Sample records for managed forest landscape

  1. Influence of forest planning alternatives on landscape pattern and ecosystem processes in northern Wisconsin, USA

    Treesearch

    Patrick A. Zollner; L. Jay Roberts; Eric J. Gustafson; Hong S. He; Volker Radeloff

    2008-01-01

    Incorporating an ecosystem management perspective into forest planning requires consideration of the impacts of timber management on a suite of landscape characteristics at broad spatial and long temporal scales. We used the LANDIS forest landscape simulation model to predict forest composition and landscape pattern under seven alternative forest management plans...

  2. Effects of scale and logging on landscape structure in a forest mosaic.

    PubMed

    Leimgruber, P; McShea, W J; Schnell, G D

    2002-03-01

    Landscape structure in a forest mosaic changes with spatial scale (i.e. spatial extent) and thresholds may occur where structure changes markedly. Forest management alters landscape structure and may affect the intensity and location of thresholds. Our purpose was to examine landscape structure at different scales to determine thresholds where landscape structure changes markedly in managed forest mosaics of the Appalachian Mountains in the eastern United States. We also investigated how logging influences landscape structure and whether these management activities change threshold values. Using threshold and autocorrelation analyses, we found that thresholds in landscape indices exist at 400, 500, and 800 m intervals from the outer edge of management units in our study region. For landscape indices that consider all landcover categories, such as dominance and contagion, landscape structure and thresholds did not change after logging occurred. Measurements for these overall landscape indices were strongly influenced by midsuccessional deciduous forest, the most common landcover category in the landscape. When restricting analyses for mean patch size and percent cover to individual forest types, thresholds for early-successional forests changed after logging. However, logging changed the landscape structure at small spatial scale, but did not alter the structure of the entire forest mosaic. Previous forest management may already have increased the heterogeneity of the landscape beyond the point where additional small cuts alter the overall structure of the forest. Because measurements for landscape indices yield very different results at different spatial scales, it is important first to identify thresholds in order to determine the appropriate scales for landscape ecological studies. We found that threshold and autocorrelation analyses were simple but powerful tools for the detection of appropriate scales in the managed forest mosaic under study.

  3. Water, Forests, People: The Swedish Experience in Building Resilient Landscapes.

    PubMed

    Eriksson, Mats; Samuelson, Lotta; Jägrud, Linnéa; Mattsson, Eskil; Celander, Thorsten; Malmer, Anders; Bengtsson, Klas; Johansson, Olof; Schaaf, Nicolai; Svending, Ola; Tengberg, Anna

    2018-07-01

    A growing world population and rapid expansion of cities increase the pressure on basic resources such as water, food and energy. To safeguard the provision of these resources, restoration and sustainable management of landscapes is pivotal, including sustainable forest and water management. Sustainable forest management includes forest conservation, restoration, forestry and agroforestry practices. Interlinkages between forests and water are fundamental to moderate water budgets, stabilize runoff, reduce erosion and improve biodiversity and water quality. Sweden has gained substantial experience in sustainable forest management in the past century. Through significant restoration efforts, a largely depleted Swedish forest has transformed into a well-managed production forest within a century, leading to sustainable economic growth through the provision of forest products. More recently, ecosystem services are also included in management decisions. Such a transformation depends on broad stakeholder dialog, combined with an enabling institutional and policy environment. Based on seminars and workshops with a wide range of key stakeholders managing Sweden's forests and waters, this article draws lessons from the history of forest management in Sweden. These lessons are particularly relevant for countries in the Global South that currently experience similar challenges in forest and landscape management. The authors argue that an integrated landscape approach involving a broad array of sectors and stakeholders is needed to achieve sustainable forest and water management. Sustainable landscape management-integrating water, agriculture and forests-is imperative to achieving resilient socio-economic systems and landscapes.

  4. Dynamics and pattern of a managed coniferous forest landscape in Oregon.

    Treesearch

    T.A. Spies; W.J. Ripple; G.A. Bradshaw

    1994-01-01

    We examined the process of fragmentation in a managed forest landscape by comparing rates and patterns of disturbance (primarily clear-cutting) and regrowth between 1972 and 1988 using Landsat imagery. A 2589-km2 managed forest landscape in western Oregon was classified into two forest types, closed-canopy conifer forest (CF) (typically, > 60% conifer cover) and...

  5. Evaluating the impact of abrupt changes in forest policy and management practices on landscape dynamics: analysis of a Landsat image time series in the Atlantic Northern Forest.

    PubMed

    Legaard, Kasey R; Sader, Steven A; Simons-Legaard, Erin M

    2015-01-01

    Sustainable forest management is based on functional relationships between management actions, landscape conditions, and forest values. Changes in management practices make it fundamentally more difficult to study these relationships because the impacts of current practices are difficult to disentangle from the persistent influences of past practices. Within the Atlantic Northern Forest of Maine, U.S.A., forest policy and management practices changed abruptly in the early 1990s. During the 1970s-1980s, a severe insect outbreak stimulated salvage clearcutting of large contiguous tracts of spruce-fir forest. Following clearcut regulation in 1991, management practices shifted abruptly to near complete dependence on partial harvesting. Using a time series of Landsat satellite imagery (1973-2010) we assessed cumulative landscape change caused by these very different management regimes. We modeled predominant temporal patterns of harvesting and segmented a large study area into groups of landscape units with similar harvest histories. Time series of landscape composition and configuration metrics averaged within groups revealed differences in landscape dynamics caused by differences in management history. In some groups (24% of landscape units), salvage caused rapid loss and subdivision of intact mature forest. Persistent landscape change was created by large salvage clearcuts (often averaging > 100 ha) and conversion of spruce-fir to deciduous and mixed forest. In groups that were little affected by salvage (56% of landscape units), contemporary partial harvesting caused loss and subdivision of intact mature forest at even greater rates. Patch shape complexity and edge density reached high levels even where cumulative harvest area was relatively low. Contemporary practices introduced more numerous and much smaller patches of stand-replacing disturbance (typically averaging <15 ha) and a correspondingly large amount of edge. Management regimes impacted different areas to different degrees, producing different trajectories of landscape change that should be recognized when studying the impact of policy and management practices on forest ecology.

  6. Evaluating the Impact of Abrupt Changes in Forest Policy and Management Practices on Landscape Dynamics: Analysis of a Landsat Image Time Series in the Atlantic Northern Forest

    PubMed Central

    Legaard, Kasey R.; Sader, Steven A.; Simons-Legaard, Erin M.

    2015-01-01

    Sustainable forest management is based on functional relationships between management actions, landscape conditions, and forest values. Changes in management practices make it fundamentally more difficult to study these relationships because the impacts of current practices are difficult to disentangle from the persistent influences of past practices. Within the Atlantic Northern Forest of Maine, U.S.A., forest policy and management practices changed abruptly in the early 1990s. During the 1970s-1980s, a severe insect outbreak stimulated salvage clearcutting of large contiguous tracts of spruce-fir forest. Following clearcut regulation in 1991, management practices shifted abruptly to near complete dependence on partial harvesting. Using a time series of Landsat satellite imagery (1973-2010) we assessed cumulative landscape change caused by these very different management regimes. We modeled predominant temporal patterns of harvesting and segmented a large study area into groups of landscape units with similar harvest histories. Time series of landscape composition and configuration metrics averaged within groups revealed differences in landscape dynamics caused by differences in management history. In some groups (24% of landscape units), salvage caused rapid loss and subdivision of intact mature forest. Persistent landscape change was created by large salvage clearcuts (often averaging > 100 ha) and conversion of spruce-fir to deciduous and mixed forest. In groups that were little affected by salvage (56% of landscape units), contemporary partial harvesting caused loss and subdivision of intact mature forest at even greater rates. Patch shape complexity and edge density reached high levels even where cumulative harvest area was relatively low. Contemporary practices introduced more numerous and much smaller patches of stand-replacing disturbance (typically averaging <15 ha) and a correspondingly large amount of edge. Management regimes impacted different areas to different degrees, producing different trajectories of landscape change that should be recognized when studying the impact of policy and management practices on forest ecology. PMID:26106893

  7. Seeing the future impacts of climate change and forest management: a landscape visualization system for forest managers

    Treesearch

    Eric J. Gustafson; Melissa Lucash; Johannes Liem; Helen Jenny; Rob Scheller; Kelly Barrett; Brian R. Sturtevant

    2016-01-01

    Forest managers are increasingly considering how climate change may alter forests' capacity to provide ecosystem goods and services. But identifying potential climate change effects on forests is difficult because interactions among forest growth and mortality, climate change, management, and disturbances are complex and uncertain. Although forest landscape models...

  8. 75 FR 16728 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... DEPARTMENT OF AGRICULTURE Forest Service Beaver Creek Landscape Management Project, Ashland Ranger... manner that increases resiliency of the Beaver Creek Landscape Management Project area ecosystem to... requirements to require. The Beaver Creek Landscape Management Project includes treatments previously proposed...

  9. Can landscape-level ecological restoration influence fire risk? A spatially-explicit assessment of a northern temperate-southern boreal forest landscape

    Treesearch

    Douglas J. Shinneman; Brian J. Palik; Meredith W. Cornett

    2012-01-01

    Management strategies to restore forest landscapes are often designed to concurrently reduce fire risk. However, the compatibility of these two objectives is not always clear, and uncoordinated management among landowners may have unintended consequences. We used a forest landscape simulation model to compare the effects of contemporary management and hypothetical...

  10. 76 FR 13344 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... DEPARTMENT OF AGRICULTURE Forest Service Beaver Creek Landscape Management Project, Ashland Ranger... Impact Statement for the Beaver Creek Landscape Management Project was published in the Federal Register... Responsible Official for the Beaver Creek Landscape Management Project. DATES: The Final Environmental Impact...

  11. Forecasting landscape-scale, cumulative effects of forest management on vegetation and wildlife habitat: a case study of issues, limitations, and opportunities

    Treesearch

    Stephen R. Shifley; Frank R. Thompson; William D. Dijak; Zhaofei F. Fan

    2008-01-01

    Forest landscape disturbance and succession models have become practical tools for large-scale, long-term analyses of the cumulative effects of forest management on real landscapes. They can provide essential information in a spatial context to address management and policy issues related to forest planning, wildlife habitat quality, timber harvesting, fire effects,...

  12. Landscape ecology and forest management

    Treesearch

    Thomas R. Crow

    1999-01-01

    Almost all forest management activities affect landscape pattern to some extent. Among the most obvious impacts are those associated with forest harvesting and road building. These activities profoundly affect the size, shape, and configuration of patches in the landscape matrix. Even-age management such as clearcutting has been applied in blocks of uniform size, shape...

  13. Forest Landscape Assessment Tool (FLAT): rapid assessment for land management

    Treesearch

    Lisa Ciecko; David Kimmett; Jesse Saunders; Rachael Katz; Kathleen L. Wolf; Oliver Bazinet; Jeffrey Richardson; Weston Brinkley; Dale J. Blahna

    2016-01-01

    The Forest Landscape Assessment Tool (FLAT) is a set of procedures and tools used to rapidly determine forest ecological conditions and potential threats. FLAT enables planners and managers to understand baseline conditions, determine and prioritize restoration needs across a landscape system, and conduct ongoing monitoring to achieve land management goals. The rapid...

  14. Relationships between avian richness and landscape structure at multiple scales using multiple landscapes

    USGS Publications Warehouse

    Mitchell, M.S.; Rutzmoser, S.H.; Wigley, T.B.; Loehle, C.; Gerwin, J.A.; Keyser, P.D.; Lancia, R.A.; Perry, R.W.; Reynolds, C.J.; Thill, R.E.; Weih, R.; White, D.; Wood, P.B.

    2006-01-01

    Little is known about factors that structure biodiversity on landscape scales, yet current land management protocols, such as forest certification programs, place an increasing emphasis on managing for sustainable biodiversity at landscape scales. We used a replicated landscape study to evaluate relationships between forest structure and avian diversity at both stand and landscape-levels. We used data on bird communities collected under comparable sampling protocols on four managed forests located across the Southeastern US to develop logistic regression models describing relationships between habitat factors and the distribution of overall richness and richness of selected guilds. Landscape models generated for eight of nine guilds showed a strong relationship between richness and both availability and configuration of landscape features. Diversity of topographic features and heterogeneity of forest structure were primary determinants of avian species richness. Forest heterogeneity, in both age and forest type, were strongly and positively associated with overall avian richness and richness for most guilds. Road density was associated positively but weakly with avian richness. Landscape variables dominated all models generated, but no consistent patterns in metrics or scale were evident. Model fit was strong for neotropical migrants and relatively weak for short-distance migrants and resident species. Our models provide a tool that will allow managers to evaluate and demonstrate quantitatively how management practices affect avian diversity on landscapes.

  15. Evolution of Canada’s Boreal Forest Spatial Patterns as Seen from Space

    PubMed Central

    Pickell, Paul D.; Coops, Nicholas C.; Gergel, Sarah E.; Andison, David W.; Marshall, Peter L.

    2016-01-01

    Understanding the development of landscape patterns over broad spatial and temporal scales is a major contribution to ecological sciences and is a critical area of research for forested land management. Boreal forests represent an excellent case study for such research because these forests have undergone significant changes over recent decades. We analyzed the temporal trends of four widely-used landscape pattern indices for boreal forests of Canada: forest cover, largest forest patch index, forest edge density, and core (interior) forest cover. The indices were computed over landscape extents ranging from 5,000 ha (n = 18,185) to 50,000 ha (n = 1,662) and across nine major ecozones of Canada. We used 26 years of Landsat satellite imagery to derive annualized trends of the landscape pattern indices. The largest declines in forest cover, largest forest patch index, and core forest cover were observed in the Boreal Shield, Boreal Plain, and Boreal Cordillera ecozones. Forest edge density increased at all landscape extents for all ecozones. Rapidly changing landscapes, defined as the 90th percentile of forest cover change, were among the most forested initially and were characterized by four times greater decrease in largest forest patch index, three times greater increase in forest edge density, and four times greater decrease in core forest cover compared with all 50,000 ha landscapes. Moreover, approximately 18% of all 50,000 ha landscapes did not change due to a lack of disturbance. The pattern database results provide important context for forest management agencies committed to implementing ecosystem-based management strategies. PMID:27383055

  16. Evolution of Canada's Boreal Forest Spatial Patterns as Seen from Space.

    PubMed

    Pickell, Paul D; Coops, Nicholas C; Gergel, Sarah E; Andison, David W; Marshall, Peter L

    2016-01-01

    Understanding the development of landscape patterns over broad spatial and temporal scales is a major contribution to ecological sciences and is a critical area of research for forested land management. Boreal forests represent an excellent case study for such research because these forests have undergone significant changes over recent decades. We analyzed the temporal trends of four widely-used landscape pattern indices for boreal forests of Canada: forest cover, largest forest patch index, forest edge density, and core (interior) forest cover. The indices were computed over landscape extents ranging from 5,000 ha (n = 18,185) to 50,000 ha (n = 1,662) and across nine major ecozones of Canada. We used 26 years of Landsat satellite imagery to derive annualized trends of the landscape pattern indices. The largest declines in forest cover, largest forest patch index, and core forest cover were observed in the Boreal Shield, Boreal Plain, and Boreal Cordillera ecozones. Forest edge density increased at all landscape extents for all ecozones. Rapidly changing landscapes, defined as the 90th percentile of forest cover change, were among the most forested initially and were characterized by four times greater decrease in largest forest patch index, three times greater increase in forest edge density, and four times greater decrease in core forest cover compared with all 50,000 ha landscapes. Moreover, approximately 18% of all 50,000 ha landscapes did not change due to a lack of disturbance. The pattern database results provide important context for forest management agencies committed to implementing ecosystem-based management strategies.

  17. Dynamics of a temperate deciduous forest under landscape-scale management: Implications for adaptability to climate change

    Treesearch

    Matthew G. Olson; Benjamin O. Knapp; John M. Kabrick

    2017-01-01

    Landscape forest management is an approach to meeting diverse objectives that collectively span multiple spatial scales. It is critical that we understand the long-term effects of landscape management on the structure and composition of forest tree communities to ensure that these practices are sustainable. Furthermore, it is increasingly important to also consider...

  18. Model forest landscape change in the Missouri Ozarks under alternative management practices

    Treesearch

    Stephen R. Shifley; Frank R. Thompson; David R. Larsen; William D. Dijak

    2000-01-01

    We used a spatially explicit landscape model, LANDIS, to simulate the effects of five management alternatives on a 3216 ha forest landscape in southeast Missouri, USA. We compared management alternatives among two intensities of even-aged management with clearcutting, uneven-aged management with group selection harvest, a mixture of even- and uneven-aged management,...

  19. Landscape-level effects of forest management on bird species in the Ozarks of southeastern Missouri

    Treesearch

    Richard L. Clawson; John Faaborg; Wendy K. Gram; Paul A. Porneluzi

    2002-01-01

    This study was designed as an experiment to test how bird populations in an extensively forested landscape respond to small (group and single-tree selection) and large (clearcut) openings. Our objectives are to test the landscape-level effects of even-aged and uneven-aged forest management relative to no-harvest management on population density and reproductive success...

  20. Using landscape disturbance and succession models to support forest management

    Treesearch

    Eric J. Gustafson; Brian R. Sturtevant; Anatoly S. Shvidenko; Robert M. Scheller

    2010-01-01

    Managers of forested landscapes must account for multiple, interacting ecological processes operating at broad spatial and temporal scales. These interactions can be of such complexity that predictions of future forest ecosystem states are beyond the analytical capability of the human mind. Landscape disturbance and succession models (LDSM) are predictive and...

  1. Relationships between avian richness and landscape structure at multiple scales using multiple landscapes

    Treesearch

    Michael S. Mitchell; Scott H. Rutzmoser; T. Bently Wigley; Craig Loehle; John A. Gerwin; Patrick D. Keyser; Richard A. Lancia; Roger W. Perry; Christopher L. Reynolds; Ronald E. Thill; Robert Weih; Don White; Petra Bohall Wood

    2006-01-01

    Little is known about factors that structure biodiversity on landscape scales, yet current land management protocols, such as forest certification programs, place an increasing emphasis on managing for sustainable biodiversity at landscape scales. We used a replicated landscape study to evaluate relationships between forest structure and avian diversity at both stand...

  2. Agroforestry landscapes and global change: landscape ecology tools for management and conservation

    Treesearch

    Guillermo Martinez Pastur; Emilie Andrieu; Louis R. Iverson; Pablo Luis Peri

    2012-01-01

    Forest ecosystems are impacted by multiple uses under the influence of global drivers, and where landscape ecology tools may substantially facilitate the management and conservation of the agroforestry ecosystems. The use of landscape ecology tools was described in the eight papers of the present special issue, including changes in forested landscapes due to...

  3. Using topography to meet wildlife and fuels treatment objectives in fire-suppressed landscapes

    Treesearch

    Emma C. Underwood; Joshua H. Viers; James F. Quinn; Malcolm North

    2010-01-01

    Past forest management practices, fire suppression, and climate change are increasing the need to actively manage California Sierra Nevada forests for multiple environmental amenities. Here we present a relatively low-cost, repeatable method for spatially parsing the landscape to help the U.S. Forest Service manage for different forest and fuel conditions to meet...

  4. Modeling forest harvesting effects on landscape pattern in the Northwest Wisconsin Pine Barrens

    Treesearch

    Volker C. Radeloff; David J. Mladenoff; Eric J. Gustafson; Robert M. Scheller; Patrick A. Zollner; Hong S. Heilman; H. Resit Akcakaya

    2006-01-01

    Forest management shapes landscape patterns, and these patterns often differ significantly from those typical for natural disturbance regimes. This may affect wildlife habitat and other aspects of ecosystem function. Our objective was to examine the effects of different forest management decisions on landscape pattern in a fire adapted ecosystem. We used a factorial...

  5. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 03: visualizing forest structure and fuels

    Treesearch

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The software described in this fact sheet provides managers with tools for visualizing forest and fuels information. Computer-based landscape simulations can help visualize stand and landscape conditions and the effects of different management treatments and fuel changes over time. These visualizations can assist forest planning by considering a range of management...

  6. Nitrogen dynamics in managed boreal forests: Recent advances and future research directions.

    PubMed

    Sponseller, Ryan A; Gundale, Michael J; Futter, Martyn; Ring, Eva; Nordin, Annika; Näsholm, Torgny; Laudon, Hjalmar

    2016-02-01

    Nitrogen (N) availability plays multiple roles in the boreal landscape, as a limiting nutrient to forest growth, determinant of terrestrial biodiversity, and agent of eutrophication in aquatic ecosystems. We review existing research on forest N dynamics in northern landscapes and address the effects of management and environmental change on internal cycling and export. Current research foci include resolving the nutritional importance of different N forms to trees and establishing how tree-mycorrhizal relationships influence N limitation. In addition, understanding how forest responses to external N inputs are mediated by above- and belowground ecosystem compartments remains an important challenge. Finally, forestry generates a mosaic of successional patches in managed forest landscapes, with differing levels of N input, biological demand, and hydrological loss. The balance among these processes influences the temporal patterns of stream water chemistry and the long-term viability of forest growth. Ultimately, managing forests to keep pace with increasing demands for biomass production, while minimizing environmental degradation, will require multi-scale and interdisciplinary perspectives on landscape N dynamics.

  7. Simulating spatial and temporal context of forest management using hypothetical landscapes

    Treesearch

    Eric J. Gustafson; Thomas R. Crow

    1998-01-01

    Spatially explicit models that combine remote sensing with geographic information systems (GIS) offer great promise to land managers because they consider the arrangement of landscape elements in time and space. Their visual and geographic nature facilitate the comparison of alternative landscape designs. Among various activities associated with forest management,...

  8. Simulated effects of forest management alternatives on landscape structure and habitat suitability in the Midwestern United States

    Treesearch

    Stephen R. Shifley; Frank R., III Thompson; William D. Dijak; Michael A. Larson; Joshua J. Millspaugh

    2006-01-01

    Understanding the cumulative effects and resource trade-offs associated with forest management requires the ability to predict, analyze, and communicate information about how forest landscapes (1000s to > 100,000 ha in extent) respond to silviculture and other disturbances. We applied a spatially explicit landscape simulation model, LANDIS, and compared the outcomes...

  9. A framework to optimize the restoration and retention of large mature forest tracts in managed boreal landscapes.

    PubMed

    Bouchard, Mathieu; Garet, Jérôme

    The decreasing abundance of mature forests and their fragmentation have been identified as major threats for the preservation of biodiversity in managed landscapes. In this study, we developed a multi-level framework to coordinate forest harvestings so as to optimize the retention or restoration of large mature forest tracts in managed forests. We used mixed-integer programming for this optimization, and integrated realistic management assumptions regarding stand yield and operational harvest constraints. The model was parameterized for eastern Canadian boreal forests, where clear-cutting is the main silvicultural system, and is used to examine two hypotheses. First, we tested if mature forest tract targets had more negative impacts on wood supplies when implemented in landscapes that are very different from targeted conditions. Second, we tested the hypothesis that using more partial cuts can be useful to attenuate the negative impacts of mature forest targets on wood supplies. The results indicate that without the integration of an explicit mature forest tract target, the optimization leads to relatively high fragmentation levels. Forcing the retention or restoration of large mature forest tracts on 40% of the landscapes had negative impacts on wood supplies in all types of landscapes, but these impacts were less important in landscapes that were initially fragmented. This counter-intuitive result is explained by the presence in the models of an operational constraint that forbids diffuse patterns of harvestings, which are more costly. Once this constraint is applied, the residual impact of the mature forest tract target is low. The results also indicate that partial cuts are of very limited use to attenuate the impacts of mature forest tract targets on wood supplies in highly fragmented landscapes. Partial cuts are somewhat more useful in landscapes that are less fragmented, but they have to be well coordinated with clearcut schedules in order to contribute efficiently to conservation objectives. This modeling framework could easily be adapted and parameterized to test hypotheses or to optimize restoration schedules in landscapes where issues such as forest fragmentation and the abundance of mature or old-growth forests are a concern.

  10. Public acceptance of disturbance-based forest management: factors influencing support

    Treesearch

    Christine S. Olsen; Angela L. Mallon; Bruce A. Shindler

    2012-01-01

    Growing emphasis on ecosystem and landscape-level forest management across North America has spurred an examination of alternative management strategies which focus on emulating dynamic natural disturbance processes, particularly those associated with forest fire regimes. This topic is the cornerstone of research in the Blue River Landscape Study (BRLS) on the...

  11. An ecological aesthetic for forest landscape management

    Treesearch

    Paul H. Gobster

    1999-01-01

    Although aesthetics and ecological sustainability are two highly regared values of forest landscapes, practices developed to manage forests for these values can sometimes conflict with one another. In this paper I argue that such conflicts are rooted in our conception of forest aesthetics as scenery, and propose that a normative, "ecological aesthetic" based...

  12. Exploring component-based approaches in forest landscape modeling

    Treesearch

    H. S. He; D. R. Larsen; D. J. Mladenoff

    2002-01-01

    Forest management issues are increasingly required to be addressed in a spatial context, which has led to the development of spatially explicit forest landscape models. The numerous processes, complex spatial interactions, and diverse applications in spatial modeling make the development of forest landscape models difficult for any single research group. New...

  13. [Impact of traditionally managed forest units on the landscape connectivity of Sierra de Los Tuxtlas, Mexico].

    PubMed

    Aguilar Vásquez, Yunin; Aliphat Fernández, Mario Manuel; Caso Barrera, Laura; Del Amo Rodríguez, Silvia; Sánchez Gómez, Maria De Lourdes; Martínez-Carrera, Daniel

    2014-09-01

    The ever-increasing establishment of landscape mosaics is expressed as a surrounding matrix of agricultural activities, which frames patches or remnants of the original vegetation cover. Conservation actions should be aimed to establish or to increase those interactive systems, which help to maintain the land- scape flow through linkages. Spaces occupied by traditional management systems retain and support this func- tion. In this paper, we used Geographic Information Systems to evaluate the importance of traditionally managed forest units ('acahuales'-coffee plantations) and to assess landscape connectivity in the indigenous Popoluca area of Sierra de los Tuxtlas, Mexico. The cartographic material used to establish the types of vegetation and their coverture included the period 1991-2008. At landscape level, four indices were used to assess the general situation of the habitat network, and to identify the patches of high priority. Individually, indices evaluated if patches were important for their area, their potential flow or their connecting function. Results showed that the landscape is functioning as a single system, but having low connectivity. Values improved when traditionally managed forest patches were considered as viable habitat. We detected 367 patches of very high priority, 80% belonging to forests managed traditionally. Patches were important for their potential flow (size and topologi- cal relationships). Only 70 patches were significant for their function as biological corridors between largest forests located at the top of the volcanoes, and are mostly managed forest (75%). We concluded that the units of traditionally managed forest play a significant role in landscape connectivity maintenance.

  14. Functional diversity response to hardwood forest management varies across taxa and spatial scales.

    PubMed

    Murray, Bryan D; Holland, Jeffrey D; Summerville, Keith S; Dunning, John B; Saunders, Michael R; Jenkins, Michael A

    2017-06-01

    Contemporary forest management offers a trade-off between the potential positive effects of habitat heterogeneity on biodiversity, and the potential harm to mature forest communities caused by habitat loss and perforation of the forest canopy. While the response of taxonomic diversity to forest management has received a great deal of scrutiny, the response of functional diversity is largely unexplored. However, functional diversity may represent a more direct link between biodiversity and ecosystem function. To examine how forest management affects diversity at multiple spatial scales, we analyzed a long-term data set that captured changes in taxonomic and functional diversity of moths (Lepidoptera), longhorned beetles (Coleoptera: Cerambycidae), and breeding birds in response to contemporary silvicultural systems in oak-hickory hardwood forests. We used these data sets to address the following questions: how do even- and uneven-aged silvicultural systems affect taxonomic and functional diversity at the scale of managed landscapes compared to the individual harvested and unharvested forest patches that comprise the landscapes, and how do these silvicultural systems affect the functional similarity of assemblages at the scale of managed landscapes and patches? Due to increased heterogeneity within landscapes, we expected even-aged silviculture to increase and uneven-aged silviculture to decrease functional diversity at the landscape level regardless of impacts at the patch level. Functional diversity responses were taxon-specific with respect to the direction of change and time since harvest. Responses were also consistent across patch and landscape levels within each taxon. Moth assemblage species richness, functional richness, and functional divergence were negatively affected by harvesting, with stronger effects resulting from uneven-aged than even-aged management. Longhorned beetle assemblages exhibited a peak in species richness two years after harvesting, while functional diversity metrics did not differ between harvested and unharvested patches and managed landscapes. The species and functional richness of breeding bird assemblages increased in response to harvesting with more persistent effects in uneven- than in even-aged managed landscapes. For moth and bird assemblages, species turnover was driven by species with more extreme trait combinations. Our study highlights the variability of multi-taxon functional diversity in response to forest management across multiple spatial scales. © 2017 by the Ecological Society of America.

  15. Spatial resilience of forested landscapes under climate change and management

    Treesearch

    Melissa S. Lucash; Robert M. Scheller; Eric J. Gustafson; Brian R. Sturtevant

    2017-01-01

    Context Resilience, the ability to recover from disturbance, has risen to the forefront of scientific policy, but is difficult to quantify, particularly in large, forested landscapes subject to disturbances, management, and climate change. Objectives Our objective was to determine which spatial drivers will control landscape...

  16. Software applications to three-dimensional visualization of forest landscapes -- A case study demontrating the use of visual nature studio (VNS) in visualizing fire spread in forest landscapes

    Treesearch

    Brian J. Williams; Bo Song; Chou Chiao-Ying; Thomas M. Williams; John Hom

    2010-01-01

    Three-dimensional (3D) visualization is a useful tool that depicts virtual forest landscapes on computer. Previous studies in visualization have required high end computer hardware and specialized technical skills. A virtual forest landscape can be used to show different effects of disturbances and management scenarios on a computer, which allows observation of forest...

  17. Forest processes from stands to landscapes: exploring model forecast uncertainties using cross-scale model comparison

    Treesearch

    Michael J. Papaik; Andrew Fall; Brian Sturtevant; Daniel Kneeshaw; Christian Messier; Marie-Josee Fortin; Neal Simon

    2010-01-01

    Forest management practices conducted primarily at the stand scale result in simplified forests with regeneration problems and low structural and biological diversity. Landscape models have been used to help design management strategies to address these problems. However, there remains a great deal of uncertainty that the actual management practices result in the...

  18. Landscape Characterization Of Four Watersheds Under Different Forest Management Scenarios In The Ouachita Mountains Of Arkansas

    Treesearch

    Philip A. Tappe; Robert C. Weih; Ronald E. Thill; M. Anthony Melchiors; T. Bently Wigley

    2004-01-01

    Abstract - Recent changes in philosophy concerning forest management have focused attention on managing ecosystems at scales beyond the stand level. Properties of forested landscapes, such as patch size and shape, edge density, and interspersion have direct influences on flora and fauna. However, there is little information regarding spatial patterns...

  19. 76 FR 41516 - Vegetation and Deer Management Plan/Environmental Impact Statement, Morristown National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... general management plan (GMP) of maintaining a naturally regenerating and sustainable forested landscape... 18th-century landscape pattern of field, forest, orchard and clearings that was present during the..., Morristown NHP will protect and foster the landscape to include a broader cultural and ecological context...

  20. Restoration of landscape function: Reserves or active management?

    Treesearch

    A.B. Carey

    2003-01-01

    A 20-year program of research suggests that old-growth forests are ecologically unique and highly valued by people, that naturally young forests with legacies from old forests sustain many, if not all, the higher organisms associated with old growth, but that many managed forests are impoverished in species. Thus, restoring landscape function entails restoring function...

  1. Disturbance regimes and their relationships to forest health.

    Treesearch

    Brian W. Geils; John E. Lundquist; Jose F. Negron; Jerome S. Beatty

    1995-01-01

    While planners deal with landscape issues in forest health, silviculturists deal with the basic units of the landscape, forest stands. The silviculturist manipulates small-scale disturbances and needs appropriate management indicators. Disturbance agents and their effects are important to stand development and are therefore useful as management indicators. More studies...

  2. Amphibian distributions in riparian and upslope areas and their habitat associations on managed forest landscapes in the Oregon Coast Range

    Treesearch

    Matthew R. Kluber; Deanna H. Olson; Klaus J. Puettmann

    2008-01-01

    Over the past 50 years, forested landscapes of the Pacific Northwest have become increasingly patchy, dominated by early-successional forests. Several amphibian species associated with forested headwater systems have emerged as management concerns, especially after dearcutting. Given that headwater streams comprise a large portion of the length of flowing waterways in...

  3. Evaluating carbon storage, timber harvest, and habitat possibilities for a Western Cascades (USA) forest landscape

    Treesearch

    Jeff Kline; Mark E. Harmon; Thomas A. Spies; Anita T. Morzillo; Robert J. Pabst; Brenda C. McComb; Frank Schnekenburger; Keith A. Olsen; Blair Csuti; Jody C. Vogeler

    2016-01-01

    Forest policymakers and managers have long sought ways to evaluate the capability of forest landscapes to jointly produce timber, habitat, and other ecosystem services in response to forest management. Currently, carbon is of particular interest as policies for increasing carbon storage on federal lands are being proposed. However, a challenge in joint production...

  4. PREVIEW: Computer Assistance for Visual Management of Forested Landscapes

    Treesearch

    Erik Myklestad; J. Alan Wagar

    1976-01-01

    The PREVIEW computer program facilitates visual management of forested landscapes by generating perspective drawings that show proposed timber harvesting and regrowth throughout a rotation. Drawings show how changes would appear from selected viewing points and show landscapes as either a grid of distorted squares or by symbols representing trees, clearings, water,...

  5. Studying fire mitigation strategies in multi-ownership landscapes: balancing the management of fire-dependent ecosystems and fire risk

    Treesearch

    Brian R. Sturtevant; Brian R. Miranda; Jian Yang; Hong S. He; Eric J. Gustafson; Robert M. Scheller

    2009-01-01

    Public forests are surrounded by land over which agency managers have no control, and whose owners expect the public forest to be a "good neighbor." Fire risk abatement on multi-owner landscapes containing flammable but fire-dependent ecosystems epitomizes the complexities of managing public lands. We report a case study that applies a landscape disturbance...

  6. Landscape pattern and context of forest and grassland in Alaska, Hawaii, and Puerto Rico

    Treesearch

    Kurt H. Riitters

    2012-01-01

    As development introduces competing land uses into forest and grassland landscapes, the public concerns for landscape patterns are expressed through headline issues such as urban sprawl and forest fragmentation. The task for resource managers is to maintain an appropriate balance of biodiversity, water quality, recreation experience, and other amenities in forest and...

  7. A hierarchical approach to forest landscape pattern characterization.

    PubMed

    Wang, Jialing; Yang, Xiaojun

    2012-01-01

    Landscape spatial patterns have increasingly been considered to be essential for environmental planning and resources management. In this study, we proposed a hierarchical approach for landscape classification and evaluation by characterizing landscape spatial patterns across different hierarchical levels. The case study site is the Red Hills region of northern Florida and southwestern Georgia, well known for its biodiversity, historic resources, and scenic beauty. We used one Landsat Enhanced Thematic Mapper image to extract land-use/-cover information. Then, we employed principal-component analysis to help identify key class-level landscape metrics for forests at different hierarchical levels, namely, open pine, upland pine, and forest as a whole. We found that the key class-level landscape metrics varied across different hierarchical levels. Compared with forest as a whole, open pine forest is much more fragmented. The landscape metric, such as CONTIG_MN, which measures whether pine patches are contiguous or not, is more important to characterize the spatial pattern of pine forest than to forest as a whole. This suggests that different metric sets should be used to characterize landscape patterns at different hierarchical levels. We further used these key metrics, along with the total class area, to classify and evaluate subwatersheds through cluster analysis. This study demonstrates a promising approach that can be used to integrate spatial patterns and processes for hierarchical forest landscape planning and management.

  8. Canada lynx Lynx canadensis habitat and forest succession in northern Maine, USA

    USGS Publications Warehouse

    Hoving, C.L.; Harrison, D.J.; Krohn, W.B.; Jakubas, W.J.; McCollough, M.A.

    2004-01-01

    The contiguous United States population of Canada lynx Lynx canadensis was listed as threatened in 2000. The long-term viability of lynx populations at the southern edge of their geographic range has been hypothesized to be dependent on old growth forests; however, lynx are a specialist predator on snowshoe hare Lepus americanus, a species associated with early-successional forests. To quantify the effects of succession and forest management on landscape-scale (100 km2) patterns of habitat occupancy by lynx, we compared landscape attributes in northern Maine, USA, where lynx had been detected on snow track surveys to landscape attributes where surveys had been conducted, but lynx tracks had not been detected. Models were constructed a priori and compared using logistic regression and Akaike's Information Criterion (AIC), which quantitatively balances data fit and parsimony. In the models with the lowest (i.e. best) AIC, lynx were more likely to occur in landscapes with much regenerating forest, and less likely to occur in landscapes with much recent clearcut, partial harvest and forested wetland. Lynx were not associated positively or negatively with mature coniferous forest. A probabilistic map of the model indicated a patchy distribution of lynx habitat in northern Maine. According to an additional survey of the study area for lynx tracks during the winter of 2003, the model correctly classified 63.5% of the lynx occurrences and absences. Lynx were more closely associated with young forests than mature forests; however, old-growth forests were functionally absent from the landscape. Lynx habitat could be reduced in northern Maine, given recent trends in forest management practices. Harvest strategies have shifted from clearcutting to partial harvesting. If this trend continues, future landscapes will shift away from extensive regenerating forests and toward landscapes dominated by pole-sized and larger stands. Because Maine presently supports the only verified populations of this federally threatened species in the eastern United States, changes in forest management practices could affect recovery efforts throughout that region.

  9. Options for biodiversity conservation in managed forest landscapes of multiple ownerships in Oregon and Washington, USA.

    Treesearch

    N. Suzuki; D.H. Olson

    2007-01-01

    We review the policies and management approaches used in U.S. Pacific Northwest planted forest to address biodiversity protection. We provide a case-study watershed design from southern Oregon, integrating various stand-to-landscape biodiversity-management approaches.

  10. Modeling the effects of forest harvesting on landscape structure and the spatial distribution of cowbird brood parasitism

    Treesearch

    Eric J. Gustafson; Thomas R. Crow

    1994-01-01

    Timber harvesting affects both composition and structure of the landscape and has important consequences for organisms using forest habitats. A timber harvest allocation model was constructed that allows the input of specific rules to allocate forest stands for clearcutting to generate landscape patterns reflecting the "look and feel" of managed landscapes....

  11. Chapter 10: Geographic information system landscape analysis using GTR 220 concepts

    Treesearch

    M. North; R.M. Boynton; P.A. Stine; K.F. Shipley; E.C. Underwood; N.E. Roth; J.H. Viers; J.F. Quinn

    2012-01-01

    Forest Service General Technical Report "An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests" (hereafter GTR 220) (North et al. 2009) emphasizes increasing forest heterogeneity throughout a range of spatial scales including within-stand microsites, individual stands, watersheds, and entire landscapes. For fuels reduction, various landscape...

  12. Inventory-based landscape-scale simulation of management effectiveness and economic feasibility with BioSum

    Treesearch

    Jeremy S. Fried; Larry D. Potts; Sara M. Loreno; Glenn A. Christensen; R. Jamie Barbour

    2017-01-01

    The Forest Inventory and Analysis (FIA)-based BioSum (Bioregional Inventory Originated Simulation Under Management) is a free policy analysis framework and workflow management software solution. It addresses complex management questions concerning forest health and vulnerability for large, multimillion acre, multiowner landscapes using FIA plot data as the initial...

  13. Degradation in carbon stocks near tropical forest edges.

    PubMed

    Chaplin-Kramer, Rebecca; Ramler, Ivan; Sharp, Richard; Haddad, Nick M; Gerber, James S; West, Paul C; Mandle, Lisa; Engstrom, Peder; Baccini, Alessandro; Sim, Sarah; Mueller, Carina; King, Henry

    2015-12-18

    Carbon stock estimates based on land cover type are critical for informing climate change assessment and landscape management, but field and theoretical evidence indicates that forest fragmentation reduces the amount of carbon stored at forest edges. Here, using remotely sensed pantropical biomass and land cover data sets, we estimate that biomass within the first 500 m of the forest edge is on average 25% lower than in forest interiors and that reductions of 10% extend to 1.5 km from the forest edge. These findings suggest that IPCC Tier 1 methods overestimate carbon stocks in tropical forests by nearly 10%. Proper accounting for degradation at forest edges will inform better landscape and forest management and policies, as well as the assessment of carbon stocks at landscape and national levels.

  14. Degradation in carbon stocks near tropical forest edges

    PubMed Central

    Chaplin-Kramer, Rebecca; Ramler, Ivan; Sharp, Richard; Haddad, Nick M.; Gerber, James S.; West, Paul C.; Mandle, Lisa; Engstrom, Peder; Baccini, Alessandro; Sim, Sarah; Mueller, Carina; King, Henry

    2015-01-01

    Carbon stock estimates based on land cover type are critical for informing climate change assessment and landscape management, but field and theoretical evidence indicates that forest fragmentation reduces the amount of carbon stored at forest edges. Here, using remotely sensed pantropical biomass and land cover data sets, we estimate that biomass within the first 500 m of the forest edge is on average 25% lower than in forest interiors and that reductions of 10% extend to 1.5 km from the forest edge. These findings suggest that IPCC Tier 1 methods overestimate carbon stocks in tropical forests by nearly 10%. Proper accounting for degradation at forest edges will inform better landscape and forest management and policies, as well as the assessment of carbon stocks at landscape and national levels. PMID:26679749

  15. The role of strategic forest inventories in aiding land management decision-making: Examples from the U.S

    Treesearch

    W. Keith Moser; Renate Bush; John D. Shaw; Mark H. Hansen; Mark D. Nelson

    2010-01-01

    A major challenge for today’s resource managers is the linking of standand landscape-scale dynamics. The U.S. Forest Service has made major investments in programs at both the stand- (national forest project) and landscape/regional (Forest Inventory and Analysis [FIA] program) levels. FIA produces the only comprehensive and consistent statistical information on the...

  16. Immediate, landscape-scale impacts of even-aged and uneven-aged forest management on herpetofaunal communities of the Missouri Ozark Forest Ecosystem Project

    Treesearch

    Rochelle B. Renken; Debby K. Frantz

    2002-01-01

    We examined the immediate, landscape-scale impacts of even-aged and uneven-aged forest management on the species composition, species richness, and relative abundance of herpetofaunal communities and selected focal groups of species during the second and third years following initial tree harvest on Missouri Ozark Forest Ecosystem Project (MOFEP) sites in southern...

  17. Visual simulations of forest wildlife habitat structure, change, and landscape context in New England

    Treesearch

    Richard M. DeGraaf; Anna M. Lester; Mariko Yamasaki; William B. Leak

    2007-01-01

    Visualization is a powerful tool for depicting projections of forest structure and landscape conditions, for communicating habitat management practices, and for providing a landscape context to private landowners and to those concerned with public land management. Recent advances in visualization technology, especially in graphics quality, ease of use, and relative...

  18. Management of Forested Landscapes: Simulations of three alternatives

    Treesearch

    Stephen G. Boyce; W. Henry McNab

    1994-01-01

    Forested landscapes can be managed to support variouscombinations of timber, biological diversity,esthetic values, and habitats. However, all such management decisions arechoices basedon opinions about future events. Opinions underlie managementdecisionsbecause thereis no way to jump into the future, verify a future event, jump back to the present, and make a...

  19. An ecosystem management strategy for Sierran mixed-conifer forests

    Treesearch

    Malcolm North; Peter Stine; Kevin O' Hara; William Zielinski; Scott Stephens

    2009-01-01

    Current Sierra Nevada forest management is often focused on strategically reducing fuels without an explicit strategy for ecological restoration across the landscape matrix. Summarizing recent scientific literature, we suggest managers produce different stand structures and densities across the landscape using topographic variables (i.e., slope shape, aspect, and slope...

  20. Landscape Level Effects on Forest Bird Populations in Eastern Broadleaf Forests: Principles for Conservation

    Treesearch

    Frank R. Thompson III

    2005-01-01

    Forest fragmentation, urbanization, and forest management are important issues for bird conservation in the eastern broadleaf forest of North America. Fragmentation of forest by agricultural and developed land uses increases the numbers of Brown-headed Cowbirds (Molothrus ater) and nest predators in the landscape, which results in decreased...

  1. Spatial occurrence of a habitat-tracking saproxylic beetle inhabiting a managed forest landscape.

    PubMed

    Schroeder, L Martin; Ranius, Thomas; Ekbom, Barbara; Larsson, Stig

    2007-04-01

    Because of the dynamic nature of many managed habitats, proper evaluation of conservation efforts calls for models that take into account both spatial and temporal habitat dynamics. We develop a metapopulation model for successional-type systems, in which habitat quality changes over time in a predictable fashion. The occupancy and recruitment of the predatory saproxylic (dependent on dead wood) beetle Harminius undulatus was studied in a managed boreal forest landscape, covering 24,449 ha, in central Sweden. In a first step, we analyzed the beetle's occupancy pattern in relation to stand characteristics, and the amounts of present and past habitat in the surrounding landscape. Managed forest is suitable habitat when > or =60 years old, and immediately after cutting, but not between the ages of 10 and 60 years. The observed occupancy of H. undulatus was positively correlated with the stand's age as habitat. We used a metapopulation model to predict the current probability of occurrence in each forest stand, given the spatiotemporal distribution of suitable forest stands during the last 50 years. Metapopulation parameters were estimated by matching predicted spatial distributions with observed spatial distributions. The model predicted observed spatial distributions better than a similar model that assumed constant habitat quality of each forest stand. Thus, metapopulation models for successional-type systems, such as dead wood dependent organisms in managed forest landscapes, should include habitat dynamics. An estimated 82% of the landscape-wide recruitment took place in managed stands, which covered 87% of the forest area, in comparison with 18% in unmanaged stands, which covered 13% of the forest area. Among the managed stand types, > or =60-year-old stands and 3-7-year-old clear-cuttings contributed to 79% of the total recruitment while 8-59-year-old stands only contributed 3%. The results suggest the following guidelines to improve conditions for H. undulatus and other species with similar habitat requirements: (1) the proportion of the landscape constituted by younger stands should not be allowed to grow too large, (2) the rotation period of managed stands should not be allowed to be too short, and (3) dead wood should be retained and created at final cutting.

  2. Optical and Electronic Properties of Nano-Materials from First Principles Computation

    NASA Astrophysics Data System (ADS)

    Deslippe, Jack Richard

    This dissertation examines effects of land management on forest structure at both the stand and landscape scales. Specifically, it investigates the effect of five types of silvicultural cutting (clear-cut, improvement thinning, diameter-limited thinning from the top, diameter-limited thinning from below, and the initial cut of a shelterwood system) on forest structural diversity and carbon storage in mixed oak hardwood forests of Pennsylvania. Furthermore, it develops LiDAR (Light Detecting and Ranging) techniques to quantify forest structural diversity at a landscape level to examine forest structure, with comparisons between eco-provinces and management types. At the stand scale, it was found that structural resilience to silvicultural disturbances was greater than compositional resilience, resulting in forests that appeared to recover quickly from disturbance but were compositionally altered. More intense disturbances caused greater changes in forest structure and composition, requiring longer to return to near predisturbance conditions; however, the forest strata disturbed also influenced the disturbance severity and therefore the forest's response. This study demonstrated that silvicultural cutting may be used to increase structural diversity at the stand level (e.g., establishment cut of a shelterwood system); however, this comes at the cost of an increase in shade-tolerant regeneration to the detriment of economically and ecologically valuable mid-successional species. The long-term outcomes of partial cuts were complex and context specific, and this complexity may be useful for maintaining or increasing structural complexity at the landscape level. A variety of silvicultural techniques should be implemented to achieve management objectives of increased forest structural diversity. In terms of carbon storage at the stand scale, although the clearcutting treatment had the highest carbon periodic annual increment (cPAI) in the first 15 years post harvest, it was projected to store considerably less carbon in the long term (over 100-years) than the other treatments. The projected low carbon storage in this treatment is likely due to a shift in species composition to early successional species that store less carbon per tree. Amongst the partial cutting methods, the improvement thin was the best option with moderate timber harvest rates, moderately high cPAI in the first 15 years post-harvest and relatively high carbon storage in the long-term; however, refraining from cutting remains the best option for carbon storage if the forest is in the aggradation phase. Poor silvicultural decisions may lead to reduced carbon storage of forest stands in the long-term, reducing the effectiveness of these forest carbon sinks for climate change mitigation. To explore forest structure at the landscape level, a method to map forest canopy structure over large areas was developed using low-density topographic Light Detection And Ranging (LiDAR) data and orthographic photography collected for Pennsylvania as part of PAMAP (Pennsylvania Map Program). K-means clustering of LiDAR statistics on a grid basis was used in conjunction with multinomial logistic regression to develop a LiDAR Canopy Structure Topology (LCST). The fourteen resulting LCST types reflect vegetation top height and canopy structural complexity with a correct classification rate of 96%. This LCST provides cost-effective forest structure information by relying on remote sensing data freely available for the entire state of Pennsylvania and that could be widely utilized for forest, wildlife and landscape planning. Furthermore, the methods developed here may be adapted to map forest structure in other contexts with different LiDAR data sets. This LCST was then mapped over 20 large landscapes within Pennsylvania, and these contrasting landscapes analyzed to investigate the influence of both site and four differing land management types (non-government, Bureau of Forestry, Bureau of State Parks and Pennsylvania Game Commission) on forest structure. It was found that at the local scale both topography and land management type had significant influences over forest structure; however, combined they only explained 32% of the variation in forest structure. At the landscape scale, there were significant differences in forest landscape structure between both Bailey's eco-provinces and management types. Specifically, non-government forests showed evidence of forest structure fragmentation. These non-government forested lands contained a higher proportion of short vegetation types, higher patch density, and greater heterogeneity of neighboring patches. This within-forest fragmentation is likely to have implications for both biodiversity and ecosystem services. Together, the studies presented in this dissertation show that management has a great impact on forest structure and carbon storage at both the stand and landscape levels. Management modifies the underlying influence of the environment, resulting in the realized forest structure patterns on the landscape. Therefore managers need to consciously incorporate these considerations into their management decisions at both the stand and landscape levels. Furthermore, this dissertation shows that despite its shortcomings, topographic LiDAR can be used for landscape scale vegetation studies in addition to topographic modeling. (Abstract shortened by UMI.).

  3. Management Effectiveness of a Secondary Coniferous Forest for Landscape Appreciation and Psychological Restoration

    PubMed Central

    Fujiwara, Akio; Saito, Haruo; Horiuchi, Masahiro

    2017-01-01

    We investigated the influence of forest management on landscape appreciation and psychological restoration in on-site settings by exposing respondents to an unmanaged, dense coniferous (crowding) forest and a managed (thinned) coniferous forest; we set the two experimental settings in the forests of the Fuji Iyashinomoroi Woodland Study Center. The respondents were individually exposed to both settings while sitting for 15 min and were required to answer three questionnaires to analyze the psychological restorative effects before and after the experiment (feeling (the Profile of Mood States), affect (the Positive and Negative Affect Schedule), and subjective restorativeness (the Restorative Outcome Scale). To compare landscape appreciation, they were required to answer another two questionnaires only after the experiment, for scene appreciation (the semantic differential scale) and for the restorative properties of each environment (the Perceived Restorativeness Scale). Finally, we obtained these findings: (1) the respondents evaluated each forest environment highly differently and evaluated the thinned forest setting more positively; (2) the respondents’ impressions of the two physical environments did not appear to be accurately reflected in their evaluations; (3) forest environments have potential restorative effects whether or not they are managed, but these effects can be partially enhanced by managing the forests. PMID:28718831

  4. Anticipating forest and range land development in central Oregon (USA) for landscape analysis, with an example application involving mule deer

    Treesearch

    Jeffrey D. Kline; Alissa Moses; Theresa Burcsu

    2010-01-01

    Forest policymakers, public lands managers, and scientists in the Pacific Northwest (USA) seek ways to evaluate the landscape-level effects of policies and management through the multidisciplinary development and application of spatially explicit methods and models. The Interagency Mapping and Analysis Project (IMAP) is an ongoing effort to generate landscape-wide...

  5. Defining fire environment zones in the boreal forests of northeastern China.

    PubMed

    Wu, Zhiwei; He, Hong S; Yang, Jian; Liang, Yu

    2015-06-15

    Fire activity in boreal forests will substantially increase with prolonged growing seasons under a warming climate. This trend poses challenges to managing fires in boreal forest landscapes. A fire environment zone map offers a basis for evaluating these fire-related problems and designing more effective fire management plans to improve the allocation of management resources across a landscape. Toward that goal, we identified three fire environment zones across boreal forest landscapes in northeastern China using analytical methods to identify spatial clustering of the environmental variables of climate, vegetation, topography, and human activity. The three fire environment zones were found to be in strong agreement with the spatial distributions of the historical fire data (occurrence, size, and frequency) for 1966-2005. This paper discusses how the resulting fire environment zone map can be used to guide forest fire management and fire regime prediction. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research.

    PubMed

    Arroyo-Rodríguez, Víctor; Melo, Felipe P L; Martínez-Ramos, Miguel; Bongers, Frans; Chazdon, Robin L; Meave, Jorge A; Norden, Natalia; Santos, Bráulio A; Leal, Inara R; Tabarelli, Marcelo

    2017-02-01

    Old-growth tropical forests are being extensively deforested and fragmented worldwide. Yet forest recovery through succession has led to an expansion of secondary forests in human-modified tropical landscapes (HMTLs). Secondary forests thus emerge as a potential repository for tropical biodiversity, and also as a source of essential ecosystem functions and services in HMTLs. Such critical roles are controversial, however, as they depend on successional, landscape and socio-economic dynamics, which can vary widely within and across landscapes and regions. Understanding the main drivers of successional pathways of disturbed tropical forests is critically needed for improving management, conservation, and restoration strategies. Here, we combine emerging knowledge from tropical forest succession, forest fragmentation and landscape ecology research to identify the main driving forces shaping successional pathways at different spatial scales. We also explore causal connections between land-use dynamics and the level of predictability of successional pathways, and examine potential implications of such connections to determine the importance of secondary forests for biodiversity conservation in HMTLs. We show that secondary succession (SS) in tropical landscapes is a multifactorial phenomenon affected by a myriad of forces operating at multiple spatio-temporal scales. SS is relatively fast and more predictable in recently modified landscapes and where well-preserved biodiversity-rich native forests are still present in the landscape. Yet the increasing variation in landscape spatial configuration and matrix heterogeneity in landscapes with intermediate levels of disturbance increases the uncertainty of successional pathways. In landscapes that have suffered extensive and intensive human disturbances, however, succession can be slow or arrested, with impoverished assemblages and reduced potential to deliver ecosystem functions and services. We conclude that: (i) succession must be examined using more comprehensive explanatory models, providing information about the forces affecting not only the presence but also the persistence of species and ecological groups, particularly of those taxa expected to be extirpated from HMTLs; (ii) SS research should integrate new aspects from forest fragmentation and landscape ecology research to address accurately the potential of secondary forests to serve as biodiversity repositories; and (iii) secondary forest stands, as a dynamic component of HMTLs, must be incorporated as key elements of conservation planning; i.e. secondary forest stands must be actively managed (e.g. using assisted forest restoration) according to conservation goals at broad spatial scales. © 2015 Cambridge Philosophical Society.

