristics of elders in using public self-service facilities and the development status and the future trend of public self-service ticketing service. The approach is analysing physiological and psychological characteristics, education level of the elderly and studying its characteristics of consumer psychology and regional cultural characteristics profoundly before conducting comprehensive analysis and research in combination with the interface features of public self-service ticketing machine. The interface design will be more personalized, intelligent, regional and international. Strategies of caring for the elderly in the regional public self-service facility interface design innovation develops the concept of taking care of the elderly in the entire region as an indispensable people-benefiting optimization system in the modern social services.

  4. Effect of the crown design and interface lute parameters on the stress-state of a machined crown-tooth system: a finite element analysis.

    PubMed

    Shahrbaf, Shirin; vanNoort, Richard; Mirzakouchaki, Behnam; Ghassemieh, Elaheh; Martin, Nicolas

    2013-08-01

    The effect of preparation design and the physical properties of the interface lute on the restored machined ceramic crown-tooth complex are poorly understood. The aim of this work was to determine, by means of three-dimensional finite element analysis (3D FEA) the effect of the tooth preparation design and the elastic modulus of the cement on the stress state of the cemented machined ceramic crown-tooth complex. The three-dimensional structure of human premolar teeth, restored with adhesively cemented machined ceramic crowns, was digitized with a micro-CT scanner. An accurate, high resolution, digital replica model of a restored tooth was created. Two preparation designs, with different occlusal morphologies, were modeled with cements of 3 different elastic moduli. Interactive medical image processing software (mimics and professional CAD modeling software) was used to create sophisticated digital models that included the supporting structures; periodontal ligament and alveolar bone. The generated models were imported into an FEA software program (hypermesh version 10.0, Altair Engineering Inc.) with all degrees of freedom constrained at the outer surface of the supporting cortical bone of the crown-tooth complex. Five different elastic moduli values were given to the adhesive cement interface 1.8GPa, 4GPa, 8GPa, 18.3GPa and 40GPa; the four lower values are representative of currently used cementing lutes and 40GPa is set as an extreme high value. The stress distribution under simulated applied loads was determined. The preparation design demonstrated an effect on the stress state of the restored tooth system. The cement elastic modulus affected the stress state in the cement and dentin structures but not in the crown, the pulp, the periodontal ligament or the cancellous and cortical bone. The results of this study suggest that both the choice of the preparation design and the cement elastic modulus can affect the stress state within the restored crown-tooth complex. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Army-NASA aircrew/aircraft integration program. Phase 5: A3I Man-Machine Integration Design and Analysis System (MIDAS) software concept document

    NASA Technical Reports Server (NTRS)

    Banda, Carolyn; Bushnell, David; Chen, Scott; Chiu, Alex; Neukom, Christian; Nishimura, Sayuri; Prevost, Michael; Shankar, Renuka; Staveland, Lowell; Smith, Greg

    1992-01-01

    This is the Software Concept Document for the Man-machine Integration Design and Analysis System (MIDAS) being developed as part of Phase V of the Army-NASA Aircrew/Aircraft Integration (A3I) Progam. The approach taken in this program since its inception in 1984 is that of incremental development with clearly defined phases. Phase 1 began in 1984 and subsequent phases have progressed at approximately 10-16 month intervals. Each phase of development consists of planning, setting requirements, preliminary design, detailed design, implementation, testing, demonstration and documentation. Phase 5 began with an off-site planning meeting in November, 1990. It is expected that Phase 5 development will be complete and ready for demonstration to invited visitors from industry, government and academia in May, 1992. This document, produced during the preliminary design period of Phase 5, is intended to record the top level design concept for MIDAS as it is currently conceived. This document has two main objectives: (1) to inform interested readers of the goals of the MIDAS Phase 5 development period, and (2) to serve as the initial version of the MIDAS design document which will be continuously updated as the design evolves. Since this document is written fairly early in the design period, many design issues still remain unresolved. Some of the unresolved issues are mentioned later in this document in the sections on specific components. Readers are cautioned that this is not a final design document and that, as the design of MIDAS matures, some of the design ideas recorded in this document will change. The final design will be documented in a detailed design document published after the demonstrations.

  6. The Data Egg: A new solution to text entry barriers

    NASA Technical Reports Server (NTRS)

    Friedman, Gary L.

    1993-01-01

    A unit that allows text entry with only one hand has been developed, and holds the promise of allowing computers to be truly portable. It is unique in that it allows operation in any position, freeing the user from the traditional constraints of having to be seated near a desk. This hand held, chord-key-based unit can be used either autonomously for idea capturing, or tethered to a personal computer and used as an auxiliary keyboard. Astronauts, journalists, the bedridden, and anyone else normally barred from using a computer while on the job could also benefit from this form of man-machine interface, which has been dubbed the 'Data Egg'.

  7. Operations Concepts for Deep-Space Missions: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    McCann, Robert S.

    2010-01-01

    Historically, manned spacecraft missions have relied heavily on real-time communication links between crewmembers and ground control for generating crew activity schedules and working time-critical off-nominal situations. On crewed missions beyond the Earth-Moon system, speed-of-light limitations will render this ground-centered concept of operations obsolete. A new, more distributed concept of operations will have to be developed in which the crew takes on more responsibility for real-time anomaly diagnosis and resolution, activity planning and replanning, and flight operations. I will discuss the innovative information technologies, human-machine interfaces, and simulation capabilities that must be developed in order to develop, test, and validate deep-space mission operations

  8. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphousmore » boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here.« less

  9. Achieving integrated convoys: cargo unmanned ground vehicle development and experimentation

    NASA Astrophysics Data System (ADS)

    Zych, Noah; Silver, David; Stager, David; Green, Colin; Pilarski, Thomas; Fischer, Jacob

    2013-05-01

    The Cargo UGV project was initiated in 2010 with the aim of developing and experimenting with advanced autonomous vehicles capable of being integrated unobtrusively into manned logistics convoys. The intent was to validate two hypotheses in complex, operationally representative environments: first, that unmanned tactical wheeled vehicles provide a force protection advantage by creating standoff distance to warfighters during ambushes or improvised explosive device attacks; and second, that these UGVs serve as force multipliers by enabling a single operator to control multiple unmanned assets. To assess whether current state-of-the-art autonomous vehicle technology was sufficiently capable to permit resupply missions to be executed with decreased risk and reduced manpower, and to assess the effect of UGVs on customary convoy tactics, the Marine Corps Warfighting Laboratory and the Joint Ground Robotics Enterprise sponsored Oshkosh Defense and the National Robotics Engineering Center to equip two standard Marine Corps cargo trucks for autonomous operation. This paper details the system architecture, hardware implementation, and software modules developed to meet the vehicle control, perception, and planner requirements compelled by this application. Additionally, the design of a custom human machine interface and an accompanying training program are described, as is the creation of a realistic convoy simulation environment for rapid system development. Finally, results are conveyed from a warfighter experiment in which the effectiveness of the training program for novice operators was assessed, and the impact of the UGVs on convoy operations was observed in a variety of scenarios via direct comparison to a fully manned convoy.

  10. Trends and Challenges in Neuroengineering: Toward "Intelligent" Neuroprostheses through Brain-"Brain Inspired Systems" Communication.

    PubMed

    Vassanelli, Stefano; Mahmud, Mufti

    2016-01-01

    Future technologies aiming at restoring and enhancing organs function will intimately rely on near-physiological and energy-efficient communication between living and artificial biomimetic systems. Interfacing brain-inspired devices with the real brain is at the forefront of such emerging field, with the term "neurobiohybrids" indicating all those systems where such interaction is established. We argue that achieving a "high-level" communication and functional synergy between natural and artificial neuronal networks in vivo , will allow the development of a heterogeneous world of neurobiohybrids, which will include "living robots" but will also embrace "intelligent" neuroprostheses for augmentation of brain function. The societal and economical impact of intelligent neuroprostheses is likely to be potentially strong, as they will offer novel therapeutic perspectives for a number of diseases, and going beyond classical pharmaceutical schemes. However, they will unavoidably raise fundamental ethical questions on the intermingling between man and machine and more specifically, on how deeply it should be allowed that brain processing is affected by implanted "intelligent" artificial systems. Following this perspective, we provide the reader with insights on ongoing developments and trends in the field of neurobiohybrids. We address the topic also from a "community building" perspective, showing through a quantitative bibliographic analysis, how scientists working on the engineering of brain-inspired devices and brain-machine interfaces are increasing their interactions. We foresee that such trend preludes to a formidable technological and scientific revolution in brain-machine communication and to the opening of new avenues for restoring or even augmenting brain function for therapeutic purposes.

  11. Trends and Challenges in Neuroengineering: Toward “Intelligent” Neuroprostheses through Brain-“Brain Inspired Systems” Communication

    PubMed Central

    Vassanelli, Stefano; Mahmud, Mufti

    2016-01-01

    Future technologies aiming at restoring and enhancing organs function will intimately rely on near-physiological and energy-efficient communication between living and artificial biomimetic systems. Interfacing brain-inspired devices with the real brain is at the forefront of such emerging field, with the term “neurobiohybrids” indicating all those systems where such interaction is established. We argue that achieving a “high-level” communication and functional synergy between natural and artificial neuronal networks in vivo, will allow the development of a heterogeneous world of neurobiohybrids, which will include “living robots” but will also embrace “intelligent” neuroprostheses for augmentation of brain function. The societal and economical impact of intelligent neuroprostheses is likely to be potentially strong, as they will offer novel therapeutic perspectives for a number of diseases, and going beyond classical pharmaceutical schemes. However, they will unavoidably raise fundamental ethical questions on the intermingling between man and machine and more specifically, on how deeply it should be allowed that brain processing is affected by implanted “intelligent” artificial systems. Following this perspective, we provide the reader with insights on ongoing developments and trends in the field of neurobiohybrids. We address the topic also from a “community building” perspective, showing through a quantitative bibliographic analysis, how scientists working on the engineering of brain-inspired devices and brain-machine interfaces are increasing their interactions. We foresee that such trend preludes to a formidable technological and scientific revolution in brain-machine communication and to the opening of new avenues for restoring or even augmenting brain function for therapeutic purposes. PMID:27721741

  12. Habitability Concept Models for Living in Space

    NASA Astrophysics Data System (ADS)

    Ferrino, M.

    2002-01-01

    As growing trends show, living in "space" has acquired new meanings, especially considering the utilization of the International Space Station (ISS) with regard to group interaction as well as individual needs in terms of time, space and crew accommodations. In fact, for the crew, the Spaced Station is a combined Laboratory-Office/Home and embodies ethical, social, and cultural aspects as additional parameters to be assessed to achieve a user centered architectural design of crew workspace. Habitability Concept Models can improve the methods and techniques used to support the interior design and layout of space architectures and at the same time guarantee a human focused approach. This paper discusses and illustrates some of the results obtained for the interior design of a Habitation Module for the ISS. In this work, two different but complementary approaches are followed. The first is "object oriented" and based on Video Data (American and Russian) supported by Proxemic methods (Edward T. Hall, 1963 and Francesca Pregnolato, 1998). This approach offers flexible and adaptive design solutions. The second is "subject oriented" and based on a Virtual Reality environment. With this approach human perception and cognitive aspects related to a specific crew task are considered. Data obtained from these two approaches are used to verify requirements and advance the design of the Habitation Module for aspects related to man machine interfaces (MMI), ergonomics, work and free-time. It is expected that the results achieved can be applied to future space related projects.

  13. Future developments in brain-machine interface research

    PubMed Central

    Lebedev, Mikhail A; Tate, Andrew J; Hanson, Timothy L; Li, Zheng; O'Doherty, Joseph E; Winans, Jesse A; Ifft, Peter J; Zhuang, Katie Z; Fitzsimmons, Nathan A; Schwarz, David A; Fuller, Andrew M; An, Je Hi; Nicolelis, Miguel A L

    2011-01-01

    Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL) Center for Neuroprosthetics, to bring this new technology to clinical fruition. PMID:21779720

  14. Human perceptual deficits as factors in computer interface test and evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowser, S.E.

    1992-06-01

    Issues related to testing and evaluating human computer interfaces are usually based on the machine rather than on the human portion of the computer interface. Perceptual characteristics of the expected user are rarely investigated, and interface designers ignore known population perceptual limitations. For these reasons, environmental impacts on the equipment will more likely be defined than will user perceptual characteristics. The investigation of user population characteristics is most often directed toward intellectual abilities and anthropometry. This problem is compounded by the fact that some deficits capabilities tend to be found in higher-than-overall population distribution in some user groups. The testmore » and evaluation community can address the issue from two primary aspects. First, assessing user characteristics should be extended to include tests of perceptual capability. Secondly, interface designs should use multimode information coding.« less

  15. Cognitive Foundry v. 3.0 (OSS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basilico, Justin; Dixon, Kevin; McClain, Jonathan

    2009-11-18

    The Cognitive Foundry is a unified collection of tools designed for research and applications that use cognitive modeling, machine learning, or pattern recognition. The software library contains design patterns, interface definitions, and default implementations of reusable software components and algorithms designed to support a wide variety of research and development needs. The library contains three main software packages: the Common package that contains basic utilities and linear algebraic methods, the Cognitive Framework package that contains tools to assist in implementing and analyzing theories of cognition, and the Machine Learning package that provides general algorithms and methods for populating Cognitive Frameworkmore » components from domain-relevant data.« less

  16. Applications of space teleoperator technology to the problems of the handicapped

    NASA Technical Reports Server (NTRS)

    Malone, T. B.; Deutsch, S.; Rubin, G.; Shenk, S. W.

    1973-01-01

    The identification of feasible and practical applications of space teleoperator technology for the problems of the handicapped were studied. A teleoperator system is defined by NASA as a remotely controlled, cybernetic, man-machine system designed to extend and augment man's sensory, manipulative, and locomotive capabilities. Based on a consideration of teleoperator systems, the scope of the study was limited to an investigation of these handicapped persons limited in sensory, manipulative, and locomotive capabilities. If the technology being developed for teleoperators has any direct application, it must be in these functional areas. Feasible and practical applications of teleoperator technology for the problems of the handicapped are described, and design criteria are presented with each application. A development plan is established to bring the application to the point of use.

  17. Towards a framework of human factors certification of complex human-machine systems

    NASA Technical Reports Server (NTRS)

    Bukasa, Birgit

    1994-01-01

    As far as total automation is not realized, the combination of technical and social components in man-machine systems demands not only contributions from engineers but at least to an equal extent from behavioral scientists. This has been neglected far too long. The psychological, social and cultural aspects of technological innovations were almost totally overlooked. Yet, along with expected safety improvements the institutionalization of human factors is on the way. The introduction of human factors certification of complex man-machine systems will be a milestone in this process.

  18. Design and Implementation of PACS at Georgetown University Hospital

    NASA Astrophysics Data System (ADS)

    Mun, S. K.; Benson, H.. R.; Choyke, P.; Fahey, F. H.; Wang, P. C.; Zeman, R. K...; Elliott, L. P.

