Sample records for man-machine interface issues

  1. Multiple man-machine interfaces

    NASA Technical Reports Server (NTRS)

    Stanton, L.; Cook, C. W.

    1981-01-01

    The multiple man machine interfaces inherent in military pilot training, their social implications, and the issue of possible negative feedback were explored. Modern technology has produced machines which can see, hear, and touch with greater accuracy and precision than human beings. Consequently, the military pilot is more a systems manager, often doing battle against a target he never sees. It is concluded that unquantifiable human activity requires motivation that is not intrinsic in a machine.

  2. Man-machine interface issues in space telerobotics: A JPL research and development program

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1987-01-01

    Technology issues related to the use of robots as man-extension or telerobot systems in space are discussed and exemplified. General considerations are presentd on control and information problems in space teleoperation and on the characteristics of Earth orbital teleoperation. The JPL R and D work in the area of man-machine interface devices and techniques for sensing and computer-based control is briefly summarized. The thrust of this R and D effort is to render space teleoperation efficient and safe through the use of devices and techniques which will permit integrated and task-level (intelligent) two-way control communication between human operator and telerobot machine in Earth orbit. Specific control and information display devices and techniques are discussed and exemplified with development results obtained at JPL in recent years.

  3. Man-machine interface requirements - advanced technology

    NASA Technical Reports Server (NTRS)

    Remington, R. W.; Wiener, E. L.

    1984-01-01

    Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.

  4. The reported incidence of man-machine interface issues in Army aviators using the Aviator's Night Vision System (ANVIS) in a combat theatre

    NASA Astrophysics Data System (ADS)

    Hiatt, Keith L.; Rash, Clarence E.

    2011-06-01

    Background: Army Aviators rely on the ANVIS for night operations. Human factors literature notes that the ANVIS man-machine interface results in reports of visual and spinal complaints. This is the first study that has looked at these issues in the much harsher combat environment. Last year, the authors reported on the statistically significant (p<0.01) increased complaints of visual discomfort, degraded visual cues, and incidence of static and dynamic visual illusions in the combat environment [Proc. SPIE, Vol. 7688, 76880G (2010)]. In this paper we present the findings regarding increased spinal complaints and other man-machine interface issues found in the combat environment. Methods: A survey was administered to Aircrew deployed in support of Operation Enduring Freedom (OEF). Results: 82 Aircrew (representing an aggregate of >89,000 flight hours of which >22,000 were with ANVIS) participated. Analysis demonstrated high complaints of almost all levels of back and neck pain. Additionally, the use of body armor and other Aviation Life Support Equipment (ALSE) caused significant ergonomic complaints when used with ANVIS. Conclusions: ANVIS use in a combat environment resulted in higher and different types of reports of spinal symptoms and other man-machine interface issues over what was previously reported. Data from this study may be more operationally relevant than that of the peacetime literature as it is derived from actual combat and not from training flights, and it may have important implications about making combat predictions based on performance in training scenarios. Notably, Aircrew remarked that they could not execute the mission without ANVIS and ALSE and accepted the degraded ergonomic environment.

  5. Man-systems integration and the man-machine interface

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P.

    1990-01-01

    Viewgraphs on man-systems integration and the man-machine interface are presented. Man-systems integration applies the systems' approach to the integration of the user and the machine to form an effective, symbiotic Man-Machine System (MMS). A MMS is a combination of one or more human beings and one or more physical components that are integrated through the common purpose of achieving some objective. The human operator interacts with the system through the Man-Machine Interface (MMI).

  6. Development and validation of methods for man-made machine interface evaluation. [for shuttles and shuttle payloads

    NASA Technical Reports Server (NTRS)

    Malone, T. B.; Micocci, A.

    1975-01-01

    The alternate methods of conducting a man-machine interface evaluation are classified as static and dynamic, and are evaluated. A dynamic evaluation tool is presented to provide for a determination of the effectiveness of the man-machine interface in terms of the sequence of operations (task and task sequences) and in terms of the physical characteristics of the interface. This dynamic checklist approach is recommended for shuttle and shuttle payload man-machine interface evaluations based on reduced preparation time, reduced data, and increased sensitivity of critical problems.

  7. Distribution of man-machine controls in space teleoperation

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1982-01-01

    The distribution of control between man and machine is dependent on the tasks, available technology, human performance characteristics and control goals. This dependency has very specific projections on systems designed for teleoperation in space. This paper gives a brief outline of the space-related issues and presents the results of advanced teleoperator research and development at the Jet Propulsion Laboratory (JPL). The research and development work includes smart sensors, flexible computer controls and intelligent man-machine interface devices in the area of visual displays and kinesthetic man-machine coupling in remote control of manipulators. Some of the development results have been tested at the Johnson Space Center (JSC) using the simulated full-scale Shuttle Remote Manipulator System (RMS). The research and development work for advanced space teleoperation is far from complete and poses many interdisciplinary challenges.

  8. Diverse applications of advanced man-telerobot interfaces

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas A.

    1991-01-01

    Advancements in man-machine interfaces and control technologies used in space telerobotics and teleoperators have potential application wherever human operators need to manipulate multi-dimensional spatial relationships. Bilateral six degree-of-freedom position and force cues exchanged between the user and a complex system can broaden and improve the effectiveness of several diverse man-machine interfaces.

  9. Task-Oriented, Naturally Elicited Speech (TONE) Database for the Force Requirements Expert System, Hawaii (FRESH)

    DTIC Science & Technology

    1988-09-01

    Group Subgroup Command and control; Computational linguistics; expert system voice recognition; man- machine interface; U.S. Government 19 Abstract...simulates the characteristics of FRESH on a smaller scale. This study assisted NOSC in developing a voice-recognition, man- machine interface that could...scale. This study assisted NOSC in developing a voice-recogni- tion, man- machine interface that could be used with TONE and upgraded at a later date

  10. Manned remote work station development article. Volume 3: Development test plan. Appendix A: Manufacturing requirements/schedule

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The tests and procedures for the manned remote work station (MRWS) open cherry picker (OCP) development test article (DTA) are described to validate systems requirements and performance specifications. A development test program is outlined to evaluate key design issues and man/machine interfaces when the MRWS OCP is used in a shuttle support role of satellite servicing and in orbit construction of large structures.

  11. Advanced Aircraft Interfaces: The Machine Side of the Man-Machine Interface (Les Interfaces sur les Avions de Pointe: L’Aspect Machine de l’Interface Homme-Machine)

    DTIC Science & Technology

    1992-10-01

    Manager , Advanced Transport Operating Systems Program Office Langley Research Center Mail Stop 265 Hampton, VA 23665-5225 United States Programme Committee...J.H.Lind, and C.G.Burge Advanced Cockpit - Mission and Image Management 4 by J. Struck Aircrew Acceptance of Automation in the Cockpit 5 by M. Hicks and I...DESIGN CONCEPTS AND TOOLS A Systems Approach to the Advanced Aircraft Man-Machine Interface 23 by F. Armogida Management of Avionics Data in the Cockpit

  12. Intelligent man/machine interfaces on the space station

    NASA Technical Reports Server (NTRS)

    Daughtrey, Rodney S.

    1987-01-01

    Some important topics in the development of good, intelligent, usable man/machine interfaces for the Space Station are discussed. These computer interfaces should adhere strictly to three concepts or doctrines: generality, simplicity, and elegance. The motivation for natural language interfaces and their use and value on the Space Station, both now and in the future, are discussed.

  13. Proceedings of the 1986 IEEE international conference on systems, man and cybernetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    This book presents the papers given at a conference on man-machine systems. Topics considered at the conference included neural model-based cognitive theory and engineering, user interfaces, adaptive and learning systems, human interaction with robotics, decision making, the testing and evaluation of expert systems, software development, international conflict resolution, intelligent interfaces, automation in man-machine system design aiding, knowledge acquisition in expert systems, advanced architectures for artificial intelligence, pattern recognition, knowledge bases, and machine vision.

  14. Compatibility Problems of Network Interfacing.

    ERIC Educational Resources Information Center

    Stevens, Mary Elizabeth

    From the standpoint of information network technology there is a necessary emphasis upon compatibility requirements which, in turn, will be met at least in part by various techniques of achieving convertibility --- between machine and machine, between man and machine, and between man and man. It may be hoped that improved compatibilities between…

  15. The RACE (Research and Development in Advanced Technologies for Europe) Program: A 1989 Update

    DTIC Science & Technology

    1989-12-15

    Definition TV (HDTV) Expcrimcntal Usage . A......a.d..r Dist special 1081 - Broadband User Network Interface (BUNI)..................... 4 1082 ...develop man/machine which will provide a traffic analyzer and generator. interfaces that are consistent across a wide range of ap-plications. 1082 ... 1082 are to provide usage reference models for the different types of e Define IBC quality of service rquiremnts by usage design issue. It deals with

  16. MARTI: man-machine animation real-time interface

    NASA Astrophysics Data System (ADS)

    Jones, Christian M.; Dlay, Satnam S.

    1997-05-01

    The research introduces MARTI (man-machine animation real-time interface) for the realization of natural human-machine interfacing. The system uses simple vocal sound-tracks of human speakers to provide lip synchronization of computer graphical facial models. We present novel research in a number of engineering disciplines, which include speech recognition, facial modeling, and computer animation. This interdisciplinary research utilizes the latest, hybrid connectionist/hidden Markov model, speech recognition system to provide very accurate phone recognition and timing for speaker independent continuous speech, and expands on knowledge from the animation industry in the development of accurate facial models and automated animation. The research has many real-world applications which include the provision of a highly accurate and 'natural' man-machine interface to assist user interactions with computer systems and communication with one other using human idiosyncrasies; a complete special effects and animation toolbox providing automatic lip synchronization without the normal constraints of head-sets, joysticks, and skilled animators; compression of video data to well below standard telecommunication channel bandwidth for video communications and multi-media systems; assisting speech training and aids for the handicapped; and facilitating player interaction for 'video gaming' and 'virtual worlds.' MARTI has introduced a new level of realism to man-machine interfacing and special effect animation which has been previously unseen.

  17. Graphical user interfaces for symbol-oriented database visualization and interaction

    NASA Astrophysics Data System (ADS)

    Brinkschulte, Uwe; Siormanolakis, Marios; Vogelsang, Holger

    1997-04-01

    In this approach, two basic services designed for the engineering of computer based systems are combined: a symbol-oriented man-machine-service and a high speed database-service. The man-machine service is used to build graphical user interfaces (GUIs) for the database service; these interfaces are stored using the database service. The idea is to create a GUI-builder and a GUI-manager for the database service based upon the man-machine service using the concept of symbols. With user-definable and predefined symbols, database contents can be visualized and manipulated in a very flexible and intuitive way. Using the GUI-builder and GUI-manager, a user can build and operate its own graphical user interface for a given database according to its needs without writing a single line of code.

  18. AAAIC '88 - Aerospace Applications of Artificial Intelligence; Proceedings of the Fourth Annual Conference, Dayton, OH, Oct. 25-27, 1988. Volumes 1 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.R.; Netrologic, Inc., San Diego, CA)

    1988-01-01

    Topics presented include integrating neural networks and expert systems, neural networks and signal processing, machine learning, cognition and avionics applications, artificial intelligence and man-machine interface issues, real time expert systems, artificial intelligence, and engineering applications. Also considered are advanced problem solving techniques, combinational optimization for scheduling and resource control, data fusion/sensor fusion, back propagation with momentum, shared weights and recurrency, automatic target recognition, cybernetics, optical neural networks.

  19. Man-machine interface for the control of a lunar transport machine

    NASA Technical Reports Server (NTRS)

    Ashley, Richard; Bacon, Loring; Carlton, Scott Tim; May, Mark; Moore, Jimmy; Peek, Dennis

    1987-01-01

    A proposed first generation human interface control panel is described which will be used to control SKITTER, a three-legged lunar walking machine. Under development at Georgia Tech, SKITTER will be a multi-purpose, un-manned vehicle capable of preparing a site for the proposed lunar base in advance of the arrival of men. This walking machine will be able to accept modular special purpose tools, such as a crane, a core sampling drill, and a digging device, among others. The project was concerned with the design of a human interface which could be used, from earth, to control the movements of SKITTER on the lunar surface. Preliminary inquiries were also made into necessary modifications required to adapt the panel to both a shirt-sleeve lunar environment and to a mobile unit which could be used by a man in a space suit at a lunar work site.

  20. Human factors in the presentation of computer-generated information - Aspects of design and application in automated flight traffic

    NASA Technical Reports Server (NTRS)

    Roske-Hofstrand, Renate J.

    1990-01-01

    The man-machine interface and its influence on the characteristics of computer displays in automated air traffic is discussed. The graphical presentation of spatial relationships and the problems it poses for air traffic control, and the solution of such problems are addressed. Psychological factors involved in the man-machine interface are stressed.

  1. Remotely manned systems: Exploration and operation in space; Proceedings of the First National Conference, California Institute of Technology, Pasadena, Calif., September 13-15, 1972.

    NASA Technical Reports Server (NTRS)

    Heer, E.

    1973-01-01

    Free-flying teleoperator systems are discussed, giving attention to earth-orbit mission considerations and Space Tug requirements, free-flying teleoperator requirements and conceptual design, system requirements for a free-flying teleoperator to despin, and the experimental evaluation of remote manipulator systems. Shuttle-Attached Manipulator Systems are considered, together with remote surface vehicle systems, manipulator systems technology, remote sensor and display technology, the man-machine interface, and control and machine intelligence. Nonspace applications are also explored, taking into account implications of nonspace applications, naval applications of remote manipulators, and hand tools and mechanical accessories for a deep submersible. Individual items are announced in this issue.

  2. Problems in modeling man machine control behavior in biodynamic environments

    NASA Technical Reports Server (NTRS)

    Jex, H. R.

    1972-01-01

    Reviewed are some current problems in modeling man-machine control behavior in a biodynamic environment. It is given in two parts: (1) a review of the models which are appropriate for manual control behavior and the added elements necessary to deal with biodynamic interfaces; and (2) a review of some biodynamic interface pilot/vehicle problems which have occurred, been solved, or need to be solved.

  3. Mobile Tactical HF/VHF/EW System for Ground Forces

    DTIC Science & Technology

    1989-09-01

    presen- tation of what I have learned . I would like to thank my advisor, Professor Robert Partelow, and co-advisor, Commander James R. Powell, for the...analyze newly developed systems to determine how the man- machine interfaces of such systems can best be designed for optimal use by the operators. B...terminals and other controls. If factors like luminance ratio, reflectance, glare illuminance are allowed for good man- machine interface then an effective

  4. Image understanding and the man-machine interface II; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, 18, 1989

    NASA Technical Reports Server (NTRS)

    Barrett, Eamon B. (Editor); Pearson, James J. (Editor)

    1989-01-01

    Image understanding concepts and models, image understanding systems and applications, advanced digital processors and software tools, and advanced man-machine interfaces are among the topics discussed. Particular papers are presented on such topics as neural networks for computer vision, object-based segmentation and color recognition in multispectral images, the application of image algebra to image measurement and feature extraction, and the integration of modeling and graphics to create an infrared signal processing test bed.

  5. Teleoperator system man-machine interface requirements for satellite retrieval and satellite servicing. Volume 1: Requirements

    NASA Technical Reports Server (NTRS)

    Malone, T. B.

    1972-01-01

    Requirements were determined analytically for the man machine interface for a teleoperator system performing on-orbit satellite retrieval and servicing. Requirements are basically of two types; mission/system requirements, and design requirements or design criteria. Two types of teleoperator systems were considered: a free flying vehicle, and a shuttle attached manipulator. No attempt was made to evaluate the relative effectiveness or efficiency of the two system concepts. The methodology used entailed an application of the Essex Man-Systems analysis technique as well as a complete familiarization with relevant work being performed at government agencies and by private industry.

  6. Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications.

  7. Man-machine interfaces in health care

    NASA Technical Reports Server (NTRS)

    Charles, Steve; Williams, Roy E.

    1991-01-01

    The surgeon, like the pilot, is confronted with an ever increasing volume of voice, data, and image input. Simultaneously, the surgeon must control a rapidly growing number of devices to deliver care to the patient. The broad disciplines of man-machine interface design, systems integration, and teleoperation will play a role in the operating room of the future. The purpose of this communication is to report the incorporation of these design concepts into new surgical and laser delivery systems. A review of each general problem area and the systems under development to solve the problems are presented.

  8. Real English: A Translator to Enable Natural Language Man-Machine Conversation.

    ERIC Educational Resources Information Center

    Gautin, Harvey

    This dissertation presents a pragmatic interpreter/translator called Real English to serve as a natural language man-machine communication interface in a multi-mode on-line information retrieval system. This multi-mode feature affords the user a library-like searching tool by giving him access to a dictionary, lexicon, thesaurus, synonym table,…

  9. Open multi-agent control architecture to support virtual-reality-based man-machine interfaces

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel

    2001-10-01

    Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.

  10. Prosthetic EMG control enhancement through the application of man-machine principles

    NASA Technical Reports Server (NTRS)

    Simcox, W. A.

    1977-01-01

    An area in medicine that appears suitable to man-machine principles is rehabilitation research, particularly when the motor aspects of the body are involved. If one considers the limb, whether functional or not, as the machine, the brain as the controller and the neuromuscular system as the man-machine interface, the human body is reduced to a man-machine system that can benefit from the principles behind such systems. The area of rehabilitation that this paper deals with is that of an arm amputee and his prosthetic device. Reducing this area to its man-machine basics, the problem becomes one of attaining natural multiaxis prosthetic control using Electromyographic activity (EMG) as the means of communication between man and prothesis. In order to use EMG as the communication channel it must be amplified and processed to yield a high information signal suitable for control. The most common processing scheme employed is termed Mean Value Processing. This technique for extracting the useful EMG signal consists of a differential to single ended conversion to the surface activity followed by a rectification and smoothing.

  11. Automated visual imaging interface for the plant floor

    NASA Astrophysics Data System (ADS)

    Wutke, John R.

    1991-03-01

    The paper will provide an overview of the challenges facing a user of automated visual imaging (" AVI" ) machines and the philosophies that should be employed in designing them. As manufacturing tools and equipment become more sophisticated it is increasingly difficult to maintain an efficient interaction between the operator and machine. The typical user of an AVI machine in a production environment is technically unsophisticated. Also operator and machine ergonomics are often a neglected or poorly addressed part of an efficient manufacturing process. This paper presents a number of man-machine interface design techniques and philosophies that effectively solve these problems.

  12. Flexible Parsing.

    DTIC Science & Technology

    1986-06-30

    Machine Studies .. 14. Minton, S. N., Hayes, P. J., and Fain, J. E. Controlling Search in Flexible Parsing. Proc. Ninth Int. Jt. Conf. on Artificial...interaction through the COUSIN command interface", International Journal of Man- Machine Studies , Vol. 19, No. 3, September 1983, pp. 285-305. 8...in a gracefully interacting user interface," "Dynamic strategy selection in flexible parsing," and "Parsing spoken language: a semantic case frame

  13. Technical Evaluation Report on the Propulsion and Energetics Panel 54th (A) Meeting Advanced Control Systems for Aircraft Powerplants.

    DTIC Science & Technology

    1980-03-01

    availability and accuracy were vital to continued advance in electronic control and that the man-machine interface should continue to be addressed. Mr Bentz was...why there is not more digital engine control being brought in on a retro fit basis so as to obtain its advantages. Dr Bentz answered that it was too...surge line. Mr Bentz answered that all engines are being designed with digital control in mind. The issue is whether the systems can withstand the

  14. Strategic Studies Quarterly. Volume 7, Number 4. Winter 2013

    DTIC Science & Technology

    2013-01-01

    databases to bridge the man-machine interface, thereby mak- ing both machines and man more capable of complex thought, independent assessment, and...Edward, “China Steps up Effort to Diversify FX Reserves,” Re- uters, 13 January 2013, http://www.reuters.com/article/2013/01/14/us-china- forex ...of attacks in Israel, Russia, and the United States from 1989 to 2008 (see fig. 2). The analysis combines data from the Global Terrorism Database

  15. Proceedings of the Annual Seminar (First), ’The Art of Communications Interfaces’, Held at Fort Monmouth, New Jersey on 22 April 1976,

    DTIC Science & Technology

    Both the oldest and the newest problem areas in communications electronics interfaces are discussed in conjunction with the currently critical...digital communication system evolution. The oldest interface problem, still the most essential is the man machine communications interfaces. The newest is

  16. Analysis of a display and control system man-machine interface concept. Volume 1: Final technical report

    NASA Technical Reports Server (NTRS)

    Karl, D. R.

    1972-01-01

    An evaluation was made of the feasibility of utilizing a simplified man machine interface concept to manage and control a complex space system involving multiple redundant computers that control multiple redundant subsystems. The concept involves the use of a CRT for display and a simple keyboard for control, with a tree-type control logic for accessing and controlling mission, systems, and subsystem elements. The concept was evaluated in terms of the Phase B space shuttle orbiter, to utilize the wide scope of data management and subsystem control inherent in the central data management subsystem provided by the Phase B design philosophy. Results of these investigations are reported in four volumes.

  17. Real-time implementation of electromyogram pattern recognition as a control command of man-machine interface.

    PubMed

    Chang, G C; Kang, W J; Luh, J J; Cheng, C K; Lai, J S; Chen, J J; Kuo, T S

    1996-10-01

    The purpose of this study was to develop a real-time electromyogram (EMG) discrimination system to provide control commands for man-machine interface applications. A host computer with a plug-in data acquisition and processing board containing a TMS320 C31 floating-point digital signal processor was used to attain real-time EMG classification. Two-channel EMG signals were collected by two pairs of surface electrodes located bilaterally between the sternocleidomastoid and the upper trapezius. Five motions of the neck and shoulders were discriminated for each subject. The zero-crossing rate was employed to detect the onset of muscle contraction. The cepstral coefficients, derived from autoregressive coefficients and estimated by a recursive least square algorithm, were used as the recognition features. These features were then discriminated using a modified maximum likelihood distance classifier. The total response time of this EMG discrimination system was achieved about within 0.17 s. Four able bodied and two C5/6 quadriplegic subjects took part in the experiment, and achieved 95% mean recognition rate in discrimination between the five specific motions. The response time and the reliability of recognition indicate that this system has the potential to discriminate body motions for man-machine interface applications.

  18. Manipulator system man-machine interface evaluation program. [technology assessment

    NASA Technical Reports Server (NTRS)

    Malone, T. B.; Kirkpatrick, M.; Shields, N. L.

    1974-01-01

    Application and requirements for remote manipulator systems for future space missions were investigated. A manipulator evaluation program was established to study the effects of various systems parameters on operator performance of tasks necessary for remotely manned missions. The program and laboratory facilities are described. Evaluation criteria and philosophy are discussed.

  19. Man-machine interfaces in LACIE/ERIPS

    NASA Technical Reports Server (NTRS)

    Duprey, B. B. (Principal Investigator)

    1979-01-01

    One of the most important aspects of the interactive portion of the LACIE/ERIPS software system is the way in which the analysis and decision-making capabilities of a human being are integrated with the speed and accuracy of a computer to produce a powerful analysis system. The three major man-machine interfaces in the system are (1) the use of menus for communications between the software and the interactive user; (2) the checkpoint/restart facility to recreate in one job the internal environment achieved in an earlier one; and (3) the error recovery capability which would normally cause job termination. This interactive system, which executes on an IBM 360/75 mainframe, was adapted for use in noninteractive (batch) mode. A case study is presented to show how the interfaces work in practice by defining some fields based on an image screen display, noting the field definitions, and obtaining a film product of the classification map.

  20. Combat Automation for Airborne Weapon Systems: Man/Machine Interface Trends and Technologies (L’Automatisation du Combat Aerien: Tendances et Technologies pour l’Interface Homme/Machine)

    DTIC Science & Technology

    1993-04-01

    Homme /Machine) Aocesion For ; 1 [ NTIS ’ D:i: Ü J-H CRA& l TAB 3...I’utilisateur. - Enfm, utilise avec le bouton droit de la souris, le poten- tiom&tre de temps 6coul6 permet de charger une alterna- tive dans le syst&me...a a a a rn£Q £ OB E o 15 l | I? ^©J&Mß) NATO ^ OTAN 7 RUE ANCELLE • 92200 NEUILLY-SÜR-SEINE DIFFUSION DES PUBLICATIONS FRANCE AGARD

  1. The human role in space (THURIS) applications study. Final briefing

    NASA Technical Reports Server (NTRS)

    Maybee, George W.

    1987-01-01

    The THURIS (The Human Role in Space) application is an iterative process involving successive assessments of man/machine mixes in terms of performance, cost and technology to arrive at an optimum man/machine mode for the mission application. The process begins with user inputs which define the mission in terms of an event sequence and performance time requirements. The desired initial operational capability date is also an input requirement. THURIS terms and definitions (e.g., generic activities) are applied to the input data converting it into a form which can be analyzed using the THURIS cost model outputs. The cost model produces tabular and graphical outputs for determining the relative cost-effectiveness of a given man/machine mode and generic activity. A technology database is provided to enable assessment of support equipment availability for selected man/machine modes. If technology gaps exist for an application, the database contains information supportive of further investigation into the relevant technologies. The present study concentrated on testing and enhancing the THURIS cost model and subordinate data files and developing a technology database which interfaces directly with the user via technology readiness displays. This effort has resulted in a more powerful, easy-to-use applications system for optimization of man/machine roles. Volume 1 is an executive summary.

  2. Rapid Prototyping and the Human Factors Engineering Process

    DTIC Science & Technology

    2016-08-29

    8217 without the effort and cost associated with conventional man -in-the-loop simulation. Advocates suggest that rapid prototyping is compatible with...use should be made of man -in-the loop simulation to supplement those analyses, but that such simulation is expensive and time consuming, precluding...conventional man -in-the- loop simulation. Rapid prototyping involves the construction and use of an executable model of a human-machine interface

  3. State of the art in nuclear telerobotics: focus on the man/machine connection

    NASA Astrophysics Data System (ADS)

    Greaves, Amna E.

    1995-12-01

    The interface between the human controller and remotely operated device is a crux of telerobotic investigation today. This human-to-machine connection is the means by which we communicate our commands to the device, as well as the medium for decision-critical feedback to the operator. The amount of information transferred through the user interface is growing. This can be seen as a direct result of our need to support added complexities, as well as a rapidly expanding domain of applications. A user interface, or UI, is therefore subject to increasing demands to present information in a meaningful manner to the user. Virtual reality, and multi degree-of-freedom input devices lend us the ability to augment the man/machine interface, and handle burgeoning amounts of data in a more intuitive and anthropomorphically correct manner. Along with the aid of 3-D input and output devices, there are several visual tools that can be employed as part of a graphical UI that enhance and accelerate our comprehension of the data being presented. Thus an advanced UI that features these improvements would reduce the amount of fatigue on the teleoperator, increase his level of safety, facilitate learning, augment his control, and potentially reduce task time. This paper investigates the cutting edge concepts and enhancements that lead to the next generation of telerobotic interface systems.

  4. Automatic Speech Recognition in Air Traffic Control: a Human Factors Perspective

    NASA Technical Reports Server (NTRS)

    Karlsson, Joakim

    1990-01-01

    The introduction of Automatic Speech Recognition (ASR) technology into the Air Traffic Control (ATC) system has the potential to improve overall safety and efficiency. However, because ASR technology is inherently a part of the man-machine interface between the user and the system, the human factors issues involved must be addressed. Here, some of the human factors problems are identified and related methods of investigation are presented. Research at M.I.T.'s Flight Transportation Laboratory is being conducted from a human factors perspective, focusing on intelligent parser design, presentation of feedback, error correction strategy design, and optimal choice of input modalities.

  5. Realizing Scientific Methods for Cyber Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Thomas E.; Manz, David O.; Edgar, Thomas W.

    There is little doubt among cyber security researchers about the lack of scientic rigor that underlies much of the liter-ature. The issues are manifold and are well documented. Further complicating the problem is insufficient scientic methods to address these issues. Cyber security melds man and machine: we inherit the challenges of computer science, sociology, psychology, and many other elds and create new ones where these elds interface. In this paper we detail a partial list of challenges imposed by rigorous science and survey how other sciences have tackled them, in the hope of applying a similar approach to cyber securitymore » science. This paper is by no means comprehensive: its purpose is to foster discussion in the community on how we can improve rigor in cyber security science.« less

  6. Man-machine interface analysis of the flight design system

    NASA Technical Reports Server (NTRS)

    Ramsey, H. R.; Atwood, M. E.; Willoughby, J. K.

    1978-01-01

    The objective of the current effort was to perform a broad analysis of the human factors issues involved in the design of the Flight Design System (FDS). The analysis was intended to include characteristics of the system itself, such as: (1) basic structure and functional capabilities of FDS; (2) user backgrounds, capabilities, and possible modes of use; (3) FDS interactive dialogue, problem solving aids; (4) system data management capabilities; and to include, as well, such system related matters as: (1) flight design team structure; (2) roles of technicians; (3) user training; and (4) methods of evaluating system performance. Wherever possible, specific recommendations are made. In other cases, the issues which seem most important are identified. In some cases, additional analyses or experiments which might provide resolution are suggested.

  7. Upper limb functional electrical stimulation devices and their man-machine interfaces.

    PubMed

    Venugopalan, L; Taylor, P N; Cobb, J E; Swain, I D

    2015-01-01

    Functional Electrical Stimulation (FES) is a technique that uses electricity to activate the nerves of a muscle that is paralysed due to hemiplegia, multiple sclerosis, Parkinson's disease or spinal cord injury (SCI). FES has been widely used to restore upper limb functions in people with hemiplegia and C5-C7 tetraplegia and has improved their ability to perform their activities of daily living (ADL). At the time of writing, a detailed literature review of the existing upper limb FES devices and their man-machine interfaces (MMI) showed that only the NESS H200 was commercially available. However, the rigid arm splint doesn't fit everyone and prevents the use of a tenodesis grip. Hence, a robust and versatile upper limb FES device that can be used by a wider group of people is required.

  8. Low Latency Messages on Distributed Memory Multiprocessors

    DOE PAGES

    Rosing, Matt; Saltz, Joel

    1995-01-01

    This article describes many of the issues in developing an efficient interface for communication on distributed memory machines. Although the hardware component of message latency is less than 1 ws on many distributed memory machines, the software latency associated with sending and receiving typed messages is on the order of 50 μs. The reason for this imbalance is that the software interface does not match the hardware. By changing the interface to match the hardware more closely, applications with fine grained communication can be put on these machines. This article describes several tests performed and many of the issues involvedmore » in supporting low latency messages on distributed memory machines.« less

  9. Simulation of the «COSMONAUT-ROBOT» System Interaction on the Lunar Surface Based on Methods of Machine Vision and Computer Graphics

    NASA Astrophysics Data System (ADS)

    Kryuchkov, B. I.; Usov, V. M.; Chertopolokhov, V. A.; Ronzhin, A. L.; Karpov, A. A.

    2017-05-01

    Extravehicular activity (EVA) on the lunar surface, necessary for the future exploration of the Moon, involves extensive use of robots. One of the factors of safe EVA is a proper interaction between cosmonauts and robots in extreme environments. This requires a simple and natural man-machine interface, e.g. multimodal contactless interface based on recognition of gestures and cosmonaut's poses. When travelling in the "Follow Me" mode (master/slave), a robot uses onboard tools for tracking cosmonaut's position and movements, and on the basis of these data builds its itinerary. The interaction in the system "cosmonaut-robot" on the lunar surface is significantly different from that on the Earth surface. For example, a man, dressed in a space suit, has limited fine motor skills. In addition, EVA is quite tiring for the cosmonauts, and a tired human being less accurately performs movements and often makes mistakes. All this leads to new requirements for the convenient use of the man-machine interface designed for EVA. To improve the reliability and stability of human-robot communication it is necessary to provide options for duplicating commands at the task stages and gesture recognition. New tools and techniques for space missions must be examined at the first stage of works in laboratory conditions, and then in field tests (proof tests at the site of application). The article analyzes the methods of detection and tracking of movements and gesture recognition of the cosmonaut during EVA, which can be used for the design of human-machine interface. A scenario for testing these methods by constructing a virtual environment simulating EVA on the lunar surface is proposed. Simulation involves environment visualization and modeling of the use of the "vision" of the robot to track a moving cosmonaut dressed in a spacesuit.

  10. Toward a mathematical formalism of performance, task difficulty, and activation

    NASA Technical Reports Server (NTRS)

    Samaras, George M.

    1988-01-01

    The rudiments of a mathematical formalism for handling operational, physiological, and psychological concepts are developed for use by the man-machine system design engineer. The formalism provides a framework for developing a structured, systematic approach to the interface design problem, using existing mathematical tools, and simplifying the problem of telling a machine how to measure and use performance.

  11. The Body-Machine Interface: A new perspective on an old theme

    PubMed Central

    Casadio, Maura; Ranganathan, Rajiv; Mussa-Ivaldi, Ferdinando A.

    2012-01-01

    Body-machine interfaces establish a way to interact with a variety of devices, allowing their users to extend the limits of their performance. Recent advances in this field, ranging from computer-interfaces to bionic limbs, have had important consequences for people with movement disorders. In this article, we provide an overview of the basic concepts underlying the body-machine interface with special emphasis on their use for rehabilitation and for operating assistive devices. We outline the steps involved in building such an interface and we highlight the critical role of body-machine interfaces in addressing theoretical issues in motor control as well as their utility in movement rehabilitation. PMID:23237465

  12. Third Conference on Artificial Intelligence for Space Applications, part 1

    NASA Technical Reports Server (NTRS)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1987-01-01

    The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed.

  13. An evaluation of the ATM man/machine interface. Phase 3: Analysis of SL-3 and SL-4 data

    NASA Technical Reports Server (NTRS)

    Bathurst, J. R., Jr.; Pain, R. F.; Ludewig, D. B.

    1974-01-01

    The functional adequacy of human factored crew operated systems under operational zero-gravity conditions is considered. Skylab ATM experiment operations generated sufficient telemetry and voice transcript data to support such an assessment effort. Discussions are presented pertaining to the methodology and procedures used to evaluate the hardware, training and directive aspects of Skylab 3 and Skylab 4 manned ATM experiment operations.

  14. Keyboard and message evaluation for cockpit input to data link

    DOT National Transportation Integrated Search

    1971-11-01

    The project reported-herein studied some methods for implementation of the man-machine interface of Digital Data Link for Air Traffic Control. An analysis of information transfer requirements indicated that a vocabulary or less than 200 words could y...

  15. Man-Machine Interface (MMI) Requirements Definition and Design Guidelines

    DTIC Science & Technology

    1981-02-01

    be provided to interrogate the user to resolve any input ambiguities resulting from hardware limitations; see Smith and Goodwin, 1971 . Reference...Smith, S. L. and Goodwin, N. C’. Alphabetic data v entry via the Touch-Tone pad: A comment. Human Factors, 1971 , 13(2), 189-190. 41 All~ 1.0 General (con...software designer. Reference: Miller, R. B. Response time in man-computer conversational transactions. In Proceedings of the AFIPS kall Joint Computer

  16. A modular approach for assessing the effect of radiation environments on man in operational systems. The radiobiological vulnerability of man during task performance

    NASA Technical Reports Server (NTRS)

    Ewing, D. E.

    1972-01-01

    A modular approach for assessing the affects of radiation environments on man in operational systems has been developed. The feasibility of the model has been proved and the practicality has been assessed. It has been applied to one operational system to date and information obtained has been submitted to systems analysts and mission planners for the assessment of man's vulnerability and impact on systems survivability. In addition, the model has been developed so that the radiobiological data can be input to a sophisticated man-machine interface model to properly relate the radiobiological stress with other mission stresses including the effects of a degraded system.

  17. Insect-machine interface based neurocybernetics.

    PubMed

    Bozkurt, Alper; Gilmour, Robert F; Sinha, Ayesa; Stern, David; Lal, Amit

    2009-06-01

    We present details of a novel bioelectric interface formed by placing microfabricated probes into insect during metamorphic growth cycles. The inserted microprobes emerge with the insect where the development of tissue around the electronics during the pupal development allows mechanically stable and electrically reliable structures coupled to the insect. Remarkably, the insects do not react adversely or otherwise to the inserted electronics in the pupae stage, as is true when the electrodes are inserted in adult stages. We report on the electrical and mechanical characteristics of this novel bioelectronic interface, which we believe would be adopted by many investigators trying to investigate biological behavior in insects with negligible or minimal traumatic effect encountered when probes are inserted in adult stages. This novel insect-machine interface also allows for hybrid insect-machine platforms for further studies. As an application, we demonstrate our first results toward navigation of flight in moths. When instrumented with equipment to gather information for environmental sensing, such insects potentially can assist man to monitor the ecosystems that we share with them for sustainability. The simplicity of the optimized surgical procedure we invented allows for batch insertions to the insect for automatic and mass production of such hybrid insect-machine platforms. Therefore, our bioelectronic interface and hybrid insect-machine platform enables multidisciplinary scientific and engineering studies not only to investigate the details of insect behavioral physiology but also to control it.

  18. Future developments in brain-machine interface research.

    PubMed

    Lebedev, Mikhail A; Tate, Andrew J; Hanson, Timothy L; Li, Zheng; O'Doherty, Joseph E; Winans, Jesse A; Ifft, Peter J; Zhuang, Katie Z; Fitzsimmons, Nathan A; Schwarz, David A; Fuller, Andrew M; An, Je Hi; Nicolelis, Miguel A L

    2011-01-01

    Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL) Center for Neuroprosthetics, to bring this new technology to clinical fruition.

  19. Human factors in space telepresence

    NASA Technical Reports Server (NTRS)

    Akin, D. L.; Howard, R. D.; Oliveria, J. S.

    1983-01-01

    The problems of interfacing a human with a teleoperation system, for work in space are discussed. Much of the information presented here is the result of experience gained by the M.I.T. Space Systems Laboratory during the past two years of work on the ARAMIS (Automation, Robotics, and Machine Intelligence Systems) project. Many factors impact the design of the man-machine interface for a teleoperator. The effects of each are described in turn. An annotated bibliography gives the key references that were used. No conclusions are presented as a best design, since much depends on the particular application desired, and the relevant technology is swiftly changing.

  20. Quadcopter control using a BCI

    NASA Astrophysics Data System (ADS)

    Rosca, S.; Leba, M.; Ionica, A.; Gamulescu, O.

    2018-01-01

    The paper presents how there can be interconnected two ubiquitous elements nowadays. On one hand, the drones, which are increasingly present and integrated into more and more fields of activity, beyond the military applications they come from, moving towards entertainment, real-estate, delivery and so on. On the other hand, unconventional man-machine interfaces, which are generous topics to explore now and in the future. Of these, we chose brain computer interface (BCI), which allows human-machine interaction without requiring any moving elements. The research consists of mathematical modeling and numerical simulation of a drone and a BCI. Then there is presented an application using a Parrot mini-drone and an Emotiv Insight BCI.

  1. From pilot's associate to satellite controller's associate

    NASA Technical Reports Server (NTRS)

    Neyland, David L.; Lizza, Carl; Merkel, Philip A.

    1992-01-01

    Associate technology is an emerging engineering discipline wherein intelligent automation can significantly augment the performance of man-machine systems. An associate system is one that monitors operator activity and adapts its operational behavior accordingly. Associate technology is most effectively applied when mapped into management of the human-machine interface and display-control loop in typical manned systems. This paper addresses the potential for application of associate technology into the arena of intelligent command and control of satellite systems, from diagnosis of onboard and onground of satellite systems fault conditions, to execution of nominal satellite control functions. Rather than specifying a specific solution, this paper draws parallels between the Pilot's Associate concept and the domain of satellite control.

  2. Human-machine interface for a VR-based medical imaging environment

    NASA Astrophysics Data System (ADS)

    Krapichler, Christian; Haubner, Michael; Loesch, Andreas; Lang, Manfred K.; Englmeier, Karl-Hans

    1997-05-01

    Modern 3D scanning techniques like magnetic resonance imaging (MRI) or computed tomography (CT) produce high- quality images of the human anatomy. Virtual environments open new ways to display and to analyze those tomograms. Compared with today's inspection of 2D image sequences, physicians are empowered to recognize spatial coherencies and examine pathological regions more facile, diagnosis and therapy planning can be accelerated. For that purpose a powerful human-machine interface is required, which offers a variety of tools and features to enable both exploration and manipulation of the 3D data. Man-machine communication has to be intuitive and efficacious to avoid long accustoming times and to enhance familiarity with and acceptance of the interface. Hence, interaction capabilities in virtual worlds should be comparable to those in the real work to allow utilization of our natural experiences. In this paper the integration of hand gestures and visual focus, two important aspects in modern human-computer interaction, into a medical imaging environment is shown. With the presented human- machine interface, including virtual reality displaying and interaction techniques, radiologists can be supported in their work. Further, virtual environments can even alleviate communication between specialists from different fields or in educational and training applications.

  3. First Annual Workshop on Space Operations Automation and Robotics (SOAR 87)

    NASA Technical Reports Server (NTRS)

    Griffin, Sandy (Editor)

    1987-01-01

    Several topics relative to automation and robotics technology are discussed. Automation of checkout, ground support, and logistics; automated software development; man-machine interfaces; neural networks; systems engineering and distributed/parallel processing architectures; and artificial intelligence/expert systems are among the topics covered.

  4. The Computer as Adaptive Instructional Decision Maker.

    ERIC Educational Resources Information Center

    Kopstein, Felix F.; Seidel, Robert J.

    The computer's potential for education, and most particularly for instruction, is contingent on the development of a class of instructional decision models (formal instructional strategies) that interact with the student through appropriate peripheral equipment (man-machine interfaces). Computer hardware and software by themselves should not be…

  5. Concept Design of the Payload Handling Manipulator System. [space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The design, requirements, and interface definition of a remote manipulator system developed to handle orbiter payloads are presented. End effector design, control system concepts, and man-machine engineering are considered along with crew station requirements and closed circuit television system performance requirements.

  6. Humans and machines in space: The vision, the challenge, the payoff; AAS Goddard Memorial Symposium, 29th, Washington, DC, March 14-15, 1991

    NASA Astrophysics Data System (ADS)

    Johnson, Bradley; May, Gayle L.; Korn, Paula

    A recent symposium produced papers in the areas of solar system exploration, man machine interfaces, cybernetics, virtual reality, telerobotics, life support systems and the scientific and technology spinoff from the NASA space program. A number of papers also addressed the social and economic impacts of the space program. For individual titles, see A95-87468 through A95-87479.

  7. A COTS-MQS shipborne EO/IR imaging system

    NASA Astrophysics Data System (ADS)

    Hutchinson, Mark A.; Miller, John L.; Weaver, James

    2005-05-01

    The Sea Star SAFIRE is a commercially developed, off the shelf, military qualified system (COTS-MQS) consisting of a 640 by 480 InSb infrared imager, laser rangefinder and visible imager in a gyro-stabilized platform designed for shipborne applications. These applications include search and rescue, surveillance, fire control, fisheries patrol, harbor security, and own-vessel perimeter security and self protection. Particularly challenging considerations unique to shipborne systems include the demanding environment conditions, man-machine interfaces, and effects of atmospheric conditions on sensor performance. Shipborne environmental conditions requiring special attention include electromagnetic fields, as well as resistance to rain, ice and snow, shock, vibration, and salt. Features have been implemented to withstand exposure to water and high humidity; anti-ice/de-ice capability for exposure to snow and ice; wash/wipe of external windows; corrosion resistance for exposure to water and salt spray. A variety of system controller configurations provide man-machine interfaces suitable for operation on ships. EO sensor developments that address areas of haze penetration, glint, and scintillation will be presented.

  8. Considerations for human-machine interfaces in tele-operations

    NASA Technical Reports Server (NTRS)

    Newport, Curt

    1991-01-01

    Numerous factors impact on the efficiency of tele-operative manipulative work. Generally, these are related to the physical environment of the tele-operator and how he interfaces with robotic control consoles. The capabilities of the operator can be influenced by considerations such as temperature, eye strain, body fatigue, and boredom created by repetitive work tasks. In addition, the successful combination of man and machine will, in part, be determined by the configuration of the visual and physical interfaces available to the teleoperator. The design and operation of system components such as full-scale and mini-master manipulator controllers, servo joysticks, and video monitors will have a direct impact on operational efficiency. As a result, the local environment and the interaction of the operator with the robotic control console have a substantial effect on mission productivity.

  9. Location and acquisition of objects in unpredictable locations. [a teleoperator system with a computer for manipulator control

    NASA Technical Reports Server (NTRS)

    Sword, A. J.; Park, W. T.

    1975-01-01

    A teleoperator system with a computer for manipulator control to combine the capabilities of both man and computer to accomplish a task is described. This system allows objects in unpredictable locations to be successfully located and acquired. By using a method of characterizing the work-space together with man's ability to plan a strategy and coarsely locate an object, the computer is provided with enough information to complete the tedious part of the task. In addition, the use of voice control is shown to be a useful component of the man/machine interface.

  10. Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.

    PubMed

    Lopes, Ana C; Nunes, Urbano; Vaz, Luis; Vaz, Luís

    2010-01-01

    This paper presents a shared-control approach for Assistive Mobile Robots (AMR), which depends on the user's ability to navigate a semi-autonomous powered wheelchair, using a sparse and discrete human-machine interface (HMI). This system is primarily intended to help users with severe motor disabilities that prevent them to use standard human-machine interfaces. Scanning interfaces and Brain Computer Interfaces (BCI), characterized to provide a small set of commands issued sparsely, are possible HMIs. This shared-control approach is intended to be applied in an Assisted Navigation Training Framework (ANTF) that is used to train users' ability in steering a powered wheelchair in an appropriate manner, given the restrictions imposed by their limited motor capabilities. A shared-controller based on user characterization, is proposed. This controller is able to share the information provided by the local motion planning level with the commands issued sparsely by the user. Simulation results of the proposed shared-control method, are presented.

  11. Computer interface for mechanical arm

    NASA Technical Reports Server (NTRS)

    Derocher, W. L.; Zermuehlen, R. O.

    1978-01-01

    Man/machine interface commands computer-controlled mechanical arm. Remotely-controlled arm has six degrees of freedom and is controlled through "supervisory-control" mode, in which all motions of arm follow set of preprogramed sequences. For simplicity, few prescribed commands are required to accomplish entire operation. Applications include operating computer-controlled arm to handle radioactive of explosive materials or commanding arm to perform functions in hostile environments. Modified version using displays may be applied in medicine.

  12. Advanced warfighter machine interface (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Franks, Erin

    2005-05-01

    Future military crewmen may have more individual and shared tasks to complete throughout a mission as a result of smaller crew sizes and an increased number of technology interactions. To maintain reasonable workload levels, the Warfighter Machine Interface (WMI) must provide information in a consistent, logical manner, tailored to the environment in which the soldier will be completing their mission. This paper addresses design criteria for creating an advanced, multi-modal warfighter machine interface for on-the-move mounted operations. The Vetronics Technology Integration (VTI) WMI currently provides capabilities such as mission planning and rehearsal, voice and data communications, and manned/unmanned vehicle payload and mobility control. A history of the crewstation and more importantly, the WMI software will be provided with an overview of requirements and criteria used for completing the design. Multiple phases of field and laboratory testing provide the opportunity to evaluate the design and hardware in stationary and motion environments. Lessons learned related to system usability and user performance are presented with mitigation strategies to be tested in the future.

  13. Sitting in the Pilot's Seat; Optimizing Human-Systems Interfaces for Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Queen, Steven M.; Sanner, Kurt Gregory

    2011-01-01

    One of the pilot-machine interfaces (the forward viewing camera display) for an Unmanned Aerial Vehicle called the DROID (Dryden Remotely Operated Integrated Drone) will be analyzed for optimization. The goal is to create a visual display for the pilot that as closely resembles an out-the-window view as possible. There are currently no standard guidelines for designing pilot-machine interfaces for UAVs. Typically, UAV camera views have a narrow field, which limits the situational awareness (SA) of the pilot. Also, at this time, pilot-UAV interfaces often use displays that have a diagonal length of around 20". Using a small display may result in a distorted and disproportional view for UAV pilots. Making use of a larger display and a camera lens with a wider field of view may minimize the occurrences of pilot error associated with the inability to see "out the window" as in a manned airplane. It is predicted that the pilot will have a less distorted view of the DROID s surroundings, quicker response times and more stable vehicle control. If the experimental results validate this concept, other UAV pilot-machine interfaces will be improved with this design methodology.