  7. Developing strategies to initialize landscape-scale vegetation maps from FIA data to enhance resolution of individual species-size cohort representation in the landscape disturbance model SIMPPLLE

    Treesearch

    Jacob John Muller

    2014-01-01

    The ability of forest resource managers to understand and anticipate landscape-scale change in composition and structure relies upon an adequate characterization of the current forest composition and structure of various patches (or stands), along with the capacity of forest landscape models (FLMs) to predict patterns of growth, succession, and disturbance at multiple...

  8. Simulating secondary succession of elk forage values in a managed forest landscape, western Washington

    USGS Publications Warehouse

    Jenkins, Kurt J.; Starkey, Edward E.

    1996-01-01

    Modern timber management practices often influence forage production for elk (Cervus elaphus) on broad temporal and spatial scales in forested landscapes. We incorporated site-specific information on postharvesting forest succession and forage characteristics in a simulation model to evaluate past and future influences of forest management practices on forage values for elk in a commercially managed Douglas fir (Pseudotsuga menziesii, PSME)-western hemlock (Tsuga heterophylla, TSHE) forest in western Washington. We evaluated future effects of: (1) clear-cut logging 0, 20, and 40% of harvestable stands every five years; (2) thinning 20-year-old Douglas fir forests; and (3) reducing the harvesting cycle from 60 to 45 years. Reconstruction of historical patterns of vegetation succession indicated that forage values peaked in the 1960s and declined from the 1970s to the present, but recent values still were higher than may have existed in the unmanaged landscape in 1945. Increased forest harvesting rates had little short-term influence on forage trends because harvestable stands were scarce. Simulations of forest thinning also produced negligible benefits because thinning did not improve forage productivity appreciably at the stand level. Simulations of reduced harvesting cycles shortened the duration of declining forage values from approximately 30 to 15 years. We concluded that simulation models are useful tools for examining landscape responses of forage production to forest management strategies, but the options examined provided little potential for improving elk forages in the immediate future.

  9. Watering the forest for the trees: An emerging priority for managing water in forest landscapes

    USGS Publications Warehouse

    Grant, Gordon E.; Tague, Christina L.; Allen, Craig D.

    2013-01-01

    Widespread threats to forests resulting from drought stress are prompting a re-evaluation of priorities for water management on forest lands. In contrast to the widely held view that forest management should emphasize providing water for downstream uses, we argue that maintaining forest health in the context of a changing climate may require focusing on the forests themselves and on strategies to reduce their vulnerability to increasing water stress. Management strategies would need to be tailored to specific landscapes but could include thinning, planting and selecting for drought-tolerant species, irrigating, and making more water available to plants for transpiration. Hydrologic modeling reveals that specific management actions could reduce tree mortality due to drought stress. Adopting water conservation for vegetation as a priority for managing water on forested lands would represent a fundamental change in perspective and potentially involve trade-offs with other downstream uses of water.

  10. LANDIS 4.0 users guide. LANDIS: a spatially explicit model of forest landscape disturbance, management, and succession

    Treesearch

    Hong S. He; Wei Li; Brian R. Sturtevant; Jian Yang; Bo Z. Shang; Eric J. Gustafson; David J. Mladenoff

    2005-01-01

    LANDIS 4.0 is new-generation software that simulates forest landscape change over large spatial and temporal scales. It is used to explore how disturbances, succession, and management interact to determine forest composition and pattern. Also describes software architecture, model assumptions and provides detailed instructions on the use of the model.

  11. Historical forest patterns of Oregon's central Coast Range

    USGS Publications Warehouse

    Ripple, W.J.; Hershey, K.T.; Anthony, R.G.

    2000-01-01

    To describe the composition and pattern of unmanaged forestland in Oregon's central Coast Range, we analyzed forest conditions from a random sample of 18 prelogging (1949 and earlier) landscapes. We also compared the amount and variability of old forest (conifer-dominated stands > 53 cm dbh) in the prelogging landscapes with that in the current landscapes. Sixty-three percent of the prelogging landscape comprised old forest, approximately 21% of which also had a significant (> 20% cover) hardwood component. The proportions of forest types across the 18 prelogging landscapes varied greatly for both early seral stages (cv = 81194) and hardwoods (cv = 127) and moderately for old forest (cv = 39). With increasing distance from streams, the amount of hardwoods and nonforest decreased, whereas the amount of seedling/sapling/pole and young conifers increased. The amount of old forest was significantly greater (p < 0.002) in prelogging forests than in current landscapes. Old-forest patterns also differed significantly (p < 0.015) between prelogging and current landscapes; patch density, coefficient of variation of patch size, edge density, and fragmentation were greater in current landscapes and mean patch size, largest patch size, and core habitat were greater in prelogging forests. Generally, old-forest landscape pattern variables showed a greater range in prelogging landscapes than in current landscapes. Management strategies designed to increase the amount of old forest and the range in landscape patterns would result in a landscape more closely resembling that found prior to intensive logging. (C) 2000 Elsevier Science Ltd.

  12. How will the changing industrial forest landscape affect forest sustainability?

    Treesearch

    Eric J. Gustafson; Craig Loehle

    2008-01-01

    Large-scale divestiture of commercial forestlands is occurring in the United States. Furthermore, increasing demand for cellulose for bioenergy may modify forest management practices widely enough to impact the spatial characteristics of forested landscapes. We used the HARVEST timber harvest simulator to investigate the potential consequences of divestiture and...

  13. Change in the forested and developed landscape of the Lake Tahoe basin, California and Nevada, USA, 1940-2002

    USGS Publications Warehouse

    Raumann, C.G.; Cablk, Mary E.

    2008-01-01

    The current ecological state of the Lake Tahoe basin has been shaped by significant landscape-altering human activity and management practices since the mid-1850s; first through widespread timber harvesting from the 1850s to 1920s followed by urban development from the 1950s to the present. Consequences of landscape change, both from development and forest management practices including fire suppression, have prompted rising levels of concern for the ecological integrity of the region. The impacts from these activities include decreased water quality, degraded biotic communities, and increased fire hazard. To establish an understanding of the Lake Tahoe basin's landscape change in the context of forest management and development we mapped, quantified, and described the spatial and temporal distribution and variability of historical changes in land use and land cover in the southern Lake Tahoe basin (279 km2) from 1940 to 2002. Our assessment relied on post-classification change detection of multi-temporal land-use/cover and impervious-surface-area data that were derived through manual interpretation, image processing, and GIS data integration for four dates of imagery: 1940, 1969, 1987, and 2002. The most significant land conversion during the 62-year study period was an increase in developed lands with a corresponding decrease in forests, wetlands, and shrublands. Forest stand densities increased throughout the 62-year study period, and modern thinning efforts resulted in localized stand density decreases in the latter part of the study period. Additionally forests were gained from succession, and towards the end of the study period extensive tree mortality occurred. The highest rates of change occurred between 1940 and 1969, corresponding with dramatic development, then rates declined through 2002 for all observed landscape changes except forest density decrease and tree mortality. Causes of landscape change included regional population growth, tourism demands, timber harvest for local use, fire suppression, bark beetle attack, and fuels reduction activities. Results from this study offer land managers within the Lake Tahoe basin and in similar regions a basis for making better informed land-use and management decisions to potentially minimize detrimental ecological impacts of landscape change. The perspective to be gained is based on quantitative retrospection of the effects of human-driven changes and the impacts of management action or inaction to the forested landscape. ?? 2008 Elsevier B.V. All rights reserved.

  14. Future Wildfire and Managed Fire Interactions in the Lake Tahoe Basin

    NASA Astrophysics Data System (ADS)

    Scheller, R.; Kretchun, A.

    2017-12-01

    Managing large forested landscape in the context of a changing climate and altered disturbance regimes presents new challenges and require integrated assessments of forest disturbance, management, succession, and the carbon cycle. Successful management under these circumstances will require information about trade-offs among multiple objectives and opportunities for spatially optimized landscape-scale management. Improved information about the effects of climate on forest communities, disturbance feedbacks, and the effectiveness of mitigation strategies enables actionable options for landscape managers. We evaluated the effects of fire suppression, wildfires, and forest fuel (thinning) treatments on the long-term carbon storage potential for Lake Tahoe Basin (LTB) forests under various climate futures. We simulated management scenarios that encompass fuel treatments across the larger landscape, beyond the Wildland Urban Interface. We improved upon current fire modeling under climate change via an integrated fire modeling module that, a) explicitly captures the influence of climate, fuels, topography, active fire management (e.g., fire suppression), and fuel treatments, and b) can be parameterized from available data, e.g., remote sensing, field reporting, fire databases, expert opinion. These improvements increase geographic flexibility and decrease reliance on broad historical fire regime statistics - imperfect targets for a no analog future and require minimal parameterization and calibration. We assessed the interactions among fuel treatments, prescribe fire, fire suppression, and stochastically recurring wildfires. Predicted changes in climate and ignition patterns in response to future climatic conditions, vegetation dynamics, and fuel treatments indicate larger potential long-term effects on C emissions, forest structure, and forest composition than prior studies.

  15. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    USGS Publications Warehouse

    Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime

    2015-01-01

    We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  16. Landscape-Scale Research In The Ouachita Mountains Of West-Central Arkansas: General Study Design

    Treesearch

    James M. Guldin

    2004-01-01

    Abstract A landscape-scale study on forest ecology and management began in 1995 in the eastern Ouachita Mountains. Of four large watersheds, three were within the Winona Ranger District of the Ouachita National Forest, and a major forest industry landowner largely owned and managed the fourth. These watersheds vary from 3,700 to 9,800 acres. At this...

  17. Evaluating carbon storage, timber harvest, and habitat possibilities for a Western Cascades (USA) forest landscape.

    PubMed

    Kline, Jeffrey D; Harmon, Mark E; Spies, Thomas A; Morzillo, Anita T; Pabst, Robert J; McComb, Brenda C; Schnekenburger, Frank; Olsen, Keith A; Csuti, Blair; Vogeler, Jody C

    2016-10-01

    Forest policymakers and managers have long sought ways to evaluate the capability of forest landscapes to jointly produce timber, habitat, and other ecosystem services in response to forest management. Currently, carbon is of particular interest as policies for increasing carbon storage on federal lands are being proposed. However, a challenge in joint production analysis of forest management is adequately representing ecological conditions and processes that influence joint production relationships. We used simulation models of vegetation structure, forest sector carbon, and potential wildlife habitat to characterize landscape-level joint production possibilities for carbon storage, timber harvest, and habitat for seven wildlife species across a range of forest management regimes. We sought to (1) characterize the general relationships of production possibilities for combinations of carbon storage, timber, and habitat, and (2) identify management variables that most influence joint production relationships. Our 160 000-ha study landscape featured environmental conditions typical of forests in the Western Cascade Mountains of Oregon (USA). Our results indicate that managing forests for carbon storage involves trade-offs among timber harvest and habitat for focal wildlife species, depending on the disturbance interval and utilization intensity followed. Joint production possibilities for wildlife species varied in shape, ranging from competitive to complementary to compound, reflecting niche breadth and habitat component needs of species examined. Managing Pacific Northwest forests to store forest sector carbon can be roughly complementary with habitat for Northern Spotted Owl, Olive-sided Flycatcher, and red tree vole. However, managing forests to increase carbon storage potentially can be competitive with timber production and habitat for Pacific marten, Pileated Woodpecker, and Western Bluebird, depending on the disturbance interval and harvest intensity chosen. Our analysis suggests that joint production possibilities under forest management regimes currently typical on industrial forest lands (e.g., 40- to 80-yr rotations with some tree retention for wildlife) represent but a small fraction of joint production outcomes possible in the region. Although the theoretical boundaries of the production possibilities sets we developed are probably unachievable in the current management environment, they arguably define the long-term potential of managing forests to produce multiple ecosystem services within and across multiple forest ownerships. © 2016 by the Ecological Society of America.

  18. Landscape host abundance and configuration regulate periodic outbreak behavior in spruce budworm Choristoneura fumiferana

    Treesearch

    Louis-Etienne Robert; Brian R. Sturtevant; Barry J. Cooke; Patrick M. A. James; Marie-Josée Fortin; Philip A. Townsend; Peter T. Wolter; Daniel Kneeshaw

    2018-01-01

    Landscape-level forest management has long been hypothesized to affect forest insect outbreak dynamics, but empirical evidence remains elusive. We hypothesized that the combination of increased hardwood relative to host tree species, prevalence of younger forests, and fragmentation of those forests due to forest harvesting legacies would reduce outbreak intensity,...

  19. Rare Plants of the Redwood Forest and Forest Management Effects

    Treesearch

    Teresa Sholars; Clare Golec

    2007-01-01

    Coast redwood forests are predominantly a timber managed habitat type, subjected to repeated disturbances and short rotation periods. What does this repeated disturbance mean for rare plants associated with the redwood forests? Rare plant persistence through forest management activities is influenced by many factors. Persistence of rare plants in a managed landscape is...

  20. Using conservation value to assess land restoration and management alternatives across a degraded oak savanna landscape

    USGS Publications Warehouse

    Grundel, R.; Pavlovic, N.B.

    2008-01-01

    1. Managers considering restoration of landscapes often face a fundamental challenge - what should be the habitat composition of the restored landscape? We present a method for evaluating an important conservation trade-off inherent in making that decision. 2. Oak savannas and grasslands were historically widespread across central North America but are now rare. Today, in north-west Indiana, USA, habitats spanning a range of woody vegetation density, from nearly treeless open habitats to forests, occur across the conserved landscape where savannas probably once dominated. To understand the benefits of different potential landscape compositions, we evaluated how different proportions of five habitats - open, savanna, woodland, scrub and forest - might affect the conservation value of the north-west Indiana landscape for birds. Two variables of potential conservation importance were examined: species diversity, a measure of avian community richness, and conservation index, the percentage of a bird species' global population occurring on a hectare of landscape, summed across all bird species present. Higher values of conservation index were associated with higher local densities of globally more rare and more threatened species. 3. Conservation index and species diversity were correlated negatively across hypothetical landscapes composed of different proportions of the five habitats. Therefore, a management trade-off existed between conservation index and species diversity because landscapes that maximized species diversity differed from landscapes that maximized conservation index. 4. A landscape of 50% open, 22% savanna, 15% scrub and 13% forest was predicted to represent a compromise at which conservation index and species diversity reached the same percentage of their maxima. In contrast, the current landscape is dominated by forest. 5. Synthesis and applications. We quantified the trade-off between two potential aspects of a landscape's conservation value for birds - the landscape's ability to promote avian species diversity and the landscape's use by threatened avian species. This quantification allowed us to evaluate the ability of different landscape compositions to achieve preferable trade-off compromises, such as maximizing diversity for a given level of landscape use by threatened species. Managers can use these trade-off results to determine which landscape compositions are associated with particular conservation and management priorities.

  1. Maximizing Conservation and Production with Intensive Forest Management: It's All About Location

    NASA Astrophysics Data System (ADS)

    Tittler, Rebecca; Filotas, Élise; Kroese, Jasmin; Messier, Christian

    2015-11-01

    Functional zoning has been suggested as a way to balance the needs of a viable forest industry with those of healthy ecosystems. Under this system, part of the forest is set aside for protected areas, counterbalanced by intensive and extensive management of the rest of the forest. Studies indicate this may provide adequate timber while minimizing road construction and favoring the development of large mature and old stands. However, it is unclear how the spatial arrangement of intensive management areas may affect the success of this zoning. Should these areas be agglomerated or dispersed throughout the forest landscape? Should managers prioritize (a) proximity to existing roads, (b) distance from protected areas, or (c) site-specific productivity? We use a spatially explicit landscape simulation model to examine the effects of different spatial scenarios on landscape structure, connectivity for native forest wildlife, stand diversity, harvest volume, and road construction: (1) random placement of intensive management areas, and (2-8) all possible combinations of rules (a)-(c). Results favor the agglomeration of intensive management areas. For most wildlife species, connectivity was the highest when intensive management was far from the protected areas. This scenario also resulted in relatively high harvest volumes. Maximizing distance of intensive management areas from protected areas may therefore be the best way to maximize the benefits of intensive management areas while minimizing their potentially negative effects on forest structure and biodiversity.

  2. The landscape context of forest and grassland in the United States

    Treesearch

    Kurt H. Riitters

    2011-01-01

    As development introduces competing land uses into forest and grassland landscapes, the public expresses concern for landscape patterns through headline issues such as urban sprawl and fragmentation. Resource managers need a deeper understanding of the causes and consequences of landscape patterns to know if, where, and how to take any needed actions. The spatial...

  3. Relationships between bat occupancy and habitat and landscape structure along a savanna, woodland, forest gradient in the Missouri Ozarks

    Treesearch

    Clarissa A. Starbuck; Sybill K. Amelon; Frank R. III Thompson

    2015-01-01

    Many land-management agencies are restoring savannas and woodlands using prescribed fire and forest thinning, and information is needed on how wildlife species respond to these management activities. Our objectives were to evaluate support for relationships of bat site occupancy with vegetation structure and management and landscape composition and structure across a...

  4. Mammal indicator species for protected areas and managed forests in a landscape conservation area in northern India

    Treesearch

    Pradeep K. Mathur; Harish Kumar; John F. Lehmkuhl; Anshuman Tripathi; Vishwas B. Sawarkar; Rupak De

    2010-01-01

    There is a realization that managed forests and other natural areas in the landscape matrix can and must make significant contributions to biodiversity conservation. Often, however, there are no consistent baseline vegetation or wildlife data for assessing the status of biodiversity elements across protected and managed areas for conservation planning, nor is there a...

  5. Scale-dependent effects of landscape structure and composition on diurnal roost selection by forest bats

    Treesearch

    Roger W. Perry; Ronald E. Thill; David M. Leslie

    2008-01-01

    Forest management affects the quality and availability of roost sites for forest-dwelling bats, but information on roost selection beyond the scale of individual forest stands is limited. We evaluated effects of topography (elevation, slope, and proximity of roads and streams), forest habitat class, and landscape patch configuration on selection of summer diurnal oosts...

  6. Assessing knowledge ambiguity in the creation of a model based on expert knowledge and comparison with the results of a landscape succession model in central Labrador. Chapter 10.

    Treesearch

    Frederik Doyon; Brian Sturtevant; Michael J. Papaik; Andrew Fall; Brian Miranda; Daniel D. Kneeshaw; Christian Messier; Marie-Josee Fortin; Patrick M.A. James

    2012-01-01

    Sustainable forest management (SFM) recognizes that the spatial and temporal patterns generated at different scales by natural landscape and stand dynamics processes should serve as a guide for managing the forest within its range of natural variability. Landscape simulation modeling is a powerful tool that can help encompass such complexity and support SFM planning....

  7. Soil Respiration at Dominant Patch Types within a Managed Northern Wisconsin Landscape

    Treesearch

    Eug& #233; nie Euskirchen; Jiquan Chen; Eric J. Gustafson; Siyan Ma; Siyan Ma

    2003-01-01

    Soil respiration (SR), a substantial component of the forest carbon budget, has been studied extensively at the ecosystem, regional, continental, and global scales, but little progress has been made toward understanding SR over managed forest landscapes. Soil respiration is often influenced by soil temperature (Ts), soil moisture (Ms...

  8. Soil respiration at dominant patch types within a managed northern Wisconsin landscape

    Treesearch

    Eugenie S. Euskirchen; Jiquan Chen; Eric J. Gustafson; Siyan Ma

    2003-01-01

    Soil respiration (SR), a substantial component of the forest carbon budget, has been studied extensively at the ecosystem, regional, continental, and global scales, but little progress has been made toward understanding SR over managed forest landscapes. Soil respiration is often influenced by soil temperature (Ts), soil moisture (Ms...

  9. Restoration planning on the Okanogan-Wenatchee national forest: prescriptions for resilient landscapes

    Treesearch

    Keith Reynolds; Paul Hessburg; Joan O’Callaghan

    2014-01-01

    Human settlement and land management have radically altered the composition and structure of eastern Washington forests. Restoring high-functioning landscapes and habitat patterns have broad implications for the future sustainability of native species, ecosystem services, and ecosystem processes. Many land managers and scientists have turned their attention to whole...

  10. A heuristic for landscape management

    Treesearch

    Martín Alfonso B. Mendoza; Jesús S. Zepeta; Juan José A. Fajardo

    2006-01-01

    The development of landscape ecology has stressed out the importance of spatial and sequential relationships as explanations to forest stand dynamics, and for other natural ambiences. This presentation offers a specific design that introduces spatial considerations into forest planning with the idea of regulating fragmentation and connectivity in commercial forest...

  11. Width of riparian buffer and structure of adjacent plantations influence occupancy of conservation priority birds

    Treesearch

    Roger W. Perry; T. Bently Wigley; M. Anthony Melchiors; Ronald E. Thill; Philip A. Tappe; Darren A. Miller

    2011-01-01

    Conservation of biodiversity on forest landscapes dominated by plantations has become an increasingly important topic, and opportunities to maintain or enhance biodiversity within these forests need to be recognized and applied. Riparian buffers of mature forest retained along streams in managed forest landscapes offer an opportunity to enhance biodiversity across...

  12. Tropical forests and fragmentation: A case of South Garo Hills, Meghalaya, North East India

    Treesearch

    Ashish Kumar; Bruce Marcot; Rohitkumar Patel

    2017-01-01

    This study presents an ecological assessment of tropical forests at stand and landscape levels to provide knowledge, tools and, indicators to evaluate specific diversity patterns and related ecological processes happening in these tropical forest conditions; and for monitoring landscape changes for managing forest and wildlife resources of Jhum (shifting cultivation)...

  13. Concentrating anthropogenic disturbance to balance ecological and economic values: applications to forest management.

    PubMed

    Tittler, Rebecca; Messier, Christian; Fall, Andrew

    2012-06-01

    To maintain healthy ecosystems, natural-disturbance-based management aims to minimize differences between unmanaged and managed landscapes. Two related approaches may help accomplish this goal, either applied together or in isolation: (1) concentrating anthropogenic disturbance through zoning (with protected areas and intensive management); and (2) emulating natural disturbances. The purpose of this paper is to examine the effects of these two approaches, applied both in isolation and in combination, on the structure of the forest landscape. To do so, we use a spatially explicit landscape simulation model on a large fire-dominated landscape in eastern Canada. Specifically, we examine the effects of (1) increasing the maximum size of logged stands (cutblocks) to better emulate the full range of fire sizes in a fire-dominated landscape, (2) increasing protected areas, and (3) adding aggregated or dispersed intensive wood production areas to the landscape in addition to protected areas (triad management). We focus on maximizing the amount and minimizing the fragmentation of old-growth forest and on reducing road construction. Increasing maximum cutblock size and adding protected areas led to reduced road construction, while the latter also resulted in less fragmentation and more old growth. Although protected areas led to reduced harvest volume, the addition of an intensive production zone (triad management) counterbalanced this loss and resulted in more old growth than equivalent scenarios with protected areas but no intensive production zone. However, we found no differences between aggregated and dispersed intensive wood production. Our results imply that differences between unmanaged and managed landscapes can be reduced by concentrating logging efforts through a combination of protected areas and intensive wood production, and by creating some larger cutblocks. We conclude that the forest industry and regulators should therefore seek to increase protected areas through triad management and consider increasing maximum cutblock size. These results add to a growing body of literature indicating that intensive management on a small part of the landscape may be better than less intensive management spread out over a much larger part of the landscape, whether this is in the context of forestry, agriculture, or urban development.

  14. Non-native plant invasions in managed and protected ponderosa pine/Douglas-fir forests of the Colorado Front Range

    Treesearch

    Paula J. Fornwalt; Merrill R. Kaufmann; Laurie S. Huckaby; Jason M. Stoker; Thomas J. Stohlgren

    2003-01-01

    We examined patterns of non-native plant diversity in protected and managed ponderosa pine/Douglas-fir forests of the Colorado Front Range. Cheesman Lake, a protected landscape, and Turkey Creek, a managed landscape, appear to have had similar natural disturbance histories prior to European settlement and fire protection during the last century. However, Turkey Creek...

  15. Supplementing forest ecosystem health projects on the ground

    Treesearch

    Cathy Barbouletos; Lynette Z. Morelan

    1995-01-01

    Understanding the functions and processes of ecosystems is critical before implementing forest ecosystem health projects on the landscape. Silvicultural treatments such as thinning, prescribed fire, and reforestation can simulate disturbance regimes and landscape patterns that have regulated forest ecosystems for centuries. As land managers we need to understand these...

  16. Managing for naturalness in wildland and agricultural landscapes

    Treesearch

    Joan Nassauer

    1979-01-01

    Visual management systems operate from the premise that people have expectations for landscape views, and that people's positive expectations should be fulfilled. Both the Forest Service and Bureau of Land Management visual management systems assume that people expect wildlands to look natural. People also like to see natural landscapes in rural Iowa. Research I...

  17. Modeling disturbance and succession in forest landscapes using LANDIS: introduction

    Treesearch

    Brian R. Sturtevant; Eric J. Gustafson; Hong S. He

    2004-01-01

    Modeling forest landscape change is challenging because it involves the interaction of a variety of factors and processes, such as climate, succession, disturbance, and management. These processes occur at various spatial and temporal scales, and the interactions can be complex on heterogeneous landscapes. Because controlled field experiments designed to investigate...

  18. Reliability and precision of pellet-group counts for estimating landscape-level deer density

    Treesearch

    David S. deCalesta

    2013-01-01

    This study provides hitherto unavailable methodology for reliably and precisely estimating deer density within forested landscapes, enabling quantitative rather than qualitative deer management. Reliability and precision of the deer pellet-group technique were evaluated in 1 small and 2 large forested landscapes. Density estimates, adjusted to reflect deer harvest and...

  19. Integrating ecophysiology and forest landscape models to improve projections of drought effects under climate change

    Treesearch

    Eric J. Gustafson; Arjan M.G. De Bruijn; Robert E. Pangle; Jean-Marc Limousin; Nate G. McDowell; William T. Pockman; Brian R. Sturtevant; Jordan D. Muss; Mark E. Kubiske

    2015-01-01

    Fundamental drivers of ecosystem processes such as temperature and precipitation are rapidly changing and creating novel environmental conditions. Forest landscape models (FLM) are used by managers and policy-makers to make projections of future ecosystem dynamics under alternative management or policy options, but the links between the fundamental drivers and...

  20. Decision support for evaluating landscape departure and prioritizing forest management activities in a changing environment

    Treesearch

    S. Gärtner; K.M. Reynolds; P.F. Hessburg; S.S. Hummel; M. Twery

    2008-01-01

    We evaluated changes (hereafter, departures) in spatial patterns of various patch types of forested landscapes in two subwatersheds ("east" and "west") in eastern Washington, USA, from the patterns of two sets of reference conditions; one representing the broad variability of pre-management era (~1900) conditions, and another representing the broad...

  1. Harnessing landscape heterogeneity for managing future disturbance risks in forest ecosystems.

    PubMed

    Seidl, Rupert; Albrich, Katharina; Thom, Dominik; Rammer, Werner

    2018-03-01

    In order to prevent irreversible impacts of climate change on the biosphere it is imperative to phase out the use of fossil fuels. Consequently, the provisioning of renewable resources such as timber and biomass from forests is an ecosystem service of increasing importance. However, risk factors such as changing disturbance regimes are challenging the continuous provisioning of ecosystem services, and are thus a key concern in forest management. We here used simulation modeling to study different risk management strategies in the context of timber production under changing climate and disturbance regimes, focusing on a 8127 ha forest landscape in the Northern Front Range of the Alps in Austria. We show that under a continuation of historical management, disturbances from wind and bark beetles increase by +39.5% on average over 200 years in response to future climate change. Promoting mixed forests and climate-adapted tree species as well as increasing management intensity effectively reduced future disturbance risk. Analyzing the spatial patterns of disturbance on the landscape, we found a highly uneven distribution of risk among stands (Gini coefficients up to 0.466), but also a spatially variable effectiveness of silvicultural risk reduction measures. This spatial variability in the contribution to and control of risk can be used to inform disturbance management: Stands which have a high leverage on overall risk and for which risks can effectively be reduced (24.4% of the stands in our simulations) should be a priority for risk mitigation measures. In contrast, management should embrace natural disturbances for their beneficial effects on biodiversity in areas which neither contribute strongly to landscape-scale risk nor respond positively to risk mitigation measures (16.9% of stands). We here illustrate how spatial heterogeneity in forest landscapes can be harnessed to address both positive and negative effects of changing natural disturbance regimes in ecosystem management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Harnessing landscape heterogeneity for managing future disturbance risks in forest ecosystems

    PubMed Central

    Seidl, Rupert; Albrich, Katharina; Thom, Dominik; Rammer, Werner

    2018-01-01

    In order to prevent irreversible impacts of climate change on the biosphere it is imperative to phase out the use of fossil fuels. Consequently, the provisioning of renewable resources such as timber and biomass from forests is an ecosystem service of increasing importance. However, risk factors such as changing disturbance regimes are challenging the continuous provisioning of ecosystem services, and are thus a key concern in forest management. We here used simulation modeling to study different risk management strategies in the context of timber production under changing climate and disturbance regimes, focusing on a 8127 ha forest landscape in the Northern Front Range of the Alps in Austria. We show that under a continuation of historical management, disturbances from wind and bark beetles increase by +39.5% on average over 200 years in response to future climate change. Promoting mixed forests and climate-adapted tree species as well as increasing management intensity effectively reduced future disturbance risk. Analyzing the spatial patterns of disturbance on the landscape, we found a highly uneven distribution of risk among stands (Gini coefficients up to 0.466), but also a spatially variable effectiveness of silvicultural risk reduction measures. This spatial variability in the contribution to and control of risk can be used to inform disturbance management: Stands which have a high leverage on overall risk and for which risks can effectively be reduced (24.4% of the stands in our simulations) should be a priority for risk mitigation measures. In contrast, management should embrace natural disturbances for their beneficial effects on biodiversity in areas which neither contribute strongly to landscape-scale risk nor respond positively to risk mitigation measures (16.9% of stands). We here illustrate how spatial heterogeneity in forest landscapes can be harnessed to address both positive and negative effects of changing natural disturbance regimes in ecosystem management. PMID:29275284

  3. Modeling forest site productivity using mapped geospatial attributes within a South Carolina landscape, USA

    Treesearch

    B.R. Parresol; D.A. Scott; S.J. Zarnoch; L.A. Edwards; J.I. Blake

    2017-01-01

    Spatially explicit mapping of forest productivity is important to assess many forest management alternatives. We assessed the relationship between mapped variables and site index of forests ranging from southern pine plantations to natural hardwoods on a 74,000-ha landscape in South Carolina, USA. Mapped features used in the analysis were soil association, land use...

  4. Integrating studies in the Missouri Ozark Forest Ecosystem Project: Status and outlook

    Treesearch

    David Gwaze; Stephen Sheriff; John Kabrick; Larry Vangilder

    2011-01-01

    The Missouri Ozark Forest Ecosystem Project (MOFEP), which was started in 1989 by the Missouri Department of Conservation, evaluates the effects of forest management practices (even-aged management, uneven-aged management, and no-harvest management) on upland oak-forest components in southern Missouri. MOFEP is a long-term, landscape-level, fully replicated, and...

  5. Does increasing rotation length lead to greater forest carbon storage?

    NASA Astrophysics Data System (ADS)

    Ter-Mikaelian, M. T.; Colombo, S. J.; Chen, J.

    2016-12-01

    Forest management is a key factor affecting climate change mitigation by forests. Increasing the age of harvesting (also referred to as rotation length) is a management practice that has been proposed as a means of increasing forest carbon sequestration and storage. However, studies of the effects of increasing harvest age on forest carbon stocks have mostly been limited to forest plantations. In contrast, this study assesses the effects of increased harvest age of managed natural forests of Ontario (Canada) at two scales. At the stand level, we assess merchantable volume yield curves to differentiate those for which increasing the age of harvest results in an increase in total forest carbon stocks versus those for which increased harvest age reduces carbon stocks. The stand level results are then applied to forest landscapes to demonstrate that the effect of increasing the age of harvest on forest carbon storage is specific to the forest growth rates for a given forest landscape and depends on the average age at which forests are harvested under current (business-as-usual) management practice. We discuss the implications of these results for forest management aimed at mitigating climate change.

  6. Characteristics of remnant old-growth forests in the northern Coast Range of Oregon and comparison to surrounding landscapes.

    Treesearch

    Andrew N. Gray; Vicente J. Monleon; Thomas A. Spies

    2009-01-01

    Old-growth forests provide unique habitat features and landscape functions compared to younger stands. The goals of many forest management plans in the Pacific Northwest include increasing the area of late-successional and old-growth forests. The goal of this study was to describe existing old-growth forests in the northern Oregon Coast Range that might serve as...

  7. Dynamics of hardwood patches in a conifer matrix: 54 years of change in a forested landscape in Coastal Oregon, USA.

    Treesearch

    Rebecca S.H. Kennedy; Tomas A. Spies

    2005-01-01

    Changes to minor patch types in forested landscapes may have large consequences for forest biodiversity. The effects of forest management and environment on these secondary patch types are often poorly understood. For example, do early-to-mid successional minor patch types become more expansive as late successional forest types are fragmented or do they also become...

  8. Landscape management using historical fire regimes: Blue River, Oregon.

    Treesearch

    J.H. Cissel; F.J. Swanson; P.J. Weisberg

    1999-01-01

    Landscapes administered for timber production by the U.S. Forest Service in the Pacific Northwest in the 1950s-1980s were managed with dispersed patch clearcutting, and then briefly in the late 1980s with aggregated patch clearcutting. In the late 1990s, use of historical landscape patterns and disturbance regimes as a guide for landscape management has emerged as an...

  9. California spotted owl, songbird, and small mammal responses to landscape fuel treatments

    Treesearch

    Scott L. Stephens; Seth W. Bigelow; Ryan D. Burnett; Brandon M. Collins; Claire. V. Gallagher; John Keane; Douglas A. Kelt; Malcolm P. North; Lance J. Roberts; Peter A. Stine; Dirk H. Van Vuren

    2014-01-01

    A principal challenge of federal forest management has been maintaining and improving habitat for sensitive species in forests adapted to frequent, low- to moderate-intensity fire regimes that have become increasingly vulnerable to uncharacteristically severe wildfires. To enhance forest resilience, a coordinated landscape fuel network was installed in the northern...

  10. Historical fire regime and forest variability on two eastern Great Basin fire-sheds (USA)

    Treesearch

    Stanley G. Kitchen

    2012-01-01

    Proper management of naturally forested landscapes requires knowledge of key disturbance processes and their effects on species composition and structure. Spatially-intensive fire and forest histories provide valuable information about how fire and vegetation may vary and interact on heterogeneous landscapes. I constructed 800-year fire and tree recruitment...

  11. Landscape genetic structure of coastal tailed frogs (Ascaphus truei) in protected vs. managed forests.

    PubMed

    Spear, Stephen F; Storfer, Andrew

    2008-11-01

    Habitat loss and fragmentation are the leading causes of species' declines and extinctions. A key component of studying population response to habitat alteration is to understand how fragmentation affects population connectivity in disturbed landscapes. We used landscape genetic analyses to determine how habitat fragmentation due to timber harvest affects genetic population connectivity of the coastal tailed frog (Ascaphus truei), a forest-dwelling, stream-breeding amphibian. We compared rates of gene flow across old-growth (Olympic National Park) and logged landscapes (Olympic National Forest) and used spatial autoregression to estimate the effect of landscape variables on genetic structure. We detected higher overall genetic connectivity across the managed forest, although this was likely a historical signature of continuous forest before timber harvest began. Gene flow also occurred terrestrially, as connectivity was high across unconnected river basins. Autoregressive models demonstrated that closed forest and low solar radiation were correlated with increased gene flow. In addition, there was evidence for a temporal lag in the correlation of decreased gene flow with harvest, suggesting that the full genetic impact may not appear for several generations. Furthermore, we detected genetic evidence of population bottlenecks across the Olympic National Forest, including at sites that were within old-growth forest but surrounded by harvested patches. Collectively, this research suggests that absence of forest (whether due to natural or anthropogenic changes) is a key restrictor of genetic connectivity and that intact forested patches in the surrounding environment are necessary for continued gene flow and population connectivity.

  12. Historical harvests reduce neighboring old-growth basal area across a forest landscape.

    PubMed

    Bell, David M; Spies, Thomas A; Pabst, Robert

    2017-07-01

    While advances in remote sensing have made stand, landscape, and regional assessments of the direct impacts of disturbance on forests quite common, the edge influence of timber harvesting on the structure of neighboring unharvested forests has not been examined extensively. In this study, we examine the impact of historical timber harvests on basal area patterns of neighboring old-growth forests to assess the magnitude and scale of harvest edge influence in a forest landscape of western Oregon, USA. We used lidar data and forest plot measurements to construct 30-m resolution live tree basal area maps in lower and middle elevation mature and old-growth forests. We assessed how edge influence on total, upper canopy, and lower canopy basal area varied across this forest landscape as a function of harvest characteristics (i.e., harvest size and age) and topographic conditions in the unharvested area. Upper canopy, lower canopy, and total basal area increased with distance from harvest edge and elevation. Forests within 75 m of harvest edges (20% of unharvested forests) had 4% to 6% less live tree basal area compared with forest interiors. An interaction between distance from harvest edge and elevation indicated that elevation altered edge influence in this landscape. We observed a positive edge influence at low elevations (<800 m) and a negative edge influence at moderate to high elevations (>800 m). Surprisingly, we found no or weak effects of harvest age (13-60 yr) and harvest area (0.2-110 ha) on surrounding unharvested forest basal area, implying that edge influence was relatively insensitive to the scale of disturbance and multi-decadal recovery processes. Our study indicates that the edge influence of past clearcutting on the structure of neighboring uncut old-growth forests is widespread and persistent. These indirect and diffuse legacies of historical timber harvests complicate forest management decision-making in old-growth forest landscapes by broadening the traditional view of stand boundaries. Furthermore, the consequences of forest harvesting may reach across ownership boundaries, highlighting complex governance issues surrounding landscape management of old-growth forests. © 2017 by the Ecological Society of America.

  13. Managing burned landscapes: Evaluating future management strategies for resilient forests under a warming climate

    Treesearch

    K. L. Shive; P. Z. Fule; C. H. Sieg; B. A. Strom; M. E. Hunter

    2014-01-01

    Climate change effects on forested ecosystems worldwide include increases in drought-related mortality, changes to disturbance regimes and shifts in species distributions. Such climate-induced changes will alter the outcomes of current management strategies, complicating the selection of appropriate strategies to promote forest resilience. We modelled forest growth in...

  14. An Overview of Hydrologic Studies at Center for Forested Wetlands Research, USDA Forest Service

    Treesearch

    Devendra M. Amatya; Carl C. Trettin; R. Wayne Skaggs; Timothy J. Callahan; Ge Sun; Masato Miwa; John E. Parsons

    2004-01-01

    Managing forested wetland landscapes for water quality improvement and productivity requires a detailed understanding of functional linkages between ecohydrological processes and management practices. Studies are being conducted at Center for Forested Wetlands Research (CFWR), USDA Forest Service to understand the fundamental hydrologic and biogeochemical processes...

  15. Conserving Tropical Tree Diversity and Forest Structure: The Value of Small Rainforest Patches in Moderately-Managed Landscapes

    PubMed Central

    Hernández-Ruedas, Manuel A.; Arroyo-Rodríguez, Víctor; Meave, Jorge A.; Martínez-Ramos, Miguel; Ibarra-Manríquez, Guillermo; Martínez, Esteban; Jamangapé, Gilberto; Melo, Felipe P. L.; Santos, Bráulio A.

    2014-01-01

    Rainforests are undergoing severe deforestation and fragmentation worldwide. A huge amount of small forest patches are being created, but their value in conserving biodiversity and forest structure is still controversial. Here, we demonstrate that in a species-rich and moderately-managed Mexican tropical landscape small rainforest patches (<100 ha) can be highly valuable for the conservation of tree diversity and forest structure. These patches showed diverse communities of native plants, including endangered species, and a new record for the country. Although the number of logged trees increased in smaller patches, patch size was a poor indicator of basal area, stem density, number of species, genera and families, and community evenness. Cumulative species-area curves indicated that all patches had a similar contribution to the regional species diversity. This idea also was supported by the fact that patches strongly differed in floristic composition (high β-diversity), independently of patch size. Thus, in agreement with the land-sharing approach, our findings support that small forest patches in moderately-managed landscapes should be included in conservation initiatives to maintain landscape heterogeneity, species diversity, and ecosystem services. PMID:24901954

  16. Conserving tropical tree diversity and forest structure: the value of small rainforest patches in moderately-managed landscapes.

    PubMed

    Hernández-Ruedas, Manuel A; Arroyo-Rodríguez, Víctor; Meave, Jorge A; Martínez-Ramos, Miguel; Ibarra-Manríquez, Guillermo; Martínez, Esteban; Jamangapé, Gilberto; Melo, Felipe P L; Santos, Bráulio A

    2014-01-01

    Rainforests are undergoing severe deforestation and fragmentation worldwide. A huge amount of small forest patches are being created, but their value in conserving biodiversity and forest structure is still controversial. Here, we demonstrate that in a species-rich and moderately-managed Mexican tropical landscape small rainforest patches (<100 ha) can be highly valuable for the conservation of tree diversity and forest structure. These patches showed diverse communities of native plants, including endangered species, and a new record for the country. Although the number of logged trees increased in smaller patches, patch size was a poor indicator of basal area, stem density, number of species, genera and families, and community evenness. Cumulative species-area curves indicated that all patches had a similar contribution to the regional species diversity. This idea also was supported by the fact that patches strongly differed in floristic composition (high β-diversity), independently of patch size. Thus, in agreement with the land-sharing approach, our findings support that small forest patches in moderately-managed landscapes should be included in conservation initiatives to maintain landscape heterogeneity, species diversity, and ecosystem services.

  17. A Bayesian approach to landscape ecological risk assessment applied to the upper Grande Ronde watershed, Oregon

    Treesearch

    Kimberley K. Ayre; Wayne G. Landis

    2012-01-01

    We present a Bayesian network model based on the ecological risk assessment framework to evaluate potential impacts to habitats and resources resulting from wildfire, grazing, forest management activities, and insect outbreaks in a forested landscape in northeastern Oregon. The Bayesian network structure consisted of three tiers of nodes: landscape disturbances,...

  18. Using the forest, people, fire agent-based social network model to investigate interactions in social-ecological systems

    Treesearch

    Paige Fischer; Adam Korejwa; Jennifer Koch; Thomas Spies; Christine Olsen; Eric White; Derric Jacobs

    2013-01-01

    Wildfire links social and ecological systems in dry-forest landscapes of the United States. The management of these landscapes, however, is bifurcated by two institutional cultures that have different sets of beliefs about wildfire, motivations for managing wildfire risk, and approaches to administering policy. Fire protection, preparedness, and response agencies often...

  19. From the Bronx to Birmingham: Impact of Chestnut Blight and Management Practices on Forest Health Risks in the Southern Appalachian Mountains

    Treesearch

    Steven W. Oak

    2002-01-01

    Southern Appalachian forest landscapes evoke images of the primeval forest in many people today. Indeed, most vegetation components in these forests have been present in varying mixtures and distributions for at least 58 million years (Delcourt and Delcourt 1981). However, the only thing constant about these landscapes has been change. Advancing and retreating ice...

  20. Simulating the cumulative effects of multiple forest management strategies on landscape measures of forest sustainability

    Treesearch

    Eric J. Gustafson; David E. Lytle; Randy Swaty; Craig Loehle

    2007-01-01

    While the cumulative effects of the actions of multiple owners have long been recognized as critically relevant to efforts to maintain sustainable forests at the landscape scale, few studies have addressed these effects. We used the HARVEST timber harvest simulator to predict the cumulative effects of four owner groups (two paper companies, a state forest and non-...

  1. Methods for integrated modeling of landscape change: Interior Northwest Landscape Analysis System.

    Treesearch

    Jane L. Hayes; Alan. A. Ager; R. James Barbour

    2004-01-01

    The Interior Northwest Landscape Analysis System (INLAS) links a number of resource, disturbance, and landscape simulations models to examine the interactions of vegetative succession, management, and disturbance with policy goals. The effects of natural disturbance like wildfire, herbivory, forest insects and diseases, as well as specific management actions are...

  2. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape.

    PubMed

    Zald, Harold S J; Dunn, Christopher J

    2018-04-26

    Many studies have examined how fuels, topography, climate, and fire weather influence fire severity. Less is known about how different forest management practices influence fire severity in multi-owner landscapes, despite costly and controversial suppression of wildfires that do not acknowledge ownership boundaries. In 2013, the Douglas Complex burned over 19,000 ha of Oregon & California Railroad (O&C) lands in Southwestern Oregon, USA. O&C lands are composed of a checkerboard of private industrial and federal forestland (Bureau of Land Management, BLM) with contrasting management objectives, providing a unique experimental landscape to understand how different management practices influence wildfire severity. Leveraging Landsat based estimates of fire severity (Relative differenced Normalized Burn Ratio, RdNBR) and geospatial data on fire progression, weather, topography, pre-fire forest conditions, and land ownership, we asked (1) what is the relative importance of different variables driving fire severity, and (2) is intensive plantation forestry associated with higher fire severity? Using Random Forest ensemble machine learning, we found daily fire weather was the most important predictor of fire severity, followed by stand age and ownership, followed by topographic features. Estimates of pre-fire forest biomass were not an important predictor of fire severity. Adjusting for all other predictor variables in a general least squares model incorporating spatial autocorrelation, mean predicted RdNBR was higher on private industrial forests (RdNBR 521.85 ± 18.67 [mean ± SE]) vs. BLM forests (398.87 ± 18.23) with a much greater proportion of older forests. Our findings suggest intensive plantation forestry characterized by young forests and spatially homogenized fuels, rather than pre-fire biomass, were significant drivers of wildfire severity. This has implications for perceptions of wildfire risk, shared fire management responsibilities, and developing fire resilience for multiple objectives in multi-owner landscapes. © 2018 by the Ecological Society of America.

  3. Visions of Restoration in Fire-Adapted Forest Landscapes: Lessons from the Collaborative Forest Landscape Restoration Program.

    PubMed

    Urgenson, Lauren S; Ryan, Clare M; Halpern, Charles B; Bakker, Jonathan D; Belote, R Travis; Franklin, Jerry F; Haugo, Ryan D; Nelson, Cara R; Waltz, Amy E M

    2017-02-01

    Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.

  4. Visions of Restoration in Fire-Adapted Forest Landscapes: Lessons from the Collaborative Forest Landscape Restoration Program

    NASA Astrophysics Data System (ADS)

    Urgenson, Lauren S.; Ryan, Clare M.; Halpern, Charles B.; Bakker, Jonathan D.; Belote, R. Travis; Franklin, Jerry F.; Haugo, Ryan D.; Nelson, Cara R.; Waltz, Amy E. M.

    2017-02-01

    Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.

  5. Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA

    Treesearch

    Thomas A. Spies; Eric White; Alan Ager; Jeffrey D. Kline; John P. Bolte; Emily K. Platt; Keith A. Olsen; Robert J. Pabst; Ana M. G. Barros; John D. Bailey; Susan Charnley; Anita T. Morzillo; Jennifer Koch; Michelle M. Steen-Adams; Peter H. Singleton; James Sulzman; Cynthia Schwartz; Blair Csuti

    2017-01-01

    Fire-prone landscapes present many challenges for both managers and policy makers in developing adaptive behaviors and institutions. We used a coupled human and natural systems framework and an agent-based landscape model to examine how alternative management scenarios affect fire and ecosystem services metrics in a fire-prone multiownership landscape in the eastern...

  6. Dry forest resilience varies under simulated climate‐management scenarios in a central Oregon, USA landscape.

    PubMed

    Halofsky, Joshua S; Halofsky, Jessica E; Burcsu, Theresa; Hemstrom, Miles A

    Determining appropriate actions to create or maintain landscapes resilient to climate change is challenging because of uncertainty associated with potential effects of climate change and their interactions with land management. We used a set of climate-informed state-and-transition models to explore the effects of management and natural disturbances on vegetation composition and structure under different future climates. Models were run for dry forests of central Oregon under a fire suppression scenario (i.e., no management other than the continued suppression of wildfires) and an active management scenario characterized by light to moderate thinning from below and some prescribed fire, planting, and salvage logging. Without climate change, area in dry province forest types remained constant. With climate change, dry mixed-conifer forests increased in area (by an average of 21–26% by 2100), and moist mixed-conifer forests decreased in area (by an average of 36–60% by 2100), under both management scenarios. Average area in dry mixed-conifer forests varied little by management scenario, but potential decreases in the moist mixed-conifer forest were lower with active management. With changing climate in the dry province of central Oregon, our results suggest the likelihood of sustaining current levels of dense, moist mixed-conifer forests with large-diameter, old trees is low (less than a 10% chance) irrespective of management scenario; an opposite trend was observed under no climate change simulations. However, results also suggest active management within the dry and moist mixed-conifer forests that creates less dense forest conditions can increase the persistence of larger-diameter, older trees across the landscape. Owing to projected increases in wildfire, our results also suggest future distributions of tree structures will differ from the present. Overall, our projections indicate proactive management can increase forest resilience and sustain some societal values, particularly in drier forest types. However, opportunities to create more disturbance-adapted systems are finite, all values likely cannot be sustained at current levels, and levels of resilience success will likely vary by dry province forest type. Land managers planning for a future without climate change may be assuming a future that is unlikely to exist.

  7. Simulating stand-level harvest prescriptions across landscapes: LANDIS PRO harvest module design

    Treesearch

    Jacob S. Fraser; Hong S. He; Stephen R. Shifley; Wen J. Wang; Frank R. Thompson

    2013-01-01

    Forest landscape models (FLMs) are an important tool for assessing the long-term cumulative effects of harvest over large spatial extents. However, they have not been commonly used to guide forest management planning and on-the-ground operations. This is largely because FLMs track relatively simplistic vegetation information such as age cohort presence/absence, forest...

  8. Forecasting long-term acorn production with and without oak decline using forest inventory data

    Treesearch

    Cathryn H. Greenberg; Chad E. Keyser; Leah C. Rathburn; Anita K. Rose; Todd M. Fearer; Henry W. McNab

    2013-01-01

    Acorns are important as wildlife food and for oak regeneration, but production is highly variable, posing a challenge to forest managers targeting acorn production levels. Forest managers need tools to predict acorn production capability tailored to individual landscapes and forest management scenarios, adjusting for oak mortality and stand development over time. We...

  9. Thresholds in forest bird occurrence as a function of the amount of early-seral broadleaf forest at landscape scales

    USGS Publications Warehouse

    Betts, M.G.; Hagar, J.C.; Rivers, J.W.; Alexander, J.D.; McGarigal, K.; McComb, B.C.

    2010-01-01

    Recent declines in broadleaf-dominated, early-seral forest globally as a function of intensive forest management and/or fire suppression have raised concern about the viability of populations dependent on such forest types. However, quantitative information about the strength and direction of species associations with broadleaf cover at landscape scales are rare. Uncovering such habitat relationships is essential for understanding the demography of species and in developing sound conservation strategies. It is particularly important to detect points in habitat reduction where rates of population decline may accelerate or the likelihood of species occurrence drops rapidly (i.e., thresholds). Here, we use a large avian point-count data set (N = 4375) from southwestern and northwestern Oregon along with segmented logistic regression to test for thresholds in forest bird occurrence as a function of broadleaf forest and early-seral broadleaf forest at local (150-m radius) and landscape (500–2000-m radius) scales. All 12 bird species examined showed positive responses to either broadleaf forest in general, and/or early-seral broadleaf forest. However, regional variation in species response to these conditions was high. We found considerable evidence for landscape thresholds in bird species occurrence as a function of broadleaf cover; threshold models received substantially greater support than linear models for eight of 12 species. Landscape thresholds in broadleaf forest ranged broadly from 1.35% to 24.55% mean canopy cover. Early-seral broadleaf thresholds tended to be much lower (0.22–1.87%). We found a strong negative relationship between the strength of species association with early-seral broadleaf forest and 42-year bird population trends; species most associated with this forest type have declined at the greatest rates. Taken together, these results provide the first support for the hypothesis that reductions in broadleaf-dominated early-seral forest due to succession and intensive forest management have led to population declines of constituent species in the Pacific northwestern United States. Forest management treatments that maintain or restore even small amounts of broadleaf vegetation could mitigate further declines.

  10. Hydrological principles for sustainable management of forest ecosystems

    Treesearch

    Irena F. Creed; Gabor Z. Sass; Jim M. Buttle; Julia A. Jones

    2011-01-01

    Forested landscapes around the world are changing as a result of human activities, including forest management, fire suppression, mountaintop mining, conversion of natural forests to plantations, and climate change (Brockerhoff et al., 2008; Cyr et al., 2009; Johnston et al., 2010; Miller et al., 2009; Kelly et al., 2010; Palmer et al., 2010). Forests...