    1985-09-01

    During the preparation and planning phase of the PACS project at Georgetown University Hospital it was realized that PACS requires truly the state of the art technology in data communication, image processing and man machine interfacing. It was also realized that un-like many other technology intensive devices used in radiology, PACS cannot be seen as an independent system that will provide well defined services. PACS will be the backbone of the department operation in clinical, educational and managerial functions. It will indeed be the nerve center of the radiologic services affecting every aspect of the department. PACS will have to be designed to perform in a cost-effective manner to widely varying needs within the radiology departments. The integration of ever changing complex technology that will impact every aspect of a radiology service is not a trivial matter. This transition period going from current manual film based PACS to Digital PACS can be long, expansive and disruptive unless careful planning preceeds the implementation. PACS is still an emerging technology at its infancy. Performance monitoring and evaluation of diversified functions have to be also established so that improvement to the system can be efficiently implemented. Thus the evaluation criteria should be also established as early as possible.

  19. A user interface for a knowledge-based planning and scheduling system

    NASA Technical Reports Server (NTRS)

    Mulvehill, Alice M.

    1988-01-01

    The objective of EMPRESS (Expert Mission Planning and Replanning Scheduling System) is to support the planning and scheduling required to prepare science and application payloads for flight aboard the US Space Shuttle. EMPRESS was designed and implemented in Zetalisp on a 3600 series Symbolics Lisp machine. Initially, EMPRESS was built as a concept demonstration system. The system has since been modified and expanded to ensure that the data have integrity. Issues underlying the design and development of the EMPRESS-I interface, results from a system usability assessment, and consequent modifications are described.

  20. Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.

    2001-01-01

    The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.

  1. Man-Machine Interaction Design and Analysis System (MIDAS): Memory Representation and Procedural Implications for Airborne Communication Modalities

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Pisanich, Gregory M.; Lebacqz, Victor (Technical Monitor)

    1996-01-01

    The Man-Machine Interaction Design and Analysis System (MIDAS) has been under development for the past ten years through a joint US Army and NASA cooperative agreement. MIDAS represents multiple human operators and selected perceptual, cognitive, and physical functions of those operators as they interact with simulated systems. MIDAS has been used as an integrated predictive framework for the investigation of human/machine systems, particularly in situations with high demands on the operators. Specific examples include: nuclear power plant crew simulation, military helicopter flight crew response, and police force emergency dispatch. In recent applications to airborne systems development, MIDAS has demonstrated an ability to predict flight crew decision-making and procedural behavior when interacting with automated flight management systems and Air Traffic Control. In this paper we describe two enhancements to MIDAS. The first involves the addition of working memory in the form of an articulatory buffer for verbal communication protocols and a visuo-spatial buffer for communications via digital datalink. The second enhancement is a representation of multiple operators working as a team. This enhanced model was used to predict the performance of human flight crews and their level of compliance with commercial aviation communication procedures. We show how the data produced by MIDAS compares with flight crew performance data from full mission simulations. Finally, we discuss the use of these features to study communications issues connected with aircraft-based separation assurance.

  2. Embedded Control System for Smart Walking Assistance Device.

    PubMed

    Bosnak, Matevz; Skrjanc, Igor

    2017-03-01

    This paper presents the design and implementation of a unique control system for a smart hoist, a therapeutic device that is used in rehabilitation of walking. The control system features a unique human-machine interface that allows the human to intuitively control the system just by moving or rotating its body. The paper contains an overview of the complete system, including the design and implementation of custom sensors, dc servo motor controllers, communication interfaces and embedded-system based central control system. The prototype of the complete system was tested by conducting a 6-runs experiment on 11 subjects and results are showing that the proposed control system interface is indeed intuitive and simple to adopt by the user.

  3. A Toolkit for Designing User Interfaces

    DTIC Science & Technology

    1990-03-01

    as the NPS IB can provide prototyping capability. Interface generators are available commercially for nearly every computing machine on the market ...structure which holds attributes of the message buffer window is shown in Figure 4.2. The variables nlines and nchars hold the number of lines in the...window its appearance of scrolling 46 /* define a type and structure for the message buffer */ struct messbuf( long nlines ; /* number of lines in the

  4. [A novel serial port auto trigger system for MOSFET dose acquisition].

    PubMed

    Luo, Guangwen; Qi, Zhenyu

    2013-01-01

    To synchronize the radiation of microSelectron-HDR (Nucletron afterloading machine) and measurement of MOSFET dose system, a trigger system based on interface circuit was designed and corresponding monitor and trigger program were developed on Qt platform. This interface and control system was tested and showed stable operate and reliable work. This adopted serial port detect technique may expand to trigger application of other medical devices.

  5. Love-hate for man-machine metaphors in Soviet physiology: from Pavlov to "physiological cybernetics".

    PubMed

    Gerovitch, Slava

    2002-06-01

    This article reinterprets the debate between orthodox followers of the Pavlovian reflex theory and Soviet "cybernetic physiologists" in the 1950s and 60s as a clash of opposing man-machine metaphors. While both sides accused each other of "mechanistic," reductionist methodology, they did not see anything "mechanistic" about their own central metaphors: the telephone switchboard metaphor for nervous activity (the Pavlovians), and the analogies between the human brain and a computer (the cyberneticians). I argue that the scientific utility of machine analogies was closely intertwined with their philosophical and political meanings and that new interpretations of these metaphors emerged as a result of political conflicts and a realignment of forces within the scientific community and in society at large. I suggest that the constant travel of man-machine analogies, back and forth between physiology and technology has blurred the traditional categories of the "mechanistic" and the "organic" in Soviet neurophysiology, as perhaps in the history of physiology in general.

  6. The European space suit, a design for productivity and crew safety.

    PubMed

    Skoog, A I; Berthier, S; Ollivier, Y

    1991-01-01

    In order to fulfill the two major mission objectives, i.e. support planned and unplanned external servicing of the COLUMBUS FFL and support the HERMES vehicle for safety critical operations and emergencies, the European Space Suit System baseline configuration incorporates a number of design features, which shall enhance the productivity and the crew safety of EVA astronauts. The work in EVA is today--and will be for several years--a manual work. Consequently, to improve productivity, the first challenge is to design a suit enclosure which minimizes movement restrictions and crew fatigue. It is covered by the "ergonomic" aspect of the suit design. Furthermore, it is also necessary to help the EVA crewmember in his work, by giving him the right information at the right time. Many solutions exist in this field of Man-Machine Interface, from a very simple system, based on cuff check lists, up to advanced systems, including Head-Up Displays. The design concept for improved productivity encompasses following features: easy donning/doffing thru rear entry, suit ergonomy optimisation, display of operational information in alpha-numerical and graphical form, and voice processing for operations and safety critical information. Concerning crew safety the major design features are: a lower R-factor for emergency EVA operations thru increased suit pressure, zero prebreath conditions for normal operations, visual and voice processing of all safety critical functions, and an autonomous life support system to permit unrestricted operations around HERMES and the CFFL. The paper analyses crew safety and productivity criteria and describes how these features are being built into the design of the European Space Suit System.

  7. Proceedings of the NASA Conference on Space Telerobotics, volume 2

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research.

  8. Knowledge representation system for assembly using robots

    NASA Technical Reports Server (NTRS)

    Jain, A.; Donath, M.

    1987-01-01

    Assembly robots combine the benefits of speed and accuracy with the capability of adaptation to changes in the work environment. However, an impediment to the use of robots is the complexity of the man-machine interface. This interface can be improved by providing a means of using a priori-knowledge and reasoning capabilities for controlling and monitoring the tasks performed by robots. Robots ought to be able to perform complex assembly tasks with the help of only supervisory guidance from human operators. For such supervisory quidance, it is important to express the commands in terms of the effects desired, rather than in terms of the motion the robot must undertake in order to achieve these effects. A suitable knowledge representation can facilitate the conversion of task level descriptions into explicit instructions to the robot. Such a system would use symbolic relationships describing the a priori information about the robot, its environment, and the tasks specified by the operator to generate the commands for the robot.

  9. The use of affective interaction design in car user interfaces.

    PubMed

    Gkouskos, Dimitrios; Chen, Fang

    2012-01-01

    Recent developments in the car industry have put Human Machine Interfaces under the spotlight. Developing gratifying human-car interactions has become one of the more prominent areas that car manufacturers want to invest in. However, concepts like emotional design remain foreign to the industry. In this study 12 experts on the field of automobile HMI design were interviewed in order to investigate their needs and opinions of emotional design. Results show that emotional design has yet to be introduced for this context of use. Designers need a tool customized for the intricacies of the car HMI field that can provide them with support and guidance so that they can create emotionally attractive experiences for drivers and passengers alike.

  10. Editorial Research Reports on Modern Man.

    ERIC Educational Resources Information Center

    Dickinson, William B., Jr., Ed.

    Nine reports published in this volume study the uneasy coexistence of modern man and the complex society he has wrought. Man's apparent disorganized behavior is attributed to his inability to adapt readily to the charged pace of technological change. To combat the advancement of machine over man, he must, therefore, insist that moral and…

  11. Programmable Pulse-Position-Modulation Encoder

    NASA Technical Reports Server (NTRS)

    Zhu, David; Farr, William

    2006-01-01

    A programmable pulse-position-modulation (PPM) encoder has been designed for use in testing an optical communication link. The encoder includes a programmable state machine and an electronic code book that can be updated to accommodate different PPM coding schemes. The encoder includes a field-programmable gate array (FPGA) that is programmed to step through the stored state machine and code book and that drives a custom high-speed serializer circuit board that is capable of generating subnanosecond pulses. The stored state machine and code book can be updated by means of a simple text interface through the serial port of a personal computer.

  12. Dynamic task allocation for a man-machine symbiotic system

    NASA Technical Reports Server (NTRS)

    Parker, L. E.; Pin, F. G.

    1987-01-01

    This report presents a methodological approach to the dynamic allocation of tasks in a man-machine symbiotic system in the context of dexterous manipulation and teleoperation. This report addresses a symbiotic system containing two symbiotic partners which work toward controlling a single manipulator arm for the execution of a series of sequential manipulation tasks. It is proposed that an automated task allocator use knowledge about the constraints/criteria of the problem, the available resources, the tasks to be performed, and the environment to dynamically allocate task recommendations for the man and the machine. The presentation of the methodology includes discussions concerning the interaction of the knowledge areas, the flow of control, the necessary communication links, and the replanning of the task allocation. Examples of task allocation are presented to illustrate the results of this methodolgy.

  13. What Do We Really Need? Visions of an Ideal Human-Machine Interface for NOTES Mechatronic Support Systems From the View of Surgeons, Gastroenterologists, and Medical Engineers.

    PubMed

    Kranzfelder, Michael; Schneider, Armin; Fiolka, Adam; Koller, Sebastian; Wilhelm, Dirk; Reiser, Silvano; Meining, Alexander; Feussner, Hubertus

    2015-08-01

    To investigate why natural orifice translumenal endoscopic surgery (NOTES) has not yet become widely accepted and to prove whether the main reason is still the lack of appropriate platforms due to the deficiency of applicable interfaces. To assess expectations of a suitable interface design, we performed a survey on human-machine interfaces for NOTES mechatronic support systems among surgeons, gastroenterologists, and medical engineers. Of 120 distributed questionnaires, each consisting of 14 distinct questions, 100 (83%) were eligible for analysis. A mechatronic platform for NOTES was considered "important" by 71% of surgeons, 83% of gastroenterologist,s and 56% of medical engineers. "Intuitivity" and "simple to use" were the most favored aspects (33% to 51%). Haptic feedback was considered "important" by 70% of participants. In all, 53% of surgeons, 50% of gastroenterologists, and 33% of medical engineers already had experience with NOTES platforms or other surgical robots; however, current interfaces only met expectations in just more than 50%. Whereas surgeons did not favor a certain working posture, gastroenterologists and medical engineers preferred a sitting position. Three-dimensional visualization was generally considered "nice to have" (67% to 72%); however, for 26% of surgeons, 17% of gastroenterologists, and 7% of medical engineers it did not matter (P = 0.018). Requests and expectations of human-machine interfaces for NOTES seem to be generally similar for surgeons, gastroenterologist, and medical engineers. Consensus exists on the importance of developing interfaces that should be both intuitive and simple to use, are similar to preexisting familiar instruments, and exceed current available systems. © The Author(s) 2014.

  14. User interface prototype for geospatial early warning systems - a tsunami showcase

    NASA Astrophysics Data System (ADS)

    Hammitzsch, M.; Lendholt, M.; Esbrí, M. Á.

    2012-03-01

    The command and control unit's graphical user interface (GUI) is a central part of early warning systems (EWS) for man-made and natural hazards. The GUI combines and concentrates the relevant information of the system and offers it to human operators. It has to support operators successfully performing their tasks in complex workflows. Most notably in critical situations when operators make important decisions in a limited amount of time, the command and control unit's GUI has to work reliably and stably, providing the relevant information and functionality with the required quality and in time. The design of the GUI application is essential in the development of any EWS to manage hazards effectively. The design and development of such GUI is performed repeatedly for each EWS by various software architects and developers. Implementations differ based on their application in different domains. But similarities designing and equal approaches implementing GUIs of EWS are not quite harmonized enough with related activities and do not exploit possible synergy effects. Thus, the GUI's implementation of an EWS for tsunamis is successively introduced, providing a generic approach to be applied in each EWS for man-made and natural hazards.

  15. Domain Engineering

    NASA Astrophysics Data System (ADS)

    Bjørner, Dines

    Before software can be designed we must know its requirements. Before requirements can be expressed we must understand the domain. So it follows, from our dogma, that we must first establish precise descriptions of domains; then, from such descriptions, “derive” at least domain and interface requirements; and from those and machine requirements design the software, or, more generally, the computing systems.

  16. Future Cyborgs: Human-Machine Interface for Virtual Reality Applications

    DTIC Science & Technology

    2007-04-01

    FUTURE CYBORGS : HUMAN-MACHINE INTERFACE FOR VIRTUAL REALITY APPLICATIONS Robert R. Powell, Major, USAF April 2007 Blue Horizons...SUBTITLE Future Cyborgs : Human-Machine Interface for Virtual Reality Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Nicholas Negroponte, Being Digital (New York: Alfred A Knopf, Inc, 1995), 123. 23 Ibid. 24 Andy Clark, Natural-Born Cyborgs (New York: Oxford

  17. Operations management system

    NASA Technical Reports Server (NTRS)

    Brandli, A. E.; Eckelkamp, R. E.; Kelly, C. M.; Mccandless, W.; Rue, D. L.

    1990-01-01

    The objective of an operations management system is to provide an orderly and efficient method to operate and maintain aerospace vehicles. Concepts are described for an operations management system and the key technologies are highlighted which will be required if this capability is brought to fruition. Without this automation and decision aiding capability, the growing complexity of avionics will result in an unmanageable workload for the operator, ultimately threatening mission success or survivability of the aircraft or space system. The key technologies include expert system application to operational tasks such as replanning, equipment diagnostics and checkout, global system management, and advanced man machine interfaces. The economical development of operations management systems, which are largely software, will require advancements in other technological areas such as software engineering and computer hardware.