  14. Future developments in brain-machine interface research

    PubMed Central

    Lebedev, Mikhail A; Tate, Andrew J; Hanson, Timothy L; Li, Zheng; O'Doherty, Joseph E; Winans, Jesse A; Ifft, Peter J; Zhuang, Katie Z; Fitzsimmons, Nathan A; Schwarz, David A; Fuller, Andrew M; An, Je Hi; Nicolelis, Miguel A L

    2011-01-01

    Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL) Center for Neuroprosthetics, to bring this new technology to clinical fruition. PMID:21779720

  15. A model for the control mode man-computer interface dialogue

    NASA Technical Reports Server (NTRS)

    Chafin, R. L.

    1981-01-01

    A four stage model is presented for the control mode man-computer interface dialogue. It consists of context development, semantic development syntactic development, and command execution. Each stage is discussed in terms of the operator skill levels (naive, novice, competent, and expert) and pertinent human factors issues. These issues are human problem solving, human memory, and schemata. The execution stage is discussed in terms of the operators typing skills. This model provides an understanding of the human process in command mode activity for computer systems and a foundation for relating system characteristics to operator characteristics.

  16. End-User Use of Data Base Query Language: Pros and Cons.

    ERIC Educational Resources Information Center

    Nicholes, Walter

    1988-01-01

    Man-machine interface, the concept of a computer "query," a review of database technology, and a description of the use of query languages at Brigham Young University are discussed. The pros and cons of end-user use of database query languages are explored. (Author/MLW)

  17. Expert Design Advisor

    DTIC Science & Technology

    1990-10-01

    to economic, technological, spatial or logistic concerns, or involve training, man-machine interfaces, or integration into existing systems. Once the...probabilistic reasoning, mixed analysis- and simulation-oriented, mixed computation- and communication-oriented, nonpreemptive static priority...scheduling base, nonrandomized, preemptive static priority scheduling base, randomized, simulation-oriented, and static scheduling base. The selection of both

  18. Transient Classifier Systems and Man-Machine Interface Research.

    DTIC Science & Technology

    1987-08-31

    different timbre from two different resonant sources, i.e., like a violin and oboe emitting nearly the same fundamental mode fre- quency, but each with its...the subjects by examing both hits and misses for signal and noise stimuli. A pairwise com- parison of the means resulted in significant differences (at

  19. Study of Man-Machine Communications Systems for the Handicapped. Interim Report.

    ERIC Educational Resources Information Center

    Kafafian, Haig

    Newly developed communications systems for exceptional children include Cybercom; CYBERTYPE; Cyberplace, a keyless keyboard; Cyberphone, a telephonic communication system for deaf and speech impaired persons; Cyberlamp, a visual display; Cyberview, a fiber optic bundle remote visual display; Cybersem, an interface for the blind, fingerless, and…

  20. Use of Computer Speech Technologies To Enhance Learning.

    ERIC Educational Resources Information Center

    Ferrell, Joe

    1999-01-01

    Discusses the design of an innovative learning system that uses new technologies for the man-machine interface, incorporating a combination of Automatic Speech Recognition (ASR) and Text To Speech (TTS) synthesis. Highlights include using speech technologies to mimic the attributes of the ideal tutor and design features. (AEF)

  1. Mobility Systems For Robotic Vehicles

    NASA Astrophysics Data System (ADS)

    Chun, Wendell

    1987-02-01

    The majority of existing robotic systems can be decomposed into five distinct subsystems: locomotion, control/man-machine interface (MMI), sensors, power source, and manipulator. When designing robotic vehicles, there are two main requirements: first, to design for the environment and second, for the task. The environment can be correlated with known missions. This can be seen by analyzing existing mobile robots. Ground mobile systems are generally wheeled, tracked, or legged. More recently, underwater vehicles have gained greater attention. For example, Jason Jr. made history by surveying the sunken luxury liner, the Titanic. The next big surge of robotic vehicles will be in space. This will evolve as a result of NASA's commitment to the Space Station. The foreseeable robots will interface with current systems as well as standalone, free-flying systems. A space robotic vehicle is similar to its underwater counterpart with very few differences. Their commonality includes missions and degrees-of-freedom. The issues of stability and communication are inherent in both systems and environment.

  2. Advanced system functions for the office information system

    NASA Astrophysics Data System (ADS)

    Ishikawa, Tetsuya

    First, author describes the functions needed for information management system in office. Next, he mentions the requisites for the enhancement of system functions. In order to make enhancement of system functions, he states, it is necessary to examine them comprehensively from every point of view including processing hour and cost. In this paper, he concentrates on the enhancement of man-machine interface (= human interface), that is, how to make system easy to use for the office workers.

  3. Design Guidelines and Criteria for User/Operator Transactions with Battlefield Automated Systems. Volume 5. Background Literature

    DTIC Science & Technology

    1981-02-01

    the machine . ARI’s efforts in this area focus on human perfor- mance problems related to interactions with command and control centers, and on issues...improvement of the user- machine interface. Lacking consistent design principles, current practice results in a fragmented and unsystematic approach to system...complexity in the user- machine interface of BAS, ARI supported this effort for develop- me:nt of an online language for Army tactical intelligence

  4. The control of manual entry accuracy in management/engineering information systems, phase 1

    NASA Technical Reports Server (NTRS)

    Hays, Daniel; Nocke, Henry; Wilson, Harold; Woo, John, Jr.; Woo, June

    1987-01-01

    It was shown that clerical personnel can be tested for proofreading performance under simulated industrial conditions. A statistical study showed that errors in proofreading follow an extreme value probability theory. The study showed that innovative man/machine interfaces can be developed to improve and control accuracy during data entry.

  5. Adaptive Training and Collective Decision Support Based on Man-Machine Interface

    DTIC Science & Technology

    2016-03-02

    Emotiv Inc., Figure 1) for collection of EEG data. This device is wireless and transmits data via Bluetooth to a PC using a USB dongle. The... Bluetooth to a PC using a USB dongle. The advantage of the system over others is the ability to collect high resolution EEG data without complicated

  6. Earth orbital teleoperator visual system evaluation program

    NASA Technical Reports Server (NTRS)

    Shields, N. L., Jr.; Kirkpatrick, M., III; Frederick, P. N.; Malone, T. B.

    1975-01-01

    Empirical tests of range estimation accuracy and resolution, via television, under monoptic and steroptic viewing conditions are discussed. Test data are used to derive man machine interface requirements and make design decisions for an orbital remote manipulator system. Remote manipulator system visual tasks are given and the effects of system parameters of these tasks are evaluated.

  7. Hybrid EEG-EOG brain-computer interface system for practical machine control.

    PubMed

    Punsawad, Yunyong; Wongsawat, Yodchanan; Parnichkun, Manukid

    2010-01-01

    Practical issues such as accuracy with various subjects, number of sensors, and time for training are important problems of existing brain-computer interface (BCI) systems. In this paper, we propose a hybrid framework for the BCI system that can make machine control more practical. The electrooculogram (EOG) is employed to control the machine in the left and right directions while the electroencephalogram (EEG) is employed to control the forword, no action, and complete stop motions of the machine. By using only 2-channel biosignals, the average classification accuracy of more than 95% can be achieved.

  8. Techniques and applications for binaural sound manipulation in human-machine interfaces

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Wenzel, Elizabeth M.

    1990-01-01

    The implementation of binaural sound to speech and auditory sound cues (auditory icons) is addressed from both an applications and technical standpoint. Techniques overviewed include processing by means of filtering with head-related transfer functions. Application to advanced cockpit human interface systems is discussed, although the techniques are extendable to any human-machine interface. Research issues pertaining to three-dimensional sound displays under investigation at the Aerospace Human Factors Division at NASA Ames Research Center are described.

  9. Techniques and applications for binaural sound manipulation in human-machine interfaces

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Wenzel, Elizabeth M.

    1992-01-01

    The implementation of binaural sound to speech and auditory sound cues (auditory icons) is addressed from both an applications and technical standpoint. Techniques overviewed include processing by means of filtering with head-related transfer functions. Application to advanced cockpit human interface systems is discussed, although the techniques are extendable to any human-machine interface. Research issues pertaining to three-dimensional sound displays under investigation at the Aerospace Human Factors Division at NASA Ames Research Center are described.

  10. Final Report of Work Done on Contract NONR-4010(03).

    ERIC Educational Resources Information Center

    Chapanis, Alphonse

    The 24 papers listed report the findings of a study funded by the Office of Naval Research. The study concentrated on the sensory and cognitive factors in man-machine interfaces. The papers are categorized into three groups: perception studies, human engineering studies, and methodological papers. A brief summary of the most noteworthy findings in…

  11. Cooperative analysis expert situation assessment research

    NASA Technical Reports Server (NTRS)

    Mccown, Michael G.

    1987-01-01

    For the past few decades, Rome Air Development Center (RADC) has been conducting research in Artificial Intelligence (AI). When the recent advances in hardware technology made many AI techniques practical, the Intelligence and Reconnaissance Directorate of RADC initiated an applications program entitled Knowledge Based Intelligence Systems (KBIS). The goal of the program is the development of a generic Intelligent Analyst System, an open machine with the framework for intelligence analysis, natural language processing, and man-machine interface techniques, needing only the specific problem domain knowledge to be operationally useful. The development of KBIS is described.

  12. Flight telerobotic servicer legacy

    NASA Astrophysics Data System (ADS)

    Shattuck, Paul L.; Lowrie, James W.

    1992-11-01

    The Flight Telerobotic Servicer (FTS) was developed to enhance and provide a safe alternative to human presence in space. The first step for this system was a precursor development test flight (DTF-1) on the Space Shuttle. DTF-1 was to be a pathfinder for manned flight safety of robotic systems. The broad objectives of this mission were three-fold: flight validation of telerobotic manipulator (design, control algorithms, man/machine interfaces, safety); demonstration of dexterous manipulator capabilities on specific building block tasks; and correlation of manipulator performance in space with ground predictions. The DTF-1 system is comprised of a payload bay element (7-DOF manipulator with controllers, end-of-arm gripper and camera, telerobot body with head cameras and electronics module, task panel, and MPESS truss) and an aft flight deck element (force-reflecting hand controller, crew restraint, command and display panel and monitors). The approach used to develop the DTF-1 hardware, software and operations involved flight qualification of components from commercial, military, space, and R controller, end-of-arm tooling, force/torque transducer) and the development of the telerobotic system for space applications. The system is capable of teleoperation and autonomous control (advances state of the art); reliable (two-fault tolerance); and safe (man-rated). Benefits from the development flight included space validation of critical telerobotic technologies and resolution of significant safety issues relating to telerobotic operations in the Shuttle bay or in the vicinity of other space assets. This paper discusses the lessons learned and technology evolution that stemmed from developing and integrating a dexterous robot into a manned system, the Space Shuttle. Particular emphasis is placed on the safety and reliability requirements for a man-rated system as these are the critical factors which drive the overall system architecture. Other topics focused on include: task requirements and operational concepts for servicing and maintenance of space platforms; origins of technology for dexterous robotic systems; issues associated with space qualification of components; and development of the industrial base to support space robotics.

  13. Interface design in the process industries

    NASA Technical Reports Server (NTRS)

    Beaverstock, M. C.; Stassen, H. G.; Williamson, R. A.

    1977-01-01

    Every operator runs his plant in accord with his own mental model of the process. In this sense, one characteristic of an ideal man-machine interface is that it be in harmony with that model. With this theme in mind, the paper first reviews the functions of the process operator and compares them with human operators involved in control situations previously studied outside the industrial environment (pilots, air traffic controllers, helmsmen, etc.). A brief history of the operator interface in the process industry and the traditional methodology employed in its design is then presented. Finally, a much more fundamental approach utilizing a model definition of the human operator's behavior is presented.

  14. Research on ARM Numerical Control System

    NASA Astrophysics Data System (ADS)

    Wei, Xu; JiHong, Chen

    Computerized Numerical Control (CNC) machine tools is the foundation of modern manufacturing systems, whose advanced digital technology is the key to solve the problem of sustainable development of machine tool manufacturing industry. The paper is to design CNC system embedded on ARM and indicates the hardware design and the software systems supported. On the hardware side: the driving chip of the motor control unit, as the core of components, is MCX314AL of DSP motion control which is developed by NOVA Electronics Co., Ltd. of Japan. It make convenient to control machine because of its excellent performance, simple interface, easy programming. On the Software side, the uC/OS-2 is selected as the embedded operating system of the open source, which makes a detailed breakdown of the modules of the CNC system. Those priorities are designed according to their actual requirements. The ways of communication between the module and the interrupt response are so different that it guarantees real-time property and reliability of the numerical control system. Therefore, it not only meets the requirements of the current social precision machining, but has good man-machine interface and network support to facilitate a variety of craftsmen use.

  15. The Concept of C2 Communication and Information Support

    DTIC Science & Technology

    2004-06-01

    communication and information literacy , • Sensors: technology and systematic development as a branch, • Military prognosis research (combat models...intelligence, • Visualization of actions, suitable forms of information presentation, • Techniques of learning CIS users communication and information ... literacy , • Sensors: technology and systematic development as a branch, • Military prognosis research (combat models), • Man - machine interface. CISu

  16. Will Anything Useful Come Out of Virtual Reality? Examination of a Naval Application

    DTIC Science & Technology

    1993-05-01

    The term virtual reality can encompass varying meanings, but some generally accepted attributes of a virtual environment are that it is immersive...technology, but at present there are few practical applications which are utilizing the broad range of virtual reality technology. This paper will discuss an...Operability, operator functions, Virtual reality , Man-machine interface, Decision aids/decision making, Decision support. ASW.

  17. TDRSS operations control analysis study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The use of an operational Tracking and Data Relay Satellite System (TDRSS) and the remaining ground stations for the STDN (GSTDN) was investigated. The operational aspects of TDRSS concepts, GSTDN as a 14-site network, and GSTDN as a 7 site-network were compared and operations control concepts for the configurations developed. Man/machine interface, scheduling system, and hardware/software tradeoff analyses were among the factors considered in the analysis.

  18. CESAR research in intelligent machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbin, C.R.

    1986-01-01

    The Center for Engineering Systems Advanced Research (CESAR) was established in 1983 as a national center for multidisciplinary, long-range research and development in machine intelligence and advanced control theory for energy-related applications. Intelligent machines of interest here are artificially created operational systems that are capable of autonomous decision making and action. The initial emphasis for research is remote operations, with specific application to dexterous manipulation in unstructured dangerous environments where explosives, toxic chemicals, or radioactivity may be present, or in other environments with significant risk such as coal mining or oceanographic missions. Potential benefits include reduced risk to man inmore » hazardous situations, machine replication of scarce expertise, minimization of human error due to fear or fatigue, and enhanced capability using high resolution sensors and powerful computers. A CESAR goal is to explore the interface between the advanced teleoperation capability of today, and the autonomous machines of the future.« less

  19. The JPL telerobot operator control station. Part 1: Hardware

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.; Tower, John T.; Hunka, George W.; Vansant, Glenn J.

    1989-01-01

    The Operator Control Station of the Jet Propulsion Laboratory (JPL)/NASA Telerobot Demonstrator System provides the man-machine interface between the operator and the system. It provides all the hardware and software for accepting human input for the direct and indirect (supervised) manipulation of the robot arms and tools for task execution. Hardware and software are also provided for the display and feedback of information and control data for the operator's consumption and interaction with the task being executed. The hardware design, system architecture, and its integration and interface with the rest of the Telerobot Demonstrator System are discussed.

  20. The NASA automation and robotics technology program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee B.; Montemerlo, Melvin D.

    1986-01-01

    The development and objectives of the NASA automation and robotics technology program are reviewed. The objectives of the program are to utilize AI and robotics to increase the probability of mission success; decrease the cost of ground control; and increase the capability and flexibility of space operations. There is a need for real-time computational capability; an effective man-machine interface; and techniques to validate automated systems. Current programs in the areas of sensing and perception, task planning and reasoning, control execution, operator interface, and system architecture and integration are described. Programs aimed at demonstrating the capabilities of telerobotics and system autonomy are discussed.

  1. Low latency messages on distributed memory multiprocessors

    NASA Technical Reports Server (NTRS)

    Rosing, Matthew; Saltz, Joel

    1993-01-01

    Many of the issues in developing an efficient interface for communication on distributed memory machines are described and a portable interface is proposed. Although the hardware component of message latency is less than one microsecond on many distributed memory machines, the software latency associated with sending and receiving typed messages is on the order of 50 microseconds. The reason for this imbalance is that the software interface does not match the hardware. By changing the interface to match the hardware more closely, applications with fine grained communication can be put on these machines. Based on several tests that were run on the iPSC/860, an interface that will better match current distributed memory machines is proposed. The model used in the proposed interface consists of a computation processor and a communication processor on each node. Communication between these processors and other nodes in the system is done through a buffered network. Information that is transmitted is either data or procedures to be executed on the remote processor. The dual processor system is better suited for efficiently handling asynchronous communications compared to a single processor system. The ability to send data or procedure is very flexible for minimizing message latency, based on the type of communication being performed. The test performed and the proposed interface are described.

  2. Proceedings of the first workshop on Peripheral Machine Interfaces: going beyond traditional surface electromyography

    PubMed Central

    Castellini, Claudio; Artemiadis, Panagiotis; Wininger, Michael; Ajoudani, Arash; Alimusaj, Merkur; Bicchi, Antonio; Caputo, Barbara; Craelius, William; Dosen, Strahinja; Englehart, Kevin; Farina, Dario; Gijsberts, Arjan; Godfrey, Sasha B.; Hargrove, Levi; Ison, Mark; Kuiken, Todd; Marković, Marko; Pilarski, Patrick M.; Rupp, Rüdiger; Scheme, Erik

    2014-01-01

    One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic devices. Despite decades of research, the state of the art is dramatically behind the expectations. To shed light on this issue, in June, 2013 the first international workshop on Present and future of non-invasive peripheral nervous system (PNS)–Machine Interfaces (MI; PMI) was convened, hosted by the International Conference on Rehabilitation Robotics. The keyword PMI has been selected to denote human–machine interfaces targeted at the limb-deficient, mainly upper-limb amputees, dealing with signals gathered from the PNS in a non-invasive way, that is, from the surface of the residuum. The workshop was intended to provide an overview of the state of the art and future perspectives of such interfaces; this paper represents is a collection of opinions expressed by each and every researcher/group involved in it. PMID:25177292

  3. Zero-G Workstation Design

    NASA Technical Reports Server (NTRS)

    Gundersen, R. T.; Bond, R. L.

    1976-01-01

    Zero-g workstations were designed throughout manned spaceflight, based on different criteria and requirements for different programs. The history of design of these workstations is presented along with a thorough evaluation of selected Skylab workstations (the best zero-g experience available on the subject). The results were applied to on-going and future programs, with special emphasis on the correlation of neutral body posture in zero-g to workstation design. Where selected samples of shuttle orbiter workstations are shown as currently designed and compared to experience gained during prior programs in terms of man machine interface design, the evaluations were done in a generic sense to show the methods of applying evaluative techniques.

  4. GODDESS: A Goal-Directed Decision Structuring System.

    DTIC Science & Technology

    1980-06-01

    differ- ent support techniques. From a practical viewpoint, though, the major drawback of manual interviews is their length and cost. Since real - time ...conducting his future inquiries. A direct man-machine interface could provide three distinct advantages. First, it offers the capability of real - time ...knowledge in tree form. In many real -world applications, the decision maker may not perceive a problem in the form of a time sequence of decision

  5. The ZOG Technology Demonstration Project: A System Evaluation of USS CARL VINSON (CVN 70)

    DTIC Science & Technology

    1984-12-01

    part of a larger project involving development of a wide range of computer technologies, including artifcial intelligence and a long-range computer...shipboard manage- ment, aircraft management, expert systems, menu selection, man- machine interface, artificial intelligence , automation; shipboard It AWM...functions, planning, evaluation, training, hierarchical data bases The objective of this project was to conduct an evaluation of ZOG, a general purpose

  6. Knowledge-based load leveling and task allocation in human-machine systems

    NASA Technical Reports Server (NTRS)

    Chignell, M. H.; Hancock, P. A.

    1986-01-01

    Conventional human-machine systems use task allocation policies which are based on the premise of a flexible human operator. This individual is most often required to compensate for and augment the capabilities of the machine. The development of artificial intelligence and improved technologies have allowed for a wider range of task allocation strategies. In response to these issues a Knowledge Based Adaptive Mechanism (KBAM) is proposed for assigning tasks to human and machine in real time, using a load leveling policy. This mechanism employs an online workload assessment and compensation system which is responsive to variations in load through an intelligent interface. This interface consists of a loading strategy reasoner which has access to information about the current status of the human-machine system as well as a database of admissible human/machine loading strategies. Difficulties standing in the way of successful implementation of the load leveling strategy are examined.

  7. USSR Space Life Sciences Digest. Index to issues 15-20

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor)

    1989-01-01

    This bibliography provides an index to issues 15 through 20 of the USSR Space Life Sciences Digest. There are two sections. The first section lists bibliographic citations of abstracts in these issues, grouped by topic area categories. The second section provides a key word index for the same abstracts. The topic categories include exobiology, space medicine and psychology, human performance and man-machine systems, various life/body systems, human behavior and adaptation, biospherics, and others.

  8. USSR Space Life Sciences Digest. Index to issues 21-25

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor)

    1990-01-01

    This bibliography provides an index to issues 21 through 25 of the USSR Space Life Sciences Digest. There are two sections. The first section lists bibliographic citations of abstracts in these issues, grouped by topic area categories. The second section provides a key word index for the same abstracts. The topic categories include exobiology, space medicine and psychology, human performance and man-machine systems, various life/body systems, human behavior and adaptation, biospherics, and others.

  9. USSR Space Life Sciences Digest. Index to issues 26-29

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor)

    1991-01-01

    This bibliography provides an index to issues 26 through 29 of the USSR Space Life Sciences Digest. There are two sections. The first section lists bibliographic citations of abstracts in these issues, grouped by topic area categories. The second section provides a key word index for the same abstracts. The topic categories include exobiology, space medicine and psychology, human performance and man-machine systems, various life/body systems, human behavior and adaptation, biospherics, and others.

  10. A shuttle and space station manipulator system for assembly, docking, maintenance, cargo handling and spacecraft retrieval (preliminary design). Volume 2: Concept development and selection

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The overall program background, the various system concepts considered, and the rationale for the selected design are described. The concepts for each subsystem are also described and compared. Details are given for the requirements, boom configuration and dynamics, actuators, man/machine interface and control, visual system, control system, environmental control and life support, data processing, and materials.

  11. An overview of the artificial intelligence and expert systems component of RICIS

    NASA Technical Reports Server (NTRS)

    Feagin, Terry

    1987-01-01

    Artificial Intelligence and Expert Systems are the important component of RICIS (Research Institute and Information Systems) research program. For space applications, a number of problem areas that should be able to make good use of the above tools include: resource allocation and management, control and monitoring, environmental control and life support, power distribution, communications scheduling, orbit and attitude maintenance, redundancy management, intelligent man-machine interfaces and fault detection, isolation and recovery.

  12. Acquisition of Cooperative Small Unmanned Aerial Systems for Advancing Man Machine Interface Research

    DTIC Science & Technology

    2016-08-24

    global sensor field of views (FOVs), mimicking biological systems such as an insect fly eye , but allowing multiple aperture configurations. Due to...synthetic, global sensor field of views (FOVs), mimicking biological systems such as an insect fly eye , but allowing multiple aperture configurations. Due to...such as an insect fly eye , but allowing multiple aperture configurations. Due to the desired nature of distributed networked aerial vehicles (for the

  13. Review of "Conceptual Structures: Information Processing in Mind and Machine."

    ERIC Educational Resources Information Center

    Smoliar, Stephen W.

    This review of the book, "Conceptual Structures: Information Processing in Mind and Machine," by John F. Sowa, argues that anyone who plans to get involved with issues of knowledge representation should have at least a passing acquaintance with Sowa's conceptual graphs for a database interface. (Used to model the underlying semantics of…

  14. Human factors model concerning the man-machine interface of mining crewstations

    NASA Technical Reports Server (NTRS)

    Rider, James P.; Unger, Richard L.

    1989-01-01

    The U.S. Bureau of Mines is developing a computer model to analyze the human factors aspect of mining machine operator compartments. The model will be used as a research tool and as a design aid. It will have the capability to perform the following: simulated anthropometric or reach assessment, visibility analysis, illumination analysis, structural analysis of the protective canopy, operator fatigue analysis, and computation of an ingress-egress rating. The model will make extensive use of graphics to simplify data input and output. Two dimensional orthographic projections of the machine and its operator compartment are digitized and the data rebuilt into a three dimensional representation of the mining machine. Anthropometric data from either an individual or any size population may be used. The model is intended for use by equipment manufacturers and mining companies during initial design work on new machines. In addition to its use in machine design, the model should prove helpful as an accident investigation tool and for determining the effects of machine modifications made in the field on the critical areas of visibility and control reach ability.

  15. Human factors issues in telerobotic systems for Space Station Freedom servicing

    NASA Technical Reports Server (NTRS)

    Malone, Thomas B.; Permenter, Kathryn E.

    1990-01-01

    Requirements for Space Station Freedom servicing are described and the state-of-the-art for telerobotic system on-orbit servicing of spacecraft is defined. The projected requirements for the Space Station Flight Telerobotic Servicer (FTS) are identified. Finally, the human factors issues in telerobotic servicing are discussed. The human factors issues are basically three: the definition of the role of the human versus automation in system control; the identification of operator-device interface design requirements; and the requirements for development of an operator-machine interface simulation capability.

  16. Teleoperators - Manual/automatic system requirements.

    NASA Technical Reports Server (NTRS)

    Janow, C.; Malone, T. B.

    1973-01-01

    The teleoperator is defined as a remotely controlled, cybernetic, man-machine system designed to extend and augment man's sensory, manipulative, and cognitive capabilities. The teleoperator system incorporates the decision making, adaptive intelligence without requiring its presence. The man and the machine work as a team, each contributing unique and significant capabilities, and each depending on the other to achieve a common goal. Some of the more significant requirements associated with the development of teleoperator systems technology for space, industry, and medicine are examined. Emphasis is placed on the requirement to more effectively use the man and the machine in any man-machine system.

  17. DataHub: Knowledge-based data management for data discovery

    NASA Astrophysics Data System (ADS)

    Handley, Thomas H.; Li, Y. Philip

    1993-08-01

    Currently available database technology is largely designed for business data-processing applications, and seems inadequate for scientific applications. The research described in this paper, the DataHub, will address the issues associated with this shortfall in technology utilization and development. The DataHub development is addressing the key issues in scientific data management of scientific database models and resource sharing in a geographically distributed, multi-disciplinary, science research environment. Thus, the DataHub will be a server between the data suppliers and data consumers to facilitate data exchanges, to assist science data analysis, and to provide as systematic approach for science data management. More specifically, the DataHub's objectives are to provide support for (1) exploratory data analysis (i.e., data driven analysis); (2) data transformations; (3) data semantics capture and usage; analysis-related knowledge capture and usage; and (5) data discovery, ingestion, and extraction. Applying technologies that vary from deductive databases, semantic data models, data discovery, knowledge representation and inferencing, exploratory data analysis techniques and modern man-machine interfaces, DataHub will provide a prototype, integrated environement to support research scientists' needs in multiple disciplines (i.e. oceanography, geology, and atmospheric) while addressing the more general science data management issues. Additionally, the DataHub will provide data management services to exploratory data analysis applications such as LinkWinds and NCSA's XIMAGE.

  18. Software architecture for time-constrained machine vision applications

    NASA Astrophysics Data System (ADS)

    Usamentiaga, Rubén; Molleda, Julio; García, Daniel F.; Bulnes, Francisco G.

    2013-01-01

    Real-time image and video processing applications require skilled architects, and recent trends in the hardware platform make the design and implementation of these applications increasingly complex. Many frameworks and libraries have been proposed or commercialized to simplify the design and tuning of real-time image processing applications. However, they tend to lack flexibility, because they are normally oriented toward particular types of applications, or they impose specific data processing models such as the pipeline. Other issues include large memory footprints, difficulty for reuse, and inefficient execution on multicore processors. We present a novel software architecture for time-constrained machine vision applications that addresses these issues. The architecture is divided into three layers. The platform abstraction layer provides a high-level application programming interface for the rest of the architecture. The messaging layer provides a message-passing interface based on a dynamic publish/subscribe pattern. A topic-based filtering in which messages are published to topics is used to route the messages from the publishers to the subscribers interested in a particular type of message. The application layer provides a repository for reusable application modules designed for machine vision applications. These modules, which include acquisition, visualization, communication, user interface, and data processing, take advantage of the power of well-known libraries such as OpenCV, Intel IPP, or CUDA. Finally, the proposed architecture is applied to a real machine vision application: a jam detector for steel pickling lines.

  19. The Mind and the Machine. On the Conceptual and Moral Implications of Brain-Machine Interaction.

    PubMed

    Schermer, Maartje

    2009-12-01

    Brain-machine interfaces are a growing field of research and application. The increasing possibilities to connect the human brain to electronic devices and computer software can be put to use in medicine, the military, and entertainment. Concrete technologies include cochlear implants, Deep Brain Stimulation, neurofeedback and neuroprosthesis. The expectations for the near and further future are high, though it is difficult to separate hope from hype. The focus in this paper is on the effects that these new technologies may have on our 'symbolic order'-on the ways in which popular categories and concepts may change or be reinterpreted. First, the blurring distinction between man and machine and the idea of the cyborg are discussed. It is argued that the morally relevant difference is that between persons and non-persons, which does not necessarily coincide with the distinction between man and machine. The concept of the person remains useful. It may, however, become more difficult to assess the limits of the human body. Next, the distinction between body and mind is discussed. The mind is increasingly seen as a function of the brain, and thus understood in bodily and mechanical terms. This raises questions concerning concepts of free will and moral responsibility that may have far reaching consequences in the field of law, where some have argued for a revision of our criminal justice system, from retributivist to consequentialist. Even without such a (unlikely and unwarranted) revision occurring, brain-machine interactions raise many interesting questions regarding distribution and attribution of responsibility.

  20. A Concept for Optimizing Behavioural Effectiveness & Efficiency

    NASA Astrophysics Data System (ADS)

    Barca, Jan Carlo; Rumantir, Grace; Li, Raymond

    Both humans and machines exhibit strengths and weaknesses that can be enhanced by merging the two entities. This research aims to provide a broader understanding of how closer interactions between these two entities can facilitate more optimal goal-directed performance through the use of artificial extensions of the human body. Such extensions may assist us in adapting to and manipulating our environments in a more effective way than any system known today. To demonstrate this concept, we have developed a simulation where a semi interactive virtual spider can be navigated through an environment consisting of several obstacles and a virtual predator capable of killing the spider. The virtual spider can be navigated through the use of three different control systems that can be used to assist in optimising overall goal directed performance. The first two control systems use, an onscreen button interface and a touch sensor, respectively to facilitate human navigation of the spider. The third control system is an autonomous navigation system through the use of machine intelligence embedded in the spider. This system enables the spider to navigate and react to changes in its local environment. The results of this study indicate that machines should be allowed to override human control in order to maximise the benefits of collaboration between man and machine. This research further indicates that the development of strong machine intelligence, sensor systems that engage all human senses, extra sensory input systems, physical remote manipulators, multiple intelligent extensions of the human body, as well as a tighter symbiosis between man and machine, can support an upgrade of the human form.

  1. Transfer of control system interface solutions from other domains to the thermal power industry.

    PubMed

    Bligård, L-O; Andersson, J; Osvalder, A-L

    2012-01-01

    In a thermal power plant the operators' roles are to control and monitor the process to achieve efficient and safe production. To achieve this, the human-machine interfaces have a central part. The interfaces need to be updated and upgraded together with the technical functionality to maintain optimal operation. One way of achieving relevant updates is to study other domains and see how they have solved similar issues in their design solutions. The purpose of this paper is to present how interface design solution ideas can be transferred from domains with operator control to thermal power plants. In the study 15 domains were compared using a model for categorisation of human-machine systems. The result from the domain comparison showed that nuclear power, refinery and ship engine control were most similar to thermal power control. From the findings a basic interface structure and three specific display solutions were proposed for thermal power control: process parameter overview, plant overview, and feed water view. The systematic comparison of the properties of a human-machine system allowed interface designers to find suitable objects, structures and navigation logics in a range of domains that could be transferred to the thermal power domain.

  2. Test and Evaluation Master Plan (TEMP) for the Navy Occupational Health Information Management System (NOHIMS). Appendix A through Appendix U.

    DTIC Science & Technology

    1985-04-24

    reliability/ downtime/ communication lines/ man-machine interface/ other: 2. A noticeable (to the user) failure happens about and that number has been...improving/ steady/ getting.worse. 3. The number of failures /errors for NOHIMS is acceptable/ somewhat acceptable/ somewhat unacceptable/ unacceptable...somewhat fast/ somewhat slow/ slow. 7. When a NWHIMS failure occurs, it affects the day-to-day provision of medical care because work procedures must

  3. Mission Accomplished! Or Not? A Study about Success in Information Operations

    DTIC Science & Technology

    2012-09-01

    sensors and presented on a man-machine interface, e.g., a computer screen or on a radar plan position indicator. In modern warfare, staff and...has to be achievable; otherwise, it can be viewed simply as dreaming. Compared to sea, land and even air warfare, information warfare is a young...shares some of its characteristics with the air and sea domains. All of them exist without borders. In addition, they cannot be fortified or

  4. IBM PC/IX operating system evaluation plan

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Granier, Martin; Hall, Philip P.; Triantafyllopoulos, Spiros

    1984-01-01

    An evaluation plan for the IBM PC/IX Operating System designed for IBM PC/XT computers is discussed. The evaluation plan covers the areas of performance measurement and evaluation, software facilities available, man-machine interface considerations, networking, and the suitability of PC/IX as a development environment within the University of Southwestern Louisiana NASA PC Research and Development project. In order to compare and evaluate the PC/IX system, comparisons with other available UNIX-based systems are also included.

  5. Applications of artificial intelligence to rotorcraft

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy H.

    1987-01-01

    The application of AI technology may have significant potential payoff for rotorcraft. In the near term, the status of the technology will limit its applicability to decision aids rather than total automation. The specific application areas are categorized into onboard and nonflight aids. The onboard applications include: fault monitoring, diagnosis, and reconfiguration; mission and tactics planning; situation assessment; navigation aids, especially in nap-of-the-earth flight; and adaptive man-machine interfaces. The nonflight applications include training and maintenance diagnostics.

  6. ONRASIA Scientific Information Bulletin, Volume 17, Number 2, April/June 1992

    DTIC Science & Technology

    1992-06-01

    studying the role of overcomplete- Tel: +81-422-59-4201 seminar on wavelets was chosen to be ness properties and their applications Fax: +81-422-59-3393...technologies, explore interactive environment for man- to emulate various types of cache proto- applications, and study how theycan be machine interface...cols. The Keio professors specifically integrated. Flexible integration is seen want to study the kind of logic simula- as an important goal in order for

  7. Automation Applications in an Advanced Air Traffic Management System : Volume 3. Methodology for Man-Machine Task Allocation

    DOT National Transportation Integrated Search

    1974-08-01

    Volume 3 describes the methodology for man-machine task allocation. It contains a description of man and machine performance capabilities and an explanation of the methodology employed to allocate tasks to human or automated resources. It also presen...

  8. A primer on brain-machine interfaces, concepts, and technology: a key element in the future of functional neurorestoration.

    PubMed

    Lee, Brian; Liu, Charles Y; Apuzzo, Michael L J

    2013-01-01

    Conventionally, the practice of neurosurgery has been characterized by the removal of pathology, congenital or acquired. The emerging complement to the removal of pathology is surgery for the specific purpose of restoration of function. Advents in neuroscience, technology, and the understanding of neural circuitry are creating opportunities to intervene in disease processes in a reparative manner, thereby advancing toward the long-sought-after concept of neurorestoration. Approaching the issue of neurorestoration from a biomedical engineering perspective is the rapidly growing arena of implantable devices. Implantable devices are becoming more common in medicine and are making significant advancements to improve a patient's functional outcome. Devices such as deep brain stimulators, vagus nerve stimulators, and spinal cord stimulators are now becoming more commonplace in neurosurgery as we utilize our understanding of the nervous system to interpret neural activity and restore function. One of the most exciting prospects in neurosurgery is the technologically driven field of brain-machine interface, also known as brain-computer interface, or neuroprosthetics. The successful development of this technology will have far-reaching implications for patients suffering from a great number of diseases, including but not limited to spinal cord injury, paralysis, stroke, or loss of limb. This article provides an overview of the issues related to neurorestoration using implantable devices with a specific focus on brain-machine interface technology. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Validation results of specifications for motion control interoperability

    NASA Astrophysics Data System (ADS)

    Szabo, Sandor; Proctor, Frederick M.

    1997-01-01

    The National Institute of Standards and Technology (NIST) is participating in the Department of Energy Technologies Enabling Agile Manufacturing (TEAM) program to establish interface standards for machine tool, robot, and coordinate measuring machine controllers. At NIST, the focus is to validate potential application programming interfaces (APIs) that make it possible to exchange machine controller components with a minimal impact on the rest of the system. This validation is taking place in the enhanced machine controller (EMC) consortium and is in cooperation with users and vendors of motion control equipment. An area of interest is motion control, including closed-loop control of individual axes and coordinated path planning. Initial tests of the motion control APIs are complete. The APIs were implemented on two commercial motion control boards that run on two different machine tools. The results for a baseline set of APIs look promising, but several issues were raised. These include resolving differing approaches in how motions are programmed and defining a standard measurement of performance for motion control. This paper starts with a summary of the process used in developing a set of specifications for motion control interoperability. Next, the EMC architecture and its classification of motion control APIs into two classes, Servo Control and Trajectory Planning, are reviewed. Selected APIs are presented to explain the basic functionality and some of the major issues involved in porting the APIs to other motion controllers. The paper concludes with a summary of the main issues and ways to continue the standards process.

  10. Man Machine Systems in Education.

    ERIC Educational Resources Information Center

    Sall, Malkit S.

    This review of the research literature on the interaction between humans and computers discusses how man machine systems can be utilized effectively in the learning-teaching process, especially in secondary education. Beginning with a definition of man machine systems and comments on the poor quality of much of the computer-based learning material…

  11. Crew interface analysis: Selected articles on space human factors research, 1987 - 1991

    NASA Technical Reports Server (NTRS)

    Bagian, Tandi (Compiler)

    1993-01-01

    As part of the Flight Crew Support Division at NASA, the Crew Interface Analysis Section is dedicated to the study of human factors in the manned space program. It assumes a specialized role that focuses on answering operational questions pertaining to NASA's Space Shuttle and Space Station Freedom Programs. One of the section's key contributions is to provide knowledge and information about human capabilities and limitations that promote optimal spacecraft and habitat design and use to enhance crew safety and productivity. The section provides human factors engineering for the ongoing missions as well as proposed missions that aim to put human settlements on the Moon and Mars. Research providing solutions to operational issues is the primary objective of the Crew Interface Analysis Section. The studies represent such subdisciplines as ergonomics, space habitability, man-computer interaction, and remote operator interaction.

  12. Research in image management and access

    NASA Technical Reports Server (NTRS)

    Vondran, Raymond F.; Barron, Billy J.

    1993-01-01

    Presently, the problem of over-all library system design has been compounded by the accretion of both function and structure to a basic framework of requirements. While more device power has led to increased functionality, opportunities for reducing system complexity at the user interface level have not always been pursued with equal zeal. The purpose of this book is therefore to set forth and examine these opportunities, within the general framework of human factors research in man-machine interfaces. Human factors may be viewed as a series of trade-off decisions among four polarized objectives: machine resources and user specifications; functionality and user requirements. In the past, a limiting factor was the availability of systems. However, in the last two years, over one hundred libraries supported by many different software configurations have been added to the Internet. This document includes a statistical analysis of human responses to five Internet library systems by key features, development of the ideal online catalog system, and ideal online catalog systems for libraries and information centers.

  13. Software Engineering for User Interfaces. Technical Report.

    ERIC Educational Resources Information Center

    Draper, Stephen W.; Norman, Donald A.

    The discipline of software engineering can be extended in a natural way to deal with the issues raised by a systematic approach to the design of human-machine interfaces. The user should be treated as part of the system being designed and projects should be organized to take into account the current lack of a priori knowledge of user interface…

  14. The War in Man; Media and Machines.

    ERIC Educational Resources Information Center

    Wilhelmsen, Frederick D.; Bret, Jane

    The authors present a picture of contemporary man torn by conflicting forces, caught in a psychic house divided against itself, a victim of war between media and machines. Machines, they state, represent the rationalistic tradition which has brought man to the brink of psychic and social disaster. The media they see as offering hope--true…

  15. Some effects of stress on users of a voice recognition system: A preliminary inquiry

    NASA Astrophysics Data System (ADS)

    French, B. A.

    1983-03-01

    Recent work with Automatic Speech Recognition has focused on applications and productivity considerations in the man-machine interface. This thesis is an attempt to see if placing users of such equipment under time-induced stress has an effect on their percent correct recognition rates. Subjects were given a message-handling task of fixed length and allowed progressively shorter times to attempt to complete it. Questionnaire responses indicate stress levels increased with decreased time-allowance; recognition rates decreased as time was reduced.

  16. Development of a systems theoretical procedure for evaluation of the work organization of the cockpit crew of a civil transport airplane

    NASA Technical Reports Server (NTRS)

    Fricke, M.; Vees, C.

    1983-01-01

    To achieve optimum design for the man machine interface with aircraft, a description of the interaction and work organization of the cockpit crew is needed. The development of system procedure to evaluate the work organization of pilots while structuring the work process is examined. Statistical data are needed to simulate sequences of pilot actions on the computer. Investigations of computer simulation and applicability for evaluation of crew concepts are discussed.

  17. Test and Evaluation of the Man-Machine Interface between the Apache Longbow and an Unmanned Aerial Vehicle

    DTIC Science & Technology

    2000-04-01

    two week test was a part of an The Boeing Company is studying a concept that on- going Boeing internal research and development involves teaming a...study and effectiveness of attack/reconnaissance teams. A assessment of employment modes and their major concern is the level of crew interaction...Based on the UAV control mode, these controls will Test subjects received training concerning the operate either the TADS sensors (control mode mne

  18. The Design, Development and Testing of Complex Avionics Systems: Conference Proceedings Held at the Avionics Panel Symposium in Las Vegas, Nevada on 27 April-1 May 1987

    DTIC Science & Technology

    1987-12-01

    Normally, the system is decomposed into manageable parts with accurately defined interfaces. By rigidly controlling this process, aerospace companies have...Reference A CHANGE IN SYSTEM DESIGN EMPHASIS: FROM MACHINE TO MAN by M.L.Metersky and J.L.Ryder 16 SESSION I1 - MANAGING THE FUl URE SYSTEM DESIGN...PROCESS MANAGING ADVANCED AVIONIC SYSTEM DESIGN by P.Simons 17 ERGONOMIE PSYCHOSENSORIELLE DES COCKPITS, INTERET DES SYSTEMES INFORMATIQUES INTELLIGENTS

  19. Development and experimentation of an eye/brain/task testbed

    NASA Technical Reports Server (NTRS)

    Harrington, Nora; Villarreal, James

    1987-01-01

    The principal objective is to develop a laboratory testbed that will provide a unique capability to elicit, control, record, and analyze the relationship of operator task loading, operator eye movement, and operator brain wave data in a computer system environment. The ramifications of an integrated eye/brain monitor to the man machine interface are staggering. The success of such a system would benefit users of space and defense, paraplegics, and the monitoring of boring screens (nuclear power plants, air defense, etc.)

  20. Man-Machine Interface in Tactical Aircraft Design and Combat Automation (Conference Proceedings Held in Stuttgart (Germany, F.R.) on 28 September-1 October 1987)

    DTIC Science & Technology

    1988-07-01

    the large veiis in the legs and splanchnic region via the carotid sinus baroceptor reflex, and the distensibility charac- teristics of these veins (14...conditioning, by improving anaerobic capacity and muscular strength, has been shown in three separate studies to increase G-duration tolerance--in one study...field study, USN pilots found anaerobic and muscular conditioning particularly beneficial in improving their ACM tolerance (39). The USAF encourages

  1. Natural Language Processing.

    ERIC Educational Resources Information Center

    Chowdhury, Gobinda G.

    2003-01-01

    Discusses issues related to natural language processing, including theoretical developments; natural language understanding; tools and techniques; natural language text processing systems; abstracting; information extraction; information retrieval; interfaces; software; Internet, Web, and digital library applications; machine translation for…

  2. A rapid prototyping/artificial intelligence approach to space station-era information management and access

    NASA Technical Reports Server (NTRS)

    Carnahan, Richard S., Jr.; Corey, Stephen M.; Snow, John B.

    1989-01-01

    Applications of rapid prototyping and Artificial Intelligence techniques to problems associated with Space Station-era information management systems are described. In particular, the work is centered on issues related to: (1) intelligent man-machine interfaces applied to scientific data user support, and (2) the requirement that intelligent information management systems (IIMS) be able to efficiently process metadata updates concerning types of data handled. The advanced IIMS represents functional capabilities driven almost entirely by the needs of potential users. Space Station-era scientific data projected to be generated is likely to be significantly greater than data currently processed and analyzed. Information about scientific data must be presented clearly, concisely, and with support features to allow users at all levels of expertise efficient and cost-effective data access. Additionally, mechanisms for allowing more efficient IIMS metadata update processes must be addressed. The work reported covers the following IIMS design aspects: IIMS data and metadata modeling, including the automatic updating of IIMS-contained metadata, IIMS user-system interface considerations, including significant problems associated with remote access, user profiles, and on-line tutorial capabilities, and development of an IIMS query and browse facility, including the capability to deal with spatial information. A working prototype has been developed and is being enhanced.

  3. Human evolution in the age of the intelligent machine

    NASA Technical Reports Server (NTRS)

    Mclaughlin, W. I.

    1983-01-01

    A systems analysis of the future evolution of man can be conducted by analyzing the biological material of the galaxy into three subsystems: man, intelligent machines, and intelligent extraterrestrial organisms. A binomial interpretation is applied to this system wherein each of the subsystems is assigned a designation of success or failure. For man the two alternatives are, respectively, 'decline' or 'flourish', for machine they are 'become intelligent' or 'stay dumb', while for extraterrestrial intelligence the dichotomy is that of 'existence' or 'nonexistence'. The choices for each of three subsystems yield a total of eight possible states for the system. The relative lack of integration between brain components makes man a weak evolutionary contestant compared to machines. It is judged that machines should become dominant on earth within 100 years, probably by means of continuing development of existing man-machine systems. Advanced forms of extraterrestrial intelligence may exist but are too difficult to observe. The prospects for communication with extraterrestrial intelligence are reviewed.

  4. Human evolution in the age of the intelligent machine

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. I.

    A systems analysis of the future evolution of man can be conducted by analyzing the biological material of the galaxy into three subsystems: man, intelligent machines, and intelligent extraterrestrial organisms. A binomial interpretation is applied to this system wherein each of the subsystems is assigned a designation of success or failure. For man the two alternatives are, respectively, 'decline' or 'flourish', for machine they are 'become intelligent' or 'stay dumb', while for extraterrestrial intelligence the dichotomy is that of 'existence' or 'nonexistence'. The choices for each of three subsystems yield a total of eight possible states for the system. The relative lack of integration between brain components makes man a weak evolutionary contestant compared to machines. It is judged that machines should become dominant on earth within 100 years, probably by means of continuing development of existing man-machine systems. Advanced forms of extraterrestrial intelligence may exist but are too difficult to observe. The prospects for communication with extraterrestrial intelligence are reviewed.

  5. Man-machine cooperation in advanced teleoperation

    NASA Technical Reports Server (NTRS)

    Fiorini, Paolo; Das, Hari; Lee, Sukhan

    1993-01-01

    Teleoperation experiments at JPL have shown that advanced features in a telerobotic system are a necessary condition for good results, but that they are not sufficient to assure consistently good performance by the operators. Two or three operators are normally used during training and experiments to maintain the desired performance. An alternative to this multi-operator control station is a man-machine interface embedding computer programs that can perform some of the operator's functions. In this paper we present our first experiments with these concepts, in which we focused on the areas of real-time task monitoring and interactive path planning. In the first case, when performing a known task, the operator has an automatic aid for setting control parameters and camera views. In the second case, an interactive path planner will rank different path alternatives so that the operator will make the correct control decision. The monitoring function has been implemented with a neural network doing the real-time task segmentation. The interactive path planner was implemented for redundant manipulators to specify arm configurations across the desired path and satisfy geometric, task, and performance constraints.