  11. Spatially dynamic forest management to sustain biodiversity and economic returns.

    PubMed

    Mönkkönen, Mikko; Juutinen, Artti; Mazziotta, Adriano; Miettinen, Kaisa; Podkopaev, Dmitry; Reunanen, Pasi; Salminen, Hannu; Tikkanen, Olli-Pekka

    2014-02-15

    Production of marketed commodities and protection of biodiversity in natural systems often conflict and thus the continuously expanding human needs for more goods and benefits from global ecosystems urgently calls for strategies to resolve this conflict. In this paper, we addressed what is the potential of a forest landscape to simultaneously produce habitats for species and economic returns, and how the conflict between habitat availability and timber production varies among taxa. Secondly, we aimed at revealing an optimal combination of management regimes that maximizes habitat availability for given levels of economic returns. We used multi-objective optimization tools to analyze data from a boreal forest landscape consisting of about 30,000 forest stands simulated 50 years into future. We included seven alternative management regimes, spanning from the recommended intensive forest management regime to complete set-aside of stands (protection), and ten different taxa representing a wide variety of habitat associations and social values. Our results demonstrate it is possible to achieve large improvements in habitat availability with little loss in economic returns. In general, providing dead-wood associated species with more habitats tended to be more expensive than providing requirements for other species. No management regime alone maximized habitat availability for the species, and systematic use of any single management regime resulted in considerable reductions in economic returns. Compared with an optimal combination of management regimes, a consistent application of the recommended management regime would result in 5% reduction in economic returns and up to 270% reduction in habitat availability. Thus, for all taxa a combination of management regimes was required to achieve the optimum. Refraining from silvicultural thinnings on a proportion of stands should be considered as a cost-effective management in commercial forests to reconcile the conflict between economic returns and habitat required by species associated with dead-wood. In general, a viable strategy to maintain biodiversity in production landscapes would be to diversify management regimes. Our results emphasize the importance of careful landscape level forest management planning because optimal combinations of management regimes were taxon-specific. For cost-efficiency, the results call for balanced and correctly targeted strategies among habitat types. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Effects of Selected Timber Management Practices on Forest Birds in Missouri Oak-Hickory Forests: Pre-treatment Results

    Treesearch

    Rich L. Clawson; John Faaborg; Elena Seon

    1997-01-01

    Our goal is to understand the repercussions of two different forest management techniques on Neotropical migrant birds in the heavily forested landscape of the Missouri Ozarks. Our objectives are to determine breeding densities of forest birds under even-aged and uneven-aged management regimes and to determine the effects of these practices on songbird demographics....

  13. Is Managed Wildfire Protecting Yosemite National Park from Drought?

    NASA Astrophysics Data System (ADS)

    Boisrame, G. F. S.; Thompson, S. E.; Stephens, S.; Collins, B.; Kelly, M.; Tague, N.

    2016-12-01

    Fire suppression in many dry forest types has left a legacy of dense, homogeneous forests. Such landscapes have high water demands and fuel loads, and when burned can result in catastrophically large fires. These characteristics are undesirable in the face of projected warming and drying in the Western US. This project explores the potential of managed wildfire - a forest management strategy in which fires caused by lightning are allowed to burn naturally as long as certain safety parameters are met - to reverse the effects of fire suppression. The Illilouette Creek Basin in Yosemite National Park has experienced 40 years of managed wildfire, reducing forest cover and increasing meadow and shrubland areas. We have collected evidence from field measurements and remote sensing which suggest that managed wildfire increases landscape and hydrologic heterogeneity, and likely improves resilience to disturbances such as fire and drought. Vegetation maps created from aerial photos show an increase in landscape heterogeneity following the introduction of managed wildfire. Soil moisture observations during the drought years of 2013-2016 suggest that transitions from dense forest to shrublands or meadows can increase summer soil moisture. In the winter of 2015-2016, snow depth measurements showed deeper spring snowpacks in burned areas compared to dense forests. Our study provides a unique view of relatively long-term effects of managed wildfire on vegetation change, ecohydrology, and drought resistance. Understanding these effects is increasingly important as the use of managed wildfire becomes more widely accepted, and as the likelihood of both drought and wildfire increases.

  14. Technology transfer for ecosystem management

    Treesearch

    Tim O' Keefe

    1995-01-01

    In many parts of our country today, forest health and sustainability are important management questions. Some individuals and groups have observed that during the past century the emphasis in American forest management on commodity production has, in many cases, contributed to a unhealthy forest landscape. For example, the forestland in eastern Oregon has considerably...

  15. Landscape dynamics in the wildland-urban interface

    Treesearch

    Wayne C. Zipperer

    2012-01-01

    The wildland–urban interface represents landscape change—changes brought about by urbanization, by shifts in forest management, and altered disturbance regimes, each having ecological, social, and economic ramifications. In this chapter, I will focus on some of the ecological ramifications associated with landscape change, primarily forest fragmentation and...

  16. Changes in ground layer vegetation following timber harvests on the Missouri Ozark Forest Ecosystem Project

    Treesearch

    Jennifer K. Grabner; Eric K. Zenner

    2002-01-01

    The Missouri Ozark Forest Ecosystem Project (MOFEP) is a landscape-scale experiment to test for effects of the following three common forest management practices on upland forests: 1) even-aged management (EAM), 2) uneven-aged management (UAM), and 3) no-harvest management (NHM). The first round of harvesting treatments was applied on the nine MOFEP sites in 1996. One...

  17. Mapping forest characteristics at fine resolution across large landscapes of the southeastern United States using NAIP imagery and FIA field plot data

    Treesearch

    John Hogland; Nathaniel Anderson; Joseph St. Peter; Jason Drake; Paul Medley

    2018-01-01

    Accurate information is important for effective management of natural resources. In the field of forestry, field measurements of forest characteristics such as species composition, basal area, and stand density are used to inform and evaluate management activities. Quantifying these metrics accurately across large landscapes in a meaningful way is extremely important...

  18. Comparing effects of climate warming, fire, and timber harvesting on a boreal forest landscape in northeastern China.

    PubMed

    Li, Xiaona; He, Hong S; Wu, Zhiwei; Liang, Yu; Schneiderman, Jeffrey E

    2013-01-01

    Forest management under a changing climate requires assessing the effects of climate warming and disturbance on the composition, age structure, and spatial patterns of tree species. We investigated these effects on a boreal forest in northeastern China using a factorial experimental design and simulation modeling. We used a spatially explicit forest landscape model (LANDIS) to evaluate the effects of three independent variables: climate (current and expected future), fire regime (current and increased fire), and timber harvesting (no harvest and legal harvest). Simulations indicate that this forested landscape would be significantly impacted under a changing climate. Climate warming would significantly increase the abundance of most trees, especially broadleaf species (aspen, poplar, and willow). However, climate warming would have less impact on the abundance of conifers, diversity of forest age structure, and variation in spatial landscape structure than burning and harvesting. Burning was the predominant influence in the abundance of conifers except larch and the abundance of trees in mid-stage. Harvesting impacts were greatest for the abundance of larch and birch, and the abundance of trees during establishment stage (1-40 years), early stage (41-80 years) and old- growth stage (>180 years). Disturbance by timber harvesting and burning may significantly alter forest ecosystem dynamics by increasing forest fragmentation and decreasing forest diversity. Results from the simulations provide insight into the long term management of this boreal forest.

  19. Relative contributions of set-asides and tree retention to the long-term availability of key forest biodiversity structures at the landscape scale.

    PubMed

    Roberge, Jean-Michel; Lämås, Tomas; Lundmark, Tomas; Ranius, Thomas; Felton, Adam; Nordin, Annika

    2015-05-01

    Over previous decades new environmental measures have been implemented in forestry. In Fennoscandia, forest management practices were modified to set aside conservation areas and to retain trees at final felling. In this study we simulated the long-term effects of set-aside establishment and tree retention practices on the future availability of large trees and dead wood, two forest structures of documented importance to biodiversity conservation. Using a forest decision support system (Heureka), we projected the amounts of these structures over 200 years in two managed north Swedish landscapes, under management scenarios with and without set-asides and tree retention. In line with common best practice, we simulated set-asides covering 5% of the productive area with priority to older stands, as well as ∼5% green-tree retention (solitary trees and forest patches) including high-stump creation at final felling. We found that only tree retention contributed to substantial increases in the future density of large (DBH ≥35 cm) deciduous trees, while both measures made significant contributions to the availability of large conifers. It took more than half a century to observe stronger increases in the densities of large deciduous trees as an effect of tree retention. The mean landscape-scale volumes of hard dead wood fluctuated widely, but the conservation measures yielded values which were, on average over the entire simulation period, about 2.5 times as high as for scenarios without these measures. While the density of large conifers increased with time in the landscape initially dominated by younger forest, best practice conservation measures did not avert a long-term decrease in large conifer density in the landscape initially comprised of more old forest. Our results highlight the needs to adopt a long temporal perspective and to consider initial landscape conditions when evaluating the large-scale effects of conservation measures on forest biodiversity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Chapter 4: Overview of the vegetation management treatment economic analysis module in the integrated landscape assessment project

    Treesearch

    Xiaoping Zhou; Miles A. Hemstrom

    2014-01-01

    Forest land provides various ecosystem services, including timber, biomass, and carbon sequestration. Estimating trends in these ecosystem services is essential for assessing potential outcomes of landscape management scenarios. However, the state-and transition models used in the Integrated Landscape Assessment Project for simulating landscape changes over time do not...

  1. Development of watershed hydrologic research at Santee Experimental Forest, coastal South Carolina

    Treesearch

    Devendra Amatya; Carl Trettin

    2007-01-01

    Managing forested wetland landscapes for water quality improvement and productivity requires a detailed understanding of functional linkages between ecohydrological processes and management practices. Watershed studies are being conducted at USDA Forest Service Santee Experimental Forest, South Carolina, to understand the fundamental hydrologic and biogeochemical...

  2. Risk and cooperation: managing hazardous fuel in mixed ownership landscapes

    Treesearch

    A. Paige Fischer; Susan Charnley

    2012-01-01

    Managing natural processes at the landscape scale to promote forest health is important, especially in the case of wildfire, where the ability of a landowner to protect his or her individual parcel is constrained by conditions on neighboring ownerships. However, management at a landscape scale is also challenging because it requires cooperation on plans and actions...

  3. Simulating forest landscape disturbances as coupled human and natural systems

    USGS Publications Warehouse

    Wimberly, Michael; Sohl, Terry L.; Liu, Zhihua; Lamsal, Aashis

    2015-01-01

    Anthropogenic disturbances resulting from human land use affect forest landscapes over a range of spatial and temporal scales, with diverse influences on vegetation patterns and dynamics. These processes fall within the scope of the coupled human and natural systems (CHANS) concept, which has emerged as an important framework for understanding the reciprocal interactions and feedbacks that connect human activities and ecosystem responses. Spatial simulation modeling of forest landscape change is an important technique for exploring the dynamics of CHANS over large areas and long time periods. Landscape models for simulating interactions between human activities and forest landscape dynamics can be grouped into two main categories. Forest landscape models (FLMs) focus on landscapes where forests are the dominant land cover and simulate succession and natural disturbances along with forest management activities. In contrast, land change models (LCMs) simulate mosaics of different land cover and land use classes that include forests in addition to other land uses such as developed areas and agricultural lands. There are also several examples of coupled models that combine elements of FLMs and LCMs. These integrated models are particularly useful for simulating human–natural interactions in landscapes where human settlement and agriculture are expanding into forested areas. Despite important differences in spatial scale and disciplinary scope, FLMs and LCMs have many commonalities in conceptual design and technical implementation that can facilitate continued integration. The ultimate goal will be to implement forest landscape disturbance modeling in a CHANS framework that recognizes the contextual effects of regional land use and other human activities on the forest ecosystem while capturing the reciprocal influences of forests and their disturbances on the broader land use mosaic.

  4. 36 CFR 219.4 - Identification and consideration of issues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGRICULTURE PLANNING National Forest System Land and Resource Management Planning The Framework for Planning... interested in or affected by National Forest System management; Presidential, Departmental, and Forest Service conservation leadership initiatives; cooperatively developed landscape goals (§ 219.12(b...

  5. Distribution of Wild Mammal Assemblages along an Urban–Rural–Forest Landscape Gradient in Warm-Temperate East Asia

    PubMed Central

    Saito, Masayuki; Koike, Fumito

    2013-01-01

    Urbanization may alter mammal assemblages via habitat loss, food subsidies, and other factors related to human activities. The general distribution patterns of wild mammal assemblages along urban–rural–forest landscape gradients have not been studied, although many studies have focused on a single species or taxon, such as rodents. We quantitatively evaluated the effects of the urban–rural–forest gradient and spatial scale on the distributions of large and mid-sized mammals in the world's largest metropolitan area in warm-temperate Asia using nonspecific camera-trapping along two linear transects spanning from the urban zone in the Tokyo metropolitan area to surrounding rural and forest landscapes. Many large and mid-sized species generally decreased from forest landscapes to urban cores, although some species preferred anthropogenic landscapes. Sika deer (Cervus nippon), Reeves' muntjac (Muntiacus reevesi), Japanese macaque (Macaca fuscata), Japanese squirrel (Sciurus lis), Japanese marten (Martes melampus), Japanese badger (Meles anakuma), and wild boar (Sus scrofa) generally dominated the mammal assemblage of the forest landscape. Raccoon (Procyon lotor), raccoon dog (Nyctereutes procyonoides), and Japanese hare (Lepus brachyurus) dominated the mammal assemblage in the intermediate zone (i.e., rural and suburban landscape). Cats (feral and free-roaming housecats; Felis catus) were common in the urban assemblage. The key spatial scales for forest species were more than 4000-m radius, indicating that conservation and management plans for these mammal assemblages should be considered on large spatial scales. However, small green spaces will also be important for mammal conservation in the urban landscape, because an indigenous omnivore (raccoon dog) had a smaller key spatial scale (500-m radius) than those of forest mammals. Urbanization was generally the most important factor in the distributions of mammals, and it is necessary to consider the spatial scale of management according to the degree of urbanization. PMID:23741495

  6. Distribution of wild mammal assemblages along an urban-rural-forest landscape gradient in warm-temperate East Asia.

    PubMed

    Saito, Masayuki; Koike, Fumito

    2013-01-01

    Urbanization may alter mammal assemblages via habitat loss, food subsidies, and other factors related to human activities. The general distribution patterns of wild mammal assemblages along urban-rural-forest landscape gradients have not been studied, although many studies have focused on a single species or taxon, such as rodents. We quantitatively evaluated the effects of the urban-rural-forest gradient and spatial scale on the distributions of large and mid-sized mammals in the world's largest metropolitan area in warm-temperate Asia using nonspecific camera-trapping along two linear transects spanning from the urban zone in the Tokyo metropolitan area to surrounding rural and forest landscapes. Many large and mid-sized species generally decreased from forest landscapes to urban cores, although some species preferred anthropogenic landscapes. Sika deer (Cervus nippon), Reeves' muntjac (Muntiacus reevesi), Japanese macaque (Macaca fuscata), Japanese squirrel (Sciurus lis), Japanese marten (Martes melampus), Japanese badger (Meles anakuma), and wild boar (Sus scrofa) generally dominated the mammal assemblage of the forest landscape. Raccoon (Procyon lotor), raccoon dog (Nyctereutes procyonoides), and Japanese hare (Lepus brachyurus) dominated the mammal assemblage in the intermediate zone (i.e., rural and suburban landscape). Cats (feral and free-roaming housecats; Felis catus) were common in the urban assemblage. The key spatial scales for forest species were more than 4000-m radius, indicating that conservation and management plans for these mammal assemblages should be considered on large spatial scales. However, small green spaces will also be important for mammal conservation in the urban landscape, because an indigenous omnivore (raccoon dog) had a smaller key spatial scale (500-m radius) than those of forest mammals. Urbanization was generally the most important factor in the distributions of mammals, and it is necessary to consider the spatial scale of management according to the degree of urbanization.

  7. Modeling the Influence of Dynamic Zoning of Forest Harvesting on Ecological Succession in a Northern Hardwoods Landscape

    Treesearch

    Patrick A. Zollner; Eric J. Gustafson; Hong S. He; Volker C. Radeloff; David J. Mladenoff

    2005-01-01

    Dynamic zoning (systematic alteration in the spatial and temporal allocation of even-aged forest management practices) has been proposed as a means to change the spatial pattern of timber harvest across a landscape to maximize forest interior habitat while holding timber harvest levels constant. Simulation studies have established that dynamic zoning strategies...

  8. Human preference for ecological units: patterns of dispersed campsites within landtype associations on the Chippewa National Forest

    Treesearch

    Lisa Whitcomb; Dennis Parker; Bob Carr; Paul Gobster; Herb Schroeder

    2002-01-01

    Forest Service landscape architects sought a method for determining if people showed a preference for certain landscape-scale ecosystems and if ecological classification units could be used in visual resource management. A study was conducted on the Chippewa National Forest to test whether there was a systematic relationship between dispersed campsite locations and...

  9. Simulating restoration strategies for a southern boreal forest landscape with complex land ownership patterns

    Treesearch

    Douglas J. Shinneman; Meredith W. Cornett; Brian J. Palik

    2010-01-01

    Restoring altered forest landscapes toward their ranges of natural variability (RNV) may enhance ecosystem sustainability and resiliency, but such efforts can be hampered by complex land ownership and management patterns. We evaluated restoration potential for southern-boreal forests in the ~2.1 million ha Border Lakes Region of northern Minnesota (U.S.A.) and...

  10. Changes in Carbon Pools 50 Years after Reversion of a Landscape Dominated by Agriculture to Managed Forests in the Upper Southeastern Atlantic Coastal Plain

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Trettin, C.; Parresol, B. R.; Li, C.

    2010-12-01

    The landscape of the upper coastal plain of South Carolina in the late 1940’s was typified by rural agricultural communities and farms comprising cleared fields and mixed-use woodlots. Approximately 80,000 ha of that landscape was appropriated by the US Government in the early 1950’s to form the Savannah River Site which is now managed by the US Dept. of Energy. The US Forest Service was engaged to reforest the agricultural parcels, 40% of the tract, and to develop sustainable management practices for the woodlots and restored areas. As part of the acquisition process in 1951, a complete inventory of the land and forest resources were conducted. In 2001, an intensive forest survey was conducted which encompassed 90% of the tract, detailing the above-ground biomass pools. We’ve used those inventories in conjunction with soil resource data to assemble a carbon balance sheet encompassing the above and belowground carbon pools over the 50 year period. We’ve also employed inventories on forest removals, forest burning and runoff to estimate fluxes from the landscape over the same period. There was a net sequestration of 5,486 Gg of C in forest vegetation over the 50 yr. period (1.5 Mg ha-1 yr-1), with carbon density increasing from 6.3 to 83.3 Mg ha-1. The reforestation of the agricultural land and the increased density of the former woodlots was the cause of the gain. Fifty years after imposition of silvicultural prescriptions, the forest composition has changed from being dominated by hardwoods to pine. The forest floor increased by 311 Gg carbon. Fluxes in form of harvested wood and oxidation from burning were 24% and 10% respectively of the net gain in vegetative biomass. These findings document real changes in carbon storage on a landscape that was changed from mixed agricultural use to managed forests, and they suggest responses that should be similar if reforestation for biofuels production is expanded.

  11. Toward geodesign for watershed restoration on the Fremont-Winema National Forest, Pacific Northwest, USA

    Treesearch

    Keith Reynolds; Philip Murphy; Steven Paplanus

    2017-01-01

    Spatial decision support systems for forest management have steadily evolved over the past 20+ years in order to better address the complexities of contemporary forest management issues such as the sustainability and resilience of ecosystems on forested landscapes. In this paper, we describe and illustrate new features of the Ecosystem Management Decision Support (EMDS...

  12. Land parcelization and forest cover fragmentation in three forested countries in Northern Lower Michigan

    Treesearch

    Scott A. Drzyzga; Daniel G. Brown

    1999-01-01

    Many northern Michigan counties have grown in permanent residents and seasonal homes over the past several decades. Forest managers have observed that this influx of new forest owners affects public expectations and the range of socially acceptable forest management options. This shift in settlement and ownership patterns affects the landscape and has important...

  13. Forests, people, fire: Integrating the sciences to build capacity for an “All Lands” approach to forest restoration

    Treesearch

    Marie Oliver; Susan Charnley; Thomas Spies; Jeff Kline; Eric White

    2017-01-01

    Interest in landscape-scale approaches to fire management and forest restoration is growing with the realization that these approaches are critical to maintaining healthy forests and protecting nearby communities. However, coordinated planning and action across multiple ownerships have been elusive because of differing goals and forest management styles among...

  14. Associations between forest characteristics and socio-economic development: a case study from Portugal.

    PubMed

    Ribeiro, Sónia Carvalho; Lovett, Andrew

    2009-07-01

    The integration of socio-economic and environmental objectives is a major challenge in developing strategies for sustainable landscapes. We investigated associations between socio-economic variables, landscape metrics and measures of forest condition in the context of Portugal. The main goals of the study were to 1) investigate relationships between forest conditions and measures of socio-economic development at national and regional scales, 2) test the hypothesis that a systematic variation in forest landscape metrics occurs according to the stage of socio-economic development and, 3) assess the extent to which landscape metrics can inform strategies to enhance forest sustainability. A ranking approach and statistical techniques such as Principal Component Analysis were used to achieve these objectives. Relationships between socio-economic characteristics, landscape metrics and measures of forest condition were only significant in the regional analysis of municipalities in Northern Portugal. Landscape metrics for different tree species displayed significant variations across socio-economic groups of municipalities and these differences were consistent with changes in characteristics suggested by the forest transition model. The use of metrics also helped inform place-specific strategies to improve forest management, though it was also apparent that further work was required to better incorporate differences in forest functions into sustainability planning.

  15. The United States Regional Association of the International Association for Landscape Ecology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-01-01

    Abstracts are presented from a meeting on landscape ecology. Topics include: conservation, climatic change, forest management, aquatic, wetland, rural and urban landscapes, land use, and biodiversity.

  16. The United States Regional Association of the International Association for Landscape Ecology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-06-01

    Abstracts are presented from a meeting on landscape ecology. Topics include: conservation, climatic change, forest management, aquatic, wetland, rural and urban landscapes, land use, and biodiversity.

  17. Representative landscapes in the forested area of Canada.

    PubMed

    Cardille, Jeffrey A; White, Joanne C; Wulder, Mike A; Holland, Tara

    2012-01-01

    Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada's land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative-or "exemplar"-from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada's ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada's forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach.

  18. Representative Landscapes in the Forested Area of Canada

    NASA Astrophysics Data System (ADS)

    Cardille, Jeffrey A.; White, Joanne C.; Wulder, Mike A.; Holland, Tara

    2012-01-01

    Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada's land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative—or "exemplar"—from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada's ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada's forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach.

  19. Simulating fire and forest dynamics for a coordinated landscape fuel treatment project in the Sierra Nevada

    Treesearch

    Brandon M. Collins; Scott L. Stephens; Gary B. Roller; John Battles

    2011-01-01

    We evaluate an actual landscape fuel treatment project that was designed by local U. S. Forest Service managers in the northern Sierra Nevada. We model the effects of this project at reducing landscape-level fire behavior at multiple time steps, up to nearly 30 yr beyond treatment implementation. Additionally, we modeled planned treatments under multiple diameter-...

  20. The Missouri Ozark Forest Ecosystem Project: past, present, and future

    Treesearch

    Brian L. Brookshire; Randy Jensen; Daniel C. Dey

    1997-01-01

    In 1989, the Missouri Department of Conservation initiated a research project to examine the impacts of forest management practices on multiple ecosystem components. The Missouri Ozark Forest Ecosystem Project (MOFEP) is a landscape experiment comparing the impacts of even-aged management, uneven-aged management, and no harvesting on a wide array of ecosystem...

  1. Strategic management of five deciduous forest invaders using Microstegium vimineum as a model species

    Treesearch

    Cynthia D. Huebner

    2007-01-01

    This paper links key plant invasive traits with key landscape traits to define strategic management for five common forest invaders, using empirical data of Microstegium vimineum dispersal into forests as a preliminary model. Microstegium vimineum exhibits an Allee effect that may allow management to focus on treating its source...

  2. Landscape Scale Management in the Ouachita Mountains - Where Operational Practices Meet Research

    Treesearch

    Hunter Speed; Ronald J. Perisho; Samuel Larry; James M. Guldin

    1999-01-01

    Implementation of ecosystem management on National Forest System lands in the Southern Region requires that the best available science be applied to support forest management practices. On the Ouachita National Forest in Arkansas, personnel from the Jessieville and Winona Ranger Districts and the Southern Research Station have developed working relationships that...

  3. Forest adaptation resources: Climate change tools and approaches for land managers

    Treesearch

    Chris Swanston; Maria, eds. Janowiak

    2012-01-01

    The forests of northern Wisconsin, a defining feature of the region's landscape, are expected to undergo numerous changes in response to the changing climate. This document provides a collection of resources designed to help forest managers incorporate climate change considerations into management and devise adaptation tactics. It was developed in northern...

  4. An annotated bibliography of scientific literature on managing forests for carbon benefits

    Treesearch

    Sarah J. Hines; Linda S. Heath; Richard A. Birdsey

    2010-01-01

    Managing forests for carbon benefits is a consideration for climate change, bioenergy, sustainability, and ecosystem services. A rapidly growing body of scientific literature on forest carbon management includes experimental, modeling, and synthesis approaches, at the stand- to landscape- to continental-level. We conducted a search of the scientific literature on the...

  5. Landscape-level changes

    Treesearch

    A. Joel Frandsen

    2008-01-01

    Since European settlement, Utah?s vegetative landscapes have changed. Like other arid states, these wildland systems were depleted and altered. Certain steps were taken through private, community, and finally public efforts, such as establishment of Forest Reserves (National Forests), to stop the slide. Conservation and management actions were taken to restore,...

  6. 77 FR 4318 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ..., Clearwater National Forest Travel Planning Project, Proposes to Manage Motorized and Mechanized Travel.../2012, Contact: Heather Berg (208) 476-4541. EIS No. 20120014, Revised Draft EIS, USFS, MT, East Deer Lodge Valley Landscape Restoration Management Project, To Conduct Landscape Restoration Management...

  7. Forest vegetation management and protection of stream quality

    Treesearch

    Jerry L. Michael

    2002-01-01

    Globally, forest management activities significantly alter portions of the forest ecosystem on a temporal scale at the local level. Along with this alteration in the landscape comes changes in wildlife habitat and potentially the associated aquatic ecosystem. Most timber producing countries in the world have instituted forest regulations in an effort to respond to...

  8. Ecosystem management, forest health, and silviculture

    Treesearch

    Merrill R. Kaufmann; Claudia M. Regan

    1995-01-01

    Forest health issues include the effects of fire suppression and grazing on forest stands, reduction in amount of old-growth forests, stand structural changes associated with even-aged management, .changes in structure of the landscape mosaic, loss of habitat for threatened species, and the introduction of exotic species. The consequences of these impacts can be...

  9. Adaptive economic and ecological forest management under risk

    Treesearch

    Joseph Buongiorno; Mo Zhou

    2015-01-01

    Background: Forest managers must deal with inherently stochastic ecological and economic processes. The future growth of trees is uncertain, and so is their value. The randomness of low-impact, high frequency or rare catastrophic shocks in forest growth has significant implications in shaping the mix of tree species and the forest landscape...

  10. Landscape characterization integrating expert and local spatial knowledge of land and forest resources.

    PubMed

    Fagerholm, Nora; Käyhkö, Niina; Van Eetvelde, Veerle

    2013-09-01

    In many developing countries, political documentation acknowledges the crucial elements of participation and spatiality for effective land use planning. However, operative approaches to spatial data inclusion and representation in participatory land management are often lacking. In this paper, we apply and develop an integrated landscape characterization approach to enhance spatial knowledge generation about the complex human-nature interactions in landscapes in the context of Zanzibar, Tanzania. We apply an integrated landscape conceptualization as a theoretical framework where the expert and local knowledge can meet in spatial context. The characterization is based on combining multiple data sources in GIS, and involves local communities and their local spatial knowledge since the beginning into the process. Focusing on the expected information needs for community forest management, our characterization integrates physical landscape features and retrospective landscape change data with place-specific community knowledge collected through participatory GIS techniques. The characterization is established in a map form consisting of four themes and their synthesis. The characterization maps are designed to support intuitive interpretation, express the inherently uncertain nature of the data, and accompanied by photographs to enhance communication. Visual interpretation of the characterization mediates information about the character of areas and places in the studied local landscape, depicting the role of forest resources as part of the landscape entity. We conclude that landscape characterization applied in GIS is a highly potential tool for participatory land and resource management, where spatial argumentation, stakeholder communication, and empowerment are critical issues.

  11. Landscape Characterization Integrating Expert and Local Spatial Knowledge of Land and Forest Resources

    NASA Astrophysics Data System (ADS)

    Fagerholm, Nora; Käyhkö, Niina; Van Eetvelde, Veerle

    2013-09-01

    In many developing countries, political documentation acknowledges the crucial elements of participation and spatiality for effective land use planning. However, operative approaches to spatial data inclusion and representation in participatory land management are often lacking. In this paper, we apply and develop an integrated landscape characterization approach to enhance spatial knowledge generation about the complex human-nature interactions in landscapes in the context of Zanzibar, Tanzania. We apply an integrated landscape conceptualization as a theoretical framework where the expert and local knowledge can meet in spatial context. The characterization is based on combining multiple data sources in GIS, and involves local communities and their local spatial knowledge since the beginning into the process. Focusing on the expected information needs for community forest management, our characterization integrates physical landscape features and retrospective landscape change data with place-specific community knowledge collected through participatory GIS techniques. The characterization is established in a map form consisting of four themes and their synthesis. The characterization maps are designed to support intuitive interpretation, express the inherently uncertain nature of the data, and accompanied by photographs to enhance communication. Visual interpretation of the characterization mediates information about the character of areas and places in the studied local landscape, depicting the role of forest resources as part of the landscape entity. We conclude that landscape characterization applied in GIS is a highly potential tool for participatory land and resource management, where spatial argumentation, stakeholder communication, and empowerment are critical issues.

  12. Historical framework to explain long-term coupled human and natural system feedbacks: application to a multiple-ownership forest landscape in the northern Great Lakes region, USA

    Treesearch

    Michelle M. Steen-Adams; Nancy Langston; Mark D. O. Adams; David J. Mladenoff

    2015-01-01

    Current and future human and forest landscape conditions are influenced by the cumulative, unfolding history of socialecological interactions. Examining past system responses, especially unintended consequences, can reveal valuable insights that promote learning and adaptation in forest policy and management. Temporal couplings are complex, however; they can be...

  13. Fuels planning: science synthesis and integration; social issues fact sheet 14: Landscape preference in forested ecosystems

    Treesearch

    Christine Esposito

    2006-01-01

    It is important to understand what types of landscape settings most people prefer to be able to plan fuels treatment and other forest management activities that will be acceptable to the general public. This fact sheet considers the four common elements of visually preferred forest settings: large trees; herbacious, smooth groundcover; open midstory canopy; and vistas...

  14. A comparison of accuracy and cost of LiDAR versus stand exam data for landscape management on the Malheur National Forest

    Treesearch

    Susan Hummel; A. T. Hudak; E. H. Uebler; M. J. Falkowski; K. A. Megown

    2011-01-01

    Foresters are increasingly interested in remote sensing data because they provide an overview of landscape conditions, which is impractical with field sample data alone. Light Detection and Ranging (LiDAR) provides exceptional spatial detail of forest structure, but difficulties in processing LiDAR data have limited their application beyond the research community....

  15. Vegetation composition and structure of forest patches along urban-rural gradients

    Treesearch

    W.C. Zipperer; G.R. Guntenspergen

    2009-01-01

    The urban landscape is highly altered by human activities and is a mosaic of different land covers and land uses. Imbedded in this are forest patches of different origins (Zipperer et al .• 1997). How these patches influence and are influenced by the urban landscape is of ecological importance when managing the urban forest for ecosystem goods and services.

  16. A model for managing edge effects in harvest scheduling using spatial optimization

    Treesearch

    Kai L. Ross; Sándor F. Tóth

    2016-01-01

    Actively managed forest stands can create new forest edges. If left unchecked over time and across space, forest operations such as clear-cuts can create complex networks of forest edges. Newly created edges alter the landscape and can affect many environmental factors. These altered environmental factors have a variety of impacts on forest growth and structure and can...

  17. Comparing Effects of Climate Warming, Fire, and Timber Harvesting on a Boreal Forest Landscape in Northeastern China

    PubMed Central

    Li, Xiaona; He, Hong S.; Wu, Zhiwei; Liang, Yu; Schneiderman, Jeffrey E.

    2013-01-01

    Forest management under a changing climate requires assessing the effects of climate warming and disturbance on the composition, age structure, and spatial patterns of tree species. We investigated these effects on a boreal forest in northeastern China using a factorial experimental design and simulation modeling. We used a spatially explicit forest landscape model (LANDIS) to evaluate the effects of three independent variables: climate (current and expected future), fire regime (current and increased fire), and timber harvesting (no harvest and legal harvest). Simulations indicate that this forested landscape would be significantly impacted under a changing climate. Climate warming would significantly increase the abundance of most trees, especially broadleaf species (aspen, poplar, and willow). However, climate warming would have less impact on the abundance of conifers, diversity of forest age structure, and variation in spatial landscape structure than burning and harvesting. Burning was the predominant influence in the abundance of conifers except larch and the abundance of trees in mid-stage. Harvesting impacts were greatest for the abundance of larch and birch, and the abundance of trees during establishment stage (1–40 years), early stage (41–80 years) and old- growth stage (>180 years). Disturbance by timber harvesting and burning may significantly alter forest ecosystem dynamics by increasing forest fragmentation and decreasing forest diversity. Results from the simulations provide insight into the long term management of this boreal forest. PMID:23573209

  18. 76 FR 77769 - North Finger Grazing Authorization Project, Malheur National Forest, Grant County, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... allotments within the North Finger Landscape. These allotments are within the Upper Deer Creek, Basin Creek... is to authorize grazing on all or portions of the North Finger landscape in such a manner that will... incorporating adaptive management strategies across the North Finger landscape. Adaptive Management is defined...

  19. Using Topography to Meet Wildlife and Fuels Treatment Objectives in Fire-Suppressed Landscapes

    PubMed Central

    Viers, Joshua H.; Quinn, James F.; North, Malcolm

    2010-01-01

    Past forest management practices, fire suppression, and climate change are increasing the need to actively manage California Sierra Nevada forests for multiple environmental amenities. Here we present a relatively low-cost, repeatable method for spatially parsing the landscape to help the U.S. Forest Service manage for different forest and fuel conditions to meet multiple goals relating to sensitive species, fuels reduction, forest products, water, carbon storage, and ecosystem restoration. Using the Kings River area of the Sierra Nevada as a case study, we create areas of topographically-based units, Landscape Management Units (LMUs) using a three by three matrix (canyon, mid-slope, ridge-top and northerly, southerly, and neutral aspects). We describe their size, elevation, slope, aspect, and their difference in inherent wetness and solar radiation. We assess the predictive value and field applicability of LMUs by using existing data on stand conditions and two sensitive wildlife species. Stand conditions varied significantly between LMUs, with canyons consistently having the greatest stem and snag densities. Pacific fisher (Martes pennanti) activity points (from radio telemetry) and California spotted owl (Strix occidentalis occidentalis) nests, roosts, and sightings were both significantly different from uniform, with a disproportionate number of observations in canyons, and fewer than expected on ridge-tops. Given the distinct characteristics of the LMUs, these units provide a relatively simple but ecologically meaningful template for managers to spatially allocate forest treatments, thereby meeting multiple National Forest objectives. These LMUs provide a framework that can potentially be applied to other fire-dependent western forests with steep topographic relief. PMID:20872142

  20. Patterns and predictors of β-diversity in the fragmented Brazilian Atlantic forest: a multiscale analysis of forest specialist and generalist birds.

    PubMed

    Morante-Filho, José Carlos; Arroyo-Rodríguez, Víctor; Faria, Deborah

    2016-01-01

    Biodiversity maintenance in human-altered landscapes (HALs) depends on the species turnover among localities, but the patterns and determinants of β-diversity in HALs are poorly known. In fact, declines, increases and neutral shifts in β-diversity have all been documented, depending on the landscape, ecological group and spatial scale of analysis. We shed some light on this controversy by assessing the patterns and predictors of bird β-diversity across multiple spatial scales considering forest specialist and habitat generalist bird assemblages. We surveyed birds from 144 point counts in 36 different forest sites across two landscapes with different amount of forest cover in the Brazilian Atlantic forest. We analysed β-diversity among points, among sites and between landscapes with multiplicative diversity partitioning of Hill numbers. We tested whether β-diversity among points was related to within-site variations in vegetation structure, and whether β-diversity among sites was related to site location and/or to differences among sites in vegetation structure and landscape composition (i.e. per cent forest and pasture cover surrounding each site). β-diversity between landscapes was lower than among sites and among points in both bird assemblages. In forest specialist birds, the landscape with less forest cover showed the highest β-diversity among sites (bird differentiation among sites), but generalist birds showed the opposite pattern. At the local scale, however, the less forested landscape showed the lowest β-diversity among points (bird homogenization within sites), independently of the bird assemblage. β-diversity among points was weakly related to vegetation structure, but higher β-diversity values were recorded among sites that were more isolated from each other, and among sites with higher differences in landscape composition, particularly in the less forested landscape. Our findings indicate that patterns of bird β-diversity vary across scales and are strongly related to landscape composition. Bird assemblages are shaped by both environmental filtering and dispersal limitation, particularly in less forested landscapes. Conservation and management strategies should therefore prevent deforestation in this biodiversity hotspot. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  1. Simulating forest management and its effect on landscape pattern

    Treesearch

    Eric J. Gustafson

    2017-01-01

    Landscapes are characterized by their structure (the spatial arrangement of landscape elements), their ecological function (how ecological processes operate within that structure), and the dynamics of change (disturbance and recovery). Thus, understanding the dynamic nature of landscapes and predicting their future dynamics are of particular emphasis. Landscape change...

  2. Linking linear programming and spatial simulation models to predict landscape effects of forest management alternatives

    Treesearch

    Eric J. Gustafson; L. Jay Roberts; Larry A. Leefers

    2006-01-01

    Forest management planners require analytical tools to assess the effects of alternative strategies on the sometimes disparate benefits from forests such as timber production and wildlife habitat. We assessed the spatial patterns of alternative management strategies by linking two models that were developed for different purposes. We used a linear programming model (...

  3. Terrain and vegetation structural influences on local avian species richness in two mixed-conifer forests

    Treesearch

    Jody C. Vogeler; Andrew T. Hudak; Lee A. Vierling; Jeffrey Evans; Patricia Green; Kerri T. Vierling

    2014-01-01

    Using remotely-sensed metrics to identify regions containing high animal diversity and/or specific animal species or guilds can help prioritize forest management and conservation objectives across actively managed landscapes. We predicted avian species richness in two mixed conifer forests, Moscow Mountain and Slate Creek, containing different management contexts and...

  4. The apparent paradox of reestablishing species richness on degraded lands with tree monocultures.

    Treesearch

    Ariel E. Lugo

    1997-01-01

    The proliferation of degraded tropical landscapes in need of rehabilitation and the reduction of primary forest area have forced a closer collaboration between ecologist and land manager. this collaboration has led to new paradigms of forest management (combined in the term ecosystem management), new insight into forest ecology through comparative ecological...

  5. Fuels planning: science synthesis and integration; social issues fact sheet 15: Landscape change and aesthetics

    Treesearch

    Christine Esposito

    2006-01-01

    Fuels management produces changes in the landscape that can impact scenic beauty. If people do not consider a forest to be scenic, they may think that the low scenic quality is a result of poor management or ecological health. This fact sheet looks at the relevency of the effects of natural and human-caused landscape changes, when planning fuels management.

  6. Rocky to bullwinkle: understanding flying squirrels helps us restore dry forest ecosystems.

    Treesearch

    Jonathan Thompson

    2006-01-01

    A century of effective fire suppression has radically transformed many forested landscapes on the east side of the Cascades. Managers of dry forests critically need information to help plan for and implement forest restoration . Management priorities include the stabilization of fire regimes and the maintenance of habitat for the northern spotted owl and other old-...

  7. An attribute-based approach to contingent valuation of forest protection programs

    Treesearch

    Christopher C. Moore; Thomas P. Holmes; Kathleen P. Bell

    2011-01-01

    The hemlock woolly adelgid is an invasive insect that is damaging hemlock forests in the eastern United States. Several control methods are available but forest managers are constrained by cost, availability, and environmental concerns. As a result forest managers must decide how to allocate limited conservation resources over heterogeneous landscapes. We develop an...

  8. Clustering Timber Harvests and the Effects of Dynamic Forest Management Policy on Forest Fragmentation

    Treesearch

    Eric J. Gustafson

    1998-01-01

    To integrate multiple uses (mature forest and commodity production) better on forested lands, timber management strategies that cluster harvests have been proposed. One such approach clusters harvest activity in space and time, and rotates timber production zones across the landscape with a long temporal period (dynamic zoning). Dynamic zoning has...

  9. DIY visualizations: opportunities for story-telling with esri tools

    Treesearch

    Charles H. Perry; Barry T. Wilson

    2015-01-01

    The Forest Service and Esri recently entered into a partnership: (1) to distribute FIA and other Forest Service data with the public and stakeholders through ArcGIS Online, and (2) to facilitate the application of the ArcGIS platform within the Forest Service to develop forest management and landscape management plans, and support their scientific research activities....

  10. Indiana forest management history and practices

    Treesearch

    Sam F. Carman

    2013-01-01

    Indiana's landscape and forests today are largely the result of Ice Age glaciations, Native Americans' use of fire, and over-harvesting in the late 19th and early 20th centuries. Any intentional management of the forest was not generally apparent until the early 1900s. Early visionaries at that time recognized the future impact forest depletion would have on...

  11. Seeing the bigger picture: landscape silviculture may offer compatible solutions to conflicting objectives.

    Treesearch

    Jonathan Thompson

    2006-01-01

    Some federal forest managers working in late-successional reserves find themselves in a potential no-win situation. The Northwest Forest Plan requires that the reserves be protected from large-scale natural and human disturbances while simultaneously maintaining older forest habitat. This is a challenge for managers working in drier reserves, where forest types are...

  12. An evolving process: protecting spotted owl habitat through landscape management

    Treesearch

    Michael Feinstein; John Lehmkuhl; Paul Hessburg

    2010-01-01

    A network of late-successional forest reserves is central to the Northwest Forest Plan, the guiding vision for managing federal forests in Washington, Oregon, and northern California within the range of the northern spotted owl. These reserves were created to maintain older forest structure as habitat for the northern spotted owl, marbled murrelet, and other associated...

  13. Spatial Bayesian belief networks as a planning decision tool for mapping ecosystem services trade-offs on forested landscapes.

    PubMed

    Gonzalez-Redin, Julen; Luque, Sandra; Poggio, Laura; Smith, Ron; Gimona, Alessandro

    2016-01-01

    An integrated methodology, based on linking Bayesian belief networks (BBN) with GIS, is proposed for combining available evidence to help forest managers evaluate implications and trade-offs between forest production and conservation measures to preserve biodiversity in forested habitats. A Bayesian belief network is a probabilistic graphical model that represents variables and their dependencies through specifying probabilistic relationships. In spatially explicit decision problems where it is difficult to choose appropriate combinations of interventions, the proposed integration of a BBN with GIS helped to facilitate shared understanding of the human-landscape relationships, while fostering collective management that can be incorporated into landscape planning processes. Trades-offs become more and more relevant in these landscape contexts where the participation of many and varied stakeholder groups is indispensable. With these challenges in mind, our integrated approach incorporates GIS-based data with expert knowledge to consider two different land use interests - biodiversity value for conservation and timber production potential - with the focus on a complex mountain landscape in the French Alps. The spatial models produced provided different alternatives of suitable sites that can be used by policy makers in order to support conservation priorities while addressing management options. The approach provided provide a common reasoning language among different experts from different backgrounds while helped to identify spatially explicit conflictive areas. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Visitor Preferences for Visual Changes in Bark Beetle-Impacted Forest Recreation Settings in the United States and Germany

    NASA Astrophysics Data System (ADS)

    Arnberger, Arne; Ebenberger, Martin; Schneider, Ingrid E.; Cottrell, Stuart; Schlueter, Alexander C.; von Ruschkowski, Eick; Venette, Robert C.; Snyder, Stephanie A.; Gobster, Paul H.

    2018-02-01

    Extensive outbreaks of tree-killing insects are increasing across forests in Europe and North America due to climate change and other factors. Yet, little recent research examines visitor response to visual changes in conifer forest recreation settings resulting from forest insect infestations, how visitors weigh trade-offs between physical and social forest environment factors, or how visitor preferences might differ by nationality. This study explored forest visitor preferences with a discrete choice experiment that photographically simulated conifer forest stands with varying levels of bark beetle outbreaks, forest and visitor management practices, and visitor use levels and compositions. On-site surveys were conducted with visitors to State Forest State Park in Colorado ( n = 200), Lake Bemidji State Park in Minnesota ( n = 228), and Harz National Park in Germany ( n = 208). Results revealed that the condition of the immediate forest surrounding was the most important variable influencing visitors' landscape preferences. Visitors preferred healthy mature forest stands and disliked forests with substantial dead wood. The number of visitors was the most important social factor influencing visitor landscape preferences. Differences in the influence of physical and social factors on visual preferences existed between study sites. Findings suggest that both visual forest conditions and visitor use management are important concerns in addressing landscape preferences for beetle-impacted forest recreation areas.

  15. Visitor Preferences for Visual Changes in Bark Beetle-Impacted Forest Recreation Settings in the United States and Germany.

    PubMed

    Arnberger, Arne; Ebenberger, Martin; Schneider, Ingrid E; Cottrell, Stuart; Schlueter, Alexander C; von Ruschkowski, Eick; Venette, Robert C; Snyder, Stephanie A; Gobster, Paul H

    2018-02-01

    Extensive outbreaks of tree-killing insects are increasing across forests in Europe and North America due to climate change and other factors. Yet, little recent research examines visitor response to visual changes in conifer forest recreation settings resulting from forest insect infestations, how visitors weigh trade-offs between physical and social forest environment factors, or how visitor preferences might differ by nationality. This study explored forest visitor preferences with a discrete choice experiment that photographically simulated conifer forest stands with varying levels of bark beetle outbreaks, forest and visitor management practices, and visitor use levels and compositions. On-site surveys were conducted with visitors to State Forest State Park in Colorado (n = 200), Lake Bemidji State Park in Minnesota (n = 228), and Harz National Park in Germany (n = 208). Results revealed that the condition of the immediate forest surrounding was the most important variable influencing visitors' landscape preferences. Visitors preferred healthy mature forest stands and disliked forests with substantial dead wood. The number of visitors was the most important social factor influencing visitor landscape preferences. Differences in the influence of physical and social factors on visual preferences existed between study sites. Findings suggest that both visual forest conditions and visitor use management are important concerns in addressing landscape preferences for beetle-impacted forest recreation areas.

  16. Silvicultural options for neotropical migratory birds

    Treesearch

    Frank R. Thompson; John R. Probst; Martin G. Raphael

    1993-01-01

    We review: factors that affect forest bird populations; basic concepts of silvicultural systems; potential impacts of these systems on neotropical migratory birds (NTMBs); and conclude with management recommendations for integrating NTMB conservation with forest management. We approach this topic from a regional-landscape scale to a forest stand-habitat scale, rather...

  17. Factors affecting private forest landowner interest in ecosystem management: linking spatial and survey data.

    PubMed

    Jacobson, Michael G

    2002-10-01

    Many factors influence forest landowner management decisions. This study examines landowner decisions regarding participation in ecosystem management activities, such as a landscape corridor cutting across their private lands. Landscape corridors are recognized worldwide as an important tool in biodiversity conservation. For ecosystem management activities to occur in areas dominated by a multitude of small private forest landholdings, landowner participation and cooperation is necessary. Data from a survey of landowners combined with an analysis of their land's spatial attributes is used to assess their interest in ecosystem management. Results suggest that spatial attributes are not good predictors of an owner's interest in ecosystem management. Other factors such as attitudes and opinions about the environment are more effective in explaining landowner interest. The results have implications for any land manager using GIS data and implementing ecosystem management activities on private forestland.

  18. Sampling scheme on genetic structure of tree species in fragmented tropical dry forest: an evaluation from landscape genetic simulations

    Treesearch

    Yessica Rico; Marie-Stephanie Samain

    2017-01-01

    Investigating how genetic variation is distributed across the landscape is fundamental to inform forest conservation and restoration. Detecting spatial genetic discontinuities has value for defining management units, germplasm collection, and target sites for reforestation; however, inappropriate sampling schemes can misidentify patterns of genetic structure....

  19. Collaborative implementation for ecological restoration on US public lands: implications for legal context, accountability, and adaptive management

    Treesearch

    William H. Butler; Ashley Monroe; Sarah McCaffrey

    2015-01-01

    The Collaborative Forest Landscape Restoration Program (CFLRP), established in 2009, encourages collaborative landscape scale ecosystem restoration efforts on United States Forest Service (USFS) lands. Although the USFS employees have experience engaging in collaborative planning, CFLRP requires collaboration in implementation, a domain where little prior experience...

  20. Restoring historic landscape patterns through management: Restoring fire mosaics on the landscape

    Treesearch

    Cathy Stewart

    1996-01-01

    Seral, fire dependent lodgepole pine (Pinus contorta Dougl.) communities are an important component of upper elevation forests throughout the Northern Rockies, where they cover 4 million acres, or about 17 percent of the land base. On the Bitterroot National Forest, lodgepole pine occurs mostly between 5,500 and 7,500 feet.

  1. Relative influence of the components of timber harvest strategies on landscape pattern

    Treesearch

    Eric J. Gustafson

    2007-01-01

    Forest managers seek to produce healthy landscape patterns by implementing harvest strategies that are composed of multiple management components such as cutblock size, rotation length, even-aged or uneven-aged residual stand structure, conversion to plantations, and the spatial dispersion of harvest units. With use of the HARVEST model and neutral landscapes, a...

  2. Proceedings: views from the ridge—considerations for planning at the landscape scale.

    Treesearch

    Hermann Gucinski; Cynthia Miner; Becky Bittner

    2004-01-01

    When resource managers, researchers, and policymakers approach landscape management, they bring perspectives that reflect their disciplines, the decisions they make, and their objectives. In working at a landscape level, they need to begin developing some common scales of perspective across the variety of forest ownerships and usages. This proceedings is a compilation...

  3. Amazonian landscapes and the bias in field studies of forest structure and biomass.

    PubMed

    Marvin, David C; Asner, Gregory P; Knapp, David E; Anderson, Christopher B; Martin, Roberta E; Sinca, Felipe; Tupayachi, Raul

    2014-12-02

    Tropical forests convert more atmospheric carbon into biomass each year than any terrestrial ecosystem on Earth, underscoring the importance of accurate tropical forest structure and biomass maps for the understanding and management of the global carbon cycle. Ecologists have long used field inventory plots as the main tool for understanding forest structure and biomass at landscape-to-regional scales, under the implicit assumption that these plots accurately represent their surrounding landscape. However, no study has used continuous, high-spatial-resolution data to test whether field plots meet this assumption in tropical forests. Using airborne LiDAR (light detection and ranging) acquired over three regions in Peru, we assessed how representative a typical set of field plots are relative to their surrounding host landscapes. We uncovered substantial mean biases (9-98%) in forest canopy structure (height, gaps, and layers) and aboveground biomass in both lowland Amazonian and montane Andean landscapes. Moreover, simulations reveal that an impractical number of 1-ha field plots (from 10 to more than 100 per landscape) are needed to develop accurate estimates of aboveground biomass at landscape scales. These biases should temper the use of plots for extrapolations of forest dynamics to larger scales, and they demonstrate the need for a fundamental shift to high-resolution active remote sensing techniques as a primary sampling tool in tropical forest biomass studies. The potential decrease in the bias and uncertainty of remotely sensed estimates of forest structure and biomass is a vital step toward successful tropical forest conservation and climate-change mitigation policy.

  4. Relevance of Lick Creek ecosystem-based management treatments to National Forest management

    Treesearch

    Cathy Stewart

    1999-01-01

    Treatments applied at Lick Creek were the first landscape-scale applications of ecosystem management on the Bitterroot National Forest. The coordinated effort between educators, researchers, resource managers, and the public helped gain acceptance and understanding of new approaches to management, both internally and externally. The longer skidding distances, high...

  5. The Cooperative Forest Ecosystem Research Program

    USGS Publications Warehouse

    ,

    2002-01-01

    Changes in priorities for forest management on federal and state lands in the Pacific Northwest have raised many questions about the best ways to manage young-forest stands, riparian areas, and forest landscapes. The Cooperative Forest Ecosystem Research (CFER) Program draws together scientists and managers from the U.S. Geological Survey, Bureau of Land Management, Oregon Department of Forestry, and Oregon State University to find science-based answers to these questions. Managers, researchers, and decisionmakers, working within the CFER program, are helping develop and disseminate the knowledge needed to carry out ecosystem-based management successfully in the Pacific Northwest.

  6. The visual management system of the Forest Service, USDA

    Treesearch

    Warren R. Bacon

    1979-01-01

    The National Forest Landscape Management Program began, as a formal program, at a Servicewide meeting in St. Louis in 1969 in response to growing agency and public concern for the visual resource. It is now an accepted part of National Forest management and is supported by a large and growing foundation of handbooks, research papers, and audio/visual programs. This...

  7. Uncertainty in future water supplies from forests: hydrologic effects of a changing forest landscape

    NASA Astrophysics Data System (ADS)

    Jones, J. A.; Achterman, G. L.; Alexander, L. E.; Brooks, K. N.; Creed, I. F.; Ffolliott, P. F.; MacDonald, L.; Wemple, B. C.

    2008-12-01

    Forests account for 33 percent of the U.S. land area, process nearly two-thirds of the fresh water supply, and provide water to 40 percent of all municipalities or about 180 million people. Water supply management is becoming more difficult given the increasing demand for water, climate change, increasing development, changing forest ownership, and increasingly fragmented laws governing forest and watershed management. In 2006, the US National Research Council convened a study on the present understanding of forest hydrology, the hydrologic effects of a changing forest landscape, and research and management needs for sustaining water resources from forested landscapes. The committee concluded that while it is possible to generate short-term water yield increases by timber harvesting, there are a variety of reasons why active forest management has only limited potential to sustainably increase water supplies. These include the short-term nature of the increases in most environments, the timing of the increases, the need for downstream storage, and that continuing ground- based timber harvest can reduce water quality. At the same time, past and continuing changes in forest structure and management may be altering water supplies at the larger time and space scales that are of most interest to forest and water managers. These changes include the legacy of past forest management practices, particularly fire suppression and clearcutting; exurban sprawl, which permanently converts forest land to nonforest uses; effects of climate change on wildfires, insect outbreaks, forest structure, forest species composition, snowpack depth and snowmelt; road networks; and changes in forest land ownership. All of these changes have the potential to alter water quantity and quality from forests. Hence, the baseline conditions that have been used to estimate sustained water yields from forested watersheds may no longer be applicable. Stationarity also can no longer be assumed for the long-term control watersheds that have served as the cornerstone for most watershed-scale forest hydrology studies. The net result is that forest and water managers are facing greater uncertainty about future water supplies, water quality, and aquatic ecosystems, and their planning must consider a broader range of future scenarios than in the past. In this presentation, we outline a way forward for the research community to address the challenging questions of the future related to forests and water, and we chart a path for the involvement of various stakeholder groups to engage in water resources research, monitoring and policy formation.