  18. Explicit solution techniques for impact with contact constraints

    NASA Technical Reports Server (NTRS)

    Mccarty, Robert E.

    1993-01-01

    Modern military aircraft transparency systems, windshields and canopies, are complex systems which must meet a large and rapidly growing number of requirements. Many of these transparency system requirements are conflicting, presenting difficult balances which must be achieved. One example of a challenging requirements balance or trade is shaping for stealth versus aircrew vision. The large number of requirements involved may be grouped in a variety of areas including man-machine interface; structural integration with the airframe; combat hazards; environmental exposures; and supportability. Some individual requirements by themselves pose very difficult, severely nonlinear analysis problems. One such complex problem is that associated with the dynamic structural response resulting from high energy bird impact. An improved analytical capability for soft-body impact simulation was developed.

  19. Explicit solution techniques for impact with contact constraints

    NASA Astrophysics Data System (ADS)

    McCarty, Robert E.

    1993-08-01

    Modern military aircraft transparency systems, windshields and canopies, are complex systems which must meet a large and rapidly growing number of requirements. Many of these transparency system requirements are conflicting, presenting difficult balances which must be achieved. One example of a challenging requirements balance or trade is shaping for stealth versus aircrew vision. The large number of requirements involved may be grouped in a variety of areas including man-machine interface; structural integration with the airframe; combat hazards; environmental exposures; and supportability. Some individual requirements by themselves pose very difficult, severely nonlinear analysis problems. One such complex problem is that associated with the dynamic structural response resulting from high energy bird impact. An improved analytical capability for soft-body impact simulation was developed.

  20. Effectiveness of basic display augmentation in vehicular control by visual field cues

    NASA Technical Reports Server (NTRS)

    Grunwald, A. J.; Merhav, S. J.

    1978-01-01

    The paper investigates the effectiveness of different basic display augmentation concepts - fixed reticle, velocity vector, and predicted future vehicle path - for RPVs controlled by a vehicle-mounted TV camera. The task is lateral manual control of a low flying RPV along a straight reference line in the presence of random side gusts. The man-machine system and the visual interface are modeled as a linear time-invariant system. Minimization of a quadratic performance criterion is assumed to underlie the control strategy of a well-trained human operator. The solution for the optimal feedback matrix enables the explicit computation of the variances of lateral deviation and directional error of the vehicle and of the control force that are used as performance measures.

  1. Towards a first implementation of the WLIMES approach in living system studies advancing the diagnostics and therapy in augmented personalized medicine.

    PubMed

    Simeonov, Plamen L

    2017-12-01

    The goal of this paper is to advance an extensible theory of living systems using an approach to biomathematics and biocomputation that suitably addresses self-organized, self-referential and anticipatory systems with multi-temporal multi-agents. Our first step is to provide foundations for modelling of emergent and evolving dynamic multi-level organic complexes and their sustentative processes in artificial and natural life systems. Main applications are in life sciences, medicine, ecology and astrobiology, as well as robotics, industrial automation, man-machine interface and creative design. Since 2011 over 100 scientists from a number of disciplines have been exploring a substantial set of theoretical frameworks for a comprehensive theory of life known as Integral Biomathics. That effort identified the need for a robust core model of organisms as dynamic wholes, using advanced and adequately computable mathematics. The work described here for that core combines the advantages of a situation and context aware multivalent computational logic for active self-organizing networks, Wandering Logic Intelligence (WLI), and a multi-scale dynamic category theory, Memory Evolutive Systems (MES), hence WLIMES. This is presented to the modeller via a formal augmented reality language as a first step towards practical modelling and simulation of multi-level living systems. Initial work focuses on the design and implementation of this visual language and calculus (VLC) and its graphical user interface. The results will be integrated within the current methodology and practices of theoretical biology and (personalized) medicine to deepen and to enhance the holistic understanding of life. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. What makes an automated teller machine usable by blind users?

    PubMed

    Manzke, J M; Egan, D H; Felix, D; Krueger, H

    1998-07-01

    Fifteen blind and sighted subjects, who featured as a control group for acceptance, were asked for their requirements for automated teller machines (ATMs). Both groups also tested the usability of a partially operational ATM mock-up. This machine was based on an existing cash dispenser, providing natural speech output, different function menus and different key arrangements. Performance and subjective evaluation data of blind and sighted subjects were collected. All blind subjects were able to operate the ATM successfully. The implemented speech output was the main usability factor for them. The different interface designs did not significantly affect performance and subjective evaluation. Nevertheless, design recommendations can be derived from the requirement assessment. The sighted subjects were rather open for design modifications, especially the implementation of speech output. However, there was also a mismatch of the requirements of the two subject groups, mainly concerning the key arrangement.

  3. Man and machine design for space flight

    NASA Technical Reports Server (NTRS)

    Louviere, A. J.

    1979-01-01

    The factors involved in creating effective designs for living and working in a weightless environment are discussed. Among the areas covered are special provisions for eating and drinking, a special shower nozzle to remove soap, electric shavers designed for vacuum containment of the clippings, and the need for restraint systems at the crew's workstations. Attention is given to the fact that the crewmen assume a neutral body posture in weightlessness which is an important consideration in designing displays, controls, and windows. It is concluded that the incorporation of the change in body posture and the requirement for restraint into future designs will greatly facilitate the crewman's task in the weightless environment.

  4. Human Machine Interfaces for Teleoperators and Virtual Environments: Conference Held in Santa Barbara, California on 4-9 March 1990.

    DTIC Science & Technology

    1990-03-01

    decided to have three kinds of sessions: invited-paper sessions, panel discussions, and poster sessions. The invited papers were divided into papers...soon followed. Applications in medicine, involving exploration and operation within the human body, are now receiving increased attention . Early... attention toward issues that may be important for the design of auditory interfaces. The importance of appropriate auditory inputs to observers with normal

  5. Exploration and Reflection on Teachers' Self-Growth under Network Environment

    ERIC Educational Resources Information Center

    Li, Shuang

    2010-01-01

    As is well known, it is network that has turned the traditional "man-man" educational system made up of by only teachers and students into a new system of "man-machine-man" composed of network as well as teachers and students. In the new system, teachers' authority has been lowered sharply because students also have access to…

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoup, R.W.; Long, F.; Martin, T.H.

    Sandia is developing PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack, and MITLs on PBFA II with new hardware. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITL interface requirements, and the machine operations and maintenance requirements. The insulator stack will consist of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathodemore » conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time dependent performance of the insulator stack was evaluated using IVORY, a 2-D PIC code. This paper will describe the insulator stack design and present the results of the ELECTRO and IVORY analyses.« less

  7. Open Platform for Limit Protection with Carefree Maneuver Applications

    NASA Technical Reports Server (NTRS)

    Jeram, Geoffrey J.

    2004-01-01

    This Open Platform for Limit Protection guides the open design of maneuver limit protection systems in general, and manned, rotorcraft, aerospace applications in particular. The platform uses three stages of limit protection modules: limit cue creation, limit cue arbitration, and control system interface. A common set of limit cue modules provides commands that can include constraints, alerts, transfer functions, and friction. An arbitration module selects the "best" limit protection cues and distributes them to the most appropriate control path interface. This platform adopts a holistic approach to limit protection whereby it considers all potential interface points, including the pilot's visual, aural, and tactile displays; and automatic command restraint shaping for autonomous limit protection. For each functional module, this thesis guides the control system designer through the design choices and information interfaces among the modules. Limit cue module design choices include type of prediction, prediction mechanism, method of critical control calculation, and type of limit cue. Special consideration is given to the nature of the limit, particularly the level of knowledge about it, and the ramifications for limit protection design, especially with respect to intelligent control methods such as fuzzy inference systems and neural networks.

  8. Advanced instrumentation concepts for environmental control subsystems

    NASA Technical Reports Server (NTRS)

    Yang, P. Y.; Schubert, F. H.; Gyorki, J. R.; Wynveen, R. A.

    1978-01-01

    Design, evaluation and demonstration of advanced instrumentation concepts for improving performance of manned spacecraft environmental control and life support systems were successfully completed. Concepts to aid maintenance following fault detection and isolation were defined. A computer-guided fault correction instruction program was developed and demonstrated in a packaged unit which also contains the operator/system interface.

  9. Intelligent systems and advanced user interfaces for design, operation, and maintenance of command management systems

    NASA Technical Reports Server (NTRS)

    Potter, William J.; Mitchell, Christine M.

    1993-01-01

    Historically, command management systems (CMS) have been large and expensive spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as to develop a more generic CMS system. New technologies, in addition to a core CMS common to a range of spacecraft, may facilitate the training and enhance the efficiency of CMS operations. Current mission operations center (MOC) hardware and software include Unix workstations, the C/C++ programming languages, and an X window interface. This configuration provides the power and flexibility to support sophisticated and intelligent user interfaces that exploit state-of-the-art technologies in human-machine interaction, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of these issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, human-machine systems design and analysis tools (e.g., operator and designer models), and human-computer interaction tools (e.g., graphics, visualization, and animation) may provide significant savings in the design, operation, and maintenance of the CMS for a specific spacecraft as well as continuity for CMS design and development across spacecraft. The first six months of this research saw a broad investigation by Georgia Tech researchers into the function, design, and operation of current and planned command management systems at Goddard Space Flight Center. As the first step, the researchers attempted to understand the current and anticipated horizons of command management systems at Goddard. Preliminary results are given on CMS commonalities and causes of low re-use, and methods are proposed to facilitate increased re-use.

  10. Space Station Furnace Facility Core. Requirements definition and conceptual design study. Volume 2: Technical report. Appendix 6: Technical summary reports

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. The facility is designed to support a complement of furnace modules as outlined in the Science Capabilities Requirements Document (SCRD). The SSFF is a three rack facility that provides the functions, interfaces, and equipment necessary for the processing of the furnaces and consists of two main parts: the SSFF Core Rack and the two Experiment Racks. The facility is designed to accommodate two experimenter-provided furnace modules housed within the two experiment racks, and is designed to operate these two furnace modules simultaneously. The SCRD specifies a wide range of furnace requirements and serves as the basis for the SSFF conceptual design. SSFF will support automated processing during the man-tended operations and is also designed for crew interface during the permanently manned configuration. The facility is modular in design and facilitates changes as required, so the SSFF is adept to modifications, maintenance, reconfiguration, and technology evolution.

  11. Functional Mobility Testing: A Novel Method to Establish Human System Interface Design Requirements

    NASA Technical Reports Server (NTRS)

    England, Scott A.; Benson, Elizabeth A.; Rajulu, Sudhakar

    2008-01-01

    Across all fields of human-system interface design it is vital to posses a sound methodology dictating the constraints on the system based on the capabilities of the human user. These limitations may be based on strength, mobility, dexterity, cognitive ability, etc. and combinations thereof. Data collected in an isolated environment to determine, for example, maximal strength or maximal range of motion would indeed be adequate for establishing not-to-exceed type design limitations, however these restraints on the system may be excessive over what is basally needed. Resources may potentially be saved by having a technique to determine the minimum measurements a system must accommodate. This paper specifically deals with the creation of a novel methodology for establishing mobility requirements for a new generation of space suit design concepts. Historically, the Space Shuttle and the International Space Station vehicle and space hardware design requirements documents such as the Man-Systems Integration Standards and International Space Station Flight Crew Integration Standard explicitly stated that the designers should strive to provide the maximum joint range of motion capabilities exhibited by a minimally clothed human subject. In the course of developing the Human-Systems Integration Requirements (HSIR) for the new space exploration initiative (Constellation), an effort was made to redefine the mobility requirements in the interest of safety and cost. Systems designed for manned space exploration can receive compounded gains from simplified designs that are both initially less expensive to produce and lighter, thereby, cheaper to launch.

  12. Driving nanocars and nanomachines at interfaces: From concept of nanoarchitectonics to actual use in world wide race and hand operation

    NASA Astrophysics Data System (ADS)

    Shirai, Yasuhiro; Minami, Kosuke; Nakanishi, Waka; Yonamine, Yusuke; Joachim, Christian; Ariga, Katsuhiko

    2016-11-01

    Nanomachine and molecular machines are state-of-the-art objects in current physics and chemistry. The operation and manufacturing of nanosize machines are top-level technologies that we have desired to accomplish for a long time. There have been extensive attempts to design and synthesize nanomachines. In this paper, we review the these attempts using the concept of nanoarchitectonics toward the design, synthesis, and testing of molecular machinery, especially at interfacial media. In the first half of this review, various historical attempts to design and prepare nanomachines are introduced as well as their operation mechanisms from their basic principles. Furthermore, in order to emphasize the importance and possibilities of this research field, we also give examples of two new challenging topics in the second half of this review: (i) a world wide nanocar race and (ii) new modes of nanomachine operation on water. The nanocar race event involves actual use of nanomachines and will take place in the near future, and nanomachine operation of a dynamic fluidic interface will enable future advances in nanomachine science and technology.

  13. An Analysis of the Multiple Objective Capital Budgeting Problem via Fuzzy Linear Integer (0-1) Programming.

    DTIC Science & Technology

    1980-05-31

    34 International Journal of Man- Machine Studies , Vol. 9, No. 1, 1977, pp. 1-68. [16] Zimmermann, H. J., Theory and Applications of Fuzzy Sets, Institut...Boston, Inc., Hingham, MA, 1978. [18] Yager, R. R., "Multiple Objective Decision-Making Using Fuzzy Sets," International Journal of Man- Machine Studies ...Professor of Industria Engineering ... iv t TABLE OF CONTENTS page ABSTRACT .. .. . ...... . .... ...... ........ iii LIST OF TABLES

  14. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.

    PubMed

    Ma, Jiaxin; Zhang, Yu; Cichocki, Andrzej; Matsuno, Fumitoshi

    2015-03-01

    This study presents a novel human-machine interface (HMI) based on both electrooculography (EOG) and electroencephalography (EEG). This hybrid interface works in two modes: an EOG mode recognizes eye movements such as blinks, and an EEG mode detects event related potentials (ERPs) like P300. While both eye movements and ERPs have been separately used for implementing assistive interfaces, which help patients with motor disabilities in performing daily tasks, the proposed hybrid interface integrates them together. In this way, both the eye movements and ERPs complement each other. Therefore, it can provide a better efficiency and a wider scope of application. In this study, we design a threshold algorithm that can recognize four kinds of eye movements including blink, wink, gaze, and frown. In addition, an oddball paradigm with stimuli of inverted faces is used to evoke multiple ERP components including P300, N170, and VPP. To verify the effectiveness of the proposed system, two different online experiments are carried out. One is to control a multifunctional humanoid robot, and the other is to control four mobile robots. In both experiments, the subjects can complete tasks effectively by using the proposed interface, whereas the best completion time is relatively short and very close to the one operated by hand.