  6. A restrained-torque-based motion instructor: forearm flexion/extension-driving exoskeleton

    NASA Astrophysics Data System (ADS)

    Nishimura, Takuya; Nomura, Yoshihiko; Sakamoto, Ryota

    2013-01-01

    When learning complicated movements by ourselves, we encounter such problems as a self-rightness. The self-rightness results in a lack of detail and objectivity, and it may cause to miss essences and even twist the essences. Thus, we sometimes fall into the habits of doing inappropriate motions. To solve these problems or to alleviate the problems as could as possible, we have been developed mechanical man-machine human interfaces to support us learning such motions as cultural gestures and sports form. One of the promising interfaces is a wearable exoskeleton mechanical system. As of the first try, we have made a prototype of a 2-link 1-DOF rotational elbow joint interface that is applied for teaching extension-flexion operations with forearms and have found its potential abilities for teaching the initiating and continuing flection motion of the elbow.

  7. Human perceptual deficits as factors in computer interface test and evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowser, S.E.

    1992-06-01

    Issues related to testing and evaluating human computer interfaces are usually based on the machine rather than on the human portion of the computer interface. Perceptual characteristics of the expected user are rarely investigated, and interface designers ignore known population perceptual limitations. For these reasons, environmental impacts on the equipment will more likely be defined than will user perceptual characteristics. The investigation of user population characteristics is most often directed toward intellectual abilities and anthropometry. This problem is compounded by the fact that some deficits capabilities tend to be found in higher-than-overall population distribution in some user groups. The testmore » and evaluation community can address the issue from two primary aspects. First, assessing user characteristics should be extended to include tests of perceptual capability. Secondly, interface designs should use multimode information coding.« less

  8. Introduction of knowledge bases in patient's data management system: role of the user interface.

    PubMed

    Chambrin, M C; Ravaux, P; Jaborska, A; Beugnet, C; Lestavel, P; Chopin, C; Boniface, M

    1995-02-01

    As the number of signals and data to be handled grows in intensive care unit, it is necessary to design more powerful computing systems that integrate and summarize all this information. The manual input of data as e.g. clinical signs and drug prescription and the synthetic representation of these data requires an ever more sophisticated user interface. The introduction of knowledge bases in the data management allows to conceive contextual interfaces. The objective of this paper is to show the importance of the design of the user interface, in the daily use of clinical information system. Then we describe a methodology that uses the man-machine interaction to capture the clinician knowledge during the clinical practice. The different steps are the audit of the user's actions, the elaboration of statistic models allowing the definition of new knowledge, and the validation that is performed before complete integration. A part of this knowledge can be used to improve the user interface. Finally, we describe the implementation of these concepts on a UNIX platform using OSF/MOTIF graphical interface.

  9. Space Station man-machine automation trade-off analysis

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Bard, J.; Feinberg, A.

    1985-01-01

    The man machine automation tradeoff methodology presented is of four research tasks comprising the autonomous spacecraft system technology (ASST) project. ASST was established to identify and study system level design problems for autonomous spacecraft. Using the Space Station as an example spacecraft system requiring a certain level of autonomous control, a system level, man machine automation tradeoff methodology is presented that: (1) optimizes man machine mixes for different ground and on orbit crew functions subject to cost, safety, weight, power, and reliability constraints, and (2) plots the best incorporation plan for new, emerging technologies by weighing cost, relative availability, reliability, safety, importance to out year missions, and ease of retrofit. A fairly straightforward approach is taken by the methodology to valuing human productivity, it is still sensitive to the important subtleties associated with designing a well integrated, man machine system. These subtleties include considerations such as crew preference to retain certain spacecraft control functions; or valuing human integration/decision capabilities over equivalent hardware/software where appropriate.

  10. RoboCup-Rescue: an international cooperative research project of robotics and AI for the disaster mitigation problem

    NASA Astrophysics Data System (ADS)

    Tadokoro, Satoshi; Kitano, Hiroaki; Takahashi, Tomoichi; Noda, Itsuki; Matsubara, Hitoshi; Shinjoh, Atsushi; Koto, Tetsuo; Takeuchi, Ikuo; Takahashi, Hironao; Matsuno, Fumitoshi; Hatayama, Mitsunori; Nobe, Jun; Shimada, Susumu

    2000-07-01

    This paper introduces the RoboCup-Rescue Simulation Project, a contribution to the disaster mitigation, search and rescue problem. A comprehensive urban disaster simulator is constructed on distributed computers. Heterogeneous intelligent agents such as fire fighters, victims and volunteers conduct search and rescue activities in this virtual disaster world. A real world interface integrates various sensor systems and controllers of infrastructures in the real cities with the real world. Real-time simulation is synchronized with actual disasters, computing complex relationship between various damage factors and agent behaviors. A mission-critical man-machine interface provides portability and robustness of disaster mitigation centers, and augmented-reality interfaces for rescue in real disasters. It also provides a virtual- reality training function for the public. This diverse spectrum of RoboCup-Rescue contributes to the creation of the safer social system.

  11. New method for measuring the laser-induced damage threshold of optical thin film

    NASA Astrophysics Data System (ADS)

    Su, Jun-hong; Wang, Hong; Xi, Ying-xue

    2012-10-01

    The laser-induced damage threshold (LIDT) of thin film means that the thin film can withstand a maximum intensity of laser radiation. The film will be damaged when the irradiation under high laser intensity is greater than the value of LIDT. In this paper, an experimental platform with measurement operator interfaces and control procedures in the VB circumstance is built according to ISO11254-1. In order to obtain more accurate results than that with manual measurement, in the software system, a hardware device can be controlled by control widget on the operator interfaces. According to the sample characteristic, critical parameters of the LIDT measurement system such as spot diameter, damage threshold region, and critical damage pixel number are set up on the man-machine conversation interface, which could realize intelligent measurements of the LIDT. According to experimental data, the LIDT is obtained by fitting damage curve automatically.

  12. Basics of robotics and manipulators in endoscopic surgery.

    PubMed

    Rininsland, H H

    1993-06-01

    The experience with sophisticated remote handling systems for nuclear operations in inaccessible rooms can to a large extent be transferred to the development of robotics and telemanipulators for endoscopic surgery. A telemanipulator system is described consisting of manipulator, endeffector and tools, 3-D video-endoscope, sensors, intelligent control system, modeling and graphic simulation and man-machine interfaces as the main components or subsystems. Such a telemanipulator seems to be medically worthwhile and technically feasible, but needs a lot of effort from different scientific disciplines to become a safe and reliable instrument for future endoscopic surgery.

  13. High-autonomy control of space resource processing plants

    NASA Technical Reports Server (NTRS)

    Schooley, Larry C.; Zeigler, Bernard P.; Cellier, Francois E.; Wang, Fei-Yue

    1993-01-01

    A highly autonomous intelligent command/control architecture has been developed for planetary surface base industrial process plants and Space Station Freedom experimental facilities. The architecture makes use of a high-level task-oriented mode with supervisory control from one or several remote sites, and integrates advanced network communications concepts and state-of-the-art man/machine interfaces with the most advanced autonomous intelligent control. Attention is given to the full-dynamics model of a Martian oxygen-production plant, event-based/fuzzy-logic process control, and fault management practices.

  14. The JPL telerobot operator control station. Part 2: Software

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.; Landell, B. Patrick; Oxenberg, Sheldon; Morimoto, Carl

    1989-01-01

    The Operator Control Station of the Jet Propulsion Laboratory (JPL)/NASA Telerobot Demonstrator System provides the man-machine interface between the operator and the system. It provides all the hardware and software for accepting human input for the direct and indirect (supervised) manipulation of the robot arms and tools for task execution. Hardware and software are also provided for the display and feedback of information and control data for the operator's consumption and interaction with the task being executed. The software design of the operator control system is discussed.

  15. Naval Applications of Virtual Reality,

    DTIC Science & Technology

    1993-01-01

    Expert Virtual Reality Special Report 󈨡, pp. 67- 72. 14. SUBJECT TERMS 15 NUMBER o0 PAGES man-machine interface virtual reality decision support...collective and individual performance. -" Virtual reality projects could help *y by Mark Gembicki Av-t-abilty CodesA Avafllat Idt Iofe and David Rousseau...alt- 67 VIRTUAL . REALITY SPECIAl, REPORT r-OPY avcriaikxb to DD)C qg .- 154,41X~~~~~~~~~~~~j 1411 iI..:41 T a].’ 1,1 4 1111 I 4 1 * .11 ~ 4 l.~w111511 I

  16. Advanced Avionics and the Military Aircraft Man/Machine Interface.

    DTIC Science & Technology

    1982-07-01

    voiture au bas c~t6 de la route, angle d’incidence de l’aile, etc ... Le domaine de variation de chacun de ces param~tres de fonctionnement est en gdn6...ral limit6. Les limites, du domaine autoris6 sont bien souvent floues ; en toute rigueur il faut adniettre qu’au milieu du domaine autoristi, la...rapidement catastrophique 11 est n6anmoihs commode de parler de limite de domaine autoris6 pour chaque para- m~tre de fonctionnement tout en gardant A

  17. Land Vehicle Navigation ? A Worldwide Perspective

    NASA Astrophysics Data System (ADS)

    French, Robert L.

    This paper was presented at the NAV '90 conference and was first published in the Journal in 1991 (Vol. 44, p. 25). It is followed by comments from Christopher Querée.The future shakeout and consolidation of vehicle navigation technologies and systems approaches will occur primarily in the vehicle location, mobile data communications, and man/machine interface areas. Digital maps will not be directly affected because, although there is still a dearth of formal standards, there is already a high degree of uniformity among approaches being pursued in all parts of the world.

  18. Software and Human-Machine Interface Development for Environmental Controls Subsystem Support

    NASA Technical Reports Server (NTRS)

    Dobson, Matthew

    2018-01-01

    The Space Launch System (SLS) is the next premier launch vehicle for NASA. It is the next stage of manned space exploration from American soil, and will be the platform in which we push further beyond Earth orbit. In preparation of the SLS maiden voyage on Exploration Mission 1 (EM-1), the existing ground support architecture at Kennedy Space Center required significant overhaul and updating. A comprehensive upgrade of controls systems was necessary, including programmable logic controller software, as well as Launch Control Center (LCC) firing room and local launch pad displays for technician use. Environmental control acts as an integral component in these systems, being the foremost system for conditioning the pad and extremely sensitive launch vehicle until T-0. The Environmental Controls Subsystem (ECS) required testing and modification to meet the requirements of the designed system, as well as the human factors requirements of NASA software for Validation and Verification (V&V). This term saw significant strides in the progress and functionality of the human-machine interfaces used at the launch pad, and improved integration with the controller code.

  19. Human factors - Man-machine symbiosis in space

    NASA Technical Reports Server (NTRS)

    Brown, Jeri W.

    1987-01-01

    The relation between man and machine in space is studied. Early spaceflight and the goal of establishing a permanent space presence are described. The need to consider the physiological, psychological, and social integration of humans for each space mission is examined. Human factors must also be considered in the design of spacecraft. The effective utilization of man and machine capabilities, and research in anthropometry and biomechanics aimed at determining the limitations of spacecrews are discussed.

  20. Continuous performance measurement in flight systems. [sequential control model

    NASA Technical Reports Server (NTRS)

    Connelly, E. M.; Sloan, N. A.; Zeskind, R. M.

    1975-01-01

    The desired response of many man machine control systems can be formulated as a solution to an optimal control synthesis problem where the cost index is given and the resulting optimal trajectories correspond to the desired trajectories of the man machine system. Optimal control synthesis provides the reference criteria and the significance of error information required for performance measurement. The synthesis procedure described provides a continuous performance measure (CPM) which is independent of the mechanism generating the control action. Therefore, the technique provides a meaningful method for online evaluation of man's control capability in terms of total man machine performance.

  1. Man/computer communication in a space environment

    NASA Technical Reports Server (NTRS)

    Hodges, B. C.; Montoya, G.

    1973-01-01

    The present work reports on a study of the technology required to advance the state of the art in man/machine communications. The study involved the development and demonstration of both hardware and software to effectively implement man/computer interactive channels of communication. While tactile and visual man/computer communications equipment are standard methods of interaction with machines, man's speech is a natural media for inquiry and control. As part of this study, a word recognition unit was developed capable of recognizing a minimum of one hundred different words or sentences in any one of the currently used conversational languages. The study has proven that efficiency in communication between man and computer can be achieved when the vocabulary to be used is structured in a manner compatible with the rigid communication requirements of the machine while at the same time responsive to the informational needs of the man.

  2. Man-Machine Communication Through a Teletypewriter.

    ERIC Educational Resources Information Center

    Rubinoff, Morris

    A ten-year research study designed a mechanized information system in the information processing field. Special attention was paid to implementation criteria entering into on-line retrieval through man-machine dialog from a remote typewriter or video terminal and four major areas were investigated: search strategies, machine stored indexer aids,…

  3. Re-Design and Beat Testing of the Man-Machine Integration Design and Analysis System: MIDAS

    NASA Technical Reports Server (NTRS)

    Shively, R. Jay; Rutkowski, Michael (Technical Monitor)

    1999-01-01

    The Man-machine Design and Analysis System (MIDAS) is a human factors design and analysis system that combines human cognitive models with 3D CAD models and rapid prototyping and simulation techniques. MIDAS allows designers to ask 'what if' types of questions early in concept exploration and development prior to actual hardware development. The system outputs predictions of operator workload, situational awareness and system performance as well as graphical visualization of the cockpit designs interacting with models of the human in a mission scenario. Recently, MIDAS was re-designed to enhance functionality and usability. The goals driving the redesign include more efficient processing, GUI interface, advances in the memory structures, implementation of external vision models and audition. These changes were detailed in an earlier paper. Two Beta test sites with diverse applications have been chosen. One Beta test site is investigating the development of a new airframe and its interaction with the air traffic management system. The second Beta test effort will investigate 3D auditory cueing in conjunction with traditional visual cueing strategies including panel-mounted and heads-up displays. The progress and lessons learned on each of these projects will be discussed.

  4. Sustainable cooling method for machining titanium alloy

    NASA Astrophysics Data System (ADS)

    Boswell, B.; Islam, M. N.

    2016-02-01

    Hard to machine materials such as Titanium Alloy TI-6AI-4V Grade 5 are notoriously known to generate high temperatures and adverse reactions between the workpiece and the tool tip materials. These conditions all contribute to an increase in the wear mechanisms, reducing tool life. Titanium Alloy, for example always requires coolant to be used during machining. However, traditional flood cooling needs to be replaced due to environmental issues, and an alternative cooling method found that has minimum impact on the environment. For true sustainable cooling of the tool it is necessary to account for all energy used in the cooling process, including the energy involved in producing the coolant. Previous research has established that efficient cooling of the tool interface improves the tool life and cutting action. The objective of this research is to determine the most appropriate sustainable cooling method that can also reduce the rate of wear at the tool interface.

  5. Operability of Space Station Freedom's meteoroid/debris protection system

    NASA Technical Reports Server (NTRS)

    Kahl, Maggie S.; Stokes, Jack W.

    1992-01-01

    The design of Space Station Freedom's external structure must not only protect the spacecraft from the hazardous environment, but also must be compatible with the extra vehicular activity system for assembly and maintenance. The external procedures for module support are utility connections, external orbital replaceable unit changeout, and maintenance of the meteoroid/debris shields and multilayer insulation. All of these interfaces require proper man-machine engineering to be compatible with the extra vehicular activity and manipulator systems. This paper discusses design solutions, including those provided for human interface, to the Space Station Freedom meteoroid/debris protection system. The system advantages and current access capabilities are illustrated through analysis of its configuration over the Space Station Freedom resource nodes and common modules, with emphasis on the cylindrical sections and endcones.

  6. New technique for simulation of microgravity and variable gravity conditions

    NASA Astrophysics Data System (ADS)

    de la Rosa, R.; Alonso, A.; Abasolo, D. E.; Hornero, R.; Abasolo, D. E.

    2005-08-01

    This paper suggests a microgravity or variable gravity conditions simulator based on a Neuromuscular Control System (NCS), working as a man-machine interface. The subject under training lies on an active platform that counteracts his weight. And a Virtual Reality (VR) system displays a simulated environment, where the subject can interact a number of settings: extravehicular activity (EVA), walking on the Moon or training the limb response faced with variable acceleration scenes. Results related to real-time voluntary control have been achieved with neuromuscular interfaces at the Bioengineering Group in the University of Valladolid. It has been employed a custom real-time system to train arm movements. This paper outlines a more complex design that can complement other training facilities, like the buoyancy pool, in the task of microgravity simulation.

  7. Haptics-based immersive telerobotic system for improvised explosive device disposal: Are two hands better than one?

    NASA Astrophysics Data System (ADS)

    Erickson, David; Lacheray, Hervé; Lambert, Jason Michel; Mantegh, Iraj; Crymble, Derry; Daly, John; Zhao, Yan

    2012-06-01

    State-of-the-art robotic explosive ordnance disposal robotics have not, in general, adopted recent advances in control technology and man-machine interfaces and lag many years behind academia. This paper describes the Haptics-based Immersive Telerobotic System project investigating an immersive telepresence envrionment incorporating advanced vehicle control systems, Augmented immersive sensory feedback, dynamic 3D visual information, and haptic feedback for explosive ordnance disposal operators. The project aim is to provide operatiors a more sophisticated interface and expand sensory input to perform complex tasks to defeat improvised explosive devices successfully. The introduction of haptics and immersive teleprescence has the potential to shift the way teleprescence systems work for explosive ordnance disposal tasks or more widely for first responders scenarios involving remote unmanned ground vehicles.

  8. Guidelines on ergonomic aspects of control rooms

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M.; Bocast, A. K.; Stewart, L. J.

    1983-01-01

    The anthropometry, workstation design, and environmental design of control rooms are outlined. The automated interface and VDTs and displays and various modes of communication between the system and the human operator using VDTs are discussed. The man in the loop is examined, the single controller single task framework and multiple controller multiple tasks issues are considered.

  9. Virtual reality for intelligent and interactive operating, training, and visualization systems

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Schluse, Michael

    2000-10-01

    Virtual Reality Methods allow a new and intuitive way of communication between man and machine. The basic idea of Virtual Reality (VR) is the generation of artificial computer simulated worlds, which the user not only can look at but also can interact with actively using data glove and data helmet. The main emphasis for the use of such techniques at the IRF is the development of a new generation of operator interfaces for the control of robots and other automation components and for intelligent training systems for complex tasks. The basic idea of the methods developed at the IRF for the realization of Projective Virtual Reality is to let the user work in the virtual world as he would act in reality. The user actions are recognized by the Virtual reality System and by means of new and intelligent control software projected onto the automation components like robots which afterwards perform the necessary actions in reality to execute the users task. In this operation mode the user no longer has to be a robot expert to generate tasks for robots or to program them, because intelligent control software recognizes the users intention and generated automatically the commands for nearly every automation component. Now, Virtual Reality Methods are ideally suited for universal man-machine-interfaces for the control and supervision of a big class of automation components, interactive training and visualization systems. The Virtual Reality System of the IRF-COSIMIR/VR- forms the basis for different projects starting with the control of space automation systems in the projects CIROS, VITAL and GETEX, the realization of a comprehensive development tool for the International Space Station and last but not least with the realistic simulation fire extinguishing, forest machines and excavators which will be presented in the final paper in addition to the key ideas of this Virtual Reality System.

  10. Human Machine Interfaces for Teleoperators and Virtual Environments: Conference Held in Santa Barbara, California on 4-9 March 1990.

    DTIC Science & Technology

    1990-03-01

    decided to have three kinds of sessions: invited-paper sessions, panel discussions, and poster sessions. The invited papers were divided into papers...soon followed. Applications in medicine, involving exploration and operation within the human body, are now receiving increased attention . Early... attention toward issues that may be important for the design of auditory interfaces. The importance of appropriate auditory inputs to observers with normal

  11. USSR Space Life Sciences Digest, issue 25

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-fifth issue of NASA's Space Life Sciences Digest. It contains abstracts of 42 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 26 areas of space biology and medicine. These areas include: adaptation, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, reproductive system, and space biology and medicine.

  12. Study of Man-Machine Communications Systems for Disabled Persons (The Handicapped). Volume IV. Final Report.

    ERIC Educational Resources Information Center

    Kafafian, Haig

    The volume contains experimental instructional materials designed for teacher and handicapped student use with two man-machine communications systems, Cybertype and Cyber-Go-Round, developed as educational aids for the severely handicapped. Cybertype is a writing machine with various possible configurations of portable keyboards with a reduced…

  13. Fundamentals and advances in the development of remote welding fabrication systems

    NASA Technical Reports Server (NTRS)

    Agapakis, J. E.; Masubuchi, K.; Von Alt, C.

    1986-01-01

    Operational and man-machine issues for welding underwater, in outer space, and at other remote sites are investigated, and recent process developments are described. Probable remote welding missions are classified, and the essential characteristics of fundamental remote welding tasks are analyzed. Various possible operational modes for remote welding fabrication are identified, and appropriate roles for humans and machines are suggested. Human operator performance in remote welding fabrication tasks is discussed, and recent advances in the development of remote welding systems are described, including packaged welding systems, stud welding systems, remotely operated welding systems, and vision-aided remote robotic welding and autonomous welding systems.

  14. Design and emplacement of an integrated lunar power system - Issues and concerns

    NASA Technical Reports Server (NTRS)

    Sprouse, Kenneth M.; Robin, James E.; Metcalf, Kenneth J.; Cataldo, Robert

    1991-01-01

    Issues regarding the construction and operation of a stationary lunar surface power system that must be resolved in order to create a permanent manned presence on the moon are addressed. The issues considered include: (1) the centralization or decentralization of the electrical power system; (2) whether power transmission should be ac or dc; (3) what mix of power generating technology should be used; and (4) the physical interface requirements between the power-system hardware and the construction equipment to be used in placing the hardware on the lunar surface.

  15. Robust Real-Time Musculoskeletal Modeling Driven by Electromyograms.

    PubMed

    Durandau, Guillaume; Farina, Dario; Sartori, Massimo

    2018-03-01

    Current clinical biomechanics involves lengthy data acquisition and time-consuming offline analyses with biomechanical models not operating in real-time for man-machine interfacing. We developed a method that enables online analysis of neuromusculoskeletal function in vivo in the intact human. We used electromyography (EMG)-driven musculoskeletal modeling to simulate all transformations from muscle excitation onset (EMGs) to mechanical moment production around multiple lower-limb degrees of freedom (DOFs). We developed a calibration algorithm that enables adjusting musculoskeletal model parameters specifically to an individual's anthropometry and force-generating capacity. We incorporated the modeling paradigm into a computationally efficient, generic framework that can be interfaced in real-time with any movement data collection system. The framework demonstrated the ability of computing forces in 13 lower-limb muscle-tendon units and resulting moments about three joint DOFs simultaneously in real-time. Remarkably, it was capable of extrapolating beyond calibration conditions, i.e., predicting accurate joint moments during six unseen tasks and one unseen DOF. The proposed framework can dramatically reduce evaluation latency in current clinical biomechanics and open up new avenues for establishing prompt and personalized treatments, as well as for establishing natural interfaces between patients and rehabilitation systems. The integration of EMG with numerical modeling will enable simulating realistic neuromuscular strategies in conditions including muscular/orthopedic deficit, which could not be robustly simulated via pure modeling formulations. This will enable translation to clinical settings and development of healthcare technologies including real-time bio-feedback of internal mechanical forces and direct patient-machine interfacing.

  16. Human capabilities in space. [man machine interaction

    NASA Technical Reports Server (NTRS)

    Nicogossian, A. E.

    1984-01-01

    Man's ability to live and perform useful work in space was demonstrated throughout the history of manned space flight. Current planning envisions a multi-functional space station. Man's unique abilities to respond to the unforeseen and to operate at a level of complexity exceeding any reasonable amount of previous planning distinguish him from present day machines. His limitations, however, include his inherent inability to survive without protection, his limited strength, and his propensity to make mistakes when performing repetitive and monotonous tasks. By contrast, an automated system does routine and delicate tasks, exerts force smoothly and precisely, stores, and recalls large amounts of data, and performs deductive reasoning while maintaining a relative insensitivity to the environment. The establishment of a permanent presence of man in space demands that man and machines be appropriately combined in spaceborne systems. To achieve this optimal combination, research is needed in such diverse fields as artificial intelligence, robotics, behavioral psychology, economics, and human factors engineering.

  17. The role of the real-time simulation facility, SIMFAC, in the design, development and performance verification of the Shuttle Remote Manipulator System (SRMS) with man-in-the-loop

    NASA Technical Reports Server (NTRS)

    Mccllough, J. R.; Sharpe, A.; Doetsch, K. H.

    1980-01-01

    The SIMFAC has played a vital role in the design, development, and performance verification of the shuttle remote manipulator system (SRMS) to be installed in the space shuttle orbiter. The facility provides for realistic man-in-the-loop operation of the SRMS by an operator in the operator complex, a flightlike crew station patterned after the orbiter aft flight deck with all necessary man machine interface elements, including SRMS displays and controls and simulated out-of-the-window and CCTV scenes. The characteristics of the manipulator system, including arm and joint servo dynamics and control algorithms, are simulated by a comprehensive mathematical model within the simulation subsystem of the facility. Major studies carried out using SIMFAC include: SRMS parameter sensitivity evaluations; the development, evaluation, and verification of operating procedures; and malfunction simulation and analysis of malfunction performance. Among the most important and comprehensive man-in-the-loop simulations carried out to date on SIMFAC are those which support SRMS performance verification and certification when the SRMS is part of the integrated orbiter-manipulator system.

  18. Integration of Modelling and Graphics to Create an Infrared Signal Processing Test Bed

    NASA Astrophysics Data System (ADS)

    Sethi, H. R.; Ralph, John E.

    1989-03-01

    The work reported in this paper was carried out as part of a contract with MoD (PE) UK. It considers the problems associated with realistic modelling of a passive infrared system in an operational environment. Ideally all aspects of the system and environment should be integrated into a complete end-to-end simulation but in the past limited computing power has prevented this. Recent developments in workstation technology and the increasing availability of parallel processing techniques makes the end-to-end simulation possible. However the complexity and speed of such simulations means difficulties for the operator in controlling the software and understanding the results. These difficulties can be greatly reduced by providing an extremely user friendly interface and a very flexible, high power, high resolution colour graphics capability. Most system modelling is based on separate software simulation of the individual components of the system itself and its environment. These component models may have their own characteristic inbuilt assumptions and approximations, may be written in the language favoured by the originator and may have a wide variety of input and output conventions and requirements. The models and their limitations need to be matched to the range of conditions appropriate to the operational scenerio. A comprehensive set of data bases needs to be generated by the component models and these data bases must be made readily available to the investigator. Performance measures need to be defined and displayed in some convenient graphics form. Some options are presented for combining available hardware and software to create an environment within which the models can be integrated, and which provide the required man-machine interface, graphics and computing power. The impact of massively parallel processing and artificial intelligence will be discussed. Parallel processing will make real time end-to-end simulation possible and will greatly improve the graphical visualisation of the model output data. Artificial intelligence should help to enhance the man-machine interface.

  19. Hand-in-hand advances in biomedical engineering and sensorimotor restoration.

    PubMed

    Pisotta, Iolanda; Perruchoud, David; Ionta, Silvio

    2015-05-15

    Living in a multisensory world entails the continuous sensory processing of environmental information in order to enact appropriate motor routines. The interaction between our body and our brain is the crucial factor for achieving such sensorimotor integration ability. Several clinical conditions dramatically affect the constant body-brain exchange, but the latest developments in biomedical engineering provide promising solutions for overcoming this communication breakdown. The ultimate technological developments succeeded in transforming neuronal electrical activity into computational input for robotic devices, giving birth to the era of the so-called brain-machine interfaces. Combining rehabilitation robotics and experimental neuroscience the rise of brain-machine interfaces into clinical protocols provided the technological solution for bypassing the neural disconnection and restore sensorimotor function. Based on these advances, the recovery of sensorimotor functionality is progressively becoming a concrete reality. However, despite the success of several recent techniques, some open issues still need to be addressed. Typical interventions for sensorimotor deficits include pharmaceutical treatments and manual/robotic assistance in passive movements. These procedures achieve symptoms relief but their applicability to more severe disconnection pathologies is limited (e.g. spinal cord injury or amputation). Here we review how state-of-the-art solutions in biomedical engineering are continuously increasing expectances in sensorimotor rehabilitation, as well as the current challenges especially with regards to the translation of the signals from brain-machine interfaces into sensory feedback and the incorporation of brain-machine interfaces into daily activities. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Reliability Evaluation and Improvement Approach of Chemical Production Man - Machine - Environment System

    NASA Astrophysics Data System (ADS)

    Miao, Yongchun; Kang, Rongxue; Chen, Xuefeng

    2017-12-01

    In recent years, with the gradual extension of reliability research, the study of production system reliability has become the hot topic in various industries. Man-machine-environment system is a complex system composed of human factors, machinery equipment and environment. The reliability of individual factor must be analyzed in order to gradually transit to the research of three-factor reliability. Meanwhile, the dynamic relationship among man-machine-environment should be considered to establish an effective blurry evaluation mechanism to truly and effectively analyze the reliability of such systems. In this paper, based on the system engineering, fuzzy theory, reliability theory, human error, environmental impact and machinery equipment failure theory, the reliabilities of human factor, machinery equipment and environment of some chemical production system were studied by the method of fuzzy evaluation. At last, the reliability of man-machine-environment system was calculated to obtain the weighted result, which indicated that the reliability value of this chemical production system was 86.29. Through the given evaluation domain it can be seen that the reliability of man-machine-environment integrated system is in a good status, and the effective measures for further improvement were proposed according to the fuzzy calculation results.

  1. Ultrasensitive and Highly Stable Resistive Pressure Sensors with Biomaterial-Incorporated Interfacial Layers for Wearable Health-Monitoring and Human-Machine Interfaces.

    PubMed

    Chang, Hochan; Kim, Sungwoong; Jin, Sumin; Lee, Seung-Woo; Yang, Gil-Tae; Lee, Ki-Young; Yi, Hyunjung

    2018-01-10

    Flexible piezoresistive sensors have huge potential for health monitoring, human-machine interfaces, prosthetic limbs, and intelligent robotics. A variety of nanomaterials and structural schemes have been proposed for realizing ultrasensitive flexible piezoresistive sensors. However, despite the success of recent efforts, high sensitivity within narrower pressure ranges and/or the challenging adhesion and stability issues still potentially limit their broad applications. Herein, we introduce a biomaterial-based scheme for the development of flexible pressure sensors that are ultrasensitive (resistance change by 5 orders) over a broad pressure range of 0.1-100 kPa, promptly responsive (20 ms), and yet highly stable. We show that employing biomaterial-incorporated conductive networks of single-walled carbon nanotubes as interfacial layers of contact-based resistive pressure sensors significantly enhances piezoresistive response via effective modulation of the interlayer resistance and provides stable interfaces for the pressure sensors. The developed flexible sensor is capable of real-time monitoring of wrist pulse waves under external medium pressure levels and providing pressure profiles applied by a thumb and a forefinger during object manipulation at a low voltage (1 V) and power consumption (<12 μW). This work provides a new insight into the material candidates and approaches for the development of wearable health-monitoring and human-machine interfaces.

  2. Workshops of the Sixth International Brain–Computer Interface Meeting: brain–computer interfaces past, present, and future

    PubMed Central

    Huggins, Jane E.; Guger, Christoph; Ziat, Mounia; Zander, Thorsten O.; Taylor, Denise; Tangermann, Michael; Soria-Frisch, Aureli; Simeral, John; Scherer, Reinhold; Rupp, Rüdiger; Ruffini, Giulio; Robinson, Douglas K. R.; Ramsey, Nick F.; Nijholt, Anton; Müller-Putz, Gernot; McFarland, Dennis J.; Mattia, Donatella; Lance, Brent J.; Kindermans, Pieter-Jan; Iturrate, Iñaki; Herff, Christian; Gupta, Disha; Do, An H.; Collinger, Jennifer L.; Chavarriaga, Ricardo; Chase, Steven M.; Bleichner, Martin G.; Batista, Aaron; Anderson, Charles W.; Aarnoutse, Erik J.

    2017-01-01

    The Sixth International Brain–Computer Interface (BCI) Meeting was held 30 May–3 June 2016 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops covering topics in BCI and brain–machine interface research. Topics included BCI for specific populations or applications, advancing BCI research through use of specific signals or technological advances, and translational and commercial issues to bring both implanted and non-invasive BCIs to market. BCI research is growing and expanding in the breadth of its applications, the depth of knowledge it can produce, and the practical benefit it can provide both for those with physical impairments and the general public. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and highlighting important issues and calls for action to support future research and development. PMID:29152523

  3. Workshops of the Sixth International Brain-Computer Interface Meeting: brain-computer interfaces past, present, and future.

    PubMed

    Huggins, Jane E; Guger, Christoph; Ziat, Mounia; Zander, Thorsten O; Taylor, Denise; Tangermann, Michael; Soria-Frisch, Aureli; Simeral, John; Scherer, Reinhold; Rupp, Rüdiger; Ruffini, Giulio; Robinson, Douglas K R; Ramsey, Nick F; Nijholt, Anton; Müller-Putz, Gernot; McFarland, Dennis J; Mattia, Donatella; Lance, Brent J; Kindermans, Pieter-Jan; Iturrate, Iñaki; Herff, Christian; Gupta, Disha; Do, An H; Collinger, Jennifer L; Chavarriaga, Ricardo; Chase, Steven M; Bleichner, Martin G; Batista, Aaron; Anderson, Charles W; Aarnoutse, Erik J

    2017-01-01

    The Sixth International Brain-Computer Interface (BCI) Meeting was held 30 May-3 June 2016 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops covering topics in BCI and brain-machine interface research. Topics included BCI for specific populations or applications, advancing BCI research through use of specific signals or technological advances, and translational and commercial issues to bring both implanted and non-invasive BCIs to market. BCI research is growing and expanding in the breadth of its applications, the depth of knowledge it can produce, and the practical benefit it can provide both for those with physical impairments and the general public. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and highlighting important issues and calls for action to support future research and development.

  4. A forestry application simulation of man-machine techniques for analyzing remotely sensed data

    NASA Technical Reports Server (NTRS)

    Berkebile, J.; Russell, J.; Lube, B.

    1976-01-01

    The typical steps in the analysis of remotely sensed data for a forestry applications example are simulated. The example uses numerically-oriented pattern recognition techniques and emphasizes man-machine interaction.

  5. TFTR diagnostic control and data acquisition system

    NASA Astrophysics Data System (ADS)

    Sauthoff, N. R.; Daniels, R. E.

    1985-05-01

    General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man-machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ``groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development.

  6. TFTR diagnostic control and data acquisition system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauthoff, N.R.; Daniels, R.E.; PPL Computer Division

    1985-05-01

    General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man--machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ''groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development.

  7. Real-time on-board orbit determination with DORIS

    NASA Technical Reports Server (NTRS)

    Berthias, J.-P.; Jayles, C.; Pradines, D.

    1993-01-01

    A spaceborne orbit determination system is being developed by the French Space Agency (CNES) for the SPOT 4 satellite. It processes DORIS measurements to produce an orbit with an accuracy of about 50O meters rms. In order to evaluate the reliability of the software, it was combined with the MERCATOR man/machine interface and used to process the TOPEX/Poseidon DORIS data in near real time during the validation phase of the instrument, at JPL and at CNES. This paper gives an overview of the orbit determination system and presents the results of the TOPEX/Poseidon experiment.

  8. Study of Man-Machine Communications Systems for Disabled Persons (The Handicapped). Volume V. Final Report.

    ERIC Educational Resources Information Center

    Kafafian, Haig

    Instructions are given for teaching severely physically and/or neurologically handicapped students to use the 14-key Cybertype man-machine communications system, an electric writing machine with a simplified keyboard to enable persons with limited motor ability or coordination to communicate in written form. Explained are the various possible…

  9. Study of Man-Machine Communications Systems for the Handicapped. Volume III. Final Report.

    ERIC Educational Resources Information Center

    Kafafian, Haig

    The report describes a series of studies conducted to determine the extent to which severly handicapped students who were able to comprehend language and language structure but who were not able to write or type could communicate using various man-machine systems. Included among the systems tested were specialized electric typewriting machines, a…

  10. Proceedings of the NASA Conference on Space Telerobotics, volume 1

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty.

  11. A system-level approach to automation research

    NASA Technical Reports Server (NTRS)

    Harrison, F. W.; Orlando, N. E.

    1984-01-01

    Automation is the application of self-regulating mechanical and electronic devices to processes that can be accomplished with the human organs of perception, decision, and actuation. The successful application of automation to a system process should reduce man/system interaction and the perceived complexity of the system, or should increase affordability, productivity, quality control, and safety. The expense, time constraints, and risk factors associated with extravehicular activities have led the Automation Technology Branch (ATB), as part of the NASA Automation Research and Technology Program, to investigate the use of robots and teleoperators as automation aids in the context of space operations. The ATB program addresses three major areas: (1) basic research in autonomous operations, (2) human factors research on man-machine interfaces with remote systems, and (3) the integration and analysis of automated systems. This paper reviews the current ATB research in the area of robotics and teleoperators.

  12. Advanced telepresence surgery system development.

    PubMed

    Jensen, J F; Hill, J W

    1996-01-01

    SRI International is currently developing a prototype remote telepresence surgery system, for the Advanced Research Projects Agency (ARPA), that will bring life-saving surgical care to wounded soldiers in the zone of combat. Remote surgery also has potentially important applications in civilian medicine. In addition, telepresence will find wide medical use in local surgery, in endoscopic, laparoscopic, and microsurgery applications. Key elements of the telepresence technology now being developed for ARPA, including the telepresence surgeon's workstation (TSW) and associated servo control systems, will have direct application to these areas of minimally invasive surgery. The TSW technology will also find use in surgical training, where it will provide an immersive visual and haptic interface for interaction with computer-based anatomical models. In this paper, we discuss our ongoing development of the MEDFAST telesurgery system, focusing on the TSW man-machine interface and its associated servo control electronics.

  13. Multifunction display system, volume 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and construction of a multifunction display man/machine interface for use with a 4 pi IBM-360 System are described. The system is capable of displaying superimposed volatile alphanumeric and graphical data on a 512 x 512 element plasma panel, and holographically stored multicolor archival information. The volatile data may be entered from a keyboard or by means of an I/O interface to the 360 system. A 2-page memory local to the display is provided for storing the entered data. The archival data is stored as a phase hologram on a vinyl tape strip. This data is accessible by means of a rapid transport system which responds to inputs provided by the I/O channel on the keyboard. As many as 500 frames may be stored on a tape strip for access in under 6 seconds.

  14. Semantic based man-machine interface for real-time communication

    NASA Technical Reports Server (NTRS)

    Ali, M.; Ai, C.-S.

    1988-01-01

    A flight expert system (FLES) was developed to assist pilots in monitoring, diagnosing and recovering from in-flight faults. To provide a communications interface between the flight crew and FLES, a natural language interface (NALI) was implemented. Input to NALI is processed by three processors: (1) the semantics parser; (2) the knowledge retriever; and (3) the response generator. First the semantic parser extracts meaningful words and phrases to generate an internal representation of the query. At this point, the semantic parser has the ability to map different input forms related to the same concept into the same internal representation. Then the knowledge retriever analyzes and stores the context of the query to aid in resolving ellipses and pronoun references. At the end of this process, a sequence of retrievel functions is created as a first step in generating the proper response. Finally, the response generator generates the natural language response to the query. The architecture of NALI was designed to process both temporal and nontemporal queries. The architecture and implementation of NALI are described.

  15. [Training cortical signals by means of a BMI-EEG system, its evolution and intervention. A case report].

    PubMed

    Monge-Pereira, E; Casatorres Perez-Higueras, I; Fernandez-Gonzalez, P; Ibanez-Pereda, J; Serrano, J I; Molina-Rueda, F

    2017-04-16

    In the last years, new technologies such as the brain-machine interfaces (BMI) have been incorporated in the rehabilitation process of subjects with stroke. These systems are able to detect motion intention, analyzing the cortical signals using different techniques such as the electroencephalography (EEG). This information could guide different interfaces such as robotic devices, electrical stimulation or virtual reality. A 40 years-old man with stroke with two months from the injury participated in this study. We used a BMI based on EEG. The subject's motion intention was analyzed calculating the event-related desynchronization. The upper limb motor function was evaluated with the Fugl-Meyer Assessment and the participant's satisfaction was evaluated using the QUEST 2.0. The intervention using a physical therapist as an interface was carried out without difficulty. The BMI systems detect cortical changes in a subacute stroke subject. These changes are coherent with the evolution observed using the Fugl-Meyer Assessment.

  16. Man-machine communication - A transparent switchboard for computers

    NASA Technical Reports Server (NTRS)

    Rasmussen, H.

    1971-01-01

    Device uses pattern of transparent contact touch points that are put on cathode ray tube screen. Touch point system compels more precise and unambiguous communication between man and machine than is possible with any other means, and speeds up operation responses.

  17. Aeromechanics and man-machine integration technology opportunities for rotorcraft of the 1990s and beyond

    NASA Technical Reports Server (NTRS)

    Kerr, Andrew W.

    1989-01-01

    Programs related to rotorcraft aeromechanics and man-machine integration are discussed which will support advanced army rotorcraft design. In aeromechanics, recent advances in computational fluid dynamics will be used to characterize the complex unsteady flowfields of rotorcraft, and a second-generation comprehensive helicopter analysis system will be used along with models of aerodynamics, engines, and control systems to study the structural dynamics of rotor/body configurations. The man-machine integration program includes the development of advanced cockpit design technology and the evaluation of cockpit and mission equipment concepts in a real-time full-combat environment.

  18. Proceedings of the 8th Annual Conference on Manual Control

    NASA Technical Reports Server (NTRS)

    Pew, R. W.

    1972-01-01

    The volume presents recent developments in the field of manual control theory and applications. The papers give analytical methods as well as examples of the important interplay between man and machine, such as how man controls and stabilizes machine dynamics, and how machines extend man's capability. Included in the broad range of subjects are procedures to evaluate and identify display systems, controllers, manipulators, human operators, aircraft, and non-flying vehicles. Of particular interest is the continuing trend of applying control theory to problems in medicine and psychology, as well as to problems in vehicle control.

  19. A voyage to Mars: A challenge to collaboration between man and machines

    NASA Technical Reports Server (NTRS)

    Statler, Irving C.

    1991-01-01

    A speech addressing the design of man machine systems for exploration of space beyond Earth orbit from the human factors perspective is presented. Concerns relative to the design of automated and intelligent systems for the NASA Space Exploration Initiative (SEI) missions are largely based on experiences with integrating humans and comparable systems in aviation. The history, present status, and future prospect, of human factors in machine design are discussed in relation to a manned voyage to Mars. Three different cases for design philosophy are presented. The use of simulation is discussed. Recommendations for required research are given.

  20. A Machine Learning System for Analyzing Human Tactics in a Game

    NASA Astrophysics Data System (ADS)

    Ito, Hirotaka; Tanaka, Toshimitsu; Sugie, Noboru

    In order to realize advanced man-machine interfaces, it is desired to develop a system that can infer the mental state of human users and then return appropriate responses. As the first step toward the above goal, we developed a system capable of inferring human tactics in a simple game played between the system and a human. We present a machine learning system that plays a color expectation game. The system infers the tactics of the opponent, and then decides the action based on the result. We employed a modified version of classifier system like XCS in order to design the system. In addition, three methods are proposed in order to accelerate the learning rate. They are a masking method, an iterative method, and tactics templates. The results of computer experiments confirmed that the proposed methods effectively accelerate the machine learning. The masking method and the iterative method are effective to a simple strategy that considers only a part of past information. However, study speed of these methods is not enough for the tactics that refers to a lot of past information. For the case, the tactics template was able to settle the study rapidly when the tactics is identified.

  1. The human role in space: Technology, economics and optimization

    NASA Technical Reports Server (NTRS)

    Hall, S. B. (Editor)

    1985-01-01

    Man-machine interactions in space are explored in detail. The role and the degree of direct involvement of humans that will be required in future space missions are investigated. An attempt is made to establish valid criteria for allocating functional activities between humans and machines and to provide insight into the technological requirements, economics, and benefits of the human presence in space. Six basic categories of man-machine interactions are considered: manual, supported, augmented, teleoperated, supervised, and independent. Appendices are included which provide human capability data, project analyses, activity timeline profiles and data sheets for 37 generic activities, support equipment and human capabilities required in these activities, and cumulative costs as a function of activity for seven man-machine modes.

  2. USSR Space Life Sciences Digest, issue 1

    NASA Technical Reports Server (NTRS)

    Hooke, L. R.; Radtke, M.; Rowe, J. E.

    1985-01-01

    The first issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 49 Soviet periodical articles in 19 areas of aerospace medicine and space biology, published in Russian during the first quarter of 1985. Translated introductions and table of contents for nine Russian books on topics related to NASA's life science concerns are presented. Areas covered include: botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, endocrinology, gastrointestinal system, genetics, group dynamics, habitability and environmental effects, health and medicine, hematology, immunology, life support systems, man machine systems, metabolism, musculoskeletal system, neurophysiology, perception, personnel selection, psychology, radiobiology, reproductive system, and space biology. This issue concentrates on aerospace medicine and space biology.

  3. Neuromechanism Study of Insect–Machine Interface: Flight Control by Neural Electrical Stimulation

    PubMed Central

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A.; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect–machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee–machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control. PMID:25409523

  4. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    PubMed

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect-machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  5. MoManI: a tool to facilitate research, analysis, and teaching of computer models

    NASA Astrophysics Data System (ADS)

    Howells, Mark; Pelakauskas, Martynas; Almulla, Youssef; Tkaczyk, Alan H.; Zepeda, Eduardo

    2017-04-01

    Allocating limited resource efficiently is a task to which efficient planning and policy design aspires. This may be a non-trivial task. For example, the seventh sustainable development goal (SDG) of Agenda 2030 is to provide access to affordable sustainable energy to all. On the one hand, energy is required to realise almost all other SDGs. (A clinic requires electricity for fridges to store vaccines for maternal health, irrigate agriculture requires energy to pump water to crops in dry periods etc.) On the other hand, the energy system is non-trivial. It requires the mapping of resource, its conversion into useable energy and then into machines that we use to meet our needs. That requires new tools that draw from standard techniques, best-in-class models and allow the analyst to develop new models. Thus we present the Model Management Infrastructure (MoManI). MoManI is used to develop, manage, run, store input and results data for linear programming models. MoManI, is a browser-based open source interface for systems modelling. It is available to various user audiences, from policy makers and planners through to academics. For example, we implement the Open Source energy Modelling System (OSeMOSYS) in MoManI. OSeMOSYS is a specialized energy model generator. A typical OSeMOSYS model would represent the current energy system of a country, region or city; in it, equations and constraints are specified; and calibrated to a base year. From that future technologies and policy options are represented. From those scenarios are designed and run. Efficient allocation of energy resource and expenditure on technology is calculated. Finally, results are visualized. At present this is done in relatively rigid interfaces or via (for some) cumbersome text files. Implementing and operating OSeMOSYS in MoManI shortens the learning curve and reduces phobia associated with the complexity of computer modelling, thereby supporting effective capacity building activities. The novel structure of MoManI allows different teams to collaborate simultaneously from around the globe. Each user can easily edit and update any part of the modelling process: from the underlying mathematical equations of OSeMOSYS through to the visualization of results. Going forward, this tools' flexible structure will make it a potential interface for a larger selection of modelling tools, thus extending its use from OSeMOSYS for energy to other systems modelling, moving beyond SDG7 to others.

  6. 27. Bollinger twinchain tandem, pigcasting machine, located at the north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Bollinger twin-chain tandem, pig-casting machine, located at the north end of the plant. Prior to closing, approximately 40 percent of the plant's: iron production was cast into pigs and sold to foundry customers. The pig-casting machine employed a controller, lime man, trough man, and crane operator. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  7. A comparison of optimal MIMO linear and nonlinear models for brain machine interfaces

    NASA Astrophysics Data System (ADS)

    Kim, S.-P.; Sanchez, J. C.; Rao, Y. N.; Erdogmus, D.; Carmena, J. M.; Lebedev, M. A.; Nicolelis, M. A. L.; Principe, J. C.

    2006-06-01

    The field of brain-machine interfaces requires the estimation of a mapping from spike trains collected in motor cortex areas to the hand kinematics of the behaving animal. This paper presents a systematic investigation of several linear (Wiener filter, LMS adaptive filters, gamma filter, subspace Wiener filters) and nonlinear models (time-delay neural network and local linear switching models) applied to datasets from two experiments in monkeys performing motor tasks (reaching for food and target hitting). Ensembles of 100-200 cortical neurons were simultaneously recorded in these experiments, and even larger neuronal samples are anticipated in the future. Due to the large size of the models (thousands of parameters), the major issue studied was the generalization performance. Every parameter of the models (not only the weights) was selected optimally using signal processing and machine learning techniques. The models were also compared statistically with respect to the Wiener filter as the baseline. Each of the optimization procedures produced improvements over that baseline for either one of the two datasets or both.