  8. Dynamics and pattern of a managed coniferous forest landscape in Oregon

    NASA Technical Reports Server (NTRS)

    Spies, Thomas A.; Ripple, William J.; Bradshaw, G. A.

    1995-01-01

    We examined the process of fragmentation in a managed forest landscape by comparing rates and patterns of disturbance (primarily clear-cutting) and regrowth between 1972 and 1988 using Landsat imagery. A 2589-km(exp 2) managed forest landscape in western Oregon was classified into two forest types, closed-canopy conifer forest (CF) (typically, greater than 60% conifer cover) and other forest and nonforest types (OT) (typically, less than 40 yr old or deciduous forest). The percentage of CF declined from 71 to 58% between 1972 and 1988. Declines were greatest on private land, least in wilderness, and intermediate in public nonwilderness. High elevations (greater than 914 m) maintained a greater percentage of CF than lower elevations (less than 914 m). The percentage of the area at the edge of the two cover types increased on all ownerships and in both elevational zones, whereas the amount of interior habitat (defined as CF at least 100 m from OT) decreased on all ownerships and elevational zones. By 1988 public lands contained approximately 45% interior habitat while private lands had 12% interior habitat. Mean interior patch area declined from 160 to 62 ha. The annual rate of disturbance (primarily clear-cutting) for the entire area including the wilderness was 1.19%, which corresponds to a cutting rotation of 84 yr. The forest landscape was not in a steady state or regulated condition which is not projected to occur for at least 40 yr under current forest plans. Variability in cutting rates within ownerships was higher on private land than on nonreserve public land. However, despite the use of dispersed cutting patterns on public land, spatial patterns of cutting and remnant forest patches were nonuniform across the entire public ownership. Large remaining patches (less than 5000 ha) of contiguous interior forest were restricted to public lands designated for uses other than timber production such as wilderness areas and research natural areas.

  9. 76 FR 61666 - Collaborative Forest Landscape Restoration Program Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-05

    ... sent to Lauren Marshall, USDA Forest Service, Forest Management, Mailstop-1103, 1400 Independence Avenue, SW., Washington, DC 20250- 1103. Comments may also be sent via e-mail to Lauren Marshall...

  10. Managed wildfire effects on forest resilience and water in the Sierra Nevada

    Treesearch

    Gabrielle Boisramé; Sally Thompson; Brandon Collins; Scott Stephens

    2017-01-01

    Fire suppression in many dry forest types has left a legacy of dense, homogeneous forests. Such landscapes have high water demands and fuel loads, and when burned can result in catastrophically large fires. These characteristics are undesirable in the face of projected warming and drying in the western US. Alternative forest and fire treatments based on managed...

  11. Complex mountain terrain and disturbance history drive variation in forest aboveground live carbon density in the western Oregon Cascades, USA

    PubMed Central

    Zald, Harold S.J.; Spies, Thomas A.; Seidl, Rupert; Pabst, Robert J.; Olsen, Keith A.; Steel, E. Ashley

    2016-01-01

    Forest carbon (C) density varies tremendously across space due to the inherent heterogeneity of forest ecosystems. Variation of forest C density is especially pronounced in mountainous terrain, where environmental gradients are compressed and vary at multiple spatial scales. Additionally, the influence of environmental gradients may vary with forest age and developmental stage, an important consideration as forest landscapes often have a diversity of stand ages from past management and other disturbance agents. Quantifying forest C density and its underlying environmental determinants in mountain terrain has remained challenging because many available data sources lack the spatial grain and ecological resolution needed at both stand and landscape scales. The objective of this study was to determine if environmental factors influencing aboveground live carbon (ALC) density differed between young versus old forests. We integrated aerial light detection and ranging (lidar) data with 702 field plots to map forest ALC density at a grain of 25 m across the H.J. Andrews Experimental Forest, a 6369 ha watershed in the Cascade Mountains of Oregon, USA. We used linear regressions, random forest ensemble learning (RF) and sequential autoregressive modeling (SAR) to reveal how mapped forest ALC density was related to climate, topography, soils, and past disturbance history (timber harvesting and wildfires). ALC increased with stand age in young managed forests, with much greater variation of ALC in relation to years since wildfire in old unmanaged forests. Timber harvesting was the most important driver of ALC across the entire watershed, despite occurring on only 23% of the landscape. More variation in forest ALC density was explained in models of young managed forests than in models of old unmanaged forests. Besides stand age, ALC density in young managed forests was driven by factors influencing site productivity, whereas variation in ALC density in old unmanaged forests was also affected by finer scale topographic conditions associated with sheltered sites. Past wildfires only had a small influence on current ALC density, which may be a result of long times since fire and/or prevalence of non-stand replacing fire. Our results indicate that forest ALC density depends on a suite of multi-scale environmental drivers mediated by complex mountain topography, and that these relationships are dependent on stand age. The high and context-dependent spatial variability of forest ALC density has implications for quantifying forest carbon stores, establishing upper bounds of potential carbon sequestration, and scaling field data to landscape and regional scales. PMID:27041818

  12. Anticipating Forest and Range Land Development in Central Oregon (USA) for Landscape Analysis, with an Example Application Involving Mule Deer

    NASA Astrophysics Data System (ADS)

    Kline, Jeffrey D.; Moses, Alissa; Burcsu, Theresa

    2010-05-01

    Forest policymakers, public lands managers, and scientists in the Pacific Northwest (USA) seek ways to evaluate the landscape-level effects of policies and management through the multidisciplinary development and application of spatially explicit methods and models. The Interagency Mapping and Analysis Project (IMAP) is an ongoing effort to generate landscape-wide vegetation data and models to evaluate the integrated effects of disturbances and management activities on natural resource conditions in Oregon and Washington (USA). In this initial analysis, we characterized the spatial distribution of forest and range land development in a four-county pilot study region in central Oregon. The empirical model describes the spatial distribution of buildings and new building construction as a function of population growth, existing development, topography, land-use zoning, and other factors. We used the model to create geographic information system maps of likely future development based on human population projections to inform complementary landscape analyses underway involving vegetation, habitat, and wildfire interactions. In an example application, we use the model and resulting maps to show the potential impacts of future forest and range land development on mule deer ( Odocoileus hemionus) winter range. Results indicate significant development encroachment and habitat loss already in 2000 with development located along key migration routes and increasing through the projection period to 2040. The example application illustrates a simple way for policymakers and public lands managers to combine existing data and preliminary model outputs to begin to consider the potential effects of development on future landscape conditions.

  13. Assessment of forest management influences on total live aboveground tree biomass in William B Bankhead National Forest, Alabama

    Treesearch

    Callie Schweitzer; Dawn Lemke; Wubishet Tadesse; Yong Wang

    2015-01-01

    Forests contain a large amount of carbon (C) stored as tree biomass (above and below ground), detritus, and soil organic material. The aboveground tree biomass is the most rapid change component in this forest C pool. Thus, management of forest resources can influence the net C exchange with the atmosphere by changing the amount of C stored, particularly in landscapes...

  14. Wildfire exposure and fuel management on western US national forests

    Treesearch

    Alan A. Ager; Michelle A. Day; Charles W. McHugh; Karen Short; Julie Gilbertson-Day; Mark A. Finney; David E. Calkin

    2014-01-01

    Substantial investments in fuel management activities on national forests in the western US are part of a national strategy to reduce human and ecological losses from catastrophic wildfire and create fire resilient landscapes. Prioritizing these investments within and among national forests remains a challenge, partly because a comprehensive assessment that establishes...

  15. A Landscape Model (LEEMATH) to Evaluate Effects of Management Impacts on Timber and Wildlife Habitat

    Treesearch

    Harbin Li; David L. Gartner; Pu Mou; Carl C. Trettin

    2000-01-01

    Managing forest resources for sustainability requires the successful integration of economic and ecological goals. To attain such integration, land managers need decision support tools that incorporate science, land-use strategies, and policy options to assess resources sustainability at large scales. Landscape Evaluation of Effects of Management Activities on Timber...

  16. Management strategies for the conservation of forest birds

    Treesearch

    Kathleen E. Franzreb; Deborah M. Finch; Petra Bohall Wood; David E. Capen

    1999-01-01

    We recommend that managers of forest-associated bird species follow a five-step hierarchy in establishing and implementing management programs. In essence, a manager must evaluate the composition and physiognomy of the landscape mosaic in the context of the regional and subregional goals and objectives. Then he/she can explore alternatives that allow manipulation of...

  17. A landscape plan based on historical fire regimes for a managed forest ecosystem: the Augusta Creek study.

    Treesearch

    John H. Cissel; Frederick J. Swanson; Gordon E. Grant; Deanna H. Olson; Gregory V. Stanley; Steven L. Garman; Linda R. Ashkenas; Matthew G. Hunter; Jane A. Kertis; James H. Mayo; Michelle D. McSwain; Sam G. Swetland; Keith A. Swindle; David O. Wallin

    1998-01-01

    The Augusta Creek project was initiated to establish and integrate landscape and watershed objectives into a landscape plan to guide management activities within a 7600-hectare (19,000-acre) planning area in western Oregon. Primary objectives included the maintenance of native species, ecosystem processes and structures, and long-term ecosystem productivity in a...

  18. Landscape context for density management: implications of land ownership and ecological gradients

    Treesearch

    Janet L. Ohmann

    2013-01-01

    Density management is implemented at a local (stand) scale, but is based on conservation goals that address a broader landscape. Although regional conservation eff orts such as the Northwest Forest Plan (NWFP) focus primarily on public lands, all land ownerships and allocations contribute unique benefi ts over the regional landscape that need to be considered as...

  19. Landscape control points: a procedure for predicting and monitoring visual impacts

    Treesearch

    R. Burton Litton

    1973-01-01

    The visual impacts of alterations to the landscape can be studied by setting up Landscape Control Points–a network of permanently established observation sites. Such observations enable the forest manager to anticipate visual impacts of management decision, select from a choice of alternative solutions, cover an area for comprehensive viewing, and establish a method to...

  20. Managed forest landscape structure and avian species richness in the southeastern US

    Treesearch

    Craig Loehle; T. Bently Wigley; Scott Rutzmoser; John A. Gerwin; Patrick D. Keyser; Richard A. Lancia; Christopher J. Reynolds; Ronald E. Thill; Robert Weih; Don White; Petra Bohall Wood

    2005-01-01

    Forest structural features at the stand scale (e.g., snags, stem density, species composition) and habitat attributes at larger spatial scales (e.g., landscape pattern, road density) can influence biological diversity and have been proposed as indicators in sustainable forestry programs. This study investigated relationships between such factors and total richness of...

  1. Modeling landscape net ecosystem productivity (LandNEP) under alternative management regimes

    Treesearch

    Eugenie S. Euskirchen; Jiquan Chen; Harbin Li; Eric J. Gustafson; Thomas R. Crow

    2002-01-01

    Forests have been considered as a major carbon sink within the global carbon budget. However, a fragmented forest landscape varies significantly in its composition and age structure, and the amount of carbon sequestered at this level remains generally unknown to the scientific community. More precisely, the temporal dynamics and spatial distribution of net ecosystem...

  2. Project visual analysis for the Allegheny National Forest

    Treesearch

    Gary W. Kell

    1979-01-01

    The Project Visual Analysis is a landscape assessment procedure involving forest vegetative manipulation. A logical step by step analysis leads the user to a specific set of landscape management guidelines to be used as an aid in designing a project or in evaluating whether the proposed project impacts will meet visual objectives. Key elements within the procedure are...

  3. Dynamic landscape management

    Treesearch

    Valerie Rapp

    2002-01-01

    Pacific Northwest forests and all their species evolved with fires, floods, windstorms, landslides, and other disturbances. The dynamics of disturbance were basic to how forests changed and renewed. Disturbance regimes, as scientists call the long-term patterns of these events—what kind of event, how often, how large, and how severe—created the landscape patterns seen...

  4. Effects of individual, community and landscape drivers on the dynamics of a wildland forest epidemic

    Treesearch

    Sarah E. Haas; J. Hall Cushman; Whalen W. Dillon; Nathan E. Rank; David M. Rizzo; Ross K. Meentemeyer

    2016-01-01

    The challenges posed by observing host-pathogen-environment interactions across large geographic extents and over meaningful time scales limit our ability to understand and manage wildland epidemics. We conducted a landscape-scale, longitudinal study designed to analyze the dynamics of sudden oak death (an emerging forest disease caused by Phytophthora...

  5. Can Landscape-scale management influence insect outbreak dynamics? A natural experiment for eastern spruce budworm

    Treesearch

    Brian R. Sturtevant; V. Quinn; L.E. Robert; D. Kneeshaw; P. James; M.-J. Fortin; P. Wolter; P. Townsend; B. Cooke; D. Anderson

    2010-01-01

    The balance of evidence suggests forest insect outbreaks today are more damaging than ever because of changes in forest composition and structure induced by fire suppression and post-harvest proliferation of tree species intolerant to herbivory. We hypothesized that landscape connectivity of acceptable host trees increases defoliator population connectivity, altering...

  6. Dynamic landscape management.

    Treesearch

    Valerie Rapp

    2003-01-01

    Pacific Northwest forests and all their species evolved with fires, floods, windstorms, landslides, and other disturbances. The dynamics of disturbance were basic to how forests changed and renewed. Disturbance regimes, as scientists call the long-term patterns of these events—what kind of event, how often, how large, and how severe—created the landscape patterns seen...

  7. Scouts, forests, and ticks: Impact of landscapes on human-tick contacts.

    PubMed

    De Keukeleire, Mathilde; Vanwambeke, Sophie O; Somassè, Elysée; Kabamba, Benoît; Luyasu, Victor; Robert, Annie

    2015-07-01

    Just as with forest workers or people practicing outdoor recreational activities, scouts are at high risk for tick bites and tick-borne infections. The risk of a tick bite is shaped not only by environmental and climatic factors but also by land management. The aim of this study was to assess which environmental conditions favour scout-tick contacts, and thus to better understand how these factors and their interactions influence the two components of risk: hazard (related to vector and host ecology) and exposure of humans to disease vectors. A survey was conducted in the summer of 2009 on the incidence of tick bites in scout camps taking place in southern Belgium. Joint effects of landscape composition and configuration, weather, climate, forest and wildlife management were examined using a multiple gamma regression with a log link. The landscape was characterized by buffers of varying sizes around the camps using a detailed land use map, and accounting for climate and weather variables. Landscape composition and configuration had a significant influence on scout-tick contacts: the risk was high when the camp was surrounded by a low proportion of arable land and situated in a complex and fragmented landscape. The distance to the nearest forest patch, the composition of the forest ecotone as well as weather and climatic factors were all significantly associated with scout-tick contacts. Both hazard- and exposure-related variables significantly contributed to the frequency of scout-tick contact. Our results show that environmental conditions favour scout-tick contacts. For example, we emphasize the impact of accessibility of environments suitable for ticks on the risk of contact. We also highlight the significant effect of both hazard and exposure. Our results are consistent with current knowledge, but further investigations on the effect of forest management, e.g. through its impact on forest structure, on the tick-host-pathogen system, and on humans exposure, is required. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Recreational use management and wildfires in Southern California: Using GIS and visual landscape simulation models for economic assessment

    Treesearch

    Daniel Moya; Armando González-Cabán; José J. Sánchez; José de la Heras

    2013-01-01

    Recent advances in fire behavior are conforming strategies for forest management in nonindustrial private and public forests in the western United States. The strategy developed should include identifying the most cost-effective ways for allocating fire management budgets. In recreational areas, visitors’ opinion should be included in forest planning decisions and...

  9. Freeway roadside management: the urban forest beyond the white line

    Treesearch

    Kathleen Wolf

    2003-01-01

    A national survey was conducted in the United States to learn more about public preferences and perceptions regarding forest and vegetation planning and management in urban freeway roadsides. In response to images depicting a visual continuum of landscape management treatments, drivers most preferred settings having tree plantings that...

  10. Management for adaptation

    Treesearch

    John Innes; Linda A. Joyce; Seppo Kellomaki; Bastiaan Louman; Aynslie Ogden; Ian Thompson; Matthew Ayres; Chin Ong; Heru Santoso; Brent Sohngen; Anita Wreford

    2009-01-01

    This chapter develops a framework to explore examples of adaptation options that could be used to ensure that the ecosystem services provided by forests are maintained under future climates. The services are divided into broad areas within which managers can identify specific management goals for individual forests or landscapes. Adaptation options exist for the major...

  11. Maintaining animal assemblages through single-species management: the case of threatened caribou in boreal forest.

    PubMed

    Bichet, Orphé; Dupuch, Angélique; Hébert, Christian; Le Borgne, Hélène Le; Fortin, Daniel

    2016-03-01

    With the intensification of human activities, preserving animal populations is a contemporary challenge of critical importance. In this context, the umbrella species concept is appealing because preserving a single species should result in the protection of multiple co-occurring species. Practitioners, though, face the task of having to find suitable umbrellas to develop single-species management guidelines. In North America, boreal forests must be managed to facilitate the recovery of the threatened boreal caribou (Rangifer tarandus). Yet, the effect of caribou conservation on co-occurring animal species remains poorly documented. We tested if boreal caribou can constitute an effective umbrella for boreal fauna. Birds, small mammals, and insects were sampled along gradients of post-harvest and post-fire forest succession. Predictive models of occupancy were developed from the responses of 95 species to characteristics of forest stands and their surroundings. We then assessed the similarity of species occupancy expected between simulated harvested landscapes and a 90 000-km2 uncut landscape. Managed landscapes were simulated based on three levels of disturbance, two timber-harvest rotation cycles, and dispersed or aggregated cut-blocks. We found that management guidelines that were more likely to maintain caribou populations should also better preserve animal assemblages. Relative to fragmentation or harvest cycle, we detected a stronger effect of habitat loss on species assemblages. Disturbing 22%, 35%, and 45% of the landscape should result, respectively, in 80%, 60%, and 40% probability for caribou populations to be sustainable; in turn, this should result in regional species assemblages with Jaccard similarity indices of 0.86, 0.79, and 0.74, respectively, relative to the uncut landscape. Our study thus demonstrates the value of single-species management for animal conservation. Our quantitative approach allows for the evaluation of management guidelines prior to implementation, thereby providing a tool for establishing suitable compromises between economic and environmental sustainability of human activities.

  12. Determination of fire-initiated landscape patterns: Restoring fire mosaics on the landscape

    Treesearch

    Michael Hartwell; Paul Alaback

    1996-01-01

    One of the key limitations in implementing ecosystem management is a lack of accurate information on how forest landscapes have developed over time, reflecting both pre-Euroamerican landscapes and those resulting from more recent disturbance regimes. Landscape patterns are of great importance to the maintenance of biodiversity in general, and particularly in relation...

  13. Ten year change in forest succession and composition measured by remote sensing

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G.; Botkin, Daniel B.; Strebel, Donald E.; Woods, Kerry K.; Goetz, Scott J.

    1987-01-01

    Vegetation dynamics and changes in ecological patterns were measured by remote sensing over a 10 year period (1973 to 1983) for 148,406 landscape elements, covering more than 500 sq km in a protected forested wilderness. Quantitative measurements were made possible by methods to detect ecologically meaningful landscape units; these allowed measurement of ecological transition frequencies and calculation of expected recurrence times. Measured ecological transition frequencies reveal boreal forest wilderness as spatially heterogeneous and highly dynamic, with one-sixth of the area in clearings and early successional stages, consistent with recent postulates about the spatial and temporal patterns of natural ecosystems. Differences between managed forest areas and a protected wilderness allow assessment of different management regimes.

  14. Approach of Decision Making Based on the Analytic Hierarchy Process for Urban Landscape Management

    NASA Astrophysics Data System (ADS)

    Srdjevic, Zorica; Lakicevic, Milena; Srdjevic, Bojan

    2013-03-01

    This paper proposes a two-stage group decision making approach to urban landscape management and planning supported by the analytic hierarchy process. The proposed approach combines an application of the consensus convergence model and the weighted geometric mean method. The application of the proposed approach is shown on a real urban landscape planning problem with a park-forest in Belgrade, Serbia. Decision makers were policy makers, i.e., representatives of several key national and municipal institutions, and experts coming from different scientific fields. As a result, the most suitable management plan from the set of plans is recognized. It includes both native vegetation renewal in degraded areas of park-forest and continued maintenance of its dominant tourism function. Decision makers included in this research consider the approach to be transparent and useful for addressing landscape management tasks. The central idea of this paper can be understood in a broader sense and easily applied to other decision making problems in various scientific fields.

  15. Approach of decision making based on the analytic hierarchy process for urban landscape management.

    PubMed

    Srdjevic, Zorica; Lakicevic, Milena; Srdjevic, Bojan

    2013-03-01

    This paper proposes a two-stage group decision making approach to urban landscape management and planning supported by the analytic hierarchy process. The proposed approach combines an application of the consensus convergence model and the weighted geometric mean method. The application of the proposed approach is shown on a real urban landscape planning problem with a park-forest in Belgrade, Serbia. Decision makers were policy makers, i.e., representatives of several key national and municipal institutions, and experts coming from different scientific fields. As a result, the most suitable management plan from the set of plans is recognized. It includes both native vegetation renewal in degraded areas of park-forest and continued maintenance of its dominant tourism function. Decision makers included in this research consider the approach to be transparent and useful for addressing landscape management tasks. The central idea of this paper can be understood in a broader sense and easily applied to other decision making problems in various scientific fields.

  16. Exploring the relationship between parcelization metrics and natural resource managers' perceptions of forest land parcelization intensity

    Treesearch

    Michael A. Kilgore; Stephanie A. Snyder

    2016-01-01

    A major challenge associated with forest land parcelization, defined as the subdivision of forest land holdings into smaller ownership parcels, is that little information exists on how to measure its severity and judge its impacts across forest landscapes. To address this information gap, an on-line survey presented field-based public natural resource managers in the...

  17. Natural Resource Management based on Gender Perspectives and Integrating Traditional Ecological Knowledge of the Tepera in Jayapura, Papua

    NASA Astrophysics Data System (ADS)

    Rumbiak, W. A.; Wambrauw, E. V.

    2018-05-01

    The Tepera in Jayapura Regency have a traditional ecological concept of managing their natural resources which evolved over generations. The spatial concept of their resources management is recorded visually on mental maps. The existing conditions of the landscape, forest, coastal area, and sea are considered heritage and have economic, ecological, and cultural values. The people have their own perspectives on the relationship between the resources management, cultural values, gender perspectives, and development. Thus, this research aims to identify the gender perspective in the natural resource management and environmental services; and to analyse the sustainable pattern of the land use and cultural zoning in the resources management. The methodology comprises grounded research and Participatory Action Research. This research has three findings, i.e., the tribe named the landscape; they have developed a zoning system to manage the forest traditionally; and there is a difference in perception between men and women regarding the type of forest and landscape related to food and traditional medicine sources. Therefore, it is important to incorporate the concept of managing the environment and the cultural zones of the Tepera in the programs of the local government to direct the development in sustainable way. In addition, the female participation in managing the environment should be improved, especially related to domestic aspects.

  18. [Construction of information management-based virtual forest landscape and its application].

    PubMed

    Chen, Chongcheng; Tang, Liyu; Quan, Bing; Li, Jianwei; Shi, Song

    2005-11-01

    Based on the analysis of the contents and technical characteristics of different scale forest visualization modeling, this paper brought forward the principles and technical systems of constructing an information management-based virtual forest landscape. With the combination of process modeling and tree geometric structure description, a software method of interactively and parameterized tree modeling was developed, and the corresponding renderings and geometrical elements simplification algorithms were delineated to speed up rendering run-timely. As a pilot study, the geometrical model bases associated with the typical tree categories in Zhangpu County of Fujian Province, southeast China were established as template files. A Virtual Forest Management System prototype was developed with GIS component (ArcObject), OpenGL graphics environment, and Visual C++ language, based on forest inventory and remote sensing data. The prototype could be used for roaming between 2D and 3D, information query and analysis, and virtual and interactive forest growth simulation, and its reality and accuracy could meet the needs of forest resource management. Some typical interfaces of the system and the illustrative scene cross-sections of simulated masson pine growth under conditions of competition and thinning were listed.

  19. Modeling Forest Understory Fires in an Eastern Amazonian Landscape

    NASA Technical Reports Server (NTRS)

    Alencar, A. A. C.; Solorzano, L. A.; Nepstad, D. C.

    2004-01-01

    Forest understory fires are an increasingly important cause of forest impoverishment in Ammonia, but little is known of the landscape characteristics and climatic phenomena that determine their occurrence. We developed empirical functions relating the occurrence of understory fires to landscape features near Paragominas, a 35- yr-old ranching and logging center in eastern Ammonia. An historical sequence of maps of forest understory fire was created based on field interviews With local farmers and Landsat TM images. Several landscape features that might explain spatial variations in the occurrence of understory fires were also mapped and co-registered for each of the sample dates, including: forest fragment size and shape, forest impoverishment through logging and understory fires, source of ignition (settlements and charcoal pits), roads, forest edges, and others. The spatial relationship between forest understory fire and each landscape characteristic was tested by regression analyses. Fire probability models were then developed for various combinations of landscape characteristics. The analyses were conducted separately for years of the El Nino Southern Oscillation (ENSO), which are associated with severe drought in eastern Amazonia, and non-ENS0 years. Most (91 %) of the forest area that burned during the 10-yr sequence caught fire during ENSO years, when severe drought may have increased both forest flammability and the escape of agricultural management fires. Forest understory fires were associated with forest edges, as reported in previous studies from Ammonia. But the strongest predictor of forest fire was the percentage of the forest fragment that had been previously logged or burned. Forest fragment size, distance to charcoal pits, distance to agricultural settlement, proximity to forest edge, and distance to roads were also correlated with forest understory fire. Logistic regression models using information on fragment degradation and distance to ignition sources accurately predicted the location of lss than 80% of the forest fires observed during the ENSO event of 1997- 1998. In this Amazon landscape, forest understory fire is a complex function of several variables that influence both the flammability and ignition exposure of the forest.

  20. Reconciling certification and intact forest landscape conservation.

    PubMed

    Kleinschroth, Fritz; Garcia, Claude; Ghazoul, Jaboury

    2018-05-29

    In 2014, the Forest Stewardship Council (FSC) added a new criterion to its principles that requires protection of intact forest landscapes (IFLs). An IFL is an extensive area of forest that lacks roads and other signs of human activity as detected through remote sensing. In the Congo basin, our analysis of road networks in formally approved concessionary logging areas revealed greater loss of IFL in certified than in noncertified concessions. In areas of informal (i.e., nonregulated) extraction, road networks are known to be less detectable by remote sensing. Under the current definition of IFL, companies certified under FSC standards are likely to be penalized relative to the noncertified as well as the informal logging sector on account of their planned road networks, despite an otherwise better standard of forest management. This could ultimately undermine certification and its wider adoption, with implications for the future of sustainable forest management.

  1. Landscape trajectory of natural boreal forest loss as an impediment to green infrastructure.

    PubMed

    Svensson, Johan; Andersson, Jon; Sandström, Per; Mikusiński, Grzegorz; Jonsson, Bengt-Gunnar

    2018-06-08

    Loss of natural forests has been identified as a critical conservation challenge worldwide. This loss impede the establishment of a functional green infrastructure as a spatiotemporally connected landscape-scale network of habitats enhancing biodiversity, favorable conservation status and ecosystem services. In many regions this loss is caused by forest clearcutting. Through retrospective satellite images analysis we assessed a 50-60 year spatiotemporal clearcutting impact trajectory on natural and near-natural boreal forests across a sizable and representative region from the Gulf of Bothnia to the Scandinavian Mountain Range in northern Fennoscandia. Our analysis broadly covers the whole forest clearcutting period and thus our study approach and results can be applied for comprehensive impact assessment of industrial forest management. Our results demonstrate profound disturbance on natural forest landscape configuration. The whole forest landscape is in a late phase in a transition from a natural or near-natural to a land-use modified state. Our results provide evidence of natural forest loss and spatial polarization at the regional scale, with a pre-dominant share of valuable habitats left in the mountain area, whereas the inland area has been more severely impacted. We highlight the importance of interior forest areas as most valuable biodiversity hotspots and the central axis of green infrastructure. Superimposing the effects of edge disturbance on forest fragmentation, the loss of interior forest entities further aggravate the conservation premises. Our results also show a loss of large contiguous forest patches and indicate patch size homogenization. The current forest protection share is low in the region and with geographical imbalance as the absolute majority is located in remote and low productive sites in the mountain area. Our approach provides possibilities to identify forest areas for directed conservation actions in the form of new protection, restoration and nature conservation oriented forest management, for implementing a functional green infrastructure. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Modeling soil erosion and transport on forest landscape

    Treesearch

    Ge Sun; Steven G McNulty

    1998-01-01

    Century-long studies on the impacts of forest management in North America suggest sediment can cause major reduction on stream water quality. Soil erosion patterns in forest watersheds are patchy and heterogeneous. Therefore, patterns of soil erosion are difficult to model and predict. The objective of this study is to develop a user friendly management tool for land...

  3. Simulating the effects of the southern pine beetle on regional dynamics 60 years into the future

    Treesearch

    Jennifer K. Costanza; Jiri Hulcr; Frank H. Koch; Todd Earnhardt; Alexa J. McKerrow; Rob R. Dunn; Jaime A. Collazo

    2012-01-01

    We developed a spatially explicit model that simulated future southern pine beetle (Dendroctonus frontalis, SPB) dynamics and pine forest management for a real landscape over 60 years to inform regional forest management. The SPB has a considerable effect on forest dynamics in the Southeastern United States, especially in loblolly pine (...

  4. Forest Trees in Human Modified Landscapes: Ecological and Genetic Drivers of Recruitment Failure in Dysoxylum malabaricum (Meliaceae)

    PubMed Central

    Ismail, Sascha A.; Ghazoul, Jaboury; Ravikanth, Gudasalamani; Kushalappa, Cheppudira G.; Uma Shaanker, Ramanan; Kettle, Chris J.

    2014-01-01

    Tropical agro-forest landscapes are global priority areas for biodiversity conservation. Little is known about the ability of these landscapes to sustain large late successional forest trees upon which much forest biodiversity depends. These landscapes are subject to fragmentation and additional habitat degradation which may limit tree recruitment and thus compromise numerous ecosystem services including carbon storage and timber production. Dysoxylum malabaricum is a large canopy tree species in the Meliaceae, a family including many important tropical timber trees. This species is found in highly fragmented forest patches within a complex agro-forest landscape of the Western Ghats biodiversity hot spot, South India. In this paper we combined a molecular assessment of inbreeding with ecological and demographic data to explore the multiple threats to recruitment of this tree species. An evaluation of inbreeding, using eleven microsatellite loci in 297 nursery-reared seedlings collected form low and high density forest patches embedded in an agro-forest matrix, shows that mating between related individuals in low density patches leads to reduced seedling performance. By quantifying habitat degradation and tree recruitment within these forest patches we show that increasing canopy openness and the increased abundance of pioneer tree species lead to a general decline in the suitability of forest patches for the recruitment of D. malabaricum. We conclude that elevated inbreeding due to reduced adult tree density coupled with increased degradation of forest patches, limit the recruitment of this rare late successional tree species. Management strategies which maintain canopy cover and enhance local densities of adult trees in agro-forest mosaics will be required to ensure D. malabaricum persists in these landscapes. Our study highlights the need for a holistic understanding of the incipient processes that threaten populations of many important and rare tropical tree species in human dominated agro-forest landscapes. PMID:24558500

  5. Managing black walnut in natural stands: the human dimension

    Treesearch

    H.E. " Hank" Stelzer

    2004-01-01

    In managing black walnut, or any forest tree species, the human dimension is often overlooked. As a result, both the number of landowners managing their land and the number of forested acres under management has not significantly increased over the past 30 years. Elements of the human landscape are explored and a roadmap for engaging landowners is proposed.

  6. Unraveling Landscape Complexity: Land Use/Land Cover Changes and Landscape Pattern Dynamics (1954-2008) in Contrasting Peri-Urban and Agro-Forest Regions of Northern Italy.

    PubMed

    Smiraglia, D; Ceccarelli, T; Bajocco, S; Perini, L; Salvati, L

    2015-10-01

    This study implements an exploratory data analysis of landscape metrics and a change detection analysis of land use and population density to assess landscape dynamics (1954-2008) in two physiographic zones (plain and hilly-mountain area) of Emilia Romagna, northern Italy. The two areas are characterized by different landscape types: a mixed urban-rural landscape dominated by arable land and peri-urban settlements in the plain and a traditional agro-forest landscape in the hilly-mountain area with deciduous and conifer forests, scrublands, meadows, and crop mosaic. Urbanization and, to a lesser extent, agricultural intensification were identified as the processes underlying landscape change in the plain. Land abandonment determining natural forestation and re-forestation driven by man was identified as the process of change most representative of the hilly-mountain area. Trends in landscape metrics indicate a shift toward more fragmented and convoluted patterns in both areas. Number of patches, the interspersion and juxtaposition index, and the large patch index are the metrics discriminating the two areas in terms of landscape patterns in 1954. In 2008, mean patch size, edge density, interspersion and juxtaposition index, and mean Euclidean nearest neighbor distance were the metrics with the most different spatial patterns in the two areas. The exploratory data analysis of landscape metrics contributed to link changes over time in both landscape composition and configuration providing a comprehensive picture of landscape transformations in a wealthy European region. Evidence from this study are hoped to inform sustainable land management designed for homogeneous landscape units in similar socioeconomic contexts.

  7. Evaluating forest product potential as part of planning ecological restoration treatments on forested landscapes

    Treesearch

    R. James Barbour; Ryan Singleton; Douglas A. Maguire

    2007-01-01

    As landscape-scale assessments and modeling become a more common method for evaluating alternatives in integrated resource management, new techniques are needed to display and evaluate outcomes for large numbers of stands over long periods. In this proof of concept, we evaluate the potential to provide financial support for silvicultural treatments by selling timber...

  8. Scenic Vistas and the Changing Policy Landscape: Visualizing and Testing the Role of Visual Resources in Ecosystem Management

    Treesearch

    Robert G. Ribe; Edward T. Armstrong; Paul H. Gobster

    2002-01-01

    The Northwest Forest Plan applies a shift in policy to national forests in the Pacific Northwest, with implications for other public landscapes. This shift offers potentially strong scenic implications for areas that have historically emphasized clearcutting with little visual impact mitigation. These areas will now emphasize biocentric concerns and harvests formed...

  9. Windstorm damage in Boundary Waters Canoe Area Wilderness (Minnesota, USA): Evaluating landscape-level risk factors

    Treesearch

    W. Keith Moser; Mark D. Nelson

    2009-01-01

    Ecosystem management requires an understanding of disturbance processes and their influence on forests. One of these disturbances is damage due to severe wind events. In an ideal model, assessing risk of windstorm damage to a forested ecosystem entails defining tree-, stand-, and landscape-level factors that influence response and recovery. Data are not always...

  10. Can we manage tropical landscapes? – an answer from the Caribbean perspective.

    Treesearch

    Ariel E. Lugo

    2002-01-01

    Humans have used Caribbean island landscapes for millennia. The conversion of wild lands to built-up lands or to agricultural lands in these tropical countries follows predictable patterns. Conversion of moist forest life zones and fertile flatlands is faster than conversion of wet and rain forest life zones and low fertility steep lands. In Puerto Rico, these trends...

  11. Geographic information analysis: An ecological approach for the management of wildlife on the forest landscape

    NASA Technical Reports Server (NTRS)

    Ripple, William J.

    1995-01-01

    This document is a summary of the project funded by NAGw-1460 as part of the Earth Observation Commericalization/Applications Program (EOCAP) directed by NASA's Earth Science and Applications Division. The goal was to work with several agencies to focus on forest structure and landscape characterizations for wildlife habitat applications. New analysis techniques were used in remote sensing and landscape ecology with geographic information systems (GIS). The development of GIS and the emergence of the discipline of landscape ecology provided us with an opportunity to study forest and wildlife habitat resources from a new perspective. New techniques were developed to measure forest structure across scales from the canopy to the regional level. This paper describes the project team, technical advances, and technology adoption process that was used. Reprints of related refereed journal articles are in the Appendix.

  12. Local and Landscape Factors Determining Occurrence of Phyllostomid Bats in Tropical Secondary Forests

    PubMed Central

    Avila-Cabadilla, Luis Daniel; Sanchez-Azofeifa, Gerardo Arturo; Stoner, Kathryn Elizabeth; Alvarez-Añorve, Mariana Yolotl; Quesada, Mauricio; Portillo-Quintero, Carlos Alonso

    2012-01-01

    Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late). We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity) and the landscape level (forest cover, area and diversity of patches). Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in anthropogenic landscapes, we must realize that the management of the habitat at the landscape level is as important as the conservation of particular forest fragments. PMID:22529994

  13. Local and landscape factors determining occurrence of phyllostomid bats in tropical secondary forests.

    PubMed

    Avila-Cabadilla, Luis Daniel; Sanchez-Azofeifa, Gerardo Arturo; Stoner, Kathryn Elizabeth; Alvarez-Añorve, Mariana Yolotl; Quesada, Mauricio; Portillo-Quintero, Carlos Alonso

    2012-01-01

    Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late). We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity) and the landscape level (forest cover, area and diversity of patches). Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in anthropogenic landscapes, we must realize that the management of the habitat at the landscape level is as important as the conservation of particular forest fragments.

  14. Novel characterization of landscape-level variability in historical vegetation structure.

    PubMed

    Collins, Brandon M; Lydersen, Jamie M; Everett, Richard G; Fry, Danny L; Stephens, Scott L

    2015-07-01

    We analyzed historical timber inventory data collected systematically across a large mixed-conifer-dominated landscape to gain insight into the interaction between disturbances and vegetation structure and composition prior to 20th century land management practices. Using records from over 20 000 trees, we quantified historical vegetation structure and composition for nine distinct vegetation groups. Our findings highlight some key aspects of forest structure under an intact disturbance regime: (1) forests were low density, with mean live basal area and tree density ranging from 8-30 m2 /ha and 25-79 trees/ha, respectively; (2) understory and overstory structure and composition varied considerably across the landscape; and (3) elevational gradients largely explained variability in forest structure over the landscape. Furthermore, the presence of large trees across most of the surveyed area suggests that extensive stand-replacing disturbances were rare in these forests. The vegetation structure and composition characteristics we quantified, along with evidence of largely elevational control on these characteristics, can provide guidance for restoration efforts in similar forests.

  15. Effect of land-use practice on soil moisture variability for soils covered with dense forest vegetation of Puerto Rico

    NASA Technical Reports Server (NTRS)

    Tsegaye, T.; Coleman, T.; Senwo, Z.; Shaffer, D.; Zou, X.

    1998-01-01

    Little is known about the landuse management effect on soil moisture and soil pH distribution on a landscape covered with dense tropical forest vegetation. This study was conducted at three locations where the history of the landuse management is different. Soil moisture was measured using a 6-cm three-rod Time Domain Reflectometery (TDR) probe. Disturbed soil samples were taken from the top 5-cm at the up, mid, and foothill landscape position from the same spots where soil moisture was measured. The results showed that soil moisture varies with landscape position and depth at all three locations. Soil pH and moisture variability were found to be affected by the change in landuse management and landscape position. Soil moisture distribution usually expected to be relatively higher in the foothill (P3) area of these forests than the uphill (P1) position. However, our results indicated that in the Luquillo and Guanica site the surface soil moisture was significantly higher for P1 than P3 position. These suggest that the surface and subsurface drainage in these two sites may have been poor due to the nature of soil formation and type.

  16. The Agua Salud Project, Central Panama

    NASA Astrophysics Data System (ADS)

    Stallard, R. F.; Elsenbeer, H.; Ogden, F. L.; Hall, J. S.

    2007-12-01

    The Agua Salud Project utilizes the Panama Canal's central role in world commerce to focus global attention on the ecosystem services provided by tropical forests. It will be the largest field experiment of its kind in the tropics aimed at quantifying the environmental services (water, carbon, and biodiversity) provided by tropical forests. The Agua Salud Watershed is our principal field site. This watershed and the headwaters of several adjacent rivers include both protected mature forests and a wide variety of land uses that are typical of rural Panama. Experiments at the scale of entire catchments will permit complete water and carbon inventories and exchanges for different landscape uses. The following questions will be addressed: (1) How do landscape treatments and management approaches affect ecosystem services such as carbon storage, water quality and quantity, dry- season water supply, and biodiversity? (2) Can management techniques be designed to optimize forest production along with ecosystem services during reforestation? (3) Do different tree planting treatments and landscape management approaches influence groundwater storage, which is thought to be critical to maintaining dry-season flow, thus insuring the full operation of the Canal during periods of reduced rainfall and severe climatic events such as El Niño. In addition we anticipate expanding this project to address biodiversity, social, and economic values of these forests.

  17. 75 FR 38456 - Collaborative Forest Landscape Restoration Program Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... should be sent to USDA Forest Service, Forest Management, Mailstop-1103, 1400 Independence Avenue, SW., Washington, DC 20250-1103. Comments may also be sent via e-mail to [email protected] or via facsimile to 202...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilgo, John, C.; Blake, John, I.

    Kilgo, John, C., and John I. Blake. 2005. Ecology and management of a forested landscape; fifty years on the Savannah River Site. Island Press. Washington, DC. John C. Kilgo and John I. Blake, eds. 479 pp. Abstract: This book chronicles and catalogs the forest management and forest restoration practices over the last 50 years at the Savannah River Site. It includes a description of the land use history, physical environment, forest management, biotic communities, threatened and endangered species and harvestable natural resources of the area known today as the Savannah River Site, South Carolina.

  19. Using climate-FVS to project landscape-level forest carbon stores for 100 years from field and LiDAR measures of initial conditions

    Treesearch

    Fabian B. Galvez; Andrew T. Hudak; John C. Byrne; Nicholas L. Crookston; Robert F. Keefe

    2014-01-01

    Forest resources supply a wide range of environmental services like mitigation of increasing levels of atmospheric carbon dioxide (CO2). As climate is changing, forest managers have added pressure to obtain forest resources by following stand management alternatives that are biologically sustainable and economically profitable. The goal of this study is to project the...

  20. Strip thinning young hardwood forests: multi-functional management for wood, wildlife, and bioenergy

    Treesearch

    Jamie Schuler; Ashlee Martin

    2016-01-01

    Upland hardwood forests dominate the Appalachian landscape. However, early successional forests are limited. In WV and PA, for example, only 8 percent of the timberland is classified as seedling and sapling-sized. Typically no management occurs in these forests due to the high cost of treatment and the lack of marketable products. If bioenergy markets come to fruition...

  1. Sensitivity of pine flatwoods hydrology to climate change and forest management in Florida, USA

    Treesearch

    Jianbiao Lu; Ge Sun; Steven G. McNulty; Nicholas B. Comerford

    2009-01-01

    Pine flatwoods (a mixture of cypress wetlands and managed pine uplands) is an important ecosystem in the southeastern U.S. However, long-term hydrologic impacts of forest management and climate change on this heterogeneous landscape are not well understood. Therefore, this study examined the sensitivity of cypress-pine flatwoods...

  2. The Mammoth-June Ecosystem Management Project, Inyo National Forest

    Treesearch

    Connie Millar

    1996-01-01

    The Sierra Nevada Ecosystem Project (SNEP) case-study assessmentof the Mammoth-June Ecosystem Management Project(MJEMP) was undertaken to review and analyze the efficacy of alocal landscape analysis in achieving ecosystem-management objectivesin the Sierra Nevada. Of primary interest to SNEP was applicationof the new U.S. Forest Service (USFS) regional process...

  3. Simulating the Effects of Alternative Forest Management Strategies on Landscape Structure

    Treesearch

    Eric J. Gustafson; Thomas Crow

    1996-01-01

    Quantitative, spatial tools are needed to assess the long-term spatial consequences of alternative management strategies for land use planning and resource management. We constructed a timber harvest allocation model (HARVEST) that provides a visual and quantitative means to predict the spatial pattern of forest openings produced by alternative harvest strategies....

  4. A method for landscape analysis of forestry guidelines using bird habitat models and the Habplan harvest scheduler

    USGS Publications Warehouse

    Loehle, C.; Van Deusen, P.; Wigley, T.B.; Mitchell, M.S.; Rutzmoser, S.H.; Aggett, J.; Beebe, J.A.; Smith, M.L.

    2006-01-01

    Wildlife-habitat relationship models have sometimes been linked with forest simulators to aid in evaluating outcomes of forest management alternatives. However, linking wildlife-habitat models with harvest scheduling software would provide a more direct method for assessing economic and ecological implications of alternative harvest schedules in commercial forest operations. We demonstrate an approach for frontier analyses of wildlife benefits using the Habplan harvest scheduler and spatially explicit wildlife response models in the context of operational forest planning. We used the Habplan harvest scheduler to plan commercial forest management over a 40-year horizon at a landscape scale under five scenarios: unmanaged, an unlimited block-size option both with and without riparian buffers, three cases with different block-size restrictions, and a set-asides scenario in which older stands were withheld from cutting. The potential benefit to wildlife was projected based on spatial models of bird guild richness and species probability of detection. Harvested wood volume provided a measure of scenario costs, which provides an indication of management feasibility. Of nine species and guilds, none appeared to benefit from 50 m riparian buffers, response to an unmanaged scenario was mixed and expensive, and block-size restrictions (maximum harvest unit size) provided no apparent benefit and in some cases were possibly detrimental to bird richness. A set-aside regime, however, appeared to provide significant benefits to all species and groups, probably through increased landscape heterogeneity and increased availability of older forest. Our approach shows promise for evaluating costs and benefits of forest management guidelines in commercial forest enterprises and improves upon the state of the art by utilizing an optimizing harvest scheduler as in commercial forest management, multiple measures of biodiversity (models for multiple species and guilds), and spatially explicit wildlife response models. ?? 2006 Elsevier B.V. All rights reserved.

  5. Landfire: Landscape Fire and Resource Management Planning Tools Project

    Treesearch

    Kevin C. Ryan; Kristine M. Lee; Matthew G. Rollins; Zhiliang Zhu; James Smith; Darren Johnson

    2006-01-01

    Managers are faced with reducing hazardous fuel, restoring fire regimes, and decreasing the threat of catastrophic wildfire. Often, the comprehensive, scientifically-credible data and applications needed to test alternative fuel treatments across multi-ownership landscapes are lacking. Teams from the USDA Forest Service, Department of the Interior, and The Nature...

  6. 77 FR 43046 - Lolo National Forest; Montana; Center Horse Landscape Restoration EIS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... construction (about 5 miles); (7) re-route 5 road segments to improve fish habitat; (8) add existing roads to... implement restoration activities, including vegetation management, road and trail management, and watershed... unneeded or environmentally impactive roads and trails. Proposed Action The Center Horse Landscape...

  7. Identifying the location of fire refuges in wet forest ecosystems.

    PubMed

    Berry, Laurence E; Driscoll, Don A; Stein, John A; Blanchard, Wade; Banks, Sam C; Bradstock, Ross A; Lindenmayer, David B

    2015-12-01

    The increasing frequency of large, high-severity fires threatens the survival of old-growth specialist fauna in fire-prone forests. Within topographically diverse montane forests, areas that experience less severe or fewer fires compared with those prevailing in the landscape may present unique resource opportunities enabling old-growth specialist fauna to survive. Statistical landscape models that identify the extent and distribution of potential fire refuges may assist land managers to incorporate these areas into relevant biodiversity conservation strategies. We used a case study in an Australian wet montane forest to establish how predictive fire simulation models can be interpreted as management tools to identify potential fire refuges. We examined the relationship between the probability of fire refuge occurrence as predicted by an existing fire refuge model and fire severity experienced during a large wildfire. We also examined the extent to which local fire severity was influenced by fire severity in the surrounding landscape. We used a combination of statistical approaches, including generalized linear modeling, variogram analysis, and receiver operating characteristics and area under the curve analysis (ROC AUC). We found that the amount of unburned habitat and the factors influencing the retention and location of fire refuges varied with fire conditions. Under extreme fire conditions, the distribution of fire refuges was limited to only extremely sheltered, fire-resistant regions of the landscape. During extreme fire conditions, fire severity patterns were largely determined by stochastic factors that could not be predicted by the model. When fire conditions were moderate, physical landscape properties appeared to mediate fire severity distribution. Our study demonstrates that land managers can employ predictive landscape fire models to identify the broader climatic and spatial domain within which fire refuges are likely to be present. It is essential that within these envelopes, forest is protected from logging, roads, and other developments so that the ecological processes related to the establishment and subsequent use of fire refuges are maintained.

  8. Landscape-scale GPP and carbon density inform patterns and impacts of an invasive tree across wet forests of Hawaii.

    PubMed

    Barbosa, Jomar M; Asner, Gregory P; Hughes, R Flint; Johnson, M Tracy

    2017-03-01

    Plant invasion typically occurs within a landscape-scale framework of abiotic and biotic conditions, often resulting in emergent feedbacks among environment, ecosystem functions, and the dominance of invasive species. Understanding the mechanisms underlying successful invasions is an important component of conservation and management efforts, but this has been poorly investigated in a spatially explicit manner. Knowing where and why invasion patterns change throughout the landscape enables managers to use context-specific controls on the spread of invasive species. Using high-resolution airborne imaging spectroscopy, we studied plant performance in growth within and across landscapes to examine the dominance and spatial distribution of an invasive tree, Psidium cattleianum (strawberry guava), in heterogeneous environmental conditions of a submontane Hawaiian tropical forest. We assessed invader performance using the GPP ratio index, which is the relative difference in remotely sensed estimates of gross primary productivity between canopies of guava and canopies of the invaded plant community. In addition, we used airborne LiDAR data to evaluate the impacts of guava invasion on the forest aboveground carbon density in different environments. Structural equation modeling revealed that substrate type and elevation above sea level interact and amplify landscape-scale differences in productivity between the invasive species and the host plant community (GPP ratio); differences that ultimately control levels of dominance of guava. We found shifts in patterns of forest carbon storage based on both gradual increase of invader dominance and changes in environmental conditions. Overall, our results demonstrate that the remotely sensed index defined as the GPP ratio provided an innovative spatially explicit approach to track and predict the success of invasive plants based in their canopy productivity, particularly within a landscape-scale framework of varying environmental factors such as soils and elevation. This approach may help managers accurately predict where invaders of forests, scrublands, or grasslands are likely to exhibit high levels of dominance before the environment is fully invaded. © 2016 by the Ecological Society of America.

  9. Selection of roosting habitat by forest bats in a diverse forested landscape

    Treesearch

    Roger W. Perry; Ronald E. Thill; David M. Leslie

    2007-01-01

    Many studies of roost selection by forest-dwelling bats have concentrated on microhabitat surrounding roosts without providing forest stand level preferences of bats; thus, those studies have provided only part of the information needed by managers. We evaluated diurnal summer roost selection by the bat community at the forest-stand level in a diversely forested...

  10. Intervention for the collaborative use of Geographic Information Systems by private forest landowners: a meaning-centered perspective

    Treesearch

    Kirk D. Sinclair; Barbara A. Knuth

    2001-01-01

    Private forest landowners support the stewardship objectives that can be achieved through ecosystems-based management. However, ecosystems-based management is a data intensive approach that focuses upon the broad forest landscape. Intervention by forestry agents or agencies could help neighboring landowners to collaborate with an ecosystems-based approach in pursuit of...

  11. Optimising fuel treatments over time and space

    Treesearch

    Woodam Chung; Greg Jones; Kurt Krueger; Jody Bramel; Marco Contreras

    2013-01-01

    Fuel treatments have been widely used as a tool to reduce catastrophic wildland fire risks in many forests around the world. However, it is a challenging task for forest managers to prioritise where, when and how to implement fuel treatments across a large forest landscape. In this study, an optimisation model was developed for long-term fuel management decisions at a...

  12. Diversity in forest management to reduce wildfire losses: implications for resilience

    Treesearch

    Susan Charnley; Thomas A. Spies; Ana M. G. Barros; Eric M. White; Keith A. Olsen

    2017-01-01

    This study investigates how federal, state, and private corporate forest owners in a fire-prone landscape of southcentral Oregon manage their forests to reduce wildfire hazard and loss to high-severity wildfire. We evaluate the implications of our findings for concepts of social–ecological resilience. Using interview data, we found a high degree of "response...

  13. Climate-suitable planting as a strategy for maintaining forest productivity and functional diversity.

    PubMed

    Duveneck, Matthew J; Scheller, Robert M

    2015-09-01

    Within the time frame of the longevity of tree species, climate change will change faster than the ability of natural tree migration. Migration lags may result in reduced productivity and reduced diversity in forests under current management and climate change. We evaluated the efficacy of planting climate-suitable tree species (CSP), those tree species with current or historic distributions immediately south of a focal landscape, to maintain or increase aboveground biomass productivity, and species and functional diversity. We modeled forest change with the LANDIS-II forest simulation model for 100 years (2000-2100) at a 2-ha cell resolution and five-year time steps within two landscapes in the Great Lakes region (northeastern Minnesota and northern lower Michigan, USA). We compared current climate to low- and high-emission futures. We simulated a low-emission climate future with the Intergovernmental Panel on Climate Change (IPCC) 2007 B1 emission scenario and the Parallel Climate Model Global Circulation Model (GCM). We simulated a high-emission climate future with the IPCC A1FI emission scenario and the Geophysical Fluid Dynamics Laboratory (GFDL) GCM. We compared current forest management practices (business-as-usual) to CSP management. In the CSP scenario, we simulated a target planting of 5.28% and 4.97% of forested area per five-year time step in the Minnesota and Michigan landscapes, respectively. We found that simulated CSP species successfully established in both landscapes under all climate scenarios. The presence of CSP species generally increased simulated aboveground biomass. Species diversity increased due to CSP; however, the effect on functional diversity was variable. Because the planted species were functionally similar to many native species, CSP did not result in a consistent increase nor decrease in functional diversity. These results provide an assessment of the potential efficacy and limitations of CSP management. These results have management implications for sites where diversity and productivity are expected to decline. Future efforts to restore a specific species or forest type may not be possible, but CSP may sustain a more general ecosystem service (e.g., aboveground biomass).

  14. Integrated analysis of landscape management scenarios using state and transition models in the upper Grande Ronde River subbasin, Oregon, USA.

    Treesearch

    Miles A. Hemstrom; James Merzenich; Allison Reger; Barbara. Wales

    2007-01-01

    We modeled the integrated effects of natural disturbances and management activities for three disturbance scenarios on a 178 000-ha landscape in the upper Grande Ronde subbasin of northeast Oregon. The landscape included three forest environments (warm-dry, cool-moist, and cold) as well as a mixture of publicly and privately owned lands. Our models were state and...

  15. Bioenergy production and forest landscape change in the southeastern United States

    USGS Publications Warehouse

    Costanza, Jennifer K.; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime A.