  15. Screen-Printed Washable Electronic Textiles as Self-Powered Touch/Gesture Tribo-Sensors for Intelligent Human-Machine Interaction.

    PubMed

    Cao, Ran; Pu, Xianjie; Du, Xinyu; Yang, Wei; Wang, Jiaona; Guo, Hengyu; Zhao, Shuyu; Yuan, Zuqing; Zhang, Chi; Li, Congju; Wang, Zhong Lin

    2018-05-22

    Multifunctional electronic textiles (E-textiles) with embedded electric circuits hold great application prospects for future wearable electronics. However, most E-textiles still have critical challenges, including air permeability, satisfactory washability, and mass fabrication. In this work, we fabricate a washable E-textile that addresses all of the concerns and shows its application as a self-powered triboelectric gesture textile for intelligent human-machine interfacing. Utilizing conductive carbon nanotubes (CNTs) and screen-printing technology, this kind of E-textile embraces high conductivity (0.2 kΩ/sq), high air permeability (88.2 mm/s), and can be manufactured on common fabric at large scales. Due to the advantage of the interaction between the CNTs and the fabrics, the electrode shows excellent stability under harsh mechanical deformation and even after being washed. Moreover, based on a single-electrode mode triboelectric nanogenerator and electrode pattern design, our E-textile exhibits highly sensitive touch/gesture sensing performance and has potential applications for human-machine interfacing.

  16. Study on intelligent processing system of man-machine interactive garment frame model

    NASA Astrophysics Data System (ADS)

    Chen, Shuwang; Yin, Xiaowei; Chang, Ruijiang; Pan, Peiyun; Wang, Xuedi; Shi, Shuze; Wei, Zhongqian

    2018-05-01

    A man-machine interactive garment frame model intelligent processing system is studied in this paper. The system consists of several sensor device, voice processing module, mechanical parts and data centralized acquisition devices. The sensor device is used to collect information on the environment changes brought by the body near the clothes frame model, the data collection device is used to collect the information of the environment change induced by the sensor device, voice processing module is used for speech recognition of nonspecific person to achieve human-machine interaction, mechanical moving parts are used to make corresponding mechanical responses to the information processed by data collection device.it is connected with data acquisition device by a means of one-way connection. There is a one-way connection between sensor device and data collection device, two-way connection between data acquisition device and voice processing module. The data collection device is one-way connection with mechanical movement parts. The intelligent processing system can judge whether it needs to interact with the customer, realize the man-machine interaction instead of the current rigid frame model.

  17. Motor imaginary-based brain-machine interface design using programmable logic controllers for the disabled.

    PubMed

    Jeyabalan, Vickneswaran; Samraj, Andrews; Loo, Chu Kiong

    2010-10-01

    Aiming at the implementation of brain-machine interfaces (BMI) for the aid of disabled people, this paper presents a system design for real-time communication between the BMI and programmable logic controllers (PLCs) to control an electrical actuator that could be used in devices to help the disabled. Motor imaginary signals extracted from the brain’s motor cortex using an electroencephalogram (EEG) were used as a control signal. The EEG signals were pre-processed by means of adaptive recursive band-pass filtrations (ARBF) and classified using simplified fuzzy adaptive resonance theory mapping (ARTMAP) in which the classified signals are then translated into control signals used for machine control via the PLC. A real-time test system was designed using MATLAB for signal processing, KEP-Ware V4 OLE for process control (OPC), a wireless local area network router, an Omron Sysmac CPM1 PLC and a 5 V/0.3A motor. This paper explains the signal processing techniques, the PLC's hardware configuration, OPC configuration and real-time data exchange between MATLAB and PLC using the MATLAB OPC toolbox. The test results indicate that the function of exchanging real-time data can be attained between the BMI and PLC through OPC server and proves that it is an effective and feasible method to be applied to devices such as wheelchairs or electronic equipment.

  18. A study on the application of voice interaction in automotive human machine interface experience design

    NASA Astrophysics Data System (ADS)

    Huang, Zhaohui; Huang, Xiemin

    2018-04-01

    This paper, firstly, introduces the application trend of the integration of multi-channel interactions in automotive HMI ((Human Machine Interface) from complex information models faced by existing automotive HMI and describes various interaction modes. By comparing voice interaction and touch screen, gestures and other interaction modes, the potential and feasibility of voice interaction in automotive HMI experience design are concluded. Then, the related theories of voice interaction, identification technologies, human beings' cognitive models of voices and voice design methods are further explored. And the research priority of this paper is proposed, i.e. how to design voice interaction to create more humane task-oriented dialogue scenarios to enhance interactive experiences of automotive HMI. The specific scenarios in driving behaviors suitable for the use of voice interaction are studied and classified, and the usability principles and key elements for automotive HMI voice design are proposed according to the scenario features. Then, through the user participatory usability testing experiment, the dialogue processes of voice interaction in automotive HMI are defined. The logics and grammars in voice interaction are classified according to the experimental results, and the mental models in the interaction processes are analyzed. At last, the voice interaction design method to create the humane task-oriented dialogue scenarios in the driving environment is proposed.

  19. The Impact of New Guidance and Control Systems on Military Aircraft Cockpit Design.

    DTIC Science & Technology

    1981-08-01

    de r~duction des surfaces de planche de bord et de complexit6 des interfaces homme /machine darns les a~ronefs de combat A haute performance...taut remarquer que dana l ’&tat actuel do la technique, une machine de reconnaissance do parole n’a pas do performances en propre. Sea performances...L’organe principal du dialogue 6tant une console A tube cathodique et clavier. L I ___ 15-3 Le vocabulaire comportait 119 mots, extraits de

  20. Food system galley for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Murray, R. W.; Hunt, S. R.; Sauer, R. L.; Turner, T. R.

    1979-01-01

    The Galley, a 42 man-day meal preparation facility (with flexibility to accomodate 210 man-days) is described. The facility is designed for minimum meal preparation and clean-up time in zero g and ease of servicing, maintenance, and removal in one gravity. The Galley provides a centralized location for performing all of the food-related functions (except dining) within the orbiter. Consideration is given to the oven-water heater, personal hygiene station, water dispensers, and water supply subsystem. The Galley is positioned in the orbiting mid deck, interfacing with rehydratable food packages and the waste collector subsystem.

  1. QUICK - An interactive software environment for engineering design

    NASA Technical Reports Server (NTRS)

    Skinner, David L.

    1989-01-01

    QUICK, an interactive software environment for engineering design, provides a programmable FORTRAN-like calculator interface to a wide range of data structures as well as both built-in and user created functions. QUICK also provides direct access to the operating systems of eight different machine architectures. The evolution of QUICK and a brief overview of the current version are presented.

  2. Research on self-calibration biaxial autocollimator based on ZYNQ

    NASA Astrophysics Data System (ADS)

    Guo, Pan; Liu, Bingguo; Liu, Guodong; Zhong, Yao; Lu, Binghui

    2018-01-01

    Autocollimators are mainly based on computers or the electronic devices that can be connected to the internet, and its precision, measurement range and resolution are all defective, and external displays are needed to display images in real time. What's more, there is no real-time calibration for autocollimator in the market. In this paper, we propose a biaxial autocollimator based on the ZYNQ embedded platform to solve the above problems. Firstly, the traditional optical system is improved and a light path is added for real-time calibration. Then, in order to improve measurement speed, the embedded platform based on ZYNQ that combines Linux operating system with autocollimator is designed. In this part, image acquisition, image processing, image display and the man-machine interaction interface based on Qt are achieved. Finally, the system realizes two-dimensional small angle measurement. Experimental results showed that the proposed method can improve the angle measurement accuracy. The standard deviation of the close distance (1.5m) is 0.15" in horizontal direction of image and 0.24"in vertical direction, the repeatability of measurement of the long distance (10m) is improved by 0.12 in horizontal direction of image and 0.3 in vertical direction.

  3. An implantable integrated low-power amplifier-microelectrode array for Brain-Machine Interfaces.

    PubMed

    Patrick, Erin; Sankar, Viswanath; Rowe, William; Sanchez, Justin C; Nishida, Toshikazu

    2010-01-01

    One of the important challenges in designing Brain-Machine Interfaces (BMI) is to build implantable systems that have the ability to reliably process the activity of large ensembles of cortical neurons. In this paper, we report the design, fabrication, and testing of a polyimide-based microelectrode array integrated with a low-power amplifier as part of the Florida Wireless Integrated Recording Electrode (FWIRE) project at the University of Florida developing a fully implantable neural recording system for BMI applications. The electrode array was fabricated using planar micromachining MEMS processes and hybrid packaged with the amplifier die using a flip-chip bonding technique. The system was tested both on bench and in-vivo. Acute and chronic neural recordings were obtained from a rodent for a period of 42 days. The electrode-amplifier performance was analyzed over the chronic recording period with the observation of a noise floor of 4.5 microVrms, and an average signal-to-noise ratio of 3.8.

  4. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN.

    PubMed

    Bascil, M Serdar; Tesneli, Ahmet Y; Temurtas, Feyzullah

    2016-09-01

    Brain computer interface (BCI) is a new communication way between man and machine. It identifies mental task patterns stored in electroencephalogram (EEG). So, it extracts brain electrical activities recorded by EEG and transforms them machine control commands. The main goal of BCI is to make available assistive environmental devices for paralyzed people such as computers and makes their life easier. This study deals with feature extraction and mental task pattern recognition on 2-D cursor control from EEG as offline analysis approach. The hemispherical power density changes are computed and compared on alpha-beta frequency bands with only mental imagination of cursor movements. First of all, power spectral density (PSD) features of EEG signals are extracted and high dimensional data reduced by principle component analysis (PCA) and independent component analysis (ICA) which are statistical algorithms. In the last stage, all features are classified with two types of support vector machine (SVM) which are linear and least squares (LS-SVM) and three different artificial neural network (ANN) structures which are learning vector quantization (LVQ), multilayer neural network (MLNN) and probabilistic neural network (PNN) and mental task patterns are successfully identified via k-fold cross validation technique.

  5. The Formal Specification of a Visual display Device: Design and Implementation.

    DTIC Science & Technology

    1985-06-01

    The use of these data structures with their defined operations, give the programmer a very powerful instructions set. Like the DPU code generator in...which any AM hosted machine could faithfully display. 27 In- general , most applications have no need to create images from a data structure representing...formation of standard functional interfaces to these resources. OS’s generally do not provide a functional interface to either the processor or the display2

  6. RenderMan design principles

    NASA Technical Reports Server (NTRS)

    Apodaca, Tony; Porter, Tom

    1989-01-01

    The two worlds of interactive graphics and realistic graphics have remained separate. Fast graphics hardware runs simple algorithms and generates simple looking images. Photorealistic image synthesis software runs slowly on large expensive computers. The time has come for these two branches of computer graphics to merge. The speed and expense of graphics hardware is no longer the barrier to the wide acceptance of photorealism. There is every reason to believe that high quality image synthesis will become a standard capability of every graphics machine, from superworkstation to personal computer. The significant barrier has been the lack of a common language, an agreed-upon set of terms and conditions, for 3-D modeling systems to talk to 3-D rendering systems for computing an accurate rendition of that scene. Pixar has introduced RenderMan to serve as that common language. RenderMan, specifically the extensibility it offers in shading calculations, is discussed.

  7. Learning Processes in Man, Machine and Society

    ERIC Educational Resources Information Center

    Malita, Mircea

    1977-01-01

    Deciphering the learning mechanism which exists in man remains to be solved. This article examines the learning process with respect to association and cybernetics. It is recommended that research should focus on the transdisciplinary processes of learning which could become the next key concept in the science of man. (Author/MA)

  8. Descartes' pineal neuropsychology.

    PubMed

    Smith, C U

    1998-02-01

    The year 1996 marked the quattrocentenary of Descartes' birth. This paper reviews his pineal neuropsychology. It demonstrates that Descartes understood the true anatomical position of the pineal. His intraventricular pineal (or glande H) was a theoretical construct which allowed him to describe the operations of his man-like "earthen machine." In the Treatise of Man he shows how all the behaviors of such machines could then be accounted for without the presence of self-consciousness. Infrahuman animals are "conscious automata." In Passions of the Soul he adds, but only for humans, self-consciousness to the machine. In a modern formulation, only humans not only know but know that they know. Copyright 1998 Academic Press.

  9. Test-bench system for a borehole azimuthal acoustic reflection imaging logging tool

    NASA Astrophysics Data System (ADS)

    Liu, Xianping; Ju, Xiaodong; Qiao, Wenxiao; Lu, Junqiang; Men, Baiyong; Liu, Dong

    2016-06-01

    The borehole azimuthal acoustic reflection imaging logging tool (BAAR) is a new generation of imaging logging tool, which is able to investigate stratums in a relatively larger range of space around the borehole. The BAAR is designed based on the idea of modularization with a very complex structure, so it has become urgent for us to develop a dedicated test-bench system to debug each module of the BAAR. With the help of a test-bench system introduced in this paper, test and calibration of BAAR can be easily achieved. The test-bench system is designed based on the client/server model. The hardware system mainly consists of a host computer, an embedded controlling board, a bus interface board, a data acquisition board and a telemetry communication board. The host computer serves as the human machine interface and processes the uploaded data. The software running on the host computer is designed based on VC++. The embedded controlling board uses Advanced Reduced Instruction Set Machines 7 (ARM7) as the micro controller and communicates with the host computer via Ethernet. The software for the embedded controlling board is developed based on the operating system uClinux. The bus interface board, data acquisition board and telemetry communication board are designed based on a field programmable gate array (FPGA) and provide test interfaces for the logging tool. To examine the feasibility of the test-bench system, it was set up to perform a test on BAAR. By analyzing the test results, an unqualified channel of the electronic receiving cabin was discovered. It is suggested that the test-bench system can be used to quickly determine the working condition of sub modules of BAAR and it is of great significance in improving production efficiency and accelerating industrial production of the logging tool.

  10. A Qualitative Model of Human Interaction with Complex Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1987-01-01

    A qualitative model describing human interaction with complex dynamic systems is developed. The model is hierarchical in nature and consists of three parts: a behavior generator, an internal model, and a sensory information processor. The behavior generator is responsible for action decomposition, turning higher level goals or missions into physical action at the human-machine interface. The internal model is an internal representation of the environment which the human is assumed to possess and is divided into four submodel categories. The sensory information processor is responsible for sensory composition. All three parts of the model act in consort to allow anticipatory behavior on the part of the human in goal-directed interaction with dynamic systems. Human workload and error are interpreted in this framework, and the familiar example of an automobile commute is used to illustrate the nature of the activity in the three model elements. Finally, with the qualitative model as a guide, verbal protocols from a manned simulation study of a helicopter instrument landing task are analyzed with particular emphasis on the effect of automation on human-machine performance.