  8. A comparison of optimal MIMO linear and nonlinear models for brain-machine interfaces.

    PubMed

    Kim, S-P; Sanchez, J C; Rao, Y N; Erdogmus, D; Carmena, J M; Lebedev, M A; Nicolelis, M A L; Principe, J C

    2006-06-01

    The field of brain-machine interfaces requires the estimation of a mapping from spike trains collected in motor cortex areas to the hand kinematics of the behaving animal. This paper presents a systematic investigation of several linear (Wiener filter, LMS adaptive filters, gamma filter, subspace Wiener filters) and nonlinear models (time-delay neural network and local linear switching models) applied to datasets from two experiments in monkeys performing motor tasks (reaching for food and target hitting). Ensembles of 100-200 cortical neurons were simultaneously recorded in these experiments, and even larger neuronal samples are anticipated in the future. Due to the large size of the models (thousands of parameters), the major issue studied was the generalization performance. Every parameter of the models (not only the weights) was selected optimally using signal processing and machine learning techniques. The models were also compared statistically with respect to the Wiener filter as the baseline. Each of the optimization procedures produced improvements over that baseline for either one of the two datasets or both.

  9. Design of handwriting drawing board based on common copper clad laminate

    NASA Astrophysics Data System (ADS)

    Wang, Hongyuan; Gao, Wenzhi; Wang, Yuan

    2015-02-01

    Handwriting drawing board is not only a subject which can be used to write and draw, but also a method to measure and process weak signals. This design adopts 8051 single chip microprocessor as the main controller. It applies a constant-current source[1][2] to copper plate and collects the voltage value according to the resistance divider effect. Then it amplifies the signal with low-noise and high-precision amplifier[3] AD620 which is placed in the low impedance and anti-interference pen. It converts analog signal to digital signal by an 11-channel, 12-bit A/D converter TLC2543. Adoption of average filtering algorithm can effectively improve the measuring accuracy, reduce the error and make the collected voltage signal more stable. The accurate position can be detected by scanning the horizontal and vertical ordinates with the analog switch via the internal bridge of module L298 which can change the direction of X-Y axis signal scan. DM12864 is used as man-machine interface and this hominization design is convenient for man-machine communication. This collecting system has high accuracy, high stability and strong anti-interference capability. It's easy to control and has very large development space in the future.

  10. Enhanced operator interface for hand-held landmine detector

    NASA Astrophysics Data System (ADS)

    Herman, Herman; McMahill, Jeffrey D.; Kantor, George

    2001-10-01

    As landmines get harder to detect, the complexity of landmine detectors has also been increasing. To increase the probability of detection and decrease the false alarm rate of low metallic landmines, many detectors employ multiple sensing modalities, which include radar and metal detector. Unfortunately, the operator interface for these new detectors stays pretty much the same as for the older detectors. Although the amount of information that the new detectors acquire has increased significantly, the interface has been limited to a simple audio interface. We are currently developing a hybrid audiovisual interface for enhancing the overall performance of the detector. The hybrid audiovisual interface combines the simplicity of the audio output with the rich spatial content of the video display. It is designed to optimally present the output of the detector and also to give the proper feedback to the operator. Instead of presenting all the data to the operator simultaneously, the interface allows the operator to access the information as needed. This capability is critical to avoid information overload, which can significantly reduce the performance of the operator. The audio is used as the primary notification signal, while the video is used for further feedback, discrimination, localization and sensor fusion. The idea is to let the operator gets the feedback that he needs and enable him to look at the data in the most efficient way. We are also looking at a hybrid man-machine detection system which utilizes precise sweeping by the machine and powerful human cognitive ability. In such a hybrid system, the operator is free to concentrate on discriminant task, such as manually fusing the output of the different sensing modalities, instead of worrying about the proper sweep technique. In developing this concept, we have been using the virtual mien lane to validate some of these concepts. We obtained some very encouraging results form our preliminary test. It clearly shows that with the proper feedback, the performance of the operator can be improved significantly in a very short time.

  11. Man-Machine Communication Research.

    DTIC Science & Technology

    1977-02-01

    communication difficulty for the computer-naive; discovery of major communication structures in human communication that have been left out of man-machine...processes; creation of a new overview of how human communication functions in cooperative task-oriented activity; and assistance in ARPA policy formation on CAI equipment development.

  12. Cognitive engineering models: A prerequisite to the design of human-computer interaction in complex dynamic systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1993-01-01

    This chapter examines a class of human-computer interaction applications, specifically the design of human-computer interaction for the operators of complex systems. Such systems include space systems (e.g., manned systems such as the Shuttle or space station, and unmanned systems such as NASA scientific satellites), aviation systems (e.g., the flight deck of 'glass cockpit' airplanes or air traffic control) and industrial systems (e.g., power plants, telephone networks, and sophisticated, e.g., 'lights out,' manufacturing facilities). The main body of human-computer interaction (HCI) research complements but does not directly address the primary issues involved in human-computer interaction design for operators of complex systems. Interfaces to complex systems are somewhat special. The 'user' in such systems - i.e., the human operator responsible for safe and effective system operation - is highly skilled, someone who in human-machine systems engineering is sometimes characterized as 'well trained, well motivated'. The 'job' or task context is paramount and, thus, human-computer interaction is subordinate to human job interaction. The design of human interaction with complex systems, i.e., the design of human job interaction, is sometimes called cognitive engineering.

  13. The role of automation and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Schappell, R. T.

    1983-07-01

    Consideration is given to emerging technologies that are not currently in common use, yet will be mature enough for implementation in a space station. Artificial intelligence (AI) will permit more autonomous operation and improve the man-machine interfaces. Technology goals include the development of expert systems, a natural language query system, automated planning systems, and AI image understanding systems. Intelligent robots and teleoperators will be needed, together with improved sensory systems for the robotics, housekeeping, vehicle control, and spacecraft housekeeping systems. Finally, NASA is developing the ROBSIM computer program to evaluate level of automation, perform parametric studies and error analyses, optimize trajectories and control systems, and assess AI technology.

  14. Reconfigurable Mobile System - Ground, sea and air applications

    NASA Astrophysics Data System (ADS)

    Lamonica, Gary L.; Sturges, James W.

    1990-11-01

    The Reconfigurable Mobile System (RMS) is a highly mobile data-processing unit for military users requiring real-time access to data gathered by airborne (and other) reconnaissance data. RMS combines high-performance computation and image processing workstations with resources for command/control/communications in a single, lightweight shelter. RMS is composed of off-the-shelf components, and is easily reconfigurable to land-vehicle or shipboard versions. Mission planning, which involves an airborne sensor platform's sensor coverage, considered aircraft/sensor capabilities in conjunction with weather, terrain, and threat scenarios. RMS's man-machine interface concept facilitates user familiarization and features iron-based function selection and windowing.

  15. Shuttle waste management system design improvements and flight evaluation

    NASA Technical Reports Server (NTRS)

    Winkler, H. Eugene; Goodman, Jerry R.; Murray, Robert W.; Mcintosh, Mathew E.

    1986-01-01

    The Space Shuttle waste management system has undergone a variety of design changes to improve performance and man-machine interface. These design improvements have resulted in more reliable operation and hygienic usage. Design enhancements include individual urinals, increased urine collection airflows, increased solids storage capacity, easier access to personal hygiene items, and additional wet trash stowage. The development and flight evaluation of these improvements are described herein. The Space Shuttle Orbiter has proved to be an invaluable test bed for development and in-flight evaluation of life support and habitability concepts which involve transport or separation of solids, liquids, and gases in a zero-g environment.

  16. Development of techniques to enhance man/machine communication

    NASA Technical Reports Server (NTRS)

    Targ, R.; Cole, P.; Puthoff, H.

    1974-01-01

    A four-state random stimulus generator, considered to function as an ESP teaching machine was used to investigate an approach to facilitating interactions between man and machines. A subject tries to guess in which of four states the machine is. The machine offers the user feedback and reinforcement as to the correctness of his choice. Using this machine, 148 volunteer subjects were screened under various protocols. Several whose learning slope and/or mean score departed significantly from chance expectation were identified. Direct physiological evidence of perception of remote stimuli not presented to any known sense of the percipient using electroencephalographic (EEG) output when a light was flashed in a distant room was also studied.

  17. Human-Robot Control Strategies for the NASA/DARPA Robonaut

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Culbert, Chris J.; Ambrose, Robert O.; Huber, E.; Bluethmann, W. J.

    2003-01-01

    The Robotic Systems Technology Branch at the NASA Johnson Space Center (JSC) is currently developing robot systems to reduce the Extra-Vehicular Activity (EVA) and planetary exploration burden on astronauts. One such system, Robonaut, is capable of interfacing with external Space Station systems that currently have only human interfaces. Robonaut is human scale, anthropomorphic, and designed to approach the dexterity of a space-suited astronaut. Robonaut can perform numerous human rated tasks, including actuating tether hooks, manipulating flexible materials, soldering wires, grasping handrails to move along space station mockups, and mating connectors. More recently, developments in autonomous control and perception for Robonaut have enabled dexterous, real-time man-machine interaction. Robonaut is now capable of acting as a practical autonomous assistant to the human, providing and accepting tools by reacting to body language. A versatile, vision-based algorithm for matching range silhouettes is used for monitoring human activity as well as estimating tool pose.

  18. GLOBECOM '85 - Global Telecommunications Conference, New Orleans, LA, December 2-5, 1985, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    Various papers on global telecommunications are presented. The general topics addressed include: multiservice integration with optical fibers, multicompany owned telecommunication networks, softworks quality and reliability, advanced on-board processing, impact of new services and systems on operations and maintenance, analytical studies of protocols for data communication networks, topics in packet radio networking, CCITT No. 7 to support new services, document processing and communication, antenna technology and system aspects in satellite communications. Also considered are: communication systems modelling methodology, experimental integrated local area voice/data nets, spread spectrum communications, motion video at the DS-0 rate, optical and data communications, intelligent work stations, switch performance analysis, novel radio communication systems, wireless local networks, ISDN services, LAN communication protocols, user-system interface, radio propagation and performance, mobile satellite system, software for computer networks, VLSI for ISDN terminals, quality management, man-machine interfaces in switching, and local area network performance.

  19. Human-Vehicle Interface for Semi-Autonomous Operation of Uninhabited Aero Vehicles

    NASA Technical Reports Server (NTRS)

    Jones, Henry L.; Frew, Eric W.; Woodley, Bruce R.; Rock, Stephen M.

    2001-01-01

    The robustness of autonomous robotic systems to unanticipated circumstances is typically insufficient for use in the field. The many skills of human user often fill this gap in robotic capability. To incorporate the human into the system, a useful interaction between man and machine must exist. This interaction should enable useful communication to be exchanged in a natural way between human and robot on a variety of levels. This report describes the current human-robot interaction for the Stanford HUMMINGBIRD autonomous helicopter. In particular, the report discusses the elements of the system that enable multiple levels of communication. An intelligent system agent manages the different inputs given to the helicopter. An advanced user interface gives the user and helicopter a method for exchanging useful information. Using this human-robot interaction, the HUMMINGBIRD has carried out various autonomous search, tracking, and retrieval missions.

  20. We can't explore space without it - Common human space needs for exploration spaceflight

    NASA Technical Reports Server (NTRS)

    Daues, K. R.; Erwin, H. O.

    1992-01-01

    An overview is conducted of physiological, psychological, and human-interface requirements for manned spaceflight programs to establish common criteria. Attention is given to the comfort levels relevant to human support in exploration mission spacecraft and planetary habitats, and three comfort levels (CLs) are established. The levels include: (1) CL-1 for basic crew life support; (2) CL-2 for enabling the nominal completion of mission science; and (3) CL-3 which provides for enhanced life support and user-friendly interface systems. CL-2 support systems can include systems for EVA, workstations, and activity centers for repairs and enhanced utilization of payload and human/machine integration. CL-3 supports can be useful for maintaining crew psychological and physiological health as well as the design of comfortable and earthlike surroundings. While all missions require CL-1 commonality, CL-2 commonality is required only for EVA systems, display nomenclature, and restraint designs.

  1. Manned geosynchronous mission requirements and systems analysis study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Boyland, R. E.; Sherman, S. W.; Morfin, H. W.

    1979-01-01

    The crew capsule of the MOTV was studied with emphasis on crew accommodations, crew capsule functional requirements, subsystem interface definition between crew module and propulsion module, and man rating requirements. Competing mission modes were studied covering a wide range of propulsion concepts. These included one stage, one and one half stage, and two stage concepts using either the standard STS or an augmented STS. Several deorbit concepts were considered, including all propulsive modes, direct re-entry, and aeromaneuvering skip in skip out in the upper reaches of Earth's atmosphere. A five year plan covering costs, schedules, and critical technology issues is discussed.

  2. Review of performance, medical, and operational data on pilot aging issues

    NASA Technical Reports Server (NTRS)

    Stoklosa, J. H.

    1992-01-01

    An extensive review of the literature and studies relating to performance, medical, operational, and legal data regarding pilot aging issues was performed in order to determine what evidence there is, if any, to support mandatory pilot retirement. Popular misconceptions about aging, including the failure to distinguish between the normal aging process and disease processes that occur more frequently in older individuals, continue to contribute to much of the misunderstanding and controversy that surround this issue. Results: Review of medical data related to the pilot aging issue indicate that recent improvement in medical diagnostics and treatment technology have made it possible to identify to a high degree individuals who are at risk for developing sudden incapacitating illness and for treating those with disqualifying medical conditions. Performance studies revealed that after controlling for the presence of disease states, older pilots are able to perform as well as younger pilots on many performance tasks. Review of accident data showed that older, healthy pilots do not have higher accident rates than younger pilots, and indeeed, evidence suggests that older pilots have an advantage in the cockpit due to higher experience levels. The Man-Machine-Mission-Environment interface of factors can be managed through structured, supervised, and enhanced operations, maintenance, flight reviews, and safety procedures in order to ensure safe and productive operations by reducing the margin of error and by increasing the margin of safety. Conclusions: There is no evidence indicating any specific age as an arbitrary cut-off point for pilots to perform their fight duties. A combination of regular medical screening, performance evaluation, enhanced operational maintenance, and safety procedures can most effectively ensure a safe pilot population than can a mandatory retirement policy based on arbitrary age restrictions.

  3. Man-Machine Integrated Design and Analysis System (MIDAS): Functional Overview

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Neukom, Christian

    1998-01-01

    Included in the series of screen print-outs illustrates the structure and function of the Man-Machine Integrated Design and Analysis System (MIDAS). Views into the use of the system and editors are featured. The use-case in this set of graphs includes the development of a simulation scenario.

  4. Two Dimensional Display for a Naval Duel: Man-Machine Interactive Game.

    DTIC Science & Technology

    Man-machine interactive games simulating naval duels are being conducted at the University of Pennsylvania. The players act as the commanding...officers of their respective vessels. They navigate, detect, and analyze their own and their opponent’s activities in the duel . The report describes the two

  5. OTM Machine Acceptance: In the Arab Culture

    NASA Astrophysics Data System (ADS)

    Rashed, Abdullah; Santos, Henrique

    Basically, neglecting the human factor is one of the main reasons for system failures or for technology rejection, even when important technologies are considered. Biometrics mostly have the characteristics needed for effortless acceptance, such as easiness and usefulness, that are essential pillars of acceptance models such as TAM (technology acceptance model). However, it should be investigated. Many studies have been carried out to research the issues of technology acceptance in different cultures, especially the western culture. Arabic culture lacks these types of studies with few publications in this field. This paper introduces a new biometric interface for ATM machines. This interface depends on a promising biometrics which is odour. To discover the acceptance of this biometrics, we distributed a questionnaire via a web site and called for participation in the Arab Area and found that most respondents would accept to use odour.

  6. Some human factors issues in the development and evaluation of cockpit alerting and warning systems

    NASA Technical Reports Server (NTRS)

    Randle, R. J., Jr.; Larsen, W. E.; Williams, D. H.

    1980-01-01

    A set of general guidelines for evaluating a newly developed cockpit alerting and warning system in terms of human factors issues are provided. Although the discussion centers around a general methodology, it is made specifically to the issues involved in alerting systems. An overall statement of the current operational problem is presented. Human factors problems with reference to existing alerting and warning systems are described. The methodology for proceeding through system development to system test is discussed. The differences between traditional human factors laboratory evaluations and those required for evaluation of complex man-machine systems under development are emphasized. Performance evaluation in the alerting and warning subsystem using a hypothetical sample system is explained.

  7. Living and working in space; IAA Man in Space Symposium, 9th, Cologne, Federal Republic of Germany, June 17-21, 1991, Selection of Papers

    NASA Technical Reports Server (NTRS)

    Klein, Karl E. (Editor); Contant, Jean-Michel (Editor)

    1992-01-01

    The present symposium on living and working in space encompasses the physiological responses of humans in space and biomedical support for the conditions associated with space travel. Specific physiological issues addressed include cerebral and sensorimotor functions, effects on the cardiovascular and respiratory system, musculoskeletal system, body fluid, hormones and electrolytes, and some orthostatic hypotension mechanisms as countermeasures. The biomedical support techniques examined include selection training, and care, teleoperation and artificial intelligence, robotic automation, bioregenerative life support, and toxic hazard risks in space habitats. Also addressed are determinants of orientation in microgravity, the hormonal control of body fluid metabolism, integrated human-machine intelligence in space machines, and material flow estimation in CELSS.

  8. A user interface for a knowledge-based planning and scheduling system

    NASA Technical Reports Server (NTRS)

    Mulvehill, Alice M.

    1988-01-01

    The objective of EMPRESS (Expert Mission Planning and Replanning Scheduling System) is to support the planning and scheduling required to prepare science and application payloads for flight aboard the US Space Shuttle. EMPRESS was designed and implemented in Zetalisp on a 3600 series Symbolics Lisp machine. Initially, EMPRESS was built as a concept demonstration system. The system has since been modified and expanded to ensure that the data have integrity. Issues underlying the design and development of the EMPRESS-I interface, results from a system usability assessment, and consequent modifications are described.

  9. UIVerify: A Web-Based Tool for Verification and Automatic Generation of User Interfaces

    NASA Technical Reports Server (NTRS)

    Shiffman, Smadar; Degani, Asaf; Heymann, Michael

    2004-01-01

    In this poster, we describe a web-based tool for verification and automatic generation of user interfaces. The verification component of the tool accepts as input a model of a machine and a model of its interface, and checks that the interface is adequate (correct). The generation component of the tool accepts a model of a given machine and the user's task, and then generates a correct and succinct interface. This write-up will demonstrate the usefulness of the tool by verifying the correctness of a user interface to a flight-control system. The poster will include two more examples of using the tool: verification of the interface to an espresso machine, and automatic generation of a succinct interface to a large hypothetical machine.

  10. THE DESIGN OF A MAN-MACHINE COUNSELING SYSTEM. A PROFESSIONAL PAPER.

    ERIC Educational Resources Information Center

    COGSWELL, J.F.; AND OTHERS

    TWO PROJECTS ON THE DESIGN, DEVELOPMENT, IMPLEMENTATION, AND EVALUATION OF A MAN-MACHINE SYSTEM FOR COUNSELING IN THE PALO ALTO AND LOS ANGELES SCHOOL DISTRICTS ARE REPORTED. THE EARLIER PHILCO 2000 COMPUTER PROGRAMS SIMULATED A COUNSELOR'S WORK IN THE EDUCATIONAL PLANNING INTERVIEW BY ACCEPTING INPUTS SUCH AS SCHOOL GRADES, TEST SCORES, AND…

  11. Proceedings of the NASA Conference on Space Telerobotics, volume 3

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research.

  12. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA.

    PubMed

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  13. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    PubMed Central

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method. PMID:26884745

  14. Geolocating thermal binoculars based on a software defined camera core incorporating HOT MCT grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Pillans, Luke; Harmer, Jack; Edwards, Tim; Richardson, Lee

    2016-05-01

    Geolocation is the process of calculating a target position based on bearing and range relative to the known location of the observer. A high performance thermal imager with integrated geolocation functions is a powerful long range targeting device. Firefly is a software defined camera core incorporating a system-on-a-chip processor running the AndroidTM operating system. The processor has a range of industry standard serial interfaces which were used to interface to peripheral devices including a laser rangefinder and a digital magnetic compass. The core has built in Global Positioning System (GPS) which provides the third variable required for geolocation. The graphical capability of Firefly allowed flexibility in the design of the man-machine interface (MMI), so the finished system can give access to extensive functionality without appearing cumbersome or over-complicated to the user. This paper covers both the hardware and software design of the system, including how the camera core influenced the selection of peripheral hardware, and the MMI design process which incorporated user feedback at various stages.

  15. Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime

    NASA Astrophysics Data System (ADS)

    Carpenter, Lewis G.; Rogers, Helen L.; Cooper, Peter A.; Holmes, Christopher; Gates, James C.; Smith, Peter G. R.

    2013-11-01

    The efficient production of high-quality facets for low-loss coupling is a significant production issue in integrated optics, usually requiring time consuming and manually intensive lapping and polishing steps, which add considerably to device fabrication costs. The development of precision dicing saws with diamond impregnated blades has allowed optical grade surfaces to be machined in crystalline materials such as lithium niobate and garnets. In this report we investigate the optimization of dicing machine parameters to obtain optical quality surfaces in a silica-on-silicon planar device demonstrating high optical quality in a commercially important glassy material. We achieve a surface roughness of 4.9 nm (Sa) using the optimized dicing conditions. By machining a groove across a waveguide, using the optimized dicing parameters, a grating based loss measurement technique is used to measure precisely the average free space interface loss per facet caused by scattering as a consequence of surface roughness. The average interface loss per facet was calculated to be: -0.63 dB and -0.76 dB for the TE and TM polarizations, respectively.

  16. Man/Machine Interaction Dynamics And Performance (MMIDAP) capability

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    1991-01-01

    The creation of an ability to study interaction dynamics between a machine and its human operator can be approached from a myriad of directions. The Man/Machine Interaction Dynamics and Performance (MMIDAP) project seeks to create an ability to study the consequences of machine design alternatives relative to the performance of both machine and operator. The class of machines to which this study is directed includes those that require the intelligent physical exertions of a human operator. While Goddard's Flight Telerobotic's program was expected to be a major user, basic engineering design and biomedical applications reach far beyond telerobotics. Ongoing efforts are outlined of the GSFC and its University and small business collaborators to integrate both human performance and musculoskeletal data bases with analysis capabilities necessary to enable the study of dynamic actions, reactions, and performance of coupled machine/operator systems.

  17. The Data Egg: A new solution to text entry barriers

    NASA Technical Reports Server (NTRS)

    Friedman, Gary L.

    1993-01-01

    A unit that allows text entry with only one hand has been developed, and holds the promise of allowing computers to be truly portable. It is unique in that it allows operation in any position, freeing the user from the traditional constraints of having to be seated near a desk. This hand held, chord-key-based unit can be used either autonomously for idea capturing, or tethered to a personal computer and used as an auxiliary keyboard. Astronauts, journalists, the bedridden, and anyone else normally barred from using a computer while on the job could also benefit from this form of man-machine interface, which has been dubbed the 'Data Egg'.

  18. [A computer-aided image diagnosis and study system].

    PubMed

    Li, Zhangyong; Xie, Zhengxiang

    2004-08-01

    The revolution in information processing, particularly the digitizing of medicine, has changed the medical study, work and management. This paper reports a method to design a system for computer-aided image diagnosis and study. Combined with some good idea of graph-text system and picture archives communicate system (PACS), the system was realized and used for "prescription through computer", "managing images" and "reading images under computer and helping the diagnosis". Also typical examples were constructed in a database and used to teach the beginners. The system was developed by the visual developing tools based on object oriented programming (OOP) and was carried into operation on the Windows 9X platform. The system possesses friendly man-machine interface.

  19. Man-machine analysis of translation and work tasks of Skylab films

    NASA Technical Reports Server (NTRS)

    Hosler, W. W.; Boelter, J. G.; Morrow, J. R., Jr.; Jackson, J. T.

    1979-01-01

    An objective approach to determine the concurrent validity of computer-graphic models is real time film analysis. This technique was illustrated through the procedures and results obtained in an evaluation of translation of Skylab mission astronauts. The quantitative analysis was facilitated by the use of an electronic film analyzer, minicomputer, and specifically supportive software. The uses of this technique for human factors research are: (1) validation of theoretical operator models; (2) biokinetic analysis; (3) objective data evaluation; (4) dynamic anthropometry; (5) empirical time-line analysis; and (6) consideration of human variability. Computer assisted techniques for interface design and evaluation have the potential for improving the capability for human factors engineering.

  20. Operations Concepts for Deep-Space Missions: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    McCann, Robert S.

    2010-01-01

    Historically, manned spacecraft missions have relied heavily on real-time communication links between crewmembers and ground control for generating crew activity schedules and working time-critical off-nominal situations. On crewed missions beyond the Earth-Moon system, speed-of-light limitations will render this ground-centered concept of operations obsolete. A new, more distributed concept of operations will have to be developed in which the crew takes on more responsibility for real-time anomaly diagnosis and resolution, activity planning and replanning, and flight operations. I will discuss the innovative information technologies, human-machine interfaces, and simulation capabilities that must be developed in order to develop, test, and validate deep-space mission operations

  1. Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future.

    PubMed

    Huggins, Jane E; Guger, Christoph; Allison, Brendan; Anderson, Charles W; Batista, Aaron; Brouwer, Anne-Marie A-M; Brunner, Clemens; Chavarriaga, Ricardo; Fried-Oken, Melanie; Gunduz, Aysegul; Gupta, Disha; Kübler, Andrea; Leeb, Robert; Lotte, Fabien; Miller, Lee E; Müller-Putz, Gernot; Rutkowski, Tomasz; Tangermann, Michael; Thompson, David Edward

    2014-01-01

    The Fifth International Brain-Computer Interface (BCI) Meeting met June 3-7 th , 2013 at the Asilomar Conference Grounds, Pacific Grove, California. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, recording methods, the effects of plasticity, special interest topics in BCIs applications, and future BCI directions. BCI research is well established and transitioning to practical use to benefit people with physical impairments. At the same time, new applications are being explored, both for people with physical impairments and beyond. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and high-lighting important issues for future research and development.

  2. Soldier-Machine Interface for the Army Future Combat System: Literature Review, Requirements, and Emerging Design Principles

    DTIC Science & Technology

    2003-04-01

    Development vs . Iterative Design ............................ II-7 3. Getting to Know the User: Designing for Usability, Utility, and Pleasure...III-1 2. Terrain Focus .................................................................................... III-1 3. Display vs . Control...heterogeneous, and it diverged into broad philosophical issues, such as “design as engineering” vs . “design as art” and the utility of controlled

  3. Application of modified profile analysis to function testing of the motion/no-motion issue in an aircraft ground-handling simulation. [statistical analysis procedure for man machine systems flight simulation

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Mckissick, B. T.; Steinmetz, G. G.

    1979-01-01

    A recent modification of the methodology of profile analysis, which allows the testing for differences between two functions as a whole with a single test, rather than point by point with multiple tests is discussed. The modification is applied to the examination of the issue of motion/no motion conditions as shown by the lateral deviation curve as a function of engine cut speed of a piloted 737-100 simulator. The results of this application are presented along with those of more conventional statistical test procedures on the same simulator data.

  4. Trends and Challenges in Neuroengineering: Toward "Intelligent" Neuroprostheses through Brain-"Brain Inspired Systems" Communication.

    PubMed

    Vassanelli, Stefano; Mahmud, Mufti

    2016-01-01

    Future technologies aiming at restoring and enhancing organs function will intimately rely on near-physiological and energy-efficient communication between living and artificial biomimetic systems. Interfacing brain-inspired devices with the real brain is at the forefront of such emerging field, with the term "neurobiohybrids" indicating all those systems where such interaction is established. We argue that achieving a "high-level" communication and functional synergy between natural and artificial neuronal networks in vivo , will allow the development of a heterogeneous world of neurobiohybrids, which will include "living robots" but will also embrace "intelligent" neuroprostheses for augmentation of brain function. The societal and economical impact of intelligent neuroprostheses is likely to be potentially strong, as they will offer novel therapeutic perspectives for a number of diseases, and going beyond classical pharmaceutical schemes. However, they will unavoidably raise fundamental ethical questions on the intermingling between man and machine and more specifically, on how deeply it should be allowed that brain processing is affected by implanted "intelligent" artificial systems. Following this perspective, we provide the reader with insights on ongoing developments and trends in the field of neurobiohybrids. We address the topic also from a "community building" perspective, showing through a quantitative bibliographic analysis, how scientists working on the engineering of brain-inspired devices and brain-machine interfaces are increasing their interactions. We foresee that such trend preludes to a formidable technological and scientific revolution in brain-machine communication and to the opening of new avenues for restoring or even augmenting brain function for therapeutic purposes.

  5. Trends and Challenges in Neuroengineering: Toward “Intelligent” Neuroprostheses through Brain-“Brain Inspired Systems” Communication

    PubMed Central

    Vassanelli, Stefano; Mahmud, Mufti

    2016-01-01

    Future technologies aiming at restoring and enhancing organs function will intimately rely on near-physiological and energy-efficient communication between living and artificial biomimetic systems. Interfacing brain-inspired devices with the real brain is at the forefront of such emerging field, with the term “neurobiohybrids” indicating all those systems where such interaction is established. We argue that achieving a “high-level” communication and functional synergy between natural and artificial neuronal networks in vivo, will allow the development of a heterogeneous world of neurobiohybrids, which will include “living robots” but will also embrace “intelligent” neuroprostheses for augmentation of brain function. The societal and economical impact of intelligent neuroprostheses is likely to be potentially strong, as they will offer novel therapeutic perspectives for a number of diseases, and going beyond classical pharmaceutical schemes. However, they will unavoidably raise fundamental ethical questions on the intermingling between man and machine and more specifically, on how deeply it should be allowed that brain processing is affected by implanted “intelligent” artificial systems. Following this perspective, we provide the reader with insights on ongoing developments and trends in the field of neurobiohybrids. We address the topic also from a “community building” perspective, showing through a quantitative bibliographic analysis, how scientists working on the engineering of brain-inspired devices and brain-machine interfaces are increasing their interactions. We foresee that such trend preludes to a formidable technological and scientific revolution in brain-machine communication and to the opening of new avenues for restoring or even augmenting brain function for therapeutic purposes. PMID:27721741

  6. EDITORIAL: The 1st International Conference on Nanomanufacturing (NanoMan2008) The 1st International Conference on Nanomanufacturing (NanoMan2008)

    NASA Astrophysics Data System (ADS)

    Luo, Jack Jiqui; Fang, Fengzhou

    2009-05-01

    Nanomanufacturing is an emerging technology in the field of synthesis of nanomaterials, manufacture of nanodevices, nanosystems and the relevant characterization technologies, and will greatly impact our society and environment: speeding up scientific discovery, technological development, improving healthcare and living standards and slowing down the exhaustion of energy resources, to name but few. The 1st International Conference on Nanomanufacturing (NanoMan2008) was held on the 13-16 July 2008 in Singapore in conjunction with ThinFilm2008 (The 4th International Conference on Technological Advances of Thin Films & Surface Coatings). Approximately 140 delegates from all over the world have participated in the conference and presented their latest discoveries and technological developments. The main focuses of the conference were modern nanomanufacturing by laser machining, focused ion beam fabrication, nano/micro-molding/imprinting, nanomaterial synthesis and characterization, nanometrology and nano/microsystems fabrication and characterization. There was also great interest in applications of nanomanufacturing technologies in traditional areas such as free form machining, polishing and grinding with nano-scale precision and the smoothness of surfaces of objects, and applications in space exploration, military and medicine. This special issue is devoted to NanoMan2008 with a collection of 9 invited talks presented at the conference, covering all the topics of nanomanufacturing technology and development. These papers have been upgraded by the authors with new results and discoveries since the preparation of the conference manuscripts, hence presenting the latest developments. We would like to take this opportunity to thank all the delegates who attended the conference and made the conference successful, and to the authors who contributed papers to this special issue. Thanks also go to the conference committee for their efforts and devotion to the conference. We would like to express our sincere thanks to Dr Ian Forbes and the other members of editorial board of the Journal of Micromechanics and Microengineering of the Institute of Physics for their help and support in making this special section. The conference was a success. We found there is a great demand for continuation of the conference, and it has been agreed by the conference committee to hold the conference biannually from now on. The 2nd International Conference on Nanomanufacturing (NanoMan2010) is to be held in Tianjin, China in 2010. On behalf of the committee we would like to take this opportunity to welcome everybody to NanoMan2010.

  7. Analysis and prediction of meal motion by EMG signals

    NASA Astrophysics Data System (ADS)

    Horihata, S.; Iwahara, H.; Yano, K.

    2007-12-01

    The lack of carers for senior citizens and physically handicapped persons in our country has now become a huge issue and has created a great need for carer robots. The usual carer robots (many of which have switches or joysticks for their interfaces), however, are neither easy to use it nor very popular. Therefore, haptic devices have been adopted for a human-machine interface that will enable an intuitive operation. At this point, a method is being tested that seeks to prevent a wrong operation from occurring from the user's signals. This method matches motions with EMG signals.

  8. Towards a framework of human factors certification of complex human-machine systems

    NASA Technical Reports Server (NTRS)

    Bukasa, Birgit

    1994-01-01

    As far as total automation is not realized, the combination of technical and social components in man-machine systems demands not only contributions from engineers but at least to an equal extent from behavioral scientists. This has been neglected far too long. The psychological, social and cultural aspects of technological innovations were almost totally overlooked. Yet, along with expected safety improvements the institutionalization of human factors is on the way. The introduction of human factors certification of complex man-machine systems will be a milestone in this process.

  9. Functional Capacity Evaluation Research: Report from the Second International Functional Capacity Evaluation Research Meeting.

    PubMed

    James, C L; Reneman, M F; Gross, D P

    2016-03-01

    Functional capacity evaluations are an important component of many occupational rehabilitation programs and can play a role in facilitating reintegration to work thus improving health and disability outcomes. The field of functional capacity evaluation (FCE) research has continued to develop over recent years, with growing evidence on the reliability, validity and clinical utility of FCE within different patient and healthy worker groups. The second International FCE Research Conference was held in Toronto, Canada on October 2nd 2014 adjacent to the 2014 Work Disability Prevention Integration conference. This paper describes the outcomes of the conference. Fifty-four participants from nine countries attended the conference where eleven research projects and three workshops were presented. The conference provided an opportunity to discuss FCE practice, present new research and provide a forum for discourse around the issues pertinent to FCE use. Conference presentations covered aspects of FCE use including the ICF-FCE interface, aspects of reliability and validity, consideration of specific injury populations, comparisons of FCE components and a lively debate on the merits of 'Man versus Machine' in FCE's. Researchers, clinicians, and other professionals in the FCE area have a common desire to improve the content and quality of FCE research and to collaborate to further develop research across systems, cultures and countries.

  10. Advanced integrated enhanced vision systems

    NASA Astrophysics Data System (ADS)

    Kerr, J. R.; Luk, Chiu H.; Hammerstrom, Dan; Pavel, Misha

    2003-09-01

    In anticipation of its ultimate role in transport, business and rotary wing aircraft, we clarify the role of Enhanced Vision Systems (EVS): how the output data will be utilized, appropriate architecture for total avionics integration, pilot and control interfaces, and operational utilization. Ground-map (database) correlation is critical, and we suggest that "synthetic vision" is simply a subset of the monitor/guidance interface issue. The core of integrated EVS is its sensor processor. In order to approximate optimal, Bayesian multi-sensor fusion and ground correlation functionality in real time, we are developing a neural net approach utilizing human visual pathway and self-organizing, associative-engine processing. In addition to EVS/SVS imagery, outputs will include sensor-based navigation and attitude signals as well as hazard detection. A system architecture is described, encompassing an all-weather sensor suite; advanced processing technology; intertial, GPS and other avionics inputs; and pilot and machine interfaces. Issues of total-system accuracy and integrity are addressed, as well as flight operational aspects relating to both civil certification and military applications in IMC.

  11. Love-hate for man-machine metaphors in Soviet physiology: from Pavlov to "physiological cybernetics".

    PubMed

    Gerovitch, Slava

    2002-06-01

    This article reinterprets the debate between orthodox followers of the Pavlovian reflex theory and Soviet "cybernetic physiologists" in the 1950s and 60s as a clash of opposing man-machine metaphors. While both sides accused each other of "mechanistic," reductionist methodology, they did not see anything "mechanistic" about their own central metaphors: the telephone switchboard metaphor for nervous activity (the Pavlovians), and the analogies between the human brain and a computer (the cyberneticians). I argue that the scientific utility of machine analogies was closely intertwined with their philosophical and political meanings and that new interpretations of these metaphors emerged as a result of political conflicts and a realignment of forces within the scientific community and in society at large. I suggest that the constant travel of man-machine analogies, back and forth between physiology and technology has blurred the traditional categories of the "mechanistic" and the "organic" in Soviet neurophysiology, as perhaps in the history of physiology in general.

  12. IEEE 1982. Proceedings of the international conference on cybernetics and society

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    The following topics were dealt with: knowledge-based systems; risk analysis; man-machine interactions; human information processing; metaphor, analogy and problem-solving; manual control modelling; transportation systems; simulation; adaptive and learning systems; biocybernetics; cybernetics; mathematical programming; robotics; decision support systems; analysis, design and validation of models; computer vision; systems science; energy systems; environmental modelling and policy; pattern recognition; nuclear warfare; technological forecasting; artificial intelligence; the Turin shroud; optimisation; workloads. Abstracts of individual papers can be found under the relevant classification codes in this or future issues.

  13. Proceedings of the NASA Conference on Space Telerobotics, volume 2

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research.

  14. Human-centered automation and AI - Ideas, insights, and issues from the Intelligent Cockpit Aids research effort

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy H.; Schutte, Paul C.

    1989-01-01

    A development status evaluation is presented for the NASA-Langley Intelligent Cockpit Aids research program, which encompasses AI, human/machine interfaces, and conventional automation. Attention is being given to decision-aiding concepts for human-centered automation, with emphasis on inflight subsystem fault management, inflight mission replanning, and communications management. The cockpit envisioned is for advanced commercial transport aircraft.

  15. Knowledge representation system for assembly using robots

    NASA Technical Reports Server (NTRS)

    Jain, A.; Donath, M.

    1987-01-01

    Assembly robots combine the benefits of speed and accuracy with the capability of adaptation to changes in the work environment. However, an impediment to the use of robots is the complexity of the man-machine interface. This interface can be improved by providing a means of using a priori-knowledge and reasoning capabilities for controlling and monitoring the tasks performed by robots. Robots ought to be able to perform complex assembly tasks with the help of only supervisory guidance from human operators. For such supervisory quidance, it is important to express the commands in terms of the effects desired, rather than in terms of the motion the robot must undertake in order to achieve these effects. A suitable knowledge representation can facilitate the conversion of task level descriptions into explicit instructions to the robot. Such a system would use symbolic relationships describing the a priori information about the robot, its environment, and the tasks specified by the operator to generate the commands for the robot.

  16. Research and design of smart grid monitoring control via terminal based on iOS system

    NASA Astrophysics Data System (ADS)

    Fu, Wei; Gong, Li; Chen, Heli; Pan, Guangji

    2017-06-01

    Aiming at a series of problems existing in current smart grid monitoring Control Terminal, such as high costs, poor portability, simple monitoring system, poor software extensions, low system reliability when transmitting information, single man-machine interface, poor security, etc., smart grid remote monitoring system based on the iOS system has been designed. The system interacts with smart grid server so that it can acquire grid data through WiFi/3G/4G networks, and monitor each grid line running status, as well as power plant equipment operating conditions. When it occurs an exception in the power plant, incident information can be sent to the user iOS terminal equipment timely, which will provide troubleshooting information to help the grid staff to make the right decisions in a timely manner, to avoid further accidents. Field tests have shown the system realizes the integrated grid monitoring functions, low maintenance cost, friendly interface, high security and reliability, and it possesses certain applicable value.

  17. Editorial Research Reports on Modern Man.

    ERIC Educational Resources Information Center

    Dickinson, William B., Jr., Ed.

    Nine reports published in this volume study the uneasy coexistence of modern man and the complex society he has wrought. Man's apparent disorganized behavior is attributed to his inability to adapt readily to the charged pace of technological change. To combat the advancement of machine over man, he must, therefore, insist that moral and…

  18. Study on Performance of Integration Control by Man and Machine in Stage of Final Approaching for Spaceship Rendezvous and Docking

    NASA Astrophysics Data System (ADS)

    Zhou, Qianxiang; Liu, Zhongqi

    With the development of manned space technology, space rendezvous and docking (RVD) technology will play a more and more important role. The astronauts’ participation in a final close period of man-machine combination control is an important way of RVD technology. Spacecraft RVD control involves control problem of a total of 12 degrees of freedom (location) and attitude which it relative to the inertial space the orbit. Therefore, in order to reduce the astronauts’ operation load and reduce the security requirements to the ground station and achieve an optimal performance of the whole man-machine system, it is need to study how to design the number of control parameters of astronaut or aircraft automatic control system. In this study, with the laboratory conditions on the ground, a method was put forward to develop an experimental system in which the performance evaluation of spaceship RVD integration control by man and machine could be completed. After the RVD precision requirements were determined, 26 male volunteers aged 20-40 took part in the performance evaluation experiments. The RVD integration control success rates and total thruster ignition time were chosen as evaluation indices. Results show that if less than three RVD parameters control tasks were finished by subject and the rest of parameters control task completed by automation, the RVD success rate would be larger than eighty-eight percent and the fuel consumption would be optimized. In addition, there were two subjects who finished the whole six RVD parameters control tasks by enough train. In conclusion, if the astronauts' role should be integrated into the RVD control, it was suitable for them to finish the heading, pitch and roll control in order to assure the man-machine system high performance. If astronauts were needed to finish all parameter control, two points should be taken into consideration, one was enough fuel and another was enough long operation time.

  19. Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future

    PubMed Central

    Huggins, Jane E.; Guger, Christoph; Allison, Brendan; Anderson, Charles W.; Batista, Aaron; Brouwer, Anne-Marie (A.-M.); Brunner, Clemens; Chavarriaga, Ricardo; Fried-Oken, Melanie; Gunduz, Aysegul; Gupta, Disha; Kübler, Andrea; Leeb, Robert; Lotte, Fabien; Miller, Lee E.; Müller-Putz, Gernot; Rutkowski, Tomasz; Tangermann, Michael; Thompson, David Edward

    2014-01-01

    The Fifth International Brain-Computer Interface (BCI) Meeting met June 3–7th, 2013 at the Asilomar Conference Grounds, Pacific Grove, California. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, recording methods, the effects of plasticity, special interest topics in BCIs applications, and future BCI directions. BCI research is well established and transitioning to practical use to benefit people with physical impairments. At the same time, new applications are being explored, both for people with physical impairments and beyond. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and high-lighting important issues for future research and development. PMID:25485284

  20. Man-Machine Interaction Design and Analysis System (MIDAS): Memory Representation and Procedural Implications for Airborne Communication Modalities

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Pisanich, Gregory M.; Lebacqz, Victor (Technical Monitor)

    1996-01-01

    The Man-Machine Interaction Design and Analysis System (MIDAS) has been under development for the past ten years through a joint US Army and NASA cooperative agreement. MIDAS represents multiple human operators and selected perceptual, cognitive, and physical functions of those operators as they interact with simulated systems. MIDAS has been used as an integrated predictive framework for the investigation of human/machine systems, particularly in situations with high demands on the operators. Specific examples include: nuclear power plant crew simulation, military helicopter flight crew response, and police force emergency dispatch. In recent applications to airborne systems development, MIDAS has demonstrated an ability to predict flight crew decision-making and procedural behavior when interacting with automated flight management systems and Air Traffic Control. In this paper we describe two enhancements to MIDAS. The first involves the addition of working memory in the form of an articulatory buffer for verbal communication protocols and a visuo-spatial buffer for communications via digital datalink. The second enhancement is a representation of multiple operators working as a team. This enhanced model was used to predict the performance of human flight crews and their level of compliance with commercial aviation communication procedures. We show how the data produced by MIDAS compares with flight crew performance data from full mission simulations. Finally, we discuss the use of these features to study communications issues connected with aircraft-based separation assurance.

  1. Dynamic task allocation for a man-machine symbiotic system

    NASA Technical Reports Server (NTRS)

    Parker, L. E.; Pin, F. G.

    1987-01-01

    This report presents a methodological approach to the dynamic allocation of tasks in a man-machine symbiotic system in the context of dexterous manipulation and teleoperation. This report addresses a symbiotic system containing two symbiotic partners which work toward controlling a single manipulator arm for the execution of a series of sequential manipulation tasks. It is proposed that an automated task allocator use knowledge about the constraints/criteria of the problem, the available resources, the tasks to be performed, and the environment to dynamically allocate task recommendations for the man and the machine. The presentation of the methodology includes discussions concerning the interaction of the knowledge areas, the flow of control, the necessary communication links, and the replanning of the task allocation. Examples of task allocation are presented to illustrate the results of this methodolgy.

  2. Teleoperator Human Factors Study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    An investigation of the spectrum of space teleoperation activities likely in the 1985 to 1995 decade focused on the resolution of critical human engineering issues and characterization of the technology effect on performance of remote human operators. The study began with the identification and documentation of a set of representative reference teleoperator tasks. For each task, technology, development, and design options, issues, and alternatives that bear on human operator performance were defined and categorized. A literature survey identified existing studies of man/machine issues. For each teleoperations category, an assessment was made of the state of knowledge on a scale from adequate to void. The tests, experiments, and analyses necessary to provide the missing elements of knowledge were then defined. A limited set of tests were actually performed, including operator selection, baseline task definition, control mode study, lighting study, camera study, and preliminary time delay study.

  3. USSR Space Life Sciences Digest, Issue 18

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 18th issue of NASA's USSR Life Sciences Digest. It contains abstracts of 50 papers published in Russian language periodicals or presented at conferences and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a recent Aviation Medicine Handbook is also included. The abstracts in this issue have been identified as relevant to 37 areas of space biology and medicine. These areas are: adaptation, aviation medicine, biological rhythms, biospherics, body fluids, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, gravitational biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, space biology and medicine, and space industrialization.

  4. USSR Space Life Sciences Digest, issue 16

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Siegel, Bette (Editor); Donaldson, P. Lynn (Editor); Leveton, Lauren B. (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the sixteenth issue of NASA's USSR Life Sciences Digest. It contains abstracts of 57 papers published in Russian language periodicals or presented at conferences and of 2 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is the review of a book concerned with metabolic response to the stress of space flight. The abstracts included in this issue are relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, bionics, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, gastrointestinal system, genetics, gravitational biology, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, and space biology.

  5. Future Cyborgs: Human-Machine Interface for Virtual Reality Applications

    DTIC Science & Technology

    2007-04-01

    FUTURE CYBORGS : HUMAN-MACHINE INTERFACE FOR VIRTUAL REALITY APPLICATIONS Robert R. Powell, Major, USAF April 2007 Blue Horizons...SUBTITLE Future Cyborgs : Human-Machine Interface for Virtual Reality Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Nicholas Negroponte, Being Digital (New York: Alfred A Knopf, Inc, 1995), 123. 23 Ibid. 24 Andy Clark, Natural-Born Cyborgs (New York: Oxford

  6. Skylab materials processing facility experiment developer's report

    NASA Technical Reports Server (NTRS)

    Parks, P. G.

    1975-01-01

    The development of the Skylab M512 Materials Processing Facility is traced from the design of a portable, self-contained electron beam welding system for terrestrial applications to the highly complex experiment system ultimately developed for three Skylab missions. The M512 experiment facility was designed to support six in-space experiments intended to explore the advantages of manufacturing materials in the near-zero-gravity environment of Earth orbit. Detailed descriptions of the M512 facility and related experiment hardware are provided, with discussions of hardware verification and man-machine interfaces included. An analysis of the operation of the facility and experiments during the three Skylab missions is presented, including discussions of the hardware performance, anomalies, and data returned to earth.

  7. Operations management system

    NASA Technical Reports Server (NTRS)

    Brandli, A. E.; Eckelkamp, R. E.; Kelly, C. M.; Mccandless, W.; Rue, D. L.