    2016-01-01

    Production of woody biomass for bioenergy, whether wood pellets or liquid biofuels, has the potential to cause substantial landscape change and concomitant effects on forest ecosystems, but the landscape effects of alternative production scenarios have not been fully assessed. We simulated landscape change from 2010 to 2050 under five scenarios of woody biomass production for wood pellets and liquid biofuels in North Carolina, in the southeastern United States, a region that is a substantial producer of wood biomass for bioenergy and contains high biodiversity. Modeled scenarios varied biomass feedstocks, incorporating harvest of ‘conventional’ forests, which include naturally regenerating as well as planted forests that exist on the landscape even without bioenergy production, as well as purpose-grown woody crops grown on marginal lands. Results reveal trade-offs among scenarios in terms of overall forest area and the characteristics of the remaining forest in 2050. Meeting demand for biomass from conventional forests resulted in more total forest land compared with a baseline, business-as-usual scenario. However, the remaining forest was composed of more intensively managed forest and less of the bottomland hardwood and longleaf pine habitats that support biodiversity. Converting marginal forest to purpose-grown crops reduced forest area, but the remaining forest contained more of the critical habitats for biodiversity. Conversion of marginal agricultural lands to purpose-grown crops resulted in smaller differences from the baseline scenario in terms of forest area and the characteristics of remaining forest habitats. Each scenario affected the dominant type of land-use change in some regions, especially in the coastal plain that harbors high levels of biodiversity. Our results demonstrate the complex landscape effects of alternative bioenergy scenarios, highlight that the regions most likely to be affected by bioenergy production are also critical for biodiversity, and point to the challenges associated with evaluating bioenergy sustainability.

  16. Hope for the Forests? Habitat Resiliency Illustrated in the Face of Climate Change Using Fine-Scale Modeling

    NASA Astrophysics Data System (ADS)

    Flint, L. E.; Flint, A. L.; Weiss, S. B.; Micheli, E. R.

    2010-12-01

    In the face of rapid climate change, fine-scale predictions of landscape change are of extreme interest to land managers that endeavor to develop long term adaptive strategies for maintaining biodiversity and ecosystem services. Global climate model (GCM) outputs, which generally focus on estimated increases in air temperature, are increasingly applied to species habitat distribution models. For sensitive species subject to climate change, habitat models predict significant migration (either northward or towards higher elevations), or complete extinction. Current studies typically rely on large spatial scale GCM projections (> 10 km) of changes in precipitation and air temperature: at this scale, these models necessarily neglect subtleties of topographic shading, geomorphic expression of the landscape, and fine-scale differences in soil properties - data that is readily available at meaningful local scales. Recent advances in modeling take advantage of available soils, geology, and topographic data to construct watershed-scale scenarios using GCM inputs and result in improved correlations of vegetation distribution with temperature. For this study, future climate projections were downscaled to 270-m and applied to a physically-based hydrologic model to calculate future changes in recharge, runoff, and climatic water deficit (CWD) for basins draining into the northern San Francisco Bay. CWD was analyzed for mapped vegetation types to evaluate the range of CWD for historic time periods in comparison to future time periods. For several forest communities (including blue oak woodlands, montane hardwoods, douglas-fir, and coast redwood) existing landscape area exhibiting suitable CWD diminishes by up 80 percent in the next century, with a trend towards increased CWD throughout the region. However, no forest community loses all suitable habitat, with islands of potential habitat primarily remaining on north facing slopes and deeper soils. Creation of new suitable habitat is also predicted throughout the region. Results have direct application to management issues of habitat connectivity, forest land protection and acquisition, and active management solutions such as transplanting or assisted migration. Although this analysis considers only one driver of forest habitat distribution, consideration of hydrologic derivatives at a fine scale explains current forest community distributions and provides a far more informed perspective on potential future forest distributions. Results demonstrate the utility of fine-scale modeling and provide landscape managers and conservation agencies valuable management tools in fine-scale future forest scenarios and a framework for evaluating forest resiliency in a changing climate.

  17. Chapter 13 Application of landscape and habitat suitability models to conservation: the Hoosier National Forest land-management plan

    Treesearch

    Chadwick D. Rittenhouse; Stephen R. Shifley; William D. Dijak; Zhaofei Fan; Frank R., III Thompson; Joshua J. Millspaugh; Judith A. Perez; Cynthia M. Sandeno

    2011-01-01

    We demonstrate an approach to integrated land-management planning and quantify differences in vegetation and avian habitat conditions among 5 management alternatives as part of the Hoosier National Forest planning process. The alternatives differed in terms of the type, extent, magnitude, frequency, and location of management activities. We modeled ecological processes...

  18. Water quality, biodiversity, and codes of practice in relation to harvesting forest plantations in streamside management zones

    Treesearch

    Daniel G. Neary; Philip J. Smethurst; Brenda Baillie; Kevin C. Petrone

    2011-01-01

    Streamside management zones (SMZs) are special landscape units that include riparian areas and adjacent lands that mitigate the movement of sediment, nutrients and other chemicals from upland forest and agricultural management areas into streams. The size, shape, and management of SMZs are governed by various combinations of economic, ecological, and regulatory factors...

  19. Modeling forest bird species' likelihood of occurrence in Utah with Forest Inventory and Analysis and Landfire map products and ecologically based pseudo-absence points

    Treesearch

    Phoebe L. Zarnetske; Thomas C., Jr. Edwards; Gretchen G. Moisen

    2007-01-01

    Estimating species likelihood of occurrence across extensive landscapes is a powerful management tool. Unfortunately, available occurrence data for landscape-scale modeling is often lacking and usually only in the form of observed presences. Ecologically based pseudo-absence points were generated from within habitat envelopes to accompany presence-only data in habitat...

  20. Emulating natural disturbance regimes: an emerging approach for sustainable forest management

    Treesearch

    M. North; W Keeton

    2008-01-01

    Sustainable forest management integrates ecological, social, and economic objectives. To achieve the former, researchers and practitioners are modifying silvicultural practices based on concepts from successional and landscape ecology to provide a broader array of ecosystem functions than is associated with conventional approaches. One...

  1. Forest landscape analysis and design: a process for developing and implementing land management objectives for landscape patterns.

    Treesearch

    Nancy Diaz; Dean Apostol

    1992-01-01

    This publication presents a Landscape Design and Analysis Process, along with some simple methods and tools for describing landscapes and their function. The information is qualitative in nature and highlights basic concepts, but does not address landscape ecology in great depth. Readers are encouraged to consult the list of selected references in Chapter 2 if they...

  2. Methods to assess landscape-scale risk of bark beetle infestation to support forest management decisions

    Treesearch

    T. L. Shore; A. Fall; W. G. Riel; J. Hughes; M. Eng

    2010-01-01

    The objective of our paper is to provide practitioners with suggestions on how to select appropriate methods for risk assessment of bark beetle infestations at the landscape scale in order to support their particular management decisions and to motivate researchers to refine novel risk assessment methods. Methods developed to assist and inform management decisions for...

  3. Growing Canopy on a College Campus: Understanding Urban Forest Change through Archival Records and Aerial Photography.

    PubMed

    Roman, Lara A; Fristensky, Jason P; Eisenman, Theodore S; Greenfield, Eric J; Lundgren, Robert E; Cerwinka, Chloe E; Hewitt, David A; Welsh, Caitlin C

    2017-12-01

    Many municipalities are setting ambitious tree canopy cover goals to increase the extent of their urban forests. A historical perspective on urban forest development can help cities strategize how to establish and achieve appropriate tree cover targets. To understand how long-term urban forest change occurs, we examined the history of trees on an urban college campus: the University of Pennsylvania in Philadelphia, PA. Using a mixed methods approach, including qualitative assessments of archival records (1870-2017), complemented by quantitative analysis of tree cover from aerial imagery (1970-2012), our analysis revealed drastic canopy cover increase in the late 20th and early 21st centuries along with the principle mechanisms of that change. We organized the historical narrative into periods reflecting campus planting actions and management approaches; these periods are also connected to broader urban greening and city planning movements, such as City Beautiful and urban sustainability. University faculty in botany, landscape architecture, and urban design contributed to the design of campus green spaces, developed comprehensive landscape plans, and advocated for campus trees. A 1977 Landscape Development Plan was particularly influential, setting forth design principles and planting recommendations that enabled the dramatic canopy cover gains we observed, and continue to guide landscape management today. Our results indicate that increasing urban tree cover requires generational time scales and systematic management coupled with a clear urban design vision and long-term commitments. With the campus as a microcosm of broader trends in urban forest development, we conclude with a discussion of implications for municipal tree cover planning.

  4. Growing Canopy on a College Campus: Understanding Urban Forest Change through Archival Records and Aerial Photography

    NASA Astrophysics Data System (ADS)

    Roman, Lara A.; Fristensky, Jason P.; Eisenman, Theodore S.; Greenfield, Eric J.; Lundgren, Robert E.; Cerwinka, Chloe E.; Hewitt, David A.; Welsh, Caitlin C.

    2017-12-01

    Many municipalities are setting ambitious tree canopy cover goals to increase the extent of their urban forests. A historical perspective on urban forest development can help cities strategize how to establish and achieve appropriate tree cover targets. To understand how long-term urban forest change occurs, we examined the history of trees on an urban college campus: the University of Pennsylvania in Philadelphia, PA. Using a mixed methods approach, including qualitative assessments of archival records (1870-2017), complemented by quantitative analysis of tree cover from aerial imagery (1970-2012), our analysis revealed drastic canopy cover increase in the late 20th and early 21st centuries along with the principle mechanisms of that change. We organized the historical narrative into periods reflecting campus planting actions and management approaches; these periods are also connected to broader urban greening and city planning movements, such as City Beautiful and urban sustainability. University faculty in botany, landscape architecture, and urban design contributed to the design of campus green spaces, developed comprehensive landscape plans, and advocated for campus trees. A 1977 Landscape Development Plan was particularly influential, setting forth design principles and planting recommendations that enabled the dramatic canopy cover gains we observed, and continue to guide landscape management today. Our results indicate that increasing urban tree cover requires generational time scales and systematic management coupled with a clear urban design vision and long-term commitments. With the campus as a microcosm of broader trends in urban forest development, we conclude with a discussion of implications for municipal tree cover planning.

  5. Heritage landscape structure analysis in surrounding environment of the Grand Canal Yangzhou section

    NASA Astrophysics Data System (ADS)

    Xu, Huan

    2018-03-01

    The Yangzhou section of the Grand Canal is selected for a case study in this paper. The ZY-3 satellite images of 2016 are adopted as the data source. RS and GIS are used to analyze the landscape classification of the surrounding landscape of the Grand Canal, and the classification results are precisely evaluated. Next, the overall features of the landscape pattern are analyzed. The results showed that the overall accuracy is 82.5% and the Kappa coefficient is 78.17% in the Yangzhou section. The producer’s accuracy of the water landscape is the highest, followed by that of the other landscape, farmland landscape, garden and forest landscape, architectural landscape. The user’s accuracy of different landscape types can be ranked in a descending order, as the water landscape, farmland landscape, road landscape, architectural landscape, other landscape, garden and forest landscape. The farmland landscape and the architectural landscape are the top advantageous landscape types of the heritage site. The research findings can provide basic data for landscape protection, management and sustainable development of the Grand Canal Yangzhou section.

  6. A landscape perspective for forest restoration

    USGS Publications Warehouse

    Sisk, Thomas D.; Savage, Melissa; Falk, Donald A.; Allen, Craig D.; Muldavin, Esteban; McCarthy, Patrick

    2005-01-01

    Forest managers throughout the West are anxiously seeking solutions to the problem of “large crown fires” - destructive blazes atypical of many forest types in the region. These wildfires have created a crisis mentality in management that has focused on rigid prescriptions for fuels reduction, rather than the restoration of diverse, resilient, and self-regulating forest ecosystems. Now, as we shape our responses to the threat of larger and more frequent crown fires, we are in danger of missing the forest for the trees.

  7. Design and management of linkage areas across headwater drainages to conserve biodiversity in forest ecosystems

    Treesearch

    Deanna H. Olson; Kelly M. Burnett

    2009-01-01

    Biota in managed forest landscapes may be at risk from habitat fragmentation that prevents dispersal among subpopulations. Management provisions to provide connectivity are often considered independently for aquatic and terrestrial species. Of increasing concern is that dichotomous approaches are economically inefficient and may fragment populations that rely on both...

  8. Chapter 6: Incorporating rural community characteristics into forest management decisions

    Treesearch

    Mindy S. Crandall; Jane L. Harrison; Claire A. Montgomery

    2014-01-01

    As part of the Integrated Landscape Assessment Project, we developed a methodology for managers to include potential community benefits when considering forest management treatments. To do this, we created a watershed impact score that scores each watershed (potential source of wood material) with respect to the communities that are likely to benefit from increased...

  9. Perception of scale in forest management planning: Challenges and implications

    Treesearch

    Swee May Tang; Eric J. Gustafson

    1997-01-01

    Forest management practices imposed at one spatial scale may affect the patterns and processes of ecosystems at other scales. These impacts and feedbacks on the functioning of ecosystems across spatial scales are not well understood. We examined the effects of silvicultural manipulations simulated at two spatial scales of management planning on landscape pattern and...

  10. The canary in the coal mine: Sprouts as a rapid indicator of browse impact in managed forests

    Treesearch

    Alex Royo; David W. Kramer; Karl V. Miller; Nathan P. Nibbelink; Susan L. Stout

    2016-01-01

    Forest managers are frequently confronted with sustaining vegetation diversity and structure in land-scapes experiencing high ungulate browsing pressure. Often, managers monitor browse damage and risk to plant communities using vegetation as indicators (i.e., phytoindicators). Although useful, the efficacy of traditional phytoindicators is sometimes hampered by limited...

  11. Research on the epidemiology, ecology and management of Phytophthora ramorum in California forests

    Treesearch

    David M. Rizzo

    2006-01-01

    The ultimate goal of Phytophthora ramorum research is to develop disease management strategies. To date, studies have been focused at three management levels: the individual tree, the landscape (or forest stand), and the regional to international scale (Garbelotto and others 2003, Rizzo and Garbelotto 2003, Rizzo and others 2005). I will focus my...

  12. The use of shaded fuelbreaks in landscape fire management

    Treesearch

    James K. Agee; Bernie Bahro; Mark A. Finney; Philip N. Omi; David B. Sapsis; Carl N. Skinner; Jan W. van Wagtendonk; C. Phillip Weatherspoon

    2000-01-01

    Shaded fuelbreaks and larger landscape fuel treatments, such as prescribed fire, are receiving renewed interest as forest protection strategies in the western United States. The effectiveness of fuelbreaks remains a subject of debate because of differing fuelbreak objectives, prescriptions for creation and maintenance, and their placement in landscapes with differing...

  13. When does seed limitation matter for scaling up reforestation from patches to landscapes?

    PubMed

    Caughlin, T Trevor; Elliott, Stephen; Lichstein, Jeremy W

    2016-12-01

    Restoring forest to hundreds of millions of hectares of degraded land has become a centerpiece of international plans to sequester carbon and conserve biodiversity. Forest landscape restoration will require scaling up ecological knowledge of secondary succession from small-scale field studies to predict forest recovery rates in heterogeneous landscapes. However, ecological field studies reveal widely divergent times to forest recovery, in part due to landscape features that are difficult to replicate in empirical studies. Seed rain can determine reforestation rate and depends on landscape features that are beyond the scale of most field studies. We develop mathematical models to quantify how landscape configuration affects seed rain and forest regrowth in degraded patches. The models show how landscape features can alter the successional trajectories of otherwise identical patches, thus providing insight into why some empirical studies reveal a strong effect of seed rain on secondary succession, while others do not. We show that seed rain will strongly limit reforestation rate when patches are near a threshold for arrested succession, when positive feedbacks between tree canopy cover and seed rain occur during early succession, and when directed dispersal leads to between-patch interactions. In contrast, seed rain has weak effects on reforestation rate over a wide range of conditions, including when landscape-scale seed availability is either very high or very low. Our modeling framework incorporates growth and survival parameters that are commonly estimated in field studies of reforestation. We demonstrate how mathematical models can inform forest landscape restoration by allowing land managers to predict where natural regeneration will be sufficient to restore tree cover. Translating quantitative forecasts into spatially targeted interventions for forest landscape restoration could support target goals of restoring millions of hectares of degraded land and help mitigate global climate change. © 2016 by the Ecological Society of America.

  14. Canopy disturbance and tree recruitment over two centuries in a managed longleaf pine landscape

    Treesearch

    Neil Pederson; J. Morgan Varner; Brian J. Palik

    2008-01-01

    Disturbance history was reconstructed across an 11300 ha managed longleaf pine (Pinus palustris Mill.) landscape in southwestern Georgia, USA. Our specific objectives were to: (i) determine forest age structure; (ii) reconstruct disturbance history through the relationship between canopy disturbance, tree recruitment and growth; and (iii) explore the...

  15. Landscape silviculture for late-successional reserve management

    Treesearch

    S Hummel; R.J. Barbour

    2007-01-01

    The effects of different combinations of multiple, variable-intensity silvicultural treatments on fire and habitat management objectives were evaluated for a ±6,000 ha forest reserve using simulation models and optimization techniques. Our methods help identify areas within the reserve where opportunities exist to minimize conflict between the dual landscape objectives...

  16. Understory vegetation and site factors : implications for a managed Wisconsin landscape

    Treesearch

    K.D. Brosofske; J. Chen; Thomas R. Crow

    2001-01-01

    We investigated relationships between edaphic and environmental factors (soil, forest floor, topography, and canopy) and understory vegetation (composition, richness, and Shannon-Wiener diversity index, H')among 77 plots representing seven major patch types comprising a landscape in northern Wisconsin that has a long history of human management. Sampled patch...

  17. Synthesis: ecology-based landscape planning and management

    Treesearch

    Thomas R. Crow

    2008-01-01

    The words "sustain" or "sustainable" are commonly found in the mission statements of resource management agencies. The mission of the USDA Forest Service, for example, is to "sustain the health, diversity, and productivity of the Nation's forests and grasslands to meet the needs of present and future generations." Sustaining the...

  18. Modelling Associations between Public Understanding, Engagement and Forest Conditions in the Inland Northwest, USA

    PubMed Central

    Hartter, Joel; Stevens, Forrest R.; Hamilton, Lawrence C.; Congalton, Russell G.; Ducey, Mark J.; Oester, Paul T.

    2015-01-01

    Opinions about public lands and the actions of private non-industrial forest owners in the western United States play important roles in forested landscape management as both public and private forests face increasing risks from large wildfires, pests and disease. This work presents the responses from two surveys, a random-sample telephone survey of more than 1500 residents and a mail survey targeting owners of parcels with 10 or more acres of forest. These surveys were conducted in three counties (Wallowa, Union, and Baker) in northeast Oregon, USA. We analyze these survey data using structural equation models in order to assess how individual characteristics and understanding of forest management issues affect perceptions about forest conditions and risks associated with declining forest health on public lands. We test whether forest understanding is informed by background, beliefs, and experiences, and whether as an intervening variable it is associated with views about forest conditions on publicly managed forests. Individual background characteristics such as age, gender and county of residence have significant direct or indirect effects on our measurement of understanding. Controlling for background factors, we found that forest owners with higher self-assessed understanding, and more education about forest management, tend to hold more pessimistic views about forest conditions. Based on our results we argue that self-assessed understanding, interest in learning, and willingness to engage in extension activities together have leverage to affect perceptions about the risks posed by declining forest conditions on public lands, influence land owner actions, and affect support for public policies. These results also have broader implications for management of forested landscapes on public and private lands amidst changing demographics in rural communities across the Inland Northwest where migration may significantly alter the composition of forest owner goals, understanding, and support for various management actions. PMID:25671619

  19. Coast redwood science symposium—2016: Past successes and future direction

    Treesearch

    Richard B. Standiford; Yana Valachovic

    2017-01-01

    There is no more iconic tree or more closely watched forest ecosystem than coast redwood. With its limited range and high value, the coast redwood forest is a microcosm of many of the emerging science and management issues facing today’s forested landscapes. As new information is collected and new management approaches and treatments tried, it is critical that policies...

  20. Status of native fishes in the western United States and issues for fire and fuels management

    USGS Publications Warehouse

    Rieman, B.; Lee, D.; Burns, D.; Gresswell, Robert E.; Young, M.; Stowell, R.; Rinne, J.; Howell, P.

    2003-01-01

    Conservation of native fishes and changing patterns in wildfire and fuels are defining challenges for managers of forested landscapes in the western United States. Many species and populations of native fishes have declined in recorded history and some now occur as isolated remnants of what once were larger more complex systems. Land management activities have been viewed as one cause of this problem. Fires also can have substantial effects on streams and riparian systems and may threaten the persistence of some populations of fish, particularly those that are small and isolated. Despite that, major new efforts to actively manage fires and fuels in forests throughout the region may be perceived as a threat rather than a benefit to conservation of native fishes and their habitats. The management of terrestrial and aquatic resources has often been contentious, divided among a variety of agencies with different goals and mandates. Management of forests, for example, has generally been viewed as an impact on aquatic systems. Implementation of the management-regulatory process has reinforced a uniform approach to mitigate the threats to aquatic species and habitats that may be influenced by management activities. The problems and opportunities, however, are not the same across the landscapes of interest. Attempts to streamline the regulatory process often search for generalized solutions that may oversimplify the complexity of natural systems. Significant questions regarding the influence of fire on aquatic ecosystems, changing fire regimes, and the effects of fire-related management remain unresolved and contribute to the uncertainty. We argue that management of forests and fishes can be viewed as part of the same problem, that of conservation and restoration of the natural processes that create diverse and productive ecosystems. We suggest that progress toward more integrated management of forests and native fishes will require at least three steps: (1) better integration and development of a common conceptual foundation and ecological goals; (2) attention to landscape and ecological context; and (3) recognition of uncertainty.

  1. Understanding and Integrating Local Perceptions of Trees and Forests into Incentives for Sustainable Landscape Management

    NASA Astrophysics Data System (ADS)

    Pfund, Jean-Laurent; Watts, John Daniel; Boissière, Manuel; Boucard, Amandine; Bullock, Renee Marie; Ekadinata, Andree; Dewi, Sonya; Feintrenie, Laurène; Levang, Patrice; Rantala, Salla; Sheil, Douglas; Sunderland, Terence Clarence Heethom; Urech, Zora Lea

    2011-08-01

    We examine five forested landscapes in Africa (Cameroon, Madagascar, and Tanzania) and Asia (Indonesia and Laos) at different stages of landscape change. In all five areas, forest cover (outside of protected areas) continues to decrease despite local people's recognition of the importance of forest products and services. After forest conversion, agroforestry systems and fallows provide multiple functions and valued products, and retain significant biodiversity. But there are indications that such land use is transitory, with gradual simplification and loss of complex agroforests and fallows as land use becomes increasingly individualistic and profit driven. In Indonesia and Tanzania, farmers favor monocultures (rubber and oil palm, and sugarcane, respectively) for their high financial returns, with these systems replacing existing complex agroforests. In the study sites in Madagascar and Laos, investments in agroforests and new crops remain rare, despite government attempts to eradicate swidden systems and their multifunctional fallows. We discuss approaches to assessing local values related to landscape cover and associated goods and services. We highlight discrepancies between individual and collective responses in characterizing land use tendencies, and discuss the effects of accessibility on land management. We conclude that a combination of social, economic, and spatially explicit assessment methods is necessary to inform land use planning. Furthermore, any efforts to modify current trends will require clear incentives, such as through carbon finance. We speculate on the nature of such incentive schemes and the possibility of rewarding the provision of ecosystem services at a landscape scale and in a socially equitable manner.

  2. Historical fire and vegetation dynamics in dry forests of the interior Pacific Northwest, USA, and relationships to northern spotted owl (Strix occidentalis caurina) habitat conservation

    Treesearch

    Rebecca S.H. Kennedy; Michael C. Wimberly

    2009-01-01

    Regional conservation planning frequently relies on general assumptions about historical disturbance regimes to inform decisions about landscape restoration, reserve allocations, and landscape management. Spatially explicit simulations of landscape dynamics provide quantitative estimates of landscape structure and allow for the testing of alternative scenarios. We used...

  3. Examining alternative fuel management strategies and the relative contribution of National Forest System land to wildfire risk to adjacent homes - A pilot assessment on the Sierra National Forest, California, USA

    Treesearch

    Joe H. Scott; Matthew P. Thompson; Julie W. Gilbertson-Day

    2016-01-01

    Determining the degree of risk that wildfires pose to homes, where across the landscape the risk originates, and who can best mitigate risk are integral elements of effective co-management of wildfire risk. Developing assessments and tools to help provide this information is a high priority for federal land management agencies such as the US Forest Service (...

  4. Trees, houses, and habitat: private forests at the wildland-urban interface.

    Treesearch

    Jonathan. Thompson

    2004-01-01

    How population growth and development affect forests is a shared concern among forest managers, policymakers, land use planners, and fish and wildlife specialists. Of particular interest is the "wildland-urban interface." It is characterized by expansion of residential and other developed land uses onto forest landscapes in a manner that threatens the...

  5. An assessment of fisher (Pekania pennanti) tolerance to forest management intensity on the landscape

    Treesearch

    William J. Zielinski; Craig M. Thompson; Kathryn L. Purcell; James D. Garner

    2013-01-01

    Forest restoration intended to reduce the overabundance of dense vegetation can be at odds with wildlife habitat conservation, particularly for species of wildlife that are strongly associated with structurally diverse forests with dense canopies. The fisher (Pekania pennanti), a mesopredator that occurs in mid-elevation forests of the southern...

  6. Forest landscape description and inventories - a basis for landplanning and design

    Treesearch

    R. Burton Litton

    1968-01-01

    Describes six analytical factors and seven compositional types useful in recognition and description of scenic resources. Illustrates their application in two inventories made to aid managers and landscape architects in planning and design.

  7. Multiple-factor classification of a human-modified forest landscape in the Hsuehshan Mountain Range, Taiwan.

    PubMed

    Berg, Kevan J; Icyeh, Lahuy; Lin, Yih-Ren; Janz, Arnold; Newmaster, Steven G

    2016-12-01

    Human actions drive landscape heterogeneity, yet most ecosystem classifications omit the role of human influence. This study explores land use history to inform a classification of forestland of the Tayal Mrqwang indigenous people of Taiwan. Our objectives were to determine the extent to which human action drives landscape heterogeneity. We used interviews, field sampling, and multivariate analysis to relate vegetation patterns to environmental gradients and human modification across 76 sites. We identified eleven forest classes. In total, around 70 % of plots were at lower elevations and had a history of shifting cultivation, terrace farming, and settlement that resulted in alder, laurel, oak, pine, and bamboo stands. Higher elevation mixed conifer forests were least disturbed. Arboriculture and selective harvesting were drivers of other conspicuous forest patterns. The findings show that past land uses play a key role in shaping forests, which is important to consider when setting targets to guide forest management.

  8. Trends of Forest Dynamics in Tiger Landscapes Across Asia

    NASA Astrophysics Data System (ADS)

    Mondal, Pinki; Nagendra, Harini

    2011-10-01

    Protected areas (PAs) are cornerstones of biodiversity conservation, but small parks alone cannot support wide-ranging species, such as the tiger. Hence, forest dynamics in the surrounding landscapes of PAs are also important to tiger conservation. Tiger landscapes often support considerable human population in proximity of the PA, sometimes within the core itself, and thus are subject to various land use activities (such as agricultural expansion and road development) driving habitat loss and fragmentation. We synthesize information from 27 journal articles in 24 tiger landscapes to assess forest-cover dynamics in tiger-range countries. Although 29% of the PAs considered in this study have negligible change in overall forest cover, approximately 71% are undergoing deforestation and fragmentation. Approximately 58% of the total case studies have human settlements within the core area. Most changes—including agricultural expansion, plantation, and farming (52%), fuelwood and fodder collection (43%), logging (38%), grazing (38%), and tourism and development (10%)—can be attributed to human impacts largely linked to the nature of the management regime. This study highlights the need for incorporating new perspectives, ideas, and lessons learned locally and across borders into management plans to ensure tiger conservation in landscapes dominated by human activities. Given the increasing isolation of most parks due to agricultural, infrastructural, and commercial developments at the periphery, it is imperative to conduct planning and evaluation at the landscape level, as well as incorporate multiple actors and institutions in planning, instead of focusing solely on conservation within the PAs as is currently the case in most tiger parks.

  9. Trends of forest dynamics in tiger landscapes across Asia.

    PubMed

    Mondal, Pinki; Nagendra, Harini

    2011-10-01

    Protected areas (PAs) are cornerstones of biodiversity conservation, but small parks alone cannot support wide-ranging species, such as the tiger. Hence, forest dynamics in the surrounding landscapes of PAs are also important to tiger conservation. Tiger landscapes often support considerable human population in proximity of the PA, sometimes within the core itself, and thus are subject to various land use activities (such as agricultural expansion and road development) driving habitat loss and fragmentation. We synthesize information from 27 journal articles in 24 tiger landscapes to assess forest-cover dynamics in tiger-range countries. Although 29% of the PAs considered in this study have negligible change in overall forest cover, approximately 71% are undergoing deforestation and fragmentation. Approximately 58% of the total case studies have human settlements within the core area. Most changes-including agricultural expansion, plantation, and farming (52%), fuelwood and fodder collection (43%), logging (38%), grazing (38%), and tourism and development (10%)-can be attributed to human impacts largely linked to the nature of the management regime. This study highlights the need for incorporating new perspectives, ideas, and lessons learned locally and across borders into management plans to ensure tiger conservation in landscapes dominated by human activities. Given the increasing isolation of most parks due to agricultural, infrastructural, and commercial developments at the periphery, it is imperative to conduct planning and evaluation at the landscape level, as well as incorporate multiple actors and institutions in planning, instead of focusing solely on conservation within the PAs as is currently the case in most tiger parks.

  10. Landscape anthropogenic disturbance in the Mediterranean ecosystem: is the current landscape sustainable?

    NASA Astrophysics Data System (ADS)

    Biondi, Guido; D'Andrea, Mirko; Fiorucci, Paolo; Franciosi, Chiara; Lima, Marco

    2013-04-01

    Mediterranean landscape during the last centuries has been subject to strong anthropogenic disturbances who shifted natural vegetation cover in a cultural landscape. Most of the natural forest were destroyed in order to allow cultivation and grazing activities. In the last century, fast growing conifer plantations were introduced in order to increase timber production replacing slow growing natural forests. In addition, after the Second World War most of the grazing areas were changed in unmanaged mediterranean conifer forest frequently spread by fires. In the last decades radical socio economic changes lead to a dramatic abandonment of the cultural landscape. One of the most relevant result of these human disturbances, and in particular the replacement of deciduous forests with coniferous forests, has been the increasing in the number of forest fires, mainly human caused. The presence of conifers and shrubs, more prone to fire, triggered a feedback mechanism that makes difficult to return to the stage of potential vegetation causing huge economic, social and environmental damages. The aim of this work is to investigate the sustainability of the current landscape. A future landscape scenario has been simulated considering the natural succession in absence of human intervention assuming the current fire regime will be unaltered. To this end, a new model has been defined, implementing an ecological succession model coupled with a simply Forest Fire Model. The ecological succession model simulates the vegetation dynamics using a rule-based approach discrete in space and time. In this model Plant Functional Types (PFTs) are used to describe the landscape. Wildfires are randomly ignited on the landscape, and their propagation is simulated using a stochastic cellular automata model. The results show that the success of the natural succession toward a potential vegetation cover is prevented by the frequency of fire spreading. The actual landscape is then unsustainable because of the high cost of fire fighting activities. The right path to success consists in development of suitable land use planning and forest management to mitigate the consequences of past anthropogenic disturbances.

  11. Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan

    Treesearch

    Robert E. Kennedy; Zhiqiang Yang; Warren B. Cohen; Eric Pfaff; Justin Braaten; Peder Nelson

    2012-01-01

    Understanding fine-grain patterns of forest disturbance and regrowth at the landscape scale is critical for effective management, particularly in forests in western Washington, Oregon, and California, U.S., where the policy known as the Northwest Forest Plan (NWFP) was imposed in 1994 over > 8 million ha of forest in an effort to balance environmental and economic...

  12. Geometry of forest landscape connectivity: pathways for persistence

    Treesearch

    Deanna H. Olson; Kelly M. Burnett

    2013-01-01

    Streamside areas may be dispersal funnels or runways for a variety of species. For over-ridge dispersal, headwaters offer the shortest distance links among riparian zones in adjacent drainages. We summarize landscape designs for connectivity of habitats using headwater riparian linkage areas as the foundation for a web of landscape-scale links. We developed management...

  13. GIS-based probability assessment of natural hazards in forested landscapes of Central and South-Eastern Europe.

    PubMed

    Lorz, C; Fürst, C; Galic, Z; Matijasic, D; Podrazky, V; Potocic, N; Simoncic, P; Strauch, M; Vacik, H; Makeschin, F

    2010-12-01

    We assessed the probability of three major natural hazards--windthrow, drought, and forest fire--for Central and South-Eastern European forests which are major threats for the provision of forest goods and ecosystem services. In addition, we analyzed spatial distribution and implications for a future oriented management of forested landscapes. For estimating the probability of windthrow, we used rooting depth and average wind speed. Probabilities of drought and fire were calculated from climatic and total water balance during growing season. As an approximation to climate change scenarios, we used a simplified approach with a general increase of pET by 20%. Monitoring data from the pan-European forests crown condition program and observed burnt areas and hot spots from the European Forest Fire Information System were used to test the plausibility of probability maps. Regions with high probabilities of natural hazard are identified and management strategies to minimize probability of natural hazards are discussed. We suggest future research should focus on (i) estimating probabilities using process based models (including sensitivity analysis), (ii) defining probability in terms of economic loss, (iii) including biotic hazards, (iv) using more detailed data sets on natural hazards, forest inventories and climate change scenarios, and (v) developing a framework of adaptive risk management.

  14. Coastal forests and groundwater: Using case studies to understand the effects of drivers and stressors for resource management

    Treesearch

    Timothy Callahan; Devendra Amatya; Peter Stone

    2017-01-01

    Forests are receiving more attention for the ecosystem goods and services they provide and the potential change agents that may affect forest health and productivity. Highlighting case examples from coastal forests in South Carolina, USA, we describe groundwater processes with respect to stressors and potential responses of a wetland-rich forested landscape,...

  15. Parcelization and land use: A case study in the New York City Watershed

    Treesearch

    Jennifer A. Caron; Rene H. Germain; Nathaniel M. Anderson

    2012-01-01

    Over 75% of the New York City Watershed is forested, and the majority of the land is owned by family forest owners. Ownership fragmentation and development may impact both the working forested landscape and water quality. We surveyed the owners of intact and subdivided family forest parcels across various parcel sizes to gauge their awareness of forest management...

  16. Collaborative restoration effects on forest structure in ponderosa pine-dominated forests of Colorado

    Treesearch

    Jeffery B. Cannon; Kevin J. Barrett; Benjamin M. Gannon; Robert N. Addington; Mike A. Battaglia; Paula J. Fornwalt; Gregory H. Aplet; Antony S. Cheng; Jeffrey L. Underhill; Jennifer S. Briggs; Peter M. Brown

    2018-01-01

    In response to large, severe wildfires in historically fire-adapted forests in the western US, policy initiatives, such as the USDA Forest Service’s Collaborative Forest Landscape Restoration Program (CFLRP), seek to increase the pace and scale of ecological restoration. One required component of this program is collaborative adaptive management, in which monitoring...

  17. Small-area estimation of forest attributes within fire boundaries

    Treesearch

    T. Frescino; G. Moisen; K. Adachi; J. Breidt

    2014-01-01

    Wildfires are gaining more attention every year as they burn more frequently, more intensely, and across larger landscapes. Generating timely estimates of forest resources within fire perimeters is important for land managers to quickly determine the impact of fi res on U.S. forests. The U.S. Forest Service’s Forest Inventory and Analysis (FIA) program needs tools to...

  18. The role of the landscape architect in applied forest landscape management: a case study on process

    Treesearch

    Wayne Tlusty

    1979-01-01

    Land planning allocations are often multi-resource concepts, with visual quality objectives addressing the appropriate level of visual resource management. Current legislation and/or regulations often require interdisciplinary teams to implement planning decisions. A considerable amount of information is currently avail-able on visual assessment techniques both for...

  19. Public acceptance of disturbance-based forest management: a study of the Blue River Landscape Strategy in the Central Cascades Adaptive Management Area.

    Treesearch

    Bruce Shindler; Angela L. Mallon

    2009-01-01

    This report examines public perspectives on disturbance-based management conducted in the central Cascade Range in Oregon as part of the Blue River Landscape Strategy. A mail survey to local residents was used to describe the public’s understanding of this form of management, identify perceived associated risks and potential barriers to implementation, and the overall...

  20. Interactive effects of wildfire, forest management, and isolation on amphibian and parasite abundance

    Treesearch

    Blake R. Hossack; Winsor H. Lowe; R. Ken Honeycutt; Sean A. Parks; Paul Stephen Corn

    2013-01-01

    Projected increases in wildfire and other climate-driven disturbances will affect populations and communities worldwide, including host-parasite relationships. Research in temperate forests has shown that wildfire can negatively affect amphibians, but this research has occurred primarily outside of managed landscapes where interactions with human disturbances could...

  1. Evaluating and mapping sources and temporary storage areas of sediment

    Treesearch

    Leslie M. Reid

    1982-01-01

    Legislation to regulate forest practices, water quality, and management of federal lands has increased the land managers' need for efficient methods of identifying and mapping sources of sediment in forested basins. At the same time, theoretical analysis of landscape evolution has led research geomorphologists to the consideration of many of the same...

  2. The social and economic drivers of the southeastern forest landscape

    Treesearch

    R. Kevin McIntyre; Barrett B. McCall; David N. Wear

    2018-01-01

    The last quarter century has witnessed an unprecedented resurgence of interest in the management of longleaf pine (Pinus palustris) forests, a phenomenon that has been coupled with increased understanding of the ecology, management, and restoration of these ecosystems. As interest in longleaf pine becomes more mainstream among landowners and the...

  3. Costs of landscape silviculture for fire and habitat management.

    Treesearch

    S. Hummel; D.E. Calkin

    2005-01-01

    In forest reserves of the U.S. Pacific Northwest, management objectives include protecting late-semi habitat structure by reducing the threat of large-scale disturbances like wildfire. We simulated how altering within- and among-stand structure with silvicultural treatments of differing intensity affected late-seral forest (LSF) structure and fire threat (FT) reduction...

  4. Accepting uncertainty, assessing risk: decision quality in managing wildfire, forest resource values, and new technology

    Treesearch

    Jeffrey G. Borchers

    2005-01-01

    The risks, uncertainties, and social conflicts surrounding uncharacteristic wildfire and forest resource values have defied conventional approaches to planning and decision-making. Paradoxically, the adoption of technological innovations such as risk assessment, decision analysis, and landscape simulation models by land management organizations has been limited. The...

  5. Developments to the Sylvan stand structure model to describe wood quality changes in southern bottomland hardwood forests because of forest management

    Treesearch

    Ian R. Scott

    2009-01-01

    Growth models can produce a wealth of detailed information that is often very difficult to perceive because it is frequently presented either as summary tables, stand view or landscape view visualizations. We have developed new tools for use with the Sylvan model (Larsen 1994) that allow the analysis of wood-quality changes as a consequence of forest management....

  6. Woody vegetation following even-aged, uneven-aged, and no-harvest treatments on the Missouri Ozark Forest Ecosystem Project Sites

    Treesearch

    John M. Kabrick; Randy G. Jensen; Stephen R. Shifley; David R. Larsen

    2002-01-01

    The Missouri Ozark Forest Ecosystem Project (MOFEP) experimentally tests forest ecosystem response to (a) even-aged management with clearcutting, (b) uneven-aged management with single-tree and group selection, and (c) no-harvesting. The nine MOFEP experimental sites in the southeast Missouri Ozarks are small landscapes ranging from 772 ac (312 ha) to 1,271 ac (514 ha...

  7. Characterization of potential fire regimes: applying landscape ecology to fire management in Mexico

    NASA Astrophysics Data System (ADS)

    Jardel, E.; Alvarado, E.; Perez-Salicrup, D.; Morfín-Rios, J.

    2013-05-01

    Knowledge and understanding of fire regimes is fundamental to design sound fire management practices. The high ecosystem diversity of Mexico offers a great challenge to characterize the fire regime variation at the landscape level. A conceptual model was developed considering the main factors controlling fire regimes: climate and vegetation cover. We classified landscape units combining bioclimatic zones from the Holdridge life-zone system and actual vegetation cover. Since bioclimatic conditions control primary productivity and biomass accumulation (potential fuel), each landscape unit was considered as a fuel bed with a particular fire intensity and behavior potential. Climate is also a determinant factor of post-fire recovery rates of fuel beds, and climate seasonality (length of the dry and wet seasons) influences fire probability (available fuel and ignition efficiency). These two factors influence potential fire frequency. Potential fire severity can be inferred from fire frequency, fire intensity and behavior, and vegetation composition and structure. Based in the conceptual model, an exhaustive literature review and expert opinion, we developed rules to assign a potential fire regime (PFR) defined by frequency, intensity and severity (i.e. fire regime) to each bioclimatic-vegetation landscape unit. Three groups and eight types of potential fire regimes were identified. In Group A are fire-prone ecosystems with frequent low severity surface fires in grasslands (PFR type I) or forests with long dry season (II) and infrequent high-severity fires in chaparral (III), wet temperate forests (IV, fire restricted by humidity), and dry temperate forests (V, fire restricted by fuel recovery rate). Group B includes fire-reluctant ecosystems with very infrequent or occasional mixed severity surface fires limited by moisture in tropical rain forests (VI) or fuel availability in seasonally dry tropical forests (VII). Group C and PFR VIII include fire-free environments that correspond to deserts. Application of PFR model to fire management is discussed.

  8. Geographic variation in cowbird distribution, abundance, and parasitism

    USGS Publications Warehouse

    Morrison, M.L.; Hahn, D.C.; George, T. Luke; Dobkin, David S.

    2002-01-01

    We evaluated geographical patterns in the abundance and distribution of Brown-headed Cowbirds (Molothrus ater), and in the frequency of cowbird parasitism, across North America in relation to habitat fragmentation. We found no distinctive parasitism patterns at the national or even regional scales, but the species is most abundant in the Great Plains, the heart of their original range, and least common in the southeastern U.S. This situation is dynamic, because both the Brown-headed and two other cowbird species are actively expanding their ranges in the southern U.S. We focused almost entirely in this paper on the Brown-headed Cowbird, because it is the only endemic North American cowbird, its distribution is much wider, and it has been much more intensively studied. We determined that landscape is the most meaningful unit of scale for comparing cowbird parasitism patterns as, for example, in comparisons of northeastern and central hardwood forests within agricultural matrices, and suburbanized areas versus western coniferous forests. We concluded that cowbird parasitism patterns were broadly similar within all landscapes. Even comparisons between prominently dissimilar landscapes, such as hardwoods in agriculture and suburbia versus coniferous forest, display a striking similarity in the responses of cowbirds. Our review clearly indicated that proximity of feeding areas is the key factor influencing presence and parasitism patterns within the landscape. We considered intensity of landscape fragmentation from forest-dominated landscapes altered in a forest management context to fragmentation characterized by mixed suburbanization or agricultural development. Our review consistently identified an inverse relationship between extent of forest cover across the landscape and cowbird presence. Invariably, the variation seen in parasitism frequencies within a region was at least partially explained as a response to changes in forest cover. The most salient geographic aspect of cowbirds' response to landscape fragmentation is the time since fragmentation occurred. Eastern landscapes generally experienced 200 years ago the development and fragmentation that western landscapes experienced less than 75 years ago. Consequently, there is a broad east-west contrast in which more numerous human settlements and smaller unbroken forest stands are found in the East, a difference that permits cowbirds to be more pervasive and ubiquitous. The locality of suitable feeding areas is a hallmark trait of the cowbirds' strategy in exploiting specific forest fragments. Host abundance influences parasitism patterns only secondarily at the landscape scale. These two limiting factors come into play differently in different landscapes. For example, cowbird abundance in unbroken forested landscapes are limited primarily by the availability of foraging areas rather than by host density, whereas cowbirds are limited primarily by host availability in landscapes that are extensively fragmented with feeding areas.

  9. The Conservation Value of Traditional Rural Landscapes: The Case of Woodpeckers in Transylvania, Romania.

    PubMed

    Dorresteijn, Ine; Hartel, Tibor; Hanspach, Jan; von Wehrden, Henrik; Fischer, Joern

    2013-01-01

    Land use change is a major threat to global biodiversity. Forest species face the dual threats of deforestation and intensification of forest management. In regions where forests are under threat, rural landscapes that retain structural components of mature forests potentially provide valuable additional habitat for some forest species. Here, we illustrate the habitat value of traditional wood pastures for a woodpecker assemblage of six species in southern Transylvania, Romania. Wood pastures are created by long-term stable silvo-pastoral management practices, and are composed of open grassland with scattered large, old trees. Because of their demanding habitat requirements, woodpeckers share habitat with many other bird species, and have been considered as possible indicator species for bird species diversity. We first compared woodpecker assemblages between forests and wood pastures. Second, we grouped features of wood pastures into three spatial contexts and addressed how these features related to the occurrence of three woodpecker species that are formally protected. Woodpecker species composition, but not the number of species, differed between forests and wood pastures, with the green woodpecker occurring more commonly in wood pastures, and the lesser spotted woodpecker more commonly in forests. Within wood pastures, the intermediate context (especially surrounding forest cover) best explained the presence of the grey-headed and middle spotted woodpecker. By contrast, variables describing local vegetation structure and characteristics of the surrounding landscape did not affect woodpecker occurrence in wood pastures. In contrast to many other parts of Europe, in which several species of woodpeckers have declined, the traditional rural landscape of Transylvania continues to provide habitat for several woodpecker species, both in forests and wood pastures. Given the apparent habitat value of wood pastures for woodpeckers we recommend wood pastures be explicitly considered in relevant policies of the European Union, namely the Habitats Directive and the EU Common Agricultural Policy.

  10. How fuel treatment types, locations, and amounts impact landscape-scale fire behavior and carbon dynamics

    Treesearch

    Christopher A. Dicus; Kevin J. Osborne

    2015-01-01

    When managing for fire across a large landscape, the types of fuel treatments, the locations of treatments, and the percentage of the landscape being treated should all interact to impact not only potential fire size, but also carbon dynamics across that landscape. To investigate these interactions, we utilized a forest growth model (FVS-FFE) and fire simulation...

  11. Characteristics people consider when evaluating forest landscape attractiveness: fuel management implications

    Treesearch

    Melinda Merrick; Joanne Vining

    2006-01-01

    In this study, we were able to gain a better understanding of which elements people observe when they are making decisions about the relative attractiveness of a forest. Of primary consideration to participants were the specific characteristics of the vegetation, especially forest health, and the experiential potential for the forest scenes. Participants fairly often...

  12. Spatial configuration and distribution of forest patches in Champaign County, Illinois: 1940 to 1993

    Treesearch

    J. Danilo Chinea

    1997-01-01

    Spatial configuration and distribution of landscape elements have implications for the dynamics of forest ecosystems, and, therefore, for the management of these resources. The forest cover of Champaign County, in east-central Illinois, was mapped from 1940 and 1993 aerial photography and entered in a geographical information system database. In 1940, 208 forest...

  13. Interpretation of forest characteristics from computer-generated images.

    Treesearch

    T.M. Barrett; H.R. Zuuring; T. Christopher

    2006-01-01

    The need for effective communication in the management and planning of forested landscapes has led to a substantial increase in the use of visual information. Using forest plots from California, Oregon, and Washington, and a survey of 183 natural resource professionals in these states, we examined the use of computer-generated images to convey information about forest...

  14. Structure and development of old-growth, unmanaged second-growth, and extended rotation Pinus resinosa forests in Minnesota, USA

    Treesearch

    Emily J. Silver; Anthony W. D' Amato; Shawn Fraver; Brian J. Palik; John B. Bradford

    2013-01-01

    The structure and developmental dynamics of old-growth forests often serve as important baselines for restoration prescriptions aimed at promoting more complex structural conditions in managed forest landscapes. Nonetheless, long-term information on natural patterns of development is rare for many commercially important and ecologically widespread forest types....

  15. Providing Confidence in Regional Maps in Predicting Where Nonnative Species are Invading the Forested Landscape

    Treesearch

    Dennis M. Jacobs; Victor A. Rudis

    2005-01-01

    Nonnative invasive plant species introduced to the South during the past century threaten to forest resources. Knowing their extent is important for strategic management and planning. We used U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) field observations at ground-sampled locations to model the geographic occurrence probability...

  16. Providing confidence in regional maps in predicting where nonnative species are invading the forested landscape.

    Treesearch

    Dennis M. Jacobs; Victor A. Rudis

    2005-01-01

    Nonnative invasive plant species introduced to the South during the past century threaten to forest resources. Knowing their extent is important for strategic management and planning. We used U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis (FTA) field observations at ground-sampled locations to model the geographic occurrence probability...

  17. Communicating the role of silviculture and Forest Service silviculture research in the interior West

    Treesearch

    Dennis E. Ferguson; Victor J. Applegate; Philip S. Aune; Clinton E. Carlson; Kathleen Geier-Hayes; Russell T. Graham; Glenn L. Jacobsen; Theresa B. Jain; David C. Powell; Wayne D. Shepperd; John P. Sloan; Andrew Youngblood

    1997-01-01

    Silviculturists create desired forest conditions across the landscape and over time. Our job is to synthesize knowledge from many disciplines to develop prescriptions that produce desired forest conditions. In turn, forest conditions result in products and values for society. Silviculture and silviculture research help provide the scientific basis for land management...

  18. Research agenda for integrated landscape modeling

    Treesearch

    Samuel A. Cushman; Donald McKenzie; David L. Peterson; Jeremy Littell; Kevin S. McKelvey

    2007-01-01

    Reliable predictions of how changing climate and disturbance regimes will affect forest ecosystems are crucial for effective forest management. Current fire and climate research in forest ecosystem and community ecology offers data and methods that can inform such predictions. However, research in these fields occurs at different scales, with disparate goals, methods,...

  19. Research agenda for integrated landscape modeling

    Treesearch

    Samuel A. Cushman; Donald McKenzie; David L. Peterson; Jeremy Littell; Kevin S. McKelvey

    2006-01-01

    Reliable predictions of the effects changing climate and disturbance regimes will have on forest ecosystems are crucial for effective forest management. Current fire and climate research in forest ecosystem and community ecology offers data and methods that can inform such predictions. However, research in these fields occurs at different scales, with disparate goals,...

  20. Forest drainage

    Treesearch

    R.W. Skaggs; S. Tian; G.M. Chescheir; Devendra Amatya; M.A. Youssef

    2016-01-01

    Most of the world's 4030 million ha of forested lands are situated on hilly, mountainous or well-drained upland landscapes where improved drainage is not needed. However, there are millions of hectares of poorly drained forested lands where excessively wet soil conditions limit tree growth and access for harvesting and other management activities. Improved or...

  1. Cougar space use and movements in the wildland-urban landscape of western Washington

    USGS Publications Warehouse

    Kertson, B.N.; Spencer, R.D.; Marzluff, J.M.; Hepinstall-Cymerman, Jeffrey; Grue, C.E.

    2011-01-01

    The wildland-urban interface lies at the confluence of human-dominated and wild landscapes, creating a number of management and conservation challenges. Because wildlife ecology, behavior, and evolution at this interface are shaped by both natural and human phenomena, this requires greater understanding of how diverse factors affect ecosystem and population processes. We illustrate the challenge of understanding and managing a frequent and often undesired inhabitant of the wildland-urban landscape, the cougar (Puma concolor). In wildland and residential areas of western Washington State, USA, we captured and radiotracked 27 cougars to model space use and understand the role of landscape features in interactions (sightings, encounters, and depredations) between cougars and humans. Resource utilization functions (RUFs) identified cougar use of areas with features that were probably attractive to prey, influential on prey vulnerability, and associated with limited or no residential development. Early-successional forest (+), conifer forest (+), distance to road (-), residential density (-), and elevation (-) were significant positive and negative predictors of use for the population, whereas use of other landscape features was highly variable. Space use and movement rates in wildland and residential areas were similar because cougars used wildland-like forest patches, reserves, and corridors in residential portions of their home range. The population RUF was a good predictor of confirmed cougar interactions, with 72% of confirmed reports occurring in the 50% of the landscape predicted to be medium-high and high cougar use areas. We believe that there is a threshold residential density at which the level of development modifies the habitat but maintains enough wildland characteristics to encourage moderate levels of cougar use and maximize the probability of interaction. Wildlife managers trying to reduce interactions between cougars and people should incorporate information on spatial ecology and landscape characteristics to identify areas with the highest overlap of human and cougar use to focus management, education, and landscape planning. Resource utilization functions provide a proactive tool to guide these activities for improved coexistence with wildlife using both wildland and residential portions of the landscape. ??2011 by the Ecological Society of America.

  2. [Landscape quality evaluation and vertical structure optimization of natural broadleaf forest].

    PubMed

    Ouyang, Xun-zhi; Liao, Wei-ming; Peng, Shi-kui

    2007-06-01

    Taking the natural broadleaf forest in Wuyuan County of Jiangxi Province as study object, a total of 30 representative photos of near-view landscapes and related information were collected. The scenic beauty values were acquired by public judgment method, and the relationship models of scenic beauty values and landscape elements were established by using multiple mathematical model. The results showed that the main elements affecting the near-view landscape quality of natural broadleaf forest were the trunk form, stand density, undergrowth coverage and height, natural pruning, and color richness, with the partial correlation coefficients being 0.4482-0.7724, which were significant or very significant by t-test. The multiple correlation coefficient of the model reached 0.9508, showing very significant by F test (F = 36.11). Straight trunk, better natural pruning and rich color did well, while the super-high or low stand density and undergrowth coverage and height did harm to the scenic beauty. Several management measures for the vertical structure optimization of these landscape elements were put forward.

  3. Movement of people across the landscape: a blurring of distinctions between areas, interests, and issues affecting natural resource management

    Treesearch

    John F. Dwyer; Gina Childs

    2004-01-01

    The spread of development from cities into surrounding forests and farms continues to receive a great deal of attention from the media and resource managers in the US and other countries. However, suburban sprawl is just one of many interlinked components of the movement of people across the landscape that influence resource management. Substantial changes are taking...

  4. Dynamic response of the scenic beauty value of different forests to various thinning intensities in central eastern China.