  11. A qualitative model of human interaction with complex dynamic systems

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1987-01-01

    A qualitative model describing human interaction with complex dynamic systems is developed. The model is hierarchical in nature and consists of three parts: a behavior generator, an internal model, and a sensory information processor. The behavior generator is responsible for action decomposition, turning higher level goals or missions into physical action at the human-machine interface. The internal model is an internal representation of the environment which the human is assumed to possess and is divided into four submodel categories. The sensory information processor is responsible for sensory composition. All three parts of the model act in consort to allow anticipatory behavior on the part of the human in goal-directed interaction with dynamic systems. Human workload and error are interpreted in this framework, and the familiar example of an automobile commute is used to illustrate the nature of the activity in the three model elements. Finally, with the qualitative model as a guide, verbal protocols from a manned simulation study of a helicopter instrument landing task are analyzed with particular emphasis on the effect of automation on human-machine performance.

  12. Qualitative CFD for Rapid Learning in Industrial and Academic Applications

    NASA Astrophysics Data System (ADS)

    Variano, Evan

    2010-11-01

    We present a set of tools that allow CFD to be used at an early stage in the design process. Users can rapidly explore the qualitative aspects of fluid flow using real-time simulations that react immediately to design changes. This can guide the design process by fostering an intuitive understanding of fluid dynamics at the prototyping stage. We use an extremely stable Navier-Stokes solver that is available commercially (and free to academic users) plus a custom user interface. The code is designed for the animation and gaming industry, and we exploit the powerful graphical display capabilities to develop a unique human-machine interface. This interface allows the user to efficiently explore the flow in 3D + real time, fostering an intuitive understanding of steady and unsteady flow patterns. There are obvious extensions to use in an academic setting. The trade-offs between accuracy and speed will be discussed in the context of CFD's role in design and education.

  13. FwWebViewPlus: integration of web technologies into WinCC OA based Human-Machine Interfaces at CERN

    NASA Astrophysics Data System (ADS)

    Golonka, Piotr; Fabian, Wojciech; Gonzalez-Berges, Manuel; Jasiun, Piotr; Varela-Rodriguez, Fernando

    2014-06-01

    The rapid growth in popularity of web applications gives rise to a plethora of reusable graphical components, such as Google Chart Tools and JQuery Sparklines, implemented in JavaScript and run inside a web browser. In the paper we describe the tool that allows for seamless integration of web-based widgets into WinCC Open Architecture, the SCADA system used commonly at CERN to build complex Human-Machine Interfaces. Reuse of widely available widget libraries and pushing the development efforts to a higher abstraction layer based on a scripting language allow for significant reduction in maintenance of the code in multi-platform environments compared to those currently used in C++ visualization plugins. Adequately designed interfaces allow for rapid integration of new web widgets into WinCC OA. At the same time, the mechanisms familiar to HMI developers are preserved, making the use of new widgets "native". Perspectives for further integration between the realms of WinCC OA and Web development are also discussed.

  14. Learning Machine, Vietnamese Based Human-Computer Interface.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    The sixth session of IT@EDU98 consisted of seven papers on the topic of the learning machine--Vietnamese based human-computer interface, and was chaired by Phan Viet Hoang (Informatics College, Singapore). "Knowledge Based Approach for English Vietnamese Machine Translation" (Hoang Kiem, Dinh Dien) presents the knowledge base approach,…

  15. [Human machines--mechanical humans? The industrial arrangement of the relation between human being and machine on the basis of psychotechnik and Georg Schlesingers work with disabled soldiers].

    PubMed

    Patzel-Mattern, Katja

    2005-01-01

    The 20th Century is the century of of technical artefacts. With their existance and use they create an artificial reality, within which humans have to position themselves. Psychotechnik is an attempt to enable humans for this positioning. It gained importance in Germany after World War I and had its heyday between 1919 and 1926. On the basis of the activity of the engineer and supporter of Psychotechnik Georg Schlesinger, whose particular interest were disabled soldiers, the essay on hand will investigate the understanding of the body and the human being of Psychotechnik as an applied science. It turned out, that the biggest achievement of Psychotechnik was to establish a new view of the relation between human being and machine. Thus it helped to show that the human-machine-interface is a shapable unit. Psychotechnik sees the human body and its physique as the last instance for the design of machines. Its main concern is to optimize the relation between human being and machine rather than to standardize human beings according to the construction of machines. After her splendid rise during the Weimar Republic and her rapid decline since the late 1920s Psychotechnik nowadays gains scientifical attention as a historical phenomenon. The main attention in the current discourse lies on the aspects conserning philosophy of science: the unity of body and soul, the understanding of the human-machine-interface as a shapable unit and the human being as a last instance of this unit.

  16. Nanoscale wear and machining behavior of nanolayer interfaces.

    PubMed

    Nie, Xueyuan; Zhang, Peng; Weiner, Anita M; Cheng, Yang-Tse

    2005-10-01

    An atomic force microscope was used to subnanometer incise a nanomultilayer to consequently expose individual nanolayers and interfaces on which sliding and scanning nanowear/machining have been performed. The letter reports the first observation on the nanoscale where (i) atomic debris forms in a collective manner, most-likely by deformation and rupture of atomic bonds, and (ii) the nanolayer interfaces possess a much higher wear resistance (desired for nanomachines) or lower machinability (not desired for nanomachining) than the layers.

  17. The NASA Lewis large wind turbine program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Baldwin, D. H.

    1981-01-01

    The program is directed toward development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generation systems. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. Advances are made by gaining a better understanding of the system design drivers, improvements in the analytical design tools, verification of design methods with operating field data, and the incorporation of new technology and innovative designs. An overview of the program activities is presented and includes results from the first and second generation field machines (Mod-OA, -1, and -2), the design phase of the third generation wind turbine (Mod-5) and the advanced technology projects. Also included is the status of the Department of Interior WTS-4 machine.

  18. SpaceBuoy: A University Nanosat Space Weather Mission

    DTIC Science & Technology

    2012-03-26

    for all four-side panels. One design and one machine set-up allows a CNC mill to build them almost automatically. Lessons learned from components...in a dual probe configuration, for in situ plasma density) and interfacing with the spacecraft has been completed. Engineering development is

  19. Work stress of women in sewing machine operation.

    PubMed

    Nag, A; Desai, H; Nag, P K

    1992-06-01

    The study examined the work stresses of 107 women who were engaged in sewing machine operation in small garment manufacturing units. Of the three types of sewing machines (motor-operated, full and half shuttle foot-operated), 74% of the machines were foot-operated, where throttle action of the lower limb is required to move the shuttle of the machine. The motor-operated machines were faster than the foot-operated machines. The short cycle sewing work involves repetitive action of hand and feet. The women had to maintain a constant seated position on a stool without backrest and the body inclined forward. Long-term sewing work had a cumulative load on the musculo-skeletal structures, including the vertebral column and reflected in the form of high prevalence of discomfort and pain in different body parts. About 68% of the women complained of back pain, among whom 35% reported a persistent low back pain. Common sewing work accident is piercing of the needle through the fingers, particularly the right forefingers. Unsatisfactory man-machine incompatibility, work posture and fatigue, improper coordination of eye, leg and hand are the major problems of the operators. The design mis-match of the work place may be significantly improved by taking women's anthropometric dimensions in modifying the workplace, i.e. the seat surface, seat height, work height, backrest, etc.

  20. The European space suit, a design for productivity and crew safety

    NASA Astrophysics Data System (ADS)

    Skoog, A. Ingemar; Berthier, S.; Ollivier, Y.

    In order to fulfil the two major mission objectives, i.e. support planned and unplanned external servicing of the COLUMBUS FFL and support the HERMES vehicle for safety critical operations and emergencies, the European Space Suit System baseline configuration incorporates a number of design features, which shall enhance the productivity and the crew safety of EVA astronauts. The work in EVA is today - and will be for several years - a manual work. Consequently, to improve productivity, the first challenge is to design a suit enclosure which minimizes movement restrictions and crew fatigue. It is covered by the "ergonomic" aspect of the suit design. Furthermore, it is also necessary to help the EVA crewmember in his work, by giving him the right information at the right time. Many solutions exist in this field of Man-Machine Interface, from a very simple system, based on cuff check lists, up to advanced systems, including Head-Up Displays. The design concept for improved productivity encompasses following features: • easy donning/doffing thru rear entry, • suit ergonomy optimisation, • display of operational information in alpha-numerical and graphical from, and • voice processing for operations and safety critical information. Concerning crew safety the major design features are: • a lower R-factor for emergency EVA operations thru incressed suit pressure, • zero prebreath conditions for normal operations, • visual and voice processing of all safety critical functions, and • an autonomous life support system to permit unrestricted operations around HERMES and the CFFL. The paper analyses crew safety and productivity criteria and describes how these features are being built into the design of the European Space Suit System.

  1. Best face forward.

    PubMed

    Rayport, Jeffrey F; Jaworski, Bernard J

    2004-12-01

    Most companies serve customers through a broad array of interfaces, from retail sales clerks to Web sites to voice-response telephone systems. But while the typical company has an impressive interface collection, it doesn't have an interface system. That is, the whole set does not add up to the sum of its parts in its ability to provide service and build customer relationships. Too many people and too many machines operating with insufficient coordination (and often at cross-purposes) mean rising complexity, costs, and customer dissatisfaction. In a world where companies compete not on what they sell but on how they sell it, turning that liability into an asset is what separates winners from losers. In this adaptation of their forthcoming book by the same title, Jeffrey Rayport and Bernard Jaworski explain how companies must reengineer their customer interface systems for optimal efficiency and effectiveness. Part of that transformation, they observe, will involve a steady encroachment by machine interfaces into areas that have long been the sacred province of humans. Managers now have opportunities unprecedented in the history of business to use machines, not just people, to credibly manage their interactions with customers. Because people and machines each have their strengths and weaknesses, company executives must identify what people do best, what machines do best, and how to deploy them separately and together. Front-office reengineering subjects every current and potential service interface to an analysis of opportunities for substitution (using machines instead of people), complementarity (using a mix of machines and people), and displacement (using networks to shift physical locations of people and machines), with the twin objectives of compressing costs and driving top-line growth through increased customer value.

  2. Research and development of the laser tracker measurement system

    NASA Astrophysics Data System (ADS)

    Zhang, Z. L.; Zhou, W. H.; Lao, D. B.; Yuan, J.; Dong, D. F. F.; Ji, R. Y. Y.

    2013-01-01

    The working principle and system design of the laser tracker measurement system are introduced, as well as the key technologies and solutions in the implementation of the system. The design and implementation of the hardware and configuration of the software are mainly researched. The components of the hardware include distance measuring unit, angle measuring unit, tracking and servo control unit and electronic control unit. The distance measuring devices include the relative distance measuring device (IFM) and the absolute distance measuring device (ADM). The main component of the angle measuring device, the precision rotating stage, is mainly comprised of the precision axis and the encoders which are both set in the tracking head. The data processing unit, tracking and control unit and power supply unit are all set in the control box. The software module is comprised of the communication module, calibration and error compensation module, data analysis module, database management module, 3D display module and the man-machine interface module. The prototype of the laser tracker system has been accomplished and experiments have been carried out to verify the proposed strategies of the hardware and software modules. The experiments showed that the IFM distance measuring error is within 0.15mm, the ADM distance measuring error is within 3.5mm and the angle measuring error is within 3" which demonstrates that the preliminary prototype can realize fundamental measurement tasks.

  3. Realizing Scientific Methods for Cyber Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Thomas E.; Manz, David O.; Edgar, Thomas W.

    There is little doubt among cyber security researchers about the lack of scientic rigor that underlies much of the liter-ature. The issues are manifold and are well documented. Further complicating the problem is insufficient scientic methods to address these issues. Cyber security melds man and machine: we inherit the challenges of computer science, sociology, psychology, and many other elds and create new ones where these elds interface. In this paper we detail a partial list of challenges imposed by rigorous science and survey how other sciences have tackled them, in the hope of applying a similar approach to cyber securitymore » science. This paper is by no means comprehensive: its purpose is to foster discussion in the community on how we can improve rigor in cyber security science.« less

  4. Producing smart sensing films by means of organic field effect transistors.

    PubMed

    Manunza, Ileana; Orgiu, Emanuele; Caboni, Alessandra; Barbaro, Massimo; Bonfiglio, Annalisa

    2006-01-01

    We have fabricated the first example of totally flexible field effect device for chemical detection based on an organic field effect transistor (OFET) made by pentacene films grown on flexible plastic structures. The ion sensitivity is achieved by employing a thin Mylar foil as gate dielectric. A sensitivity of the device to the pH of the electrolyte solution has been observed A similar structure can be used also for detecting mechanical deformations on flexible surfaces. Thanks to the flexibility of the substrate and the low cost of the employed technology, these devices open the way for the production of flexible chemical and strain gauge sensors that can be employed in a variety of innovative applications such as wearable electronics, e-textiles, new man-machine interfaces.

  5. Automated subsystems control development. [for life support systems of space station

    NASA Technical Reports Server (NTRS)

    Block, R. F.; Heppner, D. B.; Samonski, F. H., Jr.; Lance, N., Jr.

    1985-01-01

    NASA has the objective to launch a Space Station in the 1990s. It has been found that the success of the Space Station engineering development, the achievement of initial operational capability (IOC), and the operation of a productive Space Station will depend heavily on the implementation of an effective automation and control approach. For the development of technology needed to implement the required automation and control function, a contract entitled 'Automated Subsystems Control for Life Support Systems' (ASCLSS) was awarded to two American companies. The present paper provides a description of the ASCLSS program. Attention is given to an automation and control architecture study, a generic automation and control approach for hardware demonstration, a standard software approach, application of Air Revitalization Group (ARG) process simulators, and a generic man-machine interface.

  6. Self-assembling fluidic machines

    NASA Astrophysics Data System (ADS)

    Grzybowski, Bartosz A.; Radkowski, Michal; Campbell, Christopher J.; Lee, Jessamine Ng; Whitesides, George M.

    2004-03-01

    This letter describes dynamic self-assembly of two-component rotors floating at the interface between liquid and air into simple, reconfigurable mechanical systems ("machines"). The rotors are powered by an external, rotating magnetic field, and their positions within the interface are controlled by: (i) repulsive hydrodynamic interactions between them and (ii) by localized magnetic fields produced by an array of small electromagnets located below the plane of the interface. The mechanical functions of the machines depend on the spatiotemporal sequence of activation of the electromagnets.

  7. The Technology Review 10: Emerging Technologies that Will Change the World.

    ERIC Educational Resources Information Center

    Technology Review, 2001

    2001-01-01

    Identifies 10 emerging areas of technology that will soon have a profound impact on the economy and on how people live and work: brain-machine interfaces; flexible transistors; data mining; digital rights management; biometrics; natural language processing; microphotonics; untangling code; robot design; and microfluidics. In each area, one…

  8. Accelerator controls at CERN: Some converging trends

    NASA Astrophysics Data System (ADS)

    Kuiper, B.