    1990-01-01

    The objective of an operations management system is to provide an orderly and efficient method to operate and maintain aerospace vehicles. Concepts are described for an operations management system and the key technologies are highlighted which will be required if this capability is brought to fruition. Without this automation and decision aiding capability, the growing complexity of avionics will result in an unmanageable workload for the operator, ultimately threatening mission success or survivability of the aircraft or space system. The key technologies include expert system application to operational tasks such as replanning, equipment diagnostics and checkout, global system management, and advanced man machine interfaces. The economical development of operations management systems, which are largely software, will require advancements in other technological areas such as software engineering and computer hardware.

  8. Explicit solution techniques for impact with contact constraints

    NASA Technical Reports Server (NTRS)

    Mccarty, Robert E.

    1993-01-01

    Modern military aircraft transparency systems, windshields and canopies, are complex systems which must meet a large and rapidly growing number of requirements. Many of these transparency system requirements are conflicting, presenting difficult balances which must be achieved. One example of a challenging requirements balance or trade is shaping for stealth versus aircrew vision. The large number of requirements involved may be grouped in a variety of areas including man-machine interface; structural integration with the airframe; combat hazards; environmental exposures; and supportability. Some individual requirements by themselves pose very difficult, severely nonlinear analysis problems. One such complex problem is that associated with the dynamic structural response resulting from high energy bird impact. An improved analytical capability for soft-body impact simulation was developed.

  9. Explicit solution techniques for impact with contact constraints

    NASA Astrophysics Data System (ADS)

    McCarty, Robert E.

    1993-08-01

    Modern military aircraft transparency systems, windshields and canopies, are complex systems which must meet a large and rapidly growing number of requirements. Many of these transparency system requirements are conflicting, presenting difficult balances which must be achieved. One example of a challenging requirements balance or trade is shaping for stealth versus aircrew vision. The large number of requirements involved may be grouped in a variety of areas including man-machine interface; structural integration with the airframe; combat hazards; environmental exposures; and supportability. Some individual requirements by themselves pose very difficult, severely nonlinear analysis problems. One such complex problem is that associated with the dynamic structural response resulting from high energy bird impact. An improved analytical capability for soft-body impact simulation was developed.

  10. Effectiveness of basic display augmentation in vehicular control by visual field cues

    NASA Technical Reports Server (NTRS)

    Grunwald, A. J.; Merhav, S. J.

    1978-01-01

    The paper investigates the effectiveness of different basic display augmentation concepts - fixed reticle, velocity vector, and predicted future vehicle path - for RPVs controlled by a vehicle-mounted TV camera. The task is lateral manual control of a low flying RPV along a straight reference line in the presence of random side gusts. The man-machine system and the visual interface are modeled as a linear time-invariant system. Minimization of a quadratic performance criterion is assumed to underlie the control strategy of a well-trained human operator. The solution for the optimal feedback matrix enables the explicit computation of the variances of lateral deviation and directional error of the vehicle and of the control force that are used as performance measures.

  11. Complete scanpaths analysis toolbox.

    PubMed

    Augustyniak, Piotr; Mikrut, Zbigniew

    2006-01-01

    This paper presents a complete open software environment for control, data processing and assessment of visual experiments. Visual experiments are widely used in research on human perception physiology and the results are applicable to various visual information-based man-machine interfacing, human-emulated automatic visual systems or scanpath-based learning of perceptual habits. The toolbox is designed for Matlab platform and supports infra-red reflection-based eyetracker in calibration and scanpath analysis modes. Toolbox procedures are organized in three layers: the lower one, communicating with the eyetracker output file, the middle detecting scanpath events on a physiological background and the one upper consisting of experiment schedule scripts, statistics and summaries. Several examples of visual experiments carried out with use of the presented toolbox complete the paper.

  12. Exploration and Reflection on Teachers' Self-Growth under Network Environment

    ERIC Educational Resources Information Center

    Li, Shuang

    2010-01-01

    As is well known, it is network that has turned the traditional "man-man" educational system made up of by only teachers and students into a new system of "man-machine-man" composed of network as well as teachers and students. In the new system, teachers' authority has been lowered sharply because students also have access to…

  13. Effects of checklist interface on non-verbal crew communications

    NASA Technical Reports Server (NTRS)

    Segal, Leon D.

    1994-01-01

    The investigation looked at the effects of the spatial layout and functionality of cockpit displays and controls on crew communication. Specifically, the study focused on the intra-cockpit crew interaction, and subsequent task performance, of airline pilots flying different configurations of a new electronic checklist, designed and tested in a high-fidelity simulator at NASA Ames Research Center. The first part of this proposal establishes the theoretical background for the assumptions underlying the research, suggesting that in the context of the interaction between a multi-operator crew and a machine, the design and configuration of the interface will affect interactions between individual operators and the machine, and subsequently, the interaction between operators. In view of the latest trends in cockpit interface design and flight-deck technology, in particular, the centralization of displays and controls, the introduction identifies certain problems associated with these modern designs and suggests specific design issues to which the expected results could be applied. A detailed research program and methodology is outlined and the results are described and discussed. Overall, differences in cockpit design were shown to impact the activity within the cockpit, including interactions between pilots and aircraft and the cooperative interactions between pilots.

  14. Human Factors in Accidents Involving Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Merlin, Peter William

    2013-01-01

    This presentation examines human factors that contribute to RPA mishaps and provides analysis of lessons learned. RPA accident data from U.S. military and government agencies were reviewed and analyzed to identify human factors issues. Common contributors to RPA mishaps fell into several major categories: cognitive factors (pilot workload), physiological factors (fatigue and stress), environmental factors (situational awareness), staffing factors (training and crew coordination), and design factors (human machine interface).

  15. Wireless communication links for brain-machine interface applications

    NASA Astrophysics Data System (ADS)

    Larson, L.

    2016-05-01

    Recent technological developments have given neuroscientists direct access to neural signals in real time, with the accompanying ability to decode the resulting information and control various prosthetic devices and gain insight into deeper aspects of cognition. These developments - along with deep brain stimulation for Parkinson's disease and the possible use of electro-stimulation for other maladies - leads to the conclusion that the widespread use electronic brain interface technology is a long term possibility. This talk will summarize the various technical challenges and approaches that have been developed to wirelessly communicate with the brain, including technology constraints, dc power limits, compression and data rate issues.

  16. An Analysis of the Multiple Objective Capital Budgeting Problem via Fuzzy Linear Integer (0-1) Programming.

    DTIC Science & Technology

    1980-05-31

    34 International Journal of Man- Machine Studies , Vol. 9, No. 1, 1977, pp. 1-68. [16] Zimmermann, H. J., Theory and Applications of Fuzzy Sets, Institut...Boston, Inc., Hingham, MA, 1978. [18] Yager, R. R., "Multiple Objective Decision-Making Using Fuzzy Sets," International Journal of Man- Machine Studies ...Professor of Industria Engineering ... iv t TABLE OF CONTENTS page ABSTRACT .. .. . ...... . .... ...... ........ iii LIST OF TABLES

  17. Army-NASA aircrew/aircraft integration program: Phase 4 A(3)I Man-Machine Integration Design and Analysis System (MIDAS) software detailed design document

    NASA Technical Reports Server (NTRS)

    Banda, Carolyn; Bushnell, David; Chen, Scott; Chiu, Alex; Constantine, Betsy; Murray, Jerry; Neukom, Christian; Prevost, Michael; Shankar, Renuka; Staveland, Lowell

    1991-01-01

    The Man-Machine Integration Design and Analysis System (MIDAS) is an integrated suite of software components that constitutes a prototype workstation to aid designers in applying human factors principles to the design of complex human-machine systems. MIDAS is intended to be used at the very early stages of conceptual design to provide an environment wherein designers can use computational representations of the crew station and operator, instead of hardware simulators and man-in-the-loop studies, to discover problems and ask 'what if' questions regarding the projected mission, equipment, and environment. This document is the Software Product Specification for MIDAS. Introductory descriptions of the processing requirements, hardware/software environment, structure, I/O, and control are given in the main body of the document for the overall MIDAS system, with detailed discussion of the individual modules included in Annexes A-J.

  18. Study on intelligent processing system of man-machine interactive garment frame model

    NASA Astrophysics Data System (ADS)

    Chen, Shuwang; Yin, Xiaowei; Chang, Ruijiang; Pan, Peiyun; Wang, Xuedi; Shi, Shuze; Wei, Zhongqian

    2018-05-01

    A man-machine interactive garment frame model intelligent processing system is studied in this paper. The system consists of several sensor device, voice processing module, mechanical parts and data centralized acquisition devices. The sensor device is used to collect information on the environment changes brought by the body near the clothes frame model, the data collection device is used to collect the information of the environment change induced by the sensor device, voice processing module is used for speech recognition of nonspecific person to achieve human-machine interaction, mechanical moving parts are used to make corresponding mechanical responses to the information processed by data collection device.it is connected with data acquisition device by a means of one-way connection. There is a one-way connection between sensor device and data collection device, two-way connection between data acquisition device and voice processing module. The data collection device is one-way connection with mechanical movement parts. The intelligent processing system can judge whether it needs to interact with the customer, realize the man-machine interaction instead of the current rigid frame model.

  19. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN.

    PubMed

    Bascil, M Serdar; Tesneli, Ahmet Y; Temurtas, Feyzullah

    2016-09-01

    Brain computer interface (BCI) is a new communication way between man and machine. It identifies mental task patterns stored in electroencephalogram (EEG). So, it extracts brain electrical activities recorded by EEG and transforms them machine control commands. The main goal of BCI is to make available assistive environmental devices for paralyzed people such as computers and makes their life easier. This study deals with feature extraction and mental task pattern recognition on 2-D cursor control from EEG as offline analysis approach. The hemispherical power density changes are computed and compared on alpha-beta frequency bands with only mental imagination of cursor movements. First of all, power spectral density (PSD) features of EEG signals are extracted and high dimensional data reduced by principle component analysis (PCA) and independent component analysis (ICA) which are statistical algorithms. In the last stage, all features are classified with two types of support vector machine (SVM) which are linear and least squares (LS-SVM) and three different artificial neural network (ANN) structures which are learning vector quantization (LVQ), multilayer neural network (MLNN) and probabilistic neural network (PNN) and mental task patterns are successfully identified via k-fold cross validation technique.

  20. Learning Processes in Man, Machine and Society

    ERIC Educational Resources Information Center

    Malita, Mircea

    1977-01-01

    Deciphering the learning mechanism which exists in man remains to be solved. This article examines the learning process with respect to association and cybernetics. It is recommended that research should focus on the transdisciplinary processes of learning which could become the next key concept in the science of man. (Author/MA)

  1. Descartes' pineal neuropsychology.

    PubMed

    Smith, C U

    1998-02-01

    The year 1996 marked the quattrocentenary of Descartes' birth. This paper reviews his pineal neuropsychology. It demonstrates that Descartes understood the true anatomical position of the pineal. His intraventricular pineal (or glande H) was a theoretical construct which allowed him to describe the operations of his man-like "earthen machine." In the Treatise of Man he shows how all the behaviors of such machines could then be accounted for without the presence of self-consciousness. Infrahuman animals are "conscious automata." In Passions of the Soul he adds, but only for humans, self-consciousness to the machine. In a modern formulation, only humans not only know but know that they know. Copyright 1998 Academic Press.

  2. NASA's Man-Systems Integration Standards: A Human Factors Engineering Standard for Everyone in the Nineties

    NASA Technical Reports Server (NTRS)

    Booher, Cletis R.; Goldsberry, Betty S.

    1994-01-01

    During the second half of the 1980s, a document was created by the National Aeronautics and Space Administration (NASA) to aid in the application of good human factors engineering and human interface practices to the design and development of hardware and systems for use in all United States manned space flight programs. This comprehensive document, known as NASA-STD-3000, the Man-Systems Integration Standards (MSIS), attempts to address, from a human factors engineering/human interface standpoint, all of the various types of equipment with which manned space flight crew members must deal. Basically, all of the human interface situations addressed in the MSIS are present in terrestrially based systems also. The premise of this paper is that, starting with this already created standard, comprehensive documents addressing human factors engineering and human interface concerns could be developed to aid in the design of almost any type of equipment or system which humans interface with in any terrestrial environment. Utilizing the systems and processes currently in place in the MSIS Development Facility at the Johnson Space Center in Houston, TX, any number of MSIS volumes addressing the human factors / human interface needs of any terrestrially based (or, for that matter, airborne) system could be created.

  3. A Qualitative Model of Human Interaction with Complex Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1987-01-01

    A qualitative model describing human interaction with complex dynamic systems is developed. The model is hierarchical in nature and consists of three parts: a behavior generator, an internal model, and a sensory information processor. The behavior generator is responsible for action decomposition, turning higher level goals or missions into physical action at the human-machine interface. The internal model is an internal representation of the environment which the human is assumed to possess and is divided into four submodel categories. The sensory information processor is responsible for sensory composition. All three parts of the model act in consort to allow anticipatory behavior on the part of the human in goal-directed interaction with dynamic systems. Human workload and error are interpreted in this framework, and the familiar example of an automobile commute is used to illustrate the nature of the activity in the three model elements. Finally, with the qualitative model as a guide, verbal protocols from a manned simulation study of a helicopter instrument landing task are analyzed with particular emphasis on the effect of automation on human-machine performance.

  4. A qualitative model of human interaction with complex dynamic systems

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1987-01-01

    A qualitative model describing human interaction with complex dynamic systems is developed. The model is hierarchical in nature and consists of three parts: a behavior generator, an internal model, and a sensory information processor. The behavior generator is responsible for action decomposition, turning higher level goals or missions into physical action at the human-machine interface. The internal model is an internal representation of the environment which the human is assumed to possess and is divided into four submodel categories. The sensory information processor is responsible for sensory composition. All three parts of the model act in consort to allow anticipatory behavior on the part of the human in goal-directed interaction with dynamic systems. Human workload and error are interpreted in this framework, and the familiar example of an automobile commute is used to illustrate the nature of the activity in the three model elements. Finally, with the qualitative model as a guide, verbal protocols from a manned simulation study of a helicopter instrument landing task are analyzed with particular emphasis on the effect of automation on human-machine performance.

  5. A force-controllable macro-micro manipulator and its application to medical robots

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Uecker, Darrin R.; Wang, Yulun

    1994-01-01

    This paper describes an 8-degrees-of-freedom macro-micro robot. This robot is capable of performing tasks that require accurate force control, such as polishing, finishing, grinding, deburring, and cleaning. The design of the macro-micro mechanism, the control algorithms, and the hardware/software implementation of the algorithms are described in this paper. Initial experimental results are reported. In addition, this paper includes a discussion of medical surgery and the role that force control may play. We introduce a new class of robotic systems collectively called Robotic Enhancement Technology (RET). RET systems introduce the combination of robotic manipulation with human control to perform manipulation tasks beyond the individual capability of either human or machine. The RET class of robotic systems offers new challenges in mechanism design, control-law development, and man/machine interface design. We believe force-controllable mechanisms such as the macro-micro structure we have developed are a necessary part of RET. Work in progress in the area of RET systems and their application to minimally invasive surgery is presented, along with future research directions.

  6. Vocal emotion of humanoid robots: a study from brain mechanism.

    PubMed

    Wang, Youhui; Hu, Xiaohua; Dai, Weihui; Zhou, Jie; Kuo, Taitzong

    2014-01-01

    Driven by rapid ongoing advances in humanoid robot, increasing attention has been shifted into the issue of emotion intelligence of AI robots to facilitate the communication between man-machines and human beings, especially for the vocal emotion in interactive system of future humanoid robots. This paper explored the brain mechanism of vocal emotion by studying previous researches and developed an experiment to observe the brain response by fMRI, to analyze vocal emotion of human beings. Findings in this paper provided a new approach to design and evaluate the vocal emotion of humanoid robots based on brain mechanism of human beings.

  7. Proceedings of the NASA Conference on Space Telerobotics, volume 5

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotics technology to the space systems planned for the 1990's and beyond. Volume 5 contains papers related to the following subject areas: robot arm modeling and control, special topics in telerobotics, telerobotic space operations, manipulator control, flight experiment concepts, manipulator coordination, issues in artificial intelligence systems, and research activities at the Johnson Space Center.

  8. SAINT: A combined simulation language for modeling man-machine systems

    NASA Technical Reports Server (NTRS)

    Seifert, D. J.

    1979-01-01

    SAINT (Systems Analysis of Integrated Networks of Tasks) is a network modeling and simulation technique for design and analysis of complex man machine systems. SAINT provides the conceptual framework for representing systems that consist of discrete task elements, continuous state variables, and interactions between them. It also provides a mechanism for combining human performance models and dynamic system behaviors in a single modeling structure. The SAINT technique is described and applications of the SAINT are discussed.

  9. Designing berthing mechanisms for international compatibility

    NASA Technical Reports Server (NTRS)

    Winch, John; Gonzalez-Vallejo, Juan J.

    1991-01-01

    The paper examines the technological issues regarding common berthing interfaces for the Space Station Freedom and pressurized modules from U.S., European, and Japanese space programs. The development of the common berthing mechanism (CBM) is based on common requirements concerning specifications, launch environments, and the unique requirements of ESA's Man-Tended Free Flyer. The berthing mechanism is composed of an active and a passive half, a remote manipulator system, 4 capture-latch assemblies, 16 structural bolts, and a pressure gage to verify equalization. Extensive graphic and verbal descriptions of each element are presented emphasizing the capture-latch motion and powered-bolt operation. The support systems to complete the interface are listed, and the manufacturing requirements for consistent fabrication are discussed to ensure effective international development.

  10. Learning Machine, Vietnamese Based Human-Computer Interface.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    The sixth session of IT@EDU98 consisted of seven papers on the topic of the learning machine--Vietnamese based human-computer interface, and was chaired by Phan Viet Hoang (Informatics College, Singapore). "Knowledge Based Approach for English Vietnamese Machine Translation" (Hoang Kiem, Dinh Dien) presents the knowledge base approach,…

  11. USSR Space Life Sciences Digest, issue 19

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 19th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 47 papers published in Russian language periodicals or presented at conferences and of 5 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Reports on two conferences, one on adaptation to high altitudes, and one on space and ecology are presented. A book review of a recent work on high altitude physiology is also included. The abstracts in this issue have been identified as relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  12. Nanoscale wear and machining behavior of nanolayer interfaces.

    PubMed

    Nie, Xueyuan; Zhang, Peng; Weiner, Anita M; Cheng, Yang-Tse

    2005-10-01

    An atomic force microscope was used to subnanometer incise a nanomultilayer to consequently expose individual nanolayers and interfaces on which sliding and scanning nanowear/machining have been performed. The letter reports the first observation on the nanoscale where (i) atomic debris forms in a collective manner, most-likely by deformation and rupture of atomic bonds, and (ii) the nanolayer interfaces possess a much higher wear resistance (desired for nanomachines) or lower machinability (not desired for nanomachining) than the layers.

  13. Best face forward.

    PubMed

    Rayport, Jeffrey F; Jaworski, Bernard J

    2004-12-01

    Most companies serve customers through a broad array of interfaces, from retail sales clerks to Web sites to voice-response telephone systems. But while the typical company has an impressive interface collection, it doesn't have an interface system. That is, the whole set does not add up to the sum of its parts in its ability to provide service and build customer relationships. Too many people and too many machines operating with insufficient coordination (and often at cross-purposes) mean rising complexity, costs, and customer dissatisfaction. In a world where companies compete not on what they sell but on how they sell it, turning that liability into an asset is what separates winners from losers. In this adaptation of their forthcoming book by the same title, Jeffrey Rayport and Bernard Jaworski explain how companies must reengineer their customer interface systems for optimal efficiency and effectiveness. Part of that transformation, they observe, will involve a steady encroachment by machine interfaces into areas that have long been the sacred province of humans. Managers now have opportunities unprecedented in the history of business to use machines, not just people, to credibly manage their interactions with customers. Because people and machines each have their strengths and weaknesses, company executives must identify what people do best, what machines do best, and how to deploy them separately and together. Front-office reengineering subjects every current and potential service interface to an analysis of opportunities for substitution (using machines instead of people), complementarity (using a mix of machines and people), and displacement (using networks to shift physical locations of people and machines), with the twin objectives of compressing costs and driving top-line growth through increased customer value.

  14. [Study for portable dynamic ECG monitor and recorder].

    PubMed

    Yang, Pengcheng; Li, Yongqin; Chen, Bihua

    2012-09-01

    This Paper presents a portable dynamic ECG monitor system based on MSP430F149 microcontroller. The electrocardiogram detecting system consists of ECG detecting circuit, man-machine interaction module, MSP430F149 and upper computer software. The ECG detecting circuit including a preamplifier, second-order Butterworth low-pass filter, high-pass filter, and 50Hz trap circuit to detects electrocardiogram and depresses various kinds of interference effectively. A microcontroller is used to collect three channel analog signals which can be displayed on TFT LCD. A SD card is used to record real-time data continuously and implement the FTA16 file system. In the end, a host computer system interface is also designed to analyze the ECG signal and the analysis results can provide diagnosis references to clinical doctors.

  15. Hitts Law? A test of the relationship between information load and movement precision

    NASA Technical Reports Server (NTRS)

    Zaleski, M.; Moray, N.

    1986-01-01

    Recent technological developments have made viable a man-machine interface heavily dependent on graphics and pointing devices. This has led to new interest in classical reaction and movement time work by Human Factors specialists. Two experiments were designed and run to test the dependence of target capture time on information load (Hitt's Law) and movement precision (Fitts' Law). The proposed model linearly combines Hitt's and Fitts' results into a combination law which then might be called Hitts' Law. Subjects were required to react to stimuli by manipulating a joystick so as to cause a cursor to capture a target on a CRT screen. Response entropy and the relative precision of the capture movement were crossed in a factorial design and data obtained that were found to support the model.

  16. Lunar exploration rover program developments

    NASA Technical Reports Server (NTRS)

    Klarer, P. R.

    1994-01-01

    The Robotic All Terrain Lunar Exploration Rover (RATLER) design concept began at Sandia National Laboratories in late 1991 with a series of small, proof-of-principle, working scale models. The models proved the viability of the concept for high mobility through mechanical simplicity, and eventually received internal funding at Sandia National Laboratories for full scale, proof-of-concept prototype development. Whereas the proof-of-principle models demonstrated the mechanical design's capabilities for mobility, the full scale proof-of-concept design currently under development is intended to support field operations for experiments in telerobotics, autonomous robotic operations, telerobotic field geology, and advanced man-machine interface concepts. The development program's current status is described, including an outline of the program's work over the past year, recent accomplishments, and plans for follow-on development work.

  17. Producing smart sensing films by means of organic field effect transistors.

    PubMed

    Manunza, Ileana; Orgiu, Emanuele; Caboni, Alessandra; Barbaro, Massimo; Bonfiglio, Annalisa

    2006-01-01

    We have fabricated the first example of totally flexible field effect device for chemical detection based on an organic field effect transistor (OFET) made by pentacene films grown on flexible plastic structures. The ion sensitivity is achieved by employing a thin Mylar foil as gate dielectric. A sensitivity of the device to the pH of the electrolyte solution has been observed A similar structure can be used also for detecting mechanical deformations on flexible surfaces. Thanks to the flexibility of the substrate and the low cost of the employed technology, these devices open the way for the production of flexible chemical and strain gauge sensors that can be employed in a variety of innovative applications such as wearable electronics, e-textiles, new man-machine interfaces.

  18. Automated subsystems control development. [for life support systems of space station

    NASA Technical Reports Server (NTRS)

    Block, R. F.; Heppner, D. B.; Samonski, F. H., Jr.; Lance, N., Jr.

    1985-01-01

    NASA has the objective to launch a Space Station in the 1990s. It has been found that the success of the Space Station engineering development, the achievement of initial operational capability (IOC), and the operation of a productive Space Station will depend heavily on the implementation of an effective automation and control approach. For the development of technology needed to implement the required automation and control function, a contract entitled 'Automated Subsystems Control for Life Support Systems' (ASCLSS) was awarded to two American companies. The present paper provides a description of the ASCLSS program. Attention is given to an automation and control architecture study, a generic automation and control approach for hardware demonstration, a standard software approach, application of Air Revitalization Group (ARG) process simulators, and a generic man-machine interface.

  19. Self-assembling fluidic machines

    NASA Astrophysics Data System (ADS)

    Grzybowski, Bartosz A.; Radkowski, Michal; Campbell, Christopher J.; Lee, Jessamine Ng; Whitesides, George M.

    2004-03-01

    This letter describes dynamic self-assembly of two-component rotors floating at the interface between liquid and air into simple, reconfigurable mechanical systems ("machines"). The rotors are powered by an external, rotating magnetic field, and their positions within the interface are controlled by: (i) repulsive hydrodynamic interactions between them and (ii) by localized magnetic fields produced by an array of small electromagnets located below the plane of the interface. The mechanical functions of the machines depend on the spatiotemporal sequence of activation of the electromagnets.

  20. Pixels, people, perception, pet peeves, and possibilities: a look at displays

    NASA Astrophysics Data System (ADS)

    Task, H. Lee

    2007-04-01

    This year marks the 35 th anniversary of the Visually Coupled Systems symposium held at Brooks Air Force Base, San Antonio, Texas in November of 1972. This paper uses the proceedings of the 1972 VCS symposium as a guide to address several topics associated primarily with helmet-mounted displays, systems integration and the human-machine interface. Specific topics addressed include monocular and binocular helmet-mounted displays (HMDs), visor projection HMDs, color HMDs, system integration with aircraft windscreens, visual interface issues and others. In addition, this paper also addresses a few mysteries and irritations (pet peeves) collected over the past 35+ years of experience in the display and display related areas.

  1. Design Control Systems of Human Machine Interface in the NTVS-2894 Seat Grinder Machine to Increase the Productivity

    NASA Astrophysics Data System (ADS)

    Ardi, S.; Ardyansyah, D.

    2018-02-01

    In the Manufacturing of automotive spare parts, increased sales of vehicles is resulted in increased demand for production of engine valve of the customer. To meet customer demand, we carry out improvement and overhaul of the NTVS-2894 seat grinder machine on a machining line. NTVS-2894 seat grinder machine has been decreased machine productivity, the amount of trouble, and the amount of downtime. To overcome these problems on overhaul the NTVS-2984 seat grinder machine include mechanical and programs, is to do the design and manufacture of HMI (Human Machine Interface) GP-4501T program. Because of the time prior to the overhaul, NTVS-2894 seat grinder machine does not have a backup HMI (Human Machine Interface) program. The goal of the design and manufacture in this program is to improve the achievement of production, and allows an operator to operate beside it easier to troubleshoot the NTVS-2894 seat grinder machine thereby reducing downtime on the NTVS-2894 seat grinder machine. The results after the design are HMI program successfully made it back, machine productivity increased by 34.8%, the amount of trouble, and downtime decreased 40% decrease from 3,160 minutes to 1,700 minutes. The implication of our design, it could facilitate the operator in operating machine and the technician easer to maintain and do the troubleshooting the machine problems.

  2. Army-NASA aircrew/aircraft integration program. Phase 5: A3I Man-Machine Integration Design and Analysis System (MIDAS) software concept document

    NASA Technical Reports Server (NTRS)

    Banda, Carolyn; Bushnell, David; Chen, Scott; Chiu, Alex; Neukom, Christian; Nishimura, Sayuri; Prevost, Michael; Shankar, Renuka; Staveland, Lowell; Smith, Greg

    1992-01-01

    This is the Software Concept Document for the Man-machine Integration Design and Analysis System (MIDAS) being developed as part of Phase V of the Army-NASA Aircrew/Aircraft Integration (A3I) Progam. The approach taken in this program since its inception in 1984 is that of incremental development with clearly defined phases. Phase 1 began in 1984 and subsequent phases have progressed at approximately 10-16 month intervals. Each phase of development consists of planning, setting requirements, preliminary design, detailed design, implementation, testing, demonstration and documentation. Phase 5 began with an off-site planning meeting in November, 1990. It is expected that Phase 5 development will be complete and ready for demonstration to invited visitors from industry, government and academia in May, 1992. This document, produced during the preliminary design period of Phase 5, is intended to record the top level design concept for MIDAS as it is currently conceived. This document has two main objectives: (1) to inform interested readers of the goals of the MIDAS Phase 5 development period, and (2) to serve as the initial version of the MIDAS design document which will be continuously updated as the design evolves. Since this document is written fairly early in the design period, many design issues still remain unresolved. Some of the unresolved issues are mentioned later in this document in the sections on specific components. Readers are cautioned that this is not a final design document and that, as the design of MIDAS matures, some of the design ideas recorded in this document will change. The final design will be documented in a detailed design document published after the demonstrations.

  3. Tactile stimulations and wheel rotation responses: toward augmented lane departure warning systems

    PubMed Central

    Tandonnet, Christophe; Burle, Borís; Vidal, Franck; Hasbroucq, Thierry

    2014-01-01

    When an on-board system detects a drift of a vehicle to the left or to the right, in what way should the information be delivered to the driver? Car manufacturers have so far neglected relevant results from Experimental Psychology and Cognitive Neuroscience. Here we show that this situation possibly led to the sub-optimal design of a lane departure warning system (AFIL, PSA Peugeot Citroën) implemented in commercially available automobile vehicles. Twenty participants performed a two-choice reaction time task in which they were to respond by clockwise or counter-clockwise wheel-rotations to tactile stimulations of their left or right wrist. They performed poorer when responding counter-clockwise to the right vibration and clockwise to the left vibration (incompatible mapping) than when responding according to the reverse (compatible) mapping. This suggests that AFIL implements the worse (incompatible) mapping for the operators. This effect depended on initial practice with the interface. The present research illustrates how basic approaches in Cognitive Science may benefit to Human Factors Engineering and ultimately improve man-machine interfaces and show how initial learning can affect interference effects. PMID:25324791

  4. Accelerator controls at CERN: Some converging trends

    NASA Astrophysics Data System (ADS)

    Kuiper, B.

    1990-08-01

    CERN's growing services to the high-energy physics community using frozen resources has led to the implementation of "Technical Boards", mandated to assist the management by making recommendations for rationalizations in various technological domains. The Board on Process Control and Electronics for Accelerators, TEBOCO, has emphasized four main lines which might yield economy in resources. First, a common architecture for accelerator controls has been agreed between the three accelerator divisions. Second, a common hardware/software kit has been defined, from which the large majority of future process interfacing may be composed. A support service for this kit is an essential part of the plan. Third, high-level protocols have been developed for standardizing access to process devices. They derive from agreed standard models of the devices and involve a standard control message. This should ease application development and mobility of equipment. Fourth, a common software engineering methodology and a commercial package of application development tools have been adopted. Some rationalization in the field of the man-machine interface and in matters of synchronization is also under way.

  5. Gloved Human-Machine Interface

    NASA Technical Reports Server (NTRS)

    Adams, Richard (Inventor); Hannaford, Blake (Inventor); Olowin, Aaron (Inventor)

    2015-01-01

    Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to: tracking movement of a gloved hand of a human; interpreting a gloved finger movement of the human; and/or in response to interpreting the gloved finger movement, providing feedback to the human.

  6. Interface Metaphors for Interactive Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasper, Robert J.; Blaha, Leslie M.

    To promote more interactive and dynamic machine learn- ing, we revisit the notion of user-interface metaphors. User-interface metaphors provide intuitive constructs for supporting user needs through interface design elements. A user-interface metaphor provides a visual or action pattern that leverages a user’s knowledge of another domain. Metaphors suggest both the visual representations that should be used in a display as well as the interactions that should be afforded to the user. We argue that user-interface metaphors can also offer a method of extracting interaction-based user feedback for use in machine learning. Metaphors offer indirect, context-based information that can be usedmore » in addition to explicit user inputs, such as user-provided labels. Implicit information from user interactions with metaphors can augment explicit user input for active learning paradigms. Or it might be leveraged in systems where explicit user inputs are more challenging to obtain. Each interaction with the metaphor provides an opportunity to gather data and learn. We argue this approach is especially important in streaming applications, where we desire machine learning systems that can adapt to dynamic, changing data.« less

  7. Feasibility of task-specific brain-machine interface training for upper-extremity paralysis in patients with chronic hemiparetic stroke.

    PubMed

    Nishimoto, Atsuko; Kawakami, Michiyuki; Fujiwara, Toshiyuki; Hiramoto, Miho; Honaga, Kaoru; Abe, Kaoru; Mizuno, Katsuhiro; Ushiba, Junichi; Liu, Meigen

    2018-01-10

    Brain-machine interface training was developed for upper-extremity rehabilitation for patients with severe hemiparesis. Its clinical application, however, has been limited because of its lack of feasibility in real-world rehabilitation settings. We developed a new compact task-specific brain-machine interface system that enables task-specific training, including reach-and-grasp tasks, and studied its clinical feasibility and effectiveness for upper-extremity motor paralysis in patients with stroke. Prospective beforeâ€"after study. Twenty-six patients with severe chronic hemiparetic stroke. Participants were trained with the brain-machine interface system to pick up and release pegs during 40-min sessions and 40 min of standard occupational therapy per day for 10 days. Fugl-Meyer upper-extremity motor (FMA) and Motor Activity Log-14 amount of use (MAL-AOU) scores were assessed before and after the intervention. To test its feasibility, 4 occupational therapists who operated the system for the first time assessed it with the Quebec User Evaluation of Satisfaction with assistive Technology (QUEST) 2.0. FMA and MAL-AOU scores improved significantly after brain-machine interface training, with the effect sizes being medium and large, respectively (p<0.01, d=0.55; p<0.01, d=0.88). QUEST effectiveness and safety scores showed feasibility and satisfaction in the clinical setting. Our newly developed compact brain-machine interface system is feasible for use in real-world clinical settings.

  8. Flexible software architecture for user-interface and machine control in laboratory automation.

    PubMed

    Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E

    1998-10-01

    We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.

  9. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    DTIC Science & Technology

    2014-09-01

    2004. He served as Guest Coeditor of a special issue on applied neurodynamics for the Journal of Neural Engineering with Dr. Peter Thomas in December...for the millions of individuals who are left with permanent motor and cognitive impairments after acquired brain injury, as occurs in stroke and...Other investigators have proposed a closed-loop approach for a cognitive prosthesis that has shown promise in animal models (40). Other potential

  10. Man-systems distributed system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Lewis, J. L.

    1990-01-01

    Viewgraphs on man-systems distributed system for Space Station Freedom are presented. Topics addressed include: description of man-systems (definition, requirements, scope, subsystems, and topologies); implementation (approach, tools); man-systems interfaces (system to element and system to system); prime/supporting development relationship; selected accomplishments; and technical challenges.

  11. The research of laser marking control technology

    NASA Astrophysics Data System (ADS)

    Zhang, Qiue; Zhang, Rong

    2009-08-01

    In the area of Laser marking, the general control method is insert control card to computer's mother board, it can not support hot swap, it is difficult to assemble or it. Moreover, the one marking system must to equip one computer. In the system marking, the computer can not to do the other things except to transmit marking digital information. Otherwise it can affect marking precision. Based on traditional control methods existed some problems, introduced marking graphic editing and digital processing by the computer finish, high-speed digital signal processor (DSP) control marking the whole process. The laser marking controller is mainly contain DSP2812, digital memorizer, DAC (digital analog converting) transform unit circuit, USB interface control circuit, man-machine interface circuit, and other logic control circuit. Download the marking information which is processed by computer to U disk, DSP read the information by USB interface on time, then processing it, adopt the DSP inter timer control the marking time sequence, output the scanner control signal by D/A parts. Apply the technology can realize marking offline, thereby reduce the product cost, increase the product efficiency. The system have good effect in actual unit markings, the marking speed is more quickly than PCI control card to 20 percent. It has application value in practicality.

  12. Defining brain-machine interface applications by matching interface performance with device requirements.

    PubMed

    Tonet, Oliver; Marinelli, Martina; Citi, Luca; Rossini, Paolo Maria; Rossini, Luca; Megali, Giuseppe; Dario, Paolo

    2008-01-15

    Interaction with machines is mediated by human-machine interfaces (HMIs). Brain-machine interfaces (BMIs) are a particular class of HMIs and have so far been studied as a communication means for people who have little or no voluntary control of muscle activity. In this context, low-performing interfaces can be considered as prosthetic applications. On the other hand, for able-bodied users, a BMI would only be practical if conceived as an augmenting interface. In this paper, a method is introduced for pointing out effective combinations of interfaces and devices for creating real-world applications. First, devices for domotics, rehabilitation and assistive robotics, and their requirements, in terms of throughput and latency, are described. Second, HMIs are classified and their performance described, still in terms of throughput and latency. Then device requirements are matched with performance of available interfaces. Simple rehabilitation and domotics devices can be easily controlled by means of BMI technology. Prosthetic hands and wheelchairs are suitable applications but do not attain optimal interactivity. Regarding humanoid robotics, the head and the trunk can be controlled by means of BMIs, while other parts require too much throughput. Robotic arms, which have been controlled by means of cortical invasive interfaces in animal studies, could be the next frontier for non-invasive BMIs. Combining smart controllers with BMIs could improve interactivity and boost BMI applications.

  13. A Function-Behavior-State Approach to Designing Human Machine Interface for Nuclear Power Plant Operators

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Zhang, W. J.

    2005-02-01

    This paper presents an approach to human-machine interface design for control room operators of nuclear power plants. The first step in designing an interface for a particular application is to determine information content that needs to be displayed. The design methodology for this step is called the interface design framework (called framework ). Several frameworks have been proposed for applications at varying levels, including process plants. However, none is based on the design and manufacture of a plant system for which the interface is designed. This paper presents an interface design framework which originates from design theory and methodology for general technical systems. Specifically, the framework is based on a set of core concepts of a function-behavior-state model originally proposed by the artificial intelligence research community and widely applied in the design research community. Benefits of this new framework include the provision of a model-based fault diagnosis facility, and the seamless integration of the design (manufacture, maintenance) of plants and the design of human-machine interfaces. The missing linkage between design and operation of a plant was one of the causes of the Three Mile Island nuclear reactor incident. A simulated plant system is presented to explain how to apply this framework in designing an interface. The resulting human-machine interface is discussed; specifically, several fault diagnosis examples are elaborated to demonstrate how this interface could support operators' fault diagnosis in an unanticipated situation.

  14. Man-equivalent telepresence through four fingered human-like hand system

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.

    1992-01-01

    The author describes a newly developed mechanical hand system. The robot hand is in human-like configuration with a thumb and three fingers, a palm, a wrist, and the forearm in which the hand and wrist actuators are located. Each finger and the wrist has its own active electromechanical compliance system, allowing the joint drive trains to be stiffened or loosened. This mechanism imitates the human muscle dual function of positioner and stiffness controller. This is essential for soft grappling operations. The hand-wrist assembly has 16 finger joints, three wrist joints, and five compliance mechanisms for a total of 24 degrees of freedom. The strength of the hand is roughly half that of the human hand and its size is comparable to a male hand. The hand is controlled through an exoskeleton glove controller that the operator wears. The glove provides the man-machine interface in telemanipulation control mode: it senses the operator's inputs to guide the mechanical hand in hybrid position and force control. The hand system is intended for dexterous manipulations in structured environments. Typical applications will include work in hostile environment such as space operations and nuclear power plants.

  15. Vocal Emotion of Humanoid Robots: A Study from Brain Mechanism

    PubMed Central

    Wang, Youhui; Hu, Xiaohua; Zhou, Jie; Kuo, Taitzong

    2014-01-01

    Driven by rapid ongoing advances in humanoid robot, increasing attention has been shifted into the issue of emotion intelligence of AI robots to facilitate the communication between man-machines and human beings, especially for the vocal emotion in interactive system of future humanoid robots. This paper explored the brain mechanism of vocal emotion by studying previous researches and developed an experiment to observe the brain response by fMRI, to analyze vocal emotion of human beings. Findings in this paper provided a new approach to design and evaluate the vocal emotion of humanoid robots based on brain mechanism of human beings. PMID:24587712

  16. Man-Machine Communication in Remote Manipulation: Task-Oriented Supervisory Command Language (TOSC).

    DTIC Science & Technology

    1980-03-01

    ORIENTED SUPERVISORY CONTROL SYSTEM METHODOLOGY 3-1 3.1 Overview 3-1 3.2 Background 3-3 3.2.1 General 3-3 3.2.2 Preliminary Principles of Command Language...Design 3-4 3.2.3 Preliminary Principles of Feedback Display Design 3-9 3.3 Man-Machine Communication Models 3-12 3.3.1 Background 3-12 3.3.2 Adapted...and feedback mode. The work ends with the presentation of a performance prediction model and a set of principles and guidelines, applicable to the

  17. Curriculum Focus: Occupations and the World of Work. Information Series 5.

    ERIC Educational Resources Information Center

    DeVore, Paul W.

    Technology is now and has been the single most important factor in man's transition. Those in education are faced with deciding whether technology shall serve man or man will be forced to be a cog in the machine. In determining the function of education, the decision will be a value judgement involving one of these two choices: (1) Continuing to…

  18. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.

    PubMed

    Lo, Chi-Chun; Chien, Tsung-Yi; Chen, Yu-Chun; Tsai, Shang-Ho; Fang, Wai-Chi; Lin, Bor-Shyh

    2016-02-06

    Motor imagery-based brain-computer interface (BCI) is a communication interface between an external machine and the brain. Many kinds of spatial filters are used in BCIs to enhance the electroencephalography (EEG) features related to motor imagery. The approach of channel selection, developed to reserve meaningful EEG channels, is also an important technique for the development of BCIs. However, current BCI systems require a conventional EEG machine and EEG electrodes with conductive gel to acquire multi-channel EEG signals and then transmit these EEG signals to the back-end computer to perform the approach of channel selection. This reduces the convenience of use in daily life and increases the limitations of BCI applications. In order to improve the above issues, a novel wearable channel selection-based brain-computer interface is proposed. Here, retractable comb-shaped active dry electrodes are designed to measure the EEG signals on a hairy site, without conductive gel. By the design of analog CAR spatial filters and the firmware of EEG acquisition module, the function of spatial filters could be performed without any calculation, and channel selection could be performed in the front-end device to improve the practicability of detecting motor imagery in the wearable EEG device directly or in commercial mobile phones or tablets, which may have relatively low system specifications. Finally, the performance of the proposed BCI is investigated, and the experimental results show that the proposed system is a good wearable BCI system prototype.

  19. Robotic Technology: An Assessment and Forecast,

    DTIC Science & Technology

    1984-07-01

    Research Associates# Inc. Dr. Roger Nagel# Lehigh University Dr. Charles Rosen# Machine Intelligence Corporations and Mr. Jack Thornton# Robot Insider...amr (Subcontractors: systems for assembly and Adopt Technology# inspection Stanford University. SRI) AFSC MANTECH o McDonnell Douglas o Machine ...supervisory controls man- machine interaction and system integration. - .. _ - Foreign R& The U.S. faces a strong technological challenge in robotics from

  20. Design of monitoring system for mail-sorting based on the Profibus S7 series PLC

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Jia, S. H.; Wang, Y. H.; Liu, H.; Tang, G. C.

    2017-01-01

    With the rapid development of the postal express, the workload of mail sorting is increasing, but the automatic technology of mail sorting is not mature enough. In view of this, the system uses Siemens S7-300 PLC as the main station controller, PLC of Siemens S7-200/400 is from the station controller, through the man-machine interface configuration software MCGS, PROFIBUS-DP communication, RFID technology and mechanical sorting hand achieve mail classification sorting monitoring. Among them, distinguish mail-sorting by scanning RFID posted in the mail electronic bar code (fixed code), the system uses the corresponding controller on the acquisition of information processing, the processed information transmit to the sorting manipulator by PROFIBUS-DP. The system can realize accurate and efficient mail sorting, which will promote the development of mail sorting technology.

  1. Design of Remote Monitoring System of Irrigation based on GSM and ZigBee Technology

    NASA Astrophysics Data System (ADS)

    Xiao xi, Zheng; Fang, Zhao; Shuaifei, Shao

    2018-03-01

    To solve the problems of low level of irrigation and waste of water resources, a remote monitoring system for farmland irrigation based on GSM communication technology and ZigBee technology was designed. The system is composed of sensors, GSM communication module, ZigBee module, host computer, valve and so on. The system detects and closes the pump and the electromagnetic valve according to the need of the system, and transmits the monitoring information to the host computer or the user’s Mobile phone through the GSM communication network. Experiments show that the system has low power consumption, friendly man-machine interface, convenient and simple. It can monitor agricultural environment remotely and control related irrigation equipment at any time and place, and can better meet the needs of remote monitoring of farmland irrigation.

  2. Initial utilization of the CVIRB video production facility

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V.; Busquets, Anthony M.; Hogge, Thomas W.

    1987-01-01

    Video disk technology is one of the central themes of a technology demonstrator workstation being assembled as a man/machine interface for the Space Station Data Management Test Bed at Johnson Space Center. Langley Research Center personnel involved in the conception and implementation of this workstation have assembled a video production facility to allow production of video disk material for this propose. This paper documents the initial familiarization efforts in the field of video production for those personnel and that facility. Although the entire video disk production cycle was not operational for this initial effort, the production of a simulated disk on video tape did acquaint the personnel with the processes involved and with the operation of the hardware. Invaluable experience in storyboarding, script writing, audio and video recording, and audio and video editing was gained in the production process.

  3. Symposium on Aviation Psychology, 1st, Ohio State University, Columbus, OH, April 21, 22, 1981, Proceedings

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The impact of modern technology on the role, responsibility, authority, and performance of human operators in modern aircraft and ATC systems was examined in terms of principles defined by Paul Fitts. Research into human factors in aircraft operations and the use of human factors engineering for aircraft safety improvements were discussed, and features of the man-machine interface in computerized cockpit warning systems are examined. The design and operational features of computerized avionics displays and HUDs are described, along with results of investigations into pilot decision-making behavior, aircrew procedural compliance, and aircrew judgment training programs. Experiments in vision and visual perception are detailed, as are behavioral studies of crew workload, coordination, and complement. The effectiveness of pilot selection, screening, and training techniques are assessed, as are methods for evaluating pilot performance.

  4. Study of aircraft centered navigation, guidance, and traffic situation system concept for terminal area operation

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Will, R. W.; Grantham, C.

    1972-01-01

    A concept for automating the control of air traffic in the terminal area in which the primary man-machine interface is the cockpit is described. The ground and airborne inputs required for implementing this concept are discussed. Digital data link requirements of 10,000 bits per second are explained. A particular implementation of this concept including a sequencing and separation algorithm which generates flight paths and implements a natural order landing sequence is presented. Onboard computer/display avionics utilizing a traffic situation display is described. A preliminary simulation of this concept has been developed which includes a simple, efficient sequencing algorithm and a complete aircraft dynamics model. This simulated jet transport was flown through automated terminal-area traffic situations by pilots using relatively sophisticated displays, and pilot performance and observations are discussed.

  5. The Apollo Lightcraft Project

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The overall goal for this NASA/USRA-sponsored 'Apollo Lightcraft Project' is to develop a revolutionary launch vehicle technology that can reduce payload transport costs by a factor of 1000 below the Space Shuttle Orbiter. The RPI design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. This second year focused on systems integration and analysis of the 'Apollo Lightcraft'. This beam-powered, single-stage-to-orbit vehicle is envisioned as the globe-trotting family shuttlecraft of the 21st century. Detailed investigations of the Apollo Lightcraft Project during the second year of study helped evolve the propulsion system design, while focusing on the following areas: (1) man/machine interface; (2) flight control systems; (3) power beaming system architecture; (4) reentry aerodynamics; (5) shroud structural dynamics; and (6) optimal trajectory analysis.

  6. The man/machine interface in information retrieval: Providing access to the casual user

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Granier, Martin

    1984-01-01

    This study is concerned with the difficulties encountered by casual users wishing to employ Information Storage and Retrieval Systems. A casual user is defined as a professional who has neither time nor desire to pursue in depth the study of the numerous and varied retrieval systems. His needs for on-line search are only occasional, and not limited to any particular system. The paper takes a close look at the state of the art of research concerned with aiding casual users of Information Storage and Retrieval Systems. Current experiments such as LEXIS, CONIT, IIDA, CITE, and CCL are presented and discussed. Comments and proposals are offered, specifically in the areas of training, learning and cost as experienced by the casual user. An extensive bibliography of recent works on the subject follows the text.

  7. Reservation centre of Telecom I satellite French Telecommunication network offers a new service of switched digital circuit

    NASA Astrophysics Data System (ADS)

    Felix, J.

    The management center and new circuit switching services offered by the French Telecom I network are described. Attention is focused on business services. The satellite has a 125 Mbit/sec capability distributed over 5 frequency bands, yielding the equivalent of 1800 channels. Data are transmitted in digitized bursts with TDMA techniques. Besides the management center, Telecom I interfaces with 310 local network antennas with access managed by the center through a reservation service and protocol assignment. The center logs and supervises alarms and network events, monitors traffic, logs taxation charges and manages the man-machine dialog for TDMA and terrestrial operations. Time slots are arranged in terms of minimal 10 min segments. The reservations can be directly accessed by up to 1000 terminals. All traffic is handled on a call-by-call basis.