    PubMed

    Deng, Songqiu; Yin, Na; Guan, Qingwei; Katoh, Masato

    2014-11-01

    Forest management has a significant influence on the preferences of people for forest landscapes. This study sought to evaluate the dynamic effects of thinning intensities on the landscape value of forests over time. Five typical stands in Wuxiangsi National Forest Park in Nanjing, China, were subjected to a thinning experiment designed with four intensities: unthinned, light thinning, moderate thinning, and heavy thinning. People's preferences for landscape photographs taken in plots under various thinning intensities were assessed through scenic beauty estimation (SBE) at 2 and 5 years after thinning. The differences in scenic beauty value between different thinning intensities were then analyzed with a paired samples t test for the two periods. The results indicated that the landscape value of all of the thinned plots significantly exceeded that of the unthinned plots 2 years after thinning (p < 0.01) and that the heavily thinned plots were most appreciated, showing an average improvement of 9.71 % compared with the control plots. Additionally, the heavily thinned plots were judged to be more beautiful than the lightly thinned and moderately thinned plots, whereas there was no significant difference between moderate thinning and light thinning. At 5 years after thinning, however, the moderately thinned plots received the highest preference scores among the four intensities, displaying an average improvement of 11.32 % compared with the unthinned plots. A multiple linear regression (MLR) model indicated that landscape value improved with increases in the average diameter at breast height (DBH) and with the improvement of environmental cleanliness in the stand, whereas the value decreased with an increasing stem density, species diversity, litter coverage, and canopy density. In addition, we found that the performance of a neural network model based on a multilayer perception (MLP) algorithm for predicting scenic beauty was slightly better than that of the MLR model. The findings of our study suggest that moderate to heavy thinning should be recommended to manage forests for the improvement of forest landscape value.

  5. Can joint carbon and biodiversity management in tropical agroforestry landscapes be optimized?

    PubMed

    Kessler, Michael; Hertel, Dietrich; Jungkunst, Hermann F; Kluge, Jürgen; Abrahamczyk, Stefan; Bos, Merijn; Buchori, Damayanti; Gerold, Gerhard; Gradstein, S Robbert; Köhler, Stefan; Leuschner, Christoph; Moser, Gerald; Pitopang, Ramadhanil; Saleh, Shahabuddin; Schulze, Christian H; Sporn, Simone G; Steffan-Dewenter, Ingolf; Tjitrosoedirdjo, Sri S; Tscharntke, Teja

    2012-01-01

    Managing ecosystems for carbon storage may also benefit biodiversity conservation, but such a potential 'win-win' scenario has not yet been assessed for tropical agroforestry landscapes. We measured above- and below-ground carbon stocks as well as the species richness of four groups of plants and eight of animals on 14 representative plots in Sulawesi, Indonesia, ranging from natural rainforest to cacao agroforests that have replaced former natural forest. The conversion of natural forests with carbon stocks of 227-362 Mg C ha(-1) to agroforests with 82-211 Mg C ha(-1) showed no relationships to overall biodiversity but led to a significant loss of forest-related species richness. We conclude that the conservation of the forest-related biodiversity, and to a lesser degree of carbon stocks, mainly depends on the preservation of natural forest habitats. In the three most carbon-rich agroforestry systems, carbon stocks were about 60% of those of natural forest, suggesting that 1.6 ha of optimally managed agroforest can contribute to the conservation of carbon stocks as much as 1 ha of natural forest. However, agroforestry systems had comparatively low biodiversity, and we found no evidence for a tight link between carbon storage and biodiversity. Yet, potential win-win agroforestry management solutions include combining high shade-tree quality which favours biodiversity with cacao-yield adapted shade levels.

  6. Can Joint Carbon and Biodiversity Management in Tropical Agroforestry Landscapes Be Optimized?

    PubMed Central

    Kessler, Michael; Hertel, Dietrich; Jungkunst, Hermann F.; Kluge, Jürgen; Abrahamczyk, Stefan; Bos, Merijn; Buchori, Damayanti; Gerold, Gerhard; Gradstein, S. Robbert; Köhler, Stefan; Leuschner, Christoph; Moser, Gerald; Pitopang, Ramadhanil; Saleh, Shahabuddin; Schulze, Christian H.; Sporn, Simone G.; Steffan-Dewenter, Ingolf; Tjitrosoedirdjo, Sri S.; Tscharntke, Teja

    2012-01-01

    Managing ecosystems for carbon storage may also benefit biodiversity conservation, but such a potential ‘win-win’ scenario has not yet been assessed for tropical agroforestry landscapes. We measured above- and below-ground carbon stocks as well as the species richness of four groups of plants and eight of animals on 14 representative plots in Sulawesi, Indonesia, ranging from natural rainforest to cacao agroforests that have replaced former natural forest. The conversion of natural forests with carbon stocks of 227–362 Mg C ha−1 to agroforests with 82–211 Mg C ha−1 showed no relationships to overall biodiversity but led to a significant loss of forest-related species richness. We conclude that the conservation of the forest-related biodiversity, and to a lesser degree of carbon stocks, mainly depends on the preservation of natural forest habitats. In the three most carbon-rich agroforestry systems, carbon stocks were about 60% of those of natural forest, suggesting that 1.6 ha of optimally managed agroforest can contribute to the conservation of carbon stocks as much as 1 ha of natural forest. However, agroforestry systems had comparatively low biodiversity, and we found no evidence for a tight link between carbon storage and biodiversity. Yet, potential win-win agroforestry management solutions include combining high shade-tree quality which favours biodiversity with cacao-yield adapted shade levels. PMID:23077569

  7. Assessing Potential Future Carbon Dynamics with Climate Change and Fire Management in a Mountainous Landscape on the Olympic Peninsula, Washington, USA

    NASA Astrophysics Data System (ADS)

    Kennedy, R. S.

    2010-12-01

    Forests of the mountainous landscapes of the maritime Pacific Northwestern USA may have high carbon sequestration potential via their high productivity and moderate to infrequent fire regimes. With climate change, there may be shifts in incidence and severity of fire, especially in the drier areas of the region, via changes to forest productivity and hydrology, and consequent effects to C sequestration and forest structure. To explore this issue, I assessed potential effects of fire management (little fire suppression/wildland fire management/highly effective fire suppression) under two climate change scenarios on future C sequestration dynamics (amounts and spatial pattern) in Olympic National Park, WA, over a 500-year simulation period. I used the simulation platform FireBGCv2, which contains a mechanistic, individual tree succession model, a spatially explicit climate-based biophysical model that uses daily weather data, and a spatially explicit fire model incorporating ignition, spread, and effects on ecosystem components. C sequestration patterns varied over time and spatial and temporal patterns differed somewhat depending on the climate change scenario applied and the fire management methods employed. Under the more extreme climate change scenario with little fire suppression, fires were most frequent and severe and C sequestration decreased. General trends were similar under the more moderate climate change scenario, as compared to current climate, but spatial patterns differed. Both climate change scenarios under highly effective fire suppression showed about 50% of starting total C after the initial transition phase, whereas with 10% fire suppression both scenarios exhibited about 10% of starting amounts. Areas of the landscape that served as refugia for older forest under increasing frequency of high severity fire were also hotspots for C sequestration in a landscape experiencing increasing frequency of disturbance with climate change.

  8. The Forest Service, Rocky Mountain Research Station's Southwestern Borderlands Ecosystem Management Project: building on 10 years of success

    Treesearch

    Gerald J. Gottfried; Carleton B. Edminster

    2005-01-01

    The USDA Forest Service’s Southwestern Borderlands Ecosystem Management Project mission is to contribute to the scientific basis for developing and implementing a comprehensive ecosystem management plan to restore natural processes, improve the productivity and biological diversity of grasslands and woodlands, and sustain an open landscape with a viable rural economy...

  9. The Kinzua Quality Deer Cooperative: can adaptive management and local stakeholder engagement sustain reduced impact of ungulate browsers in forest systems?

    Treesearch

    Susan L. Stout; Alejandro A. Royo; David S. deCalesta; Kevin McAleese; James C. Finley

    2013-01-01

    The Kinzua Quality Deer Cooperative (KQDC) was established in 2000 to test new approaches to stewardship of white-tailed deer and forest habitat on a 30 000 hectare landscape in northwest Pennsylvania, USA. Partners included land managers, scientists, educators, tourism promoters,and hunters. KQDC goals were adaptive management of the deer herd, improved habitat...

  10. Landscapes of Protection: Forest Change and Fragmentation in Northern West Bengal, India

    NASA Astrophysics Data System (ADS)

    Nagendra, Harini; Paul, Somajita; Pareeth, Sajid; Dutt, Sugato

    2009-11-01

    In the tropics and sub-tropics, where high levels of biodiversity co-exist with some of the greatest levels of population density, achieving complete exclusion in protected area contexts has proved close to impossible. There is a clear need to recognize that parks are significantly impacted by human-environment interactions in the larger landscape within which they are embedded, and to move the frontier of research beyond the boundaries of protected areas in order to examine larger landscapes where multiple forms of ownership and access are embedded. This research evaluates forest change and fragmentation between 1990 and 2000, in a landscape surrounding the Mahananda Wildlife Sanctuary in the Indian state of West Bengal. This protected forest is bounded to the south by a less intensively protected area, the Baikunthapur Reserve Forest, and surrounded by a mosaic of unprotected, largely private land holdings. Results indicate differences in the extent and spatial pattern of forest cover change in these three zones, corresponding to different levels of government protection, access and monitoring. The two protected areas experience a trend toward forest regrowth, relating to the cessation of commercial logging by park management during this period. Yet, there is still substantial clearing toward peripheral areas that are well connected to illegal timber markets by transportation networks. The surrounding landscape, although experiencing some forest regrowth within less intensively cultivated tea plantations, is also becoming increasingly fragmented, with potentially critical impacts on the maintenance of effective wildlife corridors in this ecologically critical region.

  11. Landscapes of protection: forest change and fragmentation in Northern West Bengal, India.

    PubMed

    Nagendra, Harini; Paul, Somajita; Pareeth, Sajid; Dutt, Sugato

    2009-11-01

    In the tropics and sub-tropics, where high levels of biodiversity co-exist with some of the greatest levels of population density, achieving complete exclusion in protected area contexts has proved close to impossible. There is a clear need to recognize that parks are significantly impacted by human-environment interactions in the larger landscape within which they are embedded, and to move the frontier of research beyond the boundaries of protected areas in order to examine larger landscapes where multiple forms of ownership and access are embedded. This research evaluates forest change and fragmentation between 1990 and 2000, in a landscape surrounding the Mahananda Wildlife Sanctuary in the Indian state of West Bengal. This protected forest is bounded to the south by a less intensively protected area, the Baikunthapur Reserve Forest, and surrounded by a mosaic of unprotected, largely private land holdings. Results indicate differences in the extent and spatial pattern of forest cover change in these three zones, corresponding to different levels of government protection, access and monitoring. The two protected areas experience a trend toward forest regrowth, relating to the cessation of commercial logging by park management during this period. Yet, there is still substantial clearing toward peripheral areas that are well connected to illegal timber markets by transportation networks. The surrounding landscape, although experiencing some forest regrowth within less intensively cultivated tea plantations, is also becoming increasingly fragmented, with potentially critical impacts on the maintenance of effective wildlife corridors in this ecologically critical region.

  12. Human relationships to fire prone ecosystems: Mapping values at risk on contested landscapes

    Treesearch

    Kari Gunderson; Steve Carver; Brett H. Davis

    2011-01-01

    A key problem in developing a better understanding of different responses to landscape level management actions, such as fuel treatments, is being able to confidently record and accurately spatially delineate the meanings stakeholders ascribe to the landscape. To more accurately understand these relationships with the Bitterroot National Forest, Montana, U.S.A., local...

  13. Historical range of variability in landscape structure: a simulation study in Oregon, USA.

    Treesearch

    Etsuko Nonaka; Thomas A. Spies

    2005-01-01

    We estimated the historical range of variability (HRV) of forest landscape structure under natural disturbance regimes at the scale of a physiographic province (Oregon Coast Range, 2 million ha) and evaluated the similarity to HRV of current and future landscapes under alternative management scenarios. We used a stochastic fire simulation model to simulate...

  14. Robustness of plant-insect herbivore interaction networks to climate change in a fragmented temperate forest landscape.

    PubMed

    Bähner, K W; Zweig, K A; Leal, I R; Wirth, R

    2017-10-01

    Forest fragmentation and climate change are among the most severe and pervasive forms of human impact. Yet, their combined effects on plant-insect herbivore interaction networks, essential components of forest ecosystems with respect to biodiversity and functioning, are still poorly investigated, particularly in temperate forests. We addressed this issue by analysing plant-insect herbivore networks (PIHNs) from understories of three managed beech forest habitats: small forest fragments (2.2-145 ha), forest edges and forest interior areas within three continuous control forests (1050-5600 ha) in an old hyper-fragmented forest landscape in SW Germany. We assessed the impact of forest fragmentation, particularly edge effects, on PIHNs and the resulting differences in robustness against climate change by habitat-wise comparison of network topology and biologically realistic extinction cascades of networks following scores of vulnerability to climate change for the food plant species involved. Both the topological network metrics (complexity, nestedness, trophic niche redundancy) and robustness to climate change strongly increased in forest edges and fragments as opposed to the managed forest interior. The nature of the changes indicates that human impacts modify network structure mainly via host plant availability to insect herbivores. Improved robustness of PIHNs in forest edges/small fragments to climate-driven extinction cascades was attributable to an overall higher thermotolerance across plant communities, along with positive effects of network structure. The impoverishment of PIHNs in managed forest interiors and the suggested loss of insect diversity from climate-induced co-extinction highlight the need for further research efforts focusing on adequate silvicultural and conservation approaches.

  15. The impact of ancestral heath management on soils and landscapes. A reconstruction based on paleoecological analyses of soil records in the middle and southeast Netherlands.

    NASA Astrophysics Data System (ADS)

    van Mourik, Jan; Doorenbosch, Marieke

    2016-04-01

    The evolution of heath lands during the Holocene has been registered in various soil records . Paleoecological analyses of these records enable to reconstruct the changing economic and cultural management of heaths and the consequences for landscape and soils. Heaths are characteristic components of cultural landscape mosaics on sandy soils in the Netherlands. The natural habitat of heather species was moorland. At first, natural events like forest fires and storms caused small-scale forest degradation, in addition on the forest degradation accelerated due to cultural activities like forest grazing, wood cutting and shifting cultivation. Heather plants invaded on degraded forest soils and heaths developed. People learned to use the heaths for economic and cultural purposes. The impact of the heath management on landscape and soils was registered in soil records of barrows, drift sand sequences and plaggic Anthrosols. Based on pollen diagrams of such records we could reconstruct that heaths were developed and used for cattle grazing before the Bronze Age. During the Late Neolithic, the Bronze Age and Iron Age, people created the barrow landscape on the ancestral heaths. After the Iron Age people probably continued with cattle grazing on the heaths and plaggic agriculture until the Early Middle Ages. After 1000 AD two events affected the heaths. At first deforestation for the sale of wood resulted in the first regional extension of sand drifting and heath degradation. After that the introduction of the deep stable economy and heath sods digging resulted in acceleration of the rise of plaggic horizons, severe heath degradation and the second extension of sand drifting. At the end of the 19th century the heath lost its economic value due to the introduction of chemical fertilizers. The heaths were transformed into 'new' arable fields and forests and due to deep ploughing most soil archives were destroyed. Since 1980 AD, the remaining relicts of the ancestral heaths are preserved and restored in the frame of the programs to improve the regional and national geo-biodiversity.

  16. Optimizing the location of fuel treatments over time at landscape scales

    Treesearch

    Greg Jones; Woodam Chung

    2011-01-01

    Fuel treatments are a vital part of forest management - but when faced with limited budgets, narrow burning windows, and air quality restrictions, it can be challenging to prioritize where, when, and how fuel treatments should be applied across the landscape to achieve the most benefi t. To help ease this process, land managers can turn to various standalone models,...

  17. Spatial ecology and multi-scale habitat selection of the Copperhead (Agkistrodon contortrix) in a managed forest landscape

    Treesearch

    WB Sutton; Y Wang; Callie Schweitzer; C.  McClure

    2017-01-01

    We evaluated the spatial ecology and habitat use of the Copperhead (Agkistrodon contortrix) in managed, pine-hardwood forests in the William B. Bankhead National Forest, Alabama. We used radiotelemetry to monitor 31 snakes (23 males, 8 females [5 gravid and 3 non-gravid females]) over a period of 3 years (2006–2008). Snakes were tracked for one or more seasons in a...

  18. Influence of skid trails and haul roads on understory plant richness and composition in managed forest landscapes in Upper Michigan, USA

    Treesearch

    David S. Buckley; Thomas R. Crow; Elizabeth A. Nauertz; Kurt E. Schulz

    2003-01-01

    We evaluated impacts of disturbance in interior haul roads and skid trails on understory vegetation by documenting the areal extent of these features and plant composition along 10 m x 100 m belt transects. Ten belt transects were sampled in each of three comparable northern hardwood forests under even-aged management. These forests were approximately 80 years old and...

  19. Evaluation of spatial models to predict vulnerability of forest birds to brood parasitism by cowbirds

    USGS Publications Warehouse

    Gustafson, E.J.; Knutson, M.G.; Niemi, G.J.; Friberg, M.

    2002-01-01

    We constructed alternative spatial models at two scales to predict Brown-headed Cowbird (Molothrus ater) parasitism rates from land cover maps. The local-scale models tested competing hypotheses about the relationship between cowbird parasitism and distance of host nests from a forest edge (forest-nonforest boundary). The landscape models tested competing hypotheses about how landscape features (e.g., forests, agricultural fields) interact to determine rates of cowbird parasitism. The models incorporate spatial neighborhoods with a radius of 2.5 km in their formulation, reflecting the scale of the majority of cowbird commuting activity. Field data on parasitism by cowbirds (parasitism rate and number of cowbird eggs per nest) were collected at 28 sites in the Driftless Area Ecoregion of Wisconsin, Minnesota, and Iowa and were compared to the predictions of the alternative models. At the local scale, there was a significant positive relationship between cowbird parasitism and mean distance of nest sites from the forest edge. At the landscape scale, the best fitting models were the forest-dependent and forest-fragmentation-dependent models, in which more heavily forested and less fragmented landscapes had higher parasitism rates. However, much of the explanatory power of these models results from the inclusion of the local-scale relationship in these models. We found lower rates of cowbird parasitism than did most Midwestern studies, and we identified landscape patterns of cowbird parasitism that are opposite to those reported in several other studies of Midwestern songbirds. We caution that cowbird parasitism patterns can be unpredictable, depending upon ecoregional location and the spatial extent, and that our models should be tested in other ecoregions before they are applied there. Our study confirms that cowbird biology has a strong spatial component, and that improved spatial models applied at multiple spatial scales will be required to predict the effects of landscape and forest management on cowbird parasitism of forest birds.

  20. Landscape evaluation for restoration planning on the Okanogan-Wenatchee National Forest, USA

    Treesearch

    Paul F. Hessburg; Keith M. Reynolds; R. Brion Salter; James D. Dickinson; William L. Gaines; Richy J. Harrod

    2013-01-01

    Land managers in the western US are beginning to understand that early 20th century forests displayed complex patterns of composition and structure at several different spatial scales, that there was interplay between patterns and processes within and across scales, and that these conditions have been radically altered by management. Further, they know that restoring...

  1. The Forest Service, Rocky Mountain Research Station's Southwestern Borderlands Ecosystem Management Project: building on ten years of success [Abstract

    Treesearch

    Gerald J. Gottfried; Carleton B. Edminster

    2005-01-01

    The USDA Forest Service initiated the Southwestern Borderlands Ecosystem Management Project in 1994. The Project concentrates on the unique, relatively unfragmented landscape of exceptional biological diversity in southeastern Arizona and southwestern New Mexico. Its mission is to: "Contribute to the scientific basis for developing and implementing a comprehensive...

  2. The trouble with connectedness: disturbance and ecosystem crashes.

    Treesearch

    Sally Duncan

    2003-01-01

    How do we promote resistance to disturbance, resilience when disturbance does occur, and forest health in general when forests and landscapes are actively managed for a variety values? How do we manage for sustainability when humans and their consumption patterns are munching up the earth at alarming rates? How do we move beyond the now-controversial ideas of reserves...

  3. Suggested stocking levels for forest stands in northeastern Oregon and southeastern Washington.

    Treesearch

    P.H. Cochran; J.M. Geist; D.L. Clemens; Rodrick R. Clausnitzer; David C. Powell

    1993-01-01

    Catastrophes and manipulation of stocking levels are important determinants of stand development and the appearance of future forest landscapes. Managers need stocking level guides, particularly for sites incapable of supporting stocking levels presented in normal yield tables. Growth basal area (GBA) has been used by some managers in attempts to assess inherent...

  4. Effects of fire on intangible cultural resources: Moving toward a landscape approach [Chapter 8

    Treesearch

    John R. Welch

    2012-01-01

    Long before the Secretaries of the Departments of Agriculture and Interior signed the Federal Wildland Fire Management Policy in 1995, most land and resource professionals in the United States had recognized unprecedented fuel accumulations in western forests as management priorities. The Policy, its 2001 revision, the 2003 Healthy Forests Restoration Act, and the...

  5. Risk and Cooperation: Managing Hazardous Fuel in Mixed Ownership Landscapes

    NASA Astrophysics Data System (ADS)

    Fischer, A. Paige; Charnley, Susan

    2012-06-01

    Managing natural processes at the landscape scale to promote forest health is important, especially in the case of wildfire, where the ability of a landowner to protect his or her individual parcel is constrained by conditions on neighboring ownerships. However, management at a landscape scale is also challenging because it requires cooperation on plans and actions that cross ownership boundaries. Cooperation depends on people's beliefs and norms about reciprocity and perceptions of the risks and benefits of interacting with others. Using logistic regression tests on mail survey data and qualitative analysis of interviews with landowners, we examined the relationship between perceived wildfire risk and cooperation in the management of hazardous fuel by nonindustrial private forest (NIPF) owners in fire-prone landscapes of eastern Oregon. We found that NIPF owners who perceived a risk of wildfire to their properties, and perceived that conditions on nearby public forestlands contributed to this risk, were more likely to have cooperated with public agencies in the past to reduce fire risk than owners who did not perceive a risk of wildfire to their properties. Wildfire risk perception was not associated with past cooperation among NIPF owners. The greater social barriers to private-private cooperation than to private-public cooperation, and perceptions of more hazardous conditions on public compared with private forestlands may explain this difference. Owners expressed a strong willingness to cooperate with others in future cross-boundary efforts to reduce fire risk, however. We explore barriers to cooperative forest management across ownerships, and identify models of cooperation that hold potential for future collective action to reduce wildfire risk.

  6. Risk and cooperation: managing hazardous fuel in mixed ownership landscapes.

    PubMed

    Fischer, A Paige; Charnley, Susan

    2012-06-01

    Managing natural processes at the landscape scale to promote forest health is important, especially in the case of wildfire, where the ability of a landowner to protect his or her individual parcel is constrained by conditions on neighboring ownerships. However, management at a landscape scale is also challenging because it requires cooperation on plans and actions that cross ownership boundaries. Cooperation depends on people's beliefs and norms about reciprocity and perceptions of the risks and benefits of interacting with others. Using logistic regression tests on mail survey data and qualitative analysis of interviews with landowners, we examined the relationship between perceived wildfire risk and cooperation in the management of hazardous fuel by nonindustrial private forest (NIPF) owners in fire-prone landscapes of eastern Oregon. We found that NIPF owners who perceived a risk of wildfire to their properties, and perceived that conditions on nearby public forestlands contributed to this risk, were more likely to have cooperated with public agencies in the past to reduce fire risk than owners who did not perceive a risk of wildfire to their properties. Wildfire risk perception was not associated with past cooperation among NIPF owners. The greater social barriers to private-private cooperation than to private-public cooperation, and perceptions of more hazardous conditions on public compared with private forestlands may explain this difference. Owners expressed a strong willingness to cooperate with others in future cross-boundary efforts to reduce fire risk, however. We explore barriers to cooperative forest management across ownerships, and identify models of cooperation that hold potential for future collective action to reduce wildfire risk.

  7. Using a decision support system to estimate departures of present forest landscape patterns from historical reference condition—an example from the inland Northwest region of the United States.

    Treesearch

    P.F. Hessburg; K.M. Reynolds; R.B. Salter; M.B. Richmond

    2004-01-01

    Human settlement and management activities have altered the patterns and processes of forest landscapes across the inland northwest region of the United States (Hessburg et al. 2000C; Hessburg and Agee in press). As a consequence, many attributes of current disturbance regimes (e.g., the frequency, duration, severity, and extent of fires) differ markedly from those of...

  8. Effects of landscape composition and wetland fragmentation on frog and toad abundance and species richness in Iowa and Wisconsin, USA

    USGS Publications Warehouse

    Knutson, M.G.; Sauer, J.R.; Olsen, D.A.; Mossman, M.J.; Hemesath, L.M.; Lannoo, M.J.

    1999-01-01

    Management of amphibian populations to reverse recent declines will require defining high-quality habitat for individual species or groups of species, followed by efforts to retain or restore these habitats on the landscape. We examined landscape-level habitat relationships for frogs and toads by measuring associations between relative abundance and species richness based on survey data derived from anuran calls and features of land-cover maps for Iowa and Wisconsin. The most consistent result across all anuran guilds was a negative association with the presence of urban land. Upland and wetland forests and emergent wetlands tended to be positively associated with anurans. Landscape metrics that represent edges and patch diversity also had generally positive associations, indicating that anurans benefit from a complex of habitats that include wetlands. In Iowa the most significant associations with relative abundance were the length of the edge between wetland and forest (positive) and the presence of urban land (negative). In Wisconsin the two most significant associations with relative abundance were forest area and agricultural area (both positive). Anurans had positive associations with agriculture in Wisconsin but not in Iowa. Remnant forest patches in agricultural landscapes may be providing refuges for some anuran species. Differences in anuran associations with deep water and permanent wetlands between the two states suggest opportunities for management action. Large-scale maps can contribute to predictive models of amphibian habitat use, but water quality and vegetation information collected from individual wetlands will likely be needed to strengthen those predictions. Landscape habitat analyses provide a framework for future experimental and intensive research on specific factors affecting the health of anurans.

  9. Effects of landscape composition and wetland fragmentation on frog and toad abundance and species richness in Iowa and Wisconsin, U.S.A

    USGS Publications Warehouse

    Knutson, Melinda G.; Sauer, John R.; Olsen, Douglas A.; Mossman, Michael J.; Hemesath, Lisa M.; Lannoo, Michael J.

    1999-01-01

    Management of amphibian populations to reverse recent declines will require defining high-quality habitat for individual species or groups of species, followed by efforts to retain or restore these habitats on the landscape. We examined landscape-level habitat relationships for frogs and toads by measuring associations between relative abundance and species richness based on survey data derived from anuran calls and features of land-cover maps for Iowa and Wisconsin. The most consistent result across all anuran guilds was a negative association with the presence of urban land. Upland and wetland forests and emergent wetlands tended to be positively associated with anurans. Landscape metrics that represent edges and patch diversity also had generally positive associations, indicating that anurans benefit from a complex of habitats that include wetlands. In Iowa the most significant associations with relative abundance were the length of the edge between wetland and forest ( positive) and the presence of urban land (negative). In Wisconsin the two most significant associations with relative abundance were forest area and agricultural area ( both positive). Anurans had positive associations with agriculture in Wisconsin but not in Iowa. Remnant forest patches in agricultural landscapes may be providing refuges for some anuran species. Differences in anuran associations with deep water and permanent wetlands between the two states suggest opportunities for management action. Large-scale maps can contribute to predictive models of amphibian habitat use, but water quality and vegetation information collected from individual wetlands will likely be needed to strengthen those predictions. Landscape habitat analyses provide a framework for future experimental and intensive research on specific factors affecting the health of anurans.

  10. Harvest-associated disturbance in upland Ozark forests of the Missouri Ozark Forest Ecosystem Project

    Treesearch

    Johann N. Bruhn; James J. Wetteroff; Jeanne D. Mihail; Randy G. Jensen; James B. Pickens

    2002-01-01

    The Missouri Ozark Forest Ecosystem Project (MOFEP) is a long-term, multidisciplinary, landscape-based research program studying effects of even-aged (EAM), uneven-aged (UAM), and no-harvest (NHM) management on forest communities. The first MOFEP timber harvests occurred from May through November 1996. Harvest- related disturbance occurred on 69 of 180 permanent 0.2-ha...

  11. Towards sustainable management of Louisiana's coastal wetland forests: problems, constraints, and a new beginning

    Treesearch

    J.L. Chambers; W.H. Conner; R.F. Keim; S.P. Faulkner; J.W. Day; E.S. Gardiner; M.S. Hughes; S.L. King; K.W. McLeod; C.A. Miller; J.A. Nyman; G.P. Shaffer

    2006-01-01

    Over 345,000 ha of forested swamps occur throughout the Mississippi River Deltaic Plain. Natural and anthropogenic changes in hydrology and geomorphology at local and landscape levels have reduced the productivity in many of these coastal wetland forests areas and have caused the complete loss of forest cover in some places. A summary and interpretation of the...

  12. Integrating bird-habitat modeling into national forest planning for bird conservation in the southern Appalachians

    Treesearch

    David A. Buehler; Eric T. Linder; Kathleen E. Franzreb; Nathan A. Klaus; Randy Dettmers; John G. Bartlett

    2005-01-01

    We developed spatially-explicit bird-habitat models with a variety of site-specific and landscape parameters to predict avian species distributions on southern Appalachian National Forests to aid National Forests with bird conservation planning. These models can be used to assess the effects of different forest management alternatives on long-term population viability...

  13. Two-dimensional wavelet analysis of spruce budworm host basal area in the Border Lakes landscape

    Treesearch

    Patrick M. James; Brian R. Sturtevant; Phil Townsend; Pete Wolter; Marie-Josee Fortin

    2011-01-01

    Increases in the extent and severity of spruce budworm (Choristoneura fumiferana Clem.) outbreaks over the last century are thought to be the result of changes in forest structure due to forest management. A corollary of this hypothesis is that manipulations of forest structure and composition can be used to reduce future forest vulnerability....

  14. Regional forest landscape restoration priorities: Integrating historical conditions and an uncertain future in the northern Rocky Mountains

    Treesearch

    Barry L. Bollenbacher; Russell T. Graham; Keith M. Reynolds

    2014-01-01

    National law and policy direct the management of the National Forests, with restoring resilient forest conditions being an overarching theme. Climate is a major driver of disturbances that affect ecosystems, especially those with vegetation that show large departures from historical conditions. Drought, fire, insects, and diseases are common forest stressors whose...

  15. Greener cities: U.S. Forest Service software package helps cities manage their urban treescape

    Treesearch

    Jim Kling; Greg Featured: McPherson

    2008-01-01

    Urban forests don't get the recognition that natural forests do. They don't encompass sweeping vistas and magnificent views and they don't provide critical habitat to endangered species. Nevertheless, they are vital. More than 90 percent of all Californians live, work, and play in urban forests. Trees in the urban landscape provide vital ecosystem...

  16. Response of seasonal pond plant communities to upland forest harvest in northern Minnesota forests, USA

    Treesearch

    Brian J. Palik; Doug. Kastendick

    2010-01-01

    Small seasonally flooded forest ponds have received increased attention due to a growing recognition of their abundance in many landscapes, their importance as habitat for a variety of organisms, and the contributions they make to species and ecosystem diversity. There also is concern over potential negative effects of forest management in adjacent uplands on seasonal...

  17. Landowner and visitor response to forest landscape restoration: the Chequamegon-Nicolet National Forest Northeast Sands Project

    Treesearch

    Kristin Floress; Anna Haines; Emily Usher; Paul Gobster; Mike Dockry

    2018-01-01

    This report is intended to support the ongoing pine barrens restoration on work in the Lakewood-Laona Ranger District on the Chequamegon-Nicolet National Forest (CNNF). The report provides the results from 2016 surveys and focus groups examining landowner and visitor attitudes toward forest management treatments, communication, and restoration project outcomes; their...

  18. Growing the urban forest: tree performance in response to biotic and abiotic land management

    Treesearch

    Emily E. Oldfield; Alexander J. Felson; D. S. Novem Auyeung; Thomas W. Crowther; Nancy F. Sonti; Yoshiki Harada; Daniel S. Maynard; Noah W. Sokol; Mark S. Ashton; Robert J. Warren; Richard A. Hallett; Mark A. Bradford

    2015-01-01

    Forests are vital components of the urban landscape because they provide ecosystem services such as carbon sequestration, storm-water mitigation, and air-quality improvement. To enhance these services, cities are investing in programs to create urban forests. A major unknown, however, is whether planted trees will grow into the mature, closed-canopied forest on which...

  19. Landscape-scale parameterization of a tree-level forest growth model: a k-nearest neighbor imputation approach incorporating LiDAR data

    Treesearch

    Michael J. Falkowski; Andrew T. Hudak; Nicholas L. Crookston; Paul E. Gessler; Edward H. Uebler; Alistair M. S. Smith

    2010-01-01

    Sustainable forest management requires timely, detailed forest inventory data across large areas, which is difficult to obtain via traditional forest inventory techniques. This study evaluated k-nearest neighbor imputation models incorporating LiDAR data to predict tree-level inventory data (individual tree height, diameter at breast height, and...

  20. Cumulative ecological and socioeconomic effects of forest policies in coastal Oregon.

    Treesearch

    T.A. Spies; K.N. Johnson; K.M. Burnett; J.L. Ohmann; B.C. McComb; G.H. Reeves; P. Bettinger; J.D. Kline; B. Garber-Yonts

    2007-01-01

    Forest biodiversity policies in multiownership landscapes are typically developed in an uncoordinated fashion with little consideration of their interactions or possible unintended cumulative effects. We conducted an assessment of some of the ecological and socioeconomic effects of recently enacted forest management policies in the 2.3-million-ha Coast Range...

  1. Effects of riparian buffers on hydrology of northern seasonal ponds

    Treesearch

    Randall K. Kolka; Brian J. Palik; Daniel P. Tersteeg; James C. Bell

    2011-01-01

    Although seasonal ponds are common in northern, glaciated, forested landscapes, forest management guidelines are generally lacking for these systems. The objective of this study was to determine the effect of riparian buffer type on seasonal pond hydrology following harvest of the adjacent upland forest. A replicated block design consisting of four buffer treatments...

  2. Old-growth forests in the Southwest and Rocky Mountain Regions - Proceedings of a workshop

    Treesearch

    Merrill R. Kaufman; W. H. Moir; Richard L. Bassett

    1992-01-01

    This paper reviews the science and management of old-growth forests and summarizes discussions among 30 participants at a workshop in Portal, Arizona, March 9-13, 1992. Concepts of old-growth forests - the perceptions, values, definitions, characteristic features, ecological functions, and landscape importance - vary widely. Because concepts are complex,...

  3. 76 FR 3605 - Collaborative Forest Landscape Restoration Program Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... 3847973. Written comments should be sent to USDA Forest Service, Forest Management, Mailstop- 1103, 1400 Independence Avenue, SW., Washington, DC 20250-1103. Comments may also be sent via e-mail to Megan Roessing..., Washington, DC 20024-1103. Visitors are encouraged to call ahead to 202-205-1688 to facilitate entry into the...

  4. Applying a framework for landscape planning under climate change for the conservation of biodiversity in the Finnish boreal forest.

    PubMed

    Mazziotta, Adriano; Triviño, Maria; Tikkanen, Olli-Pekka; Kouki, Jari; Strandman, Harri; Mönkkönen, Mikko

    2015-02-01

    Conservation strategies are often established without consideration of the impact of climate change. However, this impact is expected to threaten species and ecosystem persistence and to have dramatic effects towards the end of the 21st century. Landscape suitability for species under climate change is determined by several interacting factors including dispersal and human land use. Designing effective conservation strategies at regional scales to improve landscape suitability requires measuring the vulnerabilities of specific regions to climate change and determining their conservation capacities. Although methods for defining vulnerability categories are available, methods for doing this in a systematic, cost-effective way have not been identified. Here, we use an ecosystem model to define the potential resilience of the Finnish forest landscape by relating its current conservation capacity to its vulnerability to climate change. In applying this framework, we take into account the responses to climate change of a broad range of red-listed species with different niche requirements. This framework allowed us to identify four categories in which representation in the landscape varies among three IPCC emission scenarios (B1, low; A1B, intermediate; A2, high emissions): (i) susceptible (B1 = 24.7%, A1B = 26.4%, A2 = 26.2%), the most intact forest landscapes vulnerable to climate change, requiring management for heterogeneity and resilience; (ii) resilient (B1 = 2.2%, A1B = 0.5%, A2 = 0.6%), intact areas with low vulnerability that represent potential climate refugia and require conservation capacity maintenance; (iii) resistant (B1 = 6.7%, A1B = 0.8%, A2 = 1.1%), landscapes with low current conservation capacity and low vulnerability that are suitable for restoration projects; (iv) sensitive (B1 = 66.4%, A1B = 72.3%, A2 = 72.0%), low conservation capacity landscapes that are vulnerable and for which alternative conservation measures are required depending on the intensity of climate change. Our results indicate that the Finnish landscape is likely to be dominated by a very high proportion of sensitive and susceptible forest patches, thereby increasing uncertainty for landscape managers in the choice of conservation strategies. © 2014 John Wiley & Sons Ltd.

  5. Influence of landscape structure, topography, and forest type on spatial variation in historical fire regimes, central Oregon, USA

    USGS Publications Warehouse

    Merschel, Andrew; Heyerdahl, Emily K.; Spies, Thomas A; Loehman, Rachel A.

    2018-01-01

    Context In the interior Northwest, debate over restoring mixed-conifer forests after a century of fire exclusion is hampered by poor understanding of the pattern and causes of spatial variation in historical fire regimes. Objectives To identify the roles of topography, landscape structure, and forest type in driving spatial variation in historical fire regimes in mixed-conifer forests of central Oregon. Methods We used tree rings to reconstruct multicentury fire and forest histories at 105 plots over 10,393 ha. We classified fire regimes into four types and assessed whether they varied with topography, the location of fuel-limited pumice basins that inhibit fire spread, and an updated classification of forest type. Results We identified four fire-regime types and six forest types. Although surface fires were frequent and often extensive, severe fires were rare in all four types. Fire regimes varied with some aspects of topography (elevation), but not others (slope or aspect) and with the distribution of pumice basins. Fire regimes did not strictly co-vary with mixed-conifer forest types. Conclusions Our work reveals the persistent influence of landscape structure on spatial variation in historical fire regimes and can help inform discussions about appropriate restoration of fire-excluded forests in the interior Northwest. Where the goal is to restore historical fire regimes at landscape scales, managers may want to consider the influence of topoedaphic and vegetation patch types that could affect fire spread and ignition frequency.

  6. ­­Estimating Forest Management Units from Road Network Maps in the Southeastern U.S.

    NASA Astrophysics Data System (ADS)

    Yang, D.; Hall, J.; Fu, C. S.; Binford, M. W.

    2015-12-01

    The most important factor affecting forest structure and function is the type of management undertaken in forest stands. Owners manage forests using appropriately sized areas to meet management objectives, which include economic return, sustainability, recreation, or esthetic enjoyment. Thus, the socio-environmental unit of study for forests should be the management unit. To study the ecological effects of different kinds of management activities, we must identify individual management units. Road networks, which provide access for human activities, are widely used in managing forests in the southeastern U.S. Coastal Plain and Piedmont (SEUS). Our research question in this study is: How can we identify individual forest management units in an entire region? To answer it, we hypothesize that the road network defines management units on the landscape. Road-caused canopy openings are not always captured by satellite sensors, so it is difficult to delineate ecologically relevant patches based only on remote sensing data. We used a reliable, accurate and freely available road network data, OpenStreetMap (OSM), and the National Land Cover Database (NLCD) to delineate management units in a section of the SEUS defined by Landsat Wprldwide Reference System (WRS) II footprint path 17 row 39. The spatial frequency distributions of forest management units indicate that while units < 0.5 Ha comprised 64% of the units, these small units covered only 0.98% of the total forest area. Management units ≥ 0.5 Ha ranged from 0.5 to 160,770 Ha (the Okefenokee National Wildlife Refuge). We compared the size-frequency distributions of management units with four independently derived management types: production, ecological, preservation, and passive management. Preservation and production management had the largest units, at 40.5 ± 2196.7 (s.d.) and 41.3 ± 273.5 Ha, respectively. Ecological and passive averaged about half as large at 19.2 ± 91.5 and 22.4 ± 96.0 Ha, respectively. This result supports the hypothesis that the road network defines management units in SEUS. If this way of delineating management units stands under further testing, it will provide a way of subdividing the landscape so that we can study the effects of different management on forest ecosystems.

  7. Messages, limitations and future needs of research into environmental impacts and mitigating and remediation measures of oil palm and forest land-use and land management in SE Asia

    NASA Astrophysics Data System (ADS)

    Walsh, Rory; Bidin, Kawi; Nurhidayu, Siti; Nainar, Anand; Annammala, Kogilavani; Blake, William; Higton, Sam; Wall, Katy; Darling, Isabella

    2017-04-01

    Oil palm and forest logging land-uses have expanded immensely in recent decades in SE Asia and other parts of the humid tropics - and increasingly into steeplands where adverse biophysical in situ and downstream impacts are particularly severe. With a focus on recent and current projects in Sabah (Malaysian Borneo) and Peninsular Malaysia, this paper examines the changing nature of research foci and approaches of research projects to assess impacts and develop and test mitigation strategies. Early projects focussed on comparing slope- and catchment-scale hydrology and erosion of selectively logged forest and primary forest and on ways of reducing logging impacts. The second phase of research focussed increasingly on (1) longer-term recovery from logging and (2) the likely impacts of climate change. With repeat logging and conversion of areas of forest to oil palm (and conservation of remaining primary forest was secured), the focus of attention has moved to (1) assessing impacts of oil palm conversion and land management practices, (2) testing existing (and potentially more effective) Roundtable for Sustainable Palm Oil (RSPO) guidelines and Government Regulations aimed at reducing impacts and (3) developing and testing ways of restoring and rehabilitating forest within both badly degraded logged forest areas and largely oil palm landscapes - with attention focussed on the landscape scale, the long-term, downstream as well as in situ impacts and the more vulnerable steepland areas. Two multidisciplinary umbrella projects - the SAFE (Stability of Altered Forest Ecosystems) Project and the SEnSOR Programme - have formed the backbone of this latest phase. The SAFE Project is a ten-year programme assessing the effectiveness of retention of differing widths of riparian forest buffers and different- sized forest 'islands' within converted oil palm landscapes in reducing their adverse ecological, emissions, hydrological, erosional and water pollution impacts. The SEnSOR Programme is specifically testing the effectiveness of RSPO guidelines and possible improved land management measures. After a brief overview of some of the approaches and key findings of these studies, the paper focuses on some of the advantages, limitations and future needs of these studies. Important features of the projects are (1) the involvement of industry, Government and local people from the start in the projects, (2) the focus on the landscape scale and long-term (for example with use of current monitoring as well as a historical approach involving sediment dating and fingerprinting), (3) simultaneous consideration of impacts on a wide variety of environmental impacts, as impacts of land management practices can be beneficial to some but adverse to others. Key limitations and needs are then identified and discussed. The most important of these include how to reconcile the sometimes conflicting impacts of land management practices (and remedial measures) on different environmental parameters and concerns - what is good for Peter is sometimes very bad for Paul. A key need identified, therefore, is for methodologies to evaluate comparative environmental and socioeconomic benefits and costs of sometimes conflicting or alternative land management practices and options that emerge from usually separate scientific investigations of how to reduce impacts of, for example, soil erosion, landslide risk, streamwater pollution, atmospheric emissions, river ecology and landscape biodiversity (and its components). There is also a key need for involvement of social scientists in projects.

  8. The impact of ancestral heath management on soils and landscapes: a reconstruction based on paleoecological analyses of soil records in the central and southeastern Netherlands

    NASA Astrophysics Data System (ADS)

    Doorenbosch, Marieke; van Mourik, Jan M.

    2016-07-01

    The evolution of heathlands during the Holocene has been registered in various soil records. Paleoecological analyses of these records enable reconstruction of the changing economic and cultural management of heaths and the consequences for landscape and soils. Heaths are characteristic components of cultural landscape mosaics on sandy soils in the Netherlands. The natural habitat of heather species was moorland. At first, natural events like forest fires and storms caused small-scale forest degradation; in addition on that, the forest degradation accelerated due to cultural activities like forest grazing, wood cutting, and shifting cultivation. Heather plants invaded degraded forest soils, and heaths developed. People learned to use the heaths for economic and cultural purposes. The impact of the heath management on landscape and soils was registered in soil records of barrows, drift sand sequences, and plaggic Anthrosols. Based on pollen diagrams of such records we could reconstruct that heaths were developed and used for cattle grazing before the Bronze Age. During the late Neolithic, the Bronze Age, and Iron Age, people created the barrow landscape on the ancestral heaths. After the Iron Age, people probably continued with cattle grazing on the heaths and plaggic agriculture until the early Middle Ages. Severe forest degradation by the production of charcoal for melting iron during the Iron Age till the 6th-7th century and during the 11th-13th century for the trade of wood resulted in extensive sand drifting, a threat to the valuable heaths. The introduction of the deep, stable economy and heath sods digging in the course of the 18th century resulted in acceleration of the rise of plaggic horizons, severe heath degradation, and again extension of sand drifting. At the end of the 19th century heath lost its economic value due to the introduction of chemical fertilizers. The heaths were transformed into "new" arable fields and forests, and due to deep ploughing most soil archives were destroyed. Since AD 1980, the remaining relicts of the ancestral heaths are preserved and restored in the frame of the programs to improve the regional and national geo-biodiversity. Despite the realization of many heath restoration projects during the last decades, the area of the present heaths is just a fraction of the heath areal in AD 1900.

  9. Traditional use and management of NTFPs in Kangchenjunga Landscape: implications for conservation and livelihoods.

    PubMed

    Uprety, Yadav; Poudel, Ram C; Gurung, Janita; Chettri, Nakul; Chaudhary, Ram P

    2016-05-03

    Non-timber Forest Products (NTFPs), an important provisioning ecosystem services, are recognized for their contribution in rural livelihoods and forest conservation. Effective management through sustainable harvesting and market driven commercialization are two contrasting aspects that are bringing challenges in development of NTFPs sector. Identifying potential species having market value, conducting value chain analyses, and sustainable management of NTFPs need analysis of their use patterns by communities and trends at a regional scale. We analyzed use patterns, trends, and challenges in traditional use and management of NTFPs in the southern slope of Kangchenjunga Landscape, Eastern Himalaya and discussed potential implications for conservation and livelihoods. A total of 739 species of NTFPs used by the local people of Kangchenjunga Landscape were reported in the reviewed literature. Of these, the highest number of NTFPs was documented from India (377 species), followed by Nepal (363) and Bhutan (245). Though the reported species were used for 24 different purposes, medicinal and edible plants were the most frequently used NTFP categories in the landscape. Medicinal plants were used in 27 major ailment categories, with the highest number of species being used for gastro-intestinal disorders. Though the Kangchenjunga Landscape harbors many potential NTFPs, trade of NTFPs was found to be nominal indicating lack of commercialization due to limited market information. We found that the unsustainable harvesting and lack of marketing were the major constraints for sustainable management of NTFPs sector in the landscape despite of promising policy provisions. We suggest sustainable harvesting practices, value addition at local level, and marketing for promotion of NTFPs in the Kangchenjunga Landscape for income generation and livelihood improvement that subsequently contributes to conservation.

  10. Assessing land ownership as a driver of change in the distribution, structure, and composition of California's forests.

    NASA Astrophysics Data System (ADS)

    Easterday, K.; Kelly, M.; McIntyre, P. J.

    2015-12-01

    Climate change is forecasted to have considerable influence on the distribution, structure, and function of California's forests. However, human interactions with forested landscapes (e.g. fire suppression, resource extraction and etc.) have complicated scientific understanding of the relative contributions of climate change and anthropogenic land management practices as drivers of change. Observed changes in forest structure towards smaller, denser forests across California have been attributed to both climate change (e.g. increased temperatures and declining water availability) and management practices (e.g. fire suppression and logging). Disentangling how these drivers of change act both together and apart is important to developing sustainable policy and land management practices as well as enhancing knowledge of human and natural system interactions. To that end, a comprehensive historical dataset - the Vegetation Type Mapping project (VTM) - and a modern forest inventory dataset (FIA) are used to analyze how spatial variations in vegetation composition and structure over a ~100 year period can be explained by land ownership.Climate change is forecasted to have considerable influence on the distribution, structure, and function of California's forests. However, human interactions with forested landscapes (e.g. fire suppression, resource extraction and etc.) have complicated scientific understanding of the relative contributions of climate change and anthropogenic land management practices as drivers of change. Observed changes in forest structure towards smaller, denser forests across California have been attributed to both climate change (e.g. increased temperatures and declining water availability) and management practices (e.g. fire suppression and logging). Disentangling how these drivers of change act both together and apart is important to developing sustainable policy and land management practices as well as enhancing knowledge of human and natural system interactions. To that end, a comprehensive historical dataset - the Vegetation Type Mapping project (VTM) - and a modern forest inventory dataset (FIA) are used to analyze how spatial variations in vegetation composition and structure over a ~100 year period can be explained by land ownership.

  11. A network approach to assessing social capacity for landscape planning: The case of fire-prone forests in Oregon, USA

    Treesearch

    A. Paige Fischer; Ken Vance-Borland; Lorien Jasny; Kerry E. Grimm; Susan Charnley

    2016-01-01

    tManagement of ecological conditions and processes in multiownership landscapes requires cooperationby diverse stakeholder groups. The structure of organizational networks – the extent to which networksallow for interaction among organizations within and across ideological and geographic boundaries –can indicate potential opportunities for cooperation on landscape-...

  12. Historical and current forest and range landscapes in the interior Columbia River basin and portions of the Klamath and Great Basins. Part 1: Linking vegetation patterns and landscape vulnerability to potential insect and pathogen disturbances.

    Treesearch

    Paul F. Hessburg; Bradley G. Smith; Scott D. Kreiter; Craig A. Miller; R. Brion Salter; Cecilia H. McNicoll; Wendel J. Hann

    1999-01-01

    Management activities of the 20th century, especially fire exclusion, timber harvest, and domestic livestock grazing, have significantly modified vegetation spatial patterns of forests and ranges in the interior Columbia basin. Compositional patterns as well as patterns of living and dead structure have changed. Dramatic change in vital ecosystem processes such as fire...

  13. Fuel characterization in the southern Appalachian Mountains: an application of landscape ecosystem classification

    Treesearch

    Aaron D. Stottlemeyer; Victor B. Shelburne; Thomas A. Waldrop; Sandra Rideout-Hanzak; William C. Bridges

    2009-01-01

    Prescribed fire has been widely used in the south-eastern United States to meet forest management objectives, but has only recently been reintroduced to the southern Appalachian Mountains. Fuel information is not available to forest managers in this region and direct measurement is often impractical owing to steep, remote topography. The objective of the present study...

  14. Developing desired future conditions with the landscape management system: A case study of the Gotchen Late Successional Reserve

    Treesearch

    R. Mendez-Treneman; S. Hummel; G. Porterie; C. D. Oliver

    2001-01-01

    Changing public values have led to federal land management direction like the Northwest Forest Plan with major land allocations for late successional forest habitat. Restoration silviculture is a tool for maintaining optimum habitat despite risk of catastrophic disturbance due to the combined impact of fire, insects and disease. The Gotchen Late Successional Reserve (...

  15. Evolutionary diversity and ecology of endemic small mammals of southeastern Alaska with implications for land management planning.

    Treesearch

    Winston P. Smith

    2005-01-01

    The dynamic geological history and naturally fragmented landscapes of southeastern Alaska create an environment with a high potential for endemism. The temperate rainforest of the region regenerates and develops slowly, and old-forest characteristics do not appear until >300 years following disturbance. The challenges of managing forest resources are intensified in...

  16. Habitat Selection by Eld’s Deer following Relocation to a Patchy Landscape

    PubMed Central

    Pan, Duo; Song, Yan-Ling; Zeng, Zhi-Gao; Bravery, Benjamin D.

    2014-01-01

    An emerging issue in wildlife conservation is the re-establishment of viable populations of endangered species in suitable habitats. Here, we studied habitat selection by a population of Hainan Eld’s deer (Cervus eldi) relocated to a patchy landscape of farmland and forest. Hainan Eld’s deer were pushed to the brink of extinction in the 1970s, but their population expanded rapidly from 26 to more than 1000 individuals by 2003 through effective reserve protection. As part of a wider relocation and population management strategy, 131 deer were removed from the reserve and reintroduced into a farmland-forest landscape in 2005. Habitat use under a context of human disturbance was surveyed by monitoring 19 radio-collared animals. The majority of deer locations (77%) were within 0.6–2 km of villages. Annual home ranges of these collared deer averaged 725 ha (SD 436), which was 55% of the size of the reserve from which they had originated. The annual home ranges contained 54% shrub-grassland, 26% forest and 15% farmland. The relocated deer population selected landscape comprising slash-and-burn agriculture and forest, and avoided both intensively farmed areas and areas containing only forest. Within the selected landscape, deer preferred swiddens and shrub-grasslands. Forests above 300 m in elevation were avoided, whereas forests below 300 m in elevation were overrepresented during the dry season and randomly used during the wet season. Our findings show that reintroduced deer can utilize disturbed habitats, and further demonstrate that subsistence agroforest ecosystems have the capacity to sustain endangered ungulates. PMID:24614039

  17. Habitat selection by Eld's deer following relocation to a patchy landscape.

    PubMed

    Pan, Duo; Song, Yan-Ling; Zeng, Zhi-Gao; Bravery, Benjamin D

    2014-01-01

    An emerging issue in wildlife conservation is the re-establishment of viable populations of endangered species in suitable habitats. Here, we studied habitat selection by a population of Hainan Eld's deer (Cervus eldi) relocated to a patchy landscape of farmland and forest. Hainan Eld's deer were pushed to the brink of extinction in the 1970s, but their population expanded rapidly from 26 to more than 1000 individuals by 2003 through effective reserve protection. As part of a wider relocation and population management strategy, 131 deer were removed from the reserve and reintroduced into a farmland-forest landscape in 2005. Habitat use under a context of human disturbance was surveyed by monitoring 19 radio-collared animals. The majority of deer locations (77%) were within 0.6-2 km of villages. Annual home ranges of these collared deer averaged 725 ha (SD 436), which was 55% of the size of the reserve from which they had originated. The annual home ranges contained 54% shrub-grassland, 26% forest and 15% farmland. The relocated deer population selected landscape comprising slash-and-burn agriculture and forest, and avoided both intensively farmed areas and areas containing only forest. Within the selected landscape, deer preferred swiddens and shrub-grasslands. Forests above 300 m in elevation were avoided, whereas forests below 300 m in elevation were overrepresented during the dry season and randomly used during the wet season. Our findings show that reintroduced deer can utilize disturbed habitats, and further demonstrate that subsistence agroforest ecosystems have the capacity to sustain endangered ungulates.