    1990-08-01

    CERN's growing services to the high-energy physics community using frozen resources has led to the implementation of "Technical Boards", mandated to assist the management by making recommendations for rationalizations in various technological domains. The Board on Process Control and Electronics for Accelerators, TEBOCO, has emphasized four main lines which might yield economy in resources. First, a common architecture for accelerator controls has been agreed between the three accelerator divisions. Second, a common hardware/software kit has been defined, from which the large majority of future process interfacing may be composed. A support service for this kit is an essential part of the plan. Third, high-level protocols have been developed for standardizing access to process devices. They derive from agreed standard models of the devices and involve a standard control message. This should ease application development and mobility of equipment. Fourth, a common software engineering methodology and a commercial package of application development tools have been adopted. Some rationalization in the field of the man-machine interface and in matters of synchronization is also under way.

  9. Gloved Human-Machine Interface

    NASA Technical Reports Server (NTRS)

    Adams, Richard (Inventor); Hannaford, Blake (Inventor); Olowin, Aaron (Inventor)

    2015-01-01

    Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to: tracking movement of a gloved hand of a human; interpreting a gloved finger movement of the human; and/or in response to interpreting the gloved finger movement, providing feedback to the human.

  10. A Prototype SSVEP Based Real Time BCI Gaming System

    PubMed Central

    Martišius, Ignas

    2016-01-01

    Although brain-computer interface technology is mainly designed with disabled people in mind, it can also be beneficial to healthy subjects, for example, in gaming or virtual reality systems. In this paper we discuss the typical architecture, paradigms, requirements, and limitations of electroencephalogram-based gaming systems. We have developed a prototype three-class brain-computer interface system, based on the steady state visually evoked potentials paradigm and the Emotiv EPOC headset. An online target shooting game, implemented in the OpenViBE environment, has been used for user feedback. The system utilizes wave atom transform for feature extraction, achieving an average accuracy of 78.2% using linear discriminant analysis classifier, 79.3% using support vector machine classifier with a linear kernel, and 80.5% using a support vector machine classifier with a radial basis function kernel. PMID:27051414

  11. Design of cylindrical pipe automatic welding control system based on STM32

    NASA Astrophysics Data System (ADS)

    Chen, Shuaishuai; Shen, Weicong

    2018-04-01

    The development of modern economy makes the demand for pipeline construction and construction rapidly increasing, and the pipeline welding has become an important link in pipeline construction. At present, there are still a large number of using of manual welding methods at home and abroad, and field pipe welding especially lacks miniature and portable automatic welding equipment. An automated welding system consists of a control system, which consisting of a lower computer control panel and a host computer operating interface, as well as automatic welding machine mechanisms and welding power systems in coordination with the control system. In this paper, a new control system of automatic pipe welding based on the control panel of the lower computer and the interface of the host computer is proposed, which has many advantages over the traditional automatic welding machine.

  12. A Prototype SSVEP Based Real Time BCI Gaming System.

    PubMed

    Martišius, Ignas; Damaševičius, Robertas

    2016-01-01

    Although brain-computer interface technology is mainly designed with disabled people in mind, it can also be beneficial to healthy subjects, for example, in gaming or virtual reality systems. In this paper we discuss the typical architecture, paradigms, requirements, and limitations of electroencephalogram-based gaming systems. We have developed a prototype three-class brain-computer interface system, based on the steady state visually evoked potentials paradigm and the Emotiv EPOC headset. An online target shooting game, implemented in the OpenViBE environment, has been used for user feedback. The system utilizes wave atom transform for feature extraction, achieving an average accuracy of 78.2% using linear discriminant analysis classifier, 79.3% using support vector machine classifier with a linear kernel, and 80.5% using a support vector machine classifier with a radial basis function kernel.

  13. Feasibility of task-specific brain-machine interface training for upper-extremity paralysis in patients with chronic hemiparetic stroke.

    PubMed

    Nishimoto, Atsuko; Kawakami, Michiyuki; Fujiwara, Toshiyuki; Hiramoto, Miho; Honaga, Kaoru; Abe, Kaoru; Mizuno, Katsuhiro; Ushiba, Junichi; Liu, Meigen

    2018-01-10

    Brain-machine interface training was developed for upper-extremity rehabilitation for patients with severe hemiparesis. Its clinical application, however, has been limited because of its lack of feasibility in real-world rehabilitation settings. We developed a new compact task-specific brain-machine interface system that enables task-specific training, including reach-and-grasp tasks, and studied its clinical feasibility and effectiveness for upper-extremity motor paralysis in patients with stroke. Prospective beforeâ€"after study. Twenty-six patients with severe chronic hemiparetic stroke. Participants were trained with the brain-machine interface system to pick up and release pegs during 40-min sessions and 40 min of standard occupational therapy per day for 10 days. Fugl-Meyer upper-extremity motor (FMA) and Motor Activity Log-14 amount of use (MAL-AOU) scores were assessed before and after the intervention. To test its feasibility, 4 occupational therapists who operated the system for the first time assessed it with the Quebec User Evaluation of Satisfaction with assistive Technology (QUEST) 2.0. FMA and MAL-AOU scores improved significantly after brain-machine interface training, with the effect sizes being medium and large, respectively (p<0.01, d=0.55; p<0.01, d=0.88). QUEST effectiveness and safety scores showed feasibility and satisfaction in the clinical setting. Our newly developed compact brain-machine interface system is feasible for use in real-world clinical settings.

  14. ATM Technology Demonstration-1 Phase II Boeing Configurable Graphical Display (CGD) Software Design Description

    NASA Technical Reports Server (NTRS)

    Wilber, George F.

    2017-01-01

    This Software Description Document (SDD) captures the design for developing the Flight Interval Management (FIM) system Configurable Graphics Display (CGD) software. Specifically this SDD describes aspects of the Boeing CGD software and the surrounding context and interfaces. It does not describe the Honeywell components of the CGD system. The SDD provides the system overview, architectural design, and detailed design with all the necessary information to implement the Boeing components of the CGD software and integrate them into the CGD subsystem within the larger FIM system. Overall system and CGD system-level requirements are derived from the CGD SRS (in turn derived from the Boeing System Requirements Design Document (SRDD)). Display and look-and-feel requirements are derived from Human Machine Interface (HMI) design documents and working group recommendations. This Boeing CGD SDD is required to support the upcoming Critical Design Review (CDR).

  15. Biomedical and Human Factors Requirements for a Manned Earth-Orbiting Station

    NASA Technical Reports Server (NTRS)

    Reynolds, J. B.

    1963-01-01

    The study reported here has presented a measurement data pool for the determination of biomedical and behavioral effects of long-term exposure to weightlessness. This includes measures, techniques, equipment, and requirements in terms of weight, power, volume, time, crew activities, subsystem interfaces and experimental programs and designs, and confidence ratings for their effectiveness for determining weightlessness effects.

  16. TAE+ 5.1 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.1 (HP9000 SERIES 300/400 VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System, Version 11 Release 4, and the Open Software Foundation's Motif. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is expected to be available on media suitable for seven different machine platforms: 1) DEC VAX computers running VMS (TK50 cartridge in VAX BACKUP format), 2) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), 3) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), 4) HP9000 Series 300/400 computers running HP-UX (.25 inch HP-preformatted tape cartridge in UNIX tar format), 5) HP9000 Series 700 computers running HP-UX (HP 4mm DDS DAT tape cartridge in UNIX tar format), 6) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and 7) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2.

  17. TAE+ 5.1 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.1 (VAX VMS VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System, Version 11 Release 4, and the Open Software Foundation's Motif. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is expected to be available on media suitable for seven different machine platforms: 1) DEC VAX computers running VMS (TK50 cartridge in VAX BACKUP format), 2) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), 3) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), 4) HP9000 Series 300/400 computers running HP-UX (.25 inch HP-preformatted tape cartridge in UNIX tar format), 5) HP9000 Series 700 computers running HP-UX (HP 4mm DDS DAT tape cartridge in UNIX tar format), 6) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and 7) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2.

  18. Thermal Management and Reliability of Automotive Power Electronics and Electric Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narumanchi, Sreekant V; Bennion, Kevin S; Cousineau, Justine E

    Low-cost, high-performance thermal management technologies are helping meet aggressive power density, specific power, cost, and reliability targets for power electronics and electric machines. The National Renewable Energy Laboratory is working closely with numerous industry and research partners to help influence development of components that meet aggressive performance and cost targets through development and characterization of cooling technologies, and thermal characterization and improvements of passive stack materials and interfaces. Thermomechanical reliability and lifetime estimation models are important enablers for industry in cost-and time-effective design.

  19. Man-systems distributed system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Lewis, J. L.

    1990-01-01

    Viewgraphs on man-systems distributed system for Space Station Freedom are presented. Topics addressed include: description of man-systems (definition, requirements, scope, subsystems, and topologies); implementation (approach, tools); man-systems interfaces (system to element and system to system); prime/supporting development relationship; selected accomplishments; and technical challenges.

  20. Analytical study of electrical disconnect system for use on manned and unmanned missions

    NASA Technical Reports Server (NTRS)

    Rosener, A. A.; Lenda, J. A.; Trummer, R. O.; Jonkoniec, T. G.

    1977-01-01

    The program to survey existing electrical connector availability, and establish an optimum connector design for maintainable spacecraft substation interfaces is reported. Functional and operational requirements are given along with the results of the documentation survey, which disclosed that the MSFC series connectors have the preferred features of current connector technology. Optimum design concepts for EVA tasks, modules serviced by manipulators, and for manipulators independent of other servicing units are presented. It is concluded that separate connector designs are required for spacecraft replaceable modules, and for crewman EVA.

  1. The research of laser marking control technology

    NASA Astrophysics Data System (ADS)

    Zhang, Qiue; Zhang, Rong

    2009-08-01

    In the area of Laser marking, the general control method is insert control card to computer's mother board, it can not support hot swap, it is difficult to assemble or it. Moreover, the one marking system must to equip one computer. In the system marking, the computer can not to do the other things except to transmit marking digital information. Otherwise it can affect marking precision. Based on traditional control methods existed some problems, introduced marking graphic editing and digital processing by the computer finish, high-speed digital signal processor (DSP) control marking the whole process. The laser marking controller is mainly contain DSP2812, digital memorizer, DAC (digital analog converting) transform unit circuit, USB interface control circuit, man-machine interface circuit, and other logic control circuit. Download the marking information which is processed by computer to U disk, DSP read the information by USB interface on time, then processing it, adopt the DSP inter timer control the marking time sequence, output the scanner control signal by D/A parts. Apply the technology can realize marking offline, thereby reduce the product cost, increase the product efficiency. The system have good effect in actual unit markings, the marking speed is more quickly than PCI control card to 20 percent. It has application value in practicality.

  2. Mars vertical axis wind machines: The design of a tornado vortex machine for use on Mars

    NASA Technical Reports Server (NTRS)

    Carlin, Daun; Dyhr, Amy; Kelly, Jon; Schmirler, J. Eric; Carlin, Mike; Hong, Won E.; Mahoney, Kamin

    1994-01-01

    Ever since Viking 1 and 2 landed on the surface of Mars in the summer of 1976, man has yearned to go back. But before man steps foot upon the surface of Mars, unmanned missions such as the Martian Soft Lander and Martian Subsurface Penetrator will precede him. Alternative renewable power sources must be developed to supply the next generation of surface exploratory spacecraft, since RTG's, solar cells, and long-life batteries all have their significant drawbacks. One such alternative is to take advantage of the unique Martian atmospheric conditions by designing a small scale, Martian wind power generator, capable of surviving impact and fulfilling the long term (2-5 years), low-level power requirements (1-2 Watts) of an unmanned surface probe. After investigation of several wind machines, a tornado vortex generator was chosen based upon its capability of theoretically augmenting and increasing the available power that may be extracted from average Martian wind speeds of approximately 7.5 m/s. The Martian Tornado Vortex Wind Generator stands 1 meter high and has a diameter of 0.5 m. Martian winds enter the base and shroud of the Tornado Vortex Generator at 7.5 m/s and are increased to an exit velocity of 13.657 m/s due to the vortex that is created. This results in a rapid pressure drop of 4.56 kg/s(exp 2) m across the vortex core which aids in producing a net power output of 1.1765 Watts. The report contains the necessary analysis and requirements needed to feasibly operate a low-level powered, unmanned, Martian surface probe.

  3. Mars vertical axis wind machines: The design of a tornado vortex machine for use on Mars

    NASA Astrophysics Data System (ADS)

    Carlin, Daun; Dyhr, Amy; Kelly, Jon; Schmirler, J. Eric; Carlin, Mike; Hong, Won E.; Mahoney, Kamin; Ralston, Michael

    1994-06-01

    Ever since Viking 1 and 2 landed on the surface of Mars in the summer of 1976, man has yearned to go back. But before man steps foot upon the surface of Mars, unmanned missions such as the Martian Soft Lander and Martian Subsurface Penetrator will precede him. Alternative renewable power sources must be developed to supply the next generation of surface exploratory spacecraft, since RTG's, solar cells, and long-life batteries all have their significant drawbacks. One such alternative is to take advantage of the unique Martian atmospheric conditions by designing a small scale, Martian wind power generator, capable of surviving impact and fulfilling the long term (2-5 years), low-level power requirements (1-2 Watts) of an unmanned surface probe. After investigation of several wind machines, a tornado vortex generator was chosen based upon its capability of theoretically augmenting and increasing the available power that may be extracted from average Martian wind speeds of approximately 7.5 m/s. The Martian Tornado Vortex Wind Generator stands 1 meter high and has a diameter of 0.5 m. Martian winds enter the base and shroud of the Tornado Vortex Generator at 7.5 m/s and are increased to an exit velocity of 13.657 m/s due to the vortex that is created. This results in a rapid pressure drop of 4.56 kg/s(exp 2) m across the vortex core which aids in producing a net power output of 1.1765 Watts. The report contains the necessary analysis and requirements needed to feasibly operate a low-level powered, unmanned, Martian surface probe.

  4. Static Frequency Converter System Installed and Tested

    NASA Technical Reports Server (NTRS)

    Brown, Donald P.; Sadhukhan, Debashis

    2003-01-01

    A new Static Frequency Converter (SFC) system has been installed and tested at the NASA Glenn Research Center s Central Air Equipment Building to provide consistent, reduced motor start times and improved reliability for the building s 14 large exhausters and compressors. The operational start times have been consistent around 2 min, 20 s per machine. This is at least a 3-min improvement (per machine) over the old variable-frequency motor generator sets. The SFC was designed and built by Asea Brown Boveri (ABB) and installed by Encompass Design Group (EDG) as part of a Construction of Facilities project managed by Glenn (Robert Scheidegger, project manager). The authors designed the Central Process Distributed Control Systems interface and control between the programmable logic controller, solid-state exciter, and switchgear, which was constructed by Gilcrest Electric.