  8. Computation of the Distribution of the Fiber-Matrix Interface Cracks in the Edge Trimming of CFRP

    NASA Astrophysics Data System (ADS)

    Wang, Fu-ji; Zhang, Bo-yu; Ma, Jian-wei; Bi, Guang-jian; Hu, Hai-bo

    2018-04-01

    Edge trimming is commonly used to bring the CFRP components to right dimension and shape in aerospace industries. However, various forms of undesirable machining damage occur frequently which will significantly decrease the material performance of CFRP. The damage is difficult to predict and control due to the complicated changing laws, causing unsatisfactory machining quality of CFRP components. Since the most of damage has the same essence: the fiber-matrix interface cracks, this study aims to calculate the distribution of them in edge trimming of CFRP, thereby to obtain the effects of the machining parameters, which could be helpful to guide the optimal selection of the machining parameters in engineering. Through the orthogonal cutting experiments, the quantitative relation between the fiber-matrix interface crack depth and the fiber cutting angle, cutting depth as well as cutting speed is established. According to the analysis on material removal process on any location of the workpiece in edge trimming, the instantaneous cutting parameters are calculated, and the formation process of the fiber-matrix interface crack is revealed. Finally, the computational method for the fiber-matrix interface cracks in edge trimming of CFRP is proposed. Upon the computational results, it is found that the fiber orientations of CFRP workpieces is the most significant factor on the fiber-matrix interface cracks, which can not only change the depth of them from micrometers to millimeters, but control the distribution image of them. Other machining parameters, only influence the fiber-matrix interface cracks depth but have little effect on the distribution image.

  9. Advanced automation for space missions: Technical summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Several representative missions which would require extensive applications of machine intelligence were identified and analyzed. The technologies which must be developed to accomplish these types of missions are discussed. These technologies include man-machine communication, space manufacturing, teleoperators, and robot systems.

  10. Research interface on a programmable ultrasound scanner.

    PubMed

    Shamdasani, Vijay; Bae, Unmin; Sikdar, Siddhartha; Yoo, Yang Mo; Karadayi, Kerem; Managuli, Ravi; Kim, Yongmin

    2008-07-01

    Commercial ultrasound machines in the past did not provide the ultrasound researchers access to raw ultrasound data. Lack of this ability has impeded evaluation and clinical testing of novel ultrasound algorithms and applications. Recently, we developed a flexible ultrasound back-end where all the processing for the conventional ultrasound modes, such as B, M, color flow and spectral Doppler, was performed in software. The back-end has been incorporated into a commercial ultrasound machine, the Hitachi HiVision 5500. The goal of this work is to develop an ultrasound research interface on the back-end for acquiring raw ultrasound data from the machine. The research interface has been designed as a software module on the ultrasound back-end. To increase the amount of raw ultrasound data that can be spooled in the limited memory available on the back-end, we have developed a method that can losslessly compress the ultrasound data in real time. The raw ultrasound data could be obtained in any conventional ultrasound mode, including duplex and triplex modes. Furthermore, use of the research interface does not decrease the frame rate or otherwise affect the clinical usability of the machine. The lossless compression of the ultrasound data in real time can increase the amount of data spooled by approximately 2.3 times, thus allowing more than 6s of raw ultrasound data to be acquired in all the modes. The interface has been used not only for early testing of new ideas with in vitro data from phantoms, but also for acquiring in vivo data for fine-tuning ultrasound applications and conducting clinical studies. We present several examples of how newer ultrasound applications, such as elastography, vibration imaging and 3D imaging, have benefited from this research interface. Since the research interface is entirely implemented in software, it can be deployed on existing HiVision 5500 ultrasound machines and may be easily upgraded in the future. The developed research interface can aid researchers in the rapid testing and clinical evaluation of new ultrasound algorithms and applications. Additionally, we believe that our approach would be applicable to designing research interfaces on other ultrasound machines.

  11. USSR Space Life Sciences Digest, issue 8

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the eighth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 48 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables. Additional features include reviews of two Russian books on radiobiology and a description of the latest meeting of an international working group on remote sensing of the Earth. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 33 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, group dynamics, habitability and environment effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, personnel selection, psychology, reproductive biology, and space biology and medicine.

  12. Computation of emotions in man and machines.

    PubMed

    Robinson, Peter; el Kaliouby, Rana

    2009-12-12

    The importance of emotional expression as part of human communication has been understood since Aristotle, and the subject has been explored scientifically since Charles Darwin and others in the nineteenth century. Advances in computer technology now allow machines to recognize and express emotions, paving the way for improved human-computer and human-human communications. Recent advances in psychology have greatly improved our understanding of the role of affect in communication, perception, decision-making, attention and memory. At the same time, advances in technology mean that it is becoming possible for machines to sense, analyse and express emotions. We can now consider how these advances relate to each other and how they can be brought together to influence future research in perception, attention, learning, memory, communication, decision-making and other applications. The computation of emotions includes both recognition and synthesis, using channels such as facial expressions, non-verbal aspects of speech, posture, gestures, physiology, brain imaging and general behaviour. The combination of new results in psychology with new techniques of computation is leading to new technologies with applications in commerce, education, entertainment, security, therapy and everyday life. However, there are important issues of privacy and personal expression that must also be considered.

  13. Computation of emotions in man and machines

    PubMed Central

    Robinson, Peter; el Kaliouby, Rana

    2009-01-01

    The importance of emotional expression as part of human communication has been understood since Aristotle, and the subject has been explored scientifically since Charles Darwin and others in the nineteenth century. Advances in computer technology now allow machines to recognize and express emotions, paving the way for improved human–computer and human–human communications. Recent advances in psychology have greatly improved our understanding of the role of affect in communication, perception, decision-making, attention and memory. At the same time, advances in technology mean that it is becoming possible for machines to sense, analyse and express emotions. We can now consider how these advances relate to each other and how they can be brought together to influence future research in perception, attention, learning, memory, communication, decision-making and other applications. The computation of emotions includes both recognition and synthesis, using channels such as facial expressions, non-verbal aspects of speech, posture, gestures, physiology, brain imaging and general behaviour. The combination of new results in psychology with new techniques of computation is leading to new technologies with applications in commerce, education, entertainment, security, therapy and everyday life. However, there are important issues of privacy and personal expression that must also be considered. PMID:19884138

  14. Experimental Characterization and Modeling of Thermal Contact Resistance of Electric Machine Stator-to-Cooling Jacket Interface Under Interference Fit Loading

    DOE PAGES

    Cousineau, Justine Emily; Bennion, Kevin S.; Chieduko, Victor; ...

    2018-05-08

    Cooling of electric machines is a key to increasing power density and improving reliability. This paper focuses on the design of a machine using a cooling jacket wrapped around the stator. The thermal contact resistance (TCR) between the electric machine stator and cooling jacket is a significant factor in overall performance and is not well characterized. This interface is typically an interference fit subject to compressive pressure exceeding 5 MPa. An experimental investigation of this interface was carried out using a thermal transmittance setup using pressures between 5 and 10 MPa. Furthermore, the results were compared to currently available modelsmore » for contact resistance, and one model was adapted for prediction of TCR in future motor designs.« less

  15. Experimental Characterization and Modeling of Thermal Contact Resistance of Electric Machine Stator-to-Cooling Jacket Interface Under Interference Fit Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousineau, Justine Emily; Bennion, Kevin S.; Chieduko, Victor

    Cooling of electric machines is a key to increasing power density and improving reliability. This paper focuses on the design of a machine using a cooling jacket wrapped around the stator. The thermal contact resistance (TCR) between the electric machine stator and cooling jacket is a significant factor in overall performance and is not well characterized. This interface is typically an interference fit subject to compressive pressure exceeding 5 MPa. An experimental investigation of this interface was carried out using a thermal transmittance setup using pressures between 5 and 10 MPa. Furthermore, the results were compared to currently available modelsmore » for contact resistance, and one model was adapted for prediction of TCR in future motor designs.« less

  16. The desktop interface in intelligent tutoring systems

    NASA Technical Reports Server (NTRS)

    Baudendistel, Stephen; Hua, Grace

    1987-01-01

    The interface between an Intelligent Tutoring System (ITS) and the person being tutored is critical to the success of the learning process. If the interface to the ITS is confusing or non-supportive of the tutored domain, the effectiveness of the instruction will be diminished or lost entirely. Consequently, the interface to an ITS should be highly integrated with the domain to provide a robust and semantically rich learning environment. In building an ITS for ZetaLISP on a LISP Machine, a Desktop Interface was designed to support a programming learning environment. Using the bitmapped display, windows, and mouse, three desktops were designed to support self-study and tutoring of ZetaLISP. Through organization, well-defined boundaries, and domain support facilities, the desktops provide substantial flexibility and power for the student and facilitate learning ZetaLISP programming while screening the student from the complex LISP Machine environment. The student can concentrate on learning ZetaLISP programming and not on how to operate the interface or a LISP Machine.

  17. Organic bioelectronics for electronic-to-chemical translation in modulation of neuronal signaling and machine-to-brain interfacing.

    PubMed

    Larsson, Karin C; Kjäll, Peter; Richter-Dahlfors, Agneta

    2013-09-01

    A major challenge when creating interfaces for the nervous system is to translate between the signal carriers of the nervous system (ions and neurotransmitters) and those of conventional electronics (electrons). Organic conjugated polymers represent a unique class of materials that utilizes both electrons and ions as charge carriers. Based on these materials, we have established a series of novel communication interfaces between electronic components and biological systems. The organic electronic ion pump (OEIP) presented in this review is made of the polymer-polyelectrolyte system poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The OEIP translates electronic signals into electrophoretic migration of ions and neurotransmitters. We demonstrate how spatio-temporally controlled delivery of ions and neurotransmitters can be used to modulate intracellular Ca(2+) signaling in neuronal cells in the absence of convective disturbances. The electronic control of delivery enables strict control of dynamic parameters, such as amplitude and frequency of Ca(2+) responses, and can be used to generate temporal patterns mimicking naturally occurring Ca(2+) oscillations. To enable further control of the ionic signals we developed the electrophoretic chemical transistor, an analog of the traditional transistor used to amplify and/or switch electronic signals. Finally, we demonstrate the use of the OEIP in a new "machine-to-brain" interface by modulating brainstem responses in vivo. This review highlights the potential of communication interfaces based on conjugated polymers in generating complex, high-resolution, signal patterns to control cell physiology. We foresee widespread applications for these devices in biomedical research and in future medical devices within multiple therapeutic areas. This article is part of a Special Issue entitled Organic Bioelectronics-Novel Applications in Biomedicine. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Computers Simulate Human Experts.

    ERIC Educational Resources Information Center

    Roberts, Steven K.

    1983-01-01

    Discusses recent progress in artificial intelligence in such narrowly defined areas as medical and electronic diagnosis. Also discusses use of expert systems, man-machine communication problems, novel programing environments (including comments on LISP and LISP machines), and types of knowledge used (factual, heuristic, and meta-knowledge). (JN)

  19. Construction in space - Toward a fresh definition of the man/machine relation

    NASA Technical Reports Server (NTRS)

    Watters, H. H.; Stokes, J. W.

    1979-01-01

    The EVA (extravehicular activity) project forming part of the space construction process is reviewed. The manual EVA constuction, demonstrated by the crew of Skylab 3 by assembling a modest space structure in the form of the twin-pole sunshade, is considered, indicating that the experiment dispelled many doubts about man's ability to execute routine and contingency EVA operations. Tests demonstrating the feasibility of remote teleoperator rendezvous, station keeping, and docking operations, using hand controllers for direct input and television for feedback, are noted. Future plans for designing space construction machines are mentioned.

  20. Mathematical concepts for modeling human behavior in complex man-machine systems

    NASA Technical Reports Server (NTRS)

    Johannsen, G.; Rouse, W. B.

    1979-01-01

    Many human behavior (e.g., manual control) models have been found to be inadequate for describing processes in certain real complex man-machine systems. An attempt is made to find a way to overcome this problem by examining the range of applicability of existing mathematical models with respect to the hierarchy of human activities in real complex tasks. Automobile driving is chosen as a baseline scenario, and a hierarchy of human activities is derived by analyzing this task in general terms. A structural description leads to a block diagram and a time-sharing computer analogy.

  1. Space-based solar power conversion and delivery systems study. Volume 3: Economic analysis of space-based solar power systems

    NASA Technical Reports Server (NTRS)

    Hazelrigg, G. A., Jr.

    1976-01-01

    A variety of economic and programmatic issues are discussed concerning the development and deployment of a fleet of space-based solar power satellites (SSPS). The costs, uncertainties and risks associated with the current photovoltaic SSPS configuration, and with issues affecting the development of an economically viable SSPS development program are analyzed. The desirability of a low earth orbit (LEO) demonstration satellite and a geosynchronous (GEO) pilot satellite is examined and critical technology areas are identified. In addition, a preliminary examination of utility interface issues is reported. The main focus of the effort reported is the development of SSPS unit production, and operation and maintenance cost models suitable for incorporation into a risk assessment (Monte Carlo) model (RAM). It is shown that the key technology area deals with the productivity of man in space, not, as might be expected, with some hardware component technology.

  2. Cutting the Cord: Discrimination and Command Responsibility in Autonomous Lethal Weapons

    DTIC Science & Technology

    2014-02-13

    machine responses to identical stimuli, and it was the job of a third party human “witness” to determine which participant was man and which was...machines may be error free, but there are potential benefits to be gained through autonomy if machines can meet or exceed human performance in...lieu of human operators and reap the benefits that autonomy provides. Human and Machine Error It would be foolish to assert that either humans

  3. Cognition and Rationality.

    ERIC Educational Resources Information Center

    Shaughnessy, Michael F.

    This paper reviews the main research in the area of human reasoning and rational thinking to determine if man is either an "innately inefficient thinking machine" or if man's irrationality is "rooted in basic human nature," as Ellis (1976) suggests. The paper focuses on the work of two English theorists, Wason and…

  4. Systems Engineering and Integration for Advanced Life Support System and HST

    NASA Technical Reports Server (NTRS)

    Kamarani, Ali K.

    2005-01-01

    Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.

  5. Deep space telecommunications, navigation, and information management. Support of the space exploration initiative

    NASA Astrophysics Data System (ADS)

    Hall, Justin R.; Hastrup, Rolf C.

    The United States Space Exploration Initiative (SEI) calls for the charting of a new and evolving manned course to the Moon, Mars, and beyond. This paper discusses key challenges in providing effective deep space telecommunications, navigation, and information management (TNIM) architectures and designs for Mars exploration support. The fundamental objectives are to provide the mission with means to monitor and control mission elements, acquire engineering, science, and navigation data, compute state vectors and navigate, and move these data efficiently and automatically between mission nodes for timely analysis and decision-making. Although these objectives do not depart, fundamentally, from those evolved over the past 30 years in supporting deep space robotic exploration, there are several new issues. This paper focuses on summarizing new requirements, identifying related issues and challenges, responding with concepts and strategies which are enabling, and, finally, describing candidate architectures, and driving technologies. The design challenges include the attainment of: 1) manageable interfaces in a large distributed system, 2) highly unattended operations for in-situ Mars telecommunications and navigation functions, 3) robust connectivity for manned and robotic links, 4) information management for efficient and reliable interchange of data between mission nodes, and 5) an adequate Mars-Earth data rate.

  6. Human machine interface display design document.

    DOT National Transportation Integrated Search

    2008-01-01

    The purpose of this document is to describe the design for the human machine interface : (HMI) display for the Next Generation 9-1-1 (NG9-1-1) System (or system of systems) : based on the initial Tier 1 requirements identified for the NG9-1-1 S...

  7. Robotics technology discipline

    NASA Technical Reports Server (NTRS)

    Montemerlo, Melvin D.

    1990-01-01

    Viewgraphs on robotics technology discipline for Space Station Freedom are presented. Topics covered include: mechanisms; sensors; systems engineering processes for integrated robotics; man/machine cooperative control; 3D-real-time machine perception; multiple arm redundancy control; manipulator control from a movable base; multi-agent reasoning; and surfacing evolution technologies.

  8. Sensor supervision and multiagent commanding by means of projective virtual reality

    NASA Astrophysics Data System (ADS)

    Rossmann, Juergen

    1998-10-01

    When autonomous systems with multiple agents are considered, conventional control- and supervision technologies are often inadequate because the amount of information available is often presented in a way that the user is effectively overwhelmed by the displayed data. New virtual reality (VR) techniques can help to cope with this problem, because VR offers the chance to convey information in an intuitive manner and can combine supervision capabilities and new, intuitive approaches to the control of autonomous systems. In the approach taken, control and supervision issues were equally stressed and finally led to the new ideas and the general framework for Projective Virtual Reality. The key idea of this new approach for an intuitively operable man machine interface for decentrally controlled multi-agent systems is to let the user act in the virtual world, detect the changes and have an action planning component automatically generate task descriptions for the agents involved to project actions that have been carried out by users in the virtual world into the physical world, e.g. with the help of robots. Thus the Projective Virtual Reality approach is to split the job between the task deduction in the VR and the task `projection' onto the physical automation components by the automatic action planning component. Besides describing the realized projective virtual reality system, the paper will also describe in detail the metaphors and visualization aids used to present different types of (e.g. sensor-) information in an intuitively comprehensible manner.

  9. Crew awareness as key to optimizing habitability standards onboard naval platforms: A 'back-to-basics' approach.

    PubMed

    Neelakantan, Anand; Ilankumaran, Mookkiah; Ray, Sougat

    2017-10-01

    A healthy habitable environment onboard warships is vital to operational fleet efficiency and fit sea-warrier force. Unique man-machine-armament interface issues and consequent constraints on habitability necessitate a multi-disciplinary approach toward optimizing habitability standards. Study of the basic 'human factor', including crew awareness on what determines shipboard habitability, and its association with habitation specifications is an essential step in such an approach. The aim of this study was to assess crew awareness on shipboard habitability and the association between awareness and maintenance of optimal habitability as per specifications. A cross-sectional descriptive study was carried out among 552 naval personnel onboard warships in Mumbai. Data on crew awareness on habitability was collected using a standardized questionnaire, and correlated with basic habitability requirement specifications. Data was analyzed using Microsoft Excel, Epi-info, and SPSS version 17. Awareness level on basic habitability aspects was very good in 65.3% of crew. Area-specific awareness was maximum with respect to living area (95.3%). Knowledge levels on waste management were among the lowest (65.2%) in the category of aspect-wise awareness. Statistically significant association was found between awareness levels and habitability standards (OR = 7.27). The new benchmarks set in the form of high crew awareness levels on basic shipboard habitability specifications and its significant association with standards needs to be sustained. It entails re-iteration of healthy habitation essentials into training; and holds the key to a fit fighting force.

  10. Another Long March: Lessons from the Post-Vietnam Rebuild of the Marine Corps, 1969 to 1989

    DTIC Science & Technology

    2014-05-22

    Weapon light machine gun to each four-man fire team, the arrival of new versions of M60 medium machine guns and M2 heavy machine guns , Mk19 grenade...experiencing an average shortfall of 600,000 to 700,000 barrels of crude oil a day, leading to a shortage of gasoline in the spring and early summer

  11. Intelligent Systems and Advanced User Interfaces for Design, Operation, and Maintenance of Command Management Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    Historically Command Management Systems (CMS) have been large, expensive, spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for CMS systems. Current MOC (mission operations center) hardware and software include Unix workstations, the C/C++ and Java programming languages, and X and Java window interfaces representations. This configuration provides the power and flexibility to support sophisticated systems and intelligent user interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision making, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of the issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, design and analysis tools from a human-machine systems engineering point of view (e.g., operator and designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well as continuity for CMS design and development across spacecraft with varying needs. The savings in this case is in software reuse at all stages of the software engineering process.

  12. Assessment of Human Factors

    NASA Technical Reports Server (NTRS)

    Mount, Frances; Foley, Tico

    1999-01-01

    Human Factors Engineering, often referred to as Ergonomics, is a science that applies a detailed understanding of human characteristics, capabilities, and limitations to the design, evaluation, and operation of environments, tools, and systems for work and daily living. Human Factors is the investigation, design, and evaluation of equipment, techniques, procedures, facilities, and human interfaces, and encompasses all aspects of human activity from manual labor to mental processing and leisure time enjoyments. In spaceflight applications, human factors engineering seeks to: (1) ensure that a task can be accomplished, (2) maintain productivity during spaceflight, and (3) ensure the habitability of the pressurized living areas. DSO 904 served as a vehicle for the verification and elucidation of human factors principles and tools in the microgravity environment. Over six flights, twelve topics were investigated. This study documented the strengths and limitations of human operators in a complex, multifaceted, and unique environment. By focusing on the man-machine interface in space flight activities, it was determined which designs allow astronauts to be optimally productive during valuable and costly space flights. Among the most promising areas of inquiry were procedures, tools, habitat, environmental conditions, tasking, work load, flexibility, and individual control over work.

  13. Virtual reality applied to teletesting

    NASA Astrophysics Data System (ADS)

    van den Berg, Thomas J.; Smeenk, Roland J. M.; Mazy, Alain; Jacques, Patrick; Arguello, Luis; Mills, Simon

    2003-05-01

    The activity "Virtual Reality applied to Teletesting" is related to a wider European Space Agency (ESA) initiative of cost reduction, in particular the reduction of test costs. Reduction of costs of space related projects have to be performed on test centre operating costs and customer company costs. This can accomplished by increasing the automation and remote testing ("teletesting") capabilities of the test centre. Main problems related to teletesting are a lack of situational awareness and the separation of control over the test environment. The objective of the activity is to evaluate the use of distributed computing and Virtual Reality technology to support the teletesting of a payload under vacuum conditions, and to provide a unified man-machine interface for the monitoring and control of payload, vacuum chamber and robotics equipment. The activity includes the development and testing of a "Virtual Reality Teletesting System" (VRTS). The VRTS is deployed at one of the ESA certified test centres to perform an evaluation and test campaign using a real payload. The VRTS is entirely written in the Java programming language, using the J2EE application model. The Graphical User Interface runs as an applet in a Web browser, enabling easy access from virtually any place.

  14. Computer-Based Arithmetic Test Generation

    ERIC Educational Resources Information Center

    Trocchi, Robert F.

    1973-01-01

    The computer can be a welcome partner in the instructional process, but only if there is man-machine interaction. Man should not compromise system design because of available hardware; the computer must fit the system design for the result to represent an acceptable solution to instructional technology. The Arithmetic Test Generator system fits…

  15. Roles and needs of man in space

    NASA Technical Reports Server (NTRS)

    Von Puttkamer, J.

    1983-01-01

    Human capabilities and requirements on space missions are discussed. Utilitarian and humanistic motivations for manned missions are considered, and a general program of development from easy space access and return, to a permanent LEO presence, to the limited self-sufficiency of man in space, is proposed. Man's potential as scientific observer, operator, and engineer/technician is illustrated with examples from the Apollo and Skylab missions. It is shown that future increases in man's space presence will require significant improvements in habitation technology, crew comfort and safety, operational effectiveness and reliability, and man/machine interactions: man-tended systems must be standardized and adapted to (mainly EVA) human servicing; permanently manned systems must be designed to attain levels of comfort, privacy, and overall habitability more like those expected on the ground.

  16. Control system software, simulation, and robotic applications

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    1991-01-01

    All essential existing capabilities needed to create a man-machine interaction dynamics and performance (MMIDAP) capability are reviewed. The multibody system dynamics software program Order N DISCOS will be used for machine and musculo-skeletal dynamics modeling. The program JACK will be used for estimating and animating whole body human response to given loading situations and motion constraints. The basic elements of performance (BEP) task decomposition methodologies associated with the Human Performance Institute database will be used for performance assessment. Techniques for resolving the statically indeterminant muscular load sharing problem will be used for a detailed understanding of potential musculotendon or ligamentous fatigue, pain, discomfort, and trauma. The envisioned capacity is to be used for mechanical system design, human performance assessment, extrapolation of man/machine interaction test data, biomedical engineering, and soft prototyping within a concurrent engineering (CE) system.

  17. Single molecule detection, thermal fluctuation and life

    PubMed Central

    YANAGIDA, Toshio; ISHII, Yoshiharu

    2017-01-01

    Single molecule detection has contributed to our understanding of the unique mechanisms of life. Unlike artificial man-made machines, biological molecular machines integrate thermal noises rather than avoid them. For example, single molecule detection has demonstrated that myosin motors undergo biased Brownian motion for stepwise movement and that single protein molecules spontaneously change their conformation, for switching to interactions with other proteins, in response to thermal fluctuation. Thus, molecular machines have flexibility and efficiency not seen in artificial machines. PMID:28190869

  18. Development of an air ground data exchange concept: Flight deck perspective

    NASA Technical Reports Server (NTRS)

    Flathers, G. W., II

    1987-01-01

    The planned modernization of the U.S. National Airspace System (NAS) includes the development and use of a digital data link as a means to exchange information between aircraft and ground-based facilities. This report presents an operationally-oriented concept on how data link could be used for applications related directly to air traffic control. The specific goal is to establish the role that data link could play in the air-ground communications. Due regard is given to the unique characteristics of data link and voice communications, current principles of air traffic control, operational procedures, human factors/man-machine interfaces, and the integration of data link with other air and ground systems. The resulting concept is illustrated in the form of a paper-and-pencil simulation in which data link and voice communications during the course of a hypothetical flight are described.

  19. A new six-degree-of-freedom force-reflecting hand controller for space telerobotics

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas; Snow, Edward; Townsend, William; Robinson, Lee; Hanson, Joe

    1990-01-01

    A new 6 degree of freedom universal Force Reflecting Hand Controller (FRHC) was designed for use as the man-machine interface in teleoperated and telerobotic flight systems. The features of this new design include highly intuitive operation, excellent kinesthetic feedback, high fidelity force/torque feedback, a kinematically simple structure, mechanically decoupled motion in all 6 DOF, good back-drivability, and zero backlash. In addition, the new design has a much larger work envelope, smaller stowage volume, greater stiffness and responsiveness, and better overlap of the human operator's range of motion than do previous designs. The utility and basic operation of a new, flight prototype FRHC called the Model X is briefly discussed. The design heritage, general design goals, and design implementation of this advanced new generation of FRHCs are presented, followed by a discussion of basic features and the results of initial testing.

  20. Space station data system analysis/architecture study. Task 2: Options development DR-5. Volume 1: Technology options

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The second task in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This volume identifies the preferred options in the technology category and characterizes these options with respect to performance attributes, constraints, cost, and risk. The technology category includes advanced materials, processes, and techniques that can be used to enhance the implementation of SSDS design structures. The specific areas discussed are mass storage, including space and round on-line storage and off-line storage; man/machine interface; data processing hardware, including flight computers and advanced/fault tolerant computer architectures; and software, including data compression algorithms, on-board high level languages, and software tools. Also discussed are artificial intelligence applications and hard-wire communications.

  1. Air-condition Control System of Weaving Workshop Based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Song, Jian

    The project of air-condition measurement and control system based on LabVIEW is put forward for the sake of controlling effectively the environmental targets in the weaving workshop. In this project, which is based on the virtual instrument technology and in which LabVIEW development platform by NI is adopted, the system is constructed on the basis of the virtual instrument technology. It is composed of the upper PC, central control nodes based on CC2530, sensor nodes, sensor modules and executive device. Fuzzy control algorithm is employed to achieve the accuracy control of the temperature and humidity. A user-friendly man-machine interaction interface is designed with virtual instrument technology at the core of the software. It is shown by experiments that the measurement and control system can run stably and reliably and meet the functional requirements for controlling the weaving workshop.

  2. Knowledge representation in space flight operations

    NASA Technical Reports Server (NTRS)

    Busse, Carl

    1989-01-01

    In space flight operations rapid understanding of the state of the space vehicle is essential. Representation of knowledge depicting space vehicle status in a dynamic environment presents a difficult challenge. The NASA Jet Propulsion Laboratory has pursued areas of technology associated with the advancement of spacecraft operations environment. This has led to the development of several advanced mission systems which incorporate enhanced graphics capabilities. These systems include: (1) Spacecraft Health Automated Reasoning Prototype (SHARP); (2) Spacecraft Monitoring Environment (SME); (3) Electrical Power Data Monitor (EPDM); (4) Generic Payload Operations Control Center (GPOCC); and (5) Telemetry System Monitor Prototype (TSM). Knowledge representation in these systems provides a direct representation of the intrinsic images associated with the instrument and satellite telemetry and telecommunications systems. The man-machine interface includes easily interpreted contextual graphic displays. These interactive video displays contain multiple display screens with pop-up windows and intelligent, high resolution graphics linked through context and mouse-sensitive icons and text.

  3. [A cyborg is only human].

    PubMed

    Schermer, Maartje H N

    2013-01-01

    New biomedical technologies make it possible to replace parts of the human body or to substitute its functions. Examples include artificial joints, eye lenses and arterial stents. Newer technologies use electronics and software, for example in brain-computer interfaces such as retinal implants and the exoskeleton MindWalker. Gradually we are creating cyborgs: hybrids of man and machine. This raises the question: are cyborgs still humans? It is argued that they are. First, because employing technology is a typically human characteristic. Second, because in western thought the human mind, and not the body, is considered to be the seat of personhood. However, it has been argued by phenomenological philosophers that the body is more than just an object but is also a subject, important for human identity. From this perspective, we can appreciate that a bionic body does not make one less human, but it does influence the experience of being human.

  4. Design of an autonomous Lunar construction utility vehicle

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Chew, Mason; Dixon, Iain (Editor)

    1990-01-01

    In order to prepare a site for a manned lunar base, an autonomously operated construction vehicle is necessary. A Lunar Construction Utility Vehicle (LCUV), which utilizes interchangeable construction implements, was designed conceptually. Some elements of the machine were studied in greater detail. Design of an elastic loop track system has advanced to the testing stage. A standard coupling device was designed to insure a proper connection between the different construction tools and the LCUV. Autonomous control of the track drive motors was simulated successfully through the use of a joystick and computer interface. A study of hydrogen-oxygen fuel cells has produced estimates of reactant and product size requirements and identified multi-layer insulation techniques. Research on a 100 kW heat rejection system has determined that it is necessary to house a radiator panel on a utility trailer. The impact of a 720 hr use cycle has produced a very large logistical support lien which requires further study.

  5. NASA Systems Autonomy Demonstration Project - Development of Space Station automation technology

    NASA Technical Reports Server (NTRS)

    Bull, John S.; Brown, Richard; Friedland, Peter; Wong, Carla M.; Bates, William

    1987-01-01

    A 1984 Congressional expansion of the 1958 National Aeronautics and Space Act mandated that NASA conduct programs, as part of the Space Station program, which will yield the U.S. material benefits, particularly in the areas of advanced automation and robotics systems. Demonstration programs are scheduled for automated systems such as the thermal control, expert system coordination of Station subsystems, and automation of multiple subsystems. The programs focus the R&D efforts and provide a gateway for transfer of technology to industry. The NASA Office of Aeronautics and Space Technology is responsible for directing, funding and evaluating the Systems Autonomy Demonstration Project, which will include simulated interactions between novice personnel and astronauts and several automated, expert subsystems to explore the effectiveness of the man-machine interface being developed. Features and progress on the TEXSYS prototype thermal control system expert system are outlined.

  6. Man-machine interface and control of the shuttle digital flight system

    NASA Technical Reports Server (NTRS)

    Burghduff, R. D.; Lewis, J. L., Jr.

    1985-01-01

    The space shuttle main engine (SSME) presented new requirements in the design of controls for large pump fed liquid rocket engine systems. These requirements were the need for built in full mission support capability, and complexity and flexibility of function not previously needed in this type of application. An engine mounted programmable digital control system was developed to meet these requirements. The engine system and controller and their function are described. Design challenges encountered during the course of development included accommodation for a very severe engine environment, the implementation of redundancy and redundancy management to provide fail operational/fail safe capability, removal of heat from the package, and significant constraints on computer memory size and processing time. The flexibility offered by programmable control reshaped the approach to engine design and development and set the pattern for future controls development in these types of applications.

  7. 2 MeV linear accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Smith, Richard R.; Farrell, Sherman R.

    1997-02-01

    RPC Industries has developed a high average power scanned electron beam linac system for medium energy industrial processing, such as in-line sterilization. The parameters are: electron energy 2 MeV; average beam current 5.0 mA; and scanned width 0.5 meters. The control system features data logging and a Man-Machine Interface system. The accelerator is vertically mounted, the system height above the floor is 3.4 m, and the footprint is 0.9×1.2 meter2. The typical processing cell inside dimensions are 3.0 m by 3.5 m by 4.2 m high with concrete side walls 0.5 m thick above ground level. The equal exit depth dose is 0.73 gm cm-2. Additional topics that will be reported are: throughput, measurements of dose vs depth, dose uniformity across the web, and beam power by calorimeter and magnetic deflection of the beam.

  8. Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs.

    PubMed

    Zhang, Hui; Liu, Nishuang; Shi, Yuling; Liu, Weijie; Yue, Yang; Wang, Siliang; Ma, Yanan; Wen, Li; Li, Luying; Long, Fei; Zou, Zhengguang; Gao, Yihua

    2016-08-31

    Pressure sensors with high elasticity are in great demand for the realization of intelligent sensing, but there is a need to develope a simple, inexpensive, and scalable method for the manufacture of the sensors. Here, we reported an efficient, simple, facile, and repeatable "dipping and coating" process to manufacture a piezoresistive sensor with high elasticity, based on homogeneous 3D hybrid network of carbon nanotubes@silver nanoparticles (CNTs@Ag NPs) anchored on a skeleton sponge. Highly elastic, sensitive, and wearable sensors are obtained using the porous structure of sponge and the synergy effect of CNTs/Ag NPs. Our sensor was also tested for over 2000 compression-release cycles, exhibiting excellent elasticity and cycling stability. Sensors with high performance and a simple fabrication process are promising devices for commercial production in various electronic devices, for example, sport performance monitoring and man-machine interfaces.

  9. Human factors issues for interstellar spacecraft

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M.; Brody, Adam R.

    1991-01-01

    Developments in research on space human factors are reviewed in the context of a self-sustaining interstellar spacecraft based on the notion of traveling space settlements. Assumptions about interstellar travel are set forth addressing costs, mission durations, and the need for multigenerational space colonies. The model of human motivation by Maslow (1970) is examined and directly related to the design of space habitat architecture. Human-factors technology issues encompass the human-machine interface, crew selection and training, and the development of spaceship infrastructure during transtellar flight. A scenario for feasible instellar travel is based on a speed of 0.5c, a timeframe of about 100 yr, and an expandable multigenerational crew of about 100 members. Crew training is identified as a critical human-factors issue requiring the development of perceptual and cognitive aids such as expert systems and virtual reality.

  10. Development of the FITS tools package for multiple software environments

    NASA Technical Reports Server (NTRS)

    Pence, W. D.; Blackburn, J. K.

    1992-01-01

    The HEASARC is developing a package of general purpose software for analyzing data files in FITS format. This paper describes the design philosophy which makes the software both machine-independent (it runs on VAXs, Suns, and DEC-stations) and software environment-independent. Currently the software can be compiled and linked to produce IRAF tasks, or alternatively, the same source code can be used to generate stand-alone tasks using one of two implementations of a user-parameter interface library. The machine independence of the software is achieved by writing the source code in ANSI standard Fortran or C, using the machine-independent FITSIO subroutine interface for all data file I/O, and using a standard user-parameter subroutine interface for all user I/O. The latter interface is based on the Fortran IRAF Parameter File interface developed at STScI. The IRAF tasks are built by linking to the IRAF implementation of this parameter interface library. Two other implementations of this parameter interface library, which have no IRAF dependencies, are now available which can be used to generate stand-alone executable tasks. These stand-alone tasks can simply be executed from the machine operating system prompt either by supplying all the task parameters on the command line or by entering the task name after which the user will be prompted for any required parameters. A first release of this FTOOLS package is now publicly available. The currently available tasks are described, along with instructions on how to obtain a copy of the software.

  11. Early experiences in developing and managing the neuroscience gateway.

    PubMed

    Sivagnanam, Subhashini; Majumdar, Amit; Yoshimoto, Kenneth; Astakhov, Vadim; Bandrowski, Anita; Martone, MaryAnn; Carnevale, Nicholas T

    2015-02-01

    The last few decades have seen the emergence of computational neuroscience as a mature field where researchers are interested in modeling complex and large neuronal systems and require access to high performance computing machines and associated cyber infrastructure to manage computational workflow and data. The neuronal simulation tools, used in this research field, are also implemented for parallel computers and suitable for high performance computing machines. But using these tools on complex high performance computing machines remains a challenge because of issues with acquiring computer time on these machines located at national supercomputer centers, dealing with complex user interface of these machines, dealing with data management and retrieval. The Neuroscience Gateway is being developed to alleviate and/or hide these barriers to entry for computational neuroscientists. It hides or eliminates, from the point of view of the users, all the administrative and technical barriers and makes parallel neuronal simulation tools easily available and accessible on complex high performance computing machines. It handles the running of jobs and data management and retrieval. This paper shares the early experiences in bringing up this gateway and describes the software architecture it is based on, how it is implemented, and how users can use this for computational neuroscience research using high performance computing at the back end. We also look at parallel scaling of some publicly available neuronal models and analyze the recent usage data of the neuroscience gateway.

  12. Early experiences in developing and managing the neuroscience gateway

    PubMed Central

    Sivagnanam, Subhashini; Majumdar, Amit; Yoshimoto, Kenneth; Astakhov, Vadim; Bandrowski, Anita; Martone, MaryAnn; Carnevale, Nicholas. T.

    2015-01-01

    SUMMARY The last few decades have seen the emergence of computational neuroscience as a mature field where researchers are interested in modeling complex and large neuronal systems and require access to high performance computing machines and associated cyber infrastructure to manage computational workflow and data. The neuronal simulation tools, used in this research field, are also implemented for parallel computers and suitable for high performance computing machines. But using these tools on complex high performance computing machines remains a challenge because of issues with acquiring computer time on these machines located at national supercomputer centers, dealing with complex user interface of these machines, dealing with data management and retrieval. The Neuroscience Gateway is being developed to alleviate and/or hide these barriers to entry for computational neuroscientists. It hides or eliminates, from the point of view of the users, all the administrative and technical barriers and makes parallel neuronal simulation tools easily available and accessible on complex high performance computing machines. It handles the running of jobs and data management and retrieval. This paper shares the early experiences in bringing up this gateway and describes the software architecture it is based on, how it is implemented, and how users can use this for computational neuroscience research using high performance computing at the back end. We also look at parallel scaling of some publicly available neuronal models and analyze the recent usage data of the neuroscience gateway. PMID:26523124

  13. Integrating a local database into the StarView distributed user interface

    NASA Technical Reports Server (NTRS)

    Silberberg, D. P.

    1992-01-01

    A distributed user interface to the Space Telescope Data Archive and Distribution Service (DADS) known as StarView is being developed. The DADS architecture consists of the data archive as well as a relational database catalog describing the archive. StarView is a client/server system in which the user interface is the front-end client to the DADS catalog and archive servers. Users query the DADS catalog from the StarView interface. Query commands are transmitted via a network and evaluated by the database. The results are returned via the network and are displayed on StarView forms. Based on the results, users decide which data sets to retrieve from the DADS archive. Archive requests are packaged by StarView and sent to DADS, which returns the requested data sets to the users. The advantages of distributed client/server user interfaces over traditional one-machine systems are well known. Since users run software on machines separate from the database, the overall client response time is much faster. Also, since the server is free to process only database requests, the database response time is much faster. Disadvantages inherent in this architecture are slow overall database access time due to the network delays, lack of a 'get previous row' command, and that refinements of a previously issued query must be submitted to the database server, even though the domain of values have already been returned by the previous query. This architecture also does not allow users to cross correlate DADS catalog data with other catalogs. Clearly, a distributed user interface would be more powerful if it overcame these disadvantages. A local database is being integrated into StarView to overcome these disadvantages. When a query is made through a StarView form, which is often composed of fields from multiple tables, it is translated to an SQL query and issued to the DADS catalog. At the same time, a local database table is created to contain the resulting rows of the query. The returned rows are displayed on the form as well as inserted into the local database table. Identical results are produced by reissuing the query to either the DADS catalog or to the local table. Relational databases do not provide a 'get previous row' function because of the inherent complexity of retrieving previous rows of multiple-table joins. However, since this function is easily implemented on a single table, StarView uses the local table to retrieve the previous row. Also, StarView issues subsequent query refinements to the local table instead of the DADS catalog, eliminating the network transmission overhead. Finally, other catalogs can be imported into the local database for cross correlation with local tables. Overall, it is believe that this is a more powerful architecture for distributed, database user interfaces.

  14. All printed touchless human-machine interface based on only five functional materials

    NASA Astrophysics Data System (ADS)

    Scheipl, G.; Zirkl, M.; Sawatdee, A.; Helbig, U.; Krause, M.; Kraker, E.; Andersson Ersman, P.; Nilsson, D.; Platt, D.; Bodö, P.; Bauer, S.; Domann, G.; Mogessie, A.; Hartmann, Paul; Stadlober, B.

    2012-02-01

    We demonstrate the printing of a complex smart integrated system using only five functional inks: the fluoropolymer P(VDF:TrFE) (Poly(vinylidene fluoride trifluoroethylene) sensor ink, the conductive polymer PEDOT:PSS (poly(3,4 ethylenedioxythiophene):poly(styrene sulfonic acid) ink, a conductive carbon paste, a polymeric electrolyte and SU8 for separation. The result is a touchless human-machine interface, including piezo- and pyroelectric sensor pixels (sensitive to pressure changes and impinging infrared light), transistors for impedance matching and signal conditioning, and an electrochromic display. Applications may not only emerge in human-machine interfaces, but also in transient temperature or pressure sensing used in safety technology, in artificial skins and in disposable sensor labels.

  15. TOPICAL REVIEW: Prosthetic interfaces with the visual system: biological issues

    NASA Astrophysics Data System (ADS)

    Cohen, Ethan D.

    2007-06-01

    The design of effective visual prostheses for the blind represents a challenge for biomedical engineers and neuroscientists. Significant progress has been made in the miniaturization and processing power of prosthesis electronics; however development lags in the design and construction of effective machine brain interfaces with visual system neurons. This review summarizes what has been learned about stimulating neurons in the human and primate retina, lateral geniculate nucleus and visual cortex. Each level of the visual system presents unique challenges for neural interface design. Blind patients with the retinal degenerative disease retinitis pigmentosa (RP) are a common population in clinical trials of visual prostheses. The visual performance abilities of normals and RP patients are compared. To generate pattern vision in blind patients, the visual prosthetic interface must effectively stimulate the retinotopically organized neurons in the central visual field to elicit patterned visual percepts. The development of more biologically compatible methods of stimulating visual system neurons is critical to the development of finer spatial percepts. Prosthesis electrode arrays need to adapt to different optimal stimulus locations, stimulus patterns, and patient disease states.

  16. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles.

    PubMed

    Eom, Hwisoo; Lee, Sang Hun

    2015-06-12

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model.

  17. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles

    PubMed Central

    Eom, Hwisoo; Lee, Sang Hun

    2015-01-01

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model. PMID:26076406

  18. Efficient Conduct of Individual Flights and Air Traffic or Optimum Utilization of Modern Technology for the Overall Benefit of Civil and Military Airspace Users. Conference Proceedings of the Symposium of the Guidance and Control Panel (42nd) Held in Brussels, Belgium on 10-13 June 1986.

    DTIC Science & Technology

    1986-12-01

    subjects such as: - the need to have reliable systems which will be "fault-tolerant’ - the man/machine relationship ; - compatibility between systems. 8. THE...be worked out and that acceptable solutions can be found as regards the man/ machine relationship . It will also be necessary to resolve the problems...management functions of the system should be essentially ground-based. 9. Capacity for coping with demands. 10. ATIM capability and relationship with

  19. Redesigning the Human-Machine Interface for Computer-Mediated Visual Technologies.

    ERIC Educational Resources Information Center

    Acker, Stephen R.

    1986-01-01

    This study examined an application of a human machine interface which relies on the use of optical bar codes incorporated in a computer-based module to teach radio production. The sequencing procedure used establishes the user rather than the computer as the locus of control for the mediated instruction. (Author/MBR)

  20. Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke.

    PubMed

    McConnell, Alistair C; Moioli, Renan C; Brasil, Fabricio L; Vallejo, Marta; Corne, David W; Vargas, Patricia A; Stokes, Adam A

    2017-06-28

    To review the state of the art of robotic-aided hand physiotherapy for post-stroke rehabilitation, including the use of brain-machine interfaces. Each patient has a unique clinical history and, in response to personalized treatment needs, research into individualized and at-home treatment options has expanded rapidly in recent years. This has resulted in the development of many devices and design strategies for use in stroke rehabilitation. The development progression of robotic-aided hand physiotherapy devices and brain-machine interface systems is outlined, focussing on those with mechanisms and control strategies designed to improve recovery outcomes of the hand post-stroke. A total of 110 commercial and non-commercial hand and wrist devices, spanning the 2 major core designs: end-effector and exoskeleton are reviewed. The growing body of evidence on the efficacy and relevance of incorporating brain-machine interfaces in stroke rehabilitation is summarized. The challenges involved in integrating robotic rehabilitation into the healthcare system are discussed. This review provides novel insights into the use of robotics in physiotherapy practice, and may help system designers to develop new devices.

  1. Intrathoracic pressure variations in an anthropomorphic dummy exposed to air blast, blunt impact, and missiles.

    PubMed

    Jönsson, A; Arvebo, E; Schantz, B

    1988-01-01

    Experiments with an anthropomorphic dummy for blast research demonstrated that pressures recorded in the lung model of the dummy could be correlated to primary air blast effects on the lungs of experimental animals. The results presented here were obtained with a dummy of the type mentioned above, but with the lung model modified to improve geometric similarity to man. Blast experiments were performed in a shock tube, and impact experiments in a special impact machine. Experiments with nonpenetrating missiles were performed with small-caliber firearms and the dummy protected by body armor. Severity indices derived from the blast experiments were related to established criteria for primary lung injury in man. Impacts delivered in the impact machine and by nonpenetrating missiles are compared. Relationships between severity of impact based on experiments with animals and primary lung injury in man are discussed.

  2. Adapting human-machine interfaces to user performance.

    PubMed

    Danziger, Zachary; Fishbach, Alon; Mussa-Ivaldi, Ferdinando A

    2008-01-01

    The goal of this study was to create and examine machine learning algorithms that adapt in a controlled and cadenced way to foster a harmonious learning environment between the user of a human-machine interface and the controlled device. In this experiment, subjects' high-dimensional finger motions remotely controlled the joint angles of a simulated planar 2-link arm, which was used to hit targets on a computer screen. Subjects were required to move the cursor at the endpoint of the simulated arm.

  3. An Intelligent Man-Machine Interface—Multi-Robot Control Adapted for Task Engagement Based on Single-Trial Detectability of P300

    PubMed Central

    Kirchner, Elsa A.; Kim, Su K.; Tabie, Marc; Wöhrle, Hendrik; Maurus, Michael; Kirchner, Frank

    2016-01-01

    Advanced man-machine interfaces (MMIs) are being developed for teleoperating robots at remote and hardly accessible places. Such MMIs make use of a virtual environment and can therefore make the operator immerse him-/herself into the environment of the robot. In this paper, we present our developed MMI for multi-robot control. Our MMI can adapt to changes in task load and task engagement online. Applying our approach of embedded Brain Reading we improve user support and efficiency of interaction. The level of task engagement was inferred from the single-trial detectability of P300-related brain activity that was naturally evoked during interaction. With our approach no secondary task is needed to measure task load. It is based on research results on the single-stimulus paradigm, distribution of brain resources and its effect on the P300 event-related component. It further considers effects of the modulation caused by a delayed reaction time on the P300 component evoked by complex responses to task-relevant messages. We prove our concept using single-trial based machine learning analysis, analysis of averaged event-related potentials and behavioral analysis. As main results we show (1) a significant improvement of runtime needed to perform the interaction tasks compared to a setting in which all subjects could easily perform the tasks. We show that (2) the single-trial detectability of the event-related potential P300 can be used to measure the changes in task load and task engagement during complex interaction while also being sensitive to the level of experience of the operator and (3) can be used to adapt the MMI individually to the different needs of users without increasing total workload. Our online adaptation of the proposed MMI is based on a continuous supervision of the operator's cognitive resources by means of embedded Brain Reading. Operators with different qualifications or capabilities receive only as many tasks as they can perform to avoid mental overload as well as mental underload. PMID:27445742

  4. Human-machine interface issues in the use of helmet-mounted displays in short conjugate simulators

    NASA Astrophysics Data System (ADS)

    Melzer, James E.