  18. Manager's handbook for aspen in the north-central states.

    Treesearch

    Donald A. Perala

    1977-01-01

    Summarizes information on silvicultural practices to improve yields of timber, water, and wildlife, while minimizing unsightly manipulation of the landscape, for the aspen forest type. A management key outlines recommendations for given stand conditions and management objectives.

  19. Wildfires in Chernobyl-contaiminated forests and risks to the population and the environment: A new nuclear disaster about to happen?

    Treesearch

    Nikolaos Evangeliou; Yves Balkanski; Anne Cozic; Wei Min Hao; Anders Pape Moller

    2014-01-01

    Radioactive contamination in Ukraine, Belarus and Russia after the Chernobyl accident left large rural and forest areas to their own fate. Forest succession in conjunction with lack of forest management started gradually transforming the landscape. During the last 28 years dead wood and litter have dramatically accumulated in these areas, whereas climate change has...

  20. Increasing resiliency in frequent fire forests: Lessons from the Sierra Nevada and western Australia

    Treesearch

    Scott L. Stephens

    2014-01-01

    This paper will primarily focus on the management and restoration of forests adapted to frequent, low-moderate intensity fire regimes. These are the forest types that are most at risk from large, high-severity wildfires and in many regions their fire regimes are changing. Fire as a landscape process can exhibit self-limiting characteristics in some forests which can...

  1. Finding effective ways to provide knowledge to forest managers about non-timber forest products: a case-study of distance learning approaches

    Treesearch

    A. L. (Tom) Hammett; Jim Chamberlain; Matt Winn

    2009-01-01

    Many who grow or collect non-timber forest products (NTFPs) have been under-served in traditional forestry educational programs. It has often been difficult to determine the needs of this disparate group of stakeholders as collectors and growers are widely dispersed across the landscape, and not recognized as important stakeholders in formal cost forest...

  2. Landscape‐level patterns in fawn survival across North America

    USGS Publications Warehouse

    Gingery, Tess M.; Diefenbach, Duane R.; Wallingford, Bret D.; Rosenberry, Christopher S.

    2018-01-01

    A landscape‐level meta‐analysis approach to examining early survival of ungulates may elucidate patterns in survival not evident from individual studies. Despite numerous efforts, the relationship between fawn survival and habitat characteristics remains unclear and there has been no attempt to examine trends in survival across landscape types with adequate replication. In 2015–2016, we radiomarked 98 white‐tailed deer (Odocoileus virginianus) fawns in 2 study areas in Pennsylvania. By using a meta‐analysis approach, we compared fawn survival estimates from across North America using published data from 29 populations in 16 states to identify patterns in survival and cause‐specific mortality related to landscape characteristics, predator communities, and deer population density. We modeled fawn survival relative to percentage of agricultural land cover and deer density. Estimated average survival to 3–6 months of age was 0.414 ± 0.062 (SE) in contiguous forest landscapes (no agriculture) and for every 10% increase in land area in agriculture, fawn survival increased 0.049 ± 0.014. We classified cause‐specific mortality as human‐caused, natural (excluding predation), and predation according to agriculturally dominated, forested, and mixed (i.e., both agricultural and forest cover) landscapes. Predation was the greatest source of mortality in all landscapes. Landscapes with mixed forest and agricultural cover had greater proportions and rates of human‐caused mortalities, and lower proportions and rates of mortality due to predators, when compared to forested landscapes. Proportion and rate of natural deaths did not differ among landscapes. We failed to detect any relationship between fawn survival and deer density. The results highlight the need to consider multiple spatial scales when accounting for factors that influence fawn survival. Furthermore, variation in mortality sources and rates among landscapes indicate the potential for altered landscape mosaics to influence fawn survival rates. Wildlife managers can use the meta‐analysis to identify factors that will facilitate comparisons of results among studies and advance a better understanding of patterns in fawn survival.

  3. Biotic homogenization can decrease landscape-scale forest multifunctionality.

    PubMed

    van der Plas, Fons; Manning, Pete; Soliveres, Santiago; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David Anthony; Coppi, Andrea; Bastias, Cristina C; Dawud, Seid Muhie; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Mueller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Ratcliffe, Sophia; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-03-29

    Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.

  4. Biotic homogenization can decrease landscape-scale forest multifunctionality

    PubMed Central

    van der Plas, Fons; Manning, Pete; Soliveres, Santiago; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A.; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coppi, Andrea; Bastias, Cristina C.; Dawud, Seid Muhie; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Mueller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Ratcliffe, Sophia; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-01-01

    Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality. PMID:26979952

  5. Site-occupany of bats in relation to forested corridors

    Treesearch

    Chris D Hein; Steven B Castleberry; Karl V. Miller

    2009-01-01

    Although use of corridors by some wildlife species has been extensively examined, use by bats is poorly understood. From 1 June to 31 August (2004~200S), we used Anabat II detectors to examine bat activity and species occupancy relative to forested corridors on an intensively managed forest landscape in southern South Carolina, USA. We...

  6. Proceedings of the second Missouri Ozark Forest Ecosystem Project Symposium: Post-treatment results of the landscape experiment

    Treesearch

    S.R. Shifley; J.M., eds. Kabrick

    2002-01-01

    Presents the short-term effects of even-aged, uneven-aged, and no-harvest management on forest ecosystems included in the Missouri Ozark Forest Project (MOFEP). Individual papers address study design, site history, species diversity, genetic diversity, woody vegetation, ground layer vegetation, stump sprouting, tree cavities, logging disturbance, avian communities,...

  7. Detection probabilities of woodpecker nests in mixed conifer forests in Oregon

    Treesearch

    Robin E. Russell; Victoria A. Saab; Jay J. Rotella; Jonathan G. Dudley

    2009-01-01

    Accurate estimates of Black-backed (Picoides arcticus) and Hairy Woodpecker (P. villosus) nests and nest survival rates in post-fire landscapes provide land managers with information on the relative importance of burned forests to nesting woodpeckers. We conducted multiple-observer surveys in burned and unburned mixed coniferous forests in Oregon to identify important...

  8. Applying four principles of headwater system aquatic biology to forest management

    Treesearch

    Robert J. Danehy; Sherri L. Johnson

    2013-01-01

    Headwater systems, including the channel and the adjacent riparian forest, are a dominant landscape feature in forested watersheds, draining most of the watershed area, and comprising the majority of channel length in drainage networks. Being at the upper extent of watersheds, these systems are smaller and steeper than large streams, and create microhabitats that...

  9. Forest wildfire, fuel reduction treatments, and landscape carbon stocks: a sensitivity analysis

    Treesearch

    John L. Campbell; Alan A. Ager

    2013-01-01

    Fuel reduction treatments prescribed in fire-suppressed forests of western North America pose an apparent paradox with respect to terrestrial carbon management. Such treatments have the immediate effect of reducing forest carbon stocks but likely reduce future carbon losses through the combustion and mortality caused by high-severity wildfires. Assessing the long-term...

  10. Climate change, forests, fire, water, and fish: Building resilient landscapes, streams, and managers

    Treesearch

    Charles Luce; Penny Morgan; Kathleen Dwire; Daniel Isaak; Zachary Holden; Bruce Rieman

    2012-01-01

    Fire will play an important role in shaping forest and stream ecosystems as the climate changes. Historic observations show increased dryness accompanying more widespread fire and forest die-off. These events punctuate gradual changes to ecosystems and sometimes generate stepwise changes in ecosystems. Climate vulnerability assessments need to account for fire in their...

  11. Working forests, forest health and management challenges in the redwood region

    Treesearch

    Ken Pimlott

    2017-01-01

    As California continues into a fifth year of drought, tree mortality enhanced by the unprecedented bark beetle epidemic contributes to wildfires that continue to increase in frequency and severity. Recent fires have posed increasing fire suppression challenges, life safety concerns, post fire watershed impacts and lasting damage to forested landscapes. The ability of...

  12. Advances in Canadian forest hydrology, 1995-1998

    NASA Astrophysics Data System (ADS)

    Buttle, J. M.; Creed, I. F.; Pomeroy, J. W.

    2000-06-01

    Approximately 42% of Canada is covered by forests, which in turn can be subdivided into nine distinct forest ecozones. Many forested ecozones are located in northern Canada, where cold winters and cool summers provide forest environments that are less well-understood than those in more temperate locations. A number of major developments in recent years have stressed the need for enhanced understanding of hydrological processes in these forest landscapes. These include an increased emphasis on sustainable forest management in Canada as well as major scientific initiatives (e.g. BOREAS) examining water, carbon and energy fluxes in forest ecosystems, with a particular focus on boreal and subarctic forests. Recent progress in our understanding of forest hydrology across Canada is reviewed. Studies of hydrological processes across the spectrum of forest ecozones are highlighted, as well as work on hydrological responses to forest disturbance and recovery. Links between studies of hydrological processes in Canada's forests and other fields of research are examined, with particular attention paid to ongoing efforts to model hydrological impacts and interactions with the climate, biogeochemistry, geomorphology and ecology of forested landscapes.

  13. 75 FR 16719 - Information Collection; Forest Landscape Value and Special Place Mapping for National Forest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... Collection; Forest Landscape Value and Special Place Mapping for National Forest Planning AGENCY: Forest... on the new information collection, Forest Landscape Value and Special Place Mapping for National... holidays. SUPPLEMENTARY INFORMATION: Title: Forest Landscape Value and Special Place Mapping for National...

  14. Long-term colonization ecology of forest-dwelling species in a fragmented rural landscape - dispersal versus establishment.

    PubMed

    Lõhmus, Kertu; Paal, Taavi; Liira, Jaan

    2014-08-01

    Species colonization in a new habitat patch is an efficiency indicator of biodiversity conservation. Colonization is a two-step process of dispersal and establishment, characterized by the compatibility of plant traits with landscape structure and habitat conditions. Therefore, ecological trait profiling of specialist species is initially required to estimate the relative importance of colonization filters. Old planted parks best satisfy the criteria of a newly created and structurally matured habitat for forest-dwelling plant species. We sampled species in 230 ancient deciduous forests (source habitat), 74 closed-canopy manor parks (target habitats), 151 linear wooded habitats (landscape corridors), and 97 open habitats (isolating matrix) in Estonia. We defined two species groups of interest: forest (107 species) and corridor specialists (53 species). An extra group of open habitat specialists was extracted for trait scaling. Differing from expectations, forest specialists have high plasticity in reproduction mechanisms: smaller seeds, larger dispersules, complementary selfing ability, and diversity of dispersal vectors. Forest specialists are shorter, less nutrient-demanding and mycorrhizal-dependent, stress-tolerant disturbance-sensitive competitors, while corridor specialists are large-seeded disturbance-tolerant competitors. About 40% of species from local species pools have immigrated into parks. The historic forest area, establishment-related traits, and stand quality enhance the colonization of forest specialists. The openness of landscape and mowing in the park facilitate corridor specialists. Species traits in parks vary between a forest and corridor specialist, except for earlier flowering and larger propagules. Forest species are not dispersal limited, but they continue to be limited by habitat properties even in the long term. Therefore, the shady parts of historic parks should be appreciated as important forest biodiversity-enhancing landscape structures. The habitat quality of secondary stands can be improved by nurturing a heterogeneous shrub and tree layer, and modest herb layer management.

  15. Long-term colonization ecology of forest-dwelling species in a fragmented rural landscape – dispersal versus establishment

    PubMed Central

    Lõhmus, Kertu; Paal, Taavi; Liira, Jaan

    2014-01-01

    Species colonization in a new habitat patch is an efficiency indicator of biodiversity conservation. Colonization is a two-step process of dispersal and establishment, characterized by the compatibility of plant traits with landscape structure and habitat conditions. Therefore, ecological trait profiling of specialist species is initially required to estimate the relative importance of colonization filters. Old planted parks best satisfy the criteria of a newly created and structurally matured habitat for forest-dwelling plant species. We sampled species in 230 ancient deciduous forests (source habitat), 74 closed-canopy manor parks (target habitats), 151 linear wooded habitats (landscape corridors), and 97 open habitats (isolating matrix) in Estonia. We defined two species groups of interest: forest (107 species) and corridor specialists (53 species). An extra group of open habitat specialists was extracted for trait scaling. Differing from expectations, forest specialists have high plasticity in reproduction mechanisms: smaller seeds, larger dispersules, complementary selfing ability, and diversity of dispersal vectors. Forest specialists are shorter, less nutrient-demanding and mycorrhizal-dependent, stress-tolerant disturbance-sensitive competitors, while corridor specialists are large-seeded disturbance-tolerant competitors. About 40% of species from local species pools have immigrated into parks. The historic forest area, establishment-related traits, and stand quality enhance the colonization of forest specialists. The openness of landscape and mowing in the park facilitate corridor specialists. Species traits in parks vary between a forest and corridor specialist, except for earlier flowering and larger propagules. Forest species are not dispersal limited, but they continue to be limited by habitat properties even in the long term. Therefore, the shady parts of historic parks should be appreciated as important forest biodiversity-enhancing landscape structures. The habitat quality of secondary stands can be improved by nurturing a heterogeneous shrub and tree layer, and modest herb layer management. PMID:25247068

  16. Vulnerability and Resilience of Temperate Forest Landscapes to Broad-Scale Deforestation in Response to Changing Fire Regimes and Altered Post-Fire Vegetation Dynamics

    NASA Astrophysics Data System (ADS)

    Tepley, A. J.; Veblen, T. T.; Perry, G.; Anderson-Teixeira, K. J.

    2015-12-01

    In the face of on-going climatic warming and land-use change, there is growing concern that temperate forest landscapes could be near a tipping point where relatively small changes to the fire regime or altered post-fire vegetation dynamics could lead to extensive conversion to shrublands or savannas. To evaluate vulnerability and resilience to such conversion, we develop a simple model based on three factors we hypothesize to be key in predicting temperate forest responses to changing fire regimes: (1) the hazard rate (i.e., the probability of burning in the next year given the time since the last fire) in closed-canopy forests, (2) the hazard rate for recently-burned, open-canopy vegetation, and (3) the time to redevelop canopy closure following fire. We generate a response surface representing the proportions of the landscape potentially supporting closed-canopy forest and non-forest vegetation under nearly all combinations of these three factors. We then place real landscapes on this response surface to assess the type and magnitude of changes to the fire regime that would drive extensive forest loss. We show that the deforestation of much of New Zealand that followed initial human colonization and the introduction of a new ignition source ca. 750 years ago was essentially inevitable due to the slow rate of forest recovery after fire and the high flammability of post-fire vegetation. In North America's Pacific Northwest, by contrast, a predominantly forested landscape persisted despite two periods of widespread burning in the recent past due in large part to faster post-fire forest recovery and less pronounced differences in flammability between forests and the post-fire vegetation. We also assess the factors that could drive extensive deforestation in other regions to identify where management could reduce this potential and to guide field and modeling work to better understand the responses and ecological feedbacks to changing fire regimes.

  17. [Evaluation of view points in forest park based on landscape sensitivity].

    PubMed

    Zhou, Rui; Li, Yue-hui; Hu, Yuan-man; Liu, Miao

    2008-11-01

    Based on topographical characteristics, five factors including comparative slope, comparative distance, mutual visibility, vision probability, and striking degree were chosen to assess the landscape sensitivity of major view points in Houshi National Forest Park. Spatial analysis in GIS was used for exploring the theory and method of landscape sensitivity of view points. The results showed that in the Park, there were totally 23 view points, but none of them reached up to class I. Among the 23 points, 10 were of class II , accounting for 43.5% of the total, 8 were of class III, accounting for 34.8%, and 5 were of classes IV and V, accounting for 21.7%. Around the view points of class II, the landscape should be strictly protected to maintain their natural feature; around the view points of class III, human-made landscape points should be developed according to the natural landscape feature, and wide tourism roads and small-size buildings could be constructed but the style of the buildings should be harmonious with surrounding nature landscape; while around the view points of classes IV and V, large-size multifunctional items and roads could be built to perfect the natural landscape. Through the multi-perspective and quantitative evaluation of landscape sensitivity, this study enriched the theory of landscape visual assessment and landscape apperception, and provided scientific base and direction for the planning and management of forest parks and other tourism areas.

  18. Coupled ecological-social dynamics in a forested landscape: spatial interactions and information flow.

    PubMed

    Satake, Akiko; Leslie, Heather M; Iwasa, Yoh; Levin, Simon A

    2007-06-21

    We develop an agent-based model for forest harvesting to study how interactions between neighboring land parcels and the degree of information flow among landowners influence harvesting patterns. We assume a forest is composed of a number of land parcels that are individually managed. Each parcel is either mature forested, just-harvested, or immature forested. The state transition of each parcel is described by a Markov chain that incorporates the successional dynamics of the forest ecosystem and landowners' decisions about harvesting. Landowners decide to cut trees based on the expected discounted utility of forested vs. harvested land. One landowner's decision to cut trees is assumed to cause the degradation of ecosystem services on the downstream forested parcels. We investigated two different scenarios: in a strongly-connected society, landowners are familiar with each other and have full information regarding the behavior of other landowners. In a weakly-connected society, landowners do not communicate and therefore need to make subjective predictions about the behavior of others without adequate information. Regardless of the type of society, we observed that the spatial interaction between management units caused a chain reaction of tree harvesting in the neighborhood even when healthy forested land provided greater utility than harvested land. The harvest rate was higher in a weakly-connected society than that in a strongly-connected society. If landowners employed a long-term perspective, the harvest rate declined, and a more robust forested landscape emerged. Our results highlight the importance of institutional arrangements that encourage a long-term perspective and increased information flow among landowners in order to achieve successful forest management.

  19. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy

    NASA Astrophysics Data System (ADS)

    Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni

    2015-09-01

    The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.

  20. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy.

    PubMed

    Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni

    2015-09-01

    The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.

  1. Valuing fire planning alternatives in forest restoration: using derived demand to integrate economics with ecological restoration.

    PubMed

    Rideout, Douglas B; Ziesler, Pamela S; Kernohan, Nicole J

    2014-08-01

    Assessing the value of fire planning alternatives is challenging because fire affects a wide array of ecosystem, market, and social values. Wildland fire management is increasingly used to address forest restoration while pragmatic approaches to assessing the value of fire management have yet to be developed. Earlier approaches to assessing the value of forest management relied on connecting site valuation with management variables. While sound, such analysis is too narrow to account for a broad range of ecosystem services. The metric fire regime condition class (FRCC) was developed from ecosystem management philosophy, but it is entirely biophysical. Its lack of economic information cripples its utility to support decision-making. We present a means of defining and assessing the deviation of a landscape from its desired fire management condition by re-framing the fire management problem as one of derived demand. This valued deviation establishes a performance metric for wildland fire management. Using a case study, we display the deviation across a landscape and sum the deviations to produce a summary metric. This summary metric is used to assess the value of alternative fire management strategies on improving the fire management condition toward its desired state. It enables us to identify which sites are most valuable to restore, even when they are in the same fire regime condition class. The case study site exemplifies how a wide range of disparate values, such as watershed, wildlife, property and timber, can be incorporated into a single landscape assessment. The analysis presented here leverages previous research on environmental capital value and non-market valuation by integrating ecosystem management, restoration, and microeconomics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Perceptions of Post-Wildfire Landscape Change and Recovery

    NASA Astrophysics Data System (ADS)

    Kooistra, C. M.; Hall, T. E.; Paveglio, T.; Carroll, M.; Smith, A. M.

    2013-12-01

    Considering the dynamic nature of the earth and climate systems and the increasing potential for widespread forest disturbances, it is important to understand the implications of landscape changes, and perceptions of changes, on people's responses to forest disturbances. Understanding how people perceive landscape change over time following forest disturbances helps researchers, land managers, and community leaders identify important biophysical and social characteristics that influence the vulnerability of people who experience forest disturbances, as well as their responses to those disturbances. This poster describes people's perceptions of landscape change following a significant wildfire. The lightning ignited Dahl fire burned 12 miles southeast of Roundup, MT mostly on private land in the summer of June 2012. The fire burned approximately 22,000 acres and destroyed 73 residences. We conducted interviews in the summer of 2013 with more than 40 residents, land managers, emergency personnel, and other stakeholders. While interviews covered several topics, this poster focuses on responses to questions regarding perceptions of short- and long-term landscape change after the fire, including both social and biophysical perspectives. Interviews revealed that people's understanding of the role of wildfires as a natural ecosystem process, as well as their connections with the landscape (i.e., sense of place), were important factors that influenced their perceptions of landscape change after the fire. Many respondents discussed the landscape ';recovering' to pre-fire conditions in longer-term timeframes, such as ';multiple generations.' They often referenced previous wildfires, the Hawk Creek fire (1984) and the Majeras fire (2006), by explaining how parts of the landscape affected by the Dahl fire might compare to certain areas of the previous fires. Variations in recovery expectations were often based on perceptions of the severity of the fire (especially temperature), post-fire restoration/seeding efforts, and what the landscape was ';supposed to look like.' Participants with a stronger understanding of the ecological role of fire seemed less concerned about the long-term negative impacts of the fire on the ecological and aesthetic aspects of the changed landscape. Others seemed to focus on the negative aspects, namely that the landscape would never return to ';normal' within their lifetime. Several residents (not interviewed) reportedly moved away because the changes to the landscape were so severe. Of course, most residents stayed, though many mentioned how important the trees in the landscape were to them and that areas burnt by the fire had lost something special. Many respondents also discussed a severe flood shortly after the fire, as well as continued erosion problems due largely to the fire's impacts on the soil and vegetation. These insights about perceptions of changes in the landscape from the fire, floods, and erosion, in terms of expected recovery over spatial and temporal scales will be explored in more detail. We also discuss the implications of these insights for understanding people's attitudes about wildfire management and for communicating about wildfire issues with the public.

  3. Perceptions of social and environmental changes in a Mediterranean forest during the last 100 years: the Gavarres Massif.

    PubMed

    Rodríguez-Carreras, Roser; Ubeda, Xavier; Outeiro, Luís; Asperó, Francesc

    2014-06-01

    During the last century the landscape of the mid-Mediterranean mountains has undergone major transformations. The precipitous decline in the economic viability of forest products has engendered ever-thickening forests and agricultural lands have reverted to forest land cover. The related exodus of existing inhabitants since 1960 has led to new styles of occupancy: residential and touristic land uses have emerged while the primary and secondary sectors have largely disappeared. The object of the present study is to review how these transformations have developed in a specific area of north-eastern of Catalonia, known as the Gavarres Massif. The study applies a qualitative approach, based on interviews with stakeholders including active members of the local community and others who utilize or visit the area, all of whom are representatives of different social groups with a wide range of interests and points of view with regard to the massif. The information collected from the perspectives and opinions of the participants is coupled with objective data about the area. The result of this investigation is a rich variety of perceptions on landscape and social transformation and its current functional dynamics. Analyzing the information obtained allows us to understand the fact that the disappearance of the rural world is directly related to the collapse of an entire economic system that relied on the environment. In this study, two divergent points of view arise, one which supports recovering past landscapes and another which favours managing changes, conserving the existing landscape. Proposals for the current and future territorial management of Les Gavarres are presented. The diversity of opinions which emerges with regard to managing necessary changes in the massif emphasizes the importance of increased social dialogue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Spatial and temporal variation in fruit use by wildlife in a forested landscape

    Treesearch

    John P. McCarty; Douglas J. Levey; Cathryn H. Greenberg; Sarah Sargent

    2002-01-01

    We monitored production and removal rates of fruit from 22 common plant species over 2 years in five habitats of a managed landscape in South Carolina (USA). Our long-term goal is to determine the importance of fruit as a resource for vertebrates and to provide recommendations for management of key species and habitats. This study lays the foundation for that goal by...

  5. Integration of visual quality considerations in development of Israeli vegetation management policy.

    PubMed

    Misgav, A; Amir, S

    2001-06-01

    This article deals with the visual quality of Mediterranean vegetation groups in northern Israel, the public's preference of these groups as a visual resource, and the policy options for their management. The study is based on a sample of 44 Mediterranean vegetation groups and three population groups of local residents, who were interviewed using a questionnaire and photographs of the vegetation groups. The results of the research showed that plant classification methods based on flora composition, habitat, and external appearance were found to be suitable for visual plant classification and for the evaluation of visual preference of vegetation groups by the interviewed public. The vegetation groups of planted pine forests and olive groves, characterizing a cultured vegetation landscape, were preferred over typical Mediterranean landscapes such as scrub and grassed scrub. The researchers noted a marked difference between the two products of vegetation management policy, one that proposes the conservation and restoration of the variety of native Mediterranean vegetation landscape, and a second that advanced the development of the cultured landscape of planted olive groves and pines forests, which were highly preferred by the public. The authors suggested the development of an integrated vegetation management policy that would combine both needs and thus reduce the gap between the policy proposed by planners and the local population's visual preference.

  6. Modeling the relationship between landscape characteristics and water quality in a typical highly intensive agricultural small watershed, Dongting lake basin, south central China.

    PubMed

    Li, Hongqing; Liu, Liming; Ji, Xiang

    2015-03-01

    Understanding the relationship between landscape characteristics and water quality is critically important for estimating pollution potential and reducing pollution risk. Therefore, this study examines the relationship between landscape characteristics and water quality at both spatial and temporal scales. The study took place in the Jinjing River watershed in 2010; seven landscape types and four water quality pollutions were chosen as analysis parameters. Three different buffer areas along the river were drawn to analyze the relationship as a function of spatial scale. The results of a Pearson's correlation coefficient analysis suggest that "source" landscape, namely, tea gardens, residential areas, and paddy lands, have positive effects on water quality parameters, while forests exhibit a negative influence on water quality parameters because they represent a "sink" landscape and the sub-watershed level is identified as a suitable scale. Using the principal component analysis, tea gardens, residential areas, paddy lands, and forests were identified as the main landscape index. A stepwise multiple regression analysis was employed to model the relationship between landscape characteristics and water quality for each season. The results demonstrate that both landscape composition and configuration affect water quality. In summer and winter, the landscape metrics explained approximately 80.7 % of the variance in the water quality variables, which was higher than that for spring and fall (60.3 %). This study can help environmental managers to understand the relationships between landscapes and water quality and provide landscape ecological approaches for water quality control and land use management.

  7. Understanding the Factors that Influence Perceptions of Post-Wildfire Landscape Recovery Across 25 Wildfires in the Northwestern United States.

    PubMed

    Kooistra, C; Hall, T E; Paveglio, T; Pickering, M

    2018-01-01

    Disturbances such as wildfire are important features of forested landscapes. The trajectory of changes following wildfires (often referred to as landscape recovery) continues to be an important research topic among ecologists and wildfire scientists. However, the landscape recovery process also has important social dimensions that may or may not correspond to ecological or biophysical perspectives. Perceptions of landscape recovery may affect people's attitudes and behaviors related to forest and wildfire management. We explored the variables that influence people's perceptions of landscape recovery across 25 fires that occurred in 2011 or 2012 in the United States of Washington, Oregon, Idaho, and Montana and that represented a range of fire behavior characteristics and landscape impacts. Residents near each of the 25 fires were randomly selected to receive questionnaires about their experiences with the nearby fire, including perceived impacts and how the landscape had recovered since the fire. People generally perceived landscapes as recovering, even though only one to two years had passed. Regression analysis suggested that perceptions of landscape recovery were positively related to stronger beliefs about the ecological role of fire and negatively related to loss of landscape attachment, concern about erosion, increasing distance from the fire perimeter, and longer lasting fires. Hierarchical linear modeling (HLM) analysis indicated that the above relationships were largely consistent across fires. These findings highlight that perceptions of post-fire landscape recovery are influenced by more than vegetation changes and include emotional and cognitive factors. We discuss the management implications of these findings.

  8. Understanding the Factors that Influence Perceptions of Post-Wildfire Landscape Recovery Across 25 Wildfires in the Northwestern United States

    NASA Astrophysics Data System (ADS)

    Kooistra, C.; Hall, T. E.; Paveglio, T.; Pickering, M.

    2018-01-01

    Disturbances such as wildfire are important features of forested landscapes. The trajectory of changes following wildfires (often referred to as landscape recovery) continues to be an important research topic among ecologists and wildfire scientists. However, the landscape recovery process also has important social dimensions that may or may not correspond to ecological or biophysical perspectives. Perceptions of landscape recovery may affect people's attitudes and behaviors related to forest and wildfire management. We explored the variables that influence people's perceptions of landscape recovery across 25 fires that occurred in 2011 or 2012 in the United States of Washington, Oregon, Idaho, and Montana and that represented a range of fire behavior characteristics and landscape impacts. Residents near each of the 25 fires were randomly selected to receive questionnaires about their experiences with the nearby fire, including perceived impacts and how the landscape had recovered since the fire. People generally perceived landscapes as recovering, even though only one to two years had passed. Regression analysis suggested that perceptions of landscape recovery were positively related to stronger beliefs about the ecological role of fire and negatively related to loss of landscape attachment, concern about erosion, increasing distance from the fire perimeter, and longer lasting fires. Hierarchical linear modeling (HLM) analysis indicated that the above relationships were largely consistent across fires. These findings highlight that perceptions of post-fire landscape recovery are influenced by more than vegetation changes and include emotional and cognitive factors. We discuss the management implications of these findings.

  9. Using LANDIS II to study the effects of global change in Siberia

    Treesearch

    Eric J. Gustafson; Brian R. Sturtevant; Anatoly Z. Shvidenko; Robert M. Scheller

    2010-01-01

    Landscape dynamics are characterized by complex interactions among multiple disturbance regimes, anthropogenic use and management, and the mosaic of diverse ecological conditions. LANDIS-IT is a landscape forest succession and disturbance model that independently simulates multiple ecological and disturbance processes, accounting for complex interactions to predict...

  10. Applying the ecosystem approach to select priority areas for forest landscape restoration in the Yungas, Northwestern Argentina.

    PubMed

    Ianni, Elena; Geneletti, Davide

    2010-11-01

    This paper proposes a method to select forest restoration priority areas consistently with the key principles of the Ecosystem Approach (EA) and the Forest Landscape Restoration (FLR) framework. The methodology is based on the principles shared by the two approaches: acting at ecosystem scale, involving stakeholders, and evaluating alternatives. It proposes the involvement of social actors which have a stake in forest management through multicriteria analysis sessions aimed at identifying the most suitable forest restoration intervention. The method was applied to a study area in the native forests of Northern Argentina (the Yungas). Stakeholders were asked to identify alternative restoration actions, i.e. potential areas implementing FLR. Ten alternative fincas-estates derived from the Spanish land tenure system-differing in relation to ownership, management, land use, land tenure, and size were evaluated. Twenty criteria were selected and classified into four groups: biophysical, social, economic and political. Finca Ledesma was the closest to the economic, social, environmental and political goals, according to the values and views of the actors involved in the decision. This study represented the first attempt to apply EA principles to forest restoration at landscape scale in the Yungas region. The benefits obtained by the application of the method were twofold: on one hand, researchers and local actors were forced to conceive the Yungas as a complex net of rights rather than as a sum of personal interests. On the other hand, the participatory multicriteria approach provided a structured process for collective decision-making in an area where it has never been implemented.

  11. Applying the Ecosystem Approach to Select Priority Areas for Forest Landscape Restoration in the Yungas, Northwestern Argentina

    NASA Astrophysics Data System (ADS)

    Ianni, Elena; Geneletti, Davide

    2010-11-01

    This paper proposes a method to select forest restoration priority areas consistently with the key principles of the Ecosystem Approach (EA) and the Forest Landscape Restoration (FLR) framework. The methodology is based on the principles shared by the two approaches: acting at ecosystem scale, involving stakeholders, and evaluating alternatives. It proposes the involvement of social actors which have a stake in forest management through multicriteria analysis sessions aimed at identifying the most suitable forest restoration intervention. The method was applied to a study area in the native forests of Northern Argentina (the Yungas). Stakeholders were asked to identify alternative restoration actions, i.e. potential areas implementing FLR. Ten alternative fincas—estates derived from the Spanish land tenure system—differing in relation to ownership, management, land use, land tenure, and size were evaluated. Twenty criteria were selected and classified into four groups: biophysical, social, economic and political. Finca Ledesma was the closest to the economic, social, environmental and political goals, according to the values and views of the actors involved in the decision. This study represented the first attempt to apply EA principles to forest restoration at landscape scale in the Yungas region. The benefits obtained by the application of the method were twofold: on one hand, researchers and local actors were forced to conceive the Yungas as a complex net of rights rather than as a sum of personal interests. On the other hand, the participatory multicriteria approach provided a structured process for collective decision-making in an area where it has never been implemented.

  12. Resilience landscapes for Congo basin rainforests vs. climate and management impacts

    NASA Astrophysics Data System (ADS)

    Pietsch, Stephan Alexander; Gautam, Sishir; Elias Bednar, Johannes; Stanzl, Patrick; Mosnier, Aline; Obersteiner, Michael

    2015-04-01

    Past climate change caused severe disturbances of the Central African rainforest belt, with forest fragmentation and re-expansion due to drier and wetter climate conditions. Besides climate, human induced forest degradation affected biodiversity, structure and carbon storage of Congo basin rainforests. Information on climatically stable, mature rainforest, unaffected by human induced disturbances, provides means of assessing the impact of forest degradation and may serve as benchmarks of carbon carrying capacity over regions with similar site and climate conditions. BioGeoChemical (BGC) ecosystem models explicitly consider the impacts of site and climate conditions and may assess benchmark levels over regions devoid of undisturbed conditions. We will present a BGC-model validation for the Western Congolian Lowland Rainforest (WCLRF) using field data from a recently confirmed forest refuge, show model - data comparisons for disturbed und undisturbed forests under different site and climate conditions as well as for sites with repeated assessment of biodiversity and standing biomass during recovery from intensive exploitation. We will present climatic thresholds for WCLRF stability, and construct resilience landscapes for current day conditions vs. climate and management impacts.

  13. Habitat use by forest bats in South Carolina in relation to local, stand, and landscape characteristics

    Treesearch

    Susan C. Loeb; Joy M. O' Keefe

    2006-01-01

    Knowledge and understanding of bat habitat associations and the responses of bats to forest management are critical for effective bat conservation and management. Few studies have been conducted on bat habitat use in the southeast, despite the high number of endangered and sensitive species in the region. Our objective was to identify important local, stand, and...

  14. Forest fuel reduction alters fire severity and long-term carbon storage in three Pacific Northwest ecosystems

    Treesearch

    Stephen R. Mitchell; Mark E. Harmon; Kari E.B. O' Connell

    2009-01-01

    Two forest management objectives being debated in the context of federally managed landscapes in the U.S. Pacific Northwest involve a perceived trade-off between fire restoration and carbon sequestration. The former strategy would reduce fuel (and therefore carbon [C]) that has accumulated through a century of fire suppression and exclusion which has led to extreme...

  15. Influence of forest management alternatives and land type on susceptibility to fire in northern Wisconsin, USA

    Treesearch

    Eric J. Gustafson; Patrick A. Zollner; Brian R. Sturtevant; S. He Hong; David J. Mladenoff

    2004-01-01

    We used the LANDIS disturbance and succession model to study the effects of six alternative vegetation management scenarios on forest succession and the subsequent risk of canopy fire on a 2791 km2 landscape in northern Wisconsin, USA. The study area is a mix of fire-prone and fire-resistant land types. The alternatives vary the spatial...

  16. Evaluating the effects of alternative forest management plans under various physiographic settings using historical records as a reference

    Treesearch

    Yangjian Zhang; Hong S. He; Stephen R. Shifley; Jian Yang; Brian J. Palik

    2011-01-01

    Using historical General Land Office record as a reference, this study employed a landscape-scale disturbance and succession model to estimate the future cumulative effects of six alternative management plans on the tree species composition for various physiographic settings for the Mark Twain National Forest in Missouri. The results indicate that over a 200-year...

  17. Smoke modeling in support of management of forest landscapes in the eastern United States

    Treesearch

    Gary L. Achtemeier

    2009-01-01

    The impact of smoke from forest burning on air quality is a threat to the use of prescribed fire to manage woodlands in the eastern United States. Population shifts from urban centers to the wildland/urban interface have increased human exposures to smoke. Tighter national ambient air quality standards restrict the amount of smoke released over an area. This article...

  18. Adaptation of Bird Communities to Farmland Abandonment in a Mountain Landscape

    PubMed Central

    Guilherme, João Lopes; Miguel Pereira, Henrique

    2013-01-01

    Widespread farmland abandonment has led to significant landscape transformations of many European mountain areas. These semi-natural multi-habitat landscapes are important reservoirs of biodiversity and their abandonment has important conservation implications. In multi-habitat landscapes the adaptation of communities depends on the differential affinity of the species to the available habitats. We use nested species-area relationships (SAR) to model species richness patterns of bird communities across scales in a mountain landscape, in NW Portugal. We compare the performance of the classic-SAR and the countryside-SAR (i.e. multi-habitat) models at the landscape scale, and compare species similarity decay (SSD) at the regional scale. We find a considerable overlap of bird communities in the different land-uses (farmland, shrubland and oak forest) at the landscape scale. Analysis of the classic and countryside SAR show that specialist species are strongly related to their favourite habitat. Farmland and shrubland have higher regional SSD compared to oak forests. However, this is due to the opportunistic use of farmlands by generalist birds. Forest specialists display significant regional turnover in oak forest. Overall, the countryside-SAR model had a better fit to the data showing that habitat composition determines species richness across scales. Finally, we use the countryside-SAR model to forecast bird diversity under four scenarios of land-use change. Farmland abandonment scenarios show little impact on bird diversity as the model predicts that the complete loss of farmland is less dramatic, in terms of species diversity loss, than the disappearance of native Galicio-Portuguese oak forest. The affinities of species to non-preferred habitats suggest that bird communities can adapt to land-use changes derived from farmland abandonment. Based on model predictions we argue that rewilding may be a suitable management option for many European mountain areas. PMID:24023892

  19. Assessing Land Management Change Effects on Forest Carbon and Emissions Under Changing Climate

    NASA Astrophysics Data System (ADS)

    Law, B. E.

    2014-12-01

    There has been limited focus on fine-scale land management change effects on forest carbon under future environmental conditions (climate, nitrogen deposition, increased atmospheric CO2). Forest management decisions are often made at the landscape to regional levels before analyses have been conducted to determine the potential outcomes and effectiveness of such actions. Scientists need to evaluate plausible land management actions in a timely manner to help shape policy and strategic land management. Issues of interest include species-level adaptation to climate, resilience and vulnerability to mortality within forested landscapes and regions. Efforts are underway to improve land system model simulation of future mortality related to climate, and to develop and evaluate plausible land management options that could help mitigate or avoid future die-offs. Vulnerability to drought-related mortality varies among species and with tree size or age. Predictors of species ability to survive in specific environments are still not resolved. A challenge is limited observations for fine-scale (e.g. 4 km2) modeling, particularly physiological parameters. Uncertainties are primarily associated with future land management and policy decisions. They include the interface with economic factors and with other ecosystem services (biodiversity, water availability, wildlife habitat). The outcomes of future management scenarios should be compared with business-as-usual management under the same environmental conditions to determine the effects of management changes on forest carbon and net emissions to the atmosphere. For example, in the western U.S., land system modeling and life cycle assessment of several management options to reduce impacts of fire reduced long-term forest carbon gain and increased carbon emissions compared with business-as-usual management under future environmental conditions. The enhanced net carbon uptake with climate and reduced fire emissions after thinning did not compensate for the increased wood removals over 90 years, leading to reduced net biome production. Analysis of land management change scenarios at fine scales is needed, and should consider other ecological values in addition to carbon.

  20. Multitemporal analysis of landscape metrics for monitoring forested patterns in coastal and mountainous areas

    NASA Astrophysics Data System (ADS)

    Carone, M. T.; Imbrenda, V.; Lanfredi, M.; Macchiato, M.; Simoniello, T.

    2009-04-01

    The role of forested areas for the maintaining of an acceptable landscape balance is crucial. As an example, they contribute to higher biodiversity levels directly and to cleaner fluvial waters indirectly, thus, the degradation of such ecosystems has strong repercussions on many ecological processes. In order to preserve their natural stability, monitoring forest temporal dynamics is very important for a correct management, particularly, in fragile Mediterranean environments that are highly vulnerable to both natural and human-induced perturbations. For analysing the evolution of forested patterns, especially in areas with a strong human presence, landscape metrics are a basilar tool since they allow for evaluating the structure of landscape patterns at different spatio-temporal scales and the relationship between natural environment and human environment. Starting from this premise, we selected a set of Landscape Metrics to evaluate the temporal dynamics of forested covers in two different environments (coastal and mountainous) located in Basilicata Region, Southern Italy. The first one (area A) is located along the Ionian coast and is largely characterized by evergreen forests; in such an area, even if many sites are protected by the European Community (SCI), forests are subjected to a strong incidence of human activities mainly linked to agriculture and tourism as well as to frequent fire events and coastal erosion processes that favour salt-water intrusion. The second one (area B) is a high heterogeneous mountainous area, which also comprehends alluvial planes. The particular configuration of the territory allows for the presence of a very rich faunal and vegetation biodiversity; thus, it is partially under the protection of a National Park, but there are also many critical anthropical activities (e.g. oil drilling, agriculture, etc.). The landscape ecology analyses were performed on multi temporal land cover maps, obtained from hybrid classifications of a time series of Landsat-TM subscenes: for area A, we used five images covering the period 1987-2006; and for area B, three images covering the period 1993-1998. The analysis of landscape structure and dynamics were performed by elaborating metrics based on patch number, size, shape and arrangements of different land cover types. At landscape level, area A provided quite low levels of Evenness (SHEI<0,70) and Diversity (SHDI~1.0) for the analyzed period. Metrics at patch and class levels, particularly for patch dimensions (MPS), complexity (FRACT) and Interdispersion (IJI) showed a little expansion of the urban sites and no important changes for the large agricultural areas. On the contrary, for natural areas a process of fragmentation has been revealed for coniferous forests in the period 1987-1998 when they show an alternation with a less structured and herbaceous vegetation. For area B, the landscape level shows, in the studied period, stable high values of Evenness (SHEI>0.80) and medium values of Diversity (SHDI~1.8). Metrics for patch and class levels reveal, instead, an increment in size and complexity for anthropical vegetation and a decrement for natural forested areas (mainly beeches) accompanied by a high variability of the transitional areas located along the edges of forested sites. On the whole, the combined interpretation of metrics at different levels of landscape structure and at different time steps revealed an increasing trend of forest isolation and fragmentation, which can enhance their sensitivity. The obtained results for both areas suggest that the institution of protected areas is not a complete solution for the maintaining of forest ecosystems balance without a correct management of the surrounding areas. In order to increase the connectivity among forested patches and, more in general, to improve the ecosystem functionality, the ecological analysis of satellite time series represents an operative tool for an efficient intervention planning, such as the location of the most suitable sites for ecological restoration activities.

  1. Analyzing landscape changes in the Bafa Lake Nature Park of Turkey using remote sensing and landscape structure metrics.

    PubMed

    Esbah, Hayriye; Deniz, Bulent; Kara, Baris; Kesgin, Birsen

    2010-06-01

    Bafa Lake Nature Park is one of Turkey's most important legally protected areas. This study aimed at analyzing spatial change in the park environment by using object-based classification technique and landscape structure metrics. SPOT 2X (1994) and ASTER (2005) images are the primary research materials. Results show that artificial surfaces, low maqui, garrigue, and moderately high maqui covers have increased and coniferous forests, arable lands, permanent crop, and high maqui covers have decreased; coniferous forest, high maqui, grassland, and saline areas are in a disappearance stage of the land transformation; and the landscape pattern is more fragmented outside the park boundaries. The management actions should support ongoing vegetation regeneration, mitigate transformation of vegetation structure to less dense and discontinuous cover, control the dynamics at the agricultural-natural landscape interface, and concentrate on relatively low but steady increase of artificial surfaces.

  2. Measuring forest landscape patterns in the Cascade Range of Oregon, USA

    NASA Technical Reports Server (NTRS)

    Ripple, William J.; Bradshaw, G. A.; Spies, Thomas A.

    1995-01-01

    This paper describes the use of a set of spatial statistics to quantify the landscape pattern caused by the patchwork of clearcuts made over a 15-year period in the western Cascades of Oregon. Fifteen areas were selected at random to represent a diversity of landscape fragmentation patterns. Managed forest stands (patches) were digitized and analyzed to produce both tabular and mapped information describing patch size, shape, abundance and spacing, and matrix characteristics of a given area. In addition, a GIS fragmentation index was developed which was found to be sensitive to patch abundance and to the spatial distribution of patches. Use of the GIS-derived index provides an automated method of determining the level of forest fragmentation and can be used to facilitate spatial analysis of the landscape for later coordination with field and remotely sensed data. A comparison of the spatial statistics calculated for the two years indicates an increase in forest fragmentation as characterized by an increase in mean patch abundance and a decrease in interpatch distance, amount of interior natural forest habitat, and the GIS fragmentation index. Such statistics capable of quantifying patch shape and spatial distribution may prove important in the evaluation of the changing character of interior and edge habitats for wildlife.

  3. Forested landscapes promote richness and abundance of native bees (Hymenoptera: Apoidea: Anthophila) in Wisconsin apple orchards.

    PubMed

    Watson, J C; Wolf, A T; Ascher, J S

    2011-06-01

    Wild bees provide vital pollination services for many native and agricultural plant species, yet the landscape conditions needed to support wild bee populations are not well understood or appreciated. We assessed the influence of landscape composition on bee abundance and species richness in apple (Malus spp.) orchards of northeastern Wisconsin during the spring flowering period. A diverse community of bee species occurs in these apple orchards, dominated by wild bees in the families Andrenidae and Halictidae and the honey bee, Apis mellifera L. Proportion of forest area in the surrounding landscape was a significant positive predictor of wild bee abundance in orchards, with strongest effects at a GIS (Geographic Information Systems) buffer distance of 1,000 m or greater. Forest area also was positively associated with species richness, showing strongest effects at a buffer distance of 2,000 m. Nonagricultural developed land (homes, lawns, etcetera) was significantly negatively associated with species richness at buffer distances >750 m and wild bee abundance in bowl traps at all distances. Other landscape variables statistically associated with species richness or abundance of wild bees included proportion area of pasture (positive) and proportion area of roads (negative). Forest area was not associated with honey bee abundance at any buffer distance. These results provide clear evidence that the landscape surrounding apple orchards, especially the proportion of forest area, affects richness and abundance of wild bees during the spring flowering period and should be a part of sustainable land management strategies in agro-ecosystems of northeastern Wisconsin and other apple growing regions.

  4. Applying the Ecosystem Services Concept to Public Land Management

    EPA Science Inventory

    We examine the challenges opportunities involved in applying ecosystem services to public lands management, with an emphasis on the work of the USDA Forest Service. We review the history of economics approaches to landscape management, outline a conceptual framework defining the ...

  5. Recent Changes in the Riparian Forest of a Large Regulated Mediterranean River: Implications for Management

    NASA Astrophysics Data System (ADS)

    González, Eduardo; González-Sanchis, María; Cabezas, Álvaro; Comín, Francisco A.; Muller, Etienne

    2010-04-01

    The structure of the floodplain forests of the Middle Ebro River (NE Spain) was examined at patch and landscape scales along a three-step chronosequence defined according to the extent of flow regulation-induced hydrogeomorphic changes, with the ultimate purpose of producing baseline information to guide through management and restoration plans. At patch scale, a total of 6,891 stems within 39 plots were registered for species, diameter and health status. The stem density, size class distribution, canopy dieback and mortality were further compared by means of non-parametric tests. At landscape scale, the temporal evolution of the area occupied by forest stands of different ages in the floodplain along the chronosequence was evaluated using four sets of aerial photographs dated in 1927, 1957, 1981 and 2003. The within-patch structure of pioneer forests (<25-30 years old) was characterized by dense and healthy populations of pioneer species ( Populus nigra, Salix alba and Tamarix spp.), but the area occupied by these forest types has progressively decreased (up to 37%) since the intensification of river regulation (ca. 1957). In contrast, non-pioneer forests (>25-30 years old) were characterized by declining and sparse P. nigra- S. alba- Tamarix spp. stands, where late-seral species such as Ulmus minor and Fraxinus angustifolia were frequent, but only as small-size stems. At landscape scale, these type of senescent forests have doubled their surface after river regulation was intensified. Populus alba only appeared in the oldest plots recorded (colonized before 1957), suggesting sexual regeneration failure during the last five decades, but usually as healthy and dense stands. Based on these findings, measures principally aimed at recovering some hydrogeomorphic dynamism are recommended to guarantee the self-sustainability of the floodplain forest ecosystem.

  6. Recent changes in the riparian forest of a large regulated Mediterranean river: implications for management.

    PubMed

    González, Eduardo; González-Sanchis, María; Cabezas, Alvaro; Comín, Francisco A; Muller, Etienne

    2010-04-01

    The structure of the floodplain forests of the Middle Ebro River (NE Spain) was examined at patch and landscape scales along a three-step chronosequence defined according to the extent of flow regulation-induced hydrogeomorphic changes, with the ultimate purpose of producing baseline information to guide through management and restoration plans. At patch scale, a total of 6,891 stems within 39 plots were registered for species, diameter and health status. The stem density, size class distribution, canopy dieback and mortality were further compared by means of non-parametric tests. At landscape scale, the temporal evolution of the area occupied by forest stands of different ages in the floodplain along the chronosequence was evaluated using four sets of aerial photographs dated in 1927, 1957, 1981 and 2003. The within-patch structure of pioneer forests (<25-30 years old) was characterized by dense and healthy populations of pioneer species (Populus nigra, Salix alba and Tamarix spp.), but the area occupied by these forest types has progressively decreased (up to 37%) since the intensification of river regulation (ca. 1957). In contrast, non-pioneer forests (>25-30 years old) were characterized by declining and sparse P. nigra-S. alba-Tamarix spp. stands, where late-seral species such as Ulmus minor and Fraxinus angustifolia were frequent, but only as small-size stems. At landscape scale, these type of senescent forests have doubled their surface after river regulation was intensified. Populus alba only appeared in the oldest plots recorded (colonized before 1957), suggesting sexual regeneration failure during the last five decades, but usually as healthy and dense stands. Based on these findings, measures principally aimed at recovering some hydrogeomorphic dynamism are recommended to guarantee the self-sustainability of the floodplain forest ecosystem.

  7. Compensatory value of an urban forest: an application of the tree-value formula

    Treesearch

    David J. Nowak

    1993-01-01

    Understanding the value of an urban forest can give decisionmakers a better foundation for urban tree management. According to the tree-valuation formula of the Council of Tree and Landscape Appraisers, the estimated compensatory value of the urban forest in Oakland, California, (21% tree cover) is $385.7 million, with residential trees accounting for 58.6% of the...

  8. Harvest impacts in uneven-aged and even-aged Missouri Ozark forests

    Treesearch

    John P. Dwyer; Daniel C. Dey; William D. Walter; Randy G. Jensen

    2004-01-01

    Forest managers are concerned about the potential damage to residual trees and site from cyclic harvest re-entries into the same forest stand. This study summarizes logging and felling damage resulting from the harvesting of silvicultural treatments on a large landscape experiment in southern Missouri that is designed to compare impacts of even-aged, uneven-aged and no...

  9. Chapter 12 - Bark Beetle outbreaks in Ponderosa Pine forests: Implications for fuels, fire, and management (Project INT-F-09-01)

    Treesearch

    Carolyn Sieg; Kurt Allen; Joel McMillin; Chad Hoffman

    2014-01-01

    Landscape-scale bark beetle outbreaks have occurred throughout the Western United States during recent years in response to dense forest conditions, climatic conditions, and wildfire (Fettig and others 2007, Bentz and others 2010). Previous studies, mostly conducted in moist forest types (such as lodgepole pine [Pinus contorta]) suggest that bark beetle...

  10. Rocky Mountain Research Station Part 2 [U.S. Forest Service scientists continue work with the Lincoln National Forest

    Treesearch

    Todd A. Rawlinson

    2010-01-01

    The Rocky Mountain Research Station (RMRS) is studying the effects of fuels reduction treatments on Mexican Spotted Owls and their prey in the Sacramento Mountains of New Mexico. One challenge facing Forest Service managers is that much of the landscape is dominated by overstocked stands resulting from years of fire suppression.

  11. Effects of silvicultural operations in a Mississippi River bottomland hardwood forest on ground beetles in the genus Brachinus

    Treesearch

    Lynne C. Thompson; Brian Roy Lockhart

    2006-01-01

    Little information is available on how insects are affected by anthropogenic influences in the bottomland forests of the West Gulf Coastal Plain. This study investigates one genus of ground beetles that lives in managed forested landscapes to discover which species are positively and negatively influenced by human disturbances. Ground beetles (Carabidae) were collected...

  12. Whose urban forest? The political ecology of foraging urban nontimber forest products

    Treesearch

    Patrick T. Hurley; Marla R. Emery; Rebecca McLain; Melissa Poe; Brian Grabbatin; Cari L. Goetcheus

    2015-01-01

    Drawing on case studies of foraging in Philadelphia, Pennsylvania and Mt. Pleasant, South Carolina, we point to foraging landscapes and practices within diverse urban forest spaces. We examine these spaces in relation to U.S. conservation and development processes and the effects of management and governance on species valued by foragers. These case studies reveal the...

  13. Effectiveness of the forest stewardship program in conserving natural resources on private lands in Indiana

    Treesearch

    Andriy V. Zhalnin; Shorna R. Broussard; Richard L. Farnsworth

    2008-01-01

    Forest ecosystems are a dominant component of the nation's landscape but are a challenge to manage because of diverse ownership and policy objectives. Privately owned, nonindustrial lands comprise nearly half of all forests in the United States (42 percent); nearly 10.3 million citizens own 393 million acres. A number of landowner assistance programs are designed...

  14. Stand-level bird response to experimental forest management in the Missouri Ozarks

    Treesearch

    Sarah W. Kendrick; Paul A. Porneluzi; Frank R. Thompson; Dana L. Morris; Janet M. Haslerig; John Faaborg

    2015-01-01

    Long-term landscape-scale experiments allow for the detection of effects of silviculture on bird abundance. Manipulative studies allow for strong inference on effects and confirmation of patterns from observational studies.We estimated bird-territory density within forest stands (2.89-62 ha) for 19 years of the Missouri Ozark Forest Ecosystem Project (MOFEP), a 100-...

  15. Neighbourhood-Scale Urban Forest Ecosystem Classification

    Treesearch

    James W.N. Steenberg; Andrew A. Millward; Peter N. Duinker; David J. Nowak; Pamela J. Robinson

    2015-01-01

    Urban forests are now recognized as essential components of sustainable cities, but there remains uncertainty concerning how to stratify and classify urban landscapes into units of ecological significance at spatial scales appropriate for management. Ecosystem classification is an approach that entails quantifying the social and ecological processes that shape...