  5. Z-2 Architecture Description and Requirements Verification Results

    NASA Technical Reports Server (NTRS)

    Graziosi, Dave; Jones, Bobby; Ferl, Jinny; Scarborough, Steve; Hewes, Linda; Ross, Amy; Rhodes, Richard

    2016-01-01

    The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z series of spacesuits. The Z-2 is another step in NASA's technology development roadmap leading to human exploration of the Martian surface. The suit was designed for maximum mobility at 8.3 psid, reduced mass, and to have high fidelity life support interfaces. As Z-2 will be man-tested at full vacuum in NASA JSC's Chamber B, it was manufactured as Class II, making it the most flight-like planetary walking suit produced to date. The Z-2 suit architecture is an evolution of previous EVA suits, namely the ISS EMU, Mark III, Rear Entry I-Suit and Z-1 spacesuits. The suit is a hybrid hard and soft multi-bearing, rear entry spacesuit. The hard upper torso (HUT) is an all-composite structure and includes a 2-bearing rolling convolute shoulder with Vernier sizing mechanism, removable suit port interface plate (SIP), elliptical hemispherical helmet and self-don/doff shoulder harness. The hatch is a hybrid aluminum and composite construction with Apollo style gas connectors, custom water pass-thru, removable hatch cage and interfaces to primary and auxiliary life support feed water bags. The suit includes Z-1 style lower arms with cam brackets for Vernier sizing and government furnished equipment (GFE) Phase VI gloves. The lower torso includes a telescopic waist sizing system, waist bearing, rolling convolute waist joint, hard brief, 2 bearing soft hip thigh, Z-1 style legs with ISS EMU style cam brackets for sizing, and conformal walking boots with ankle bearings. The Z-2 Requirements Verification Plan includes the verification of more than 200 individual requirements. The verification methods include test, analysis, inspection, demonstration or a combination of methods. Examples of unmanned requirements include suit leakage, proof pressure testing, operational life, mass, isometric man-loads, sizing adjustment ranges, internal and external interfaces such as in-suit drink bag, partial pressure relief valve, purge valve, donning stand and ISS Body Restraint Tether (BRT). Examples of manned requirements include verification of anthropometric range, suit self-don/doff, secondary suit exit method, donning stand self-ingress/egress and manned mobility covering eight functional tasks. The eight functional tasks include kneeling with object pick-up, standing toe touch, cross-body reach, walking, reach to the SIP and helmet visor. This paper will provide an overview of the Z-2 design. Z-2 requirements verification testing was performed with NASA at the ILC Houston test facility. This paper will also discuss pre-delivery manned and unmanned test results as well as analysis performed in support of requirements verification.

  6. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.

    PubMed

    Lo, Chi-Chun; Chien, Tsung-Yi; Chen, Yu-Chun; Tsai, Shang-Ho; Fang, Wai-Chi; Lin, Bor-Shyh

    2016-02-06

    Motor imagery-based brain-computer interface (BCI) is a communication interface between an external machine and the brain. Many kinds of spatial filters are used in BCIs to enhance the electroencephalography (EEG) features related to motor imagery. The approach of channel selection, developed to reserve meaningful EEG channels, is also an important technique for the development of BCIs. However, current BCI systems require a conventional EEG machine and EEG electrodes with conductive gel to acquire multi-channel EEG signals and then transmit these EEG signals to the back-end computer to perform the approach of channel selection. This reduces the convenience of use in daily life and increases the limitations of BCI applications. In order to improve the above issues, a novel wearable channel selection-based brain-computer interface is proposed. Here, retractable comb-shaped active dry electrodes are designed to measure the EEG signals on a hairy site, without conductive gel. By the design of analog CAR spatial filters and the firmware of EEG acquisition module, the function of spatial filters could be performed without any calculation, and channel selection could be performed in the front-end device to improve the practicability of detecting motor imagery in the wearable EEG device directly or in commercial mobile phones or tablets, which may have relatively low system specifications. Finally, the performance of the proposed BCI is investigated, and the experimental results show that the proposed system is a good wearable BCI system prototype.

  7. Low Latency Messages on Distributed Memory Multiprocessors

    DOE PAGES

    Rosing, Matt; Saltz, Joel

    1995-01-01

    This article describes many of the issues in developing an efficient interface for communication on distributed memory machines. Although the hardware component of message latency is less than 1 ws on many distributed memory machines, the software latency associated with sending and receiving typed messages is on the order of 50 μs. The reason for this imbalance is that the software interface does not match the hardware. By changing the interface to match the hardware more closely, applications with fine grained communication can be put on these machines. This article describes several tests performed and many of the issues involvedmore » in supporting low latency messages on distributed memory machines.« less

  8. Defining brain-machine interface applications by matching interface performance with device requirements.

    PubMed

    Tonet, Oliver; Marinelli, Martina; Citi, Luca; Rossini, Paolo Maria; Rossini, Luca; Megali, Giuseppe; Dario, Paolo

    2008-01-15

    Interaction with machines is mediated by human-machine interfaces (HMIs). Brain-machine interfaces (BMIs) are a particular class of HMIs and have so far been studied as a communication means for people who have little or no voluntary control of muscle activity. In this context, low-performing interfaces can be considered as prosthetic applications. On the other hand, for able-bodied users, a BMI would only be practical if conceived as an augmenting interface. In this paper, a method is introduced for pointing out effective combinations of interfaces and devices for creating real-world applications. First, devices for domotics, rehabilitation and assistive robotics, and their requirements, in terms of throughput and latency, are described. Second, HMIs are classified and their performance described, still in terms of throughput and latency. Then device requirements are matched with performance of available interfaces. Simple rehabilitation and domotics devices can be easily controlled by means of BMI technology. Prosthetic hands and wheelchairs are suitable applications but do not attain optimal interactivity. Regarding humanoid robotics, the head and the trunk can be controlled by means of BMIs, while other parts require too much throughput. Robotic arms, which have been controlled by means of cortical invasive interfaces in animal studies, could be the next frontier for non-invasive BMIs. Combining smart controllers with BMIs could improve interactivity and boost BMI applications.

  9. Load fatigue performance of four implant-abutment interface designs: effect of torque level and implant system.

    PubMed

    Quek, H C; Tan, Keson B; Nicholls, Jack I

    2008-01-01

    Biomechanical load-fatigue performance data on single-tooth implant systems with different implant-abutment interface designs is lacking in the literature. This study evaluated the load fatigue performance of 4 implant-abutment interface designs (Brånemark-CeraOne; 3i Osseotite-STA abutment; Replace Select-Easy abutment; and Lifecore Stage-1-COC abutment system). The number of load cycles to fatigue failure of 4 implant-abutment designs was tested with a custom rotational load fatigue machine. The effect of increasing and decreasing the tightening torque by 20% respectively on the load fatigue performance was also investigated. Three different tightening torque levels (recommended torque, -20% recommended torque, +20% recommended torque) were applied to the 4 implant systems. There were 12 test groups with 5 samples in each group. The rotational load fatigue machine subjected specimens to a sinusoidally applied 35 Ncm bending moment at a test frequency of 14 Hz. The number of cycles to failure was recorded. A cutoff of 5 x 10(6) cycles was applied as an upper limit. There were 2 implant failures and 1 abutment screw failure in the Brånemark group. Five abutment screw failures and 4 implant failures was recorded for the 3i system. The Replace Select system had 1 implant failure. Five cone screw failures were noted for the Lifecore system. Analysis of variance revealed no statistically significant difference in load cycles to failure for the 4 different implant-abutment systems torqued at recommended torque level. A statistically significant difference was found between the -20% torque group and the +20% torque group (P < .05) for the 3i system. Load fatigue performance and failure location is system specific and related to the design characteristics of the implant-abutment combination. It appeared that if the implant-abutment interface was maintained, load fatigue failure would occur at the weakest point of the implant. It is important to use the torque level recommended by the manufacturer.

  10. TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (HP9000 SERIES 700/800 VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.

  11. TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (IBM RS/6000 VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.

  12. TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (SUN4 VERSION WITH MOTIF)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.

  13. TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (SILICON GRAPHICS VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.

  14. TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (SUN4 VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.

  15. TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (DEC RISC ULTRIX VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.

  16. Expert Systems Development Methodology

    DTIC Science & Technology

    1989-07-28

    application. Chapter 9, Design and Prototyping, discusses the problems of designing the user interface and other characteristics of the ES and the prototyping...severely in question as to whether they were computable. In order to work with this problem , Turing created what he called the universal machine. These...about the theory of computers and their relationship to problem solving. It was here at Princeton that he first began to experiment directly with

  17. Application of the user-centred design process according ISO 9241-210 in air traffic control.

    PubMed

    König, Christina; Hofmann, Thomas; Bruder, Ralph

    2012-01-01

    Designing a usable human machine interface for air traffic control is challenging and should follow approved methods. The ISO 9241-210 standard promises high usability of products by integrating future users and following an iterative process. This contribution describes the proceeding and first results of the analysis and application of ISO 9241-210 to develop a planning tool for air traffic controllers.

  18. Development of hardwares and computer interface for a two-degree-of-freedom robot

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Pooran, Farhad J.

    1987-01-01

    The research results that were obtained are reviewed. Then the robot actuator, the selection of the data acquisition system, and the design of the power amplifier will be discussed. The machine design of the robot manipulator will then be presented. After that, the integration of the developed hardware into the open-loop system will also be discussed. Current and future research work is addressed.

  19. TOPICAL REVIEW: Prosthetic interfaces with the visual system: biological issues

    NASA Astrophysics Data System (ADS)

    Cohen, Ethan D.

    2007-06-01

    The design of effective visual prostheses for the blind represents a challenge for biomedical engineers and neuroscientists. Significant progress has been made in the miniaturization and processing power of prosthesis electronics; however development lags in the design and construction of effective machine brain interfaces with visual system neurons. This review summarizes what has been learned about stimulating neurons in the human and primate retina, lateral geniculate nucleus and visual cortex. Each level of the visual system presents unique challenges for neural interface design. Blind patients with the retinal degenerative disease retinitis pigmentosa (RP) are a common population in clinical trials of visual prostheses. The visual performance abilities of normals and RP patients are compared. To generate pattern vision in blind patients, the visual prosthetic interface must effectively stimulate the retinotopically organized neurons in the central visual field to elicit patterned visual percepts. The development of more biologically compatible methods of stimulating visual system neurons is critical to the development of finer spatial percepts. Prosthesis electrode arrays need to adapt to different optimal stimulus locations, stimulus patterns, and patient disease states.

  20. People, planners and policy: is there an interface?

    Treesearch

    Susan Kopka

    1979-01-01

    This research attempts to isolate some of the dimensions of human evaluations/perceptions of the built environment through the use of an Audience Response Machine and a video tape of environmental scenes. The results suggest that there are commonalities in peoples' evaluations/perceptions and that this type of inquiry has prescriptive value for design/planning....

  1. Man-equivalent telepresence through four fingered human-like hand system

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.

    1992-01-01

    The author describes a newly developed mechanical hand system. The robot hand is in human-like configuration with a thumb and three fingers, a palm, a wrist, and the forearm in which the hand and wrist actuators are located. Each finger and the wrist has its own active electromechanical compliance system, allowing the joint drive trains to be stiffened or loosened. This mechanism imitates the human muscle dual function of positioner and stiffness controller. This is essential for soft grappling operations. The hand-wrist assembly has 16 finger joints, three wrist joints, and five compliance mechanisms for a total of 24 degrees of freedom. The strength of the hand is roughly half that of the human hand and its size is comparable to a male hand. The hand is controlled through an exoskeleton glove controller that the operator wears. The glove provides the man-machine interface in telemanipulation control mode: it senses the operator's inputs to guide the mechanical hand in hybrid position and force control. The hand system is intended for dexterous manipulations in structured environments. Typical applications will include work in hostile environment such as space operations and nuclear power plants.

  2. Curriculum Focus: Occupations and the World of Work. Information Series 5.

    ERIC Educational Resources Information Center

    DeVore, Paul W.

    Technology is now and has been the single most important factor in man's transition. Those in education are faced with deciding whether technology shall serve man or man will be forced to be a cog in the machine. In determining the function of education, the decision will be a value judgement involving one of these two choices: (1) Continuing to…

  3. Architecture for space habitats. Role of architectural design in planning artificial environment for long time manned space missions

    NASA Astrophysics Data System (ADS)

    Martinez, Vera

    2007-02-01

    The paper discusses concepts about the role of architecture in the design of space habitats and the development of a general evaluation criteria of architectural design contribution. Besides the existing feasibility studies, the general requisites, the development studies, and the critical design review which are mainly based on the experience of human space missions and the standards of the NASA-STD-3000 manual and which analyze and evaluate the relation between man and environment and between man and machine mainly in its functionality, there is very few material about design of comfort and wellbeing of man in space habitat. Architecture for space habitat means the design of an artificial environment with much comfort in an "atmosphere" of wellbeing. These are mainly psychological effects of human factors which are very important in the case of a long time space mission. How can the degree of comfort and "wellbeing atmosphere" in an artificial environment be measured? How can the quality of the architectural contribution in space design be quantified? Definition of a criteria catalogue to reach a larger objectivity in architectural design evaluation. Definition of constant parameters as a result of project necessities to quantify the quality of the design. Architectural design analysis due the application and verification within the parameters and consequently overlapping and evaluating results. Interdisciplinary work between architects, astronautics, engineers, psychologists, etc. All the disciplines needed for planning a high quality habitat for humans in space. Analysis of the principles of well designed artificial environment. Good quality design for space architecture is the result of the interaction and interrelation between many different project necessities (technological, environmental, human factors, transportation, costs, etc.). Each of this necessities is interrelated in the design project and cannot be evaluated on its own. Therefore, the design process needs constant check ups to choose each time the best solution in relation to the whole. As well as for the main disciplines around human factors, architectural design for space has to be largely tested to produce scientific improvement.

  4. An architecture and model for cognitive engineering simulation analysis - Application to advanced aviation automation

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Smith, Barry R.

    1993-01-01

    The process of designing crew stations for large-scale, complex automated systems is made difficult because of the flexibility of roles that the crew can assume, and by the rapid rate at which system designs become fixed. Modern cockpit automation frequently involves multiple layers of control and display technology in which human operators must exercise equipment in augmented, supervisory, and fully automated control modes. In this context, we maintain that effective human-centered design is dependent on adequate models of human/system performance in which representations of the equipment, the human operator(s), and the mission tasks are available to designers for manipulation and modification. The joint Army-NASA Aircrew/Aircraft Integration (A3I) Program, with its attendant Man-machine Integration Design and Analysis System (MIDAS), was initiated to meet this challenge. MIDAS provides designers with a test bed for analyzing human-system integration in an environment in which both cognitive human function and 'intelligent' machine function are described in similar terms. This distributed object-oriented simulation system, its architecture and assumptions, and our experiences from its application in advanced aviation crew stations are described.