    2011-06-01

    With the introduction of helmet-mounted displays (HMD) into modern aircraft, there is a desire on the part of pilot trainees to achieve a "look and feel" for the simulation environment similar to the real flight hardware. Given this requirement for high fidelity, it may be necessary to configure - or to perhaps re-configure - the HMD for a short conjugate viewing distance and to do so without causing eye strain or other adverse physiological effects. This paper will survey the human factors literature and provide an analysis on the visual construct issues of focus and vergence which - if not properly configured for the short conjugate simulator - could cause adverse effects, which can negatively affect training.

  5. The Psychology of Communication: Seven Essays.

    ERIC Educational Resources Information Center

    Miller, George A.

    One of man's most distinctive characteristics is the manner in which he stores and communicates information. Language has always been an important part of this process, but recently machines have begun to share the spotlight. This book presents a look at the role of language in the process of communication and man's relation, present and future,…

  6. Proceedings of the 1984 IEEE international conference on systems, man and cybernetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-01-01

    This conference contains papers on artificial intelligence, pattern recognition, and man-machine systems. Topics considered include concurrent minimization, a robot programming system, system modeling and simulation, camera calibration, thermal power plants, image processing, fault diagnosis, knowledge-based systems, power systems, hydroelectric power plants, expert systems, and electrical transients.

  7. Recoding Numerics to Geometrics for Complex Discrimination Tasks; A Feasibility Study of Coding Strategy.

    ERIC Educational Resources Information Center

    Simpkins, John D.

    Processing complex multivariate information effectively when relational properties of information sub-groups are ambiguous is difficult for man and man-machine systems. However, the information processing task is made easier through code study, cybernetic planning, and accurate display mechanisms. An exploratory laboratory study designed for the…

  8. Data storage technology: Hardware and software, Appendix B

    NASA Technical Reports Server (NTRS)

    Sable, J. D.

    1972-01-01

    This project involves the development of more economical ways of integrating and interfacing new storage devices and data processing programs into a computer system. It involves developing interface standards and a software/hardware architecture which will make it possible to develop machine independent devices and programs. These will interface with the machine dependent operating systems of particular computers. The development project will not be to develop the software which would ordinarily be the responsibility of the manufacturer to supply, but to develop the standards with which that software is expected to confirm in providing an interface with the user or storage system.

  9. 21 CFR 870.4220 - Cardiopulmonary bypass heart-lung machine console.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass heart-lung machine console... Cardiopulmonary bypass heart-lung machine console. (a) Identification. A cardiopulmonary bypass heart-lung machine... heart-lung machine. The console is designed to interface with the basic units used in a gas exchange...

  10. 21 CFR 870.4220 - Cardiopulmonary bypass heart-lung machine console.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cardiopulmonary bypass heart-lung machine console... Cardiopulmonary bypass heart-lung machine console. (a) Identification. A cardiopulmonary bypass heart-lung machine... heart-lung machine. The console is designed to interface with the basic units used in a gas exchange...

  11. 21 CFR 870.4220 - Cardiopulmonary bypass heart-lung machine console.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cardiopulmonary bypass heart-lung machine console... Cardiopulmonary bypass heart-lung machine console. (a) Identification. A cardiopulmonary bypass heart-lung machine... heart-lung machine. The console is designed to interface with the basic units used in a gas exchange...

  12. 21 CFR 870.4220 - Cardiopulmonary bypass heart-lung machine console.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass heart-lung machine console... Cardiopulmonary bypass heart-lung machine console. (a) Identification. A cardiopulmonary bypass heart-lung machine... heart-lung machine. The console is designed to interface with the basic units used in a gas exchange...

  13. 21 CFR 870.4220 - Cardiopulmonary bypass heart-lung machine console.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiopulmonary bypass heart-lung machine console... Cardiopulmonary bypass heart-lung machine console. (a) Identification. A cardiopulmonary bypass heart-lung machine... heart-lung machine. The console is designed to interface with the basic units used in a gas exchange...

  14. Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Keyes, Gilbert

    1991-01-01

    Information is given in viewgraph form on Space Station Freedom. Topics covered include future evolution, man-tended capability, permanently manned capability, standard payload rack dimensions, the Crystals by Vapor Transport Experiment (CVTE), commercial space projects interfaces, and pricing policy.

  15. Changing the Army’s Weapon Training Strategies to Meet Operational Requirements More Efficiently and Effectively

    DTIC Science & Technology

    2014-01-01

    System Maneuver COe M4/16 Rifle M9 pistol M2 , MK19, and M240B Machine Guns , M249 Squad Automatic Rifle Bradley Fighting Vehicle Abrams Tank Fires COe 155mm...27 Rifle, Machine Gun , and SAW Training...are called desig- nated weapons. For example, a maintenance company may have some machine guns authorized for self-protection that are manned by

  16. Literate Specification: Using Design Rationale To Support Formal Methods in the Development of Human-Machine Interfaces.

    ERIC Educational Resources Information Center

    Johnson, Christopher W.

    1996-01-01

    The development of safety-critical systems (aircraft cockpits and reactor control rooms) is qualitatively different from that of other interactive systems. These differences impose burdens on design teams that must ensure the development of human-machine interfaces. Analyzes strengths and weaknesses of formal methods for the design of user…

  17. The Portals 4.0 network programming interface.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Brian W.; Brightwell, Ronald Brian; Pedretti, Kevin

    2012-11-01

    This report presents a specification for the Portals 4.0 network programming interface. Portals 4.0 is intended to allow scalable, high-performance network communication between nodes of a parallel computing system. Portals 4.0 is well suited to massively parallel processing and embedded systems. Portals 4.0 represents an adaption of the data movement layer developed for massively parallel processing platforms, such as the 4500-node Intel TeraFLOPS machine. Sandias Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4.0 is targeted to the next generationmore » of machines employing advanced network interface architectures that support enhanced offload capabilities.« less

  18. A space systems perspective of graphics simulation integration

    NASA Technical Reports Server (NTRS)

    Brown, R.; Gott, C.; Sabionski, G.; Bochsler, D.

    1987-01-01

    Creation of an interactive display environment can expose issues in system design and operation not apparent from nongraphics development approaches. Large amounts of information can be presented in a short period of time. Processes can be simulated and observed before committing resources. In addition, changes in the economics of computing have enabled broader graphics usage beyond traditional engineering and design into integrated telerobotics and Artificial Intelligence (AI) applications. The highly integrated nature of space operations often tend to rely upon visually intensive man-machine communication to ensure success. Graphics simulation activities at the Mission Planning and Analysis Division (MPAD) of NASA's Johnson Space Center are focusing on the evaluation of a wide variety of graphical analysis within the context of present and future space operations. Several telerobotics and AI applications studies utilizing graphical simulation are described. The presentation includes portions of videotape illustrating technology developments involving: (1) coordinated manned maneuvering unit and remote manipulator system operations, (2) a helmet mounted display system, and (3) an automated rendezous application utilizing expert system and voice input/output technology.

  19. Implementation of an i.v.-compounding robot in a hospital-based cancer center pharmacy.

    PubMed

    Yaniv, Angela W; Knoer, Scott J

    2013-11-15

    The implementation of a robotic device for compounding patient-specific chemotherapy doses is described, including a review of data on the robot's performance over a 13-month period. The automated system prepares individualized i.v. chemotherapy doses in a variety of infusion bags and syringes; more than 50 drugs are validated for use in the machine. The robot is programmed to recognize the physical parameters of syringes and vials and uses photographic identification, barcode identification, and gravimetric measurements to ensure that the correct ingredients are compounded and the final dose is accurate. The implementation timeline, including site preparation, logistics planning, installation, calibration, staff training, development of a pharmacy information system (PIS) interface, and validation by the state board of pharmacy, was about 10 months. In its first 13 months of operation, the robot was used to prepare 7384 medication doses; 85 doses (1.2%) found to be outside the desired accuracy range (±4%) were manually modified by pharmacy staff. Ongoing system monitoring has identified mechanical and materials-related problems including vial-recognition failures (in many instances, these issues were resolved by the system operator and robotic compounding proceeded successfully), interface issues affecting robot-PIS communication, and human errors such as the loading of an incorrect vial or bag into the machine. Through staff training, information technology improvements, and workflow adjustments, the robot's throughput has been steadily improved. An i.v.-compounding robot was successfully implemented in a cancer center pharmacy. The robot performs compounding tasks safely and accurately and has been integrated into the pharmacy's workflow.

  20. 30 CFR 18.48 - Circuit-interrupting devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... two-pole switch of the “dead-man-control” type that must be held closed by hand and will open when hand pressure is released. (e) A machine designed to operate from both trolley wire and portable cable.... Such a switch shall be designed to prevent electrical connection to the machine frame when the cable is...

  1. 30 CFR 18.48 - Circuit-interrupting devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... two-pole switch of the “dead-man-control” type that must be held closed by hand and will open when hand pressure is released. (e) A machine designed to operate from both trolley wire and portable cable.... Such a switch shall be designed to prevent electrical connection to the machine frame when the cable is...

  2. History for Auto-Mechanics and Machine Trades Students. A Teacher's Guide.

    ERIC Educational Resources Information Center

    Puntureri, Thomas

    The guide for an American history curriculum is designed to give students insight into their field of study by including material on the development of the machine industry and related industries. It is divided into 18 basic units covering shop history and development, American industrialization, sociological development of man, American politics,…

  3. Bergsonian Comedy and the Human Machines in "Star Wars."

    ERIC Educational Resources Information Center

    Roth, Lane

    While analyzing humor is difficult, Henri Bergson's concept of comedy (a person acting like a machine) outlined in the classic essay, "Le Rire," in 1900, is probably too narrow a definition. Science fiction film, a genre which has evolved since the publication of Bergson's essay, has also speculated about man and society, often to…

  4. Cybernetic anthropomorphic machine systems

    NASA Technical Reports Server (NTRS)

    Gray, W. E.

    1974-01-01

    Functional descriptions are provided for a number of cybernetic man machine systems that augment the capacity of normal human beings in the areas of strength, reach or physical size, and environmental interaction, and that are also applicable to aiding the neurologically handicapped. Teleoperators, computer control, exoskeletal devices, quadruped vehicles, space maintenance systems, and communications equipment are considered.

  5. Space-based solar power conversion and delivery systems study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hazelrigg, G. A., Jr.

    1976-01-01

    The technical and economic aspects of satellite solar power systems are presented with a focus on the current configuration 5000 MW system. The technical studies include analyses of the orbital system structures, control and stationkeeping, and the formulation of program plans and costs for input to the economic analyses. The economic analyses centered about the development and use of a risk analysis model for a system cost assessment, identification of critical issues and technologies, and to provide information for programmatic decision making. A preliminary economic examination of some utility interface issues is included. Under the present state-of-knowledge, it is possible to formulate a program plan for the development of a satellite solar power system that can be economically justified. The key area of technological uncertainty is man's ability to fabricate and assemble large structures in space.

  6. Selectivity and Longevity of Peripheral-Nerve and Machine Interfaces: A Review

    PubMed Central

    Ghafoor, Usman; Kim, Sohee; Hong, Keum-Shik

    2017-01-01

    For those individuals with upper-extremity amputation, a daily normal living activity is no longer possible or it requires additional effort and time. With the aim of restoring their sensory and motor functions, theoretical and technological investigations have been carried out in the field of neuroprosthetic systems. For transmission of sensory feedback, several interfacing modalities including indirect (non-invasive), direct-to-peripheral-nerve (invasive), and cortical stimulation have been applied. Peripheral nerve interfaces demonstrate an edge over the cortical interfaces due to the sensitivity in attaining cortical brain signals. The peripheral nerve interfaces are highly dependent on interface designs and are required to be biocompatible with the nerves to achieve prolonged stability and longevity. Another criterion is the selection of nerves that allows minimal invasiveness and damages as well as high selectivity for a large number of nerve fascicles. In this paper, we review the nerve-machine interface modalities noted above with more focus on peripheral nerve interfaces, which are responsible for provision of sensory feedback. The invasive interfaces for recording and stimulation of electro-neurographic signals include intra-fascicular, regenerative-type interfaces that provide multiple contact channels to a group of axons inside the nerve and the extra-neural-cuff-type interfaces that enable interaction with many axons around the periphery of the nerve. Section Current Prosthetic Technology summarizes the advancements made to date in the field of neuroprosthetics toward the achievement of a bidirectional nerve-machine interface with more focus on sensory feedback. In the Discussion section, the authors propose a hybrid interface technique for achieving better selectivity and long-term stability using the available nerve interfacing techniques. PMID:29163122

  7. The 1980 Aircraft Safety and Operating Problems, part 1

    NASA Technical Reports Server (NTRS)

    Stickle, J. W. (Compiler)

    1981-01-01

    It is difficult to categorize aircraft operating problems, human factors and safety. Much of NASA's research involves all three and considers the important inter-relationships between man, the machine and the environment, whether the environment be man-made or natural. Topics covered in 20 papers include terminal-area operations; avionics and human factors; and the atmospheric environment.

  8. Federated Space-Time Query for Earth Science Data Using OpenSearch Conventions

    NASA Astrophysics Data System (ADS)

    Lynnes, C.; Beaumont, B.; Duerr, R. E.; Hua, H.

    2009-12-01

    The past decade has seen a burgeoning of remote sensing and Earth science data providers, as evidenced in the growth of the Earth Science Information Partner (ESIP) federation. At the same time, the need to combine diverse data sets to enable understanding of the Earth as a system has also grown. While the expansion of data providers is in general a boon to such studies, the diversity presents a challenge to finding useful data for a given study. Locating all the data files with aerosol information for a particular volcanic eruption, for example, may involve learning and using several different search tools to execute the requisite space-time queries. To address this issue, the ESIP federation is developing a federated space-time query framework, based on the OpenSearch convention (www.opensearch.org), with Geo and Time extensions. In this framework, data providers publish OpenSearch Description Documents that describe in a machine-readable form how to execute queries against the provider. The novelty of OpenSearch is that the space-time query interface becomes both machine callable and easy enough to integrate into the web browser's search box. This flexibility, together with a simple REST (HTTP-get) interface, should allow a variety of data providers to participate in the federated search framework, from large institutional data centers to individual scientists. The simple interface enables trivial querying of multiple data sources and participation in recursive-like federated searches--all using the same common OpenSearch interface. This simplicity also makes the construction of clients easy, as does existing OpenSearch client libraries in a variety of languages. Moreover, a number of clients and aggregation services already exist and OpenSearch is already supported by a number of web browsers such as Firefox and Internet Explorer.

  9. Skin in aviation and space environment.

    PubMed

    Grover, Sanjiv

    2011-01-01

    The aerospace environment is a dynamic interaction between man, machine and the environment. Skin diseases are not particularly significant aeromedically, yet they could permanently affect an aviator's status for continued flying duty. A number of dermatological conditions lend themselves to flying restrictions for the aviator. Aircrew and ground crew are exposed to a myriad of elements that could also adversely impact their flying status. Inflight stresses during flights as well as space travel could impact certain behaviors from a dermatological standpoint. With the advent of space tourism, dermatological issues would form an integral part of medical clearances. With limited literature available on this subject, the review article aims to sensitize the readers to the diverse interactions of dermatology with the aerospace environment.

  10. A hardware/software environment to support R D in intelligent machines and mobile robotic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1990-01-01

    The Center for Engineering Systems Advanced Research (CESAR) serves as a focal point at the Oak Ridge National Laboratory (ORNL) for basic and applied research in intelligent machines. R D at CESAR addresses issues related to autonomous systems, unstructured (i.e. incompletely known) operational environments, and multiple performing agents. Two mobile robot prototypes (HERMIES-IIB and HERMIES-III) are being used to test new developments in several robot component technologies. This paper briefly introduces the computing environment at CESAR which includes three hypercube concurrent computers (two on-board the mobile robots), a graphics workstation, VAX, and multiple VME-based systems (several on-board the mobile robots).more » The current software environment at CESAR is intended to satisfy several goals, e.g.: code portability, re-usability in different experimental scenarios, modularity, concurrent computer hardware transparent to applications programmer, future support for multiple mobile robots, support human-machine interface modules, and support for integration of software from other, geographically disparate laboratories with different hardware set-ups. 6 refs., 1 fig.« less

  11. European public deliberation on brain machine interface technology: five convergence seminars.

    PubMed

    Jebari, Karim; Hansson, Sven-Ove

    2013-09-01

    We present a novel procedure to engage the public in ethical deliberations on the potential impacts of brain machine interface technology. We call this procedure a convergence seminar, a form of scenario-based group discussion that is founded on the idea of hypothetical retrospection. The theoretical background of this procedure and the results of five seminars are presented.

  12. Human Machine Interfaces for Teleoperators and Virtual Environments

    NASA Technical Reports Server (NTRS)

    Durlach, Nathaniel I. (Compiler); Sheridan, Thomas B. (Compiler); Ellis, Stephen R. (Compiler)

    1991-01-01

    In Mar. 1990, a meeting organized around the general theme of teleoperation research into virtual environment display technology was conducted. This is a collection of conference-related fragments that will give a glimpse of the potential of the following fields and how they interplay: sensorimotor performance; human-machine interfaces; teleoperation; virtual environments; performance measurement and evaluation methods; and design principles and predictive models.

  13. Cursor control by Kalman filter with a non-invasive body–machine interface

    PubMed Central

    Seáñez-González, Ismael; Mussa-Ivaldi, Ferdinando A

    2015-01-01

    Objective We describe a novel human–machine interface for the control of a two-dimensional (2D) computer cursor using four inertial measurement units (IMUs) placed on the user’s upper-body. Approach A calibration paradigm where human subjects follow a cursor with their body as if they were controlling it with their shoulders generates a map between shoulder motions and cursor kinematics. This map is used in a Kalman filter to estimate the desired cursor coordinates from upper-body motions. We compared cursor control performance in a centre-out reaching task performed by subjects using different amounts of information from the IMUs to control the 2D cursor. Main results Our results indicate that taking advantage of the redundancy of the signals from the IMUs improved overall performance. Our work also demonstrates the potential of non-invasive IMU-based body–machine interface systems as an alternative or complement to brain–machine interfaces for accomplishing cursor control in 2D space. Significance The present study may serve as a platform for people with high-tetraplegia to control assistive devices such as powered wheelchairs using a joystick. PMID:25242561

  14. Human facial neural activities and gesture recognition for machine-interfacing applications.

    PubMed

    Hamedi, M; Salleh, Sh-Hussain; Tan, T S; Ismail, K; Ali, J; Dee-Uam, C; Pavaganun, C; Yupapin, P P

    2011-01-01

    The authors present a new method of recognizing different human facial gestures through their neural activities and muscle movements, which can be used in machine-interfacing applications. Human-machine interface (HMI) technology utilizes human neural activities as input controllers for the machine. Recently, much work has been done on the specific application of facial electromyography (EMG)-based HMI, which have used limited and fixed numbers of facial gestures. In this work, a multipurpose interface is suggested that can support 2-11 control commands that can be applied to various HMI systems. The significance of this work is finding the most accurate facial gestures for any application with a maximum of eleven control commands. Eleven facial gesture EMGs are recorded from ten volunteers. Detected EMGs are passed through a band-pass filter and root mean square features are extracted. Various combinations of gestures with a different number of gestures in each group are made from the existing facial gestures. Finally, all combinations are trained and classified by a Fuzzy c-means classifier. In conclusion, combinations with the highest recognition accuracy in each group are chosen. An average accuracy >90% of chosen combinations proved their ability to be used as command controllers.

  15. A novel device for head gesture measurement system in combination with eye-controlled human machine interface

    NASA Astrophysics Data System (ADS)

    Lin, Chern-Sheng; Ho, Chien-Wa; Chang, Kai-Chieh; Hung, San-Shan; Shei, Hung-Jung; Yeh, Mau-Shiun

    2006-06-01

    This study describes the design and combination of an eye-controlled and a head-controlled human-machine interface system. This system is a highly effective human-machine interface, detecting head movement by changing positions and numbers of light sources on the head. When the users utilize the head-mounted display to browse a computer screen, the system will catch the images of the user's eyes with CCD cameras, which can also measure the angle and position of the light sources. In the eye-tracking system, the program in the computer will locate each center point of the pupils in the images, and record the information on moving traces and pupil diameters. In the head gesture measurement system, the user wears a double-source eyeglass frame, so the system catches images of the user's head by using a CCD camera in front of the user. The computer program will locate the center point of the head, transferring it to the screen coordinates, and then the user can control the cursor by head motions. We combine the eye-controlled and head-controlled human-machine interface system for the virtual reality applications.

  16. The portals 4.0.1 network programming interface.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Brian W.; Brightwell, Ronald Brian; Pedretti, Kevin

    2013-04-01

    This report presents a specification for the Portals 4.0 network programming interface. Portals 4.0 is intended to allow scalable, high-performance network communication between nodes of a parallel computing system. Portals 4.0 is well suited to massively parallel processing and embedded systems. Portals 4.0 represents an adaption of the data movement layer developed for massively parallel processing platforms, such as the 4500-node Intel TeraFLOPS machine. Sandias Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4.0 is targeted to the next generationmore » of machines employing advanced network interface architectures that support enhanced offload capabilities. 3« less

  17. Optimal design method to minimize users' thinking mapping load in human-machine interactions.

    PubMed

    Huang, Yanqun; Li, Xu; Zhang, Jie

    2015-01-01

    The discrepancy between human cognition and machine requirements/behaviors usually results in serious mental thinking mapping loads or even disasters in product operating. It is important to help people avoid human-machine interaction confusions and difficulties in today's mental work mastered society. Improving the usability of a product and minimizing user's thinking mapping and interpreting load in human-machine interactions. An optimal human-machine interface design method is introduced, which is based on the purpose of minimizing the mental load in thinking mapping process between users' intentions and affordance of product interface states. By analyzing the users' thinking mapping problem, an operating action model is constructed. According to human natural instincts and acquired knowledge, an expected ideal design with minimized thinking loads is uniquely determined at first. Then, creative alternatives, in terms of the way human obtains operational information, are provided as digital interface states datasets. In the last, using the cluster analysis method, an optimum solution is picked out from alternatives, by calculating the distances between two datasets. Considering multiple factors to minimize users' thinking mapping loads, a solution nearest to the ideal value is found in the human-car interaction design case. The clustering results show its effectiveness in finding an optimum solution to the mental load minimizing problems in human-machine interaction design.

  18. John Henry--The Steel Driving Man

    ERIC Educational Resources Information Center

    Murphy, David E.; Gulley, Laura L.

    2005-01-01

    The story of John Henry provided the setting for sixth-grade class to participate in a John Henry Day of mathematics experiments. The students collected data from experiments where students competed against machines and technology. The student analyzed the data by comparing two box plots, a box plot of human data, and a box plot of machine or…

  19. Study of Man-Machine Communications Systems for Disabled Persons (The Handicapped). Volume VII. Final Report.

    ERIC Educational Resources Information Center

    Kafafian, Haig

    Teaching instructions, lesson plans, and exercises are provided for severely physically and/or neurologically handicapped persons learning to use the Cybertype electric writing machine with a tongue-body keyboard. The keyboard, which has eight double-throw toggle switches and a three-position state-selector switch, is designed to be used by…

  20. Big data, little security: Addressing security issues in your platform

    NASA Astrophysics Data System (ADS)

    Macklin, Thomas; Mathews, Joseph

    2017-05-01

    This paper describes some patterns for information security problems that consistently emerge among traditional enterprise networks and applications, both with respect to cyber threats and data sensitivity. We draw upon cases from qualitative studies and interviews of system developers, network operators, and certifiers of military applications. Specifically, the problems discussed involve sensitivity of data aggregates, training efficacy, and security decision support in the human machine interface. While proven techniques can address many enterprise security challenges, we provide additional recommendations on how to further improve overall security posture, and suggest additional research thrusts to address areas where known gaps remain.

  1. The integrated analysis capability (IAC Level 2.0)

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.; Vos, Robert G.

    1988-01-01

    The critical data management issues involved in the development of the integral analysis capability (IAC), Level 2, to support the design analysis and performance evaluation of large space structures, are examined. In particular, attention is given to the advantages and disadvantages of the formalized data base; merging of the matrix and relational data concepts; data types, query operators, and data handling; sequential versus direct-access files; local versus global data access; programming languages and host machines; and data flow techniques. The discussion also covers system architecture, recent system level enhancements, executive/user interface capabilities, and technology applications.

  2. Acquisition and production of skilled behavior in dynamic decision-making tasks

    NASA Technical Reports Server (NTRS)

    Kirlik, Alex

    1992-01-01

    Currently, two main approaches exist for improving the human-machine interface component of a system in order to improve overall system performance - display enhancement and intelligent decision making. Discussed here are the characteristic issues of these two decision-making strategies. Differences in expert and novice decision making are described in order to help determine whether a particular strategy may be better for a particular type of user. Research is outlined to compare and contrast the two technologies, as well as to examine the interaction effects introduced by the different skill levels and the different methods for training operators.

  3. Surface EMG signals in very late-stage of Duchenne muscular dystrophy: a case study.

    PubMed

    Lobo-Prat, Joan; Janssen, Mariska M H P; Koopman, Bart F J M; Stienen, Arno H A; de Groot, Imelda J M

    2017-08-29

    Robotic arm supports aim at improving the quality of life for adults with Duchenne muscular dystrophy (DMD) by augmenting their residual functional abilities. A critical component of robotic arm supports is the control interface, as is it responsible for the human-machine interaction. Our previous studies showed the feasibility of using surface electromyography (sEMG) as a control interface to operate robotic arm supports in adults with DMD (22-24 years-old). However, in the biomedical engineering community there is an often raised skepticism on whether adults with DMD at the last stage of their disease have sEMG signals that can be measured and used for control. In this study sEMG signals from Biceps and Triceps Brachii muscles were measured for the first time in a 37 year-old man with DMD (Brooke 6) that lost his arm function 15 years ago. The sEMG signals were measured during maximal and sub-maximal voluntary isometric contractions and evaluated in terms of signal-to-noise ratio and co-activation ratio. Beyond the profound deterioration of the muscles, we found that sEMG signals from both Biceps and Triceps muscles were measurable in this individual, although with a maximum signal amplitude 100 times lower compared to sEMG from healthy subjects. The participant was able to voluntarily modulate the required level of muscle activation during the sub-maximal voluntary isometric contractions. Despite the low sEMG amplitude and a considerable level of muscle co-activation, simulations of an elbow orthosis using the measured sEMG as driving signal indicated that the sEMG signals of the participant had the potential to provide control of elbow movements. To the best of our knowledge this is the first time that sEMG signals from a man with DMD at the last-stage of the disease were measured, analyzed and reported. These findings offer promising perspectives to the use of sEMG as an intuitive and natural control interface for robotic arm supports in adults with DMD until the last stage of the disease.

  4. Sensory motor remapping of space in human–machine interfaces

    PubMed Central

    Mussa-Ivaldi, Ferdinando A.; Casadio, Maura; Danziger, Zachary C.; Mosier, Kristine M.; Scheidt, Robert A.

    2012-01-01

    Studies of adaptation to patterns of deterministic forces have revealed the ability of the motor control system to form and use predictive representations of the environment. These studies have also pointed out that adaptation to novel dynamics is aimed at preserving the trajectories of a controlled endpoint, either the hand of a subject or a transported object. We review some of these experiments and present more recent studies aimed at understanding how the motor system forms representations of the physical space in which actions take place. An extensive line of investigations in visual information processing has dealt with the issue of how the Euclidean properties of space are recovered from visual signals that do not appear to possess these properties. The same question is addressed here in the context of motor behavior and motor learning by observing how people remap hand gestures and body motions that control the state of an external device. We present some theoretical considerations and experimental evidence about the ability of the nervous system to create novel patterns of coordination that are consistent with the representation of extrapersonal space. We also discuss the perspective of endowing human–machine interfaces with learning algorithms that, combined with human learning, may facilitate the control of powered wheelchairs and other assistive devices. PMID:21741543

  5. Brain-machine interfaces: electrophysiological challenges and limitations.

    PubMed

    Lega, Bradley C; Serruya, Mijail D; Zaghloul, Kareem A

    2011-01-01

    Brain-machine interfaces (BMI) seek to directly communicate with the human nervous system in order to diagnose and treat intrinsic neurological disorders. While the first generation of these devices has realized significant clinical successes, they often rely on gross electrical stimulation using empirically derived parameters through open-loop mechanisms of action that are not yet fully understood. Their limitations reflect the inherent challenge in developing the next generation of these devices. This review identifies lessons learned from the first generation of BMI devices (chiefly deep brain stimulation), identifying key problems for which the solutions will aid the development of the next generation of technologies. Our analysis examines four hypotheses for the mechanism by which brain stimulation alters surrounding neurophysiologic activity. We then focus on motor prosthetics, describing various approaches to overcoming the problems of decoding neural signals. We next turn to visual prosthetics, an area for which the challenges of signal coding to match neural architecture has been partially overcome. Finally, we close with a review of cortical stimulation, examining basic principles that will be incorporated into the design of future devices. Throughout the review, we relate the issues of each specific topic to the common thread of BMI research: translating new knowledge of network neuroscience into improved devices for neuromodulation.

  6. Soft, Conformal Bioelectronics for a Wireless Human-Wheelchair Interface

    PubMed Central

    Mishra, Saswat; Norton, James J. S.; Lee, Yongkuk; Lee, Dong Sup; Agee, Nicolas; Chen, Yanfei; Chun, Youngjae; Yeo, Woon-Hong

    2017-01-01

    There are more than 3 million people in the world whose mobility relies on wheelchairs. Recent advancement on engineering technology enables more intuitive, easy-to-use rehabilitation systems. A human-machine interface that uses non-invasive, electrophysiological signals can allow a systematic interaction between human and devices; for example, eye movement-based wheelchair control. However, the existing machine-interface platforms are obtrusive, uncomfortable, and often cause skin irritations as they require a metal electrode affixed to the skin with a gel and acrylic pad. Here, we introduce a bioelectronic system that makes dry, conformal contact to the skin. The mechanically comfortable sensor records high-fidelity electrooculograms, comparable to the conventional gel electrode. Quantitative signal analysis and infrared thermographs show the advantages of the soft biosensor for an ergonomic human-machine interface. A classification algorithm with an optimized set of features shows the accuracy of 94% with five eye movements. A Bluetooth-enabled system incorporating the soft bioelectronics demonstrates a precise, hands-free control of a robotic wheelchair via electrooculograms. PMID:28152485

  7. Lunar regolith bagging system

    NASA Technical Reports Server (NTRS)

    Cannon, Reuben; Henninger, Scott; Levandoski, Mark; Perkins, Jim; Pitchon, Jack; Swats, Robin; Wessels, Roger

    1990-01-01

    A design of a lunar regolith bag and bagging system is described. The bags of regolith are to be used for construction applications on the lunar surface. The machine is designed to be used in conjunction with the lunar SKITTER currently under development. The bags for this system are 1 cu ft volume and are made from a fiberglass composite weave. The machinery is constructed mostly from a boron/aluminum composite. The machine can fill 120 bags per hour and work for 8 hours a day. The man hours to machine hours ratio to operate the machine is .5/8.

  8. MRTD: man versus machine

    NASA Astrophysics Data System (ADS)

    van Rheenen, Arthur D.; Taule, Petter; Thomassen, Jan Brede; Madsen, Eirik Blix

    2018-04-01

    We present Minimum-Resolvable Temperature Difference (MRTD) curves obtained by letting an ensemble of observers judge how many of the six four-bar patterns they can "see" in a set of images taken with different bar-to-background contrasts. The same images are analyzed using elemental signal analysis algorithms and machine-analysis based MRTD curves are obtained. We show that by adjusting the minimum required signal-to-noise ratio the machine-based MRTDs are very similar to the ones obtained with the help of the human observers.

  9. HUMAN ENGINEERING FOR AN EFFECTIVE AIR-NAVIGATION AND TRAFFIC-CONTROL SYSTEM, AND APPENDIXES 1 THRU 3

    DTIC Science & Technology

    1951-03-14

    human "We have been very much occupied In perfect. engineering to the improvement of the air-navigation ing the machines and the tools which the...a man-machine system which will ever, if he were only considered as an instrument, yield optimal results in the way of efficiency and a tool , a motor...operation of machines and equipment and system development, which will permit tools , the emphasis has been upon the adjustment of an orderly and

  10. Chip breaking system for automated machine tool

    DOEpatents

    Arehart, Theodore A.; Carey, Donald O.

    1987-01-01

    The invention is a rotary selectively directional valve assembly for use in an automated turret lathe for directing a stream of high pressure liquid machining coolant to the interface of a machine tool and workpiece for breaking up ribbon-shaped chips during the formation thereof so as to inhibit scratching or other marring of the machined surfaces by these ribbon-shaped chips. The valve assembly is provided by a manifold arrangement having a plurality of circumferentially spaced apart ports each coupled to a machine tool. The manifold is rotatable with the turret when the turret is positioned for alignment of a machine tool in a machining relationship with the workpiece. The manifold is connected to a non-rotational header having a single passageway therethrough which conveys the high pressure coolant to only the port in the manifold which is in registry with the tool disposed in a working relationship with the workpiece. To position the machine tools the turret is rotated and one of the tools is placed in a material-removing relationship of the workpiece. The passageway in the header and one of the ports in the manifold arrangement are then automatically aligned to supply the machining coolant to the machine tool workpiece interface for breaking up of the chips as well as cooling the tool and workpiece during the machining operation.

  11. Operation of micro and molecular machines: a new concept with its origins in interface science.

    PubMed

    Ariga, Katsuhiko; Ishihara, Shinsuke; Izawa, Hironori; Xia, Hong; Hill, Jonathan P

    2011-03-21

    A landmark accomplishment of nanotechnology would be successful fabrication of ultrasmall machines that can work like tweezers, motors, or even computing devices. Now we must consider how operation of micro- and molecular machines might be implemented for a wide range of applications. If these machines function only under limited conditions and/or require specialized apparatus then they are useless for practical applications. Therefore, it is important to carefully consider the access of functionality of the molecular or nanoscale systems by conventional stimuli at the macroscopic level. In this perspective, we will outline the position of micro- and molecular machines in current science and technology. Most of these machines are operated by light irradiation, application of electrical or magnetic fields, chemical reactions, and thermal fluctuations, which cannot always be applied in remote machine operation. We also propose strategies for molecular machine operation using the most conventional of stimuli, that of macroscopic mechanical force, achieved through mechanical operation of molecular machines located at an air-water interface. The crucial roles of the characteristics of an interfacial environment, i.e. connection between macroscopic dimension and nanoscopic function, and contact of media with different dielectric natures, are also described.

  12. Prediction and measurement of human pilot dynamic characteristics in a manned rotorcraft simulation

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.; Reedy, James T.

    1988-01-01

    An analytical and experimental study of the human pilot control strategies in a manned rotorcraft simulation is described. The task simulated involves a low-speed, constant-altitude maneuvering task in which a head-down display is utilized to allow the pilot to track a moving hover point. The efficacy of the display law driving an acceleration symbol is determined and the manner in which the prediction and measurement of pilot/vehicle dynamics can be made part of man/machine system evaluations is demonstrated.

  13. Prospects of a mathematical theory of human behavior in complex man-machine systems tasks. [time sharing computer analogy of automobile driving

    NASA Technical Reports Server (NTRS)

    Johannsen, G.; Rouse, W. B.

    1978-01-01

    A hierarchy of human activities is derived by analyzing automobile driving in general terms. A structural description leads to a block diagram and a time-sharing computer analogy. The range of applicability of existing mathematical models is considered with respect to the hierarchy of human activities in actual complex tasks. Other mathematical tools so far not often applied to man machine systems are also discussed. The mathematical descriptions at least briefly considered here include utility, estimation, control, queueing, and fuzzy set theory as well as artificial intelligence techniques. Some thoughts are given as to how these methods might be integrated and how further work might be pursued.

  14. Human factor engineering based design and modernization of control rooms with new I and C systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larraz, J.; Rejas, L.; Ortega, F.

    2012-07-01

    Instrumentation and Control (I and C) systems of the latest nuclear power plants are based on the use of digital technology, distributed control systems and the integration of information in data networks (Distributed Control and Instrumentation Systems). This has a repercussion on Control Rooms (CRs), where the operations and monitoring interfaces correspond to these systems. These technologies are also used in modernizing I and C systems in currently operative nuclear power plants. The new interfaces provide additional capabilities for operation and supervision, as well as a high degree of flexibility, versatility and reliability. An example of this is the implementationmore » of solutions such as compact stations, high level supervision screens, overview displays, computerized procedures, new operational support systems or intelligent alarms processing systems in the modernized Man-Machine Interface (MMI). These changes in the MMI are accompanied by newly added Software (SW) controls and new solutions in automation. Tecnatom has been leading various projects in this area for several years, both in Asian countries and in the United States, using in all cases international standards from which Tecnatom own methodologies have been developed and optimized. The experience acquired in applying this methodology to the design of new control rooms is to a large extent applicable also to the modernization of current control rooms. An adequate design of the interface between the operator and the systems will facilitate safe operation, contribute to the prompt identification of problems and help in the distribution of tasks and communications between the different members of the operating shift. Based on Tecnatom experience in the field, this article presents the methodological approach used as well as the most relevant aspects of this kind of project. (authors)« less

  15. Design of Human-Machine Interface and altering of pelvic obliquity with RGR Trainer.

    PubMed

    Pietrusinski, Maciej; Unluhisarcikli, Ozer; Mavroidis, Constantinos; Cajigas, Iahn; Bonato, Paolo

    2011-01-01

    The Robotic Gait Rehabilitation (RGR) Trainer targets secondary gait deviations in stroke survivors undergoing rehabilitation. Using an impedance control strategy and a linear electromagnetic actuator, the device generates a force field to control pelvic obliquity through a Human-Machine Interface (i.e. a lower body exoskeleton). Herein we describe the design of the RGR Trainer Human-Machine Interface (HMI) and we demonstrate the system's ability to alter the pattern of movement of the pelvis during gait in a healthy subject. Results are shown for experiments during which we induced hip-hiking - in healthy subjects. Our findings indicate that the RGR Trainer has the ability of affecting pelvic obliquity during gait. Furthermore, we provide preliminary evidence of short-term retention of the modified pelvic obliquity pattern induced by the RGR Trainer. © 2011 IEEE

  16. Toward more versatile and intuitive cortical brain-machine interfaces.

    PubMed

    Andersen, Richard A; Kellis, Spencer; Klaes, Christian; Aflalo, Tyson

    2014-09-22

    Brain-machine interfaces have great potential for the development of neuroprosthetic applications to assist patients suffering from brain injury or neurodegenerative disease. One type of brain-machine interface is a cortical motor prosthetic, which is used to assist paralyzed subjects. Motor prosthetics to date have typically used the motor cortex as a source of neural signals for controlling external devices. The review will focus on several new topics in the arena of cortical prosthetics. These include using: recordings from cortical areas outside motor cortex; local field potentials as a source of recorded signals; somatosensory feedback for more dexterous control of robotics; and new decoding methods that work in concert to form an ecology of decode algorithms. These new advances promise to greatly accelerate the applicability and ease of operation of motor prosthetics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Design of Human – Machine Interface and Altering of Pelvic Obliquity with RGR Trainer

    PubMed Central

    Pietrusinski, Maciej; Unluhisarcikli, Ozer; Mavroidis, Constantinos; Cajigas, Iahn; Bonato, Paolo

    2012-01-01

    The Robotic Gait Rehabilitation (RGR) Trainer targets secondary gait deviations in stroke survivors undergoing rehabilitation. Using an impedance control strategy and a linear electromagnetic actuator, the device generates a force field to control pelvic obliquity through a Human-Machine Interface (i.e. a lower body exoskeleton). Herein we describe the design of the RGR Trainer Human-Machine Interface (HMI) and we demonstrate the system’s ability to alter the pattern of movement of the pelvis during gait in a healthy subject. Results are shown for experiments during which we induced hip-hiking – in healthy subjects. Our findings indicate that the RGR Trainer has the ability of affecting pelvic obliquity during gait. Furthermore, we provide preliminary evidence of short-term retention of the modified pelvic obliquity pattern induced by the RGR Trainer. PMID:22275693

  18. Human factors dimensions in the evolution of increasingly automated control rooms for near-earth satellites

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M.

    1982-01-01

    The NASA-Goddard Space Flight Center is responsible for the control and ground support for all of NASA's unmanned near-earth satellites. Traditionally, each satellite had its own dedicated mission operations room. In the mid-seventies, an integration of some of these dedicated facilities was begun with the primary objective to reduce costs. In this connection, the Multi-Satellite Operations Control Center (MSOCC) was designed. MSOCC represents currently a labor intensive operation. Recently, Goddard has become increasingly aware of human factors and human-machine interface issues. A summary is provided of some of the attempts to apply human factors considerations in the design of command and control environments. Current and future activities with respect to human factors and systems design are discussed, giving attention to the allocation of tasks between human and computer, and the interface for the human-computer dialogue.

  19. Human factors in technology replacement: a case study in interface design for a public transport monitoring system.

    PubMed

    Harper, J G; Fuller, R; Sweeney, D; Waldmann, T

    1998-04-01

    This paper describes ergonomic issues raised during a project to provide a replacement real-time bus route control system to a large public transport company. Task and system analyses highlighted several deficiencies in the original system architecture, the human-machine interfaces and the general approach to system management. The eventual live prototype replaced the existing original system for a trial evaluation period of several weeks. During this period a number of studies was conducted with the system users in order to measure any improvements the new system, with its ergonomic features, produced over the old. Importantly, the results confirmed that (a) general responsiveness and service quality were improved, and (b) users were more comfortable with the new design. We conclude with a number of caveats which we believe will be useful to any group addressing technology impact in a large organisation.

  20. Computational aerodynamics requirements: The future role of the computer and the needs of the aerospace industry

    NASA Technical Reports Server (NTRS)

    Rubbert, P. E.

    1978-01-01

    The commercial airplane builder's viewpoint on the important issues involved in the development of improved computational aerodynamics tools such as powerful computers optimized for fluid flow problems is presented. The primary user of computational aerodynamics in a commercial aircraft company is the design engineer who is concerned with solving practical engineering problems. From his viewpoint, the development of program interfaces and pre-and post-processing capability for new computational methods is just as important as the algorithms and machine architecture. As more and more details of the entire flow field are computed, the visibility of the output data becomes a major problem which is then doubled when a design capability is added. The user must be able to see, understand, and interpret the results calculated. Enormous costs are expanded because of the need to work with programs having only primitive user interfaces.

  1. 40 CFR 63.464 - Alternative standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (a)(2) of this section. (1) If the cleaning machine has a solvent/air interface, as defined in § 63... cleaning machines 153 New in-line solvent cleaning machines 99 (2) If the cleaning machine is a batch vapor... requirements specified in paragraphs (a)(2)(i) and (a)(2)(ii) of this section. (i) Maintain a log of solvent...

  2. 40 CFR 63.464 - Alternative standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (a)(2) of this section. (1) If the cleaning machine has a solvent/air interface, as defined in § 63... cleaning machines 153 New in-line solvent cleaning machines 99 (2) If the cleaning machine is a batch vapor... requirements specified in paragraphs (a)(2)(i) and (a)(2)(ii) of this section. (i) Maintain a log of solvent...

  3. Technology: The Culture of Machine Living. Program in American History and Civilization.

    ERIC Educational Resources Information Center

    Tufts Univ., Medford, MA. Lincoln Filene Center for Citizenship and Public Affairs.

    The readings in this narrative unit are concerned with the machine's role today and its future use in shaping man's environment. The general teaching objectives are to enable the student: 1) to adapt to a society directed toward total living, rather than one in which he earns a living; 2) to understand that uncontrolled technological advance may…

  4. Study of Man-Machine Communications Systems for Disabled Persons (The Handicapped). Volume VI. Final Report.

    ERIC Educational Resources Information Center

    Kafafian, Haig

    The instruction manual contains lessons for teaching severely physically and/or neurologically handicapped students to use the seven-key Cybertype electric writing machine. Unlike the 14-key keyboard, which requires bilateral coordination in arms, legs, or other parts of the body, the seven-key keyboard requires the use of only one part of the…

  5. A new model of Ishikawa diagram for quality assessment

    NASA Astrophysics Data System (ADS)

    Liliana, Luca

    2016-11-01

    The paper presents the results of a study concerning the use of the Ishikawa diagram in analyzing the causes that determine errors in the evaluation of theparts precision in the machine construction field. The studied problem was"errors in the evaluation of partsprecision” and this constitutes the head of the Ishikawa diagram skeleton.All the possible, main and secondary causes that could generate the studied problem were identified. The most known Ishikawa models are 4M, 5M, 6M, the initials being in order: materials, methods, man, machines, mother nature, measurement. The paper shows the potential causes of the studied problem, which were firstly grouped in three categories, as follows: causes that lead to errors in assessing the dimensional accuracy, causes that determine errors in the evaluation of shape and position abnormalities and causes for errors in roughness evaluation. We took into account the main components of parts precision in the machine construction field. For each of the three categories of causes there were distributed potential secondary causes on groups of M (man, methods, machines, materials, environment/ medio ambiente-sp.). We opted for a new model of Ishikawa diagram, resulting from the composition of three fish skeletons corresponding to the main categories of parts accuracy.

  6. MERCATOR: Methods and Realization for Control of the Attitude and the Orbit of spacecraft

    NASA Technical Reports Server (NTRS)

    Tavernier, Gilles; Campan, Genevieve

    1993-01-01

    Since 1974, CNES has been involved in geostationary positioning. Among different entities participating in operations and their preparation, the Flight Dynamics Center (FDC) is in charge of performing the following tasks: orbit determination; attitude determination; computation, monitoring, and calibration of orbit maneuvers; computation, monitoring, and calibration of attitude maneuvers; and operational predictions. In order to fulfill this mission, the FDC receives telemetry from the satellite and localization measurements from ground stations (e.g., CNES, NASA, INTELSAT). These data are processed by space dynamics programs integrated in the MERCATOR system which is run on SUN workstations (UNIX O.S.). The main features of MERCATOR are redundancy, modularity, and flexibility: efficient, flexible, and user friendly man-machine interface; and four identical SUN stations redundantly linked in an Ethernet network. Each workstation can perform all the tasks from data acquisition to computation results dissemination through a video network. A team of four engineers can handle the space mechanics aspects of a complete geostationary positioning from the injection into a transfer orbit to the final maneuvers in the station-keeping window. MERCATOR has been or is to be used for operations related to more than ten geostationary positionings. Initially developed for geostationary satellites, MERCATOR's methodology was also used for satellite control centers and can be applied to a wide range of satellites and to future manned missions.

  7. EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton.

    PubMed

    Yin, Yue H; Fan, Yuan J; Xu, Li D

    2012-07-01

    Although a lower extremity exoskeleton shows great prospect in the rehabilitation of the lower limb, it has not yet been widely applied to the clinical rehabilitation of the paralyzed. This is partly caused by insufficient information interactions between the paralyzed and existing exoskeleton that cannot meet the requirements of harmonious control. In this research, a bidirectional human-machine interface including a neurofuzzy controller and an extended physiological proprioception (EPP) feedback system is developed by imitating the biological closed-loop control system of human body. The neurofuzzy controller is built to decode human motion in advance by the fusion of the fuzzy electromyographic signals reflecting human motion intention and the precise proprioception providing joint angular feedback information. It transmits control information from human to exoskeleton, while the EPP feedback system based on haptic stimuli transmits motion information of the exoskeleton back to the human. Joint angle and torque information are transmitted in the form of air pressure to the human body. The real-time bidirectional human-machine interface can help a patient with lower limb paralysis to control the exoskeleton with his/her healthy side and simultaneously perceive motion on the paralyzed side by EPP. The interface rebuilds a closed-loop motion control system for paralyzed patients and realizes harmonious control of the human-machine system.

  8. Active tactile exploration using a brain-machine-brain interface.

    PubMed

    O'Doherty, Joseph E; Lebedev, Mikhail A; Ifft, Peter J; Zhuang, Katie Z; Shokur, Solaiman; Bleuler, Hannes; Nicolelis, Miguel A L

    2011-10-05

    Brain-machine interfaces use neuronal activity recorded from the brain to establish direct communication with external actuators, such as prosthetic arms. It is hoped that brain-machine interfaces can be used to restore the normal sensorimotor functions of the limbs, but so far they have lacked tactile sensation. Here we report the operation of a brain-machine-brain interface (BMBI) that both controls the exploratory reaching movements of an actuator and allows signalling of artificial tactile feedback through intracortical microstimulation (ICMS) of the primary somatosensory cortex. Monkeys performed an active exploration task in which an actuator (a computer cursor or a virtual-reality arm) was moved using a BMBI that derived motor commands from neuronal ensemble activity recorded in the primary motor cortex. ICMS feedback occurred whenever the actuator touched virtual objects. Temporal patterns of ICMS encoded the artificial tactile properties of each object. Neuronal recordings and ICMS epochs were temporally multiplexed to avoid interference. Two monkeys operated this BMBI to search for and distinguish one of three visually identical objects, using the virtual-reality arm to identify the unique artificial texture associated with each. These results suggest that clinical motor neuroprostheses might benefit from the addition of ICMS feedback to generate artificial somatic perceptions associated with mechanical, robotic or even virtual prostheses.