  16. Quantifying Carbon Consequences of Recent Land Management, Disturbances and Subsequent Forest Recovery in the Greater Yellowstone Ecosystems (GYE)

    NASA Astrophysics Data System (ADS)

    Zhao, F. R.; Healey, S. P.; McCarter, J. B.; Garrard, C.; Zhu, Z.; Huang, C.

    2016-12-01

    Natural disturbances and land management directly alter C stored in biomass and soil pools, and forest recovery following these events are critical for long-term regional C balance. The Greater Yellowstone Ecosystem (GYE), located in Central Rocky Mountains of United States, is of different land ownerships within similar environmental settings, making it an ideal site to examine the impacts of land management, disturbance and forest recovery on regional C dynamics. Recent advances in the remote sensing of vegetation condition and change, along with new techniques linking remote sensing with inventory records, have allowed investigations that are much more tightly constrained to actual landscape environments instead of hypothetical or generalized conditions. These new capabilities are built into the Forest Carbon Management Framework (ForCaMF), which is being used by the National Forest System to not only model, but to monitor across very specific management units, the impact of different kinds of disturbance on carbon storage. In this study, we used the ForCaMF approach to examine three C related management questions in GYE National Parks and National Forests: 1) what was the carbon storage impact of fire disturbance and management activities from 1985 to 2010 in the GYE National Parks and National Forests? 2) Using an historic fire that occurred in 1988 as a basis for comparison, what difference would active post-fire forest restoration make in subsequent C storage? 3) In light of the fact that GYE National Forests significantly reduced harvest rates in the 1990s, how would maintaining high harvest rates of the 1980s impacted C storage? Simulation results show that recent forest fires in the GYE National Parks induced an accumulative C storage loss of about 12 Mg/ha, compared with C storage loss up to 2 Mg/ha in the GYE National Forests by harvests. If the high harvest rates as of the 1980s had been maintained, C emissions from the National Forests ( 11 Mg/ha) would approach fire-induced C storage loss in the National Parks during the study interval. New monitoring techniques such as ForCaMF leverage broadly available but locally specific monitoring resources to assess C dynamics on real landscapes. Resulting insights should have very practical applications in support of adaptive forest management across the country.

  17. Evaluating management tradeoffs between economic fiber production and other ecosystem services in a Chinese-fir dominated forest plantation in Fujian Province.

    PubMed

    Kang, Haijun; Seely, Brad; Wang, Guangyu; Innes, John; Zheng, Dexiang; Chen, Pingliu; Wang, Tongli; Li, Qinglin

    2016-07-01

    Chinese fir (Cunninghamia lanceolata) is not only a valuable timber species, but also plays an important role in the provision of ecosystem services. Forest management decisions to increase the production of fiber for economic gain may have negative impacts on the long-term flow of ecosystem services from forest resources. Such tradeoffs should be taken into account to fulfill the requirements of sustainable forest management. Here we employed an established, ecosystem-based, stand-level model (FORECAST) in combination with a simplified harvest-scheduling model to evaluate the potential tradeoffs among indicators of provisional, regulating and supporting ecosystem services in a Chinese-fir-dominated landscape located in Fujian Province as a case study. Indicators included: merchantable volume harvested, biomass harvested, ecosystem carbon storage, CO2 fixation, O2 released, biomass nitrogen content, pollutant absorption, and soil fertility. A series of alternative management scenarios, representing different combinations of rotation length and harvest intensity, were simulated to facilitate the analysis. Results from the analysis were summarized in the form of a decision matrix designed to provide a method for forest managers to evaluate management alternatives and tradeoffs in the context of key indicators of ecosystem services. The scenario analysis suggests that there are considerable tradeoffs in terms of ecosystem services associated with stand and landscape-level management decisions. Longer rotations and increased retention tended to favor regulating and supporting services while the opposite was true for provisional services. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. [Estimation of Shenyang urban forest green biomass].

    PubMed

    Liu, Chang-fu; He, Xing-yuan; Chen, Wei; Zhao, Gui-ling; Xu, Wen-duo

    2007-06-01

    Based on ARC/GIS and by using the method of "planar biomass estimation", the green biomass (GB) of Shenyang urban forests was measured. The results demonstrated that the GB per unit area was the highest (3.86 m2.m(-2)) in landscape and relaxation forest, and the lowest (2.27 m2.m(-2)) in ecological and public welfare forest. The GB per unit area in urban forest distribution area was 2.99 m2.m(-2), and that of the whole Shenyang urban area was 0.25 m2.m(-2). The total GB of Shenyang urban forests was about 1.13 x 10(8) m2, among which, subordinated forest, ecological and public welfare forest, landscape and relaxation forest, road forest, and production and management forest accounted for 36.64% , 23.99% , 19.38% , 16.20% and 3.79%, with their GB being 4. 15 x 10(7), 2.72 x 10(7), 2.20 x 10(7), 1.84 x 10(7) and 0.43 x 10(7) m2, respectively. The precision of the method "planar biomass estimation" was 91.81% (alpha = 0.05) by credit test.

  19. Influence of Land Cover Heterogeneity, Land-Use Change and Management on the Regional Carbon Cycle in the Upper Midwest USA as Evaluated by High-Density Observations and a Dynamic Ecosystem Model

    NASA Astrophysics Data System (ADS)

    Desai, A. R.; Bolstad, P. V.; Moorcroft, P. R.; Davis, K. J.

    2005-12-01

    The interplay between land use change, forest management and land cover variability complicates the ability to characterize regional scale (10-1000 km) exchange of carbon dioxide between the land surface and atmosphere in heterogeneous landscapes. An attempt was made to observe and model these factors and their influence on the regional carbon cycle across the upper Midwest USA. A high density of eddy-covariance carbon flux, micrometeorology, carbon dioxide mixing ratio, stand-scale biometry and canopy component flux observations have been occurring in this area as part of the Chequamegon Ecosystem-Atmosphere Study. Observations limited to sampling only dominant stands and coarse-resolution biogeochemical models limited to biome-scale parameterization neither accurately capture the variability of carbon fluxes measured by the network of eddy covariance towers nor match the regional-scale carbon flux inferred from very tall tower eddy covariance measurements and multi-site upscaling. Analysis of plot level biometric data, U.S. Forest Service Forest Inventory Analysis data and high-resolution land cover data around the tall tower revealed significant variations in vegetation type, stand age, canopy stocking and structure. Wetlands, clearcuts and recent natural disturbances occur in characteristic small non-uniformly distributed patches that aggregate to form more than 30% of the landscape. The Ecosystem Demography model, a dynamic ecosystem model that incorporates vegetation heterogeneity, canopy structure, stand age, disturbance, land use change and forest management, was parameterized with regional biometric data and meteorology, historical records of land management and high-resolution satellite land cover maps. The model will be used to examine the significance of past land use change, natural disturbance history and current forest management in explaining landscape structure and regional carbon fluxes observed in the region today.

  20. Modeling bark beetles and fuels on landscapes: A demonstration of ArcFuels and a discussion of possible model enhancements

    Treesearch

    Andrew J. McMahan; Alan A. Ager; Helen Maffei; Jane L. Hayes; Eric L. Smith

    2008-01-01

    The Westwide Pine Beetle Model and the Fire and Fuels Extension were used to simulate a mountain pine beetle outbreak under different fuel treatment scenarios on a 173,000 acre landscape on the Deschutes National Forest. The goal was to use these models within ArcFuels to analyze the interacting impacts of bark beetles and management activities on landscape fuel...

  1. Effects of coffee management on deforestation rates and forest integrity.

    PubMed

    Hylander, Kristoffer; Nemomissa, Sileshi; Delrue, Josefien; Enkosa, Woldeyohannes

    2013-10-01

    Knowledge about how forest margins are utilized can be crucial for a general understanding of changes in forest cover, forest structure, and biodiversity across landscapes. We studied forest-agriculture transitions in southwestern Ethiopia and hypothesized that the presence of coffee (Coffea arabica)decreases deforestation rates because of coffee's importance to local economies and its widespread occurrence in forests and forest margins. Using satellite images and elevation data, we compared changes in forest cover over 37 years (1973-2010) across elevations in 2 forest-agriculture mosaic landscapes (1100 km(2) around Bonga and 3000 km(2) in Goma-Gera). In the field in the Bonga area, we determined coffee cover and forest structure in 40 forest margins that differed in time since deforestation. Both the absolute and relative deforestation rates were lower at coffee-growing elevations compared with at higher elevations (-10/20% vs. -40/50% comparing relative rates at 1800 m asl and 2300-2500 m asl, respectively). Within the coffee-growing elevation, the proportion of sites with high coffee cover (>20%) was significantly higher in stable margins (42% of sites that had been in the same location for the entire period) than in recently changed margins (0% of sites where expansion of annual crops had changed the margin). Disturbance level and forest structure did not differ between sites with 30% or 3% coffee. However, a growing body of literature on gradients of coffee management in Ethiopia reports coffee's negative effects on abundances of forest-specialist species. Even if the presence of coffee slows down the conversion of forest to annual-crop agriculture, there is a risk that an intensification of coffee management will still threaten forest biodiversity, including the genetic diversity of wild coffee. Conservation policy for Ethiopian forests thus needs to develop strategies that acknowledge that forests without coffee production may have higher deforestation risks than forests with coffee production and that forests with coffee production often have lower biodiversity value. © 2013 Society for Conservation Biology.

  2. The use of fuel breaks in landscape fire management

    USGS Publications Warehouse

    Agee, James K.; Bahro, Berni; Finney, Mark A.; Omi, Philip N.; Sapsis, David B.; Skinner, Carl N.; Van Wagtendonk, Jan W.; Weatherspoon, C. Phillip

    2000-01-01

    Shaded fuelbreaks and larger landscape fuel treatments, such as prescribed fire, are receiving renewed interest as forest protection strategies in the western United States. The effectiveness of fuelbreaks remains a subject of debate because of differing fuelbreak objectives, prescriptions for creation and maintenance, and their placement in landscapes with differing fire regimes. A well-designed fuelbreak will alter the behavior of wildland fire entering the fuel-altered zone. Both surface and crown fire behavior may be reduced. Shaded fuelbreaks must be created in the context of the landscape within which they are placed. No absolute standards for fuelbreak width or fuel reduction are possible, although recent proposals for forested fuelbreaks suggest 400 m wide bands where surface fuels are reduced and crown fuels are thinned. Landscape-level treatments such as prescribed fire can use shaded fuelbreaks as anchor points, and extend the zone of altered fire behavior to larger proportions of the landscape. Coupling fuelbreaks with area-wide fuel treatments can reduce the size, intensity, and effects of wildland fires.

  3. A multi-criteria decisionmaking approach to management indicator species selection for the Monongahela National Forest, West Virginia.

    Treesearch

    Kurtis R. Moseley; W.Mark Ford; John W. Edwards; Michael P. Strager

    2010-01-01

    The management indicator species concept is useful for land managers charged with monitoring and conserving complex biological diversity over large landscapes with limited available resources. We used the analytical hierarchy process (AHP) to determine the best management indicator species (MIS) for three...

  4. Linking Science and Management in an Interactive Geospatial, Mutli-Criterion, Structured Decision Support Framework: Use Case Studies of the "Future Forests Geo-visualization and Decision Support Tool

    NASA Astrophysics Data System (ADS)

    Pontius, J.; Duncan, J.

    2017-12-01

    Land managers are often faced with balancing management activities to accomplish a diversity of management objectives, in systems faced with many stress agents. Advances in ecosystem modeling provide a rich source of information to inform management. Coupled with advances in decision support techniques and computing capabilities, interactive tools are now accessible for a broad audience of stakeholders. Here we present one such tool designed to capture information on how climate change may impact forested ecosystems, and how that impact varies spatially across the landscape. This tool integrates empirical models of current and future forest structure and function in a structured decision framework that allows users to customize weights for multiple management objectives and visualize suitability outcomes across the landscape. Combined with climate projections, the resulting products allow stakeholders to compare the relative success of various management objectives on a pixel by pixel basis and identify locations where management outcomes are most likely to be met. Here we demonstrate this approach with the integration of several of the preliminary models developed to map species distributions, sugar maple health, forest fragmentation risk and hemlock vulnerability to hemlock woolly adelgid under current and future climate scenarios. We compare three use case studies with objective weightings designed to: 1) Identify key parcels for sugarbush conservation and management, 2) Target state lands that may serve as hemlock refugia from hemlock woolly adelgid induced mortality, and 3) Examine how climate change may alter the success of managing for both sugarbush and hemlock across privately owned lands. This tool highlights the value of flexible models that can be easily run with customized weightings in a dynamic, integrated assessment that allows users to hone in on their potentially complex management objectives, and to visualize and prioritize locations across the landscape. It also demonstrates the importance of including climate considerations for long-term management. This merging of scientific knowledge with the diversity of stakeholder needs is an important step towards using science to inform management and policy decisions.

  5. Clear cutting (10-13th century) and deep stable economy (18-19th century) as responsible interventions for sand drifting and plaggic deposition in cultural landscapes on aeolian sands (SE-Netherlands).

    NASA Astrophysics Data System (ADS)

    van Mourik, Jan; Vera, Hein; Wallinga, Jakob

    2013-04-01

    The landscape in extensive areas in SE-Netherlands is underlain by coversand, deposited during the Late Glacial of the Weichselian. In the Preboreal, aeolian processes reduced soil formation. From the Preboreal to the Atlantic a deciduous climax forest developed. The geomorphology was a coversand landscape, composed of ridges (umbric podzols), coversand plains (gleyic podzols), coversand depressions (histic podzols) and small valleys (gleysols). The area was used by hunting people during the Late Paleolithic and Mesolithic. During the Bronze and Iron Ages the area was populated by people, living from forest grazing, shifting cultivation and trade. The natural deciduous forest gradually degraded into Calluna heath. The deforestation accelerated the soil acidification and affected the hydrology, which is reflected in drying out of ridges and wetting of depressions, promoting the development of histic podzols and even histosols. Aeolian erosion was during this period restricted to local, small scale sand drifting, related to natural hazards as forest fires and hurricanes and shifting cultivation. Sustainable crop productivity on chemically poor sandy substrates required application of organic fertilizers, composed of a mixture of organic litter and animal manure with a very low mineral compound, produced in shallow stables. At least since 1000 AD, heath management was regulated by a series of rules that aimed to protect the valuable heat lands against degradation. During the 11th, 12th and 13th centuries there was an increasing demand for wood and clear cutting transformed the majority of the forests in driftsand landscapes. The most important market was formed by the very wealthy Flemish cities. The exposed soil surface was subjected to wind erosion and sand drifting which endangered the Calluna heath, arable land and even farmhouses. As a consequence, umbric podzols, the natural climax soil under deciduous forests on coversand, degraded into larger scale driftsand landscapes, characterized by deflation plains (gleyic arenosols) and complexes of inland dunes (haplic arenosols). Clear cutting was responsible for the mediaeval first large scale expansion of drift sand landscapes. In such driftsand landscapes, the majority of the podzolic soils in coversand has been truncated by aeolian erosion. Only on scattered sheltered sites in the landscape, palaeopodzols were buried under mono or polycyclic driftsand deposits. They are now the valuable soil archives for palaeoecological research. During the 18th century, the population growth and regional economic activity stimulated the agricultural productivity. Farmers introduced the innovative 'deep stable' technique to increase the production of fertilizers. Farmers started sod digging, including the top of the Ah horizon of the humus forms. This consequently promoted heath degradation and sand drifting, resulting in the extension of driftsand landscapes. Deep stable economy and sod digging was responsible for the 18th century second large scale expansion of drift sand landscapes. During the 19th century, farmers tried to find alternative fertilizers and authorities initiated reforestation projects. The invention of chemical fertilizers at the end of the 19th century marked the end of the period of heath management and plaggic agriculture. The heath was no longer used for the harvesting of plaggic matter and new land management practices were introduced. Heath was reclaimed to new arable land or reforested with Scotch pine. Geomorphological features as inland dunes and plaggic covers survived in the landscape and are now included in the geological inheritance.

  6. Forest landscape restoration: increasing the positive impacts of forest restoration or simply the area under tree cover?

    Treesearch

    Stephanie Mansourian; John A. Stanturf; Mercy Afua Adutwumwaa Derkyi; Vera Lex Engel

    2017-01-01

    Restoring forest landscapes is critical in the face of continued global forest loss and degradation. In this article, weexplore some challenges underlying the delivery of global commitments to restore forest landscapes. We propose that threefundamental questions need to be resolved upfront for the effective implementation of Forest Landscape...

  7. Oak regeneration across a heterogeneous landscape in Ohio: some limited success after thinning, two fires, and seven years

    Treesearch

    Louis Iverson; Todd Hutchinson; Anantha Prasad; Matthew Peters

    2009-01-01

    We document an increase in oak and hickory advance regeneration, depending on landscape position, in the sixth year (2006) after mechanical thinning (2000) and repeated prescribed fires (2001 and 2005) across two sites (Raccoon Ecological Management Area and Zaleski State Forest) in southern Ohio.

  8. Challenges and approaches in planning fuel treatments across fire-excluded forested landscapes

    Treesearch

    B.M. Collins; S.L. Stephens; J.J. Moghaddas; J. Battles

    2010-01-01

    Placing fuel reduction treatments across entire landscapes such that impacts associated with high-intensity fire are lessened is a difficult goal to achieve, largely because of the immense area needing treatment. As such, fire scientists and managers have conceptually developed and are refining methodologies for strategic placement of fuel treatments that...

  9. Restoring fire-prone Inland Pacific landscapes: seven core principles

    Treesearch

    Paul F. Hessburg; Derek J. Churchill; Andrew J. Larson; Ryan D. Haugo; Carol Miller; Thomas A. Spies; Malcolm P. North; Nicholas A. Povak; R. Travis Belote; Peter H. Singleton; William L. Gaines; Robert E. Keane; Gregory H. Aplet; Scott L. Stephens; Penelope Morgan; Peter A. Bisson; Bruce E. Rieman; R. Brion Salter; Gordon H. Reeves

    2015-01-01

    Context More than a century of forest and fire management of Inland Pacific landscapes has transformed their successional and disturbance dynamics. Regional connectivity of many terrestrial and aquatic habitats is fragmented, flows of some ecological and physical processes have been altered in space and time, and the frequency, size and intensity of many disturbances...

  10. Disturbance in boreal forest ecosystems: human impacts and natural processes. Proceedings of the International Boreal Forest Research Association 1997 annual meeting; 1997 August 4-7; Duluth, Minnesota.

    Treesearch

    2000-01-01

    The papers in these proceedings cover a wide range of topics related to human and natural disturbance processes in forests of the boreal zone in North America and Eurasia. Topics include historic and predicted landscape change; forest management; disturbance by insects, fire, air pollution, severe weather, and global climate change; and carbon cycling.

  11. Forest owner incentives to protect riparian habitat.

    Treesearch

    Jeffrey D. Kline; Ralph J. Alig; Rebecca L. Johnson

    2000-01-01

    Private landowners increasingly are asked to cooperate with landscape-level management to protect or enhance ecological resources. We examine the willingness of nonindustrial private forest owners in the Pacific Northwest (USA) to forego harvesting within riparian areas to improve riparian habitat. An empirical model is developed describing owners' willingness to...

  12. Restoring and Enhancing Productivity of Degraded Tephra-Derived Soils

    Treesearch

    Chuck Bulmer; Jim Archuleta; Mike Curran

    2007-01-01

    Soil restoration (sometimes termed enhancement) is an important strategy for sustaining the productivity of managed forest landscapes. Tephra-derived soils have unique physical and chemical characteristics that affect their response to disturbance and restoration. A variety of factors reduce forest productivity on degraded soils. Site-specific information on soil...

  13. An incremental economic analysis of establishing early successional habitat for biodiversity

    Treesearch

    Slayton W. Hazard-Daniel; Patrick Hiesl; Susan C. Loeb; Thomas J. Straka

    2017-01-01

    Early successional habitat (ESH) is an important component of natural landscapes and is crucial to maintaining biodiversity. ESH also impacts endangered species. The extent of forest disturbances resulting in ESH has been diminishing, and foresters have developed timber management regimes using standard silvicultural techniques that...

  14. Fire disturbance effects in subalpine forests of north central Washington.

    Treesearch

    R. Schellhaas; D. Spurbeck; P. Ohlson; et al.

    2001-01-01

    Assessment of the historical disturbance effects across landscapes can provide an important foundation for land management decisions aimed at ecosystem restoration and maintenance. There have been numerous investigations regarding the historic disturbance patterns and resulting stand characteristics in low-elevation, dry forests of the inland west (Arno 1995, Everett...

  15. Forest roads: a synthesis of scientific information.

    Treesearch

    Hermann Gucinski; Michael J. Furniss; Robert R. Ziemer; Martha H. Brookes

    2001-01-01

    Effects of roads in forested ecosystems span direct physical and ecological ones (such as geomorphic and hydrologic effects), indirect and landscape level ones (such as effects on aquatic habitat, terrestrial vertebrates, and biodiversity conservation), and socioeconomic ones (such as passive-use value, economic effects on development and range management). Road...

  16. Forest roads: A synthesis of scientific information

    Treesearch

    Hermann Gucinski; Michael J. Furniss; Robert R. Ziemer; Martha H. Brookes

    2001-01-01

    Effects of roads in forested ecosystems span direct physical and ecological ones (such as geomorphic and hydrologic effects), indirect and landscape level ones (such as effects on aquatic habitat, terrestrial vertebrates, and biodiversity conservation), and socioeconomic ones (such as passive-use value, economic effects on development and range management). Road...

  17. Predicting deer-vehicle collisions in an urban area.

    PubMed

    Found, Rob; Boyce, Mark S

    2011-10-01

    Collisions with deer and other large animals are increasing, and the resulting economic costs and risks to public safety have made mitigation measures a priority for both city and wildlife managers. We created landscape models to describe and predict deer-vehicle collision (DVCs) within the City of Edmonton, Alberta. Models based on roadside characteristics revealed that DVCs occurred frequently where roadside vegetation was both denser and more diverse, and that DVCs were more likely to occur when the groomed width of roadside right-of-ways was smaller. No DVCs occurred where the width of the vegetation-free or manicured roadside buffer was greater than 40 m. Landscape-based models showed that DVCs were more likely in more heterogeneous landscapes where road densities were lower and speed limits were higher, and where non-forested vegetation such as farmland was in closer proximity to larger tracts of forest. These models can help wildlife and transportation managers to identify locations of high collision frequency for mitigation. Modifying certain landscape and roadside habitats can be an effective way to reduce deer-vehicle collisions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Analysis And Assessment Of Forest Cover Change For The State Of Wisconsin

    NASA Astrophysics Data System (ADS)

    Perry, C. H.; Nelson, M. D.; Stueve, K.; Gormanson, D.

    2010-12-01

    The Forest Inventory and Analysis (FIA) program of the USDA Forest Service is charged with documenting the status and trends of forest resources of the United States. Since the 1930s, FIA has implemented an intensive field campaign that collects measurements on plots distributed across all ownerships, historically completing analyses which include estimates of forest area, volume, mortality, growth, removals, and timber products output in various ways, such as by ownership, region, or State. Originally a periodic inventory, FIA has been measuring plots on an annual basis since the passage of the Agriculture Research, Extension and Education Reform Act of 1998 (Farm Bill). The resulting change in sampling design and intensity presents challenges to establishing baseline and measuring changes in forest area and biomass. A project jointly sponsored by the Forest Service and the National Aeronautics and Space Agency (NASA) titled “Integrating Landscape-scale Forest Measurements with Remote Sensing and Ecosystem Models to Improve Carbon Management Decisions” seeks to improve estimates of landscape- and continental-scale carbon dynamics and causes of change for North American forest land, and to use this information to support land management decisions. Specifically, we are developing and applying methods to scale up intensive biomass and carbon measurements from the field campaign to larger land management areas while simultaneously estimating change in the above-ground forest carbon stocks; the State of Wisconsin is being used as the testbed for this large-scale integration remote sensing with field measurements. Once defined, the temporal and spatial patterns of forest resources by watershed for Lake Superior and Lake Michigan outputs are being integrated into water quality assessments for the Great Lakes.

  19. Remote sensing-based landscape indicators for the evaluation of threatened-bird habitats in a tropical forest.

    PubMed

    Singh, Minerva; Tokola, Timo; Hou, Zhengyang; Notarnicola, Claudia

    2017-07-01

    Avian species persistence in a forest patch is strongly related to the degree of isolation and size of a forest patch and the vegetation structure within a patch and its matrix are important predictors of bird habitat suitability. A combination of space-borne optical (Landsat), ALOS-PALSAR (radar), and airborne Light Detection and Ranging (LiDAR) data was used for assessing variation in forest structure across forest patches that had undergone different levels of forest degradation in a logged forest-agricultural landscape in Southern Laos. The efficacy of different remote sensing (RS) data sources in distinguishing forest patches that had different seizes, configurations, and vegetation structure was examined. These data were found to be sensitive to the varying levels of degradation of the different patch categories. Additionally, the role of local scale forest structure variables (characterized using the different RS data and patch area) and landscape variables (characterized by distance from different forest patches) in influencing habitat preferences of International Union for Conservation of Nature (IUCN) Red listed birds found in the study area was examined. A machine learning algorithm, MaxEnt, was used in conjunction with these data and field collected geographical locations of the avian species to identify the factors influencing habitat preference of the different bird species and their suitable habitats. Results show that distance from different forest patches played a more important role in influencing habitat suitability for the different avian species than local scale factors related to vegetation structure and health. In addition to distance from forest patches, LiDAR-derived forest structure and Landsat-derived spectral variables were important determinants of avian habitat preference. The models derived using MaxEnt were used to create an overall habitat suitability map (HSM) which mapped the most suitable habitat patches for sustaining all the avian species. This work also provides insight that retention of forest patches, including degraded and isolated forest patches in addition to large contiguous forest patches, can facilitate bird species retention within tropical agricultural landscapes. It also demonstrates the effective use of RS data in distinguishing between forests that have undergone varying levels of degradation and identifying the habitat preferences of different bird species. Practical conservation management planning endeavors can use such data for both landscape scale monitoring and habitat mapping.

  20. Collaborative implementation for ecological restoration on US Public Lands: implications for legal context, accountability, and adaptive management.

    PubMed

    Butler, William H; Monroe, Ashley; McCaffrey, Sarah

    2015-03-01

    The Collaborative Forest Landscape Restoration Program (CFLRP), established in 2009, encourages collaborative landscape scale ecosystem restoration efforts on United States Forest Service (USFS) lands. Although the USFS employees have experience engaging in collaborative planning, CFLRP requires collaboration in implementation, a domain where little prior experience can be drawn on for guidance. The purpose of this research is to identify the ways in which CFLRP's collaborative participants and agency personnel conceptualize how stakeholders can contribute to implementation on landscape scale restoration projects, and to build theory on dynamics of collaborative implementation in environmental management. This research uses a grounded theory methodology to explore collaborative implementation from the perspectives and experiences of participants in landscapes selected as part of the CFLRP in 2010. Interviewees characterized collaborative implementation as encompassing three different types of activities: prioritization, enhancing treatments, and multiparty monitoring. The paper describes examples of activities in each of these categories and then identifies ways in which collaborative implementation in the context of CFLRP (1) is both hindered and enabled by overlapping legal mandates about agency collaboration, (2) creates opportunities for expanded accountability through informal and relational means, and, (3) creates feedback loops at multiple temporal and spatial scales through which monitoring information, prioritization, and implementation actions shape restoration work both within and across projects throughout the landscape creating more robust opportunities for adaptive management.

  1. Collaborative Implementation for Ecological Restoration on US Public Lands: Implications for Legal Context, Accountability, and Adaptive Management

    NASA Astrophysics Data System (ADS)

    Butler, William H.; Monroe, Ashley; McCaffrey, Sarah

    2015-03-01

    The Collaborative Forest Landscape Restoration Program (CFLRP), established in 2009, encourages collaborative landscape scale ecosystem restoration efforts on United States Forest Service (USFS) lands. Although the USFS employees have experience engaging in collaborative planning, CFLRP requires collaboration in implementation, a domain where little prior experience can be drawn on for guidance. The purpose of this research is to identify the ways in which CFLRP's collaborative participants and agency personnel conceptualize how stakeholders can contribute to implementation on landscape scale restoration projects, and to build theory on dynamics of collaborative implementation in environmental management. This research uses a grounded theory methodology to explore collaborative implementation from the perspectives and experiences of participants in landscapes selected as part of the CFLRP in 2010. Interviewees characterized collaborative implementation as encompassing three different types of activities: prioritization, enhancing treatments, and multiparty monitoring. The paper describes examples of activities in each of these categories and then identifies ways in which collaborative implementation in the context of CFLRP (1) is both hindered and enabled by overlapping legal mandates about agency collaboration, (2) creates opportunities for expanded accountability through informal and relational means, and, (3) creates feedback loops at multiple temporal and spatial scales through which monitoring information, prioritization, and implementation actions shape restoration work both within and across projects throughout the landscape creating more robust opportunities for adaptive management.

  2. From Synergy to Complexity: The Trend Toward Integrated Value Chain and Landscape Governance.

    PubMed

    Ros-Tonen, Mirjam A F; Reed, James; Sunderland, Terry

    2018-07-01

    This Editorial introduces a special issue that illustrates a trend toward integrated landscape approaches. Whereas two papers echo older "win-win" strategies based on the trade of non-timber forest products, ten papers reflect a shift from a product to landscape perspective. However, they differ from integrated landscape approaches in that they emanate from sectorial approaches driven primarily by aims such as forest restoration, sustainable commodity sourcing, natural resource management, or carbon emission reduction. The potential of such initiatives for integrated landscape governance and achieving landscape-level outcomes has hitherto been largely unaddressed in the literature on integrated landscape approaches. This special issue addresses this gap, with a focus on actor constellations and institutional arrangements emerging in the transition from sectorial to integrated approaches. This editorial discusses the trends arising from the papers, including the need for a commonly shared concern and sense of urgency; inclusive stakeholder engagement; accommodating and coordinating polycentric governance in landscapes beset with institutional fragmentation and jurisdictional mismatches; alignment with locally embedded initiatives and governance structures; and a framework to assess and monitor the performance of integrated multi-stakeholder approaches. We conclude that, despite a growing tendency toward integrated approaches at the landscape level, inherent landscape complexity renders persistent and significant challenges such as balancing multiple objectives, equitable inclusion of all relevant stakeholders, dealing with power and gender asymmetries, adaptive management based on participatory outcome monitoring, and moving beyond existing administrative, jurisdictional, and sectorial silos. Multi-stakeholder platforms and bridging organizations and individuals are seen as key in overcoming such challenges.

  3. Spatial Pattern of Attacks of the Invasive Woodwasp Sirex noctilio, at Landscape and Stand Scales.

    PubMed

    Lantschner, M Victoria; Corley, Juan C

    2015-01-01

    Invasive insect pests are responsible for important damage to native and plantation forests, when population outbreaks occur. Understanding the spatial pattern of attacks by forest pest populations is essential to improve our understanding of insect population dynamics and for predicting attack risk by invasives or planning pest management strategies. The woodwasp Sirex noctilio is an invasive woodwasp that has become probably the most important pest of pine plantations in the Southern Hemisphere. Our aim was to study the spatial dynamics of S. noctilio populations in Southern Argentina. Specifically we describe: (1) the spatial patterns of S. noctilio outbreaks and their relation with environmental factors at a landscape scale; and (2) characterize the spatial pattern of attacked trees at the stand scale. We surveyed the spatial distribution of S. noctilio outbreaks in three pine plantation landscapes, and we assessed potential associations with topographic variables, habitat characteristics, and distance to other outbreaks. We also looked at the spatial distribution of attacked trees in 20 stands with different levels of infestation, and assessed the relationship of attacks with stand composition and management. We found that the spatial pattern of pine stands with S. noctilio outbreaks at the landscape scale is influenced mainly by the host species present, slope aspect, and distance to other outbreaks. At a stand scale, there is strong aggregation of attacked trees in stands with intermediate infestation levels, and the degree of attacks is influenced by host species and plantation management. We conclude that the pattern of S. noctilio damage at different spatial scales is influenced by a combination of both inherent population dynamics and the underlying patterns of environmental factors. Our results have important implications for the understanding and management of invasive insect outbreaks in forest systems.

  4. Estimating the value of watershed services following forest restoration

    NASA Astrophysics Data System (ADS)

    Mueller, Julie M.; Swaffar, Wes; Nielsen, Erik A.; Springer, Abraham E.; Lopez, Sharon Masek

    2013-04-01

    Declining forest health, climate change, and development threaten the sustainability of water supplies in the western United States. While forest restoration may buffer threats to watershed services, funding shortfalls for landscape-scale restoration efforts limit management action. The hydrologic response and reduction in risk to watersheds following forest restoration treatments could create significant nonmarket benefits for downstream water users. Historic experimental watershed studies indicate a significant and positive response from forest thinning by a reallocation of water from evapotranspiration to surface-water yield. In this study, we estimate the willingness to pay (WTP) for improved watershed services for one group of downstream users, irrigators, following forest restoration activities. We find a positive and statistically significant WTP within our sample of 183.50 per household, at an aggregated benefit of more than 400,000 annually for 2181 irrigators. Our benefit estimate provides evidence that downstream irrigators may be willing to invest in landscape-scale forest restoration to maintain watershed services.

  5. Wildlife forestry: Chapter 10

    USGS Publications Warehouse

    Twedt, Daniel J.

    2012-01-01

    Wildlife forestry is management of forest resources, within sites and across landscapes, to provide sustainable, desirable habitat conditions for all forest-dependent (silvicolous) fauna while concurrently yielding economically viable, quality timber products. In practice, however, management decisions associated with wildlife forestry often reflect a desire to provide suitable habitat for rare species, species with declining populations, and exploitable (i.e., game) species. Collectively, these species are deemed priority species and they are assumed to benefit from habitat conditions that result from prescribed silvicultural management actions.

  6. Season-modulated responses of Neotropical bats to forest fragmentation.

    PubMed

    Ferreira, Diogo F; Rocha, Ricardo; López-Baucells, Adrià; Farneda, Fábio Z; Carreiras, João M B; Palmeirim, Jorge M; Meyer, Christoph F J

    2017-06-01

    Seasonality causes fluctuations in resource availability, affecting the presence and abundance of animal species. The impacts of these oscillations on wildlife populations can be exacerbated by habitat fragmentation. We assessed differences in bat species abundance between the wet and dry season in a fragmented landscape in the Central Amazon characterized by primary forest fragments embedded in a secondary forest matrix. We also evaluated whether the relative importance of local vegetation structure versus landscape characteristics (composition and configuration) in shaping bat abundance patterns varied between seasons. Our working hypotheses were that abundance responses are species as well as season specific, and that in the wet season, local vegetation structure is a stronger determinant of bat abundance than landscape-scale attributes. Generalized linear mixed-effects models in combination with hierarchical partitioning revealed that relationships between species abundances and local vegetation structure and landscape characteristics were both season specific and scale dependent. Overall, landscape characteristics were more important than local vegetation characteristics, suggesting that landscape structure is likely to play an even more important role in landscapes with higher fragment-matrix contrast. Responses varied between frugivores and animalivores. In the dry season, frugivores responded more to compositional metrics, whereas during the wet season, local and configurational metrics were more important. Animalivores showed similar patterns in both seasons, responding to the same group of metrics in both seasons. Differences in responses likely reflect seasonal differences in the phenology of flowering and fruiting between primary and secondary forests, which affected the foraging behavior and habitat use of bats. Management actions should encompass multiscale approaches to account for the idiosyncratic responses of species to seasonal variation in resource abundance and consequently to local and landscape scale attributes.

  7. Bird and bat predation services in tropical forests and agroforestry landscapes.

    PubMed

    Maas, Bea; Karp, Daniel S; Bumrungsri, Sara; Darras, Kevin; Gonthier, David; Huang, Joe C-C; Lindell, Catherine A; Maine, Josiah J; Mestre, Laia; Michel, Nicole L; Morrison, Emily B; Perfecto, Ivette; Philpott, Stacy M; Şekercioğlu, Çagan H; Silva, Roberta M; Taylor, Peter J; Tscharntke, Teja; Van Bael, Sunshine A; Whelan, Christopher J; Williams-Guillén, Kimberly

    2016-11-01

    Understanding distribution patterns and multitrophic interactions is critical for managing bat- and bird-mediated ecosystem services such as the suppression of pest and non-pest arthropods. Despite the ecological and economic importance of bats and birds in tropical forests, agroforestry systems, and agricultural systems mixed with natural forest, a systematic review of their impact is still missing. A growing number of bird and bat exclosure experiments has improved our knowledge allowing new conclusions regarding their roles in food webs and associated ecosystem services. Here, we review the distribution patterns of insectivorous birds and bats, their local and landscape drivers, and their effects on trophic cascades in tropical ecosystems. We report that for birds but not bats community composition and relative importance of functional groups changes conspicuously from forests to habitats including both agricultural areas and forests, here termed 'forest-agri' habitats, with reduced representation of insectivores in the latter. In contrast to previous theory regarding trophic cascade strength, we find that birds and bats reduce the density and biomass of arthropods in the tropics with effect sizes similar to those in temperate and boreal communities. The relative importance of birds versus bats in regulating pest abundances varies with season, geography and management. Birds and bats may even suppress tropical arthropod outbreaks, although positive effects on plant growth are not always reported. As both bats and birds are major agents of pest suppression, a better understanding of the local and landscape factors driving the variability of their impact is needed. © 2015 Cambridge Philosophical Society.

  8. Mapping regional patterns of large forest fires in Wildland-Urban Interface areas in Europe.

    PubMed

    Modugno, Sirio; Balzter, Heiko; Cole, Beth; Borrelli, Pasquale

    2016-05-01

    Over recent decades, Land Use and Cover Change (LUCC) trends in many regions of Europe have reconfigured the landscape structures around many urban areas. In these areas, the proximity to landscape elements with high forest fuels has increased the fire risk to people and property. These Wildland-Urban Interface areas (WUI) can be defined as landscapes where anthropogenic urban land use and forest fuel mass come into contact. Mapping their extent is needed to prioritize fire risk control and inform local forest fire risk management strategies. This study proposes a method to map the extent and spatial patterns of the European WUI areas at continental scale. Using the European map of WUI areas, the hypothesis is tested that the distance from the nearest WUI area is related to the forest fire probability. Statistical relationships between the distance from the nearest WUI area, and large forest fire incidents from satellite remote sensing were subsequently modelled by logistic regression analysis. The first European scale map of the WUI extent and locations is presented. Country-specific positive and negative relationships of large fires and the proximity to the nearest WUI area are found. A regional-scale analysis shows a strong influence of the WUI zones on large fires in parts of the Mediterranean regions. Results indicate that the probability of large burned surfaces increases with diminishing WUI distance in touristic regions like Sardinia, Provence-Alpes-Côte d'Azur, or in regions with a strong peri-urban component as Catalunya, Comunidad de Madrid, Comunidad Valenciana. For the above regions, probability curves of large burned surfaces show statistical relationships (ROC value > 0.5) inside a 5000 m buffer of the nearest WUI. Wise land management can provide a valuable ecosystem service of fire risk reduction that is currently not explicitly included in ecosystem service valuations. The results re-emphasise the importance of including this ecosystem service in landscape valuations to account for the significant landscape function of reducing the risk of catastrophic large fires. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Remote Sensing of Forest Cover in Boreal Zones of the Earth

    NASA Astrophysics Data System (ADS)

    Sedykh, V. N.

    2011-12-01

    Ecological tension resulting from human activities generates a need for joint efforts of countries in the boreal zone aimed at sustainable forest development, including: conservation of forests binding carbon and ensuring stability of the atmosphere gas composition; preservation of purity and water content of forest areas as conditions ensuring sustainability of the historically formed structure of forest landscapes; and preservation of all flora and fauna species composition diversity as a condition for sustainable existence and functioning of forest ecosystems. We have to address these problems urgently due to climate warming which can interact with the forest cover. In particular, in the forest zone of Siberia, the climate aridization will inevitably result in periodic drying of shallow bogs and upland forests with thick forest litter. This will bring fires of unprecedented intensity which will lead to catastrophic atmospheric pollution. In this connection, the above problems can be solved only by the united efforts of boreal-zone countries, through establishing a uniform system for remote sensing of forests aimed at obtaining and periodic update of comprehensive information for rational decision-making in prevention of adverse human effect on the forest. A need to join efforts in this field of natural resource management is determined by disparate data which were created expressly for economic accounting units used mainly for the solution of economic timber resource problems. However, ecological tasks outlined above can be solved appropriately only by using uniform technologies that are registered within natural territorial complexes (landscapes) established throughout the entire boreal zone. Knowledge of forest state within natural territorial entities having specific physiographic conditions, with account for current and future anthropogenic load, allow one to define evidence-based forest growth potential at these landscapes to ensure development of historically formed ecological properties of the forest. Constantly updated information will permit the regulation of human pressure on forests to ensure that there is no reduction in their role in the biosphere processes of carbon accumulation and release. Satellite monitoring within identified landscape requires initial quantitative information about forest, about other biotic components of landscapes, and about their abiotic environment determined through both ground-based measurements and remote sensing. Thus, a kind of passport should be kept for each landscape as a starting point for subsequent updating of remote sensing monitoring of forests and their habitats and the assessment of their changes. Implementation of such monitoring across the entire boreal zone of the Earth is possible on the basis of geographical and genetic typology of forest and phyto-geomorphological method of aerospace image interpretation. Both approaches are based on the use of relationships between topography and vegetation, and were successfully applied by the author to aerospace monitoring of the forest cover of West Siberian Plain.

  10. Parasitism at the landscape scale: Cowbirds prefer forests

    USGS Publications Warehouse

    Hahn, D.C.; Hatfield, J.S.

    1995-01-01

    Landscape-scale examination of parasitism patterns of Brown-headed Cowbirds (Molothrus ater) revealed heterogeneous parasitism rates across the mosaic of a forest and associated oldfield communities. In a two-year study in Dutchess County, New York, we found a significantly higher parasitism rate in the forest-interior community (n = 301 nests; 17 species) than on the species in the adjacent and nearby old-field and edge (n = 328 nests; 15 species; 32.3% versus 6.5%; p lt 0.0001). Cowbirds invaded a mature 1300-ha forest stand even when their traditional host species were available in adjacent old-field and edge habitats. The forest and old field study areas were located in a 38,000-ha township with 55% forest cover and contained numerous agriculture, dairy, and horse farms that provided favorable habitat for cowbirds, within-forest examination of parasitism patterns revealed four aspects of cowbird parasitism that contrasted with patterns described in other regions; (1) parasitism was concentrated significantly more often on ground and low-nesting (nests ltoreq 1 m) forest species than on medium- and high nesting species (nests gt 1 m; 35. 01 % versus 2993%; p = 0.0393); (2) parasitism was not significantly greater on Neotropical migrant species than on short-distance migrants and residents; (3) the parasitism rate was not higher in nests close to edges; and (4) the parasitism level was low on certain forest species (such as Wood Thrush) that have experienced high parasitism levels in the Midwest. From a management perspective these data suggest that cowbirds exhibit regional differences in host and habitat use; the target host community of a particular cowbird population is unpredictable at the landscape scale; and a landscape scale should be used in designing cowbird studies to accurately assess local population dynamics.

  11. The effect of slight thinning of managed coniferous forest on landscape appreciation and psychological restoration

    NASA Astrophysics Data System (ADS)

    Takayama, Norimasa; Saito, Haruo; Fujiwara, Akio; Horiuchi, Masahiro

    2017-12-01

    We investigated the influence of slight thinning (percentage of woods: 16.6%, basal area: 9.3%) on landscape appreciation and the psychological restorative effect of an on-site setting by exposing respondents to an ordinarily managed coniferous woodland. The experiments were conducted in an experimental plot in the same coniferous woodland in May (unthinned) and October 2013 (thinned). The respondents were the same 15 individuals for both experiments. Respondents were individually exposed to the enclosed plot and the forest-view plot within the same tent for 15 min. In both sessions, respondents were required to answer three questionnaires measuring their mood (Profile of Mood States), emotion (Positive and Negative Affect Schedule), and feeling of restoration (Restorative Outcome Scale) to investigate the psychological restorative effect before and after the experiment. They completed two other questionnaires measuring appreciation for the environment (Semantic Differential) and the restorative properties of the environment (Perceived Restorativeness Scale) following the experiments. We first analyzed the difference in landscape appreciation between the unthinned and thinned conditions. We did not find any statistical difference in appreciation for the environment (Semantic Differential) or the restorative properties of the environment (Perceived Restorativeness Scale); rather, we found that weather conditions had a primary influence on landscape appreciation. With respect to the psychological restorative effect, a two-way repeated analysis of valiance (ANOVA) revealed significant main effects for a selection of indices, depending on the presence or absence of thinning. However, multiple comparison analyses revealed that these effects seemed to be due to the difference in the experimental experience rather than the presence or absence of thinning. In conclusion, the effect of the slight thinning of the managed coniferous forest was too weak to be reflected in the respondents' landscape appreciation or to exert a psychological restorative effect. Therefore, planners should consider stronger thinning as it is unlikely to result in serious damage to users' appreciation and may increase their landscape appreciation of coniferous woodland and enhance its psychological restorative effect.

  12. Efficacy of landscape scale woodland and savanna restoration at multiple spatial and temporal scales

    USGS Publications Warehouse

    Pittman, H. Tyler; Krementz, David G.

    2016-01-01

    The loss of historic ecosystem conditions has led forest managers to implement woodland and savanna ecosystem restoration on a landscape scale (≥10,000 ha) in the Ozark Plateau of Arkansas. Managers are attempting to restore and conserve these ecosystems through the reintroduction of disturbance, mainly short-rotation early-growing-season prescribed fire. Short-rotation early-growing season prescribed fire in the Ozarks typically occurs immediately before bud-break, through bud-break, and before leaf-out, and fire events occur on a three-to five-year interval. We examined short-rotation early-growing season prescribed fire as a restoration tool on vegetation characteristics. We collected vegetation measurements at 70 locations annually from 2011 to 2012 in and around the White Rock Ecosystem Restoration Area (WRERA), Ozark-St. Francis National Forest, Arkansas, and used generalized linear models to investigate the impact and efficacy of prescribed fire on vegetation structure. We found the number of large shrubs (>5 cm base diameter) decreased and small shrubs (<5 cm ground diameter) increased with prescribed fire severity. We found that horizontal understory cover from ground level to 1 m in height increased with time-since-prescribed-fire and woody ground cover decreased with the number of prescribed fire treatments. Using LANDFIRE datasets at the landscape scale, we found that since the initiation of a short-rotation early-growing season prescribed fire management regime, forest canopy cover has not reverted to levels characteristic of woodlands and savannas or reached restoration objectives over large areas. Without greater reductions in forest canopy cover and increases in forest-canopy cover heterogeneity, advanced regeneration will be limited in success, and woodland and savanna conditions will not return soon or to the extent desired.

  13. Experimental canopy removal enhances diversity of vernal pond amphibians.

    PubMed

    Skelly, David K; Bolden, Susan R; Freidenburg, L Kealoha

    2014-03-01

    Vernal ponds are often treated as protected environments receiving special regulation and management. Within the landscapes where they are found, forest vegetation frequently dominates surrounding uplands and can grow to overtop and shade pond basins. Two bodies of research offer differing views of the role of forest canopy for vernal pond systems. Studies of landscape conversion suggest that removing forest overstory within uplands can cause local extinctions of amphibians by altering terrestrial habitat or hindering movement. Studies of canopy above pond basins imply an opposite relationship; encroachment of overstory vegetation can be associated with local extinctions potentially via changes in light, thermal, and food resource environments. Unresolved uncertainties about the role of forest canopy reveal significant gaps in our understanding of wetland species distributions and dynamics. Any misunderstanding of canopy influences is simultaneously important to managers because current practices emphasize promoting or conserving vegetation growth particularly within buffers immediately adjacent to ponds. We evaluated this apparent contradiction by conducting a landscape-scale, long-term experiment using 14 natural vernal ponds. Tree felling at six manipulated ponds was limited in spatial scope but was nevertheless effective in increasing water temperature. Compared with eight control ponds, manipulated ponds maintained more amphibian species during five years post-manipulation. There was little evidence that any species was negatively influenced, and the reproductive effort of species for which we estimated egg inputs maintained pretreatment population densities in manipulated compared with control ponds. Overall, our experiment shows that a carefully circumscribed reduction of overhead forest canopy can enhance the capacity of vernal ponds to support wildlife diversity and suggests a scale dependence of canopy influences on amphibians. These findings have implications for the connection between current wetland management practices and the goals of wetland stewardship and conservation of wetland-dependent species.

  14. Estimation of forest structural parameters using 5 and 10 meter SPOT-5 satellite data

    Treesearch

    Peter T. Wolter; Phillip A. Townsend; Brian R. Sturtevant

    2009-01-01

    Large areas of forest in the US and Canada are affected by insects and disease each year. Over the past century, outbreaks of the Eastern spruce budworm have become more frequent and severe. The notion of designing a more pest resistant landscape through prescriptive management practices hinges on our ability to effectively model forest?insect dynamics at regional...

  15. Wildlife of southern forests habitat & management (Chapter 30): Wildlife Recreation

    Treesearch

    H. Ken Cordell; John C. Bergstrom; R. Jeff Teasley; Jeremy Thomas

    2003-01-01

    Southern U.S. forests contribute to sustaining and adding quality to human life in many important ways. From before, during, and continuing now well after early European settlement of the South, native and immigrant populations in the South have lived in, off of and with forests as a major feature of their landscape. One of the important ways people benefit from the...

  16. Historical and current landscape-scale ponderosa pine and mixed conifer forest structure in the Southern Sierra Nevada

    Treesearch

    Scott L. Stephens; Jamie M. Lydersen; Brandon M. Collins; Danny L. Fry; Marc D. Meyer

    2015-01-01

    Many managers today are tasked with restoring forests to mitigate the potential for uncharacteristically severe fire. One challenge to this mandate is the lack of large-scale reference information on forest structure prior to impacts from Euro-American settlement. We used a robust 1911 historical dataset that covers a large geographic extent (>10,000 ha) and has...

  17. Saproxylic beetles in a Swedish boreal forest landscape managed according to 'new forestry'

    Treesearch

    Stig Larsson; Barbara Ekbom; L. Martin Schroeder; Melodie A. McGeoch

    2006-01-01

    A major threat to biodiversity in Swedish forests is the decline of Coarse Woody Debris (CWD), which is an essential resource for many organisms and plays an essential role for the structure and function of boreal forests. Removal of CWD in commercial forestry has depleted important resources for many rare wood-living (saproxylic) beetles. Replenishment of CWD has been...

  18. Fuel treatments and landform modify landscape patterns of burn severity in an extreme fire event

    Treesearch

    Susan J. Prichard; Maureen C. Kennedy

    2014-01-01

    Under a rapidly warming climate, a critical management issue in semiarid forests of western North America is how to increase forest resilience to wildfire. We evaluated relationships between fuel reduction treatments and burn severity in the 2006 Tripod Complex fires, which burned over 70 000 ha of mixed-conifer forests in the North Cascades range of Washington State...

  19. [Responses of boreal forest landscape in northern Great Xing'an Mountains of Northeast China to climate change].

    PubMed

    Li, Xiao-Na; He, Hong-Shi; Wu, Zhi-Wei; Liang, Yu

    2012-12-01

    With the combination of forest landscape model (LANDIS) and forest gap model (LINKAGES), this paper simulated the effects of climate change on the boreal forest landscape in the Great Xing'an Mountains, and compared the direct effects of climate change and the effects of climate warming-induced fires on the forest landscape. The results showed that under the current climate conditions and fire disturbances, the forest landscape in the study area could maintain its dynamic balance, and Larix gmelinii was still the dominant tree species. Under the future climate and fire disturbances scenario, the distribution area of L. gmelinii and Pinus pumila would be decreased, while that of Betula platyphylla, Populus davidiana, Populus suaveolens, Chosenia arbutifolia, and Pinus sylvestris var. mongolica would be increased, and the forest fragmentation and forest diversity would have an increase. The changes of the forest landscape lagged behind climate change. Climate warming would increase the growth of most tree species except L. gmelinii, while the increased fires would increase the distribution area of P. davidiana, P. suaveolens, and C. arbutifolia and decrease the distribution area of L. gmelinii, P. sylvestris var. mongolica, and P. pumila. The effects of climate warming-induced fires on the forest landscape were almost equal to the direct effects of climate change, and aggravated the direct effects of climate change on forest composition, forest landscape fragmentation, and forest landscape diversity.

  20. Ecoregional-scale monitoring within conservation areas, in a rapidly changing climate

    USGS Publications Warehouse

    Beever, Erik A.; Woodward, Andrea

    2011-01-01

    Long-term monitoring of ecological systems can prove invaluable for resource management and conservation. Such monitoring can: (1) detect instances of long-term trend (either improvement or deterioration) in monitored resources, thus providing an early-warning indication of system change to resource managers; (2) inform management decisions and help assess the effects of management actions, as well as anthropogenic and natural disturbances; and (3) provide the grist for supplemental research on mechanisms of system dynamics and cause-effect relationships (Fancy et al., 2009). Such monitoring additionally provides a snapshot of the status of monitored resources during each sampling cycle, and helps assess whether legal standards and regulations are being met. Until the last 1-2 decades, tracking and understanding changes in condition of natural resources across broad spatial extents have been infrequently attempted. Several factors, however, are facilitating the achievement of such broad-scale investigation and monitoring. These include increasing awareness of the importance of landscape context, greater prevalence of regional and global environmental stressors, and the rise of landscape-scale programs designed to manage and monitor biological systems. Such programs include the US Forest Service's Forest Inventory and Analysis (FIA) Program (Moser et al., 2008), Canada's National Forest Inventory, the 3Q Programme for monitoring agricultural landscapes of Norway (Dramstad et al., 2002), and the emerging (US) Landscape Conservation Cooperatives (USDOI Secretarial Order 3289, 2009; Anonymous, 2011). This Special Section explores the underlying design considerations, as well as many pragmatic aspects associated with program implementation and interpretation of results from broad-scale monitoring systems, particularly within the constraints of high-latitude contexts (e.g., low road density, short field season, dramatic fluctuations in temperature). Although Alaska is the focus of most papers in this Special Section, we posit that many of the issues that characterize the remote, relatively undisturbed ecosystems of high northern latitudes are widespread and thus applicable to natural-resource management and conservation across northern portions of the Holarctic ecozone and indeed anywhere broad-scale monitoring is contemplated.

Top