  5. Structure design of lower limb exoskeletons for gait training

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Zhang, Ziqiang; Tao, Chunjing; Ji, Run

    2015-09-01

    Due to the close physical interaction between human and machine in process of gait training, lower limb exoskeletons should be safe, comfortable and able to smoothly transfer desired driving force/moments to the patients. Correlatively, in kinematics the exoskeletons are required to be compatible with human lower limbs and thereby to avoid the uncontrollable interactional loads at the human-machine interfaces. Such requirement makes the structure design of exoskeletons very difficult because the human-machine closed chains are complicated. In addition, both the axis misalignments and the kinematic character difference between the exoskeleton and human joints should be taken into account. By analyzing the DOF(degree of freedom) of the whole human-machine closed chain, the human-machine kinematic incompatibility of lower limb exoskeletons is studied. An effective method for the structure design of lower limb exoskeletons, which are kinematically compatible with human lower limb, is proposed. Applying this method, the structure synthesis of the lower limb exoskeletons containing only one-DOF revolute and prismatic joints is investigated; the feasible basic structures of exoskeletons are developed and classified into three different categories. With the consideration of quasi-anthropopathic feature, structural simplicity and wearable comfort of lower limb exoskeletons, a joint replacement and structure comparison based approach to select the ideal structures of lower limb exoskeletons is proposed, by which three optimal exoskeleton structures are obtained. This paper indicates that the human-machine closed chain formed by the exoskeleton and human lower limb should be an even-constrained kinematic system in order to avoid the uncontrollable human-machine interactional loads. The presented method for the structure design of lower limb exoskeletons is universal and simple, and hence can be applied to other kinds of wearable exoskeletons.

  6. Designing Guiding Systems for Brain-Computer Interfaces

    PubMed Central

    Kosmyna, Nataliya; Lécuyer, Anatole

    2017-01-01

    Brain–Computer Interface (BCI) community has focused the majority of its research efforts on signal processing and machine learning, mostly neglecting the human in the loop. Guiding users on how to use a BCI is crucial in order to teach them to produce stable brain patterns. In this work, we explore the instructions and feedback for BCIs in order to provide a systematic taxonomy to describe the BCI guiding systems. The purpose of our work is to give necessary clues to the researchers and designers in Human–Computer Interaction (HCI) in making the fusion between BCIs and HCI more fruitful but also to better understand the possibilities BCIs can provide to them. PMID:28824400

  7. Development of a Universal Waste Management System

    NASA Technical Reports Server (NTRS)

    Baccus, Shelley; Broyan, James L., Jr.

    2013-01-01

    A concept for a Universal Waste Management System (UWMS) has been developed based on the knowledge gained from over 50 years of space travel. It is being designed for Commercial Orbital Transportation Services (COTS) and Multi ]Purpose Crew Vehicle (MPCV) and is based upon the Extended Duration Orbiter (EDO) commode. The UMWS was modified to enhance crew interface and reduce volume and cost. The UWMS will stow waste in fecal canisters, similar to the EDO, and urine will be stowed in bags for in orbit change out. This allows the pretreated urine to be subsequently processed and recovered as drinking water. The new design combines two fans and a rotary phase separator on a common shaft to allow operation by a single motor. This change enhances packaging by reducing the volume associated with an extra motor, associated controller, harness, and supporting structure. The separator pumps urine to either a dual bag design for COTS vehicles or directly into a water reclamation system. The commode is supported by a concentric frame, enhancing its structural integrity while further reducing the volume from the previous design. The UWMS flight concept development effort is underway and an early output of the development will be a ground based UMWS prototype for manned testing. Referred to as the Gen 3 unit, this prototype will emulate the crew interface included in the UWMS and will offer a great deal of knowledge regarding the usability of the new design, allowing the design team the opportunity to modify the UWMS flight concept based on the manned testing.

  8. Low latency messages on distributed memory multiprocessors

    NASA Technical Reports Server (NTRS)

    Rosing, Matthew; Saltz, Joel

    1993-01-01

    Many of the issues in developing an efficient interface for communication on distributed memory machines are described and a portable interface is proposed. Although the hardware component of message latency is less than one microsecond on many distributed memory machines, the software latency associated with sending and receiving typed messages is on the order of 50 microseconds. The reason for this imbalance is that the software interface does not match the hardware. By changing the interface to match the hardware more closely, applications with fine grained communication can be put on these machines. Based on several tests that were run on the iPSC/860, an interface that will better match current distributed memory machines is proposed. The model used in the proposed interface consists of a computation processor and a communication processor on each node. Communication between these processors and other nodes in the system is done through a buffered network. Information that is transmitted is either data or procedures to be executed on the remote processor. The dual processor system is better suited for efficiently handling asynchronous communications compared to a single processor system. The ability to send data or procedure is very flexible for minimizing message latency, based on the type of communication being performed. The test performed and the proposed interface are described.

  9. Robotic Technology: An Assessment and Forecast,

    DTIC Science & Technology

    1984-07-01

    Research Associates# Inc. Dr. Roger Nagel# Lehigh University Dr. Charles Rosen# Machine Intelligence Corporations and Mr. Jack Thornton# Robot Insider...amr (Subcontractors: systems for assembly and Adopt Technology# inspection Stanford University. SRI) AFSC MANTECH o McDonnell Douglas o Machine ...supervisory controls man- machine interaction and system integration. - .. _ - Foreign R& The U.S. faces a strong technological challenge in robotics from

  10. OMV mission simulator

    NASA Technical Reports Server (NTRS)

    Cok, Keith E.

    1989-01-01

    The Orbital Maneuvering Vehicle (OMV) will be remotely piloted during rendezvous, docking, or proximity operations with target spacecraft from a ground control console (GCC). The real-time mission simulator and graphics being used to design a console pilot-machine interface are discussed. A real-time orbital dynamics simulator drives the visual displays. The dynamics simulator includes a J2 oblate earth gravity model and a generalized 1962 rotating atmospheric and drag model. The simulator also provides a variable-length communication delay to represent use of the Tracking and Data Relay Satellite System (TDRSS) and NASA Communications (NASCOM). Input parameter files determine the graphics display. This feature allows rapid prototyping since displays can be easily modified from pilot recommendations. A series of pilot reviews are being held to determine an effective pilot-machine interface. Pilots fly missions with nominal to 3-sigma dispersions in translational or rotational axes. Console dimensions, switch type and layout, hand controllers, and graphic interfaces are evaluated by the pilots and the GCC simulator is modified for subsequent runs. Initial results indicate a pilot preference for analog versus digital displays and for two 3-degree-of-freedom hand controllers.

  11. Human Systems Integration Design Environment (HSIDE)

    DTIC Science & Technology

    2012-04-09

    quality of the resulting HSI products. 15. SUBJECT TERMS HSI , Manning Estimation and Validation , Risk Assessment, I POE, PLM, BPMN , Workflow...business process model in Business Process Modeling Notation ( BPMN ) or the actual workflow template associated with the specific functional area, again...as filtered by the user settings in the high level interface. Figure 3 shows the initial screen which allows the user to select either the BPMN or

  12. Human Machine Interface Programming and Testing

    NASA Technical Reports Server (NTRS)

    Foster, Thomas Garrison

    2013-01-01

    Human Machine Interface (HMI) Programming and Testing is about creating graphical displays to mimic mission critical ground control systems in order to provide NASA engineers with the ability to monitor the health management of these systems in real time. The Health Management System (HMS) is an online interactive human machine interface system that monitors all Kennedy Ground Control Subsystem (KGCS) hardware in the field. The Health Management System is essential to NASA engineers because it allows remote control and monitoring of the health management systems of all the Programmable Logic Controllers (PLC) and associated field devices. KGCS will have equipment installed at the launch pad, Vehicle Assembly Building, Mobile Launcher, as well as the Multi-Purpose Processing Facility. I am designing graphical displays to monitor and control new modules that will be integrated into the HMS. The design of the display screen will closely mimic the appearance and functionality of the actual modules. There are many different field devices used to monitor health management and each device has its own unique set of health management related data, therefore each display must also have its own unique way to display this data. Once the displays are created, the RSLogix5000 application is used to write software that maps all the required data read from the hardware to the graphical display. Once this data is mapped to its corresponding display item, the graphical display and hardware device will be connected through the same network in order to test all possible scenarios and types of data the graphical display was designed to receive. Test Procedures will be written to thoroughly test out the displays and ensure that they are working correctly before being deployed to the field. Additionally, the Kennedy Ground Controls Subsystem's user manual will be updated to explain to the NASA engineers how to use the new module displays.

  13. Human factors issues in telerobotic systems for Space Station Freedom servicing

    NASA Technical Reports Server (NTRS)

    Malone, Thomas B.; Permenter, Kathryn E.

    1990-01-01

    Requirements for Space Station Freedom servicing are described and the state-of-the-art for telerobotic system on-orbit servicing of spacecraft is defined. The projected requirements for the Space Station Flight Telerobotic Servicer (FTS) are identified. Finally, the human factors issues in telerobotic servicing are discussed. The human factors issues are basically three: the definition of the role of the human versus automation in system control; the identification of operator-device interface design requirements; and the requirements for development of an operator-machine interface simulation capability.

  14. CEPC-SPPC accelerator status towards CDR

    NASA Astrophysics Data System (ADS)

    Gao, J.

    2017-12-01

    In this paper we will give an introduction to the Circular Electron Positron Collider (CEPC). The scientific background, physics goal, the collider design requirements and the conceptual design principle of the CEPC are described. On the CEPC accelerator, the optimization of parameter designs for the CEPC with different energies, machine lengths, single ring and crab-waist collision partial double ring, advanced partial double ring and fully partial double ring options, etc. have been discussed systematically, and compared. The CEPC accelerator baseline and alternative designs have been proposed based on the luminosity potential in relation with the design goals. The CEPC sub-systems, such as the collider main ring, booster, electron positron injector, etc. have also been introduced. The detector and the MAchine-Detector Interface (MDI) design have been briefly mentioned. Finally, the optimization design of the Super Proton-Proton Collider (SppC), its energy and luminosity potentials, in the same tunnel of the CEPC are also discussed. The CEPC-SppC Progress Report (2015-2016) has been published.

  15. Initial utilization of the CVIRB video production facility

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V.; Busquets, Anthony M.; Hogge, Thomas W.

    1987-01-01

    Video disk technology is one of the central themes of a technology demonstrator workstation being assembled as a man/machine interface for the Space Station Data Management Test Bed at Johnson Space Center. Langley Research Center personnel involved in the conception and implementation of this workstation have assembled a video production facility to allow production of video disk material for this propose. This paper documents the initial familiarization efforts in the field of video production for those personnel and that facility. Although the entire video disk production cycle was not operational for this initial effort, the production of a simulated disk on video tape did acquaint the personnel with the processes involved and with the operation of the hardware. Invaluable experience in storyboarding, script writing, audio and video recording, and audio and video editing was gained in the production process.

  16. Study of aircraft centered navigation, guidance, and traffic situation system concept for terminal area operation

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Will, R. W.; Grantham, C.

    1972-01-01

    A concept for automating the control of air traffic in the terminal area in which the primary man-machine interface is the cockpit is described. The ground and airborne inputs required for implementing this concept are discussed. Digital data link requirements of 10,000 bits per second are explained. A particular implementation of this concept including a sequencing and separation algorithm which generates flight paths and implements a natural order landing sequence is presented. Onboard computer/display avionics utilizing a traffic situation display is described. A preliminary simulation of this concept has been developed which includes a simple, efficient sequencing algorithm and a complete aircraft dynamics model. This simulated jet transport was flown through automated terminal-area traffic situations by pilots using relatively sophisticated displays, and pilot performance and observations are discussed.

  17. The man/machine interface in information retrieval: Providing access to the casual user

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Granier, Martin

    1984-01-01

    This study is concerned with the difficulties encountered by casual users wishing to employ Information Storage and Retrieval Systems. A casual user is defined as a professional who has neither time nor desire to pursue in depth the study of the numerous and varied retrieval systems. His needs for on-line search are only occasional, and not limited to any particular system. The paper takes a close look at the state of the art of research concerned with aiding casual users of Information Storage and Retrieval Systems. Current experiments such as LEXIS, CONIT, IIDA, CITE, and CCL are presented and discussed. Comments and proposals are offered, specifically in the areas of training, learning and cost as experienced by the casual user. An extensive bibliography of recent works on the subject follows the text.

  18. Reservation centre of Telecom I satellite French Telecommunication network offers a new service of switched digital circuit

    NASA Astrophysics Data System (ADS)

    Felix, J.

    The management center and new circuit switching services offered by the French Telecom I network are described. Attention is focused on business services. The satellite has a 125 Mbit/sec capability distributed over 5 frequency bands, yielding the equivalent of 1800 channels. Data are transmitted in digitized bursts with TDMA techniques. Besides the management center, Telecom I interfaces with 310 local network antennas with access managed by the center through a reservation service and protocol assignment. The center logs and supervises alarms and network events, monitors traffic, logs taxation charges and manages the man-machine dialog for TDMA and terrestrial operations. Time slots are arranged in terms of minimal 10 min segments. The reservations can be directly accessed by up to 1000 terminals. All traffic is handled on a call-by-call basis.

  19. Embedded System for Prosthetic Control Using Implanted Neuromuscular Interfaces Accessed Via an Osseointegrated Implant.

    PubMed

    Mastinu, Enzo; Doguet, Pascal; Botquin, Yohan; Hakansson, Bo; Ortiz-Catalan, Max

    2017-08-01

    Despite the technological progress in robotics achieved in the last decades, prosthetic limbs still lack functionality, reliability, and comfort. Recently, an implanted neuromusculoskeletal interface built upon osseointegration was developed and tested in humans, namely the Osseointegrated Human-Machine Gateway. Here, we present an embedded system to exploit the advantages of this technology. Our artificial limb controller allows for bioelectric signals acquisition, processing, decoding of motor intent, prosthetic control, and sensory feedback. It includes a neurostimulator to provide direct neural feedback based on sensory information. The system was validated using real-time tasks characterization, power consumption evaluation, and myoelectric pattern recognition performance. Functionality was proven in a first pilot patient from whom results of daily usage were obtained. The system was designed to be reliably used in activities of daily living, as well as a research platform to monitor prosthesis usage and training, machine-learning-based control algorithms, and neural stimulation paradigms.

  20. Qualification and cryogenic performance of cryomodule components at CEBAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckman, J.; Macha, K.; Fischer, J.

    1996-12-31

    At CEBAF an electron beam is accelerated by superconducting resonant niobium cavities which are operated submerged in superfluid helium. The accelerator has 42 1/4 cryomodules, each containing eight cavities. The qualification and design of components for the cryomodules under went stringent testing and evaluation for acceptance. Indium wire seals are used between the cavity and helium vessel interface to make a superfluid helium leak tight seal. Each cavity is equipped with a mechanical tuner assembly designed to stretch and compress the cavities. Two rotary feedthroughs are used to operate each mechanical tuner assembly. Ceramic feedthroughs not designed for super-fluid weremore » qualified for tuner and cryogenic instrumentation. To ensure long term integrity of the machine special attention is required for material specifications and machine processes. The following is to share the qualification methods, design and performance of the cryogenic cryomodule components.« less

Top