  9. Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 259)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A bibliography containing 476 documents introduced into the NASA scientific and technical information system in May 1984 is presented. The primary subject categories included are: life sciences, aerospace medicine, behavioral sciences, man/system technology, life support, and planetary biology. Topics extensively represented were space flight stress, man machine systems, weightlessness, human performance, mental performance, and spacecraft environments. Abstracts for each citation are given.

  10. Towards an internal model in pilot training.

    PubMed

    Braune, R J; Trollip, S R

    1982-10-01

    Optimal decision making requires an information seeking behavior which reflects the comprehension of the overall system dynamics. Research in the area of human monitors in man-machine systems supports the notion of an internal model with built-in expectancies. It is doubtful that the current approach to pilot training helps develop this internal model in the most efficient way. But this is crucial since the role of the pilot is changing to a systems' manager and decision maker. An extension of the behavioral framework of pilot training might help to prepare the pilot better for the increasingly complex flight environment. This extension is based on the theoretical model of schema theory, which evolved out of psychological research. The technological advances in aircraft simulators and in-flight performance measurement devices allow investigation of the still-unresolved issues.

  11. Electromagnetic Compatibility (EMC) for Integration and Use of Near Field Communication (NFC) in Aircraft

    NASA Astrophysics Data System (ADS)

    Nalbantoglu, Cemal; Kiehl, Thorsten; God, Ralf; Stadtler, Thiemo; Kebel, Robert; Bienert, Renke

    2016-05-01

    For portable electronic devices (PEDs), e.g. smartphones or tablets, near field communication (NFC) enables easy and convenient man-machine interaction by simply tapping a PED to a tangible NFC user interface. Usage of NFC technology in the air transport system is supposed to facilitate travel processes and self-services for passengers and to support digital interaction with other participating stakeholders. One of the potential obstacles to benefit from NFC technology in the aircraft cabin is the lack of an explicit qualification guideline for electromagnetic compatibility (EMC) testing. In this paper, we propose a methodology for EMC testing and for characterizing NFC devices and their emissions according to aircraft industry standards (RTCA DO-160, DO-294, DO-307 and EUROCAE ED- 130). A potential back-door coupling scenario of radiated NFC emissions and possible effects to nearby aircraft wiring are discussed. A potential front-door- coupling effect on NAV/COM equipment is not investigated in this paper.

  12. Objective evaluation of situation awareness for dynamic decision makers in teleoperations

    NASA Technical Reports Server (NTRS)

    Endsley, Mica R.

    1991-01-01

    Situation awareness, a current mental mode of the environment, is critical to the ability of operators to perform complex and dynamic tasks. This should be particularly true for teleoperators, who are separated from the situation they need to be aware of. The design of the man-machine interface must be guided by the goal of maintaining and enhancing situation awareness. The objective of this work has been to build a foundation upon which research in the area can proceed. A model of dynamic human decision making which is inclusive of situation awareness will be presented, along with a definition of situation awareness. A method for measuring situation awareness will also be presented as a tool for evaluating design concepts. The Situation Awareness Global Assessment Technique (SAGAT) is an objective measure of situation awareness originally developed for the fighter cockpit environment. The results of SAGAT validation efforts will be presented. Implications of this research for teleoperators and other operators of dynamic systems will be discussed.

  13. A Custom Robotic System for Inspecting HEPA Filters in the Payload Changeout Room at the NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Spencer, James E., Jr.; Looney, Joe

    1994-01-01

    In this paper, the prime objective is to describe a custom 4-dof (degree-of-freedom) robotic arm capable of autonomously or telerobotically performing systematic HEPA filter inspection and certification in the Shuttle Launch Pad Payload Changeout Rooms (PCR's) on pads A and B at the Kennedy Space Center, Florida. This HEPA filter inspection robot (HFIR) has been designed to be easily deployable and is equipped with the necessary sensory devices, control hardware, software and man-machine interfaces needed to implement HEPA filter inspection reliably and efficiently without damaging the filters or colliding with existing PCR structures or filters. The main purpose of the HFIR is to implement an automated positioning system to move special inspection sensors in pre-defined or manual patterns for the purpose of verifying filter integrity and efficiency. This will ultimately relieve NASA Payload Operations from significant problems associated with time, cost and personnel safety, impacts realized during non-automated PCR HFIR filter certification.

  14. Scanpath-based analysis of objects conspicuity in context of human vision physiology.

    PubMed

    Augustyniak, Piotr

    2007-01-01

    This paper discusses principal aspects of objects conspicuity investigated with use of an eye tracker and interpreted on the background of human vision physiology. Proper management of objects conspicuity is fundamental in several leading edge applications in the information society like advertisement, web design, man-machine interfacing and ergonomics. Although some common rules of human perception are applied since centuries in the art, the interest of human perception process is motivated today by the need of gather and maintain the recipient attention by putting selected messages in front of the others. Our research uses the visual tasks methodology and series of progressively modified natural images. The modifying details were attributed by their size, color and position while the scanpath-derived gaze points confirmed or not the act of perception. The statistical analysis yielded the probability of detail perception and correlations with the attributes. This probability conforms to the knowledge about the retina anatomy and perception physiology, although we use noninvasive methods only.

  15. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josh A. Salmond

    2009-08-07

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and lowmore » residual stresses. The products fabricated are used on multiple programs.« less

  16. A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface

    PubMed Central

    Su, Yi; Routhu, Sudhamayee; Moon, Kee S.; Lee, Sung Q.; Youm, WooSub; Ozturk, Yusuf

    2016-01-01

    All neural information systems (NIS) rely on sensing neural activity to supply commands and control signals for computers, machines and a variety of prosthetic devices. Invasive systems achieve a high signal-to-noise ratio (SNR) by eliminating the volume conduction problems caused by tissue and bone. An implantable brain machine interface (BMI) using intracortical electrodes provides excellent detection of a broad range of frequency oscillatory activities through the placement of a sensor in direct contact with cortex. This paper introduces a compact-sized implantable wireless 32-channel bidirectional brain machine interface (BBMI) to be used with freely-moving primates. The system is designed to monitor brain sensorimotor rhythms and present current stimuli with a configurable duration, frequency and amplitude in real time to the brain based on the brain activity report. The battery is charged via a novel ultrasonic wireless power delivery module developed for efficient delivery of power into a deeply-implanted system. The system was successfully tested through bench tests and in vivo tests on a behaving primate to record the local field potential (LFP) oscillation and stimulate the target area at the same time. PMID:27669264

  17. Intelligent interface design and evaluation

    NASA Technical Reports Server (NTRS)

    Greitzer, Frank L.

    1988-01-01

    Intelligent interface concepts and systematic approaches to assessing their functionality are discussed. Four general features of intelligent interfaces are described: interaction efficiency, subtask automation, context sensitivity, and use of an appropriate design metaphor. Three evaluation methods are discussed: Functional Analysis, Part-Task Evaluation, and Operational Testing. Design and evaluation concepts are illustrated with examples from a prototype expert system interface for environmental control and life support systems for manned space platforms.

  18. Additional Security Considerations for Grid Management

    NASA Technical Reports Server (NTRS)

    Eidson, Thomas M.

    2003-01-01

    The use of Grid computing environments is growing in popularity. A Grid computing environment is primarily a wide area network that encompasses multiple local area networks, where some of the local area networks are managed by different organizations. A Grid computing environment also includes common interfaces for distributed computing software so that the heterogeneous set of machines that make up the Grid can be used more easily. The other key feature of a Grid is that the distributed computing software includes appropriate security technology. The focus of most Grid software is on the security involved with application execution, file transfers, and other remote computing procedures. However, there are other important security issues related to the management of a Grid and the users who use that Grid. This note discusses these additional security issues and makes several suggestions as how they can be managed.

  19. Materials and optimized designs for human-machine interfaces via epidermal electronics.

    PubMed

    Jeong, Jae-Woong; Yeo, Woon-Hong; Akhtar, Aadeel; Norton, James J S; Kwack, Young-Jin; Li, Shuo; Jung, Sung-Young; Su, Yewang; Lee, Woosik; Xia, Jing; Cheng, Huanyu; Huang, Yonggang; Choi, Woon-Seop; Bretl, Timothy; Rogers, John A

    2013-12-17

    Thin, soft, and elastic electronics with physical properties well matched to the epidermis can be conformally and robustly integrated with the skin. Materials and optimized designs for such devices are presented for surface electromyography (sEMG). The findings enable sEMG from wide ranging areas of the body. The measurements have quality sufficient for advanced forms of human-machine interface. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. My thoughts through a robot's eyes: an augmented reality-brain-machine interface.

    PubMed

    Kansaku, Kenji; Hata, Naoki; Takano, Kouji

    2010-02-01

    A brain-machine interface (BMI) uses neurophysiological signals from the brain to control external devices, such as robot arms or computer cursors. Combining augmented reality with a BMI, we show that the user's brain signals successfully controlled an agent robot and operated devices in the robot's environment. The user's thoughts became reality through the robot's eyes, enabling the augmentation of real environments outside the anatomy of the human body.

  1. A Tool for Assessing the Text Legibility of Digital Human Machine Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roger Lew; Ronald L. Boring; Thomas A. Ulrich

    2015-08-01

    A tool intended to aid qualified professionals in the assessment of the legibility of text presented on a digital display is described. The assessment of legibility is primarily for the purposes of designing and analyzing human machine interfaces in accordance with NUREG-0700 and MIL-STD 1472G. The tool addresses shortcomings of existing guidelines by providing more accurate metrics of text legibility with greater sensitivity to design alternatives.

  2. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces.

    PubMed

    Jung, Sungmook; Kim, Ji Hoon; Kim, Jaemin; Choi, Suji; Lee, Jongsu; Park, Inhyuk; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2014-07-23

    A novel method to produce porous pressure-sensitive rubber is developed. For the controlled size distribution of embedded micropores, solution-based procedures using reverse micelles are adopted. The piezosensitivity of the pressure sensitive rubber is significantly increased by introducing micropores. Using this method, wearable human-machine interfaces are fabricated, which can be applied to the remote control of a robot. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Decoding the non-stationary neuron spike trains by dual Monte Carlo point process estimation in motor Brain Machine Interfaces.

    PubMed

    Liao, Yuxi; Li, Hongbao; Zhang, Qiaosheng; Fan, Gong; Wang, Yiwen; Zheng, Xiaoxiang

    2014-01-01

    Decoding algorithm in motor Brain Machine Interfaces translates the neural signals to movement parameters. They usually assume the connection between the neural firings and movements to be stationary, which is not true according to the recent studies that observe the time-varying neuron tuning property. This property results from the neural plasticity and motor learning etc., which leads to the degeneration of the decoding performance when the model is fixed. To track the non-stationary neuron tuning during decoding, we propose a dual model approach based on Monte Carlo point process filtering method that enables the estimation also on the dynamic tuning parameters. When applied on both simulated neural signal and in vivo BMI data, the proposed adaptive method performs better than the one with static tuning parameters, which raises a promising way to design a long-term-performing model for Brain Machine Interfaces decoder.

  4. Finite element analysis when orthogonal cutting of hybrid composite CFRP/Ti

    NASA Astrophysics Data System (ADS)

    Xu, Jinyang; El Mansori, Mohamed

    2015-07-01

    Hybrid composite, especially CFRP/Ti stack, is usually considered as an innovative structural configuration for manufacturing the key load-bearing components in modern aerospace industry. This paper originally proposed an FE model to simulate the total chip formation process dominated the hybrid cutting operation. The hybrid composite model was established based on three physical constituents, i.e., Ti constituent, interface and CFRP constituent. Different constitutive models and damage criteria were introduced to replicate the interrelated cutting behaviour of the stack material. The CFRP/Ti interface was modelled as a third phase through the concept of cohesive zone (CZ). Particular attention was made on the comparative studies of the influence of different cutting-sequence strategies on the machining responses induced in hybrid stack cutting. The numerical results emphasized the pivotal role of cutting-sequence strategy on the various machining induced responses including cutting-force generation, machined surface quality and induced interface damage.

  5. 76 FR 15366 - Additional Designation of Entities Pursuant to Executive Order 13382

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ..., Manning House, 21 Bucks Road, Douglas IM1 3DA, Man, Isle of; Business Registration Document 003648V (Man..., Man, Isle of; Business Registration Document 003645V (Man, Isle of) issued 2 Mar 2009 [NPWMD] Neuman...] Springthorpe Limited, Manning House, 21 Bucks Road, Douglas IM1 3DA, Man, Isle of; Business Registration...

  6. Knowledge Discovery and Data Mining in Iran's Climatic Researches

    NASA Astrophysics Data System (ADS)

    Karimi, Mostafa

    2013-04-01

    Advances in measurement technology and data collection is the database gets larger. Large databases require powerful tools for analysis data. Iterative process of acquiring knowledge from information obtained from data processing is done in various forms in all scientific fields. However, when the data volume large, and many of the problems the Traditional methods cannot respond. in the recent years, use of databases in various scientific fields, especially atmospheric databases in climatology expanded. in addition, increases in the amount of data generated by the climate models is a challenge for analysis of it for extraction of hidden pattern and knowledge. The approach to this problem has been made in recent years uses the process of knowledge discovery and data mining techniques with the use of the concepts of machine learning, artificial intelligence and expert (professional) systems is overall performance. Data manning is analytically process for manning in massive volume data. The ultimate goal of data mining is access to information and finally knowledge. climatology is a part of science that uses variety and massive volume data. Goal of the climate data manning is Achieve to information from variety and massive atmospheric and non-atmospheric data. in fact, Knowledge Discovery performs these activities in a logical and predetermined and almost automatic process. The goal of this research is study of uses knowledge Discovery and data mining technique in Iranian climate research. For Achieve This goal, study content (descriptive) analysis and classify base method and issue. The result shown that in climatic research of Iran most clustering, k-means and wards applied and in terms of issues precipitation and atmospheric circulation patterns most introduced. Although several studies in geography and climate issues with statistical techniques such as clustering and pattern extraction is done, Due to the nature of statistics and data mining, but cannot say for internal climate studies in data mining and knowledge discovery techniques are used. However, it is necessary to use the KDD Approach and DM techniques in the climatic studies, specific interpreter of climate modeling result.

  7. The Silver Bird story: A memoir

    NASA Technical Reports Server (NTRS)

    Saenger-Bredt, I.

    1977-01-01

    A manned recoverable flying machine that operates both in air and space was discussed. This space shuttle precursor was proposed in the early 1900's by Eugen Sanger. The vehicle was especially to be used as the first stage of booster rockets or to ferry, supply and furnish rescue equipment for manned space stations. Basic concepts of the space aircraft, a cross between a powered booster rocket and an aerodynamic glider, are presented.

  8. New tool holder design for cryogenic machining of Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Bellin, Marco; Sartori, Stefano; Ghiotti, Andrea; Bruschi, Stefania

    2017-10-01

    The renewed demand of increasing the machinability of the Ti6Al4V titanium alloy to produce biomedical and aerospace parts working at high temperature has recently led to the application of low-temperature coolants instead of conventional cutting fluids to increase both the tool life and the machined surface integrity. In particular, the liquid nitrogen directed to the tool rake face has shown a great capability of reducing the temperature at the chip-tool interface, as well as the chemical interaction between the tool coating and the titanium to be machined, therefore limiting the tool crater wear, and improving, at the same time, the chip breakability. Furthermore, the nitrogen is a safe, non-harmful, non-corrosive, odorless, recyclable, non-polluting and abundant gas, characteristics that further qualify it as an environmental friendly coolant to be applied to machining processes. However, the behavior of the system composed by the tool and the tool holder, exposed to the cryogenics temperatures may represent a critical issue in order to obtain components within the required geometrical tolerances. On this basis, the paper aims at presenting the design of an innovative tool holder installed on a CNC lathe, which includes the cryogenic coolant provision system, and which is able to hinder the part possible distortions due to the liquid nitrogen adduction by stabilizing its dimensions through the use of heating cartridges and appropriate sensors to monitor the temperature evolution of the tool holder.

  9. Modular space station Phase B extension preliminary performance specification. Volume 2: Project

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The four systems of the modular space station project are described, and the interfaces between this project and the shuttle project, the tracking and data relay satellite project, and an arbitrarily defined experiment project are defined. The experiment project was synthesized from internal experiments, detached research and application modules, and attached research and application modules to derive a set of interface requirements which will support multiple combinations of these elements expected during the modular space station mission. The modular space station project element defines a 6-man orbital program capable of growth to a 12-man orbital program capability. The modular space station project element specification defines the modular space station system, the premission operations support system, the mission operations support system, and the cargo module system and their interfaces.

  10. Man-machine interactive imaging and data processing using high-speed digital mass storage

    NASA Technical Reports Server (NTRS)

    Alsberg, H.; Nathan, R.

    1975-01-01

    The role of vision in teleoperation has been recognized as an important element in the man-machine control loop. In most applications of remote manipulation, direct vision cannot be used. To overcome this handicap, the human operator's control capabilities are augmented by a television system. This medium provides a practical and useful link between workspace and the control station from which the operator perform his tasks. Human performance deteriorates when the images are degraded as a result of instrumental and transmission limitations. Image enhancement is used to bring out selected qualities in a picture to increase the perception of the observer. A general purpose digital computer, an extensive special purpose software system is used to perform an almost unlimited repertoire of processing operations.

  11. On PMWs and two-stroke engines.

    PubMed Central

    Bell, W.; Yassi, A.; Cole, D. C.

    1998-01-01

    On Saturday, August 24, 1996, a 40-year-old man from Edmonton was riding a personal motorized watercraft (PMW, a Seadoo or Jet Ski type of machine) on Shuswap Lake, in south-central British Columbia. He was approximately 200 m offshore. The man motioned to his sister, who was riding another PMW, to follow him across the lake. She did so, but as the turned her head to check for other boat traffic, her brother suddenly slowed down and her machine rode right up on his back, crushing him against his handlebars. His sister, a nurse, held her brother's head above water until help arrived but, 48 minutes after the moment of impact, he was pronounced dead at the Shuswap Lake General Hospital. He had suffered a ruptured aorta. PMID:9789655

  12. The management approach to the NASA space station definition studies at the Manned Spacecraft Center

    NASA Technical Reports Server (NTRS)

    Heberlig, J. C.

    1972-01-01

    The overall management approach to the NASA Phase B definition studies for space stations, which were initiated in September 1969 and completed in July 1972, is reviewed with particular emphasis placed on the management approach used by the Manned Spacecraft Center. The internal working organizations of the Manned Spacecraft Center and its prime contractor, North American Rockwell, are delineated along with the interfacing techniques used for the joint Government and industry study. Working interfaces with other NASA centers, industry, and Government agencies are briefly highlighted. The controlling documentation for the study (such as guidelines and constraints, bibliography, and key personnel) is reviewed. The historical background and content of the experiment program prepared for use in this Phase B study are outlined and management concepts that may be considered for future programs are proposed.

  13. Development and testing of an active boring bar for increased chatter immunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redmond, J.; Barney, P.

    Recent advances in smart materials have renewed interest in the development of improved manufacturing processes featuring sensing, processing, and active control. In particular, vibration suppression in metal cutting has received much attention because of its potential for enhancing part quality while reducing the time and cost of production. Although active tool clamps have been recently demonstrated, they are often accompanied by interfacing issues that limit their applicability to specific machines. Under the auspices of the Laboratory Directed Research and Development program, the project titled {open_quotes}Smart Cutting Tools for Precision Manufacturing{close_quotes} developed an alternative approach to active vibration control in machining.more » Using the boring process as a vehicle for exploration, a commercially available tool was modified to incorporate PZT stack actuators for active suppression of its bending modes. Since the modified tool requires no specialized mounting hardware, it can be readily mounted on many machines. Cutting tests conducted on a horizontal lathe fitted with a hardened steel workpiece verify that the actively damped boring bar yields significant vibration reduction and improved surface finishes as compared to an unmodified tool.« less

  14. Gesture-Controlled Interfaces for Self-Service Machines

    NASA Technical Reports Server (NTRS)

    Cohen, Charles J.; Beach, Glenn

    2006-01-01

    Gesture-controlled interfaces are software- driven systems that facilitate device control by translating visual hand and body signals into commands. Such interfaces could be especially attractive for controlling self-service machines (SSMs) for example, public information kiosks, ticket dispensers, gasoline pumps, and automated teller machines (see figure). A gesture-controlled interface would include a vision subsystem comprising one or more charge-coupled-device video cameras (at least two would be needed to acquire three-dimensional images of gestures). The output of the vision system would be processed by a pure software gesture-recognition subsystem. Then a translator subsystem would convert a sequence of recognized gestures into commands for the SSM to be controlled; these could include, for example, a command to display requested information, change control settings, or actuate a ticket- or cash-dispensing mechanism. Depending on the design and operational requirements of the SSM to be controlled, the gesture-controlled interface could be designed to respond to specific static gestures, dynamic gestures, or both. Static and dynamic gestures can include stationary or moving hand signals, arm poses or motions, and/or whole-body postures or motions. Static gestures would be recognized on the basis of their shapes; dynamic gestures would be recognized on the basis of both their shapes and their motions. Because dynamic gestures include temporal as well as spatial content, this gesture- controlled interface can extract more information from dynamic than it can from static gestures.

  15. Man - A Machine or a Self?

    ERIC Educational Resources Information Center

    Kneipp, Janet R.

    1974-01-01

    Article described the conceptual outlook of a great teacher, Jacob Bronowski, who stressed in his new film series how imagination is influential in presenting scientific material for student audiences. (Author/RK)

  16. Design of a 32-Channel EEG System for Brain Control Interface Applications

    PubMed Central

    Wang, Ching-Sung

    2012-01-01

    This study integrates the hardware circuit design and the development support of the software interface to achieve a 32-channel EEG system for BCI applications. Since the EEG signals of human bodies are generally very weak, in addition to preventing noise interference, it also requires avoiding the waveform distortion as well as waveform offset and so on; therefore, the design of a preamplifier with high common-mode rejection ratio and high signal-to-noise ratio is very important. Moreover, the friction between the electrode pads and the skin as well as the design of dual power supply will generate DC bias which affects the measurement signals. For this reason, this study specially designs an improved single-power AC-coupled circuit, which effectively reduces the DC bias and improves the error caused by the effects of part errors. At the same time, the digital way is applied to design the adjustable amplification and filter function, which can design for different EEG frequency bands. For the analog circuit, a frequency band will be taken out through the filtering circuit and then the digital filtering design will be used to adjust the extracted frequency band for the target frequency band, combining with MATLAB to design man-machine interface for displaying brain wave. Finally the measured signals are compared to the traditional 32-channel EEG signals. In addition to meeting the IFCN standards, the system design also conducted measurement verification in the standard EEG isolation room in order to demonstrate the accuracy and reliability of this system design. PMID:22778545

  17. Design of a 32-channel EEG system for brain control interface applications.

    PubMed

    Wang, Ching-Sung

    2012-01-01

    This study integrates the hardware circuit design and the development support of the software interface to achieve a 32-channel EEG system for BCI applications. Since the EEG signals of human bodies are generally very weak, in addition to preventing noise interference, it also requires avoiding the waveform distortion as well as waveform offset and so on; therefore, the design of a preamplifier with high common-mode rejection ratio and high signal-to-noise ratio is very important. Moreover, the friction between the electrode pads and the skin as well as the design of dual power supply will generate DC bias which affects the measurement signals. For this reason, this study specially designs an improved single-power AC-coupled circuit, which effectively reduces the DC bias and improves the error caused by the effects of part errors. At the same time, the digital way is applied to design the adjustable amplification and filter function, which can design for different EEG frequency bands. For the analog circuit, a frequency band will be taken out through the filtering circuit and then the digital filtering design will be used to adjust the extracted frequency band for the target frequency band, combining with MATLAB to design man-machine interface for displaying brain wave. Finally the measured signals are compared to the traditional 32-channel EEG signals. In addition to meeting the IFCN standards, the system design also conducted measurement verification in the standard EEG isolation room in order to demonstrate the accuracy and reliability of this system design.

  18. Human-machine interface hardware: The next decade

    NASA Technical Reports Server (NTRS)

    Marcus, Elizabeth A.

    1991-01-01

    In order to understand where human-machine interface hardware is headed, it is important to understand where we are today, how we got there, and what our goals for the future are. As computers become more capable, faster, and programs become more sophisticated, it becomes apparent that the interface hardware is the key to an exciting future in computing. How can a user interact and control a seemingly limitless array of parameters effectively? Today, the answer is most often a limitless array of controls. The link between these controls and human sensory motor capabilities does not utilize existing human capabilities to their full extent. Interface hardware for teleoperation and virtual environments is now facing a crossroad in design. Therefore, we as developers need to explore how the combination of interface hardware, human capabilities, and user experience can be blended to get the best performance today and in the future.

  19. Man-machine Integration Design and Analysis System (MIDAS) Task Loading Model (TLM) experimental and software detailed design report

    NASA Technical Reports Server (NTRS)

    Staveland, Lowell

    1994-01-01

    This is the experimental and software detailed design report for the prototype task loading model (TLM) developed as part of the man-machine integration design and analysis system (MIDAS), as implemented and tested in phase 6 of the Army-NASA Aircrew/Aircraft Integration (A3I) Program. The A3I program is an exploratory development effort to advance the capabilities and use of computational representations of human performance and behavior in the design, synthesis, and analysis of manned systems. The MIDAS TLM computationally models the demands designs impose on operators to aide engineers in the conceptual design of aircraft crewstations. This report describes TLM and the results of a series of experiments which were run this phase to test its capabilities as a predictive task demand modeling tool. Specifically, it includes discussions of: the inputs and outputs of TLM, the theories underlying it, the results of the test experiments, the use of the TLM as both stand alone tool and part of a complete human operator simulation, and a brief introduction to the TLM software design.

  20. Who Needs to Fit In? Who Gets to Stand Out? Communication Technologies Including Brain-Machine Interfaces Revealed from the Perspectives of Special Education School Teachers through an Ableism Lens

    ERIC Educational Resources Information Center

    Diep, Lucy; Wolbring, Gregor

    2013-01-01

    Some new and envisioned technologies such as brain machine interfaces (BMI) that are being developed initially for people with disabilities, but whose use can also be expanded to the general public have the potential to change body ability expectations of disabled and non-disabled people beyond the species-typical. The ways in which this dynamic…

  1. Body-Machine Interfaces after Spinal Cord Injury: Rehabilitation and Brain Plasticity.

    PubMed

    Seáñez-González, Ismael; Pierella, Camilla; Farshchiansadegh, Ali; Thorp, Elias B; Wang, Xue; Parrish, Todd; Mussa-Ivaldi, Ferdinando A

    2016-12-19

    The purpose of this study was to identify rehabilitative effects and changes in white matter microstructure in people with high-level spinal cord injury following bilateral upper-extremity motor skill training. Five subjects with high-level (C5-C6) spinal cord injury (SCI) performed five visuo-spatial motor training tasks over 12 sessions (2-3 sessions per week). Subjects controlled a two-dimensional cursor with bilateral simultaneous movements of the shoulders using a non-invasive inertial measurement unit-based body-machine interface. Subjects' upper-body ability was evaluated before the start, in the middle and a day after the completion of training. MR imaging data were acquired before the start and within two days of the completion of training. Subjects learned to use upper-body movements that survived the injury to control the body-machine interface and improved their performance with practice. Motor training increased Manual Muscle Test scores and the isometric force of subjects' shoulders and upper arms. Moreover, motor training increased fractional anisotropy (FA) values in the cingulum of the left hemisphere by 6.02% on average, indicating localized white matter microstructure changes induced by activity-dependent modulation of axon diameter, myelin thickness or axon number. This body-machine interface may serve as a platform to develop a new generation of assistive-rehabilitative devices that promote the use of, and that re-strengthen, the motor and sensory functions that survived the injury.

  2. Towards Intelligent Environments: An Augmented Reality–Brain–Machine Interface Operated with a See-Through Head-Mount Display

    PubMed Central

    Takano, Kouji; Hata, Naoki; Kansaku, Kenji

    2011-01-01

    The brain–machine interface (BMI) or brain–computer interface is a new interface technology that uses neurophysiological signals from the brain to control external machines or computers. This technology is expected to support daily activities, especially for persons with disabilities. To expand the range of activities enabled by this type of interface, here, we added augmented reality (AR) to a P300-based BMI. In this new system, we used a see-through head-mount display (HMD) to create control panels with flicker visual stimuli to support the user in areas close to controllable devices. When the attached camera detects an AR marker, the position and orientation of the marker are calculated, and the control panel for the pre-assigned appliance is created by the AR system and superimposed on the HMD. The participants were required to control system-compatible devices, and they successfully operated them without significant training. Online performance with the HMD was not different from that using an LCD monitor. Posterior and lateral (right or left) channel selections contributed to operation of the AR–BMI with both the HMD and LCD monitor. Our results indicate that AR–BMI systems operated with a see-through HMD may be useful in building advanced intelligent environments. PMID:21541307

  3. Joint cross-correlation analysis reveals complex, time-dependent functional relationship between cortical neurons and arm electromyograms

    PubMed Central

    Zhuang, Katie Z.; Lebedev, Mikhail A.

    2014-01-01

    Correlation between cortical activity and electromyographic (EMG) activity of limb muscles has long been a subject of neurophysiological studies, especially in terms of corticospinal connectivity. Interest in this issue has recently increased due to the development of brain-machine interfaces with output signals that mimic muscle force. For this study, three monkeys were implanted with multielectrode arrays in multiple cortical areas. One monkey performed self-timed touch pad presses, whereas the other two executed arm reaching movements. We analyzed the dynamic relationship between cortical neuronal activity and arm EMGs using a joint cross-correlation (JCC) analysis that evaluated trial-by-trial correlation as a function of time intervals within a trial. JCCs revealed transient correlations between the EMGs of multiple muscles and neural activity in motor, premotor and somatosensory cortical areas. Matching results were obtained using spike-triggered averages corrected by subtracting trial-shuffled data. Compared with spike-triggered averages, JCCs more readily revealed dynamic changes in cortico-EMG correlations. JCCs showed that correlation peaks often sharpened around movement times and broadened during delay intervals. Furthermore, JCC patterns were directionally selective for the arm-reaching task. We propose that such highly dynamic, task-dependent and distributed relationships between cortical activity and EMGs should be taken into consideration for future brain-machine interfaces that generate EMG-like signals. PMID:25210153

  4. Observing Ben Wyckoff: From Basic Research to Programmed Instruction and Social Issues

    PubMed Central

    Escobar, Rogelio; Lattal, Kennon A

    2011-01-01

    L. Benjamin Wyckoff's seminal contributions to both psychological theory and application are the subject of this review. Wyckoff started his academic career as a graduate student at Indiana University, where he developed the observing-response procedure under the guidance of B. F. Skinner and C. J. Burke. At the University of Wisconsin–Madison, Wyckoff refined his mathematical theory of secondary reinforcement. This theory was the impetus for his creation of an electronic simulation of a rat running a T maze, one of the first “computer models” of learning. Wyckoff next went to Emory University, leaving there to help create two of the most successful companies dedicated to the advancement of programmed instruction and teaching machines: Teaching Machines, Inc. and the Human Development Institute. Wyckoff's involvement in these companies epitomizes the application of basic behavior-analytic principles in the development of technology to improve education and human relationships. The emergent picture of Wyckoff is that of a man who, through his research, professional work in educational applications of behavioral principles, and active involvement in the civil rights movement of the 1960s, was strongly committed to applying behavioral science to positively influence human behavior change. PMID:22532737

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliprantis, Dionysios; El-Sharkawi, Mohamed; Muljadi, Eduard

    The main objective of this special issue is to collect and disseminate publications that highlight recent advances and breakthroughs in the area of renewable energy resources. The use of these resources for production of electricity is increasing rapidly worldwide. As of 2015, a majority of countries have set renewable electricity targets in the 10%-40% range to be achieved by 2020-2030, with a few notable exceptions aiming for 100% generation by renewables. We are experiencing a truly unprecedented transition away from fossil fuels, driven by environmental, energy security, and socio-economic factors.Electric machines can be found in a wide range of renewablemore » energy applications, such as wind turbines, hydropower and hydrokinetic systems, flywheel energy storage devices, and low-power energy harvesting systems. Hence, the design of reliable, efficient, cost-effective, and controllable electric machines is crucial in enabling even higher penetrations of renewable energy systems in the smart grid of the future. In addition, power electronic converter design and control is critical, as they provide essential controllability, flexibility, grid interface, and integration functions.« less

  6. Applications of Deep Learning and Reinforcement Learning to Biological Data.

    PubMed

    Mahmud, Mufti; Kaiser, Mohammed Shamim; Hussain, Amir; Vassanelli, Stefano

    2018-06-01

    Rapid advances in hardware-based technologies during the past decades have opened up new possibilities for life scientists to gather multimodal data in various application domains, such as omics, bioimaging, medical imaging, and (brain/body)-machine interfaces. These have generated novel opportunities for development of dedicated data-intensive machine learning techniques. In particular, recent research in deep learning (DL), reinforcement learning (RL), and their combination (deep RL) promise to revolutionize the future of artificial intelligence. The growth in computational power accompanied by faster and increased data storage, and declining computing costs have already allowed scientists in various fields to apply these techniques on data sets that were previously intractable owing to their size and complexity. This paper provides a comprehensive survey on the application of DL, RL, and deep RL techniques in mining biological data. In addition, we compare the performances of DL techniques when applied to different data sets across various application domains. Finally, we outline open issues in this challenging research area and discuss future development perspectives.

  7. Cybernetic prosthesis

    NASA Technical Reports Server (NTRS)

    Mann, R. W.

    1974-01-01

    Design and development of a prosthetic device fitted to an above elbow amputee is reported that derives control information from the human to modulate power to an actuator to drive the substitute limb. In turn, the artificial limb generates sensory information feedback to the human nervous system and brain. This synergetic unity feeds efferent or motor control information from the human to the machine, and the machine responds, delivering afferent or sensory information back to the man.

  8. Advanced telemetry systems for payloads. Technology needs, objectives and issues

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The current trends in advanced payload telemetry are the new developments in advanced modulation/coding, the applications of intelligent techniques, data distribution processing, and advanced signal processing methodologies. Concerted efforts will be required to design ultra-reliable man-rated software to cope with these applications. The intelligence embedded and distributed throughout various segments of the telemetry system will need to be overridden by an operator in case of life-threatening situations, making it a real-time integration issue. Suitable MIL standards on physical interfaces and protocols will be adopted to suit the payload telemetry system. New technologies and techniques will be developed for fast retrieval of mass data. Currently, these technology issues are being addressed to provide more efficient, reliable, and reconfigurable systems. There is a need, however, to change the operation culture. The current role of NASA as a leader in developing all the new innovative hardware should be altered to save both time and money. We should use all the available hardware/software developed by the industry and use the existing standards rather than inventing our own.

  9. Human Factors Report on Information Management Requirements for Next- Generation Manned Bombers

    DTIC Science & Technology

    1987-12-01

    34 James , W. G. (1984). Al applications to military pilot decision aiding -- A perspective • transition. In Third Aerospace Behavioral Engineering Techno.ogy...8217- - . . . Basden , A. (1983). On the application of expert systems. International Journal of Man-Machine Studies, 19, 461-477. Ben-Bassat, M. and Freedy, A...augmentation system design by defining, developing, and applying appropriate design techniques for a variety of airborne platforms. James , W. G

  10. The Cognitive Visualization System with the Dynamic Projection of Multidimensional Data

    NASA Astrophysics Data System (ADS)

    Gorohov, V.; Vitkovskiy, V.

    2008-08-01

    The phenomenon of cognitive machine drawing consists in the generation on the screen the special graphic representations, which create in the brain of human operator entertainment means. These means seem man by aesthetically attractive and, thus, they stimulate its descriptive imagination, closely related to the intuitive mechanisms of thinking. The essence of cognitive effect lies in the fact that man receives the moving projection as pseudo-three-dimensional object characterizing multidimensional means in the multidimensional space. After the thorough qualitative study of the visual aspects of multidimensional means with the aid of the enumerated algorithms appears the possibility, using algorithms of standard machine drawing to paint the interesting user separate objects or the groups of objects. Then it is possible to again return to the dynamic behavior of the rotation of means for the purpose of checking the intuitive ideas of user about the clusters and the connections in multidimensional data. Is possible the development of the methods of cognitive machine drawing in combination with other information technologies, first of all with the packets of digital processing of images and multidimensional statistical analysis.

  11. Intelligent systems and advanced user interfaces for design, operation, and maintenance of command management systems

    NASA Technical Reports Server (NTRS)

    Potter, William J.; Mitchell, Christine M.

    1993-01-01

    Historically, command management systems (CMS) have been large and expensive spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as to develop a more generic CMS system. New technologies, in addition to a core CMS common to a range of spacecraft, may facilitate the training and enhance the efficiency of CMS operations. Current mission operations center (MOC) hardware and software include Unix workstations, the C/C++ programming languages, and an X window interface. This configuration provides the power and flexibility to support sophisticated and intelligent user interfaces that exploit state-of-the-art technologies in human-machine interaction, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of these issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, human-machine systems design and analysis tools (e.g., operator and designer models), and human-computer interaction tools (e.g., graphics, visualization, and animation) may provide significant savings in the design, operation, and maintenance of the CMS for a specific spacecraft as well as continuity for CMS design and development across spacecraft. The first six months of this research saw a broad investigation by Georgia Tech researchers into the function, design, and operation of current and planned command management systems at Goddard Space Flight Center. As the first step, the researchers attempted to understand the current and anticipated horizons of command management systems at Goddard. Preliminary results are given on CMS commonalities and causes of low re-use, and methods are proposed to facilitate increased re-use.

  12. The role of man in flight experiment payload missions. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Malone, T. B.

    1973-01-01

    In the study to determine the role of man in Sortie Lab operations, a functional model of a generalized experiment system was developed. The results are presented of a requirements analysis which was conducted to identify performance requirements, information requirements, and interface requirements associated with each function in the model.

  13. A Machine Learning and Optimization Toolkit for the Swarm

    DTIC Science & Technology

    2014-11-17

    Machine   Learning  and  Op0miza0on   Toolkit  for  the  Swarm   Ilge  Akkaya,  Shuhei  Emoto...3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE A Machine Learning and Optimization Toolkit for the Swarm 5a. CONTRACT NUMBER... machine   learning   methodologies  by  providing  the  right  interfaces  between   machine   learning  tools  and

  14. Object Management Group object transaction service based on an X/Open and International Organization for Standardization open systems interconnection transaction processing kernel

    NASA Astrophysics Data System (ADS)

    Liang, J.; Sédillot, S.; Traverson, B.

    1997-09-01

    This paper addresses federation of a transactional object standard - Object Management Group (OMG) object transaction service (OTS) - with the X/Open distributed transaction processing (DTP) model and International Organization for Standardization (ISO) open systems interconnection (OSI) transaction processing (TP) communication protocol. The two-phase commit propagation rules within a distributed transaction tree are similar in the X/Open, ISO and OMG models. Building an OTS on an OSI TP protocol machine is possible because the two specifications are somewhat complementary. OTS defines a set of external interfaces without specific internal protocol machine, while OSI TP specifies an internal protocol machine without any application programming interface. Given these observations, and having already implemented an X/Open two-phase commit transaction toolkit based on an OSI TP protocol machine, we analyse the feasibility of using this implementation as a transaction service provider for OMG interfaces. Based on the favourable result of this feasibility study, we are implementing an OTS compliant system, which, by initiating the extensibility and openness strengths of OSI TP, is able to provide interoperability between X/Open DTP and OMG OTS models.

  15. AIMSsim Version 2.3.4 - User Manual

    DTIC Science & Technology

    2008-01-01

    sera en mesure d’utiliser le système efficacement et moyennant une formation minimale, un prototype d’interface humain -machine (IHM) a été développé...d’utiliser l’ensemble de capteurs efficacement et moyennant une formation minimale, un prototype d’interface humain -machine (IHM) a été développé pour...recherche AIMSsim offrent à l’expérimentateur un niveau de simulation assez détaillé pour mener des analyses du rendement humain , qui fournissent à

  16. Optimization of armored fighting vehicle crew performance in a net-centric battlefield

    NASA Astrophysics Data System (ADS)

    McKeen, William P.; Espenant, Mark

    2002-08-01

    Traditional display, control and situational awareness technologies may not allow the fighting vehicle commander to take full advantage of the rich data environment made available in the net-centric battle field of the future. Indeed, the sheer complexity and volume of available data, if not properly managed, may actually reduce crew performance by overloading or confusing the commander with irrelevant information. New techniques must be explored to understand how to present battlefield information and provide the commander with continuous high quality situational awareness without significant cognitive overhead. Control of the vehicle's many complex systems must also be addressed the entire Soldier Machine Interface must be optimized if we are to realize the potential performance improvements. Defence Research and Development Canada (DRDC) and General Dynamics Canada Ltd. have embarked on a joint program called Future Armoured Fighting Vehicle Systems Technology Demonstrator, to explore these issues. The project is based on man-in-the-loop experimentation using virtual reality technology on a six degree-of-freedom motion platform that simulates the motion, sights and sounds inside a future armoured vehicle. The vehicle commander is provided with a virtual reality vision system to view a simulated 360 degree multi-spectrum representation of the battlespace, thus providing enhanced situational awareness. Graphic overlays with decision aid information will be added to reduce cognitive loading. Experiments will be conducted to evaluate the effectiveness of virtual control systems. The simulations are carried out in a virtual battlefield created by linking our simulation system with other simulation centers to provide a net-centric battlespace where enemy forces can be engaged in fire fights. Survivability and lethality will be measured in successive test sequences using real armoured fighting vehicle crews to optimize overall system effectiveness.

  17. Man-Machine Interface System for Neuromuscular Training and Evaluation Based on EMG and MMG Signals

    PubMed Central

    de la Rosa, Ramon; Alonso, Alonso; Carrera, Albano; Durán, Ramon; Fernández, Patricia

    2010-01-01

    This paper presents the UVa-NTS (University of Valladolid Neuromuscular Training System), a multifunction and portable Neuromuscular Training System. The UVa-NTS is designed to analyze the voluntary control of severe neuromotor handicapped patients, their interactive response, and their adaptation to neuromuscular interface systems, such as neural prostheses or domotic applications. Thus, it is an excellent tool to evaluate the residual muscle capabilities in the handicapped. The UVa-NTS is composed of a custom signal conditioning front-end and a computer. The front-end electronics is described thoroughly as well as the overall features of the custom software implementation. The software system is composed of a set of graphical training tools and a processing core. The UVa-NTS works with two classes of neuromuscular signals: the classic myoelectric signals (MES) and, as a novelty, the myomechanic signals (MMS). In order to evaluate the performance of the processing core, a complete analysis has been done to classify its efficiency and to check that it fulfils with the real-time constraints. Tests were performed both with healthy and selected impaired subjects. The adaptation was achieved rapidly, applying a predefined protocol for the UVa-NTS set of training tools. Fine voluntary control was demonstrated to be reached with the myoelectric signals. And the UVa-NTS demonstrated to provide a satisfactory voluntary control when applying the myomechanic signals. PMID:22163515

  18. Man-machine interface system for neuromuscular training and evaluation based on EMG and MMG signals.

    PubMed

    de la Rosa, Ramon; Alonso, Alonso; Carrera, Albano; Durán, Ramon; Fernández, Patricia

    2010-01-01

    This paper presents the UVa-NTS (University of Valladolid Neuromuscular Training System), a multifunction and portable Neuromuscular Training System. The UVa-NTS is designed to analyze the voluntary control of severe neuromotor handicapped patients, their interactive response, and their adaptation to neuromuscular interface systems, such as neural prostheses or domotic applications. Thus, it is an excellent tool to evaluate the residual muscle capabilities in the handicapped. The UVa-NTS is composed of a custom signal conditioning front-end and a computer. The front-end electronics is described thoroughly as well as the overall features of the custom software implementation. The software system is composed of a set of graphical training tools and a processing core. The UVa-NTS works with two classes of neuromuscular signals: the classic myoelectric signals (MES) and, as a novelty, the myomechanic signals (MMS). In order to evaluate the performance of the processing core, a complete analysis has been done to classify its efficiency and to check that it fulfils with the real-time constraints. Tests were performed both with healthy and selected impaired subjects. The adaptation was achieved rapidly, applying a predefined protocol for the UVa-NTS set of training tools. Fine voluntary control was demonstrated to be reached with the myoelectric signals. And the UVa-NTS demonstrated to provide a satisfactory voluntary control when applying the myomechanic signals.

  19. Working with HITRAN Database Using Hapi: HITRAN Application Programming Interface

    NASA Astrophysics Data System (ADS)

    Kochanov, Roman V.; Hill, Christian; Wcislo, Piotr; Gordon, Iouli E.; Rothman, Laurence S.; Wilzewski, Jonas

    2015-06-01

    A HITRAN Application Programing Interface (HAPI) has been developed to allow users on their local machines much more flexibility and power. HAPI is a programming interface for the main data-searching capabilities of the new "HITRANonline" web service (http://www.hitran.org). It provides the possibility to query spectroscopic data from the HITRAN database in a flexible manner using either functions or query language. Some of the prominent current features of HAPI are: a) Downloading line-by-line data from the HITRANonline site to a local machine b) Filtering and processing the data in SQL-like fashion c) Conventional Python structures (lists, tuples, and dictionaries) for representing spectroscopic data d) Possibility to use a large set of third-party Python libraries to work with the data e) Python implementation of the HT lineshape which can be reduced to a number of conventional line profiles f) Python implementation of total internal partition sums (TIPS-2011) for spectra simulations g) High-resolution spectra calculation accounting for pressure, temperature and optical path length h) Providing instrumental functions to simulate experimental spectra i) Possibility to extend HAPI's functionality by custom line profiles, partitions sums and instrumental functions Currently the API is a module written in Python and uses Numpy library providing fast array operations. The API is designed to deal with data in multiple formats such as ASCII, CSV, HDF5 and XSAMS. This work has been supported by NASA Aura Science Team Grant NNX14AI55G and NASA Planetary Atmospheres Grant NNX13AI59G. L.S. Rothman et al. JQSRT, Volume 130, 2013, Pages 4-50 N.H. Ngo et al. JQSRT, Volume 129, November 2013, Pages 89-100 A. L. Laraia at al. Icarus, Volume 215, Issue 1, September 2011, Pages 391-400

  20. Next Generation Space Surveillance System-of-Systems

    NASA Astrophysics Data System (ADS)

    McShane, B.

    2014-09-01

    International economic and military dependence on space assets is pervasive and ever-growing in an environment that is now congested, contested, and competitive. There are a number of natural and man-made risks that need to be monitored and characterized to protect and preserve the space environment and the assets within it. Unfortunately, today's space surveillance network (SSN) has gaps in coverage, is not resilient, and has a growing number of objects that get lost. Risks can be efficiently and effectively mitigated, gaps closed, resiliency improved, and performance increased within a next generation space surveillance network implemented as a system-of-systems with modern information architectures and analytic techniques. This also includes consideration for the newest SSN sensors (e.g. Space Fence) which are born Net-Centric out-of-the-box and able to seamlessly interface with the JSpOC Mission System, global information grid, and future unanticipated users. Significant opportunity exists to integrate legacy, traditional, and non-traditional sensors into a larger space system-of-systems (including command and control centers) for multiple clients through low cost sustainment, modification, and modernization efforts. Clients include operations centers (e.g. JSpOC, USSTRATCOM, CANSPOC), Intelligence centers (e.g. NASIC), space surveillance sensor sites (e.g. AMOS, GEODSS), international governments (e.g. Germany, UK), space agencies (e.g. NASA), and academic institutions. Each has differing priorities, networks, data needs, timeliness, security, accuracy requirements and formats. Enabling processes and technologies include: Standardized and type accredited methods for secure connections to multiple networks, machine-to-machine interfaces for near real-time data sharing and tip-and-queue activities, common data models for analytical processing across multiple radar and optical sensor types, an efficient way to automatically translate between differing client and sensor formats, data warehouse of time based space events, secure collaboration tools for international coalition space operations, shared concept-of-operations, tactics, techniques, and procedures.

Top